

 expression

 v2.48.0

 Table of contents

 	
 Modules

 	Expression

 	Expression.Autodoc

 	Expression.Callbacks

 	Expression.Callbacks.Standard

 	Expression.Context

 	Expression.Eval

 	Expression.Parser

 	Expression.V2

 	Expression.V2.Autodoc

 	Expression.V2.Callbacks

 	Expression.V2.Callbacks.Standard

 	Expression.V2.Compat

 	Expression.V2.Compile

 	Expression.V2.Context

 	Expression.V2.Parser

Expression

Documentation for Expression, a library to parse and evaluate
Floip compatible expressions
Expression is an expression language which consists of the functions provided
by Excel with a few additions.
Function and variable names are not case-sensitive so UPPER is equivalent to upper:
contact.name -> Marshawn Lynch
FIRST_WORD(contact.name) -> Marshawn
first_word(CONTACT.NAME) -> Marshawn
For templating, RapidPro uses the @ character to denote either a single variable substitution
or the beginning of an Expression block. @ was chosen as it is known how to type by a broad
number of users regardless of keyboard. It does have the disadvantage of being used in
email addresses and Twitter handles, but these are rarely ambiguous and escaping can be
done easily via doubling of the character (@@).
Functions are called by using the block syntax:
10 plus 4 is @(SUM(10, 4))
Within a block, @ is not required to refer to variable in the context:
Hello @(contact.name)
A template can contain more than one substitution or block:
Hello @contact.name, you were born in @(YEAR(contact.birthday))

 Summary

 Types

 expression_type()

 Functions

 error(message)

 Generate an error map

 escape(expression)

 evaluate(expression, context \\ %{}, mod \\ Expression.Callbacks)

 evaluate!(expression, context \\ %{}, mod \\ Expression.Callbacks)

 evaluate_as_boolean!(expression, context \\ %{}, mod \\ Expression.Callbacks)

 evaluate_as_string!(expression, context \\ %{}, mod \\ Expression.Callbacks)

 evaluate_block(expression, context \\ %{}, mod \\ Expression.Callbacks, opts \\ [])

 evaluate_block!(expression, context \\ %{}, mod \\ Expression.Callbacks, opts \\ [])

 parse!(expression)

 parse_expression(expression_block)

 parse_expression!(expression_block)

 prewalk(ast, fun)

 See Macro.prewalk/2.

 stringify(items)

 Convert an Expression type into a string.

 time_struct?(value)

 traverse(ast, acc, pre, post)

 See Macro.traverse/4.

 Types

 expression_type()

 @type expression_type() :: String.t() | number() | map() | DateTime.t() | Date.t()

 Functions

 error(message)

 @spec error(message :: term()) :: %{required(String.t()) => term()}

Generate an error map

 escape(expression)

 @spec escape(String.t()) :: String.t()

 evaluate(expression, context \\ %{}, mod \\ Expression.Callbacks)

 evaluate!(expression, context \\ %{}, mod \\ Expression.Callbacks)

 evaluate_as_boolean!(expression, context \\ %{}, mod \\ Expression.Callbacks)

 evaluate_as_string!(expression, context \\ %{}, mod \\ Expression.Callbacks)

 @spec evaluate_as_string!(
 String.t() | Number.t() | nil,
 map(),
 module()
) :: String.t()

 evaluate_block(expression, context \\ %{}, mod \\ Expression.Callbacks, opts \\ [])

 evaluate_block!(expression, context \\ %{}, mod \\ Expression.Callbacks, opts \\ [])

 parse!(expression)

 @spec parse!(String.t() | Number.t() | Time.t() | boolean()) :: Keyword.t()

 parse_expression(expression_block)

 @spec parse_expression(String.t()) :: {:ok, Keyword.t()} | {:error, String.t()}

 parse_expression!(expression_block)

 @spec parse_expression!(String.t()) :: Keyword.t()

 prewalk(ast, fun)

See Macro.prewalk/2.

 stringify(items)

 @spec stringify([expression_type()] | expression_type()) :: String.t()

Convert an Expression type into a string.
This function is applied to all values when Expression.evaluate_as_string!/3 is called.

 time_struct?(value)

 @spec time_struct?(String.t() | Time.t()) :: boolean()

 traverse(ast, acc, pre, post)

See Macro.traverse/4.

Expression.Autodoc

Extract @expression_doc attributes from modules defining callbacks
and automatically write doctests for those.
Also inserts an expression_docs() function which returns a list of
all functions and their defined expression docs.
The format is:
@expression_doc doc: "Construct a date from year, month, and day integers",
 expression: "@date(year, month, day)",
 context: %{"year" => 2022, "month" => 1, "day" => 31},
 result: "2022-01-31T00:00:00Z"
Where:
	doc is the explanatory text added to the doctest.
	expression is the expression we want to test
	fake_expression can optionally be the expression we want to display but not test
	context is the context the expression is tested against
	result is the result we're expecting to get and are asserting against
	fake_result can be optionally supplied when the returning result varies
 depending on factors we do not control, like for now() for example.
 When this is used, the ExDoc tests are faked and won't actually test
 anything so use sparingly.

 Summary

 Functions

 annotate_method(module, function, args)

 format_context(context)

 format_docs(docs)

 format_function_args(args)

 format_function_name(name)

 format_result(result)

 generate_assert(prompt, result)

 generate_ex_doc(prompt \\ "iex", module, expression, context, result)

 get_existing_docstring(module)

 get_expression(expression_doc)

 stringify(value)

 type_of(boolean)

 update_annotations(module, function, args, expression_docs, category)

 Functions

 annotate_method(module, function, args)

 format_context(context)

 format_docs(docs)

 format_function_args(args)

 format_function_name(name)

 format_result(result)

 generate_assert(prompt, result)

 generate_ex_doc(prompt \\ "iex", module, expression, context, result)

 get_existing_docstring(module)

 get_expression(expression_doc)

 stringify(value)

 type_of(boolean)

 update_annotations(module, function, args, expression_docs, category)

Expression.Callbacks

Use this module to implement one's own callbacks.
The standard callbacks available are implemented in Expression.Callbacks.Standard.
defmodule MyCallbacks do
 use Expression.Callbacks

 @doc """
 Roll a dice and randomly return a number between 1 and 6.
 """
 def dice_roll(ctx) do
 Enum.random(1..6)
 end

end

 Summary

 Functions

 atom_function_name(function_name)

 Convert a string function name into an atom meant to handle
that function

 handle(module \\ Standard, function_name, arguments, context)

 Handle a function call while evaluating the AST.

 implements(module \\ Standard, function_name, arguments)

 Functions

 atom_function_name(function_name)

Convert a string function name into an atom meant to handle
that function
Reserved words such as and, if, and or are automatically suffixed
with an _ underscore.

 handle(module \\ Standard, function_name, arguments, context)

 @spec handle(
 module :: module(),
 function_name :: binary(),
 arguments :: [any()],
 context :: map()
) ::
 {:ok, any()} | {:error, :not_implemented}

Handle a function call while evaluating the AST.
Handlers in this module are either:
	The function name as is
	The function name with an underscore suffix if the function name is a reserved word
	The function name suffixed with _vargs if the takes a variable set of arguments

 implements(module \\ Standard, function_name, arguments)

Expression.Callbacks.Standard

The function callbacks for the standard function set available
in FLOIP expressions.
This should be relatively swappable with another implementation.
The only requirement is the handle/3 function.
FLOIP functions are case insensitive. All functions in this callback
module are implemented as lowercase names.
Some functions accept a variable amount of arguments. Elixir doesn't
support variable arguments in functions.
If a function accepts a variable number of arguments the convention
is to call the <function_name>_vargs/2 callback where the context
is given as the first argument and the argument list as a second
argument.
Reserved names such as and, if, and or are suffixed with an
underscore.

 Summary

 Functions

 abs(ctx, number)

 Returns the absolute value of a number

 and_vargs(ctx, arguments)

 Returns true if and only if all its arguments evaluate to true

 append(ctx, list, payload)

 Appends an item or a list of items to a given list.

 base64_decode(ctx, thing)

 Base64 decode an expression

 base64_encode(ctx, thing)

 Base64 encode an expression

 char(ctx, code)

 Returns the character specified by a number

 chunk_every(ctx, enumerable, count)

 Chunk a list into a list of smaller lists.

 clean(ctx, binary)

 Removes all non-printable characters from a text string

 code(ctx, code_ast)

 Returns a numeric code for the first character in a text string

 concatenate_vargs(ctx, arguments)

 Joins text strings into one text string

 count(ctx, term)

 Return the number of entries in a list, string, or a map.

 date(ctx, year, month, day)

 Defines a new date value

 datetime_add(ctx, datetime, offset, unit)

 Calculates a new datetime based on the offset and unit provided.

 datetime_from_unix(ctx, unix, unit)

 Parses a UNIX time and returns a DateTime

 datevalue(ctx, date)

 datevalue(ctx, date, format)

 Converts date stored in text to an actual date object and
formats it using strftime formatting.

 day(ctx, date)

 Returns only the day of the month of a date (1 to 31)

 delete(ctx, map, key)

 Deletes an element from a map by the given key.

 edate(ctx, date, months)

 Moves a date by the given number of months

 expression_docs()

 Return a list of all functions annotated with @expression_docs

 filter(ctx, enumerable, filter_fun)

 Filters a list by returning a new list that contains only the
elements for which filter_fun is truthy.

 find(ctx, enumerable, find_fun)

 Finds the first element in the list for which filter_fun is truthy.

 first_word(ctx, binary)

 Returns the first word in the given text - equivalent to WORD(text, 1)

 fixed(ctx, number, precision)

 Formats the given number in decimal format using a period and commas

 fixed(ctx, number, precision, no_commas)

 handle(module \\ __MODULE__, function_name, arguments, context)

 See Expression.Callbacks.handle/4.

 has_all_members(ctx, list, items)

 Return true if a list contains all the provided items

 has_all_words(ctx, haystack, words)

 Tests whether all the words are contained in text

 has_any_beginning(ctx, text, prefixes)

 Checks if the given text starts with any of the provided prefixes. The function performs a case-insensitive match.

 has_any_end(ctx, text, end_texts)

 has_any_exact_phrase(ctx, text, phrases)

 Check whether the given text exactly matches any of the provided phrases. The function performs a case-insensitive exact match.

 has_any_member(ctx, list, items)

 Return true if a list contains any of the provided items

 has_any_phrase(ctx, text, phrases)

 Check whether the given text contains any of the provided strings. The function performs a case-insensitive exact match.
The second argument expects either a list of strings or a single string with comma-separated phrases.

 has_any_word(ctx, haystack, words)

 Tests whether any of the words are contained in the text

 has_beginning(ctx, text, beginning)

 Tests whether text starts with beginning

 has_date(ctx, expression)

 Tests whether expression contains a date formatted according to our environment

 has_date_eq(ctx, expression, date_string)

 Tests whether expression is a date equal to date_string

 has_date_gt(ctx, expression, date_string)

 Tests whether expression is a date after the date date_string

 has_date_lt(ctx, expression, date_string)

 Tests whether expression contains a date before the date date_string

 has_email(ctx, expression)

 Tests whether an email is contained in text

 has_end(ctx, text, end_text)

 has_group(ctx, groups, uuid)

 Returns whether the contact is part of group with the passed in UUID

 has_member(ctx, list, item)

 Return true if a list has the given item as a member

 has_number(ctx, expression)

 Tests whether expression contains a number

 has_number_eq(ctx, expression, float)

 Tests whether expression contains a number equal to the value

 has_number_gt(ctx, expression, float)

 Tests whether expression contains a number greater than min

 has_number_gte(ctx, expression, float)

 Tests whether expression contains a number greater than or equal to min

 has_number_lt(ctx, expression, float)

 Tests whether expression contains a number less than max

 has_number_lte(ctx, expression, float)

 Tests whether expression contains a number less than or equal to max

 has_only_phrase(ctx, expression, phrase)

 Tests whether the text contains only phrase

 has_only_text(ctx, expression_one, expression_two)

 Returns whether two text values are equal (case sensitive). In the case that they are, it will return the text as the match.

 has_pattern(ctx, expression, pattern)

 Tests whether expression matches the regex pattern

 has_phone(ctx, expression)

 Tests whether expresssion contains a phone number.
The optional country_code argument specifies the country to use for parsing.

 has_phone(ctx, expression, country_code)

 has_phrase(ctx, expression, phrase)

 Tests whether phrase is contained in expression

 has_text(ctx, expression)

 Tests whether there the expression has any characters in it

 has_time(ctx, expression)

 Tests whether expression contains a time.

 hour(ctx, date)

 Returns only the hour of a datetime (0 to 23)

 if_(ctx, condition, yes, no)

 Returns one value if the condition evaluates to true, and another value if it evaluates to false

 is_error(ctx, value)

 Checks whether value is an error

 is_nil_or_empty(ctx, arg)

 Returns true if the argument is nil or an empty string

 isbool(ctx, var)

 Returns true if the argument is a boolean.

 isnumber(ctx, var)

 Returns true if the argument is a number.

 isstring(ctx, binary)

 Returns true if the argument is a string.

 json(ctx, data)

 Converts a data structure to JSON

 left(ctx, binary, size)

 Returns the first characters in a text string. This is Unicode safe.

 len(ctx, binary)

 Returns the number of characters in a text string,
returns 0 if the string is null or empty

 lower(ctx, binary)

 Converts a text string to lowercase

 map(ctx, enumerable, mapper)

 map over a list of items and apply the mapper function to every item, returning
the result.

 max_vargs(ctx, arguments)

 Returns the maximum value of all arguments

 mid(ctx, text, start_num, num_chars)

 MID extracts part of a string, starting at a specified position and for a specified length.

 min_vargs(ctx, arguments)

 Returns the minimum value of all arguments

 minute(ctx, date)

 Returns only the minute of a datetime (0 to 59)

 month(ctx, date)

 Returns only the month of a date (1 to 12)

 not_(ctx, argument)

 Returns false if the argument supplied evaluates to truth-y

 now(ctx)

 Returns the current date time as UTC

 or_vargs(ctx, arguments)

 Returns true if any argument is true.
Returns the first truthy value found or otherwise false.

 parse_datevalue(ctx, datetime, format)

 Parse random dates and times with strftime patterns and return a DateTime value
when it matches.

 parse_float(number)

 parse_json(ctx, data)

 Parses a string as JSON when given a String which is assumed
to be JSON encoded.

 percent(ctx, float)

 Formats a number as a percentage

 power(ctx, a, b)

 Returns the result of a number raised to a power - equivalent to the ^ operator

 proper(ctx, binary)

 Capitalizes the first letter of every word in a text string

 rand_between(ctx, min, max)

 Generate a random number between min and max

 read_digits(ctx, binary)

 Formats digits in text for reading in TTS

 reduce(ctx, enumerable, accumulator, reducer)

 Reduces elements from a list by applying a function and collecting the
results in an accumulator.

 regex_capture(ctx, binary, pattern)

 Capture values out of a string using a regex.
Returns the list of captures in a list.
Returns nil if there was nothing to match

 regex_named_capture(ctx, binary, pattern)

 Captures named values out of a string using a regex.
In contrast to regex_capture() this returns a map
where the keys are the names of the captures and the
values are the captured values.

 reject(ctx, enumerable, reject_fun)

 Rejects elements from a list by returning a new list that contains only the
elements for which reject_fun is truthy.

 rem(ctx, integer1, integer2)

 Return the division remainder of two integers.

 remove_first_word(ctx, binary)

 Removes the first word from the given text. The remaining text will be unchanged

 remove_first_word(ctx, binary, separator)

 remove_last_word(ctx, binary)

 remove_last_word(ctx, binary, separator)

 rept(ctx, value, amount)

 Repeats text a given number of times

 right(ctx, binary, size)

 Returns the last characters in a text string.
This is Unicode safe.

 round(ctx, value)

 round(ctx, value, places)

 second(ctx, date)

 Returns only the second of a datetime (0 to 59)

 sort_by(ctx, enumerable, sorter_fun)

 Sorts a list of values using the result of the sorter function

 split(ctx, binary)

 Split a string into an array using the pattern as separator.
Defaults to split the string using a space.

 split(ctx, binary, pattern)

 substitute(ctx, subject, pattern, replacement)

 Substitutes new_text for old_text in a text string. If instance_num is given, then only that instance will be substituted

 sum_vargs(ctx, arguments)

 Returns the sum of all arguments, equivalent to the + operator

 switch_vargs(ctx, arguments)

 time(ctx, hours, minutes, seconds)

 Defines a time value which can be used for time arithmetic

 timevalue(ctx, expression)

 Converts time stored in text to an actual time

 today(ctx)

 Returns the current date

 unichar(ctx, code)

 Returns the unicode character specified by a number

 unicode(ctx, letter)

 Returns a numeric code for the first character in a text string

 uniq(ctx, enumerable)

 Removes duplicate values from a list.

 upper(ctx, binary)

 Converts a text string to uppercase

 url_decode(ctx, thing)

 URL decode an expression

 url_encode(ctx, thing)

 URL encode an expression

 weekday(ctx, date)

 Returns the day of the week of a date (1 for Sunday to 7 for Saturday)

 with_index(ctx, enumerable)

 Wraps each item of the list in a new list with the item itself and its
index in the original list.

 word(ctx, binary, n)

 Extracts the nth word from the given text string. If stop is a negative number,
then it is treated as count backwards from the end of the text. If by_spaces is
specified and is true then the function splits the text into words only by spaces.
Otherwise the text is split by punctuation characters as well

 word(ctx, binary, n, by_spaces)

 word_count(ctx, binary)

 Returns the number of words in the given text string. If by_spaces is specified and is true then the function splits the text into words only by spaces. Otherwise the text is split by punctuation characters as well

 word_count(ctx, binary, by_spaces)

 word_slice(ctx, binary, start)

 Extracts a substring of the words beginning at start, and up to but not-including stop.
If stop is omitted then the substring will be all words from start until the end of the text.
If stop is a negative number, then it is treated as count backwards from the end of the text.
If by_spaces is specified and is true then the function splits the text into words only by spaces.
Otherwise the text is split by punctuation characters as well

 word_slice(ctx, binary, start, stop)

 word_slice(ctx, binary, start, stop, by_spaces)

 year(ctx, date)

 Returns only the year of a date

 Functions

 abs(ctx, number)

Returns the absolute value of a number
Example 1:
When used in the following Stack expression it returns a value of type Integer: 1.
> abs(-1)
1
When used as an expression in text, prepend it with an @:
> "... @abs(-1) ..."
"1"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "abs(-1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 1 = result
1
iex> Expression.evaluate_as_string!(
...> "@abs(-1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"1"

Example 2:
When used in the following Stack expression it returns a value of type Float: 0.5.
> abs(-0.5)
0.5
When used as an expression in text, prepend it with an @:
> "... @abs(-0.5) ..."
"0.5"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "abs(-0.5)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 0.5 = result
0.5
iex> Expression.evaluate_as_string!(
...> "@abs(-0.5)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"0.5"

Example 3:
When used in the following Stack expression it returns a value of type Float: 0.5 when used with the following context:
%{"number" => %{"__value__" => -0.5, "display" => "value for display key", "value" => "value for value key"}}
> abs(number)
0.5
When used as an expression in text, prepend it with an @:
> "... @abs(number) ..."
"0.5"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "abs(number)",
...> %{"number" => %{"__value__" => -0.5, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 0.5 = result
0.5
iex> Expression.evaluate_as_string!(
...> "@abs(number)",
...> %{"number" => %{"__value__" => -0.5, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"0.5"

 and_vargs(ctx, arguments)

Returns true if and only if all its arguments evaluate to true
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"contact" => %{"age" => 32, "gender" => "F"}}
> contact.gender = "F" and contact.age >= 18
true
When used as an expression in text, prepend it with an @:
> "... @and(contact.gender = "F", contact.age >= 18) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "and(contact.gender = \"F\", contact.age >= 18)",
...> %{"contact" => %{"age" => 32, "gender" => "F"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@and(contact.gender = \"F\", contact.age >= 18)",
...> %{"contact" => %{"age" => 32, "gender" => "F"}},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false when used with the following context:
%{"contact" => %{"age" => 32, "gender" => "?"}}
> contact.gender = "F" and contact.age >= 18
false
When used as an expression in text, prepend it with an @:
> "... @and(contact.gender = "F", contact.age >= 18) ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "and(contact.gender = \"F\", contact.age >= 18)",
...> %{"contact" => %{"age" => 32, "gender" => "?"}},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@and(contact.gender = \"F\", contact.age >= 18)",
...> %{"contact" => %{"age" => 32, "gender" => "?"}},
...> Expression.Callbacks.Standard
...>)
"false"

Example 3:
Return true if value in value key if complex values are provided evaluates to true.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"age" => %{"__value__" => 18, "display" => "value for display key", "value" => "value for value key"}, "gender" => %{"__value__" => "F", "display" => "value for display key", "value" => "value for value key"}}
> gender = "F" and age >= 18
true
When used as an expression in text, prepend it with an @:
> "... @and(gender = "F", age >= 18) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "and(gender = \"F\", age >= 18)",
...> %{"age" => %{"__value__" => 18, "display" => "value for display key", "value" => "value for value key"}, "gender" => %{"__value__" => "F", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@and(gender = \"F\", age >= 18)",
...> %{"age" => %{"__value__" => 18, "display" => "value for display key", "value" => "value for value key"}, "gender" => %{"__value__" => "F", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 append(ctx, list, payload)

Appends an item or a list of items to a given list.
Example 1:
When used in the following Stack expression it returns a value of type List with values String, String, String:
[
 "A",
 "B",
 "C"
]
.
> append(["A", "B"], "C")
["A", "B", "C"]
When used as an expression in text, prepend it with an @:
> "... @append(["A", "B"], "C") ..."
"ABC"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "append([\"A\", \"B\"], \"C\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ["A", "B", "C"] = result
["A", "B", "C"]
iex> Expression.evaluate_as_string!(
...> "@append([\"A\", \"B\"], \"C\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"ABC"

Example 2:
When used in the following Stack expression it returns a value of type List with values String, String, String, String:
[
 "A",
 "B",
 "C",
 "B"
]
.
> append(["A", "B"], ["C", "B"])
["A", "B", "C", "B"]
When used as an expression in text, prepend it with an @:
> "... @append(["A", "B"], ["C", "B"]) ..."
"ABCB"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "append([\"A\", \"B\"], [\"C\", \"B\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ["A", "B", "C", "B"] = result
["A", "B", "C", "B"]
iex> Expression.evaluate_as_string!(
...> "@append([\"A\", \"B\"], [\"C\", \"B\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
"ABCB"

Example 3:
Appends an item or a list of items to a given list from value keys if complex values are provided.

When used in the following Stack expression it returns a value of type List with values String, String, String:
[
 "A",
 "B",
 "C"
]
 when used with the following context:
%{"list" => %{"__value__" => ["A", "B"], "display" => "value for display key", "value" => "value for value key"}, "payload" => %{"__value__" => "C", "display" => "value for display key", "value" => "value for value key"}}
> append(list, payload)
["A", "B", "C"]
When used as an expression in text, prepend it with an @:
> "... @append(list, payload) ..."
"ABC"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "append(list, payload)",
...> %{"list" => %{"__value__" => ["A", "B"], "display" => "value for display key", "value" => "value for value key"}, "payload" => %{"__value__" => "C", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ["A", "B", "C"] = result
["A", "B", "C"]
iex> Expression.evaluate_as_string!(
...> "@append(list, payload)",
...> %{"list" => %{"__value__" => ["A", "B"], "display" => "value for display key", "value" => "value for value key"}, "payload" => %{"__value__" => "C", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"ABC"

 base64_decode(ctx, thing)

Base64 decode an expression
Example 1:
When used in the following Stack expression it returns a value of type String: "hello world".
> base64_decode("aGVsbG8gd29ybGQ=")
"hello world"
When used as an expression in text, prepend it with an @:
> "... @base64_decode("aGVsbG8gd29ybGQ=") ..."
"hello world"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "base64_decode(\"aGVsbG8gd29ybGQ=\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "hello world" = result
"hello world"
iex> Expression.evaluate_as_string!(
...> "@base64_decode(\"aGVsbG8gd29ybGQ=\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"hello world"

Example 2:
Return Base64 decoded string from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "hello world" when used with the following context:
%{"text" => %{"__value__" => "aGVsbG8gd29ybGQ=", "display" => "value for display key", "value" => "value for value key"}}
> base64_decode(text)
"hello world"
When used as an expression in text, prepend it with an @:
> "... @base64_decode(text) ..."
"hello world"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "base64_decode(text)",
...> %{"text" => %{"__value__" => "aGVsbG8gd29ybGQ=", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "hello world" = result
"hello world"
iex> Expression.evaluate_as_string!(
...> "@base64_decode(text)",
...> %{"text" => %{"__value__" => "aGVsbG8gd29ybGQ=", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"hello world"

 base64_encode(ctx, thing)

Base64 encode an expression
Example 1:
When used in the following Stack expression it returns a value of type String: "aGVsbG8gd29ybGQ=".
> base64_encode("hello world")
"aGVsbG8gd29ybGQ="
When used as an expression in text, prepend it with an @:
> "... @base64_encode("hello world") ..."
"aGVsbG8gd29ybGQ="
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "base64_encode(\"hello world\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "aGVsbG8gd29ybGQ=" = result
"aGVsbG8gd29ybGQ="
iex> Expression.evaluate_as_string!(
...> "@base64_encode(\"hello world\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"aGVsbG8gd29ybGQ="

Example 2:
Return Base64 encoded string from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "aGVsbG8gd29ybGQ=" when used with the following context:
%{"text" => %{"__value__" => "hello world", "display" => "value for display key", "value" => "value for value key"}}
> base64_encode(text)
"aGVsbG8gd29ybGQ="
When used as an expression in text, prepend it with an @:
> "... @base64_encode(text) ..."
"aGVsbG8gd29ybGQ="
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "base64_encode(text)",
...> %{"text" => %{"__value__" => "hello world", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "aGVsbG8gd29ybGQ=" = result
"aGVsbG8gd29ybGQ="
iex> Expression.evaluate_as_string!(
...> "@base64_encode(text)",
...> %{"text" => %{"__value__" => "hello world", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"aGVsbG8gd29ybGQ="

 char(ctx, code)

Returns the character specified by a number
> "As easy as @char(65), @char(66), @char(67)"
"As easy as A, B, C"
Example 1:
When used in the following Stack expression it returns a value of type String: "A".
> char(65)
"A"
When used as an expression in text, prepend it with an @:
> "... @char(65) ..."
"A"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "char(65)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "A" = result
"A"
iex> Expression.evaluate_as_string!(
...> "@char(65)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"A"

Example 2:
Return character from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "A" when used with the following context:
%{"code" => %{"__value__" => 65, "display" => "value for display key", "value" => "value for value key"}}
> char(code)
"A"
When used as an expression in text, prepend it with an @:
> "... @char(code) ..."
"A"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "char(code)",
...> %{"code" => %{"__value__" => 65, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "A" = result
"A"
iex> Expression.evaluate_as_string!(
...> "@char(code)",
...> %{"code" => %{"__value__" => 65, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"A"

 chunk_every(ctx, enumerable, count)

Chunk a list into a list of smaller lists.
This is useful in cases where one has a large list but want
to process them in smaller chunks.
Example 1:
Split a large set of sentences into a smaller set of sentences.

When used in the following Stack expression it returns a value of type List with values List with values String, String, List with values String, String, List with values String:
[
 [
 "the first sentence",
 "the second sentence"
],
 [
 "the third sentence",
 "the fourth sentence"
],
 [
 "the fifth sentence"
]
]
 when used with the following context:
%{"sentences" => ["the first sentence", "the second sentence", "the third sentence", "the fourth sentence", "the fifth sentence"]}
> chunk_every(sentences, 2)
[["the first sentence", "the second sentence"], ["the third sentence", "the fourth sentence"], ["the fifth sentence"]]
When used as an expression in text, prepend it with an @:
> "... @chunk_every(sentences, 2) ..."
"the first sentencethe second sentencethe third sentencethe fourth sentencethe fifth sentence"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "chunk_every(sentences, 2)",
...> %{"sentences" => ["the first sentence", "the second sentence", "the third sentence", "the fourth sentence", "the fifth sentence"]},
...> Expression.Callbacks.Standard
...>)
iex> assert [["the first sentence", "the second sentence"], ["the third sentence", "the fourth sentence"], ["the fifth sentence"]] = result
[["the first sentence", "the second sentence"], ["the third sentence", "the fourth sentence"], ["the fifth sentence"]]
iex> Expression.evaluate_as_string!(
...> "@chunk_every(sentences, 2)",
...> %{"sentences" => ["the first sentence", "the second sentence", "the third sentence", "the fourth sentence", "the fifth sentence"]},
...> Expression.Callbacks.Standard
...>)
"the first sentencethe second sentencethe third sentencethe fourth sentencethe fifth sentence"

Example 2:
If an invalid, non-enumerable value is passed, return an error

When used in the following Stack expression it returns a complex Null type of default value:
null
with the following fields:
	type of type String
	error of type Boolean
	message of type String
.

> chunk_every(nil, 2)
%{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"}
When used as an expression in text, prepend it with an @:
> "... @chunk_every(nil, 2) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "chunk_every(nil, 2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"} = result
%{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"}
iex> Expression.evaluate_as_string!(
...> "@chunk_every(nil, 2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 3:
Split enum in value key if complex value is provided.

When used in the following Stack expression it returns a value of type List with values List with values String, String, String, List with values String, String:
[
 [
 "the first sentence",
 "the second sentence",
 "the third sentence"
],
 [
 "the fourth sentence",
 "the fifth sentence"
]
]
 when used with the following context:
%{"complex" => %{"__value__" => ["the first sentence", "the second sentence", "the third sentence", "the fourth sentence", "the fifth sentence"], "display" => "value for display key", "value" => "value for value key"}}
> chunk_every(complex, 3)
[["the first sentence", "the second sentence", "the third sentence"], ["the fourth sentence", "the fifth sentence"]]
When used as an expression in text, prepend it with an @:
> "... @chunk_every(complex, 3) ..."
"the first sentencethe second sentencethe third sentencethe fourth sentencethe fifth sentence"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "chunk_every(complex, 3)",
...> %{"complex" => %{"__value__" => ["the first sentence", "the second sentence", "the third sentence", "the fourth sentence", "the fifth sentence"], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert [["the first sentence", "the second sentence", "the third sentence"], ["the fourth sentence", "the fifth sentence"]] = result
[["the first sentence", "the second sentence", "the third sentence"], ["the fourth sentence", "the fifth sentence"]]
iex> Expression.evaluate_as_string!(
...> "@chunk_every(complex, 3)",
...> %{"complex" => %{"__value__" => ["the first sentence", "the second sentence", "the third sentence", "the fourth sentence", "the fifth sentence"], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"the first sentencethe second sentencethe third sentencethe fourth sentencethe fifth sentence"

 clean(ctx, binary)

Removes all non-printable characters from a text string
Example 1:
When used in the following Stack expression it returns a value of type String: "ABC" when used with the following context:
%{"value" => <<65, 0, 66, 0, 67>>}
> clean(value)
"ABC"
When used as an expression in text, prepend it with an @:
> "... @clean(value) ..."
"ABC"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "clean(value)",
...> %{"value" => <<65, 0, 66, 0, 67>>},
...> Expression.Callbacks.Standard
...>)
iex> assert "ABC" = result
"ABC"
iex> Expression.evaluate_as_string!(
...> "@clean(value)",
...> %{"value" => <<65, 0, 66, 0, 67>>},
...> Expression.Callbacks.Standard
...>)
"ABC"

Example 2:
When used in the following Stack expression it returns a value of type String: "".
> clean(nil)
""
When used as an expression in text, prepend it with an @:
> "... @clean(nil) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "clean(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "" = result
""
iex> Expression.evaluate_as_string!(
...> "@clean(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 3:
Return cleaned string from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "ABC" when used with the following context:
%{"value" => %{"__value__" => <<65, 0, 66, 0, 67>>, "display" => "value for display key", "value" => "value for value key"}}
> clean(value)
"ABC"
When used as an expression in text, prepend it with an @:
> "... @clean(value) ..."
"ABC"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "clean(value)",
...> %{"value" => %{"__value__" => <<65, 0, 66, 0, 67>>, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "ABC" = result
"ABC"
iex> Expression.evaluate_as_string!(
...> "@clean(value)",
...> %{"value" => %{"__value__" => <<65, 0, 66, 0, 67>>, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"ABC"

 code(ctx, code_ast)

Returns a numeric code for the first character in a text string
> "The numeric code of A is @CODE(\"A\")"
"The numeric code of A is 65"
Example 1:
When used in the following Stack expression it returns a value of type Integer: 65.
> code("A")
65
When used as an expression in text, prepend it with an @:
> "... @code("A") ..."
"65"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "code(\"A\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 65 = result
65
iex> Expression.evaluate_as_string!(
...> "@code(\"A\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"65"

Example 2:
When used in the following Stack expression it returns a value of type Null: null.
> code(nil)
nil
When used as an expression in text, prepend it with an @:
> "... @code(nil) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "code(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
nil
iex> Expression.evaluate_as_string!(
...> "@code(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 3:
Return code from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Integer: 65 when used with the following context:
%{"value" => %{"__value__" => "A", "display" => "value for display key", "value" => "value for value key"}}
> code(value)
65
When used as an expression in text, prepend it with an @:
> "... @code(value) ..."
"65"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "code(value)",
...> %{"value" => %{"__value__" => "A", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 65 = result
65
iex> Expression.evaluate_as_string!(
...> "@code(value)",
...> %{"value" => %{"__value__" => "A", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"65"

 concatenate_vargs(ctx, arguments)

Joins text strings into one text string
> "Your name is @CONCATENATE(contact.first_name, \" \", contact.last_name)"
"Your name is name surname"
Example 1:
When used in the following Stack expression it returns a value of type String: "name surname" when used with the following context:
%{"contact" => %{"first_name" => "name", "last_name" => "surname"}}
> concatenate(contact.first_name, " ", contact.last_name)
"name surname"
When used as an expression in text, prepend it with an @:
> "... @concatenate(contact.first_name, " ", contact.last_name) ..."
"name surname"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "concatenate(contact.first_name, \" \", contact.last_name)",
...> %{"contact" => %{"first_name" => "name", "last_name" => "surname"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "name surname" = result
"name surname"
iex> Expression.evaluate_as_string!(
...> "@concatenate(contact.first_name, \" \", contact.last_name)",
...> %{"contact" => %{"first_name" => "name", "last_name" => "surname"}},
...> Expression.Callbacks.Standard
...>)
"name surname"

Example 2:
Return concatenated string from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "name surname" when used with the following context:
%{"first_name" => %{"__value__" => "name", "display" => "value for display key", "value" => "value for value key"}, "last_name" => %{"__value__" => "surname", "display" => "value for display key", "value" => "value for value key"}, "separator" => %{"__value__" => " ", "display" => "value for display key", "value" => "value for value key"}}
> concatenate(first_name, separator, last_name)
"name surname"
When used as an expression in text, prepend it with an @:
> "... @concatenate(first_name, separator, last_name) ..."
"name surname"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "concatenate(first_name, separator, last_name)",
...> %{"first_name" => %{"__value__" => "name", "display" => "value for display key", "value" => "value for value key"}, "last_name" => %{"__value__" => "surname", "display" => "value for display key", "value" => "value for value key"}, "separator" => %{"__value__" => " ", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "name surname" = result
"name surname"
iex> Expression.evaluate_as_string!(
...> "@concatenate(first_name, separator, last_name)",
...> %{"first_name" => %{"__value__" => "name", "display" => "value for display key", "value" => "value for value key"}, "last_name" => %{"__value__" => "surname", "display" => "value for display key", "value" => "value for value key"}, "separator" => %{"__value__" => " ", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"name surname"

 count(ctx, term)

Return the number of entries in a list, string, or a map.
Example 1:
When used in the following Stack expression it returns a value of type Integer: 3.
> count([1, 2, 3])
3
When used as an expression in text, prepend it with an @:
> "... @count([1, 2, 3]) ..."
"3"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "count([1, 2, 3])",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 3 = result
3
iex> Expression.evaluate_as_string!(
...> "@count([1, 2, 3])",
...> %{},
...> Expression.Callbacks.Standard
...>)
"3"

Example 2:
When used in the following Stack expression it returns a value of type Integer: 3.
> count("zoë")
3
When used as an expression in text, prepend it with an @:
> "... @count("zoë") ..."
"3"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "count(\"zoë\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 3 = result
3
iex> Expression.evaluate_as_string!(
...> "@count(\"zoë\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"3"

Example 3:
When used in the following Stack expression it returns a value of type Integer: 1 when used with the following context:
%{"map" => %{"foo" => "bar"}}
> count(map)
1
When used as an expression in text, prepend it with an @:
> "... @count(map) ..."
"1"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "count(map)",
...> %{"map" => %{"foo" => "bar"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 1 = result
1
iex> Expression.evaluate_as_string!(
...> "@count(map)",
...> %{"map" => %{"foo" => "bar"}},
...> Expression.Callbacks.Standard
...>)
"1"

Example 4:
When used in the following Stack expression it returns a value of type Integer: 0 when used with the following context:
%{"nil_value" => nil}
> count(nil_value)
0
When used as an expression in text, prepend it with an @:
> "... @count(nil_value) ..."
"0"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "count(nil_value)",
...> %{"nil_value" => nil},
...> Expression.Callbacks.Standard
...>)
iex> assert 0 = result
0
iex> Expression.evaluate_as_string!(
...> "@count(nil_value)",
...> %{"nil_value" => nil},
...> Expression.Callbacks.Standard
...>)
"0"

Example 5:
Count value in value key if complex value is provided.

When used in the following Stack expression it returns a value of type Integer: 23 when used with the following context:
%{"enum" => %{"__value__" => "value for __value__ key", "display" => "value for display key", "value" => "value for value key"}}
> count(enum)
23
When used as an expression in text, prepend it with an @:
> "... @count(enum) ..."
"23"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "count(enum)",
...> %{"enum" => %{"__value__" => "value for __value__ key", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 23 = result
23
iex> Expression.evaluate_as_string!(
...> "@count(enum)",
...> %{"enum" => %{"__value__" => "value for __value__ key", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"23"

 date(ctx, year, month, day)

Defines a new date value
Example 1:
Construct a date from year, month, and day integers

When used in the following Stack expression it returns a value of type Date: "2022-01-31" when used with the following context:
%{"day" => 31, "month" => 1, "year" => 2022}
> date(year, month, day)
~D[2022-01-31]
When used as an expression in text, prepend it with an @:
> "... @date(year, month, day) ..."
"2022-01-31"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "date(year, month, day)",
...> %{"day" => 31, "month" => 1, "year" => 2022},
...> Expression.Callbacks.Standard
...>)
iex> assert ~D[2022-01-31] = result
~D[2022-01-31]
iex> Expression.evaluate_as_string!(
...> "@date(year, month, day)",
...> %{"day" => 31, "month" => 1, "year" => 2022},
...> Expression.Callbacks.Standard
...>)
"2022-01-31"

Example 2:
Invalid date inputs

When used in the following Stack expression it returns a complex Null type of default value:
null
with the following fields:
	type of type String
	error of type Boolean
	message of type String
when used with the following context:

%{}
> date(nil, nil, nil)
%{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid date: date(nil, nil, nil)"}
When used as an expression in text, prepend it with an @:
> "... @date(nil, nil, nil) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "date(nil, nil, nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid date: date(nil, nil, nil)"} = result
%{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid date: date(nil, nil, nil)"}
iex> Expression.evaluate_as_string!(
...> "@date(nil, nil, nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 3:
Construct date from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Date: "2025-01-15" when used with the following context:
%{"day" => %{"__value__" => 15, "display" => "value for display key", "value" => "value for value key"}, "month" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}, "year" => %{"__value__" => 2025, "display" => "value for display key", "value" => "value for value key"}}
> date(year, month, day)
~D[2025-01-15]
When used as an expression in text, prepend it with an @:
> "... @date(year, month, day) ..."
"2025-01-15"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "date(year, month, day)",
...> %{"day" => %{"__value__" => 15, "display" => "value for display key", "value" => "value for value key"}, "month" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}, "year" => %{"__value__" => 2025, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ~D[2025-01-15] = result
~D[2025-01-15]
iex> Expression.evaluate_as_string!(
...> "@date(year, month, day)",
...> %{"day" => %{"__value__" => 15, "display" => "value for display key", "value" => "value for value key"}, "month" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}, "year" => %{"__value__" => 2025, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"2025-01-15"

 datetime_add(ctx, datetime, offset, unit)

Calculates a new datetime based on the offset and unit provided.
The unit can be any of the following values:
	"Y" for years
	"M" for months
	"W" for weeks
	"D" for days
	"h" for hours
	"m" for minutes
	"s" for seconds

Specifying a negative offset results in date calculations back in time.
Example 1:
Calculates a new datetime based on the offset and unit provided.

When used in the following Stack expression it returns a value of type DateTime: "2022-08-31T00:00:00Z" when used with the following context:
%{"datetime" => ~U[2022-07-31 00:00:00Z], "offset" => "1", "unit" => "M"}
> datetime_add(datetime, offset, unit)
~U[2022-08-31 00:00:00Z]
When used as an expression in text, prepend it with an @:
> "... @datetime_add(datetime, offset, unit) ..."
"2022-08-31T00:00:00Z"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "datetime_add(datetime, offset, unit)",
...> %{"datetime" => ~U[2022-07-31 00:00:00Z], "offset" => "1", "unit" => "M"},
...> Expression.Callbacks.Standard
...>)
iex> assert ~U[2022-08-31 00:00:00Z] = result
~U[2022-08-31 00:00:00Z]
iex> Expression.evaluate_as_string!(
...> "@datetime_add(datetime, offset, unit)",
...> %{"datetime" => ~U[2022-07-31 00:00:00Z], "offset" => "1", "unit" => "M"},
...> Expression.Callbacks.Standard
...>)
"2022-08-31T00:00:00Z"

Example 2:
Leap year handling in a leap year.

When used in the following Stack expression it returns a value of type DateTime: "2020-02-29T00:00:00.000000Z".
> datetime_add(date(2020, 02, 28), 1, "D")
~U[2020-02-29 00:00:00.000000Z]
When used as an expression in text, prepend it with an @:
> "... @datetime_add(date(2020, 02, 28), 1, "D") ..."
"2020-02-29T00:00:00.000000Z"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "datetime_add(date(2020, 02, 28), 1, \"D\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ~U[2020-02-29 00:00:00.000000Z] = result
~U[2020-02-29 00:00:00.000000Z]
iex> Expression.evaluate_as_string!(
...> "@datetime_add(date(2020, 02, 28), 1, \"D\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2020-02-29T00:00:00.000000Z"

Example 3:
Leap year handling outside of a leap year.

When used in the following Stack expression it returns a value of type DateTime: "2021-03-01T00:00:00.000000Z".
> datetime_add(date(2021, 02, 28), 1, "D")
~U[2021-03-01 00:00:00.000000Z]
When used as an expression in text, prepend it with an @:
> "... @datetime_add(date(2021, 02, 28), 1, "D") ..."
"2021-03-01T00:00:00.000000Z"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "datetime_add(date(2021, 02, 28), 1, \"D\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ~U[2021-03-01 00:00:00.000000Z] = result
~U[2021-03-01 00:00:00.000000Z]
iex> Expression.evaluate_as_string!(
...> "@datetime_add(date(2021, 02, 28), 1, \"D\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2021-03-01T00:00:00.000000Z"

Example 4:
Negative offsets

When used in the following Stack expression it returns a value of type DateTime: "2020-02-28T00:00:00.000000Z".
> datetime_add(date(2020, 02, 29), -1, "D")
~U[2020-02-28 00:00:00.000000Z]
When used as an expression in text, prepend it with an @:
> "... @datetime_add(date(2020, 02, 29), -1, "D") ..."
"2020-02-28T00:00:00.000000Z"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "datetime_add(date(2020, 02, 29), -1, \"D\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ~U[2020-02-28 00:00:00.000000Z] = result
~U[2020-02-28 00:00:00.000000Z]
iex> Expression.evaluate_as_string!(
...> "@datetime_add(date(2020, 02, 29), -1, \"D\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2020-02-28T00:00:00.000000Z"

Example 5:
Invalid date inputs

When used in the following Stack expression it returns a complex Null type of default value:
null
with the following fields:
	type of type String
	error of type Boolean
	message of type String
when used with the following context:

%{}
> datetime_add("_..[0]._", 0, "h")
%{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid date"}
When used as an expression in text, prepend it with an @:
> "... @datetime_add("_..[0]._", 0, "h") ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "datetime_add(\"_..[0]._\", 0, \"h\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid date"} = result
%{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid date"}
iex> Expression.evaluate_as_string!(
...> "@datetime_add(\"_..[0]._\", 0, \"h\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 6:
Calculates date from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type DateTime: "2022-08-31T00:00:00Z" when used with the following context:
%{"datetime" => %{"__value__" => ~U[2022-07-31 00:00:00Z], "display" => "value for display key", "value" => "value for value key"}, "offset" => %{"__value__" => "1", "display" => "value for display key", "value" => "value for value key"}, "unit" => %{"__value__" => "M", "display" => "value for display key", "value" => "value for value key"}}
> datetime_add(datetime, offset, unit)
~U[2022-08-31 00:00:00Z]
When used as an expression in text, prepend it with an @:
> "... @datetime_add(datetime, offset, unit) ..."
"2022-08-31T00:00:00Z"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "datetime_add(datetime, offset, unit)",
...> %{"datetime" => %{"__value__" => ~U[2022-07-31 00:00:00Z], "display" => "value for display key", "value" => "value for value key"}, "offset" => %{"__value__" => "1", "display" => "value for display key", "value" => "value for value key"}, "unit" => %{"__value__" => "M", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ~U[2022-08-31 00:00:00Z] = result
~U[2022-08-31 00:00:00Z]
iex> Expression.evaluate_as_string!(
...> "@datetime_add(datetime, offset, unit)",
...> %{"datetime" => %{"__value__" => ~U[2022-07-31 00:00:00Z], "display" => "value for display key", "value" => "value for value key"}, "offset" => %{"__value__" => "1", "display" => "value for display key", "value" => "value for value key"}, "unit" => %{"__value__" => "M", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"2022-08-31T00:00:00Z"

 datetime_from_unix(ctx, unix, unit)

 @spec datetime_from_unix(
 map(),
 {:literal, String.t() | integer()},
 {:literal, unit :: String.t()}
) ::
 DateTime.t()

Parses a UNIX time and returns a DateTime
Example 1:
When used in the following Stack expression it returns a value of type DateTime: "2023-12-06T23:00:00.000Z" when used with the following context:
%{}
> datetime_from_unix("1701903600000", "millisecond")
~U[2023-12-06 23:00:00.000Z]
When used as an expression in text, prepend it with an @:
> "... @datetime_from_unix("1701903600000", "millisecond") ..."
"2023-12-06T23:00:00.000Z"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "datetime_from_unix(\"1701903600000\", \"millisecond\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ~U[2023-12-06 23:00:00.000Z] = result
~U[2023-12-06 23:00:00.000Z]
iex> Expression.evaluate_as_string!(
...> "@datetime_from_unix(\"1701903600000\", \"millisecond\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2023-12-06T23:00:00.000Z"

Example 2:
When used in the following Stack expression it returns a value of type DateTime: "2023-12-06T23:00:00.000Z" when used with the following context:
%{}
> datetime_from_unix(1701903600000, "millisecond")
~U[2023-12-06 23:00:00.000Z]
When used as an expression in text, prepend it with an @:
> "... @datetime_from_unix(1701903600000, "millisecond") ..."
"2023-12-06T23:00:00.000Z"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "datetime_from_unix(1701903600000, \"millisecond\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ~U[2023-12-06 23:00:00.000Z] = result
~U[2023-12-06 23:00:00.000Z]
iex> Expression.evaluate_as_string!(
...> "@datetime_from_unix(1701903600000, \"millisecond\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2023-12-06T23:00:00.000Z"

Example 3:
When used in the following Stack expression it returns a value of type DateTime: "2023-12-06T23:00:00Z" when used with the following context:
%{}
> datetime_from_unix("1701903600", "second")
~U[2023-12-06 23:00:00Z]
When used as an expression in text, prepend it with an @:
> "... @datetime_from_unix("1701903600", "second") ..."
"2023-12-06T23:00:00Z"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "datetime_from_unix(\"1701903600\", \"second\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ~U[2023-12-06 23:00:00Z] = result
~U[2023-12-06 23:00:00Z]
iex> Expression.evaluate_as_string!(
...> "@datetime_from_unix(\"1701903600\", \"second\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2023-12-06T23:00:00Z"

Example 4:
Parses date from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type DateTime: "2023-12-06T23:00:00.000Z" when used with the following context:
%{"unit" => %{"__value__" => "millisecond", "display" => "value for display key", "value" => "value for value key"}, "unix_time" => %{"__value__" => "1701903600000", "display" => "value for display key", "value" => "value for value key"}}
> datetime_from_unix(unix_time, unit)
~U[2023-12-06 23:00:00.000Z]
When used as an expression in text, prepend it with an @:
> "... @datetime_from_unix(unix_time, unit) ..."
"2023-12-06T23:00:00.000Z"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "datetime_from_unix(unix_time, unit)",
...> %{"unit" => %{"__value__" => "millisecond", "display" => "value for display key", "value" => "value for value key"}, "unix_time" => %{"__value__" => "1701903600000", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ~U[2023-12-06 23:00:00.000Z] = result
~U[2023-12-06 23:00:00.000Z]
iex> Expression.evaluate_as_string!(
...> "@datetime_from_unix(unix_time, unit)",
...> %{"unit" => %{"__value__" => "millisecond", "display" => "value for display key", "value" => "value for value key"}, "unix_time" => %{"__value__" => "1701903600000", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"2023-12-06T23:00:00.000Z"

 datevalue(ctx, date)

 datevalue(ctx, date, format)

Converts date stored in text to an actual date object and
formats it using strftime formatting.
It will fallback to "%Y-%m-%d %H:%M:%S" if no formatting is supplied
Example 1:
Convert a date from a piece of text to a formatted date string

When used in the following Stack expression it returns a complex String type of default value:
"2022-01-01 00:00:00"
with the following fields:
	date of type Date
	datetime of type DateTime
.

> datevalue("2022-01-01")
%{"__value__" => "2022-01-01 00:00:00", "date" => ~D[2022-01-01], "datetime" => ~U[2022-01-01 00:00:00Z]}
When used as an expression in text, prepend it with an @:
> "... @datevalue("2022-01-01") ..."
"2022-01-01 00:00:00"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "datevalue(\"2022-01-01\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => "2022-01-01 00:00:00", "date" => ~D[2022-01-01], "datetime" => ~U[2022-01-01 00:00:00Z]} = result
%{"__value__" => "2022-01-01 00:00:00", "date" => ~D[2022-01-01], "datetime" => ~U[2022-01-01 00:00:00Z]}
iex> Expression.evaluate_as_string!(
...> "@datevalue(\"2022-01-01\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2022-01-01 00:00:00"

Example 2:
Convert a date from a piece of text and read the date field

When used in the following Stack expression it returns a value of type Date: "2022-01-01".
> datevalue("2022-01-01").date
~D[2022-01-01]
When used as an expression in text, prepend it with an @:
> "... @datevalue("2022-01-01").date ..."
"2022-01-01"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "datevalue(\"2022-01-01\").date",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ~D[2022-01-01] = result
~D[2022-01-01]
iex> Expression.evaluate_as_string!(
...> "@datevalue(\"2022-01-01\").date",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2022-01-01"

Example 3:
Convert a date value and read the date field

When used in the following Stack expression it returns a value of type Date: "2022-01-01".
> datevalue(date(2022, 1, 1)).date
~D[2022-01-01]
When used as an expression in text, prepend it with an @:
> "... @datevalue(date(2022, 1, 1)).date ..."
"2022-01-01"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "datevalue(date(2022, 1, 1)).date",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ~D[2022-01-01] = result
~D[2022-01-01]
iex> Expression.evaluate_as_string!(
...> "@datevalue(date(2022, 1, 1)).date",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2022-01-01"

Example 4:
Convert from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Date: "2022-01-01" when used with the following context:
%{"date" => %{"__value__" => "2022-01-01", "display" => "value for display key", "value" => "value for value key"}}
> datevalue(date).date
~D[2022-01-01]
When used as an expression in text, prepend it with an @:
> "... @datevalue(date).date ..."
"2022-01-01"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "datevalue(date).date",
...> %{"date" => %{"__value__" => "2022-01-01", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ~D[2022-01-01] = result
~D[2022-01-01]
iex> Expression.evaluate_as_string!(
...> "@datevalue(date).date",
...> %{"date" => %{"__value__" => "2022-01-01", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"2022-01-01"

 day(ctx, date)

Returns only the day of the month of a date (1 to 31)
Example 1:
Getting today's day of the month

When used in the following Stack expression it returns a value of type Integer: 10.
> day(date(2022, 9, 10))
10
When used as an expression in text, prepend it with an @:
> "... @day(date(2022, 9, 10)) ..."
"10"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "day(date(2022, 9, 10))",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 10 = result
10
iex> Expression.evaluate_as_string!(
...> "@day(date(2022, 9, 10))",
...> %{},
...> Expression.Callbacks.Standard
...>)
"10"

Example 2:
Getting today's day of the month

When used in the following Stack expression it returns a value of type Integer: 21.
> day(now())
21
When used as an expression in text, prepend it with an @:
> "... @day(now()) ..."
"21"
..$> import ExUnit.Assertions
..$> result = Expression.evaluate_block!(
...> "day(now())",
...> %{},
...> Expression.Callbacks.Standard
...>)
..$> assert 21 = result
21
..$> Expression.evaluate_as_string!(
...> "@day(now())",
...> %{},
...> Expression.Callbacks.Standard
...>)
"21"

Example 3:
Return day from date in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Integer: 29 when used with the following context:
%{"date" => %{"__value__" => ~U[2016-02-29 22:25:00Z], "display" => "value for display key", "value" => "value for value key"}}
> day(date)
29
When used as an expression in text, prepend it with an @:
> "... @day(date) ..."
"29"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "day(date)",
...> %{"date" => %{"__value__" => ~U[2016-02-29 22:25:00Z], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 29 = result
29
iex> Expression.evaluate_as_string!(
...> "@day(date)",
...> %{"date" => %{"__value__" => ~U[2016-02-29 22:25:00Z], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"29"

 delete(ctx, map, key)

Deletes an element from a map by the given key.
Example 1:
When used in the following Stack expression it returns a value of type Map:
{
 "age": 32
}
 when used with the following context:
%{"patient" => %{"age" => 32, "gender" => "?"}}
> delete(patient, "gender")
%{"age" => 32}
When used as an expression in text, prepend it with an @:
> "... @delete(patient, "gender") ..."
"%{"age" => 32}"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "delete(patient, \"gender\")",
...> %{"patient" => %{"age" => 32, "gender" => "?"}},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"age" => 32} = result
%{"age" => 32}
iex> Expression.evaluate_as_string!(
...> "@delete(patient, \"gender\")",
...> %{"patient" => %{"age" => 32, "gender" => "?"}},
...> Expression.Callbacks.Standard
...>)
"%{\"age\" => 32}"

Example 2:
Deletes an element from a map by the given key from value keys if complex values are provided.

When used in the following Stack expression it returns a value of type Map:
{
 "age": 32
}
 when used with the following context:
%{"key" => %{"__value__" => "gender", "display" => "value for display key", "value" => "value for value key"}, "map" => %{"__value__" => %{"age" => 32, "gender" => "?"}, "display" => "value for display key", "value" => "value for value key"}}
> delete(map, key)
%{"age" => 32}
When used as an expression in text, prepend it with an @:
> "... @delete(map, key) ..."
"%{"age" => 32}"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "delete(map, key)",
...> %{"key" => %{"__value__" => "gender", "display" => "value for display key", "value" => "value for value key"}, "map" => %{"__value__" => %{"age" => 32, "gender" => "?"}, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"age" => 32} = result
%{"age" => 32}
iex> Expression.evaluate_as_string!(
...> "@delete(map, key)",
...> %{"key" => %{"__value__" => "gender", "display" => "value for display key", "value" => "value for value key"}, "map" => %{"__value__" => %{"age" => 32, "gender" => "?"}, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"%{\"age\" => 32}"

 edate(ctx, date, months)

Moves a date by the given number of months
Example 1:
Move the date in a date object by 1 month

When used in the following Stack expression it returns a value of type DateTime: "2022-02-01T00:00:00Z" when used with the following context:
%{right_now: ~U[2022-01-01 00:00:00Z]}
> edate(right_now, 1)
~U[2022-02-01 00:00:00Z]
When used as an expression in text, prepend it with an @:
> "... @edate(right_now, 1) ..."
"2022-02-01T00:00:00Z"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "edate(right_now, 1)",
...> %{right_now: ~U[2022-01-01 00:00:00Z]},
...> Expression.Callbacks.Standard
...>)
iex> assert ~U[2022-02-01 00:00:00Z] = result
~U[2022-02-01 00:00:00Z]
iex> Expression.evaluate_as_string!(
...> "@edate(right_now, 1)",
...> %{right_now: ~U[2022-01-01 00:00:00Z]},
...> Expression.Callbacks.Standard
...>)
"2022-02-01T00:00:00Z"

Example 2:
Move the date store in a piece of text by 1 month

When used in the following Stack expression it returns a value of type Date: "2022-11-10".
> edate("2022-10-10", 1)
~D[2022-11-10]
When used as an expression in text, prepend it with an @:
> "... @edate("2022-10-10", 1) ..."
"2022-11-10"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "edate(\"2022-10-10\", 1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ~D[2022-11-10] = result
~D[2022-11-10]
iex> Expression.evaluate_as_string!(
...> "@edate(\"2022-10-10\", 1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2022-11-10"

Example 3:
Move the date from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Date: "2022-11-10" when used with the following context:
%{"date" => %{"__value__" => "2022-10-10", "display" => "value for display key", "value" => "value for value key"}, "months" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}}
> edate(date, months)
~D[2022-11-10]
When used as an expression in text, prepend it with an @:
> "... @edate(date, months) ..."
"2022-11-10"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "edate(date, months)",
...> %{"date" => %{"__value__" => "2022-10-10", "display" => "value for display key", "value" => "value for value key"}, "months" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ~D[2022-11-10] = result
~D[2022-11-10]
iex> Expression.evaluate_as_string!(
...> "@edate(date, months)",
...> %{"date" => %{"__value__" => "2022-10-10", "display" => "value for display key", "value" => "value for value key"}, "months" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"2022-11-10"

 expression_docs()

Return a list of all functions annotated with @expression_docs

 filter(ctx, enumerable, filter_fun)

Filters a list by returning a new list that contains only the
elements for which filter_fun is truthy.
Example 1:
When used in the following Stack expression it returns a value of type List with values String, String:
[
 "B",
 "B"
]
.
> filter(["A", "B", "C", "B"], & &1 == "B")
["B", "B"]
When used as an expression in text, prepend it with an @:
> "... @filter(["A", "B", "C", "B"], & &1 == "B") ..."
"BB"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "filter([\"A\", \"B\", \"C\", \"B\"], & &1 == \"B\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ["B", "B"] = result
["B", "B"]
iex> Expression.evaluate_as_string!(
...> "@filter([\"A\", \"B\", \"C\", \"B\"], & &1 == \"B\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"BB"

Example 2:
If an invalid, non-enumerable value is passed, return an error

When used in the following Stack expression it returns a complex Null type of default value:
null
with the following fields:
	type of type String
	error of type Boolean
	message of type String
.

> filter(nil, & &1 == "B")
%{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"}
When used as an expression in text, prepend it with an @:
> "... @filter(nil, & &1 == "B") ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "filter(nil, & &1 == \"B\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"} = result
%{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"}
iex> Expression.evaluate_as_string!(
...> "@filter(nil, & &1 == \"B\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 3:
Filter from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type List with values String, String:
[
 "B",
 "B"
]
 when used with the following context:
%{"list" => %{"__value__" => ["A", "B", "C", "B"], "display" => "value for display key", "value" => "value for value key"}}
> filter(list, & &1 == "B")
["B", "B"]
When used as an expression in text, prepend it with an @:
> "... @filter(list, & &1 == "B") ..."
"BB"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "filter(list, & &1 == \"B\")",
...> %{"list" => %{"__value__" => ["A", "B", "C", "B"], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ["B", "B"] = result
["B", "B"]
iex> Expression.evaluate_as_string!(
...> "@filter(list, & &1 == \"B\")",
...> %{"list" => %{"__value__" => ["A", "B", "C", "B"], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"BB"

 find(ctx, enumerable, find_fun)

Finds the first element in the list for which filter_fun is truthy.
Example 1:
When used in the following Stack expression it returns a value of type List with values String, String:
[
 "Hi",
 "World"
]
.
> find([["Hello", "World"], ["Hi", "World"]], & &1[0] == "Hi")
["Hi", "World"]
When used as an expression in text, prepend it with an @:
> "... @find([["Hello", "World"], ["Hi", "World"]], & &1[0] == "Hi") ..."
"HiWorld"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "find([[\"Hello\", \"World\"], [\"Hi\", \"World\"]], & &1[0] == \"Hi\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ["Hi", "World"] = result
["Hi", "World"]
iex> Expression.evaluate_as_string!(
...> "@find([[\"Hello\", \"World\"], [\"Hi\", \"World\"]], & &1[0] == \"Hi\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"HiWorld"

Example 2:
Find from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type List with values String, String:
[
 "Hi",
 "World"
]
 when used with the following context:
%{"list" => %{"__value__" => [["Hello", "World"], ["Hi", "World"]], "display" => "value for display key", "value" => "value for value key"}}
> find(list, & &1[0] == "Hi")
["Hi", "World"]
When used as an expression in text, prepend it with an @:
> "... @find(list, & &1[0] == "Hi") ..."
"HiWorld"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "find(list, & &1[0] == \"Hi\")",
...> %{"list" => %{"__value__" => [["Hello", "World"], ["Hi", "World"]], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ["Hi", "World"] = result
["Hi", "World"]
iex> Expression.evaluate_as_string!(
...> "@find(list, & &1[0] == \"Hi\")",
...> %{"list" => %{"__value__" => [["Hello", "World"], ["Hi", "World"]], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"HiWorld"

 first_word(ctx, binary)

Returns the first word in the given text - equivalent to WORD(text, 1)
Example 1:
When used in the following Stack expression it returns a value of type String: "foo".
> first_word("foo bar baz")
"foo"
When used as an expression in text, prepend it with an @:
> "... @first_word("foo bar baz") ..."
"foo"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "first_word(\"foo bar baz\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "foo" = result
"foo"
iex> Expression.evaluate_as_string!(
...> "@first_word(\"foo bar baz\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"foo"

Example 2:
When used in the following Stack expression it returns a value of type String: "".
> first_word(nil)
""
When used as an expression in text, prepend it with an @:
> "... @first_word(nil) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "first_word(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "" = result
""
iex> Expression.evaluate_as_string!(
...> "@first_word(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 3:
Return first word from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "foo" when used with the following context:
%{"string" => %{"__value__" => "foo bar baz", "display" => "value for display key", "value" => "value for value key"}}
> first_word(string)
"foo"
When used as an expression in text, prepend it with an @:
> "... @first_word(string) ..."
"foo"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "first_word(string)",
...> %{"string" => %{"__value__" => "foo bar baz", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "foo" = result
"foo"
iex> Expression.evaluate_as_string!(
...> "@first_word(string)",
...> %{"string" => %{"__value__" => "foo bar baz", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"foo"

 fixed(ctx, number, precision)

Formats the given number in decimal format using a period and commas
> You have @fixed(contact.balance, 2) in your account
"You have 4.21 in your account"
Example 1:
When used in the following Stack expression it returns a value of type String: "4.21".
> fixed(4.209922, 2, false)
"4.21"
When used as an expression in text, prepend it with an @:
> "... @fixed(4.209922, 2, false) ..."
"4.21"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "fixed(4.209922, 2, false)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "4.21" = result
"4.21"
iex> Expression.evaluate_as_string!(
...> "@fixed(4.209922, 2, false)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"4.21"

Example 2:
When used in the following Stack expression it returns a value of type String: "4000.4242".
> fixed(4000.424242, 4, true)
"4000.4242"
When used as an expression in text, prepend it with an @:
> "... @fixed(4000.424242, 4, true) ..."
"4000.4242"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "fixed(4000.424242, 4, true)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "4000.4242" = result
"4000.4242"
iex> Expression.evaluate_as_string!(
...> "@fixed(4000.424242, 4, true)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"4000.4242"

Example 3:
When used in the following Stack expression it returns a value of type String: "3.80".
> fixed(3.7979, 2, false)
"3.80"
When used as an expression in text, prepend it with an @:
> "... @fixed(3.7979, 2, false) ..."
"3.80"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "fixed(3.7979, 2, false)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "3.80" = result
"3.80"
iex> Expression.evaluate_as_string!(
...> "@fixed(3.7979, 2, false)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"3.80"

Example 4:
When used in the following Stack expression it returns a value of type String: "3.80".
> fixed(3.7979, 2)
"3.80"
When used as an expression in text, prepend it with an @:
> "... @fixed(3.7979, 2) ..."
"3.80"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "fixed(3.7979, 2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "3.80" = result
"3.80"
iex> Expression.evaluate_as_string!(
...> "@fixed(3.7979, 2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"3.80"

Example 5:
When used in the following Stack expression it returns a value of type String: "0.09".
> fixed(0.0909, 2)
"0.09"
When used as an expression in text, prepend it with an @:
> "... @fixed(0.0909, 2) ..."
"0.09"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "fixed(0.0909, 2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "0.09" = result
"0.09"
iex> Expression.evaluate_as_string!(
...> "@fixed(0.0909, 2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"0.09"

Example 6:
Format from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "4.21" when used with the following context:
%{"no_commas" => %{"__value__" => false, "display" => "value for display key", "value" => "value for value key"}, "number" => %{"__value__" => 4.209922, "display" => "value for display key", "value" => "value for value key"}, "precision" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}}
> fixed(number, precision, no_commas)
"4.21"
When used as an expression in text, prepend it with an @:
> "... @fixed(number, precision, no_commas) ..."
"4.21"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "fixed(number, precision, no_commas)",
...> %{"no_commas" => %{"__value__" => false, "display" => "value for display key", "value" => "value for value key"}, "number" => %{"__value__" => 4.209922, "display" => "value for display key", "value" => "value for value key"}, "precision" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "4.21" = result
"4.21"
iex> Expression.evaluate_as_string!(
...> "@fixed(number, precision, no_commas)",
...> %{"no_commas" => %{"__value__" => false, "display" => "value for display key", "value" => "value for value key"}, "number" => %{"__value__" => 4.209922, "display" => "value for display key", "value" => "value for value key"}, "precision" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"4.21"

 fixed(ctx, number, precision, no_commas)

 handle(module \\ __MODULE__, function_name, arguments, context)

See Expression.Callbacks.handle/4.

 has_all_members(ctx, list, items)

Return true if a list contains all the provided items
Example 1:
Check whether the given list contains all the provided items

When used in the following Stack expression it returns a value of type Boolean: true.
> has_all_members(["A", "B", "C"], ["C", "B"])
true
When used as an expression in text, prepend it with an @:
> "... @has_all_members(["A", "B", "C"], ["C", "B"]) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_all_members([\"A\", \"B\", \"C\"], [\"C\", \"B\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_all_members([\"A\", \"B\", \"C\"], [\"C\", \"B\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
Return boolean indicating if a list contains all items from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"items" => %{"__value__" => ["C", "B"], "display" => "value for display key", "value" => "value for value key"}, "list" => %{"__value__" => ["A", "B", "C"], "display" => "value for display key", "value" => "value for value key"}}
> has_all_members(list, items)
true
When used as an expression in text, prepend it with an @:
> "... @has_all_members(list, items) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_all_members(list, items)",
...> %{"items" => %{"__value__" => ["C", "B"], "display" => "value for display key", "value" => "value for value key"}, "list" => %{"__value__" => ["A", "B", "C"], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_all_members(list, items)",
...> %{"items" => %{"__value__" => ["C", "B"], "display" => "value for display key", "value" => "value for value key"}, "list" => %{"__value__" => ["A", "B", "C"], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_all_words(ctx, haystack, words)

Tests whether all the words are contained in text
The words can be in any order and may appear more than once.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_all_words("the quick brown FOX", "the fox")
true
When used as an expression in text, prepend it with an @:
> "... @has_all_words("the quick brown FOX", "the fox") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_all_words(\"the quick brown FOX\", \"the fox\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_all_words(\"the quick brown FOX\", \"the fox\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_all_words("the quick brown FOX", "red fox")
false
When used as an expression in text, prepend it with an @:
> "... @has_all_words("the quick brown FOX", "red fox") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_all_words(\"the quick brown FOX\", \"red fox\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_all_words(\"the quick brown FOX\", \"red fox\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_all_words(nil, "red fox")
false
When used as an expression in text, prepend it with an @:
> "... @has_all_words(nil, "red fox") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_all_words(nil, \"red fox\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_all_words(nil, \"red fox\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 4:
Return boolean whether all the words are contained in text value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"haystack" => %{"__value__" => "the quick brown FOX", "display" => "value for display key", "value" => "value for value key"}, "words" => %{"__value__" => "the fox", "display" => "value for display key", "value" => "value for value key"}}
> has_all_words(haystack, words)
true
When used as an expression in text, prepend it with an @:
> "... @has_all_words(haystack, words) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_all_words(haystack, words)",
...> %{"haystack" => %{"__value__" => "the quick brown FOX", "display" => "value for display key", "value" => "value for value key"}, "words" => %{"__value__" => "the fox", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_all_words(haystack, words)",
...> %{"haystack" => %{"__value__" => "the quick brown FOX", "display" => "value for display key", "value" => "value for value key"}, "words" => %{"__value__" => "the fox", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_any_beginning(ctx, text, prefixes)

Checks if the given text starts with any of the provided prefixes. The function performs a case-insensitive match.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_any_beginning("HEY HOW ARE YOU?", ["hello", "hey how are you"])
true
When used as an expression in text, prepend it with an @:
> "... @has_any_beginning("HEY HOW ARE YOU?", ["hello", "hey how are you"]) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_beginning(\"HEY HOW ARE YOU?\", [\"hello\", \"hey how are you\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_any_beginning(\"HEY HOW ARE YOU?\", [\"hello\", \"hey how are you\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_any_beginning("كيف حالك؟", ["كيف حالك", "hey how are you"])
true
When used as an expression in text, prepend it with an @:
> "... @has_any_beginning("كيف حالك؟", ["كيف حالك", "hey how are you"]) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_beginning(\"كيف حالك؟\", [\"كيف حالك\", \"hey how are you\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_any_beginning(\"كيف حالك؟\", [\"كيف حالك\", \"hey how are you\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 3:
Return boolean indicating if text starts with any of the provided prefixes from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"prefixes" => %{"__value__" => ["hello", "hey how are you"], "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "HEY HOW ARE YOU?", "display" => "value for display key", "value" => "value for value key"}}
> has_any_beginning(text, prefixes)
true
When used as an expression in text, prepend it with an @:
> "... @has_any_beginning(text, prefixes) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_beginning(text, prefixes)",
...> %{"prefixes" => %{"__value__" => ["hello", "hey how are you"], "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "HEY HOW ARE YOU?", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_any_beginning(text, prefixes)",
...> %{"prefixes" => %{"__value__" => ["hello", "hey how are you"], "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "HEY HOW ARE YOU?", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_any_end(ctx, text, end_texts)

Example 1:
Check whether the given text ends with any of the provided strings. The function performs a case-insensitive match.

When used in the following Stack expression it returns a value of type Boolean: true.
> has_any_end("I would like to book a vaccine", ["appointment", "visit", "vaccine"])
true
When used as an expression in text, prepend it with an @:
> "... @has_any_end("I would like to book a vaccine", ["appointment", "visit", "vaccine"]) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_end(\"I would like to book a vaccine\", [\"appointment\", \"visit\", \"vaccine\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_any_end(\"I would like to book a vaccine\", [\"appointment\", \"visit\", \"vaccine\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
Return boolean indicating if text ends with any of the provided strings from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"end_texts" => %{"__value__" => ["appointment", "visit", "vaccine"], "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "I would like to book a vaccine", "display" => "value for display key", "value" => "value for value key"}}
> has_any_end(text, end_texts)
true
When used as an expression in text, prepend it with an @:
> "... @has_any_end(text, end_texts) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_end(text, end_texts)",
...> %{"end_texts" => %{"__value__" => ["appointment", "visit", "vaccine"], "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "I would like to book a vaccine", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_any_end(text, end_texts)",
...> %{"end_texts" => %{"__value__" => ["appointment", "visit", "vaccine"], "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "I would like to book a vaccine", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_any_exact_phrase(ctx, text, phrases)

Check whether the given text exactly matches any of the provided phrases. The function performs a case-insensitive exact match.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_any_exact_phrase("HEY HOW ARE YOU?", ["hello", "hey how are you?"])
true
When used as an expression in text, prepend it with an @:
> "... @has_any_exact_phrase("HEY HOW ARE YOU?", ["hello", "hey how are you?"]) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_exact_phrase(\"HEY HOW ARE YOU?\", [\"hello\", \"hey how are you?\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_any_exact_phrase(\"HEY HOW ARE YOU?\", [\"hello\", \"hey how are you?\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_any_exact_phrase("كيف حالك؟", ["كيف حالك", "hey how are you"])
false
When used as an expression in text, prepend it with an @:
> "... @has_any_exact_phrase("كيف حالك؟", ["كيف حالك", "hey how are you"]) ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_exact_phrase(\"كيف حالك؟\", [\"كيف حالك\", \"hey how are you\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_any_exact_phrase(\"كيف حالك؟\", [\"كيف حالك\", \"hey how are you\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 3:
Return boolean indicating if text exactly matches any of the provided phrases from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"phrases" => %{"__value__" => ["hello", "hey how are you?"], "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "HEY HOW ARE YOU?", "display" => "value for display key", "value" => "value for value key"}}
> has_any_exact_phrase(text, phrases)
true
When used as an expression in text, prepend it with an @:
> "... @has_any_exact_phrase(text, phrases) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_exact_phrase(text, phrases)",
...> %{"phrases" => %{"__value__" => ["hello", "hey how are you?"], "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "HEY HOW ARE YOU?", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_any_exact_phrase(text, phrases)",
...> %{"phrases" => %{"__value__" => ["hello", "hey how are you?"], "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "HEY HOW ARE YOU?", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_any_member(ctx, list, items)

Return true if a list contains any of the provided items
Example 1:
Check whether the given list contains any of the provided items

When used in the following Stack expression it returns a value of type Boolean: true.
> has_any_member(["A", "B", "C"], ["Z", "C"])
true
When used as an expression in text, prepend it with an @:
> "... @has_any_member(["A", "B", "C"], ["Z", "C"]) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_member([\"A\", \"B\", \"C\"], [\"Z\", \"C\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_any_member([\"A\", \"B\", \"C\"], [\"Z\", \"C\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
Return boolean indicating if a list contains any items from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"items" => %{"__value__" => ["Z", "C"], "display" => "value for display key", "value" => "value for value key"}, "list" => %{"__value__" => ["A", "B", "C"], "display" => "value for display key", "value" => "value for value key"}}
> has_any_member(list, items)
true
When used as an expression in text, prepend it with an @:
> "... @has_any_member(list, items) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_member(list, items)",
...> %{"items" => %{"__value__" => ["Z", "C"], "display" => "value for display key", "value" => "value for value key"}, "list" => %{"__value__" => ["A", "B", "C"], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_any_member(list, items)",
...> %{"items" => %{"__value__" => ["Z", "C"], "display" => "value for display key", "value" => "value for value key"}, "list" => %{"__value__" => ["A", "B", "C"], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_any_phrase(ctx, text, phrases)

Check whether the given text contains any of the provided strings. The function performs a case-insensitive exact match.
The second argument expects either a list of strings or a single string with comma-separated phrases.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_any_phrase("hey how are you?", ["hello", "bye bye", "how are you"])
true
When used as an expression in text, prepend it with an @:
> "... @has_any_phrase("hey how are you?", ["hello", "bye bye", "how are you"]) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_phrase(\"hey how are you?\", [\"hello\", \"bye bye\", \"how are you\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_any_phrase(\"hey how are you?\", [\"hello\", \"bye bye\", \"how are you\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_any_phrase("مرحباً كيف حالك؟", ["كيف حالك", "how are you"])
true
When used as an expression in text, prepend it with an @:
> "... @has_any_phrase("مرحباً كيف حالك؟", ["كيف حالك", "how are you"]) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_phrase(\"مرحباً كيف حالك؟\", [\"كيف حالك\", \"how are you\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_any_phrase(\"مرحباً كيف حالك؟\", [\"كيف حالك\", \"how are you\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_any_phrase("hey how are you?", "hello, bye bye, how are you")
true
When used as an expression in text, prepend it with an @:
> "... @has_any_phrase("hey how are you?", "hello, bye bye, how are you") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_phrase(\"hey how are you?\", \"hello, bye bye, how are you\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_any_phrase(\"hey how are you?\", \"hello, bye bye, how are you\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 4:
Return boolean indicating if text contains any of the provided phrases from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"phrases" => %{"__value__" => ["hello", "bye bye", "how are you"], "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "hey how are you?", "display" => "value for display key", "value" => "value for value key"}}
> has_any_phrase(text, phrases)
true
When used as an expression in text, prepend it with an @:
> "... @has_any_phrase(text, phrases) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_phrase(text, phrases)",
...> %{"phrases" => %{"__value__" => ["hello", "bye bye", "how are you"], "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "hey how are you?", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_any_phrase(text, phrases)",
...> %{"phrases" => %{"__value__" => ["hello", "bye bye", "how are you"], "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "hey how are you?", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_any_word(ctx, haystack, words)

Tests whether any of the words are contained in the text
Only one of the words needs to match and it may appear more than once.
Example 1:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	match of type String
.

> has_any_word("The Quick Brown Fox", "fox quick")
%{"__value__" => true, "match" => "Quick Fox"}
When used as an expression in text, prepend it with an @:
> "... @has_any_word("The Quick Brown Fox", "fox quick") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_word(\"The Quick Brown Fox\", \"fox quick\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "match" => "Quick Fox"} = result
%{"__value__" => true, "match" => "Quick Fox"}
iex> Expression.evaluate_as_string!(
...> "@has_any_word(\"The Quick Brown Fox\", \"fox quick\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a complex Boolean type of default value:
false
with the following fields:
	match of type Null
.

> has_any_word("The Quick Brown Fox", "yellow")
%{"__value__" => false, "match" => nil}
When used as an expression in text, prepend it with an @:
> "... @has_any_word("The Quick Brown Fox", "yellow") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_word(\"The Quick Brown Fox\", \"yellow\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => false, "match" => nil} = result
%{"__value__" => false, "match" => nil}
iex> Expression.evaluate_as_string!(
...> "@has_any_word(\"The Quick Brown Fox\", \"yellow\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 3:
Tests whether any of the words are contained in text value in value key if complex values are provided.

When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	match of type String
when used with the following context:

%{"haystack" => %{"__value__" => "The Quick Brown Fox", "display" => "value for display key", "value" => "value for value key"}, "words" => %{"__value__" => "fox quick", "display" => "value for display key", "value" => "value for value key"}}
> has_any_word(haystack, words)
%{"__value__" => true, "match" => "Quick Fox"}
When used as an expression in text, prepend it with an @:
> "... @has_any_word(haystack, words) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_any_word(haystack, words)",
...> %{"haystack" => %{"__value__" => "The Quick Brown Fox", "display" => "value for display key", "value" => "value for value key"}, "words" => %{"__value__" => "fox quick", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "match" => "Quick Fox"} = result
%{"__value__" => true, "match" => "Quick Fox"}
iex> Expression.evaluate_as_string!(
...> "@has_any_word(haystack, words)",
...> %{"haystack" => %{"__value__" => "The Quick Brown Fox", "display" => "value for display key", "value" => "value for value key"}, "words" => %{"__value__" => "fox quick", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_beginning(ctx, text, beginning)

Tests whether text starts with beginning
Both text values are trimmed of surrounding whitespace, but otherwise matching is
strict without any tokenization.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_beginning("The Quick Brown", "the quick")
true
When used as an expression in text, prepend it with an @:
> "... @has_beginning("The Quick Brown", "the quick") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_beginning(\"The Quick Brown\", \"the quick\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_beginning(\"The Quick Brown\", \"the quick\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_beginning("The Quick Brown", "the quick")
false
When used as an expression in text, prepend it with an @:
> "... @has_beginning("The Quick Brown", "the quick") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_beginning(\"The Quick Brown\", \"the quick\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_beginning(\"The Quick Brown\", \"the quick\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_beginning("The Quick Brown", "quick brown")
false
When used as an expression in text, prepend it with an @:
> "... @has_beginning("The Quick Brown", "quick brown") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_beginning(\"The Quick Brown\", \"quick brown\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_beginning(\"The Quick Brown\", \"quick brown\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 4:
Tests whether text starts with beginning value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"beginning" => %{"__value__" => "the quick", "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "The Quick Brown", "display" => "value for display key", "value" => "value for value key"}}
> has_beginning(text, beginning)
true
When used as an expression in text, prepend it with an @:
> "... @has_beginning(text, beginning) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_beginning(text, beginning)",
...> %{"beginning" => %{"__value__" => "the quick", "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "The Quick Brown", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_beginning(text, beginning)",
...> %{"beginning" => %{"__value__" => "the quick", "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "The Quick Brown", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_date(ctx, expression)

Tests whether expression contains a date formatted according to our environment
This is very naively implemented with a regular expression.
Example 1:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	date of type Date
	datetime of type DateTime
	match of type DateTime
.

> has_date("the date is 15/01/2017 05:50")
%{"__value__" => true, "date" => ~D[2017-01-15], "datetime" => ~U[2017-01-15 05:50:00Z], "match" => ~U[2017-01-15 05:50:00Z]}
When used as an expression in text, prepend it with an @:
> "... @has_date("the date is 15/01/2017 05:50") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_date(\"the date is 15/01/2017 05:50\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "date" => ~D[2017-01-15], "datetime" => ~U[2017-01-15 05:50:00Z], "match" => ~U[2017-01-15 05:50:00Z]} = result
%{"__value__" => true, "date" => ~D[2017-01-15], "datetime" => ~U[2017-01-15 05:50:00Z], "match" => ~U[2017-01-15 05:50:00Z]}
iex> Expression.evaluate_as_string!(
...> "@has_date(\"the date is 15/01/2017 05:50\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Date: "2017-01-15".
> has_date("the date is 15/01/2017").date
~D[2017-01-15]
When used as an expression in text, prepend it with an @:
> "... @has_date("the date is 15/01/2017").date ..."
"2017-01-15"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_date(\"the date is 15/01/2017\").date",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ~D[2017-01-15] = result
~D[2017-01-15]
iex> Expression.evaluate_as_string!(
...> "@has_date(\"the date is 15/01/2017\").date",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2017-01-15"

Example 3:
When used in the following Stack expression it returns a value of type DateTime: "2017-01-15T05:50:00Z".
> has_date("the date is 15/01/2017 05:50").datetime
~U[2017-01-15 05:50:00Z]
When used as an expression in text, prepend it with an @:
> "... @has_date("the date is 15/01/2017 05:50").datetime ..."
"2017-01-15T05:50:00Z"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_date(\"the date is 15/01/2017 05:50\").datetime",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ~U[2017-01-15 05:50:00Z] = result
~U[2017-01-15 05:50:00Z]
iex> Expression.evaluate_as_string!(
...> "@has_date(\"the date is 15/01/2017 05:50\").datetime",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2017-01-15T05:50:00Z"

Example 4:
When used in the following Stack expression it returns a complex Boolean type of default value:
false
with the following fields:
	date of type Null
	datetime of type Null
	match of type Null
.

> has_date("there is no date here, just a year 2017")
%{"__value__" => false, "date" => nil, "datetime" => nil, "match" => nil}
When used as an expression in text, prepend it with an @:
> "... @has_date("there is no date here, just a year 2017") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_date(\"there is no date here, just a year 2017\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => false, "date" => nil, "datetime" => nil, "match" => nil} = result
%{"__value__" => false, "date" => nil, "datetime" => nil, "match" => nil}
iex> Expression.evaluate_as_string!(
...> "@has_date(\"there is no date here, just a year 2017\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 5:
When used in the following Stack expression it returns a complex Boolean type of default value:
false
with the following fields:
	date of type Null
	datetime of type Null
	match of type Null
.

> has_date(1)
%{"__value__" => false, "date" => nil, "datetime" => nil, "match" => nil}
When used as an expression in text, prepend it with an @:
> "... @has_date(1) ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_date(1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => false, "date" => nil, "datetime" => nil, "match" => nil} = result
%{"__value__" => false, "date" => nil, "datetime" => nil, "match" => nil}
iex> Expression.evaluate_as_string!(
...> "@has_date(1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 6:
When used in the following Stack expression it returns a complex Boolean type of default value:
false
with the following fields:
	date of type Null
	datetime of type Null
	match of type Null
when used with the following context:

%{"var" => 1}
> has_date(var)
%{"__value__" => false, "date" => nil, "datetime" => nil, "match" => nil}
When used as an expression in text, prepend it with an @:
> "... @has_date(var) ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_date(var)",
...> %{"var" => 1},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => false, "date" => nil, "datetime" => nil, "match" => nil} = result
%{"__value__" => false, "date" => nil, "datetime" => nil, "match" => nil}
iex> Expression.evaluate_as_string!(
...> "@has_date(var)",
...> %{"var" => 1},
...> Expression.Callbacks.Standard
...>)
"false"

Example 7:
Tests whether expression contains a date from value in value key if complex values are provided.

When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	date of type Date
	datetime of type DateTime
	match of type DateTime
when used with the following context:

%{"expression" => %{"__value__" => "the date is 15/01/2017 05:50", "display" => "value for display key", "value" => "value for value key"}}
> has_date(expression)
%{"__value__" => true, "date" => ~D[2017-01-15], "datetime" => ~U[2017-01-15 05:50:00Z], "match" => ~U[2017-01-15 05:50:00Z]}
When used as an expression in text, prepend it with an @:
> "... @has_date(expression) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_date(expression)",
...> %{"expression" => %{"__value__" => "the date is 15/01/2017 05:50", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "date" => ~D[2017-01-15], "datetime" => ~U[2017-01-15 05:50:00Z], "match" => ~U[2017-01-15 05:50:00Z]} = result
%{"__value__" => true, "date" => ~D[2017-01-15], "datetime" => ~U[2017-01-15 05:50:00Z], "match" => ~U[2017-01-15 05:50:00Z]}
iex> Expression.evaluate_as_string!(
...> "@has_date(expression)",
...> %{"expression" => %{"__value__" => "the date is 15/01/2017 05:50", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_date_eq(ctx, expression, date_string)

Tests whether expression is a date equal to date_string
Example 1:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	match of type Date
	test of type Date
.

> has_date_eq("the date is 15/01/2017", "2017-01-15")
%{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-01-15]}
When used as an expression in text, prepend it with an @:
> "... @has_date_eq("the date is 15/01/2017", "2017-01-15") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_date_eq(\"the date is 15/01/2017\", \"2017-01-15\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-01-15]} = result
%{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-01-15]}
iex> Expression.evaluate_as_string!(
...> "@has_date_eq(\"the date is 15/01/2017\", \"2017-01-15\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a complex Boolean type of default value:
false
with the following fields:
	error of type Map
	match of type Null
	test of type Date
.

> has_date_eq("there is no date here, just a year 2017", "2017-01-15")
%{"__value__" => false, "error" => %{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "The first argument is nil"}, "match" => nil, "test" => ~D[2017-01-15]}
When used as an expression in text, prepend it with an @:
> "... @has_date_eq("there is no date here, just a year 2017", "2017-01-15") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_date_eq(\"there is no date here, just a year 2017\", \"2017-01-15\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => false, "error" => %{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "The first argument is nil"}, "match" => nil, "test" => ~D[2017-01-15]} = result
%{"__value__" => false, "error" => %{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "The first argument is nil"}, "match" => nil, "test" => ~D[2017-01-15]}
iex> Expression.evaluate_as_string!(
...> "@has_date_eq(\"there is no date here, just a year 2017\", \"2017-01-15\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 3:
Tests whether expression is equal to date from value in value key if complex values are provided.

When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	match of type Date
	test of type Date
when used with the following context:

%{"date_string" => %{"__value__" => "2017-01-15", "display" => "value for display key", "value" => "value for value key"}, "expression" => %{"__value__" => "the date is 15/01/2017", "display" => "value for display key", "value" => "value for value key"}}
> has_date_eq("the date is 15/01/2017", "2017-01-15")
%{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-01-15]}
When used as an expression in text, prepend it with an @:
> "... @has_date_eq("the date is 15/01/2017", "2017-01-15") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_date_eq(\"the date is 15/01/2017\", \"2017-01-15\")",
...> %{"date_string" => %{"__value__" => "2017-01-15", "display" => "value for display key", "value" => "value for value key"}, "expression" => %{"__value__" => "the date is 15/01/2017", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-01-15]} = result
%{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-01-15]}
iex> Expression.evaluate_as_string!(
...> "@has_date_eq(\"the date is 15/01/2017\", \"2017-01-15\")",
...> %{"date_string" => %{"__value__" => "2017-01-15", "display" => "value for display key", "value" => "value for value key"}, "expression" => %{"__value__" => "the date is 15/01/2017", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_date_gt(ctx, expression, date_string)

Tests whether expression is a date after the date date_string
Example 1:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	match of type Date
	test of type Date
.

> has_date_gt("the date is 15/01/2017", "2017-01-01")
%{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-01-01]}
When used as an expression in text, prepend it with an @:
> "... @has_date_gt("the date is 15/01/2017", "2017-01-01") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_date_gt(\"the date is 15/01/2017\", \"2017-01-01\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-01-01]} = result
%{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-01-01]}
iex> Expression.evaluate_as_string!(
...> "@has_date_gt(\"the date is 15/01/2017\", \"2017-01-01\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a complex Boolean type of default value:
false
with the following fields:
	match of type Date
	test of type Date
.

> has_date_gt("the date is 15/01/2017", "2017-03-15")
%{"__value__" => false, "match" => ~D[2017-01-15], "test" => ~D[2017-03-15]}
When used as an expression in text, prepend it with an @:
> "... @has_date_gt("the date is 15/01/2017", "2017-03-15") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_date_gt(\"the date is 15/01/2017\", \"2017-03-15\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => false, "match" => ~D[2017-01-15], "test" => ~D[2017-03-15]} = result
%{"__value__" => false, "match" => ~D[2017-01-15], "test" => ~D[2017-03-15]}
iex> Expression.evaluate_as_string!(
...> "@has_date_gt(\"the date is 15/01/2017\", \"2017-03-15\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 3:
Tests whether expression is greater than date from value in value key if complex values are provided.

When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	match of type Date
	test of type Date
when used with the following context:

%{"date_string" => %{"__value__" => "2017-01-01", "display" => "value for display key", "value" => "value for value key"}, "expression" => %{"__value__" => "the date is 15/01/2017", "display" => "value for display key", "value" => "value for value key"}}
> has_date_gt(expression, date_string)
%{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-01-01]}
When used as an expression in text, prepend it with an @:
> "... @has_date_gt(expression, date_string) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_date_gt(expression, date_string)",
...> %{"date_string" => %{"__value__" => "2017-01-01", "display" => "value for display key", "value" => "value for value key"}, "expression" => %{"__value__" => "the date is 15/01/2017", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-01-01]} = result
%{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-01-01]}
iex> Expression.evaluate_as_string!(
...> "@has_date_gt(expression, date_string)",
...> %{"date_string" => %{"__value__" => "2017-01-01", "display" => "value for display key", "value" => "value for value key"}, "expression" => %{"__value__" => "the date is 15/01/2017", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_date_lt(ctx, expression, date_string)

Tests whether expression contains a date before the date date_string
Example 1:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	match of type Date
	test of type Date
.

> has_date_lt("the date is 15/01/2017", "2017-06-01")
%{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-06-01]}
When used as an expression in text, prepend it with an @:
> "... @has_date_lt("the date is 15/01/2017", "2017-06-01") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_date_lt(\"the date is 15/01/2017\", \"2017-06-01\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-06-01]} = result
%{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-06-01]}
iex> Expression.evaluate_as_string!(
...> "@has_date_lt(\"the date is 15/01/2017\", \"2017-06-01\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a complex Boolean type of default value:
false
with the following fields:
	match of type Date
	test of type Date
.

> has_date_lt("the date is 15/01/2021", "2017-03-15")
%{"__value__" => false, "match" => ~D[2021-01-15], "test" => ~D[2017-03-15]}
When used as an expression in text, prepend it with an @:
> "... @has_date_lt("the date is 15/01/2021", "2017-03-15") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_date_lt(\"the date is 15/01/2021\", \"2017-03-15\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => false, "match" => ~D[2021-01-15], "test" => ~D[2017-03-15]} = result
%{"__value__" => false, "match" => ~D[2021-01-15], "test" => ~D[2017-03-15]}
iex> Expression.evaluate_as_string!(
...> "@has_date_lt(\"the date is 15/01/2021\", \"2017-03-15\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 3:
Tests whether expression is less than date from value in value key if complex values are provided.

When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	match of type Date
	test of type Date
when used with the following context:

%{"date_string" => %{"__value__" => "2017-06-01", "display" => "value for display key", "value" => "value for value key"}, "expression" => %{"__value__" => "the date is 15/01/2017", "display" => "value for display key", "value" => "value for value key"}}
> has_date_lt(expression, date_string)
%{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-06-01]}
When used as an expression in text, prepend it with an @:
> "... @has_date_lt(expression, date_string) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_date_lt(expression, date_string)",
...> %{"date_string" => %{"__value__" => "2017-06-01", "display" => "value for display key", "value" => "value for value key"}, "expression" => %{"__value__" => "the date is 15/01/2017", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-06-01]} = result
%{"__value__" => true, "match" => ~D[2017-01-15], "test" => ~D[2017-06-01]}
iex> Expression.evaluate_as_string!(
...> "@has_date_lt(expression, date_string)",
...> %{"date_string" => %{"__value__" => "2017-06-01", "display" => "value for display key", "value" => "value for value key"}, "expression" => %{"__value__" => "the date is 15/01/2017", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_email(ctx, expression)

Tests whether an email is contained in text
Example 1:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	email of type String
.

> has_email("my email is foo1@bar.com, please respond")
%{"__value__" => true, "email" => "foo1@bar.com"}
When used as an expression in text, prepend it with an @:
> "... @has_email("my email is foo1@bar.com, please respond") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_email(\"my email is foo1@bar.com, please respond\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "email" => "foo1@bar.com"} = result
%{"__value__" => true, "email" => "foo1@bar.com"}
iex> Expression.evaluate_as_string!(
...> "@has_email(\"my email is foo1@bar.com, please respond\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a complex Boolean type of default value:
false
with the following fields:
	email of type Null
.

> has_email("i'm not sharing my email")
%{"__value__" => false, "email" => nil}
When used as an expression in text, prepend it with an @:
> "... @has_email("i'm not sharing my email") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_email(\"i'm not sharing my email\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => false, "email" => nil} = result
%{"__value__" => false, "email" => nil}
iex> Expression.evaluate_as_string!(
...> "@has_email(\"i'm not sharing my email\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 3:
When used in the following Stack expression it returns a complex Boolean type of default value:
false
with the following fields:
	email of type Null
.

> has_email(nil)
%{"__value__" => false, "email" => nil}
When used as an expression in text, prepend it with an @:
> "... @has_email(nil) ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_email(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => false, "email" => nil} = result
%{"__value__" => false, "email" => nil}
iex> Expression.evaluate_as_string!(
...> "@has_email(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 4:
Tests whether an email is contained in expression from value in value key if complex values are provided.

When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	email of type String
when used with the following context:

%{"expression" => %{"__value__" => "my email is foo1@bar.com, please respond", "display" => "value for display key", "value" => "value for value key"}}
> has_email(expression)
%{"__value__" => true, "email" => "foo1@bar.com"}
When used as an expression in text, prepend it with an @:
> "... @has_email(expression) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_email(expression)",
...> %{"expression" => %{"__value__" => "my email is foo1@bar.com, please respond", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "email" => "foo1@bar.com"} = result
%{"__value__" => true, "email" => "foo1@bar.com"}
iex> Expression.evaluate_as_string!(
...> "@has_email(expression)",
...> %{"expression" => %{"__value__" => "my email is foo1@bar.com, please respond", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_end(ctx, text, end_text)

Example 1:
Check whether the given text ends with the provided string. The function performs a case-insensitive match.

When used in the following Stack expression it returns a value of type Boolean: true.
> has_end("I would like to book a vaccine", "vaccine")
true
When used as an expression in text, prepend it with an @:
> "... @has_end("I would like to book a vaccine", "vaccine") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_end(\"I would like to book a vaccine\", \"vaccine\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_end(\"I would like to book a vaccine\", \"vaccine\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
Return boolean indicating if text ends with provided string from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"end_text" => %{"__value__" => "vaccine", "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "I would like to book a vaccine", "display" => "value for display key", "value" => "value for value key"}}
> has_end(text, end_text)
true
When used as an expression in text, prepend it with an @:
> "... @has_end(text, end_text) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_end(text, end_text)",
...> %{"end_text" => %{"__value__" => "vaccine", "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "I would like to book a vaccine", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_end(text, end_text)",
...> %{"end_text" => %{"__value__" => "vaccine", "display" => "value for display key", "value" => "value for value key"}, "text" => %{"__value__" => "I would like to book a vaccine", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_group(ctx, groups, uuid)

Returns whether the contact is part of group with the passed in UUID
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"contact" => %{"groups" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}]}}
> has_group(contact.groups, "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d")
true
When used as an expression in text, prepend it with an @:
> "... @has_group(contact.groups, "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_group(contact.groups, \"b7cf0d83-f1c9-411c-96fd-c511a4cfa86d\")",
...> %{"contact" => %{"groups" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}]}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_group(contact.groups, \"b7cf0d83-f1c9-411c-96fd-c511a4cfa86d\")",
...> %{"contact" => %{"groups" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}]}},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false when used with the following context:
%{"contact" => %{"groups" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}]}}
> has_group(contact.groups, "00000000-0000-0000-0000-000000000000")
false
When used as an expression in text, prepend it with an @:
> "... @has_group(contact.groups, "00000000-0000-0000-0000-000000000000") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_group(contact.groups, \"00000000-0000-0000-0000-000000000000\")",
...> %{"contact" => %{"groups" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}]}},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_group(contact.groups, \"00000000-0000-0000-0000-000000000000\")",
...> %{"contact" => %{"groups" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}]}},
...> Expression.Callbacks.Standard
...>)
"false"

Example 3:
Returns whether the groups contain the given uuid from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: false when used with the following context:
%{"groups" => %{"__value__" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}], "display" => "value for display key", "value" => "value for value key"}, "uuid" => %{"__value__" => "00000000-0000-0000-0000-000000000000", "display" => "value for display key", "value" => "value for value key"}}
> has_group(groups, uuid)
false
When used as an expression in text, prepend it with an @:
> "... @has_group(groups, uuid) ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_group(groups, uuid)",
...> %{"groups" => %{"__value__" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}], "display" => "value for display key", "value" => "value for value key"}, "uuid" => %{"__value__" => "00000000-0000-0000-0000-000000000000", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_group(groups, uuid)",
...> %{"groups" => %{"__value__" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}], "display" => "value for display key", "value" => "value for value key"}, "uuid" => %{"__value__" => "00000000-0000-0000-0000-000000000000", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"false"

 has_member(ctx, list, item)

Return true if a list has the given item as a member
Example 1:
Check whether the given list has the item as a member

When used in the following Stack expression it returns a value of type Boolean: true.
> has_member(["A", "B", "C"], "C")
true
When used as an expression in text, prepend it with an @:
> "... @has_member(["A", "B", "C"], "C") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_member([\"A\", \"B\", \"C\"], \"C\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_member([\"A\", \"B\", \"C\"], \"C\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
Check whether the given list has the item as a member from value keys if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"item" => %{"__value__" => "C", "display" => "value for display key", "value" => "value for value key"}, "list" => %{"__value__" => ["A", "B", "C"], "display" => "value for display key", "value" => "value for value key"}}
> has_member(list, item)
true
When used as an expression in text, prepend it with an @:
> "... @has_member(list, item) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_member(list, item)",
...> %{"item" => %{"__value__" => "C", "display" => "value for display key", "value" => "value for value key"}, "list" => %{"__value__" => ["A", "B", "C"], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_member(list, item)",
...> %{"item" => %{"__value__" => "C", "display" => "value for display key", "value" => "value for value key"}, "list" => %{"__value__" => ["A", "B", "C"], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_number(ctx, expression)

Tests whether expression contains a number
Example 1:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	number of type Float
.

> has_number("the number is 42 and 5")
%{"__value__" => true, "number" => 42.0}
When used as an expression in text, prepend it with an @:
> "... @has_number("the number is 42 and 5") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number(\"the number is 42 and 5\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "number" => 42.0} = result
%{"__value__" => true, "number" => 42.0}
iex> Expression.evaluate_as_string!(
...> "@has_number(\"the number is 42 and 5\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	number of type Float
.

> has_number("العدد ٤٢")
%{"__value__" => true, "number" => 42.0}
When used as an expression in text, prepend it with an @:
> "... @has_number("العدد ٤٢") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number(\"العدد ٤٢\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "number" => 42.0} = result
%{"__value__" => true, "number" => 42.0}
iex> Expression.evaluate_as_string!(
...> "@has_number(\"العدد ٤٢\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 3:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	number of type Float
.

> has_number("٠.٥")
%{"__value__" => true, "number" => 0.5}
When used as an expression in text, prepend it with an @:
> "... @has_number("٠.٥") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number(\"٠.٥\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "number" => 0.5} = result
%{"__value__" => true, "number" => 0.5}
iex> Expression.evaluate_as_string!(
...> "@has_number(\"٠.٥\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 4:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	number of type Float
.

> has_number("0.6")
%{"__value__" => true, "number" => 0.6}
When used as an expression in text, prepend it with an @:
> "... @has_number("0.6") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number(\"0.6\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "number" => 0.6} = result
%{"__value__" => true, "number" => 0.6}
iex> Expression.evaluate_as_string!(
...> "@has_number(\"0.6\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 5:
Tests whether expression contains a number from value in value key if complex values are provided.

When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	number of type Float
when used with the following context:

%{"string" => %{"__value__" => "the number is 42 and 5", "display" => "value for display key", "value" => "value for value key"}}
> has_number(string)
%{"__value__" => true, "number" => 42.0}
When used as an expression in text, prepend it with an @:
> "... @has_number(string) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number(string)",
...> %{"string" => %{"__value__" => "the number is 42 and 5", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "number" => 42.0} = result
%{"__value__" => true, "number" => 42.0}
iex> Expression.evaluate_as_string!(
...> "@has_number(string)",
...> %{"string" => %{"__value__" => "the number is 42 and 5", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_number_eq(ctx, expression, float)

Tests whether expression contains a number equal to the value
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_eq("the number is 42", 42)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_eq("the number is 42", 42) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_eq(\"the number is 42\", 42)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_eq(\"the number is 42\", 42)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_eq("the number is 42", 42.0)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_eq("the number is 42", 42.0) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_eq(\"the number is 42\", 42.0)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_eq(\"the number is 42\", 42.0)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_eq("the number is 42", "42")
true
When used as an expression in text, prepend it with an @:
> "... @has_number_eq("the number is 42", "42") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_eq(\"the number is 42\", \"42\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_eq(\"the number is 42\", \"42\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_eq("the number is 0.5", "0.5")
true
When used as an expression in text, prepend it with an @:
> "... @has_number_eq("the number is 0.5", "0.5") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_eq(\"the number is 0.5\", \"0.5\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_eq(\"the number is 0.5\", \"0.5\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 5:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_eq("the number is 42.0", "42")
true
When used as an expression in text, prepend it with an @:
> "... @has_number_eq("the number is 42.0", "42") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_eq(\"the number is 42.0\", \"42\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_eq(\"the number is 42.0\", \"42\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 6:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_eq("the number is 40", "42")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_eq("the number is 40", "42") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_eq(\"the number is 40\", \"42\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_eq(\"the number is 40\", \"42\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 7:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_eq("the number is 40", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_eq("the number is 40", "foo") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_eq(\"the number is 40\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_eq(\"the number is 40\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 8:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_eq("four hundred", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_eq("four hundred", "foo") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_eq(\"four hundred\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_eq(\"four hundred\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 9:
Tests whether expression is equal to number from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"float" => %{"__value__" => 42, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "the number is 42", "display" => "value for display key", "value" => "value for value key"}}
> has_number_eq(string, float)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_eq(string, float) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_eq(string, float)",
...> %{"float" => %{"__value__" => 42, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "the number is 42", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_eq(string, float)",
...> %{"float" => %{"__value__" => 42, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "the number is 42", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_number_gt(ctx, expression, float)

Tests whether expression contains a number greater than min
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_gt("the number is 42", 40)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gt("the number is 42", 40) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gt(\"the number is 42\", 40)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_gt(\"the number is 42\", 40)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_gt("the number is 42", 40.0)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gt("the number is 42", 40.0) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gt(\"the number is 42\", 40.0)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_gt(\"the number is 42\", 40.0)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_gt("the number is 42", "40")
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gt("the number is 42", "40") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gt(\"the number is 42\", \"40\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_gt(\"the number is 42\", \"40\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_gt("the number is 0.6", "0.5")
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gt("the number is 0.6", "0.5") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gt(\"the number is 0.6\", \"0.5\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_gt(\"the number is 0.6\", \"0.5\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 5:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_gt("the number is 42.0", "40")
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gt("the number is 42.0", "40") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gt(\"the number is 42.0\", \"40\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_gt(\"the number is 42.0\", \"40\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 6:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_gt("the number is 40", "40")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_gt("the number is 40", "40") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gt(\"the number is 40\", \"40\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_gt(\"the number is 40\", \"40\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 7:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_gt("the number is 40", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_gt("the number is 40", "foo") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gt(\"the number is 40\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_gt(\"the number is 40\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 8:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_gt("four hundred", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_gt("four hundred", "foo") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gt(\"four hundred\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_gt(\"four hundred\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 9:
Tests whether expression is greater than number from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"float" => %{"__value__" => 40, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "the number is 42", "display" => "value for display key", "value" => "value for value key"}}
> has_number_gt(string, float)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gt(string, float) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gt(string, float)",
...> %{"float" => %{"__value__" => 40, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "the number is 42", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_gt(string, float)",
...> %{"float" => %{"__value__" => 40, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "the number is 42", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_number_gte(ctx, expression, float)

Tests whether expression contains a number greater than or equal to min
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_gte("the number is 42", 42)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gte("the number is 42", 42) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gte(\"the number is 42\", 42)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_gte(\"the number is 42\", 42)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_gte("the number is 42", 42.0)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gte("the number is 42", 42.0) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gte(\"the number is 42\", 42.0)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_gte(\"the number is 42\", 42.0)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_gte("the number is 42", "42")
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gte("the number is 42", "42") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gte(\"the number is 42\", \"42\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_gte(\"the number is 42\", \"42\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_gte("the number is 0.5", "0.5")
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gte("the number is 0.5", "0.5") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gte(\"the number is 0.5\", \"0.5\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_gte(\"the number is 0.5\", \"0.5\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 5:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_gte("the number is 42.0", "45")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_gte("the number is 42.0", "45") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gte(\"the number is 42.0\", \"45\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_gte(\"the number is 42.0\", \"45\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 6:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_gte("the number is 40", "45")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_gte("the number is 40", "45") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gte(\"the number is 40\", \"45\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_gte(\"the number is 40\", \"45\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 7:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_gte("the number is 40", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_gte("the number is 40", "foo") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gte(\"the number is 40\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_gte(\"the number is 40\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 8:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_gte("four hundred", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_gte("four hundred", "foo") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gte(\"four hundred\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_gte(\"four hundred\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 9:
Tests whether expression is greater than or equal to number from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"float" => %{"__value__" => 42, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "the number is 42", "display" => "value for display key", "value" => "value for value key"}}
> has_number_gte(string, float)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gte(string, float) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_gte(string, float)",
...> %{"float" => %{"__value__" => 42, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "the number is 42", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_gte(string, float)",
...> %{"float" => %{"__value__" => 42, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "the number is 42", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_number_lt(ctx, expression, float)

Tests whether expression contains a number less than max
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_lt("the number is 42", 44)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_lt("the number is 42", 44) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lt(\"the number is 42\", 44)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_lt(\"the number is 42\", 44)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_lt("the number is 42", 44.0)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_lt("the number is 42", 44.0) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lt(\"the number is 42\", 44.0)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_lt(\"the number is 42\", 44.0)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lt("the number is 42", "40")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lt("the number is 42", "40") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lt(\"the number is 42\", \"40\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_lt(\"the number is 42\", \"40\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lt("the number is 0.6", "0.5")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lt("the number is 0.6", "0.5") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lt(\"the number is 0.6\", \"0.5\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_lt(\"the number is 0.6\", \"0.5\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 5:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lt("the number is 42.0", "40")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lt("the number is 42.0", "40") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lt(\"the number is 42.0\", \"40\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_lt(\"the number is 42.0\", \"40\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 6:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lt("the number is 40", "40")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lt("the number is 40", "40") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lt(\"the number is 40\", \"40\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_lt(\"the number is 40\", \"40\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 7:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lt("the number is 40", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lt("the number is 40", "foo") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lt(\"the number is 40\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_lt(\"the number is 40\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 8:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lt("four hundred", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lt("four hundred", "foo") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lt(\"four hundred\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_lt(\"four hundred\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 9:
Tests whether expression is less than number from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"float" => %{"__value__" => 44, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "the number is 42", "display" => "value for display key", "value" => "value for value key"}}
> has_number_lt(string, float)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_lt(string, float) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lt(string, float)",
...> %{"float" => %{"__value__" => 44, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "the number is 42", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_lt(string, float)",
...> %{"float" => %{"__value__" => 44, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "the number is 42", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_number_lte(ctx, expression, float)

Tests whether expression contains a number less than or equal to max
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_lte("the number is 42", 42)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_lte("the number is 42", 42) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lte(\"the number is 42\", 42)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_lte(\"the number is 42\", 42)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_lte("the number is 42", 42.0)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_lte("the number is 42", 42.0) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lte(\"the number is 42\", 42.0)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_lte(\"the number is 42\", 42.0)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_lte("the number is 42", "42")
true
When used as an expression in text, prepend it with an @:
> "... @has_number_lte("the number is 42", "42") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lte(\"the number is 42\", \"42\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_lte(\"the number is 42\", \"42\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_lte("the number is 0.5", "0.5")
true
When used as an expression in text, prepend it with an @:
> "... @has_number_lte("the number is 0.5", "0.5") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lte(\"the number is 0.5\", \"0.5\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_lte(\"the number is 0.5\", \"0.5\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 5:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lte("the number is 42.0", "40")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lte("the number is 42.0", "40") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lte(\"the number is 42.0\", \"40\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_lte(\"the number is 42.0\", \"40\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 6:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lte("the number is 40", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lte("the number is 40", "foo") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lte(\"the number is 40\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_lte(\"the number is 40\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 7:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lte("four hundred", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lte("four hundred", "foo") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lte(\"four hundred\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_number_lte(\"four hundred\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 8:
When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"response" => 3}
> has_number_lte("@response", 5)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_lte("@response", 5) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lte(\"@response\", 5)",
...> %{"response" => 3},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_lte(\"@response\", 5)",
...> %{"response" => 3},
...> Expression.Callbacks.Standard
...>)
"true"

Example 9:
Tests whether expression is less or equal than number from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"float" => %{"__value__" => 42, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "the number is 42", "display" => "value for display key", "value" => "value for value key"}}
> has_number_lte(string, float)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_lte(string, float) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_number_lte(string, float)",
...> %{"float" => %{"__value__" => 42, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "the number is 42", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_number_lte(string, float)",
...> %{"float" => %{"__value__" => 42, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "the number is 42", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_only_phrase(ctx, expression, phrase)

Tests whether the text contains only phrase
The phrase must be the only text in the text to match
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_only_phrase("Quick Brown", "quick brown")
true
When used as an expression in text, prepend it with an @:
> "... @has_only_phrase("Quick Brown", "quick brown") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_only_phrase(\"Quick Brown\", \"quick brown\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_only_phrase(\"Quick Brown\", \"quick brown\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_only_phrase("", "")
true
When used as an expression in text, prepend it with an @:
> "... @has_only_phrase("", "") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_only_phrase(\"\", \"\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_only_phrase(\"\", \"\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_only_phrase("The Quick Brown Fox", "quick brown")
false
When used as an expression in text, prepend it with an @:
> "... @has_only_phrase("The Quick Brown Fox", "quick brown") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_only_phrase(\"The Quick Brown Fox\", \"quick brown\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_only_phrase(\"The Quick Brown Fox\", \"quick brown\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 4:
Tests whether expression contains only phrase from value in value keys if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"phrase" => %{"__value__" => "quick brown", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "Quick Brown", "display" => "value for display key", "value" => "value for value key"}}
> has_only_phrase(string, phrase)
true
When used as an expression in text, prepend it with an @:
> "... @has_only_phrase(string, phrase) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_only_phrase(string, phrase)",
...> %{"phrase" => %{"__value__" => "quick brown", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "Quick Brown", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_only_phrase(string, phrase)",
...> %{"phrase" => %{"__value__" => "quick brown", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "Quick Brown", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_only_text(ctx, expression_one, expression_two)

Returns whether two text values are equal (case sensitive). In the case that they are, it will return the text as the match.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_only_text("foo", "foo")
true
When used as an expression in text, prepend it with an @:
> "... @has_only_text("foo", "foo") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_only_text(\"foo\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_only_text(\"foo\", \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_only_text("", "")
true
When used as an expression in text, prepend it with an @:
> "... @has_only_text("", "") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_only_text(\"\", \"\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_only_text(\"\", \"\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_only_text("foo", "FOO")
false
When used as an expression in text, prepend it with an @:
> "... @has_only_text("foo", "FOO") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_only_text(\"foo\", \"FOO\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_only_text(\"foo\", \"FOO\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 4:
Returns whether two text values are equal from value in value keys if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"expression_one" => %{"__value__" => "foo", "display" => "value for display key", "value" => "value for value key"}, "expression_two" => %{"__value__" => "foo", "display" => "value for display key", "value" => "value for value key"}}
> has_only_text(string, phrase)
true
When used as an expression in text, prepend it with an @:
> "... @has_only_text(string, phrase) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_only_text(string, phrase)",
...> %{"expression_one" => %{"__value__" => "foo", "display" => "value for display key", "value" => "value for value key"}, "expression_two" => %{"__value__" => "foo", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_only_text(string, phrase)",
...> %{"expression_one" => %{"__value__" => "foo", "display" => "value for display key", "value" => "value for value key"}, "expression_two" => %{"__value__" => "foo", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_pattern(ctx, expression, pattern)

Tests whether expression matches the regex pattern
Both text values are trimmed of surrounding whitespace and matching is case-insensitive.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_pattern("Buy cheese please", "buy (\w+)")
true
When used as an expression in text, prepend it with an @:
> "... @has_pattern("Buy cheese please", "buy (\w+)") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_pattern(\"Buy cheese please\", \"buy (\\w+)\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_pattern(\"Buy cheese please\", \"buy (\\w+)\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_pattern("Sell cheese please", "buy (\w+)")
false
When used as an expression in text, prepend it with an @:
> "... @has_pattern("Sell cheese please", "buy (\w+)") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_pattern(\"Sell cheese please\", \"buy (\\w+)\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_pattern(\"Sell cheese please\", \"buy (\\w+)\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_pattern(nil, "buy (\w+)")
false
When used as an expression in text, prepend it with an @:
> "... @has_pattern(nil, "buy (\w+)") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_pattern(nil, \"buy (\\w+)\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_pattern(nil, \"buy (\\w+)\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 4:
Returns whether two text values are equal from value in value keys if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"expression" => %{"__value__" => "Buy cheese please", "display" => "value for display key", "value" => "value for value key"}, "pattern" => %{"__value__" => "buy (\\w+)", "display" => "value for display key", "value" => "value for value key"}}
> has_pattern(expression, pattern)
true
When used as an expression in text, prepend it with an @:
> "... @has_pattern(expression, pattern) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_pattern(expression, pattern)",
...> %{"expression" => %{"__value__" => "Buy cheese please", "display" => "value for display key", "value" => "value for value key"}, "pattern" => %{"__value__" => "buy (\\w+)", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_pattern(expression, pattern)",
...> %{"expression" => %{"__value__" => "Buy cheese please", "display" => "value for display key", "value" => "value for value key"}, "pattern" => %{"__value__" => "buy (\\w+)", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_phone(ctx, expression)

Tests whether expresssion contains a phone number.
The optional country_code argument specifies the country to use for parsing.
Example 1:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	phonenumber of type String
.

> has_phone("my number is +12067799294 thanks")
%{"__value__" => true, "phonenumber" => "+12067799294"}
When used as an expression in text, prepend it with an @:
> "... @has_phone("my number is +12067799294 thanks") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_phone(\"my number is +12067799294 thanks\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "phonenumber" => "+12067799294"} = result
%{"__value__" => true, "phonenumber" => "+12067799294"}
iex> Expression.evaluate_as_string!(
...> "@has_phone(\"my number is +12067799294 thanks\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	phonenumber of type String
.

> has_phone("my number is 2067799294 thanks", "US")
%{"__value__" => true, "phonenumber" => "+12067799294"}
When used as an expression in text, prepend it with an @:
> "... @has_phone("my number is 2067799294 thanks", "US") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_phone(\"my number is 2067799294 thanks\", \"US\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "phonenumber" => "+12067799294"} = result
%{"__value__" => true, "phonenumber" => "+12067799294"}
iex> Expression.evaluate_as_string!(
...> "@has_phone(\"my number is 2067799294 thanks\", \"US\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 3:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	phonenumber of type String
.

> has_phone("my number is 206 779 9294 thanks", "US")
%{"__value__" => true, "phonenumber" => "+12067799294"}
When used as an expression in text, prepend it with an @:
> "... @has_phone("my number is 206 779 9294 thanks", "US") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_phone(\"my number is 206 779 9294 thanks\", \"US\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "phonenumber" => "+12067799294"} = result
%{"__value__" => true, "phonenumber" => "+12067799294"}
iex> Expression.evaluate_as_string!(
...> "@has_phone(\"my number is 206 779 9294 thanks\", \"US\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 4:
When used in the following Stack expression it returns a complex Boolean type of default value:
false
with the following fields:
	phonenumber of type Null
.

> has_phone("my number is none of your business", "US")
%{"__value__" => false, "phonenumber" => nil}
When used as an expression in text, prepend it with an @:
> "... @has_phone("my number is none of your business", "US") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_phone(\"my number is none of your business\", \"US\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => false, "phonenumber" => nil} = result
%{"__value__" => false, "phonenumber" => nil}
iex> Expression.evaluate_as_string!(
...> "@has_phone(\"my number is none of your business\", \"US\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 5:
When used in the following Stack expression it returns a complex Boolean type of default value:
false
with the following fields:
	phonenumber of type Null
.

> has_phone(nil, "US")
%{"__value__" => false, "phonenumber" => nil}
When used as an expression in text, prepend it with an @:
> "... @has_phone(nil, "US") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_phone(nil, \"US\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => false, "phonenumber" => nil} = result
%{"__value__" => false, "phonenumber" => nil}
iex> Expression.evaluate_as_string!(
...> "@has_phone(nil, \"US\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 6:
When used in the following Stack expression it returns a complex Boolean type of default value:
false
with the following fields:
	phonenumber of type Null
.

> has_phone("+27")
%{"__value__" => false, "phonenumber" => nil}
When used as an expression in text, prepend it with an @:
> "... @has_phone("+27") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_phone(\"+27\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => false, "phonenumber" => nil} = result
%{"__value__" => false, "phonenumber" => nil}
iex> Expression.evaluate_as_string!(
...> "@has_phone(\"+27\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 7:
When used in the following Stack expression it returns a complex Boolean type of default value:
false
with the following fields:
	phonenumber of type Null
.

> has_phone("+27", "ZA")
%{"__value__" => false, "phonenumber" => nil}
When used as an expression in text, prepend it with an @:
> "... @has_phone("+27", "ZA") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_phone(\"+27\", \"ZA\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => false, "phonenumber" => nil} = result
%{"__value__" => false, "phonenumber" => nil}
iex> Expression.evaluate_as_string!(
...> "@has_phone(\"+27\", \"ZA\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 8:
Tests whether expression contains a phone number from value in value key if complex values are provided.

When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	phonenumber of type String
when used with the following context:

%{"expression" => %{"__value__" => "my number is +12067799294 thanks", "display" => "value for display key", "value" => "value for value key"}}
> has_phone(expression)
%{"__value__" => true, "phonenumber" => "+12067799294"}
When used as an expression in text, prepend it with an @:
> "... @has_phone(expression) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_phone(expression)",
...> %{"expression" => %{"__value__" => "my number is +12067799294 thanks", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "phonenumber" => "+12067799294"} = result
%{"__value__" => true, "phonenumber" => "+12067799294"}
iex> Expression.evaluate_as_string!(
...> "@has_phone(expression)",
...> %{"expression" => %{"__value__" => "my number is +12067799294 thanks", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_phone(ctx, expression, country_code)

 has_phrase(ctx, expression, phrase)

Tests whether phrase is contained in expression
The words in the test phrase must appear in the same order with no other words in between.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_phrase("the quick brown fox", "brown fox")
true
When used as an expression in text, prepend it with an @:
> "... @has_phrase("the quick brown fox", "brown fox") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_phrase(\"the quick brown fox\", \"brown fox\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_phrase(\"the quick brown fox\", \"brown fox\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_phrase("the quick brown fox", "quick fox")
false
When used as an expression in text, prepend it with an @:
> "... @has_phrase("the quick brown fox", "quick fox") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_phrase(\"the quick brown fox\", \"quick fox\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_phrase(\"the quick brown fox\", \"quick fox\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_phrase("the quick brown fox", "")
true
When used as an expression in text, prepend it with an @:
> "... @has_phrase("the quick brown fox", "") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_phrase(\"the quick brown fox\", \"\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_phrase(\"the quick brown fox\", \"\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 4:
Tests whether expression contains phrase from value in value keys if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"expression" => %{"__value__" => "the quick brown fox", "display" => "value for display key", "value" => "value for value key"}, "phrase" => %{"__value__" => "brown fox", "display" => "value for display key", "value" => "value for value key"}}
> has_phrase(expression, phrase)
true
When used as an expression in text, prepend it with an @:
> "... @has_phrase(expression, phrase) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_phrase(expression, phrase)",
...> %{"expression" => %{"__value__" => "the quick brown fox", "display" => "value for display key", "value" => "value for value key"}, "phrase" => %{"__value__" => "brown fox", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_phrase(expression, phrase)",
...> %{"expression" => %{"__value__" => "the quick brown fox", "display" => "value for display key", "value" => "value for value key"}, "phrase" => %{"__value__" => "brown fox", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_text(ctx, expression)

Tests whether there the expression has any characters in it
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_text("quick brown")
true
When used as an expression in text, prepend it with an @:
> "... @has_text("quick brown") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_text(\"quick brown\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_text(\"quick brown\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_text("")
false
When used as an expression in text, prepend it with an @:
> "... @has_text("") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_text(\"\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_text(\"\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_text("
> ")
false
When used as an expression in text, prepend it with an @:
> "... @has_text("
") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_text(\" \n\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_text(\" \n\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_text(123)
true
When used as an expression in text, prepend it with an @:
> "... @has_text(123) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_text(123)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_text(123)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 5:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_text(nil)
false
When used as an expression in text, prepend it with an @:
> "... @has_text(nil) ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_text(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_text(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 6:
Tests whether expression has text from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"expression" => %{"__value__" => "quick brown", "display" => "value for display key", "value" => "value for value key"}}
> has_text(expression)
true
When used as an expression in text, prepend it with an @:
> "... @has_text(expression) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_text(expression)",
...> %{"expression" => %{"__value__" => "quick brown", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@has_text(expression)",
...> %{"expression" => %{"__value__" => "quick brown", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 has_time(ctx, expression)

Tests whether expression contains a time.
Example 1:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	match of type Time
.

> has_time("the time is 10:30")
%{"__value__" => true, "match" => ~T[10:30:00]}
When used as an expression in text, prepend it with an @:
> "... @has_time("the time is 10:30") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_time(\"the time is 10:30\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "match" => ~T[10:30:00]} = result
%{"__value__" => true, "match" => ~T[10:30:00]}
iex> Expression.evaluate_as_string!(
...> "@has_time(\"the time is 10:30\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	match of type Time
.

> has_time("the time is 10:00 pm")
%{"__value__" => true, "match" => ~T[10:00:00]}
When used as an expression in text, prepend it with an @:
> "... @has_time("the time is 10:00 pm") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_time(\"the time is 10:00 pm\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "match" => ~T[10:00:00]} = result
%{"__value__" => true, "match" => ~T[10:00:00]}
iex> Expression.evaluate_as_string!(
...> "@has_time(\"the time is 10:00 pm\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 3:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	match of type Time
.

> has_time("the time is 10:30:45")
%{"__value__" => true, "match" => ~T[10:30:45]}
When used as an expression in text, prepend it with an @:
> "... @has_time("the time is 10:30:45") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_time(\"the time is 10:30:45\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "match" => ~T[10:30:45]} = result
%{"__value__" => true, "match" => ~T[10:30:45]}
iex> Expression.evaluate_as_string!(
...> "@has_time(\"the time is 10:30:45\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_time("there is no time here, just the number 25")
false
When used as an expression in text, prepend it with an @:
> "... @has_time("there is no time here, just the number 25") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_time(\"there is no time here, just the number 25\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@has_time(\"there is no time here, just the number 25\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 5:
Tests whether expression contains time from value in value key if complex values are provided.

When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	match of type Time
when used with the following context:

%{"expression" => %{"__value__" => "the time is 10:30", "display" => "value for display key", "value" => "value for value key"}}
> has_time(expression)
%{"__value__" => true, "match" => ~T[10:30:00]}
When used as an expression in text, prepend it with an @:
> "... @has_time(expression) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "has_time(expression)",
...> %{"expression" => %{"__value__" => "the time is 10:30", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__value__" => true, "match" => ~T[10:30:00]} = result
%{"__value__" => true, "match" => ~T[10:30:00]}
iex> Expression.evaluate_as_string!(
...> "@has_time(expression)",
...> %{"expression" => %{"__value__" => "the time is 10:30", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 hour(ctx, date)

Returns only the hour of a datetime (0 to 23)
Example 1:
Get the current hour

When used in the following Stack expression it returns a value of type Integer: 17.
> hour(now())
17
When used as an expression in text, prepend it with an @:
> "... @hour(now()) ..."
"17"
..$> import ExUnit.Assertions
..$> result = Expression.evaluate_block!(
...> "hour(now())",
...> %{},
...> Expression.Callbacks.Standard
...>)
..$> assert 17 = result
17
..$> Expression.evaluate_as_string!(
...> "@hour(now())",
...> %{},
...> Expression.Callbacks.Standard
...>)
"17"

Example 2:
Get the hour from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Integer: 3 when used with the following context:
%{"date" => %{"__value__" => ~U[2022-07-31 03:00:00Z], "display" => "value for display key", "value" => "value for value key"}}
> hour(date)
3
When used as an expression in text, prepend it with an @:
> "... @hour(date) ..."
"3"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "hour(date)",
...> %{"date" => %{"__value__" => ~U[2022-07-31 03:00:00Z], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 3 = result
3
iex> Expression.evaluate_as_string!(
...> "@hour(date)",
...> %{"date" => %{"__value__" => ~U[2022-07-31 03:00:00Z], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"3"

 if_(ctx, condition, yes, no)

Returns one value if the condition evaluates to true, and another value if it evaluates to false
Example 1:
When used in the following Stack expression it returns a value of type String: "Yes".
> if true do
> "Yes"
> else
> "No"
> end
>
"Yes"
When used as an expression in text, prepend it with an @:
> "... @if(true, "Yes", "No") ..."
"Yes"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "if(true, \"Yes\", \"No\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "Yes" = result
"Yes"
iex> Expression.evaluate_as_string!(
...> "@if(true, \"Yes\", \"No\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"Yes"

Example 2:
When used in the following Stack expression it returns a value of type String: "No".
> # Shorthand
> if(false, do: "Yes", else: "No")
"No"
When used as an expression in text, prepend it with an @:
> "... @if(false, "Yes", "No") ..."
"No"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "if(false, \"Yes\", \"No\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "No" = result
"No"
iex> Expression.evaluate_as_string!(
...> "@if(false, \"Yes\", \"No\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"No"

Example 3:
When used in the following Stack expression it returns a value of type String: "No" when used with the following context:
%{"boolean" => %{"__value__" => false, "display" => "value for display key", "value" => "value for value key"}, "value1" => %{"__value__" => "Yes", "display" => "value for display key", "value" => "value for value key"}, "value2" => %{"__value__" => "No", "display" => "value for display key", "value" => "value for value key"}}
> if(boolean, value1, value2)
"No"
When used as an expression in text, prepend it with an @:
> "... @if(boolean, value1, value2) ..."
"No"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "if(boolean, value1, value2)",
...> %{"boolean" => %{"__value__" => false, "display" => "value for display key", "value" => "value for value key"}, "value1" => %{"__value__" => "Yes", "display" => "value for display key", "value" => "value for value key"}, "value2" => %{"__value__" => "No", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "No" = result
"No"
iex> Expression.evaluate_as_string!(
...> "@if(boolean, value1, value2)",
...> %{"boolean" => %{"__value__" => false, "display" => "value for display key", "value" => "value for value key"}, "value1" => %{"__value__" => "Yes", "display" => "value for display key", "value" => "value for value key"}, "value2" => %{"__value__" => "No", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"No"

 is_error(ctx, value)

 @spec is_error(Expression.Context.t(), %{required(String.t()) => term()}) :: boolean()

Checks whether value is an error
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"error" => %{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "the error"}}
> is_error(error)
true
When used as an expression in text, prepend it with an @:
> "... @is_error(error) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "is_error(error)",
...> %{"error" => %{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "the error"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@is_error(error)",
...> %{"error" => %{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "the error"}},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false when used with the following context:
%{}
> is_error("not an error")
false
When used as an expression in text, prepend it with an @:
> "... @is_error("not an error") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "is_error(\"not an error\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@is_error(\"not an error\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

 is_nil_or_empty(ctx, arg)

Returns true if the argument is nil or an empty string
Example 1:
Check whether the given argument is nil or an empty string

When used in the following Stack expression it returns a value of type Boolean: true.
> is_nil_or_empty(nil)
true
When used as an expression in text, prepend it with an @:
> "... @is_nil_or_empty(nil) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "is_nil_or_empty(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@is_nil_or_empty(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
Return true if value in value key if complex values are provided is nil or an empty string.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"argument" => %{"__value__" => "", "display" => "value for display key", "value" => "value for value key"}}
> is_nil_or_empty(argument)
true
When used as an expression in text, prepend it with an @:
> "... @is_nil_or_empty(argument) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "is_nil_or_empty(argument)",
...> %{"argument" => %{"__value__" => "", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@is_nil_or_empty(argument)",
...> %{"argument" => %{"__value__" => "", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 isbool(ctx, var)

Returns true if the argument is a boolean.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> isbool(true)
true
When used as an expression in text, prepend it with an @:
> "... @isbool(true) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "isbool(true)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@isbool(true)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> isbool(false)
true
When used as an expression in text, prepend it with an @:
> "... @isbool(false) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "isbool(false)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@isbool(false)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: false.
> isbool(1)
false
When used as an expression in text, prepend it with an @:
> "... @isbool(1) ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "isbool(1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@isbool(1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: false.
> isbool(0)
false
When used as an expression in text, prepend it with an @:
> "... @isbool(0) ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "isbool(0)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@isbool(0)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 5:
When used in the following Stack expression it returns a value of type Boolean: false.
> isbool("true")
false
When used as an expression in text, prepend it with an @:
> "... @isbool("true") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "isbool(\"true\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@isbool(\"true\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 6:
When used in the following Stack expression it returns a value of type Boolean: false.
> isbool("false")
false
When used as an expression in text, prepend it with an @:
> "... @isbool("false") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "isbool(\"false\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@isbool(\"false\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 7:
Return boolean indicating if value in value key is a boolean if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"string" => %{"__value__" => "true", "display" => "value for display key", "value" => "value for value key"}}
> isbool(string)
true
When used as an expression in text, prepend it with an @:
> "... @isbool(string) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "isbool(string)",
...> %{"string" => %{"__value__" => "true", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@isbool(string)",
...> %{"string" => %{"__value__" => "true", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 isnumber(ctx, var)

Returns true if the argument is a number.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> isnumber(1)
true
When used as an expression in text, prepend it with an @:
> "... @isnumber(1) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "isnumber(1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@isnumber(1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> isnumber(1.0)
true
When used as an expression in text, prepend it with an @:
> "... @isnumber(1.0) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "isnumber(1.0)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@isnumber(1.0)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> isnumber("1.0")
true
When used as an expression in text, prepend it with an @:
> "... @isnumber("1.0") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "isnumber(\"1.0\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@isnumber(\"1.0\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: false.
> isnumber("a")
false
When used as an expression in text, prepend it with an @:
> "... @isnumber("a") ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "isnumber(\"a\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@isnumber(\"a\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 5:
Return boolean indicating if value in value key is a number if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"string" => %{"__value__" => "1", "display" => "value for display key", "value" => "value for value key"}}
> isnumber(string)
true
When used as an expression in text, prepend it with an @:
> "... @isnumber(string) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "isnumber(string)",
...> %{"string" => %{"__value__" => "1", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@isnumber(string)",
...> %{"string" => %{"__value__" => "1", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 isstring(ctx, binary)

Returns true if the argument is a string.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> isstring("hello")
true
When used as an expression in text, prepend it with an @:
> "... @isstring("hello") ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "isstring(\"hello\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@isstring(\"hello\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> isstring(false)
false
When used as an expression in text, prepend it with an @:
> "... @isstring(false) ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "isstring(false)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@isstring(false)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: false.
> isstring(1)
false
When used as an expression in text, prepend it with an @:
> "... @isstring(1) ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "isstring(1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@isstring(1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 4:
Return boolean indicating if value in value key is a string if complex values are provided.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"string" => %{"__value__" => "hello", "display" => "value for display key", "value" => "value for value key"}}
> isstring(string)
true
When used as an expression in text, prepend it with an @:
> "... @isstring(string) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "isstring(string)",
...> %{"string" => %{"__value__" => "hello", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@isstring(string)",
...> %{"string" => %{"__value__" => "hello", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 json(ctx, data)

Converts a data structure to JSON
Example 1:
When used in the following Stack expression it returns a value of type String: "{\"foo\":\"bar\"}" when used with the following context:
%{"data" => %{"foo" => "bar"}}
> json(data)
"{\"foo\":\"bar\"}"
When used as an expression in text, prepend it with an @:
> "... @json(data) ..."
"{"foo":"bar"}"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "json(data)",
...> %{"data" => %{"foo" => "bar"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "{\"foo\":\"bar\"}" = result
"{\"foo\":\"bar\"}"
iex> Expression.evaluate_as_string!(
...> "@json(data)",
...> %{"data" => %{"foo" => "bar"}},
...> Expression.Callbacks.Standard
...>)
"{\"foo\":\"bar\"}"

Example 2:
Converts data from value key to JSON if complex values are provided.

When used in the following Stack expression it returns a value of type String: "{\"foo\":\"bar\"}" when used with the following context:
%{"data" => %{"__value__" => %{"foo" => "bar"}, "display" => "value for display key", "value" => "value for value key"}}
> json(data)
"{\"foo\":\"bar\"}"
When used as an expression in text, prepend it with an @:
> "... @json(data) ..."
"{"foo":"bar"}"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "json(data)",
...> %{"data" => %{"__value__" => %{"foo" => "bar"}, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "{\"foo\":\"bar\"}" = result
"{\"foo\":\"bar\"}"
iex> Expression.evaluate_as_string!(
...> "@json(data)",
...> %{"data" => %{"__value__" => %{"foo" => "bar"}, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"{\"foo\":\"bar\"}"

 left(ctx, binary, size)

Returns the first characters in a text string. This is Unicode safe.
It will return nil if the given string is nil
Example 1:
When used in the following Stack expression it returns a value of type String: "foob".
> left("foobar", 4)
"foob"
When used as an expression in text, prepend it with an @:
> "... @left("foobar", 4) ..."
"foob"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "left(\"foobar\", 4)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "foob" = result
"foob"
iex> Expression.evaluate_as_string!(
...> "@left(\"foobar\", 4)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"foob"

Example 2:
When used in the following Stack expression it returns a value of type String: "Умерла Мадлен Олбрай".
> left("Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США", 20)
"Умерла Мадлен Олбрай"
When used as an expression in text, prepend it with an @:
> "... @left("Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США", 20) ..."
"Умерла Мадлен Олбрай"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "left(\"Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США\", 20)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "Умерла Мадлен Олбрай" = result
"Умерла Мадлен Олбрай"
iex> Expression.evaluate_as_string!(
...> "@left(\"Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США\", 20)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"Умерла Мадлен Олбрай"

Example 3:
When used in the following Stack expression it returns a value of type Null: null.
> left(nil, 4)
nil
When used as an expression in text, prepend it with an @:
> "... @left(nil, 4) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "left(nil, 4)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
nil
iex> Expression.evaluate_as_string!(
...> "@left(nil, 4)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 4:
Return left from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "foob" when used with the following context:
%{"size" => %{"__value__" => 4, "display" => "value for display key", "value" => "value for value key"}, "value" => %{"__value__" => "foobar", "display" => "value for display key", "value" => "value for value key"}}
> left(value, size)
"foob"
When used as an expression in text, prepend it with an @:
> "... @left(value, size) ..."
"foob"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "left(value, size)",
...> %{"size" => %{"__value__" => 4, "display" => "value for display key", "value" => "value for value key"}, "value" => %{"__value__" => "foobar", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "foob" = result
"foob"
iex> Expression.evaluate_as_string!(
...> "@left(value, size)",
...> %{"size" => %{"__value__" => 4, "display" => "value for display key", "value" => "value for value key"}, "value" => %{"__value__" => "foobar", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"foob"

 len(ctx, binary)

Returns the number of characters in a text string,
returns 0 if the string is null or empty
Example 1:
When used in the following Stack expression it returns a value of type Integer: 3.
> len("foo")
3
When used as an expression in text, prepend it with an @:
> "... @len("foo") ..."
"3"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "len(\"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 3 = result
3
iex> Expression.evaluate_as_string!(
...> "@len(\"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"3"

Example 2:
When used in the following Stack expression it returns a value of type Integer: 3.
> len("zoë")
3
When used as an expression in text, prepend it with an @:
> "... @len("zoë") ..."
"3"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "len(\"zoë\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 3 = result
3
iex> Expression.evaluate_as_string!(
...> "@len(\"zoë\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"3"

Example 3:
When used in the following Stack expression it returns a value of type Integer: 0.
> len(nil)
0
When used as an expression in text, prepend it with an @:
> "... @len(nil) ..."
"0"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "len(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 0 = result
0
iex> Expression.evaluate_as_string!(
...> "@len(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"0"

Example 4:
Return length from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Integer: 3 when used with the following context:
%{"value" => %{"__value__" => "foo", "display" => "value for display key", "value" => "value for value key"}}
> len(value)
3
When used as an expression in text, prepend it with an @:
> "... @len(value) ..."
"3"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "len(value)",
...> %{"value" => %{"__value__" => "foo", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 3 = result
3
iex> Expression.evaluate_as_string!(
...> "@len(value)",
...> %{"value" => %{"__value__" => "foo", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"3"

 lower(ctx, binary)

Converts a text string to lowercase
Example 1:
When used in the following Stack expression it returns a value of type String: "foo bar".
> lower("Foo Bar")
"foo bar"
When used as an expression in text, prepend it with an @:
> "... @lower("Foo Bar") ..."
"foo bar"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "lower(\"Foo Bar\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "foo bar" = result
"foo bar"
iex> Expression.evaluate_as_string!(
...> "@lower(\"Foo Bar\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"foo bar"

Example 2:
When used in the following Stack expression it returns a value of type Null: null.
> lower(nil)
nil
When used as an expression in text, prepend it with an @:
> "... @lower(nil) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "lower(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
nil
iex> Expression.evaluate_as_string!(
...> "@lower(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 3:

 Return lowercased string from value in __value__ key if complex values are provided.
When used in the following Stack expression it returns a value of type String: "foo bar" when used with the following context:
%{"value" => %{"__value__" => "Foo Bar", "display" => "value for display key", "value" => "value for value key"}}
> lower(value)
"foo bar"
When used as an expression in text, prepend it with an @:
> "... @lower(value) ..."
"foo bar"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "lower(value)",
...> %{"value" => %{"__value__" => "Foo Bar", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "foo bar" = result
"foo bar"
iex> Expression.evaluate_as_string!(
...> "@lower(value)",
...> %{"value" => %{"__value__" => "Foo Bar", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"foo bar"

 map(ctx, enumerable, mapper)

map over a list of items and apply the mapper function to every item, returning
the result.
Example 1:
Map over the range of numbers, create a date in January for every number

When used in the following Stack expression it returns a value of type List with values Date, Date, Date:
[
 "2022-01-01",
 "2022-01-02",
 "2022-01-03"
]
.
> map(1..3, &date(2022, 1, &1))
[~D[2022-01-01], ~D[2022-01-02], ~D[2022-01-03]]
When used as an expression in text, prepend it with an @:
> "... @map(1..3, &date(2022, 1, &1)) ..."
"2022-01-012022-01-022022-01-03"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "map(1..3, &date(2022, 1, &1))",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert [~D[2022-01-01], ~D[2022-01-02], ~D[2022-01-03]] = result
[~D[2022-01-01], ~D[2022-01-02], ~D[2022-01-03]]
iex> Expression.evaluate_as_string!(
...> "@map(1..3, &date(2022, 1, &1))",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2022-01-012022-01-022022-01-03"

Example 2:
Map over the range of numbers, multiple each by itself and return the result

When used in the following Stack expression it returns a value of type List with values Integer, Integer, Integer:
[
 1,
 4,
 9
]
.
> map(1..3, &(&1 * &1))
[1, 4, 9]
When used as an expression in text, prepend it with an @:
> "... @map(1..3, &(&1 * &1)) ..."
"149"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "map(1..3, &(&1 * &1))",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert [1, 4, 9] = result
[1, 4, 9]
iex> Expression.evaluate_as_string!(
...> "@map(1..3, &(&1 * &1))",
...> %{},
...> Expression.Callbacks.Standard
...>)
"149"

Example 3:
If an invalid, non-enumerable value is passed, return an error

When used in the following Stack expression it returns a complex Null type of default value:
null
with the following fields:
	type of type String
	error of type Boolean
	message of type String
.

> map(nil, &(&1 * &1))
%{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"}
When used as an expression in text, prepend it with an @:
> "... @map(nil, &(&1 * &1)) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "map(nil, &(&1 * &1))",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"} = result
%{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"}
iex> Expression.evaluate_as_string!(
...> "@map(nil, &(&1 * &1))",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 4:
Map over a list of items from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type List with values Date, Date, Date:
[
 "2022-01-01",
 "2022-01-02",
 "2022-01-03"
]
 when used with the following context:
%{"expression" => %{"__value__" => 1..3, "display" => "value for display key", "value" => "value for value key"}}
> map(expression, &date(2022, 1, &1))
[~D[2022-01-01], ~D[2022-01-02], ~D[2022-01-03]]
When used as an expression in text, prepend it with an @:
> "... @map(expression, &date(2022, 1, &1)) ..."
"2022-01-012022-01-022022-01-03"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "map(expression, &date(2022, 1, &1))",
...> %{"expression" => %{"__value__" => 1..3, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert [~D[2022-01-01], ~D[2022-01-02], ~D[2022-01-03]] = result
[~D[2022-01-01], ~D[2022-01-02], ~D[2022-01-03]]
iex> Expression.evaluate_as_string!(
...> "@map(expression, &date(2022, 1, &1))",
...> %{"expression" => %{"__value__" => 1..3, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"2022-01-012022-01-022022-01-03"

 max_vargs(ctx, arguments)

Returns the maximum value of all arguments
Example 1:
When used in the following Stack expression it returns a value of type Integer: 3.
> max(1, 2, 3)
3
When used as an expression in text, prepend it with an @:
> "... @max(1, 2, 3) ..."
"3"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "max(1, 2, 3)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 3 = result
3
iex> Expression.evaluate_as_string!(
...> "@max(1, 2, 3)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"3"

Example 2:
When used in the following Stack expression it returns a value of type Integer: 4 when used with the following context:
%{"value1" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}, "value2" => %{"__value__" => 4, "display" => "value for display key", "value" => "value for value key"}, "value3" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}}
> max(value1, value2, value3)
4
When used as an expression in text, prepend it with an @:
> "... @max(value1, value2, value3) ..."
"4"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "max(value1, value2, value3)",
...> %{"value1" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}, "value2" => %{"__value__" => 4, "display" => "value for display key", "value" => "value for value key"}, "value3" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 4 = result
4
iex> Expression.evaluate_as_string!(
...> "@max(value1, value2, value3)",
...> %{"value1" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}, "value2" => %{"__value__" => 4, "display" => "value for display key", "value" => "value for value key"}, "value3" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"4"

 mid(ctx, text, start_num, num_chars)

MID extracts part of a string, starting at a specified position and for a specified length.
It correctly handles Unicode characters. For example, taking the first three characters from "héllo" returns "hél".
If the starting position is beyond the string length, it returns an empty string.
Implementation based on https://support.microsoft.com/en-us/office/mid-function-2eba57be-0c05-4bdc-bf81-5ecf4421eb8a
Example 1:
MID returns a specific number of characters from a text string, starting at the position you specify, based on the number of characters you specify.

When used in the following Stack expression it returns a value of type String: "Fluid".
> MID("Fluid", 1, 5)
"Fluid"
When used as an expression in text, prepend it with an @:
> "... @MID("Fluid", 1, 5) ..."
"Fluid"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "MID(\"Fluid\", 1, 5)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "Fluid" = result
"Fluid"
iex> Expression.evaluate_as_string!(
...> "@MID(\"Fluid\", 1, 5)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"Fluid"

Example 2:
When used in the following Stack expression it returns a value of type String: "Flow".
> MID("Fluid Flow", 7, 20)
"Flow"
When used as an expression in text, prepend it with an @:
> "... @MID("Fluid Flow", 7, 20) ..."
"Flow"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "MID(\"Fluid Flow\", 7, 20)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "Flow" = result
"Flow"
iex> Expression.evaluate_as_string!(
...> "@MID(\"Fluid Flow\", 7, 20)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"Flow"

Example 3:
When used in the following Stack expression it returns a value of type String: "".
> MID("Fluid Flow", 20, 5)
""
When used as an expression in text, prepend it with an @:
> "... @MID("Fluid Flow", 20, 5) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "MID(\"Fluid Flow\", 20, 5)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "" = result
""
iex> Expression.evaluate_as_string!(
...> "@MID(\"Fluid Flow\", 20, 5)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 4:
Extract from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "Flow" when used with the following context:
%{"num_chars" => %{"__value__" => 5, "display" => "value for display key", "value" => "value for value key"}, "start_num" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}, "value" => %{"__value__" => "Fluid Flow", "display" => "value for display key", "value" => "value for value key"}}
> mid(value, 7, 20)
"Flow"
When used as an expression in text, prepend it with an @:
> "... @mid(value, 7, 20) ..."
"Flow"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "mid(value, 7, 20)",
...> %{"num_chars" => %{"__value__" => 5, "display" => "value for display key", "value" => "value for value key"}, "start_num" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}, "value" => %{"__value__" => "Fluid Flow", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "Flow" = result
"Flow"
iex> Expression.evaluate_as_string!(
...> "@mid(value, 7, 20)",
...> %{"num_chars" => %{"__value__" => 5, "display" => "value for display key", "value" => "value for value key"}, "start_num" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}, "value" => %{"__value__" => "Fluid Flow", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"Flow"

 min_vargs(ctx, arguments)

Returns the minimum value of all arguments
Example 1:
When used in the following Stack expression it returns a value of type Integer: 1.
> min(1, 2, 3)
1
When used as an expression in text, prepend it with an @:
> "... @min(1, 2, 3) ..."
"1"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "min(1, 2, 3)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 1 = result
1
iex> Expression.evaluate_as_string!(
...> "@min(1, 2, 3)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"1"

Example 2:
When used in the following Stack expression it returns a value of type Integer: 1 when used with the following context:
%{"value1" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}, "value2" => %{"__value__" => 4, "display" => "value for display key", "value" => "value for value key"}, "value3" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}}
> min(value1, value2, value3)
1
When used as an expression in text, prepend it with an @:
> "... @min(value1, value2, value3) ..."
"1"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "min(value1, value2, value3)",
...> %{"value1" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}, "value2" => %{"__value__" => 4, "display" => "value for display key", "value" => "value for value key"}, "value3" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 1 = result
1
iex> Expression.evaluate_as_string!(
...> "@min(value1, value2, value3)",
...> %{"value1" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}, "value2" => %{"__value__" => 4, "display" => "value for display key", "value" => "value for value key"}, "value3" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"1"

 minute(ctx, date)

Returns only the minute of a datetime (0 to 59)
Example 1:
Get the current minute

When used in the following Stack expression it returns a value of type Integer: 6.
> minute(now())
6
When used as an expression in text, prepend it with an @:
> "... @minute(now()) ..."
"6"
..$> import ExUnit.Assertions
..$> result = Expression.evaluate_block!(
...> "minute(now())",
...> %{},
...> Expression.Callbacks.Standard
...>)
..$> assert 6 = result
6
..$> Expression.evaluate_as_string!(
...> "@minute(now())",
...> %{},
...> Expression.Callbacks.Standard
...>)
"6"

Example 2:
Get the minute from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Integer: 23 when used with the following context:
%{"date" => %{"__value__" => ~U[2022-07-31 03:23:00Z], "display" => "value for display key", "value" => "value for value key"}}
> minute(date)
23
When used as an expression in text, prepend it with an @:
> "... @minute(date) ..."
"23"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "minute(date)",
...> %{"date" => %{"__value__" => ~U[2022-07-31 03:23:00Z], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 23 = result
23
iex> Expression.evaluate_as_string!(
...> "@minute(date)",
...> %{"date" => %{"__value__" => ~U[2022-07-31 03:23:00Z], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"23"

 month(ctx, date)

Returns only the month of a date (1 to 12)
Example 1:
Get the current month

When used in the following Stack expression it returns a value of type Integer: 1.
> month(now())
1
When used as an expression in text, prepend it with an @:
> "... @month(now()) ..."
"1"
..$> import ExUnit.Assertions
..$> result = Expression.evaluate_block!(
...> "month(now())",
...> %{},
...> Expression.Callbacks.Standard
...>)
..$> assert 1 = result
1
..$> Expression.evaluate_as_string!(
...> "@month(now())",
...> %{},
...> Expression.Callbacks.Standard
...>)
"1"

Example 2:
Get the month from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Integer: 7 when used with the following context:
%{"date" => %{"__value__" => ~U[2022-07-31 03:23:00Z], "display" => "value for display key", "value" => "value for value key"}}
> month(date)
7
When used as an expression in text, prepend it with an @:
> "... @month(date) ..."
"7"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "month(date)",
...> %{"date" => %{"__value__" => ~U[2022-07-31 03:23:00Z], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 7 = result
7
iex> Expression.evaluate_as_string!(
...> "@month(date)",
...> %{"date" => %{"__value__" => ~U[2022-07-31 03:23:00Z], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"7"

 not_(ctx, argument)

Returns false if the argument supplied evaluates to truth-y
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> not(false)
true
When used as an expression in text, prepend it with an @:
> "... @not(false) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "not(false)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@not(false)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
Return false if value in value key if complex values are provided evaluates to truth-y.

When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"boolean" => %{"__value__" => false, "display" => "value for display key", "value" => "value for value key"}}
> not(boolean)
true
When used as an expression in text, prepend it with an @:
> "... @not(boolean) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "not(boolean)",
...> %{"boolean" => %{"__value__" => false, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@not(boolean)",
...> %{"boolean" => %{"__value__" => false, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"true"

 now(ctx)

Returns the current date time as UTC
It is currently @NOW()
Example 1:
return the current timestamp as a DateTime value

When used in the following Stack expression it returns a value of type DateTime: "2026-01-21T17:06:31.950796Z".
> now()
~U[2026-01-21 17:06:31.950796Z]
When used as an expression in text, prepend it with an @:
> "... @now() ..."
"2026-01-21T17:06:31.950796Z"
..$> import ExUnit.Assertions
..$> result = Expression.evaluate_block!(
...> "now()",
...> %{},
...> Expression.Callbacks.Standard
...>)
..$> assert ~U[2026-01-21 17:06:31.950796Z] = result
~U[2026-01-21 17:06:31.950796Z]
..$> Expression.evaluate_as_string!(
...> "@now()",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2026-01-21T17:06:31.950796Z"

Example 2:
return the current datetime and format it using datevalue

When used in the following Stack expression it returns a complex String type of default value:
"2026-01-21"
with the following fields:
	date of type DateTime
.

> datevalue(now(), "%Y-%m-%d")
%{"__value__" => "2026-01-21", "date" => ~U[2026-01-21 17:06:32.024249Z]}
When used as an expression in text, prepend it with an @:
> "... @datevalue(now(), "%Y-%m-%d") ..."
"2026-01-21"
..$> import ExUnit.Assertions
..$> result = Expression.evaluate_block!(
...> "datevalue(now(), \"%Y-%m-%d\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
..$> assert %{"__value__" => "2026-01-21", "date" => ~U[2026-01-21 17:06:32.024249Z]} = result
%{"__value__" => "2026-01-21", "date" => ~U[2026-01-21 17:06:32.024249Z]}
..$> Expression.evaluate_as_string!(
...> "@datevalue(now(), \"%Y-%m-%d\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2026-01-21"

 or_vargs(ctx, arguments)

Returns true if any argument is true.
Returns the first truthy value found or otherwise false.
Accepts any amount of arguments for testing truthiness.
Example 1:
Return true if any of the values are true

When used in the following Stack expression it returns a value of type Boolean: true.
> true or false
true
When used as an expression in text, prepend it with an @:
> "... @or(true, false) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "or(true, false)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@or(true, false)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 2:
Return the first value that is truthy

When used in the following Stack expression it returns a value of type String: "foo".
> false or "foo"
"foo"
When used as an expression in text, prepend it with an @:
> "... @or(false, "foo") ..."
"foo"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "or(false, \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "foo" = result
"foo"
iex> Expression.evaluate_as_string!(
...> "@or(false, \"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"foo"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> true or true
true
When used as an expression in text, prepend it with an @:
> "... @or(true, true) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "or(true, true)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert true = result
true
iex> Expression.evaluate_as_string!(
...> "@or(true, true)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: false.
> false or false
false
When used as an expression in text, prepend it with an @:
> "... @or(false, false) ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "or(false, false)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@or(false, false)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 5:
When used in the following Stack expression it returns a value of type String: "bee" when used with the following context:
%{"a" => false, "b" => "bee"}
> a or b
"bee"
When used as an expression in text, prepend it with an @:
> "... @or(a, b) ..."
"bee"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "or(a, b)",
...> %{"a" => false, "b" => "bee"},
...> Expression.Callbacks.Standard
...>)
iex> assert "bee" = result
"bee"
iex> Expression.evaluate_as_string!(
...> "@or(a, b)",
...> %{"a" => false, "b" => "bee"},
...> Expression.Callbacks.Standard
...>)
"bee"

Example 6:
When used in the following Stack expression it returns a value of type String: "a" when used with the following context:
%{"a" => "a", "b" => false}
> a or b
"a"
When used as an expression in text, prepend it with an @:
> "... @or(a, b) ..."
"a"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "or(a, b)",
...> %{"a" => "a", "b" => false},
...> Expression.Callbacks.Standard
...>)
iex> assert "a" = result
"a"
iex> Expression.evaluate_as_string!(
...> "@or(a, b)",
...> %{"a" => "a", "b" => false},
...> Expression.Callbacks.Standard
...>)
"a"

Example 7:
When used in the following Stack expression it returns a value of type Boolean: false when used with the following context:
%{}
> b or b
false
When used as an expression in text, prepend it with an @:
> "... @or(b, b) ..."
"false"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "or(b, b)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
false
iex> Expression.evaluate_as_string!(
...> "@or(b, b)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"false"

Example 8:
When used in the following Stack expression it returns a value of type String: "b" when used with the following context:
%{"a" => %{"__value__" => false, "display" => "value for display key", "value" => "value for value key"}, "b" => %{"__value__" => "b", "display" => "value for display key", "value" => "value for value key"}}
> or(a, b)
"b"
When used as an expression in text, prepend it with an @:
> "... @or(a, b) ..."
"b"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "or(a, b)",
...> %{"a" => %{"__value__" => false, "display" => "value for display key", "value" => "value for value key"}, "b" => %{"__value__" => "b", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "b" = result
"b"
iex> Expression.evaluate_as_string!(
...> "@or(a, b)",
...> %{"a" => %{"__value__" => false, "display" => "value for display key", "value" => "value for value key"}, "b" => %{"__value__" => "b", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"b"

 parse_datevalue(ctx, datetime, format)

Parse random dates and times with strftime patterns and return a DateTime value
when it matches.
Example 1:
Parse a date value using strftime formatting and return a DateTime

When used in the following Stack expression it returns a value of type DateTime: "2016-02-29T22:25:00Z".
> parse_datevalue("2016-02-29T22:25:00-00:00", "%FT%T%:z")
~U[2016-02-29 22:25:00Z]
When used as an expression in text, prepend it with an @:
> "... @parse_datevalue("2016-02-29T22:25:00-00:00", "%FT%T%:z") ..."
"2016-02-29T22:25:00Z"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "parse_datevalue(\"2016-02-29T22:25:00-00:00\", \"%FT%T%:z\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ~U[2016-02-29 22:25:00Z] = result
~U[2016-02-29 22:25:00Z]
iex> Expression.evaluate_as_string!(
...> "@parse_datevalue(\"2016-02-29T22:25:00-00:00\", \"%FT%T%:z\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2016-02-29T22:25:00Z"

Example 2:
Attempt to parse a date value and return nil when failing

When used in the following Stack expression it returns a value of type Null: null.
> parse_datevalue("👻👻👻👻", "%FT%T%:z")
nil
When used as an expression in text, prepend it with an @:
> "... @parse_datevalue("👻👻👻👻", "%FT%T%:z") ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "parse_datevalue(\"👻👻👻👻\", \"%FT%T%:z\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
nil
iex> Expression.evaluate_as_string!(
...> "@parse_datevalue(\"👻👻👻👻\", \"%FT%T%:z\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 3:
Parse value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type DateTime: "2016-02-29T22:25:00Z" when used with the following context:
%{"datetime" => %{"__value__" => "2016-02-29T22:25:00-00:00", "display" => "value for display key", "value" => "value for value key"}, "format" => %{"__value__" => "%FT%T%:z", "display" => "value for display key", "value" => "value for value key"}}
> parse_datevalue(datetime, format)
~U[2016-02-29 22:25:00Z]
When used as an expression in text, prepend it with an @:
> "... @parse_datevalue(datetime, format) ..."
"2016-02-29T22:25:00Z"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "parse_datevalue(datetime, format)",
...> %{"datetime" => %{"__value__" => "2016-02-29T22:25:00-00:00", "display" => "value for display key", "value" => "value for value key"}, "format" => %{"__value__" => "%FT%T%:z", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ~U[2016-02-29 22:25:00Z] = result
~U[2016-02-29 22:25:00Z]
iex> Expression.evaluate_as_string!(
...> "@parse_datevalue(datetime, format)",
...> %{"datetime" => %{"__value__" => "2016-02-29T22:25:00-00:00", "display" => "value for display key", "value" => "value for value key"}, "format" => %{"__value__" => "%FT%T%:z", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"2016-02-29T22:25:00Z"

 parse_float(number)

 parse_json(ctx, data)

Parses a string as JSON when given a String which is assumed
to be JSON encoded.
Will return whatever was supplied as is when the given
argument is not a String.
Example 1:
When used in the following Stack expression it returns a value of type List with values Integer, Integer, Integer:
[
 1,
 2,
 3
]
.
> parse_json('[1,2,3]')
[1, 2, 3]
When used as an expression in text, prepend it with an @:
> "... @parse_json('[1,2,3]') ..."
"123"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "parse_json('[1,2,3]')",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert [1, 2, 3] = result
[1, 2, 3]
iex> Expression.evaluate_as_string!(
...> "@parse_json('[1,2,3]')",
...> %{},
...> Expression.Callbacks.Standard
...>)
"123"

Example 2:
When used in the following Stack expression it returns a value of type List with values Integer, Integer, Integer:
[
 1,
 2,
 3
]
.
> parse_json('[1,2,3]')
[1, 2, 3]
When used as an expression in text, prepend it with an @:
> "... @parse_json('[1,2,3]') ..."
"123"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "parse_json('[1,2,3]')",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert [1, 2, 3] = result
[1, 2, 3]
iex> Expression.evaluate_as_string!(
...> "@parse_json('[1,2,3]')",
...> %{},
...> Expression.Callbacks.Standard
...>)
"123"

Example 3:
Parses JSON from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type List with values Integer, Integer, Integer:
[
 1,
 2,
 3
]
 when used with the following context:
%{"string" => %{"__value__" => "[1,2,3]", "display" => "value for display key", "value" => "value for value key"}}
> parse_json(string)
[1, 2, 3]
When used as an expression in text, prepend it with an @:
> "... @parse_json(string) ..."
"123"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "parse_json(string)",
...> %{"string" => %{"__value__" => "[1,2,3]", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert [1, 2, 3] = result
[1, 2, 3]
iex> Expression.evaluate_as_string!(
...> "@parse_json(string)",
...> %{"string" => %{"__value__" => "[1,2,3]", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"123"

 percent(ctx, float)

Formats a number as a percentage
Example 1:
When used in the following Stack expression it returns a value of type String: "20%".
> percent(2/10)
"20%"
When used as an expression in text, prepend it with an @:
> "... @percent(2/10) ..."
"20%"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "percent(2/10)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "20%" = result
"20%"
iex> Expression.evaluate_as_string!(
...> "@percent(2/10)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"20%"

Example 2:
When used in the following Stack expression it returns a value of type String: "20%".
> percent(0.2)
"20%"
When used as an expression in text, prepend it with an @:
> "... @percent(0.2) ..."
"20%"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "percent(0.2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "20%" = result
"20%"
iex> Expression.evaluate_as_string!(
...> "@percent(0.2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"20%"

Example 3:
When used in the following Stack expression it returns a value of type String: "20%" when used with the following context:
%{"d" => "0.2"}
> percent(d)
"20%"
When used as an expression in text, prepend it with an @:
> "... @percent(d) ..."
"20%"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "percent(d)",
...> %{"d" => "0.2"},
...> Expression.Callbacks.Standard
...>)
iex> assert "20%" = result
"20%"
iex> Expression.evaluate_as_string!(
...> "@percent(d)",
...> %{"d" => "0.2"},
...> Expression.Callbacks.Standard
...>)
"20%"

Example 4:
Return percentage from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "20%" when used with the following context:
%{"number" => %{"__value__" => 0.2, "display" => "value for display key", "value" => "value for value key"}}
> percent(number)
"20%"
When used as an expression in text, prepend it with an @:
> "... @percent(number) ..."
"20%"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "percent(number)",
...> %{"number" => %{"__value__" => 0.2, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "20%" = result
"20%"
iex> Expression.evaluate_as_string!(
...> "@percent(number)",
...> %{"number" => %{"__value__" => 0.2, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"20%"

 power(ctx, a, b)

Returns the result of a number raised to a power - equivalent to the ^ operator
Example 1:
When used in the following Stack expression it returns a value of type Float: 8.0.
> power(2, 3)
8.0
When used as an expression in text, prepend it with an @:
> "... @power(2, 3) ..."
"8.0"
..$> import ExUnit.Assertions
..$> result = Expression.evaluate_block!(
...> "power(2, 3)",
...> %{},
...> Expression.Callbacks.Standard
...>)
..$> assert 8.0 = result
8.0
..$> Expression.evaluate_as_string!(
...> "@power(2, 3)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"8.0"

Example 2:
When used in the following Stack expression it returns a value of type Float: 8.0 when used with the following context:
%{"number" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}, "power" => %{"__value__" => 3, "display" => "value for display key", "value" => "value for value key"}}
> power(number, power)
8.0
When used as an expression in text, prepend it with an @:
> "... @power(number, power) ..."
"8.0"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "power(number, power)",
...> %{"number" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}, "power" => %{"__value__" => 3, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 8.0 = result
8.0
iex> Expression.evaluate_as_string!(
...> "@power(number, power)",
...> %{"number" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}, "power" => %{"__value__" => 3, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"8.0"

 proper(ctx, binary)

Capitalizes the first letter of every word in a text string
Example 1:
When used in the following Stack expression it returns a value of type String: "Foo Bar".
> proper("foo bar")
"Foo Bar"
When used as an expression in text, prepend it with an @:
> "... @proper("foo bar") ..."
"Foo Bar"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "proper(\"foo bar\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "Foo Bar" = result
"Foo Bar"
iex> Expression.evaluate_as_string!(
...> "@proper(\"foo bar\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"Foo Bar"

Example 2:
When used in the following Stack expression it returns a value of type Null: null.
> proper(nil)
nil
When used as an expression in text, prepend it with an @:
> "... @proper(nil) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "proper(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
nil
iex> Expression.evaluate_as_string!(
...> "@proper(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 3:
Return first letter of every word capitalized string from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "Foo Bar" when used with the following context:
%{"value" => %{"__value__" => "foo bar", "display" => "value for display key", "value" => "value for value key"}}
> proper(value)
"Foo Bar"
When used as an expression in text, prepend it with an @:
> "... @proper(value) ..."
"Foo Bar"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "proper(value)",
...> %{"value" => %{"__value__" => "foo bar", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "Foo Bar" = result
"Foo Bar"
iex> Expression.evaluate_as_string!(
...> "@proper(value)",
...> %{"value" => %{"__value__" => "foo bar", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"Foo Bar"

 rand_between(ctx, min, max)

Generate a random number between min and max
Example 1:
Generate a number between 1 and 10

When used in the following Stack expression it returns a value of type Integer: 3.
> rand_between(1, 10)
3
When used as an expression in text, prepend it with an @:
> "... @rand_between(1, 10) ..."
"3"
..$> import ExUnit.Assertions
..$> result = Expression.evaluate_block!(
...> "rand_between(1, 10)",
...> %{},
...> Expression.Callbacks.Standard
...>)
..$> assert 3 = result
3
..$> Expression.evaluate_as_string!(
...> "@rand_between(1, 10)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"3"

Example 2:
Generate a number between min and max from value in value keys if complex values are provided.

When used in the following Stack expression it returns a value of type Integer: 3 when used with the following context:
%{"max" => %{"__value__" => 10, "display" => "value for display key", "value" => "value for value key"}, "min" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}}
> rand_between(min, max)
3
When used as an expression in text, prepend it with an @:
> "... @rand_between(min, max) ..."
"3"
..$> import ExUnit.Assertions
..$> result = Expression.evaluate_block!(
...> "rand_between(min, max)",
...> %{"max" => %{"__value__" => 10, "display" => "value for display key", "value" => "value for value key"}, "min" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
..$> assert 3 = result
3
..$> Expression.evaluate_as_string!(
...> "@rand_between(min, max)",
...> %{"max" => %{"__value__" => 10, "display" => "value for display key", "value" => "value for value key"}, "min" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"3"

 read_digits(ctx, binary)

Formats digits in text for reading in TTS
Example 1:
When used in the following Stack expression it returns a value of type String: "plus two seven one".
> read_digits("+271")
"plus two seven one"
When used as an expression in text, prepend it with an @:
> "... @read_digits("+271") ..."
"plus two seven one"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "read_digits(\"+271\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "plus two seven one" = result
"plus two seven one"
iex> Expression.evaluate_as_string!(
...> "@read_digits(\"+271\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"plus two seven one"

Example 2:
When used in the following Stack expression it returns a value of type String: "".
> read_digits(nil)
""
When used as an expression in text, prepend it with an @:
> "... @read_digits(nil) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "read_digits(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "" = result
""
iex> Expression.evaluate_as_string!(
...> "@read_digits(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 3:
Return read digits from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "plus two seven one" when used with the following context:
%{"digits" => %{"__value__" => "+271", "display" => "value for display key", "value" => "value for value key"}}
> read_digits(digits)
"plus two seven one"
When used as an expression in text, prepend it with an @:
> "... @read_digits(digits) ..."
"plus two seven one"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "read_digits(digits)",
...> %{"digits" => %{"__value__" => "+271", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "plus two seven one" = result
"plus two seven one"
iex> Expression.evaluate_as_string!(
...> "@read_digits(digits)",
...> %{"digits" => %{"__value__" => "+271", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"plus two seven one"

 reduce(ctx, enumerable, accumulator, reducer)

Reduces elements from a list by applying a function and collecting the
results in an accumulator.
The first argument to the lambda function is the item from the list,
the second argument is the accumulator.
Example 1:
When used in the following Stack expression it returns a value of type Integer: 6.
> reduce(1..3, 0, & &1 + &2)
6
When used as an expression in text, prepend it with an @:
> "... @reduce(1..3, 0, & &1 + &2) ..."
"6"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "reduce(1..3, 0, & &1 + &2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 6 = result
6
iex> Expression.evaluate_as_string!(
...> "@reduce(1..3, 0, & &1 + &2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"6"

Example 2:
If an invalid, non-enumerable value is passed, return an error

When used in the following Stack expression it returns a complex Null type of default value:
null
with the following fields:
	type of type String
	error of type Boolean
	message of type String
.

> reduce(nil, 0, & &1 + &2)
%{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"}
When used as an expression in text, prepend it with an @:
> "... @reduce(nil, 0, & &1 + &2) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "reduce(nil, 0, & &1 + &2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"} = result
%{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"}
iex> Expression.evaluate_as_string!(
...> "@reduce(nil, 0, & &1 + &2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

 regex_capture(ctx, binary, pattern)

Capture values out of a string using a regex.
Returns the list of captures in a list.
Returns nil if there was nothing to match
Example 1:
When used in the following Stack expression it returns a value of type List with values String:
[
 "ing"
]
.
> regex_capture("testing", "test(.+)")
["ing"]
When used as an expression in text, prepend it with an @:
> "... @regex_capture("testing", "test(.+)") ..."
"ing"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "regex_capture(\"testing\", \"test(.+)\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ["ing"] = result
["ing"]
iex> Expression.evaluate_as_string!(
...> "@regex_capture(\"testing\", \"test(.+)\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"ing"

Example 2:
When used in the following Stack expression it returns a value of type Null: null.
> regex_capture("testing", "foo(.+)")
nil
When used as an expression in text, prepend it with an @:
> "... @regex_capture("testing", "foo(.+)") ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "regex_capture(\"testing\", \"foo(.+)\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
nil
iex> Expression.evaluate_as_string!(
...> "@regex_capture(\"testing\", \"foo(.+)\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 3:
Return captures from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type List with values String:
[
 "ing"
]
 when used with the following context:
%{"pattern" => %{"__value__" => "test(.+)", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "testing", "display" => "value for display key", "value" => "value for value key"}}
> regex_capture(string, pattern)
["ing"]
When used as an expression in text, prepend it with an @:
> "... @regex_capture(string, pattern) ..."
"ing"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "regex_capture(string, pattern)",
...> %{"pattern" => %{"__value__" => "test(.+)", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "testing", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ["ing"] = result
["ing"]
iex> Expression.evaluate_as_string!(
...> "@regex_capture(string, pattern)",
...> %{"pattern" => %{"__value__" => "test(.+)", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "testing", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"ing"

 regex_named_capture(ctx, binary, pattern)

Captures named values out of a string using a regex.
In contrast to regex_capture() this returns a map
where the keys are the names of the captures and the
values are the captured values.
Example 1:
When used in the following Stack expression it returns a value of type Map:
{
 "match": "ing"
}
.
> regex_named_capture("testing", "test(?P<match>.+)")
%{"match" => "ing"}
When used as an expression in text, prepend it with an @:
> "... @regex_named_capture("testing", "test(?P<match>.+)") ..."
"%{"match" => "ing"}"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "regex_named_capture(\"testing\", \"test(?P<match>.+)\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"match" => "ing"} = result
%{"match" => "ing"}
iex> Expression.evaluate_as_string!(
...> "@regex_named_capture(\"testing\", \"test(?P<match>.+)\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"%{\"match\" => \"ing\"}"

Example 2:
When used in the following Stack expression it returns a value of type Map: {}.
> regex_named_capture("testing", "foo(?P<match>.+)")
%{}
When used as an expression in text, prepend it with an @:
> "... @regex_named_capture("testing", "foo(?P<match>.+)") ..."
"%{}"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "regex_named_capture(\"testing\", \"foo(?P<match>.+)\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{} = result
%{}
iex> Expression.evaluate_as_string!(
...> "@regex_named_capture(\"testing\", \"foo(?P<match>.+)\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"%{}"

Example 3:
Return captures from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Map:
{
 "match": "ing"
}
 when used with the following context:
%{"pattern" => %{"__value__" => "test(?P<match>.+)", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "testing", "display" => "value for display key", "value" => "value for value key"}}
> regex_named_capture(string, pattern)
%{"match" => "ing"}
When used as an expression in text, prepend it with an @:
> "... @regex_named_capture(string, pattern) ..."
"%{"match" => "ing"}"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "regex_named_capture(string, pattern)",
...> %{"pattern" => %{"__value__" => "test(?P<match>.+)", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "testing", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"match" => "ing"} = result
%{"match" => "ing"}
iex> Expression.evaluate_as_string!(
...> "@regex_named_capture(string, pattern)",
...> %{"pattern" => %{"__value__" => "test(?P<match>.+)", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "testing", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"%{\"match\" => \"ing\"}"

 reject(ctx, enumerable, reject_fun)

Rejects elements from a list by returning a new list that contains only the
elements for which reject_fun is truthy.
Example 1:
When used in the following Stack expression it returns a value of type List with values String, String:
[
 "A",
 "C"
]
.
> reject(["A", "B", "C", "B"], & &1 == "B")
["A", "C"]
When used as an expression in text, prepend it with an @:
> "... @reject(["A", "B", "C", "B"], & &1 == "B") ..."
"AC"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "reject([\"A\", \"B\", \"C\", \"B\"], & &1 == \"B\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ["A", "C"] = result
["A", "C"]
iex> Expression.evaluate_as_string!(
...> "@reject([\"A\", \"B\", \"C\", \"B\"], & &1 == \"B\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"AC"

Example 2:
If an invalid, non-enumerable value is passed, return an error

When used in the following Stack expression it returns a complex Null type of default value:
null
with the following fields:
	type of type String
	error of type Boolean
	message of type String
.

> reject(nil, & &1 == "B")
%{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"}
When used as an expression in text, prepend it with an @:
> "... @reject(nil, & &1 == "B") ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "reject(nil, & &1 == \"B\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"} = result
%{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"}
iex> Expression.evaluate_as_string!(
...> "@reject(nil, & &1 == \"B\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 3:
Return list with rejected items from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type List with values String, String:
[
 "A",
 "C"
]
 when used with the following context:
%{"list" => %{"__value__" => ["A", "B", "C", "B"], "display" => "value for display key", "value" => "value for value key"}}
> reject(list, & &1 == "B")
["A", "C"]
When used as an expression in text, prepend it with an @:
> "... @reject(list, & &1 == "B") ..."
"AC"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "reject(list, & &1 == \"B\")",
...> %{"list" => %{"__value__" => ["A", "B", "C", "B"], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ["A", "C"] = result
["A", "C"]
iex> Expression.evaluate_as_string!(
...> "@reject(list, & &1 == \"B\")",
...> %{"list" => %{"__value__" => ["A", "B", "C", "B"], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"AC"

 rem(ctx, integer1, integer2)

Return the division remainder of two integers.
Example 1:
When used in the following Stack expression it returns a value of type Integer: 0.
> rem(4, 2)
0
When used as an expression in text, prepend it with an @:
> "... @rem(4, 2) ..."
"0"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "rem(4, 2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 0 = result
0
iex> Expression.evaluate_as_string!(
...> "@rem(4, 2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"0"

Example 2:
When used in the following Stack expression it returns a value of type Integer: 1.
> rem(85, 3)
1
When used as an expression in text, prepend it with an @:
> "... @rem(85, 3) ..."
"1"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "rem(85, 3)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 1 = result
1
iex> Expression.evaluate_as_string!(
...> "@rem(85, 3)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"1"

Example 3:
Return the division remainder of two integers from value in value keys if complex values are provided.

When used in the following Stack expression it returns a value of type Integer: 0 when used with the following context:
%{"int1" => %{"__value__" => 4, "display" => "value for display key", "value" => "value for value key"}, "int2" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}}
> rem(int1, int2)
0
When used as an expression in text, prepend it with an @:
> "... @rem(int1, int2) ..."
"0"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "rem(int1, int2)",
...> %{"int1" => %{"__value__" => 4, "display" => "value for display key", "value" => "value for value key"}, "int2" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 0 = result
0
iex> Expression.evaluate_as_string!(
...> "@rem(int1, int2)",
...> %{"int1" => %{"__value__" => 4, "display" => "value for display key", "value" => "value for value key"}, "int2" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"0"

 remove_first_word(ctx, binary)

Removes the first word from the given text. The remaining text will be unchanged
Example 1:
When used in the following Stack expression it returns a value of type String: "bar".
> remove_first_word("foo bar")
"bar"
When used as an expression in text, prepend it with an @:
> "... @remove_first_word("foo bar") ..."
"bar"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "remove_first_word(\"foo bar\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "bar" = result
"bar"
iex> Expression.evaluate_as_string!(
...> "@remove_first_word(\"foo bar\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"bar"

Example 2:
When used in the following Stack expression it returns a value of type String: "bar".
> remove_first_word("foo-bar", "-")
"bar"
When used as an expression in text, prepend it with an @:
> "... @remove_first_word("foo-bar", "-") ..."
"bar"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "remove_first_word(\"foo-bar\", \"-\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "bar" = result
"bar"
iex> Expression.evaluate_as_string!(
...> "@remove_first_word(\"foo-bar\", \"-\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"bar"

Example 3:
When used in the following Stack expression it returns a value of type String: "".
> remove_first_word(nil)
""
When used as an expression in text, prepend it with an @:
> "... @remove_first_word(nil) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "remove_first_word(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "" = result
""
iex> Expression.evaluate_as_string!(
...> "@remove_first_word(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 4:
When used in the following Stack expression it returns a value of type String: "".
> remove_first_word(nil, "-")
""
When used as an expression in text, prepend it with an @:
> "... @remove_first_word(nil, "-") ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "remove_first_word(nil, \"-\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "" = result
""
iex> Expression.evaluate_as_string!(
...> "@remove_first_word(nil, \"-\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 5:
Return string with first word removed from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "bar" when used with the following context:
%{"seperator" => %{"__value__" => "-", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "foo-bar", "display" => "value for display key", "value" => "value for value key"}}
> remove_first_word(string, seperator)
"bar"
When used as an expression in text, prepend it with an @:
> "... @remove_first_word(string, seperator) ..."
"bar"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "remove_first_word(string, seperator)",
...> %{"seperator" => %{"__value__" => "-", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "foo-bar", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "bar" = result
"bar"
iex> Expression.evaluate_as_string!(
...> "@remove_first_word(string, seperator)",
...> %{"seperator" => %{"__value__" => "-", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "foo-bar", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"bar"

 remove_first_word(ctx, binary, separator)

 remove_last_word(ctx, binary)

Example 1:
Remove the last word from a list of words, using the specified separator

When used in the following Stack expression it returns a value of type String: "foo".
> remove_last_word("foo-bar", "-")
"foo"
When used as an expression in text, prepend it with an @:
> "... @remove_last_word("foo-bar", "-") ..."
"foo"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "remove_last_word(\"foo-bar\", \"-\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "foo" = result
"foo"
iex> Expression.evaluate_as_string!(
...> "@remove_last_word(\"foo-bar\", \"-\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"foo"

Example 2:
Remove the last word from a list of words, using spaces as separator between words

When used in the following Stack expression it returns a value of type String: "foo".
> remove_last_word("foo bar")
"foo"
When used as an expression in text, prepend it with an @:
> "... @remove_last_word("foo bar") ..."
"foo"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "remove_last_word(\"foo bar\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "foo" = result
"foo"
iex> Expression.evaluate_as_string!(
...> "@remove_last_word(\"foo bar\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"foo"

Example 3:
Return string with last word removed from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "foo" when used with the following context:
%{"seperator" => %{"__value__" => "-", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "foo-bar", "display" => "value for display key", "value" => "value for value key"}}
> remove_last_word(string, seperator)
"foo"
When used as an expression in text, prepend it with an @:
> "... @remove_last_word(string, seperator) ..."
"foo"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "remove_last_word(string, seperator)",
...> %{"seperator" => %{"__value__" => "-", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "foo-bar", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "foo" = result
"foo"
iex> Expression.evaluate_as_string!(
...> "@remove_last_word(string, seperator)",
...> %{"seperator" => %{"__value__" => "-", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "foo-bar", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"foo"

 remove_last_word(ctx, binary, separator)

 rept(ctx, value, amount)

Repeats text a given number of times
Example 1:
When used in the following Stack expression it returns a value of type String: "**********".
> rept("*", 10)
"**********"
When used as an expression in text, prepend it with an @:
> "... @rept("*", 10) ..."
"**********"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "rept(\"*\", 10)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "**********" = result
"**********"
iex> Expression.evaluate_as_string!(
...> "@rept(\"*\", 10)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"**********"

Example 2:
When used in the following Stack expression it returns a value of type Null: null.
> rept(nil, 10)
nil
When used as an expression in text, prepend it with an @:
> "... @rept(nil, 10) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "rept(nil, 10)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
nil
iex> Expression.evaluate_as_string!(
...> "@rept(nil, 10)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 3:
Return repeated string from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "**********" when used with the following context:
%{"amount" => %{"__value__" => 10, "display" => "value for display key", "value" => "value for value key"}, "value" => %{"__value__" => "*", "display" => "value for display key", "value" => "value for value key"}}
> rept(value, amount)
"**********"
When used as an expression in text, prepend it with an @:
> "... @rept(value, amount) ..."
"**********"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "rept(value, amount)",
...> %{"amount" => %{"__value__" => 10, "display" => "value for display key", "value" => "value for value key"}, "value" => %{"__value__" => "*", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "**********" = result
"**********"
iex> Expression.evaluate_as_string!(
...> "@rept(value, amount)",
...> %{"amount" => %{"__value__" => 10, "display" => "value for display key", "value" => "value for value key"}, "value" => %{"__value__" => "*", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"**********"

 right(ctx, binary, size)

Returns the last characters in a text string.
This is Unicode safe.
Example 1:
When used in the following Stack expression it returns a value of type String: "ing".
> right("testing", 3)
"ing"
When used as an expression in text, prepend it with an @:
> "... @right("testing", 3) ..."
"ing"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "right(\"testing\", 3)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "ing" = result
"ing"
iex> Expression.evaluate_as_string!(
...> "@right(\"testing\", 3)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"ing"

Example 2:
When used in the following Stack expression it returns a value of type String: "ту главы Госдепа США".
> right("Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США", 20)
"ту главы Госдепа США"
When used as an expression in text, prepend it with an @:
> "... @right("Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США", 20) ..."
"ту главы Госдепа США"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "right(\"Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США\", 20)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "ту главы Госдепа США" = result
"ту главы Госдепа США"
iex> Expression.evaluate_as_string!(
...> "@right(\"Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США\", 20)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"ту главы Госдепа США"

Example 3:
When used in the following Stack expression it returns a value of type Null: null.
> right(nil, 3)
nil
When used as an expression in text, prepend it with an @:
> "... @right(nil, 3) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "right(nil, 3)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
nil
iex> Expression.evaluate_as_string!(
...> "@right(nil, 3)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 4:
Return right from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "ing" when used with the following context:
%{"size" => %{"__value__" => 3, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "testing", "display" => "value for display key", "value" => "value for value key"}}
> right(string, size)
"ing"
When used as an expression in text, prepend it with an @:
> "... @right(string, size) ..."
"ing"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "right(string, size)",
...> %{"size" => %{"__value__" => 3, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "testing", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "ing" = result
"ing"
iex> Expression.evaluate_as_string!(
...> "@right(string, size)",
...> %{"size" => %{"__value__" => 3, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "testing", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"ing"

 round(ctx, value)

Example 1:
The ROUND function rounds a number to a specified number of digits. For example, if cell A1 contains 23.7825, and you want to round that value to two decimal places you can do ROUND(23.7825, 2)

When used in the following Stack expression it returns a value of type String: "23.78".
> ROUND(23.7825, 2)
"23.78"
When used as an expression in text, prepend it with an @:
> "... @ROUND(23.7825, 2) ..."
"23.78"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "ROUND(23.7825, 2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "23.78" = result
"23.78"
iex> Expression.evaluate_as_string!(
...> "@ROUND(23.7825, 2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"23.78"

Example 2:
The ROUND function rounds a number to a specified number of digits. For example, if cell A1 contains 23.7825, and you want to round that value to zero decimal places you can do ROUND(23.7825)

When used in the following Stack expression it returns a value of type String: "24".
> ROUND(23.7825)
"24"
When used as an expression in text, prepend it with an @:
> "... @ROUND(23.7825) ..."
"24"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "ROUND(23.7825)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "24" = result
"24"
iex> Expression.evaluate_as_string!(
...> "@ROUND(23.7825)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"24"

Example 3:
Rounds from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "23.78" when used with the following context:
%{"digits" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}, "value" => %{"__value__" => 23.7825, "display" => "value for display key", "value" => "value for value key"}}
> round(value, digits)
"23.78"
When used as an expression in text, prepend it with an @:
> "... @round(value, digits) ..."
"23.78"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "round(value, digits)",
...> %{"digits" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}, "value" => %{"__value__" => 23.7825, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "23.78" = result
"23.78"
iex> Expression.evaluate_as_string!(
...> "@round(value, digits)",
...> %{"digits" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}, "value" => %{"__value__" => 23.7825, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"23.78"

 round(ctx, value, places)

 second(ctx, date)

Returns only the second of a datetime (0 to 59)
Example 1:
When used in the following Stack expression it returns a value of type Integer: 32 when used with the following context:
%{"now" => ~U[2026-01-21 17:06:32.024724Z]}
> second(now)
32
When used as an expression in text, prepend it with an @:
> "... @second(now) ..."
"32"
..$> import ExUnit.Assertions
..$> result = Expression.evaluate_block!(
...> "second(now)",
...> %{"now" => ~U[2026-01-21 17:06:32.024724Z]},
...> Expression.Callbacks.Standard
...>)
..$> assert 32 = result
32
..$> Expression.evaluate_as_string!(
...> "@second(now)",
...> %{"now" => ~U[2026-01-21 17:06:32.024724Z]},
...> Expression.Callbacks.Standard
...>)
"32"

Example 2:
Get the second from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Integer: 15 when used with the following context:
%{"date" => %{"__value__" => ~U[2022-07-31 03:23:15Z], "display" => "value for display key", "value" => "value for value key"}}
> second(date)
15
When used as an expression in text, prepend it with an @:
> "... @second(date) ..."
"15"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "second(date)",
...> %{"date" => %{"__value__" => ~U[2022-07-31 03:23:15Z], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 15 = result
15
iex> Expression.evaluate_as_string!(
...> "@second(date)",
...> %{"date" => %{"__value__" => ~U[2022-07-31 03:23:15Z], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"15"

 sort_by(ctx, enumerable, sorter_fun)

Sorts a list of values using the result of the sorter function
Example 1:
When used in the following Stack expression it returns a value of type List with values String, String, String:
[
 "b",
 "c",
 "a"
]
.
> sort_by(["a", "b", "c"], &rand_between(1, 5))
["b", "c", "a"]
When used as an expression in text, prepend it with an @:
> "... @sort_by(["a", "b", "c"], &rand_between(1, 5)) ..."
"bca"
..$> import ExUnit.Assertions
..$> result = Expression.evaluate_block!(
...> "sort_by([\"a\", \"b\", \"c\"], &rand_between(1, 5))",
...> %{},
...> Expression.Callbacks.Standard
...>)
..$> assert ["b", "c", "a"] = result
["b", "c", "a"]
..$> Expression.evaluate_as_string!(
...> "@sort_by([\"a\", \"b\", \"c\"], &rand_between(1, 5))",
...> %{},
...> Expression.Callbacks.Standard
...>)
"bca"

Example 2:
If an invalid, non-enumerable value is passed, return an error

When used in the following Stack expression it returns a complex Null type of default value:
null
with the following fields:
	type of type String
	error of type Boolean
	message of type String
.

> sort_by(nil, &rand_between(1, 5))
%{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"}
When used as an expression in text, prepend it with an @:
> "... @sort_by(nil, &rand_between(1, 5)) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "sort_by(nil, &rand_between(1, 5))",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert %{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"} = result
%{"__type__" => "expression/v1error", "__value__" => nil, "error" => true, "message" => "Invalid enumerable"}
iex> Expression.evaluate_as_string!(
...> "@sort_by(nil, &rand_between(1, 5))",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 3:
Return list with unique items from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type List with values String, String, String:
[
 "a",
 "c",
 "b"
]
 when used with the following context:
%{"list" => %{"__value__" => ["a", "c", "b"], "display" => "value for display key", "value" => "value for value key"}}
> sort_by(list, & &1 < &2)
["a", "c", "b"]
When used as an expression in text, prepend it with an @:
> "... @sort_by(list, & &1 < &2) ..."
"acb"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "sort_by(list, & &1 < &2)",
...> %{"list" => %{"__value__" => ["a", "c", "b"], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ["a", "c", "b"] = result
["a", "c", "b"]
iex> Expression.evaluate_as_string!(
...> "@sort_by(list, & &1 < &2)",
...> %{"list" => %{"__value__" => ["a", "c", "b"], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"acb"

 split(ctx, binary)

Split a string into an array using the pattern as separator.
Defaults to split the string using a space.
Example 1:
When used in the following Stack expression it returns a value of type List with values String, String:
[
 "testing",
 "something"
]
.
> split("testing something")
["testing", "something"]
When used as an expression in text, prepend it with an @:
> "... @split("testing something") ..."
"testingsomething"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "split(\"testing something\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ["testing", "something"] = result
["testing", "something"]
iex> Expression.evaluate_as_string!(
...> "@split(\"testing something\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"testingsomething"

Example 2:
When used in the following Stack expression it returns a value of type List with values String, String, String:
[
 "t",
 "sting som",
 "thing"
]
.
> split("testing something", "e")
["t", "sting som", "thing"]
When used as an expression in text, prepend it with an @:
> "... @split("testing something", "e") ..."
"tsting somthing"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "split(\"testing something\", \"e\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ["t", "sting som", "thing"] = result
["t", "sting som", "thing"]
iex> Expression.evaluate_as_string!(
...> "@split(\"testing something\", \"e\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"tsting somthing"

Example 3:
Split from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type List with values String, String:
[
 "testing",
 "something"
]
 when used with the following context:
%{"string" => %{"__value__" => "testing something", "display" => "value for display key", "value" => "value for value key"}}
> split(string)
["testing", "something"]
When used as an expression in text, prepend it with an @:
> "... @split(string) ..."
"testingsomething"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "split(string)",
...> %{"string" => %{"__value__" => "testing something", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ["testing", "something"] = result
["testing", "something"]
iex> Expression.evaluate_as_string!(
...> "@split(string)",
...> %{"string" => %{"__value__" => "testing something", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"testingsomething"

Example 4:
Split from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type List with values String, String, String:
[
 "t",
 "sting som",
 "thing"
]
 when used with the following context:
%{"pattern" => %{"__value__" => "e", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "testing something", "display" => "value for display key", "value" => "value for value key"}}
> split(string, pattern)
["t", "sting som", "thing"]
When used as an expression in text, prepend it with an @:
> "... @split(string, pattern) ..."
"tsting somthing"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "split(string, pattern)",
...> %{"pattern" => %{"__value__" => "e", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "testing something", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ["t", "sting som", "thing"] = result
["t", "sting som", "thing"]
iex> Expression.evaluate_as_string!(
...> "@split(string, pattern)",
...> %{"pattern" => %{"__value__" => "e", "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "testing something", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"tsting somthing"

 split(ctx, binary, pattern)

 substitute(ctx, subject, pattern, replacement)

Substitutes new_text for old_text in a text string. If instance_num is given, then only that instance will be substituted
Example 1:
When used in the following Stack expression it returns a value of type String: "I can do".
> substitute("I can't", "can't", "can do")
"I can do"
When used as an expression in text, prepend it with an @:
> "... @substitute("I can't", "can't", "can do") ..."
"I can do"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "substitute(\"I can't\", \"can't\", \"can do\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "I can do" = result
"I can do"
iex> Expression.evaluate_as_string!(
...> "@substitute(\"I can't\", \"can't\", \"can do\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"I can do"

Example 2:
When used in the following Stack expression it returns a value of type Null: null.
> substitute(nil, "can't", "can do")
nil
When used as an expression in text, prepend it with an @:
> "... @substitute(nil, "can't", "can do") ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "substitute(nil, \"can't\", \"can do\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
nil
iex> Expression.evaluate_as_string!(
...> "@substitute(nil, \"can't\", \"can do\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 3:
Return substituted string from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "I can do" when used with the following context:
%{"pattern" => %{"__value__" => "can't", "display" => "value for display key", "value" => "value for value key"}, "replacement" => %{"__value__" => "can do", "display" => "value for display key", "value" => "value for value key"}, "subject" => %{"__value__" => "I can't", "display" => "value for display key", "value" => "value for value key"}}
> substitute(subject, pattern, replacement)
"I can do"
When used as an expression in text, prepend it with an @:
> "... @substitute(subject, pattern, replacement) ..."
"I can do"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "substitute(subject, pattern, replacement)",
...> %{"pattern" => %{"__value__" => "can't", "display" => "value for display key", "value" => "value for value key"}, "replacement" => %{"__value__" => "can do", "display" => "value for display key", "value" => "value for value key"}, "subject" => %{"__value__" => "I can't", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "I can do" = result
"I can do"
iex> Expression.evaluate_as_string!(
...> "@substitute(subject, pattern, replacement)",
...> %{"pattern" => %{"__value__" => "can't", "display" => "value for display key", "value" => "value for value key"}, "replacement" => %{"__value__" => "can do", "display" => "value for display key", "value" => "value for value key"}, "subject" => %{"__value__" => "I can't", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"I can do"

 sum_vargs(ctx, arguments)

Returns the sum of all arguments, equivalent to the + operator
You have @SUM(contact.reports, contact.forms) reports and forms
Example 1:
When used in the following Stack expression it returns a value of type Integer: 6.
> sum(1, 2, 3)
6
When used as an expression in text, prepend it with an @:
> "... @sum(1, 2, 3) ..."
"6"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "sum(1, 2, 3)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 6 = result
6
iex> Expression.evaluate_as_string!(
...> "@sum(1, 2, 3)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"6"

Example 2:
Sum from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Integer: 6 when used with the following context:
%{"val1" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}, "val2" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}, "val3" => %{"__value__" => 3, "display" => "value for display key", "value" => "value for value key"}}
> sum(val1, val2, val3)
6
When used as an expression in text, prepend it with an @:
> "... @sum(val1, val2, val3) ..."
"6"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "sum(val1, val2, val3)",
...> %{"val1" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}, "val2" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}, "val3" => %{"__value__" => 3, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 6 = result
6
iex> Expression.evaluate_as_string!(
...> "@sum(val1, val2, val3)",
...> %{"val1" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}, "val2" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}, "val3" => %{"__value__" => 3, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"6"

 switch_vargs(ctx, arguments)

Example 1:
The SWITCH function evaluates one value (called the expression) against a list of values, and returns the result corresponding to the first matching value. If there is no match, an optional default value (the last one in the list if the list is odd) may be returned

When used in the following Stack expression it returns a value of type String: "Sunday".
> SWITCH(1, 1, "Sunday", 2, "Monday", 3, "Tuesday", "No match")
"Sunday"
When used as an expression in text, prepend it with an @:
> "... @SWITCH(1, 1, "Sunday", 2, "Monday", 3, "Tuesday", "No match") ..."
"Sunday"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "SWITCH(1, 1, \"Sunday\", 2, \"Monday\", 3, \"Tuesday\", \"No match\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "Sunday" = result
"Sunday"
iex> Expression.evaluate_as_string!(
...> "@SWITCH(1, 1, \"Sunday\", 2, \"Monday\", 3, \"Tuesday\", \"No match\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"Sunday"

Example 2:
The SWITCH function evaluates one value (called the expression) against a list of values, and returns the result corresponding to the first matching value. If there is no match, an optional default value (the last one in the list if the list is odd) may be returned

When used in the following Stack expression it returns a value of type String: "No match".
> SWITCH(5, 1, "Sunday", 2, "Monday", 3, "Tuesday", "No match")
"No match"
When used as an expression in text, prepend it with an @:
> "... @SWITCH(5, 1, "Sunday", 2, "Monday", 3, "Tuesday", "No match") ..."
"No match"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "SWITCH(5, 1, \"Sunday\", 2, \"Monday\", 3, \"Tuesday\", \"No match\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "No match" = result
"No match"
iex> Expression.evaluate_as_string!(
...> "@SWITCH(5, 1, \"Sunday\", 2, \"Monday\", 3, \"Tuesday\", \"No match\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"No match"

 time(ctx, hours, minutes, seconds)

Defines a time value which can be used for time arithmetic
Example 1:
When used in the following Stack expression it returns a value of type Time: "12:13:14".
> time(12, 13, 14)
~T[12:13:14]
When used as an expression in text, prepend it with an @:
> "... @time(12, 13, 14) ..."
"~T[12:13:14]"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "time(12, 13, 14)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ~T[12:13:14] = result
~T[12:13:14]
iex> Expression.evaluate_as_string!(
...> "@time(12, 13, 14)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"~T[12:13:14]"

Example 2:
Create a time from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Time: "12:13:14" when used with the following context:
%{"hour" => %{"__value__" => 12, "display" => "value for display key", "value" => "value for value key"}, "minute" => %{"__value__" => 13, "display" => "value for display key", "value" => "value for value key"}, "second" => %{"__value__" => 14, "display" => "value for display key", "value" => "value for value key"}}
> time(hour, minute, second)
~T[12:13:14]
When used as an expression in text, prepend it with an @:
> "... @time(hour, minute, second) ..."
"~T[12:13:14]"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "time(hour, minute, second)",
...> %{"hour" => %{"__value__" => 12, "display" => "value for display key", "value" => "value for value key"}, "minute" => %{"__value__" => 13, "display" => "value for display key", "value" => "value for value key"}, "second" => %{"__value__" => 14, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ~T[12:13:14] = result
~T[12:13:14]
iex> Expression.evaluate_as_string!(
...> "@time(hour, minute, second)",
...> %{"hour" => %{"__value__" => 12, "display" => "value for display key", "value" => "value for value key"}, "minute" => %{"__value__" => 13, "display" => "value for display key", "value" => "value for value key"}, "second" => %{"__value__" => 14, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"~T[12:13:14]"

 timevalue(ctx, expression)

Converts time stored in text to an actual time
Example 1:
When used in the following Stack expression it returns a value of type Time: "02:30:00".
> timevalue("2:30")
~T[02:30:00]
When used as an expression in text, prepend it with an @:
> "... @timevalue("2:30") ..."
"~T[02:30:00]"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "timevalue(\"2:30\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ~T[02:30:00] = result
~T[02:30:00]
iex> Expression.evaluate_as_string!(
...> "@timevalue(\"2:30\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"~T[02:30:00]"

Example 2:
When used in the following Stack expression it returns a value of type Time: "02:30:55".
> timevalue("2:30:55")
~T[02:30:55]
When used as an expression in text, prepend it with an @:
> "... @timevalue("2:30:55") ..."
"~T[02:30:55]"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "timevalue(\"2:30:55\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ~T[02:30:55] = result
~T[02:30:55]
iex> Expression.evaluate_as_string!(
...> "@timevalue(\"2:30:55\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"~T[02:30:55]"

Example 3:
Create a time from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Time: "02:30:00" when used with the following context:
%{"time" => %{"__value__" => "2:30", "display" => "value for display key", "value" => "value for value key"}}
> timevalue(time)
~T[02:30:00]
When used as an expression in text, prepend it with an @:
> "... @timevalue(time) ..."
"~T[02:30:00]"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "timevalue(time)",
...> %{"time" => %{"__value__" => "2:30", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ~T[02:30:00] = result
~T[02:30:00]
iex> Expression.evaluate_as_string!(
...> "@timevalue(time)",
...> %{"time" => %{"__value__" => "2:30", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"~T[02:30:00]"

 today(ctx)

Returns the current date
Example 1:
When used in the following Stack expression it returns a value of type Date: "2026-01-21".
> today()
~D[2026-01-21]
When used as an expression in text, prepend it with an @:
> "... @today() ..."
"2026-01-21"
..$> import ExUnit.Assertions
..$> result = Expression.evaluate_block!(
...> "today()",
...> %{},
...> Expression.Callbacks.Standard
...>)
..$> assert ~D[2026-01-21] = result
~D[2026-01-21]
..$> Expression.evaluate_as_string!(
...> "@today()",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2026-01-21"

 unichar(ctx, code)

Returns the unicode character specified by a number
Example 1:
When used in the following Stack expression it returns a value of type String: "A".
> unichar(65)
"A"
When used as an expression in text, prepend it with an @:
> "... @unichar(65) ..."
"A"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "unichar(65)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "A" = result
"A"
iex> Expression.evaluate_as_string!(
...> "@unichar(65)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"A"

Example 2:
When used in the following Stack expression it returns a value of type String: "é".
> unichar(233)
"é"
When used as an expression in text, prepend it with an @:
> "... @unichar(233) ..."
"é"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "unichar(233)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "é" = result
"é"
iex> Expression.evaluate_as_string!(
...> "@unichar(233)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"é"

Example 3:
Return unicode character from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "é" when used with the following context:
%{"code" => %{"__value__" => "233", "display" => "value for display key", "value" => "value for value key"}}
> unichar(code)
"é"
When used as an expression in text, prepend it with an @:
> "... @unichar(code) ..."
"é"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "unichar(code)",
...> %{"code" => %{"__value__" => "233", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "é" = result
"é"
iex> Expression.evaluate_as_string!(
...> "@unichar(code)",
...> %{"code" => %{"__value__" => "233", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"é"

 unicode(ctx, letter)

Returns a numeric code for the first character in a text string
Example 1:
When used in the following Stack expression it returns a value of type Integer: 65.
> unicode("A")
65
When used as an expression in text, prepend it with an @:
> "... @unicode("A") ..."
"65"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "unicode(\"A\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 65 = result
65
iex> Expression.evaluate_as_string!(
...> "@unicode(\"A\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"65"

Example 2:
When used in the following Stack expression it returns a value of type Integer: 233.
> unicode("é")
233
When used as an expression in text, prepend it with an @:
> "... @unicode("é") ..."
"233"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "unicode(\"é\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 233 = result
233
iex> Expression.evaluate_as_string!(
...> "@unicode(\"é\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"233"

Example 3:
Return unicode code from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Integer: 233 when used with the following context:
%{"char" => %{"__value__" => "é", "display" => "value for display key", "value" => "value for value key"}}
> unicode(char)
233
When used as an expression in text, prepend it with an @:
> "... @unicode(char) ..."
"233"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "unicode(char)",
...> %{"char" => %{"__value__" => "é", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 233 = result
233
iex> Expression.evaluate_as_string!(
...> "@unicode(char)",
...> %{"char" => %{"__value__" => "é", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"233"

 uniq(ctx, enumerable)

Removes duplicate values from a list.
Example 1:
When used in the following Stack expression it returns a value of type List with values String, String, String:
[
 "A",
 "B",
 "C"
]
.
> uniq(["A", "B", "C", "B"])
["A", "B", "C"]
When used as an expression in text, prepend it with an @:
> "... @uniq(["A", "B", "C", "B"]) ..."
"ABC"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "uniq([\"A\", \"B\", \"C\", \"B\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert ["A", "B", "C"] = result
["A", "B", "C"]
iex> Expression.evaluate_as_string!(
...> "@uniq([\"A\", \"B\", \"C\", \"B\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
"ABC"

Example 2:
Return list with unique items from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type List with values String, String, String:
[
 "A",
 "B",
 "C"
]
 when used with the following context:
%{"list" => %{"__value__" => ["A", "B", "C", "B"], "display" => "value for display key", "value" => "value for value key"}}
> uniq(list)
["A", "B", "C"]
When used as an expression in text, prepend it with an @:
> "... @uniq(list) ..."
"ABC"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "uniq(list)",
...> %{"list" => %{"__value__" => ["A", "B", "C", "B"], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert ["A", "B", "C"] = result
["A", "B", "C"]
iex> Expression.evaluate_as_string!(
...> "@uniq(list)",
...> %{"list" => %{"__value__" => ["A", "B", "C", "B"], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"ABC"

 upper(ctx, binary)

Converts a text string to uppercase
Example 1:
When used in the following Stack expression it returns a value of type String: "FOO".
> upper("foo")
"FOO"
When used as an expression in text, prepend it with an @:
> "... @upper("foo") ..."
"FOO"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "upper(\"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "FOO" = result
"FOO"
iex> Expression.evaluate_as_string!(
...> "@upper(\"foo\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"FOO"

Example 2:
When used in the following Stack expression it returns a value of type Null: null.
> upper(nil)
nil
When used as an expression in text, prepend it with an @:
> "... @upper(nil) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "upper(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> refute result
nil
iex> Expression.evaluate_as_string!(
...> "@upper(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 3:
Return uppercased string from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "FOO" when used with the following context:
%{"string" => %{"__value__" => "foo", "display" => "value for display key", "value" => "value for value key"}}
> upper(string)
"FOO"
When used as an expression in text, prepend it with an @:
> "... @upper(string) ..."
"FOO"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "upper(string)",
...> %{"string" => %{"__value__" => "foo", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "FOO" = result
"FOO"
iex> Expression.evaluate_as_string!(
...> "@upper(string)",
...> %{"string" => %{"__value__" => "foo", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"FOO"

 url_decode(ctx, thing)

URL decode an expression
Example 1:
When used in the following Stack expression it returns a value of type String: "hello world".
> url_decode("hello%20world")
"hello world"
When used as an expression in text, prepend it with an @:
> "... @url_decode("hello%20world") ..."
"hello world"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "url_decode(\"hello%20world\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "hello world" = result
"hello world"
iex> Expression.evaluate_as_string!(
...> "@url_decode(\"hello%20world\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"hello world"

Example 2:
Return URL decoded string from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "hello world" when used with the following context:
%{"url" => %{"__value__" => "hello%20world", "display" => "value for display key", "value" => "value for value key"}}
> url_decode(url)
"hello world"
When used as an expression in text, prepend it with an @:
> "... @url_decode(url) ..."
"hello world"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "url_decode(url)",
...> %{"url" => %{"__value__" => "hello%20world", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "hello world" = result
"hello world"
iex> Expression.evaluate_as_string!(
...> "@url_decode(url)",
...> %{"url" => %{"__value__" => "hello%20world", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"hello world"

 url_encode(ctx, thing)

URL encode an expression
Example 1:
When used in the following Stack expression it returns a value of type String: "hello%20world".
> url_encode("hello world")
"hello%20world"
When used as an expression in text, prepend it with an @:
> "... @url_encode("hello world") ..."
"hello%20world"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "url_encode(\"hello world\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "hello%20world" = result
"hello%20world"
iex> Expression.evaluate_as_string!(
...> "@url_encode(\"hello world\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"hello%20world"

Example 2:
URL encode an integer by first converting it to a string.

When used in the following Stack expression it returns a value of type String: "42".
> url_encode(42)
"42"
When used as an expression in text, prepend it with an @:
> "... @url_encode(42) ..."
"42"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "url_encode(42)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "42" = result
"42"
iex> Expression.evaluate_as_string!(
...> "@url_encode(42)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"42"

Example 3:
URL encode a float by first converting it to a string.

When used in the following Stack expression it returns a value of type String: "3.14".
> url_encode(3.14)
"3.14"
When used as an expression in text, prepend it with an @:
> "... @url_encode(3.14) ..."
"3.14"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "url_encode(3.14)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "3.14" = result
"3.14"
iex> Expression.evaluate_as_string!(
...> "@url_encode(3.14)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"3.14"

Example 4:
URL encode a boolean by first converting it to a string.

When used in the following Stack expression it returns a value of type String: "true".
> url_encode(true)
"true"
When used as an expression in text, prepend it with an @:
> "... @url_encode(true) ..."
"true"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "url_encode(true)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "true" = result
"true"
iex> Expression.evaluate_as_string!(
...> "@url_encode(true)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"true"

Example 5:
URL encode nil returns an empty string.

When used in the following Stack expression it returns a value of type String: "".
> url_encode(nil)
""
When used as an expression in text, prepend it with an @:
> "... @url_encode(nil) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "url_encode(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "" = result
""
iex> Expression.evaluate_as_string!(
...> "@url_encode(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 6:
URL encode a date by first converting it to a string.

When used in the following Stack expression it returns a value of type String: "2024-01-15" when used with the following context:
%{"date" => ~D[2024-01-15]}
> url_encode(date)
"2024-01-15"
When used as an expression in text, prepend it with an @:
> "... @url_encode(date) ..."
"2024-01-15"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "url_encode(date)",
...> %{"date" => ~D[2024-01-15]},
...> Expression.Callbacks.Standard
...>)
iex> assert "2024-01-15" = result
"2024-01-15"
iex> Expression.evaluate_as_string!(
...> "@url_encode(date)",
...> %{"date" => ~D[2024-01-15]},
...> Expression.Callbacks.Standard
...>)
"2024-01-15"

Example 7:
Return URL encoded string from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "hello%20world" when used with the following context:
%{"url" => %{"__value__" => "hello world", "display" => "value for display key", "value" => "value for value key"}}
> url_encode(url)
"hello%20world"
When used as an expression in text, prepend it with an @:
> "... @url_encode(url) ..."
"hello%20world"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "url_encode(url)",
...> %{"url" => %{"__value__" => "hello world", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "hello%20world" = result
"hello%20world"
iex> Expression.evaluate_as_string!(
...> "@url_encode(url)",
...> %{"url" => %{"__value__" => "hello world", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"hello%20world"

Example 8:
URL encode an integer from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "1" when used with the following context:
%{"number" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}}
> url_encode(number)
"1"
When used as an expression in text, prepend it with an @:
> "... @url_encode(number) ..."
"1"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "url_encode(number)",
...> %{"number" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "1" = result
"1"
iex> Expression.evaluate_as_string!(
...> "@url_encode(number)",
...> %{"number" => %{"__value__" => 1, "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"1"

 weekday(ctx, date)

Returns the day of the week of a date (1 for Sunday to 7 for Saturday)
Example 1:
When used in the following Stack expression it returns a value of type Integer: 1 when used with the following context:
%{"today" => ~D[2022-11-06]}
> weekday(today)
1
When used as an expression in text, prepend it with an @:
> "... @weekday(today) ..."
"1"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "weekday(today)",
...> %{"today" => ~D[2022-11-06]},
...> Expression.Callbacks.Standard
...>)
iex> assert 1 = result
1
iex> Expression.evaluate_as_string!(
...> "@weekday(today)",
...> %{"today" => ~D[2022-11-06]},
...> Expression.Callbacks.Standard
...>)
"1"

Example 2:
When used in the following Stack expression it returns a value of type Integer: 3 when used with the following context:
%{"today" => ~D[2022-11-01]}
> weekday(today)
3
When used as an expression in text, prepend it with an @:
> "... @weekday(today) ..."
"3"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "weekday(today)",
...> %{"today" => ~D[2022-11-01]},
...> Expression.Callbacks.Standard
...>)
iex> assert 3 = result
3
iex> Expression.evaluate_as_string!(
...> "@weekday(today)",
...> %{"today" => ~D[2022-11-01]},
...> Expression.Callbacks.Standard
...>)
"3"

Example 3:
Return day of week from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Integer: 1 when used with the following context:
%{"date" => %{"__value__" => ~D[2022-11-06], "display" => "value for display key", "value" => "value for value key"}}
> weekday(date)
1
When used as an expression in text, prepend it with an @:
> "... @weekday(date) ..."
"1"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "weekday(date)",
...> %{"date" => %{"__value__" => ~D[2022-11-06], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 1 = result
1
iex> Expression.evaluate_as_string!(
...> "@weekday(date)",
...> %{"date" => %{"__value__" => ~D[2022-11-06], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"1"

 with_index(ctx, enumerable)

Wraps each item of the list in a new list with the item itself and its
index in the original list.
Example 1:
When used in the following Stack expression it returns a value of type List with values List with values String, Integer, List with values String, Integer, List with values String, Integer:
[
 [
 "A",
 0
],
 [
 "B",
 1
],
 [
 "C",
 2
]
]
.
> with_index(["A", "B", "C"])
[["A", 0], ["B", 1], ["C", 2]]
When used as an expression in text, prepend it with an @:
> "... @with_index(["A", "B", "C"]) ..."
"A0B1C2"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "with_index([\"A\", \"B\", \"C\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert [["A", 0], ["B", 1], ["C", 2]] = result
[["A", 0], ["B", 1], ["C", 2]]
iex> Expression.evaluate_as_string!(
...> "@with_index([\"A\", \"B\", \"C\"])",
...> %{},
...> Expression.Callbacks.Standard
...>)
"A0B1C2"

Example 2:
Return list with indexes from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type List with values List with values String, Integer, List with values String, Integer, List with values String, Integer:
[
 [
 "A",
 0
],
 [
 "B",
 1
],
 [
 "C",
 2
]
]
 when used with the following context:
%{"val1" => %{"__value__" => "A", "display" => "value for display key", "value" => "value for value key"}, "val2" => %{"__value__" => "B", "display" => "value for display key", "value" => "value for value key"}, "val3" => %{"__value__" => "C", "display" => "value for display key", "value" => "value for value key"}}
> with_index([val1, val2, val3])
[["A", 0], ["B", 1], ["C", 2]]
When used as an expression in text, prepend it with an @:
> "... @with_index([val1, val2, val3]) ..."
"A0B1C2"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "with_index([val1, val2, val3])",
...> %{"val1" => %{"__value__" => "A", "display" => "value for display key", "value" => "value for value key"}, "val2" => %{"__value__" => "B", "display" => "value for display key", "value" => "value for value key"}, "val3" => %{"__value__" => "C", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert [["A", 0], ["B", 1], ["C", 2]] = result
[["A", 0], ["B", 1], ["C", 2]]
iex> Expression.evaluate_as_string!(
...> "@with_index([val1, val2, val3])",
...> %{"val1" => %{"__value__" => "A", "display" => "value for display key", "value" => "value for value key"}, "val2" => %{"__value__" => "B", "display" => "value for display key", "value" => "value for value key"}, "val3" => %{"__value__" => "C", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"A0B1C2"

 word(ctx, binary, n)

Extracts the nth word from the given text string. If stop is a negative number,
then it is treated as count backwards from the end of the text. If by_spaces is
specified and is true then the function splits the text into words only by spaces.
Otherwise the text is split by punctuation characters as well
Example 1:
When used in the following Stack expression it returns a value of type String: "cow".
> word("hello cow-boy", 2)
"cow"
When used as an expression in text, prepend it with an @:
> "... @word("hello cow-boy", 2) ..."
"cow"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "word(\"hello cow-boy\", 2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "cow" = result
"cow"
iex> Expression.evaluate_as_string!(
...> "@word(\"hello cow-boy\", 2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"cow"

Example 2:
When used in the following Stack expression it returns a value of type String: "cow-boy".
> word("hello cow-boy", 2, true)
"cow-boy"
When used as an expression in text, prepend it with an @:
> "... @word("hello cow-boy", 2, true) ..."
"cow-boy"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "word(\"hello cow-boy\", 2, true)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "cow-boy" = result
"cow-boy"
iex> Expression.evaluate_as_string!(
...> "@word(\"hello cow-boy\", 2, true)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"cow-boy"

Example 3:
When used in the following Stack expression it returns a value of type String: "boy".
> word("hello cow-boy", -1)
"boy"
When used as an expression in text, prepend it with an @:
> "... @word("hello cow-boy", -1) ..."
"boy"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "word(\"hello cow-boy\", -1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "boy" = result
"boy"
iex> Expression.evaluate_as_string!(
...> "@word(\"hello cow-boy\", -1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"boy"

Example 4:
When used in the following Stack expression it returns a value of type String: "".
> word(nil, 1)
""
When used as an expression in text, prepend it with an @:
> "... @word(nil, 1) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "word(nil, 1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "" = result
""
iex> Expression.evaluate_as_string!(
...> "@word(nil, 1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 5:
Return nth word from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "cow" when used with the following context:
%{"n" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "hello cow-boy", "display" => "value for display key", "value" => "value for value key"}}
> word(string, n)
"cow"
When used as an expression in text, prepend it with an @:
> "... @word(string, n) ..."
"cow"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "word(string, n)",
...> %{"n" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "hello cow-boy", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "cow" = result
"cow"
iex> Expression.evaluate_as_string!(
...> "@word(string, n)",
...> %{"n" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "hello cow-boy", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"cow"

 word(ctx, binary, n, by_spaces)

 word_count(ctx, binary)

Returns the number of words in the given text string. If by_spaces is specified and is true then the function splits the text into words only by spaces. Otherwise the text is split by punctuation characters as well
> You entered @word_count("one two three") words
You entered 3 words
Example 1:
When used in the following Stack expression it returns a value of type Integer: 3.
> word_count("hello cow-boy")
3
When used as an expression in text, prepend it with an @:
> "... @word_count("hello cow-boy") ..."
"3"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "word_count(\"hello cow-boy\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 3 = result
3
iex> Expression.evaluate_as_string!(
...> "@word_count(\"hello cow-boy\")",
...> %{},
...> Expression.Callbacks.Standard
...>)
"3"

Example 2:
When used in the following Stack expression it returns a value of type Integer: 2.
> word_count("hello cow-boy", true)
2
When used as an expression in text, prepend it with an @:
> "... @word_count("hello cow-boy", true) ..."
"2"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "word_count(\"hello cow-boy\", true)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 2 = result
2
iex> Expression.evaluate_as_string!(
...> "@word_count(\"hello cow-boy\", true)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"2"

Example 3:
When used in the following Stack expression it returns a value of type Integer: 0.
> word_count(nil)
0
When used as an expression in text, prepend it with an @:
> "... @word_count(nil) ..."
"0"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "word_count(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert 0 = result
0
iex> Expression.evaluate_as_string!(
...> "@word_count(nil)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"0"

Example 4:
Return word count from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Integer: 2 when used with the following context:
%{"by_spaces" => %{"__value__" => true, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "hello cow-boy", "display" => "value for display key", "value" => "value for value key"}}
> word_count(string, by_spaces)
2
When used as an expression in text, prepend it with an @:
> "... @word_count(string, by_spaces) ..."
"2"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "word_count(string, by_spaces)",
...> %{"by_spaces" => %{"__value__" => true, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "hello cow-boy", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 2 = result
2
iex> Expression.evaluate_as_string!(
...> "@word_count(string, by_spaces)",
...> %{"by_spaces" => %{"__value__" => true, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "hello cow-boy", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"2"

 word_count(ctx, binary, by_spaces)

 word_slice(ctx, binary, start)

Extracts a substring of the words beginning at start, and up to but not-including stop.
If stop is omitted then the substring will be all words from start until the end of the text.
If stop is a negative number, then it is treated as count backwards from the end of the text.
If by_spaces is specified and is true then the function splits the text into words only by spaces.
Otherwise the text is split by punctuation characters as well
Example 1:
When used in the following Stack expression it returns a value of type String: "expressions are".
> word_slice("FLOIP expressions are fun", 2, 4)
"expressions are"
When used as an expression in text, prepend it with an @:
> "... @word_slice("FLOIP expressions are fun", 2, 4) ..."
"expressions are"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "word_slice(\"FLOIP expressions are fun\", 2, 4)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "expressions are" = result
"expressions are"
iex> Expression.evaluate_as_string!(
...> "@word_slice(\"FLOIP expressions are fun\", 2, 4)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"expressions are"

Example 2:
When used in the following Stack expression it returns a value of type String: "expressions are fun".
> word_slice("FLOIP expressions are fun", 2)
"expressions are fun"
When used as an expression in text, prepend it with an @:
> "... @word_slice("FLOIP expressions are fun", 2) ..."
"expressions are fun"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "word_slice(\"FLOIP expressions are fun\", 2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "expressions are fun" = result
"expressions are fun"
iex> Expression.evaluate_as_string!(
...> "@word_slice(\"FLOIP expressions are fun\", 2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"expressions are fun"

Example 3:
When used in the following Stack expression it returns a value of type String: "FLOIP expressions".
> word_slice("FLOIP expressions are fun", 1, -2)
"FLOIP expressions"
When used as an expression in text, prepend it with an @:
> "... @word_slice("FLOIP expressions are fun", 1, -2) ..."
"FLOIP expressions"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "word_slice(\"FLOIP expressions are fun\", 1, -2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "FLOIP expressions" = result
"FLOIP expressions"
iex> Expression.evaluate_as_string!(
...> "@word_slice(\"FLOIP expressions are fun\", 1, -2)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"FLOIP expressions"

Example 4:
When used in the following Stack expression it returns a value of type String: "fun".
> word_slice("FLOIP expressions are fun", -1)
"fun"
When used as an expression in text, prepend it with an @:
> "... @word_slice("FLOIP expressions are fun", -1) ..."
"fun"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "word_slice(\"FLOIP expressions are fun\", -1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "fun" = result
"fun"
iex> Expression.evaluate_as_string!(
...> "@word_slice(\"FLOIP expressions are fun\", -1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
"fun"

Example 5:
When used in the following Stack expression it returns a value of type String: "".
> word_slice(nil, -1)
""
When used as an expression in text, prepend it with an @:
> "... @word_slice(nil, -1) ..."
""
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "word_slice(nil, -1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
iex> assert "" = result
""
iex> Expression.evaluate_as_string!(
...> "@word_slice(nil, -1)",
...> %{},
...> Expression.Callbacks.Standard
...>)
""

Example 6:
Return word slice from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type String: "expressions are" when used with the following context:
%{"start" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}, "stop" => %{"__value__" => 4, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "FLOIP expressions are fun", "display" => "value for display key", "value" => "value for value key"}}
> word_slice(string, start, stop)
"expressions are"
When used as an expression in text, prepend it with an @:
> "... @word_slice(string, start, stop) ..."
"expressions are"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "word_slice(string, start, stop)",
...> %{"start" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}, "stop" => %{"__value__" => 4, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "FLOIP expressions are fun", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert "expressions are" = result
"expressions are"
iex> Expression.evaluate_as_string!(
...> "@word_slice(string, start, stop)",
...> %{"start" => %{"__value__" => 2, "display" => "value for display key", "value" => "value for value key"}, "stop" => %{"__value__" => 4, "display" => "value for display key", "value" => "value for value key"}, "string" => %{"__value__" => "FLOIP expressions are fun", "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"expressions are"

 word_slice(ctx, binary, start, stop)

 word_slice(ctx, binary, start, stop, by_spaces)

 year(ctx, date)

Returns only the year of a date
Example 1:
When used in the following Stack expression it returns a value of type Integer: 2026 when used with the following context:
%{"now" => ~U[2026-01-21 17:06:32.027978Z]}
> year(now)
2026
When used as an expression in text, prepend it with an @:
> "... @year(now) ..."
"2026"
..$> import ExUnit.Assertions
..$> result = Expression.evaluate_block!(
...> "year(now)",
...> %{"now" => ~U[2026-01-21 17:06:32.027978Z]},
...> Expression.Callbacks.Standard
...>)
..$> assert 2026 = result
2026
..$> Expression.evaluate_as_string!(
...> "@year(now)",
...> %{"now" => ~U[2026-01-21 17:06:32.027978Z]},
...> Expression.Callbacks.Standard
...>)
"2026"

Example 2:
Return year from value in value key if complex values are provided.

When used in the following Stack expression it returns a value of type Integer: 2022 when used with the following context:
%{"date" => %{"__value__" => ~D[2022-11-06], "display" => "value for display key", "value" => "value for value key"}}
> year(date)
2022
When used as an expression in text, prepend it with an @:
> "... @year(date) ..."
"2022"
iex> import ExUnit.Assertions
iex> result = Expression.evaluate_block!(
...> "year(date)",
...> %{"date" => %{"__value__" => ~D[2022-11-06], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
iex> assert 2022 = result
2022
iex> Expression.evaluate_as_string!(
...> "@year(date)",
...> %{"date" => %{"__value__" => ~D[2022-11-06], "display" => "value for display key", "value" => "value for value key"}},
...> Expression.Callbacks.Standard
...>)
"2022"

Expression.Context

A helper module for creating a context that can be
used with Expression.Eval
Example
 iex> Expression.Context.new(%{foo: "bar"})
 %{"foo" => "bar"}
 iex> Expression.Context.new(%{FOO: "bar"})
 %{"foo" => "bar"}
 iex> Expression.Context.new(%{foo: %{bar: "baz"}})
 %{"foo" => %{"bar" => "baz"}}
 iex> Expression.Context.new(%{Foo: %{Bar: "baz"}})
 %{"foo" => %{"bar" => "baz"}}
 iex> Expression.Context.new(%{foo: %{bar: 1}})
 %{"foo" => %{"bar" => 1}}
 iex> Expression.Context.new(%{date: "2020-12-13T23:34:45"})
 %{"date" => ~U[2020-12-13 23:34:45.0Z]}
 iex> Expression.Context.new(%{boolean: "true"})
 %{"boolean" => true}
 iex> Expression.Context.new(%{float: 1.234})
 %{"float" => 1.234}
 iex> now = DateTime.utc_now()
 iex> ctx = Expression.Context.new(%{float: "1.234", nested: %{date: now}})
 iex> ctx["float"]
 1.234
 iex> now == ctx["nested"]["date"]
 true
 iex> Expression.Context.new(%{mixed: ["2020-12-13T23:34:45", 1, "true", "binary"]})
 %{"mixed" => [~U[2020-12-13 23:34:45.0Z], 1, true, "binary"]}

 Summary

 Types

 t()

 Functions

 new(ctx, opts \\ [])

 Types

 t()

 @type t() :: map()

 Functions

 new(ctx, opts \\ [])

 @spec new(map(), Keyword.t() | nil) :: t()

Expression.Eval

Expression.Eval is responsible for taking an abstract syntax
tree (AST) as generated by Expression.Parser and evaluating it.
At a high level, an AST consists of a Keyword list with two top-level
keys, either :text or :expression.
Expression.Eval.eval!/3 will return the output for each entry in the Keyword
list. :text entries are returned as regular strings. :expression entries
are returned as typed values.
The returned value is a list containing each.
Example
iex(1)> Expression.Eval.eval!([text: "hello"], %{})
["hello"]
iex(2)> Expression.Eval.eval!([text: "hello", expression: [literal: 1]], %{})
["hello", 1]
iex(3)> Expression.Eval.eval!([
...(3)> text: "hello",
...(3)> expression: [literal: 1],
...(3)> text: "ok",
...(3)> expression: [literal: true]
...(3)>], %{})
["hello", 1, "ok", true]

 Summary

 Functions

 default_value(val, opts \\ [])

 Return the default value for a potentially complex value.

 eval!(ast, context, mod \\ Expression.Callbacks)

 handle_not_found(value)

 not_founds_as_nil(other)

 op(operator, a, b)

 parse_number(value)

 Parses a given value into a number, being an integer or a float.
If the given value is not able to be parsed, then it returns the raw value.

 Functions

 default_value(val, opts \\ [])

Return the default value for a potentially complex value.
Complex values can be Maps that have a __value__ key, if that's
returned then we can to use the __value__ value when eval'ing against
operators or functions.

 eval!(ast, context, mod \\ Expression.Callbacks)

 handle_not_found(value)

 not_founds_as_nil(other)

 op(operator, a, b)

 parse_number(value)

Parses a given value into a number, being an integer or a float.
If the given value is not able to be parsed, then it returns the raw value.

Expression.Parser

Expression.Parser is responsible for accepting a string
containing an expression and returning the abstract syntax
tree (AST) representing the expression.
The AST generated by this module can be evaluated by
Expression.Eval
Example
 iex(1)> Expression.Parser.parse("hello @world")
 {:ok, [text: "hello ", expression: [atom: "world"]], "", %{}, {1, 0}, 12}

 Summary

 Functions

 aexpr(binary, opts \\ [])

 Parses the given binary as aexpr.

 aexpr_exponent(binary, opts \\ [])

 Parses the given binary as aexpr_exponent.

 aexpr_factor(binary, opts \\ [])

 Parses the given binary as aexpr_factor.

 aexpr_term(binary, opts \\ [])

 Parses the given binary as aexpr_term.

 arguments(binary, opts \\ [])

 Parses the given binary as arguments.

 attribute(binary, opts \\ [])

 Parses the given binary as attribute.

 fold_infixl(acc)

 function(binary, opts \\ [])

 Parses the given binary as function.

 key(binary, opts \\ [])

 Parses the given binary as key.

 lambda(binary, opts \\ [])

 Parses the given binary as lambda.

 list(binary, opts \\ [])

 Parses the given binary as list.

 literal(binary, opts \\ [])

 Parses the given binary as literal.

 parse(binary, opts \\ [])

 Parses the given binary as parse.

 variable(binary, opts \\ [])

 Parses the given binary as variable.

 Functions

 aexpr(binary, opts \\ [])

 @spec aexpr(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as aexpr.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the aexpr (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.
Options
	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

 aexpr_exponent(binary, opts \\ [])

 @spec aexpr_exponent(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as aexpr_exponent.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the aexpr_exponent (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.
Options
	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

 aexpr_factor(binary, opts \\ [])

 @spec aexpr_factor(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as aexpr_factor.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the aexpr_factor (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.
Options
	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

 aexpr_term(binary, opts \\ [])

 @spec aexpr_term(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as aexpr_term.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the aexpr_term (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.
Options
	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

 arguments(binary, opts \\ [])

 @spec arguments(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as arguments.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the arguments (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.
Options
	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

 attribute(binary, opts \\ [])

 @spec attribute(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as attribute.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the attribute (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.
Options
	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

 fold_infixl(acc)

 function(binary, opts \\ [])

 @spec function(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as function.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the function (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.
Options
	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

 key(binary, opts \\ [])

 @spec key(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as key.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the key (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.
Options
	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

 lambda(binary, opts \\ [])

 @spec lambda(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as lambda.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the lambda (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.
Options
	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

 list(binary, opts \\ [])

 @spec list(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as list.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the list (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.
Options
	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

 literal(binary, opts \\ [])

 @spec literal(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as literal.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the literal (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.
Options
	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

 parse(binary, opts \\ [])

 @spec parse(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as parse.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the parse (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.
Options
	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

 variable(binary, opts \\ [])

 @spec variable(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as variable.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the variable (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.
Options
	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

Expression.V2

A second attempt at the parser, hopefully a little easier to read & maintain.
parse/1 parsed an Expression into AST.
eval/3 evaluates the given AST using the context supplied.
For details on how this is done please read Expression.V2.Parser and
Expression.V2.Compile.
This parser & evaluator supports the following:
	strings either double or single quoted.
	integers such as 1, 2, 40, 55
	floats such as 3.141592653589793
	booleans which can be written in any mixed case such as tRue or TRUE, False etc
	Range.t such as 1..10, also with steps 1..10//2
	Date.t such as 2022-01-01 which is parsed into ~D[2022-01-01]
	Time.t such as 10:30 which is parsed into ~T[10:30:00]
	ISO formatted DateTime.t such as 2022-05-24T00:00:00 which is parsed into ~U[2022-05-24 00:00:00.0Z]
	US formatted DateTime.t such as 01-02-2020 23:23:23 which is parsed into ~U[2020-02-01T23:23:23Z]
	Lists of any of the above, such as [1, 2, 3] or [1, 1.234, "john"]
	Reading properties off of nested objects such as maps with a full stop, such as contact.name returning "Doe" from %{"contact" => %{"name" => "Doe"}}
	Reading attributes off of maps, such as contact[the_key] which returns "Doe" from %{"contact" => %{"name" => "Doe"}, "the_key" => "name"}
	Anonymous functions with & and &1 as capture operators, &(&1 + 1) is an anonymous function that increments the input by 1.

The result of a call to eval/3 is a list of typed evaluated items. It is up to the integrating library to determine how
best to convert these into a final end user representation.
Examples
iex> alias Expression.V2
iex> V2.eval("the date is @date(2022, 2, 20)")
["the date is ", ~D[2022-02-20]]
iex> V2.eval("the answer is @true")
["the answer is ", true]
iex> V2.eval("22 divided by 7 is @(22 / 7)")
["22 divided by 7 is ", 3.142857142857143]
iex> V2.eval(
...> "Hello @proper(contact.name)! Looking forward to meet you @date(2023, 2, 20)",
...> V2.Context.new(%{"contact" => %{"name" => "mary"}})
...>)
["Hello ", "Mary", "! Looking forward to meet you ", ~D[2023-02-20]]
iex> V2.eval("@map(1..3, &date(2023, 1, &1))")
[[~D[2023-01-01], ~D[2023-01-02], ~D[2023-01-03]]]
iex> V2.eval(
...> "Here is the multiplication table of @number: @(map(1..10, &(&1 * number)))",
...> V2.Context.new(%{"number" => 5})
...>)
[
 "Here is the multiplication table of ",
 5,
 ": ",
 [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]
]

 Summary

 Functions

 compile(expression)

 compile_block(final)

 debug(expression)

 Return the code generated for the Abstract Syntax tree or
Expression string provided.

 default_value(val, context \\ nil)

 Return the default value for a potentially complex value.

 escape(expression)

 eval(expression, context \\ Context.new())

 Evaluate a string with expressions against a given context

 eval_as_string(expression, context \\ Context.new())

 Evaluate an expression and cast all items to strings before joining
the full result into a single string value to be returned.

 eval_ast(parsed_parts, context \\ Context.new())

 Evaluate a parsed Expression against a given context

 eval_block(expression_block, context \\ Context.new())

 Evaluate a string with an expression block against a context

 eval_block_ast(ast, context)

 Evaluate the given AST against a given context

 parse(expression)

 Parse a string with expressions into AST for the compile step

 parse_block(expression_block)

 Parse a string with an expression block into AST for the compile step

 read_attribute(map, item)

 This function is referenced by Expression.V2.Compile to
make access to values in Maps or Lists easier

 stringify(items)

 Functions

 compile(expression)

 @spec compile(expression :: String.t()) :: [term()]

 compile_block(final)

 debug(expression)

 @spec debug(String.t() | [term()]) :: String.t()

Return the code generated for the Abstract Syntax tree or
Expression string provided.

 default_value(val, context \\ nil)

Return the default value for a potentially complex value.
Complex values can be Maps that have a __value__ key, if that's
returned then we can to use the __value__ value when eval'ing against
operators or functions.

 escape(expression)

 @spec escape(String.t()) :: String.t()

 eval(expression, context \\ Context.new())

 @spec eval(expression :: String.t(), context :: Expression.V2.Context.t()) :: [term()]

Evaluate a string with expressions against a given context

 eval_as_string(expression, context \\ Context.new())

 @spec eval_as_string(String.t(), Expression.V2.Context.t()) :: String.t()

Evaluate an expression and cast all items to strings before joining
the full result into a single string value to be returned.
This calls eval/2 internally, maps the results with default_value/2
followed by stringify/1 and then joins them.

 eval_ast(parsed_parts, context \\ Context.new())

 @spec eval_ast([term()], context :: Expression.V2.Context.t()) :: [term()]

Evaluate a parsed Expression against a given context

 eval_block(expression_block, context \\ Context.new())

 @spec eval_block(String.t(), context :: Expression.V2.Context.t()) ::
 term() | {:error, reason :: String.t(), bad_parts :: String.t()}

Evaluate a string with an expression block against a context

 eval_block_ast(ast, context)

 @spec eval_block_ast([term()], context :: Expression.V2.Context.t()) :: [term()]

Evaluate the given AST against a given context

 parse(expression)

 @spec parse(String.t()) ::
 {:ok, [term()]} | {:error, reason :: String.t(), bad_parts :: String.t()}

Parse a string with expressions into AST for the compile step

 parse_block(expression_block)

 @spec parse_block(String.t()) ::
 {:ok, [term()]} | {:error, reason :: String.t(), bad_parts :: String.t()}

Parse a string with an expression block into AST for the compile step

 read_attribute(map, item)

 @spec read_attribute(map() | list(), binary() | integer()) :: term()

This function is referenced by Expression.V2.Compile to
make access to values in Maps or Lists easier

 stringify(items)

 @spec stringify(term()) :: String.t()

Expression.V2.Autodoc

Extract @expression_doc attributes from modules defining callbacks
and automatically write doctests for those.
Also inserts an expression_docs() function which returns a list of
all functions and their defined expression docs.
The format is:
@expression_doc doc: "Construct a date from year, month, and day integers",
 expression: "@date(year, month, day)",
 context: %{"year" => 2022, "month" => 1, "day" => 31},
 result: "2022-01-31T00:00:00Z"
Where:
	doc is the explanatory text added to the doctest.
	expression is the expression we want to test
	fake_expression can optionally be the expression we want to display but not test
	context is the context the expression is tested against
	result is the result we're expecting to get and are asserting against
	fake_result can be optionally supplied when the returning result varies
 depending on factors we do not control, like for now() for example.
 When this is used, the ExDoc tests are faked and won't actually test
 anything so use sparingly.

 Summary

 Functions

 annotate_method(module, function, args)

 format_context(context)

 format_docs(docs)

 format_function_args(args)

 format_function_name(name)

 format_result(result)

 generate_assert(prompt, result)

 generate_ex_doc(prompt \\ "iex", module, expression, context, result)

 get_existing_docstring(module)

 get_expression(expression_doc)

 stringify(value)

 type_of(boolean)

 update_annotations(module, function, args, expression_docs)

 Functions

 annotate_method(module, function, args)

 format_context(context)

 format_docs(docs)

 format_function_args(args)

 format_function_name(name)

 format_result(result)

 generate_assert(prompt, result)

 generate_ex_doc(prompt \\ "iex", module, expression, context, result)

 get_existing_docstring(module)

 get_expression(expression_doc)

 stringify(value)

 type_of(boolean)

 update_annotations(module, function, args, expression_docs)

Expression.V2.Callbacks

Use this module to implement one's own callbacks.
The standard callbacks available are implemented in Expression.V2.Callbacks.Standard.
defmodule MyCallbacks do
 use Expression.V2.Callbacks

 @doc """
 Roll a dice and randomly return a number between 1 and 6.
 """
 def dice_roll(ctx) do
 Enum.random(1..6)
 end

end

 Summary

 Functions

 atom_function_name(function_name)

 Convert a string function name into an atom meant to handle
that function

 callback(module \\ Standard, context, function_name, arguments)

 Callback a function while evaluating the context against an expression.

 implements(module \\ Standard, function_name, arguments)

 Functions

 atom_function_name(function_name)

Convert a string function name into an atom meant to handle
that function
Reserved words such as and, if, and or are automatically suffixed
with an _ underscore.

 callback(module \\ Standard, context, function_name, arguments)

 @spec callback(
 module :: module(),
 context :: map(),
 function_name :: binary(),
 arguments :: [any()]
) :: any()

Callback a function while evaluating the context against an expression.
Callback functions in this module are either:
	The function name as is
	The function name with an underscore suffix if the function name is a reserved word
	The function name suffixed with _vargs if the takes a variable set of arguments

 implements(module \\ Standard, function_name, arguments)

 @spec implements(module(), function_name :: String.t(), arguments :: [any()]) ::
 {:exact, module(), function_name :: atom()}
 | {:vargs, module(), function_name :: atom()}
 | {:error, reason :: String.t()}

Expression.V2.Callbacks.Standard

Callback functions to be used in Expressions.
This is the same idea as Expression.Callbacks.Standard but
it's in a rough shape, mostly to just prove that this all works.

 Summary

 Functions

 abs(ctx, number)

 Returns the absolute value of a number

 and_vargs(ctx, arguments)

 Returns true if and only if all its arguments evaluate to true

 append(ctx, list, payload)

 Appends an item or a list of items to a given list.

 callback(module \\ __MODULE__, context, function_name, args)

 See Expression.V2.Callbacks.callback/4.

 char(ctx, code)

 Returns the character specified by a number

 clean(ctx, binary)

 Removes all non-printable characters from a text string

 code(ctx, arg)

 Returns a numeric code for the first character in a text string

 concatenate_vargs(ctx, arguments)

 Joins text strings into one text string

 date(ctx, year, month, day)

 Defines a new date value

 datetime_add(ctx, datetime, offset, unit)

 Calculates a new datetime based on the offset and unit provided.

 datevalue(ctx, date, format \\ "%Y-%m-%d %H:%M:%S")

 Converts date stored in text to an actual date object and
formats it using strftime formatting.

 day(ctx, date)

 Returns only the day of the month of a date (1 to 31)

 delete(ctx, map, key)

 Deletes an element from a map by the given key.

 edate(ctx, date, months)

 Moves a date by the given number of months

 expression_docs()

 Return a list of all functions annotated with @expression_docs

 first_word(ctx, binary)

 Returns the first word in the given text - equivalent to WORD(text, 1)

 fixed(ctx, number, precision, no_commas \\ false)

 Formats the given number in decimal format using a period and commas

 has_all_words(ctx, haystack, words)

 Tests whether all the words are contained in text

 has_any_word(ctx, haystack, words)

 Tests whether any of the words are contained in the text

 has_beginning(ctx, text, beginning)

 Tests whether text starts with beginning

 has_date(ctx, expression)

 Tests whether expression contains a date formatted according to our environment

 has_date_eq(ctx, expression, date_string)

 Tests whether expression is a date equal to date_string

 has_date_gt(ctx, expression, date_string)

 Tests whether expression is a date after the date date_string

 has_date_lt(ctx, expression, date_string)

 Tests whether expression contains a date before the date date_string

 has_email(ctx, expression)

 Tests whether an email is contained in text

 has_group(ctx, groups, uuid)

 Returns whether the contact is part of group with the passed in UUID

 has_number(ctx, expression)

 Tests whether expression contains a number

 has_number_eq(ctx, expression, float)

 Tests whether expression contains a number equal to the value

 has_number_gt(ctx, expression, float)

 Tests whether expression contains a number greater than min

 has_number_gte(ctx, expression, float)

 Tests whether expression contains a number greater than or equal to min

 has_number_lt(ctx, expression, float)

 Tests whether expression contains a number less than max

 has_number_lte(ctx, expression, float)

 Tests whether expression contains a number less than or equal to max

 has_only_phrase(ctx, expression, phrase)

 Tests whether the text contains only phrase

 has_only_text(ctx, expression_one, expression_two)

 Returns whether two text values are equal (case sensitive). In the case that they are, it will return the text as the match.

 has_pattern(ctx, expression, pattern)

 Tests whether expression matches the regex pattern

 has_phone(ctx, expression)

 Tests whether expression contains a phone number.
The optional country_code argument specifies the country to use for parsing.

 has_phone(ctx, expression, country_code)

 has_phrase(ctx, expression, phrase)

 Tests whether phrase is contained in expression

 has_text(ctx, expression)

 Tests whether there the expression has any characters in it

 has_time(ctx, expression)

 Tests whether expression contains a time.

 hour(ctx, date)

 Returns only the hour of a datetime (0 to 23)

 isbool(ctx, var)

 Returns true if the argument is a boolean.

 isnumber(ctx, var)

 Returns true if the argument is a number.

 isstring(ctx, binary)

 Returns true if the argument is a string.

 left(ctx, binary, size)

 Returns the first characters in a text string. This is Unicode safe.

 len(ctx, binary)

 Returns the number of characters in a text string

 lower(ctx, binary)

 Converts a text string to lowercase

 map(ctx, enumerable, mapper)

 map over a list of items and apply the mapper function to every item, returning
the result.

 max_vargs(ctx, arguments)

 Returns the maximum value of all arguments

 min_vargs(ctx, arguments)

 Returns the minimum value of all arguments

 minute(ctx, date)

 Returns only the minute of a datetime (0 to 59)

 month(ctx, date)

 Returns only the month of a date (1 to 12)

 not_(ctx, argument)

 Returns false if the argument supplied evaluates to truth-y

 now(ctx)

 Returns the current date time as UTC

 or_vargs(ctx, arguments)

 Returns true if any argument is true.
Returns the first truthy value found or otherwise false.

 parse_float(number)

 percent(ctx, float)

 Formats a number as a percentage

 power(ctx, a, b)

 Returns the result of a number raised to a power - equivalent to the ^ operator

 proper(ctx, binary)

 Capitalizes the first letter of every word in a text string

 read_digits(ctx, binary)

 Formats digits in text for reading in TTS

 rem(ctx, integer1, integer2)

 Return the division remainder of two integers.

 remove_first_word(ctx, binary)

 Removes the first word from the given text. The remaining text will be unchanged

 remove_first_word(ctx, binary, separator)

 rept(ctx, value, amount)

 Repeats text a given number of times

 right(ctx, binary, size)

 Returns the last characters in a text string.
This is Unicode safe.

 second(ctx, date)

 Returns only the second of a datetime (0 to 59)

 substitute(ctx, subject, pattern, replacement)

 Substitutes new_text for old_text in a text string. If instance_num is given, then only that instance will be substituted

 sum_vargs(ctx, arguments)

 Returns the sum of all arguments, equivalent to the + operator

 time(ctx, hours, minutes, seconds)

 Defines a time value which can be used for time arithmetic

 timevalue(ctx, expression)

 Converts time stored in text to an actual time

 today(ctx)

 Returns the current date

 unichar(ctx, code)

 Returns the unicode character specified by a number

 unicode(ctx, arg)

 Returns a numeric code for the first character in a text string

 upper(ctx, binary)

 Converts a text string to uppercase

 weekday(ctx, date)

 Returns the day of the week of a date (1 for Sunday to 7 for Saturday)

 word(ctx, binary, n)

 Extracts the nth word from the given text string. If stop is a negative number,
then it is treated as count backwards from the end of the text. If by_spaces is
specified and is true then the function splits the text into words only by spaces.
Otherwise the text is split by punctuation characters as well

 word(ctx, binary, n, by_spaces)

 word_count(ctx, binary)

 Returns the number of words in the given text string. If by_spaces is specified and is true then the function splits the text into words only by spaces. Otherwise the text is split by punctuation characters as well

 word_count(ctx, binary, by_spaces)

 word_slice(ctx, binary, start)

 Extracts a substring of the words beginning at start, and up to but not-including stop.
If stop is omitted then the substring will be all words from start until the end of the text.
If stop is a negative number, then it is treated as count backwards from the end of the text.
If by_spaces is specified and is true then the function splits the text into words only by spaces.
Otherwise the text is split by punctuation characters as well

 word_slice(ctx, binary, start, stop)

 word_slice(ctx, binary, start, stop, by_spaces)

 year(ctx, date)

 Returns only the year of a date

 Functions

 abs(ctx, number)

Returns the absolute value of a number
Example 1:
When used in the following Stack expression it returns a value of type Integer: 1.
> abs(-1)
1
When used as an expression in text, prepend it with an @:
> "... @abs(-1) ..."
"1"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @abs(-1) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", 1, " impact"] = result
["chat for ", 1, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "abs(-1)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert 1 = result
1
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@abs(-1)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"1"

 and_vargs(ctx, arguments)

Returns true if and only if all its arguments evaluate to true
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"contact" => %{"age" => 32, "gender" => "F"}}
> contact.gender = "F" and contact.age >= 18
true
When used as an expression in text, prepend it with an @:
> "... @and(contact.gender = "F", contact.age >= 18) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @and(contact.gender = \"F\", contact.age >= 18) impact",
...> Expression.V2.Context.new(%{"contact" => %{"age" => 32, "gender" => "F"}}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "and(contact.gender = \"F\", contact.age >= 18)",
...> Expression.V2.Context.new(%{"contact" => %{"age" => 32, "gender" => "F"}}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@and(contact.gender = \"F\", contact.age >= 18)",
...> Expression.V2.Context.new(%{"contact" => %{"age" => 32, "gender" => "F"}}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false when used with the following context:
%{"contact" => %{"age" => 32, "gender" => "?"}}
> contact.gender = "F" and contact.age >= 18
false
When used as an expression in text, prepend it with an @:
> "... @and(contact.gender = "F", contact.age >= 18) ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @and(contact.gender = \"F\", contact.age >= 18) impact",
...> Expression.V2.Context.new(%{"contact" => %{"age" => 32, "gender" => "?"}}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "and(contact.gender = \"F\", contact.age >= 18)",
...> Expression.V2.Context.new(%{"contact" => %{"age" => 32, "gender" => "?"}}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@and(contact.gender = \"F\", contact.age >= 18)",
...> Expression.V2.Context.new(%{"contact" => %{"age" => 32, "gender" => "?"}}, Expression.V2.Callbacks.Standard)
...>)
"false"

 append(ctx, list, payload)

Appends an item or a list of items to a given list.
Example 1:
When used in the following Stack expression it returns a value of type List with values String, String, String: ["A", "B", "C"].
> append(["A", "B"], "C")
["A", "B", "C"]
When used as an expression in text, prepend it with an @:
> "... @append(["A", "B"], "C") ..."
"ABC"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @append([\"A\", \"B\"], \"C\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", ["A", "B", "C"], " impact"] = result
["chat for ", ["A", "B", "C"], " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "append([\"A\", \"B\"], \"C\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert ["A", "B", "C"] = result
["A", "B", "C"]
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@append([\"A\", \"B\"], \"C\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"ABC"

Example 2:
When used in the following Stack expression it returns a value of type List with values String, String, String, String: ["A", "B", "C", "B"].
> append(["A", "B"], ["C", "B"])
["A", "B", "C", "B"]
When used as an expression in text, prepend it with an @:
> "... @append(["A", "B"], ["C", "B"]) ..."
"ABCB"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @append([\"A\", \"B\"], [\"C\", \"B\"]) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", ["A", "B", "C", "B"], " impact"] = result
["chat for ", ["A", "B", "C", "B"], " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "append([\"A\", \"B\"], [\"C\", \"B\"])",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert ["A", "B", "C", "B"] = result
["A", "B", "C", "B"]
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@append([\"A\", \"B\"], [\"C\", \"B\"])",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"ABCB"

 callback(module \\ __MODULE__, context, function_name, args)

See Expression.V2.Callbacks.callback/4.

 char(ctx, code)

Returns the character specified by a number
> "As easy as @char(65), @char(66), @char(67)"
"As easy as A, B, C"
Example 1:
When used in the following Stack expression it returns a value of type String: "A".
> char(65)
"A"
When used as an expression in text, prepend it with an @:
> "... @char(65) ..."
"A"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @char(65) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "A", " impact"] = result
["chat for ", "A", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "char(65)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "A" = result
"A"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@char(65)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"A"

 clean(ctx, binary)

Removes all non-printable characters from a text string
Example 1:
When used in the following Stack expression it returns a value of type String: "ABC" when used with the following context:
%{"value" => <<65, 0, 66, 0, 67>>}
> clean(value)
"ABC"
When used as an expression in text, prepend it with an @:
> "... @clean(value) ..."
"ABC"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @clean(value) impact",
...> Expression.V2.Context.new(%{"value" => <<65, 0, 66, 0, 67>>}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "ABC", " impact"] = result
["chat for ", "ABC", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "clean(value)",
...> Expression.V2.Context.new(%{"value" => <<65, 0, 66, 0, 67>>}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "ABC" = result
"ABC"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@clean(value)",
...> Expression.V2.Context.new(%{"value" => <<65, 0, 66, 0, 67>>}, Expression.V2.Callbacks.Standard)
...>)
"ABC"

 code(ctx, arg)

Returns a numeric code for the first character in a text string
> "The numeric code of A is @CODE(\"A\")"
"The numeric code of A is 65"
Example 1:
When used in the following Stack expression it returns a value of type Integer: 65.
> code("A")
65
When used as an expression in text, prepend it with an @:
> "... @code("A") ..."
"65"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @code(\"A\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", 65, " impact"] = result
["chat for ", 65, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "code(\"A\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert 65 = result
65
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@code(\"A\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"65"

 concatenate_vargs(ctx, arguments)

Joins text strings into one text string
> "Your name is @CONCATENATE(contact.first_name, \" \", contact.last_name)"
"Your name is name surname"
Example 1:
When used in the following Stack expression it returns a value of type String: "name surname" when used with the following context:
%{"contact" => %{"first_name" => "name", "last_name" => "surname"}}
> concatenate(contact.first_name, " ", contact.last_name)
"name surname"
When used as an expression in text, prepend it with an @:
> "... @concatenate(contact.first_name, " ", contact.last_name) ..."
"name surname"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @concatenate(contact.first_name, \" \", contact.last_name) impact",
...> Expression.V2.Context.new(%{"contact" => %{"first_name" => "name", "last_name" => "surname"}}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "name surname", " impact"] = result
["chat for ", "name surname", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "concatenate(contact.first_name, \" \", contact.last_name)",
...> Expression.V2.Context.new(%{"contact" => %{"first_name" => "name", "last_name" => "surname"}}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "name surname" = result
"name surname"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@concatenate(contact.first_name, \" \", contact.last_name)",
...> Expression.V2.Context.new(%{"contact" => %{"first_name" => "name", "last_name" => "surname"}}, Expression.V2.Callbacks.Standard)
...>)
"name surname"

 date(ctx, year, month, day)

Defines a new date value
Example 1:
Construct a date from year, month, and day integers

When used in the following Stack expression it returns a value of type Date: ~D[2022-01-31] when used with the following context:
%{"day" => 31, "month" => 1, "year" => 2022}
> date(year, month, day)
~D[2022-01-31]
When used as an expression in text, prepend it with an @:
> "... @date(year, month, day) ..."
"2022-01-31"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @date(year, month, day) impact",
...> Expression.V2.Context.new(%{"day" => 31, "month" => 1, "year" => 2022}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", ~D[2022-01-31], " impact"] = result
["chat for ", ~D[2022-01-31], " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "date(year, month, day)",
...> Expression.V2.Context.new(%{"day" => 31, "month" => 1, "year" => 2022}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert ~D[2022-01-31] = result
~D[2022-01-31]
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@date(year, month, day)",
...> Expression.V2.Context.new(%{"day" => 31, "month" => 1, "year" => 2022}, Expression.V2.Callbacks.Standard)
...>)
"2022-01-31"

 datetime_add(ctx, datetime, offset, unit)

Calculates a new datetime based on the offset and unit provided.
The unit can be any of the following values:
	"Y" for years
	"M" for months
	"W" for weeks
	"D" for days
	"h" for hours
	"m" for minutes
	"s" for seconds

Specifying a negative offset results in date calculations back in time.
Example 1:
Calculates a new datetime based on the offset and unit provided.

When used in the following Stack expression it returns a value of type DateTime: ~U[2022-08-31 00:00:00Z] when used with the following context:
%{"datetime" => ~U[2022-07-31 00:00:00Z], "offset" => 1, "unit" => "M"}
> datetime_add(datetime, offset, unit)
~U[2022-08-31 00:00:00Z]
When used as an expression in text, prepend it with an @:
> "... @datetime_add(datetime, offset, unit) ..."
"2022-08-31T00:00:00Z"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @datetime_add(datetime, offset, unit) impact",
...> Expression.V2.Context.new(%{"datetime" => ~U[2022-07-31 00:00:00Z], "offset" => 1, "unit" => "M"}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", ~U[2022-08-31 00:00:00Z], " impact"] = result
["chat for ", ~U[2022-08-31 00:00:00Z], " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "datetime_add(datetime, offset, unit)",
...> Expression.V2.Context.new(%{"datetime" => ~U[2022-07-31 00:00:00Z], "offset" => 1, "unit" => "M"}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert ~U[2022-08-31 00:00:00Z] = result
~U[2022-08-31 00:00:00Z]
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@datetime_add(datetime, offset, unit)",
...> Expression.V2.Context.new(%{"datetime" => ~U[2022-07-31 00:00:00Z], "offset" => 1, "unit" => "M"}, Expression.V2.Callbacks.Standard)
...>)
"2022-08-31T00:00:00Z"

Example 2:
Leap year handling in a leap year.

When used in the following Stack expression it returns a value of type DateTime: ~U[2020-02-29 00:00:00.000000Z].
> datetime_add(date(2020, 02, 28), 1, "D")
~U[2020-02-29 00:00:00.000000Z]
When used as an expression in text, prepend it with an @:
> "... @datetime_add(date(2020, 02, 28), 1, "D") ..."
"2020-02-29T00:00:00.000000Z"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @datetime_add(date(2020, 02, 28), 1, \"D\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", ~U[2020-02-29 00:00:00.000000Z], " impact"] = result
["chat for ", ~U[2020-02-29 00:00:00.000000Z], " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "datetime_add(date(2020, 02, 28), 1, \"D\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert ~U[2020-02-29 00:00:00.000000Z] = result
~U[2020-02-29 00:00:00.000000Z]
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@datetime_add(date(2020, 02, 28), 1, \"D\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"2020-02-29T00:00:00.000000Z"

Example 3:
Leap year handling outside of a leap year.

When used in the following Stack expression it returns a value of type DateTime: ~U[2021-03-01 00:00:00.000000Z].
> datetime_add(date(2021, 02, 28), 1, "D")
~U[2021-03-01 00:00:00.000000Z]
When used as an expression in text, prepend it with an @:
> "... @datetime_add(date(2021, 02, 28), 1, "D") ..."
"2021-03-01T00:00:00.000000Z"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @datetime_add(date(2021, 02, 28), 1, \"D\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", ~U[2021-03-01 00:00:00.000000Z], " impact"] = result
["chat for ", ~U[2021-03-01 00:00:00.000000Z], " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "datetime_add(date(2021, 02, 28), 1, \"D\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert ~U[2021-03-01 00:00:00.000000Z] = result
~U[2021-03-01 00:00:00.000000Z]
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@datetime_add(date(2021, 02, 28), 1, \"D\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"2021-03-01T00:00:00.000000Z"

Example 4:
Negative offsets

When used in the following Stack expression it returns a value of type DateTime: ~U[2020-02-28 00:00:00.000000Z].
> datetime_add(date(2020, 02, 29), -1, "D")
~U[2020-02-28 00:00:00.000000Z]
When used as an expression in text, prepend it with an @:
> "... @datetime_add(date(2020, 02, 29), -1, "D") ..."
"2020-02-28T00:00:00.000000Z"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @datetime_add(date(2020, 02, 29), -1, \"D\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", ~U[2020-02-28 00:00:00.000000Z], " impact"] = result
["chat for ", ~U[2020-02-28 00:00:00.000000Z], " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "datetime_add(date(2020, 02, 29), -1, \"D\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert ~U[2020-02-28 00:00:00.000000Z] = result
~U[2020-02-28 00:00:00.000000Z]
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@datetime_add(date(2020, 02, 29), -1, \"D\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"2020-02-28T00:00:00.000000Z"

 datevalue(ctx, date, format \\ "%Y-%m-%d %H:%M:%S")

Converts date stored in text to an actual date object and
formats it using strftime formatting.
It will fallback to "%Y-%m-%d %H:%M:%S" if no formatting is supplied
Example 1:
Convert a date from a piece of text to a formatted date string

When used in the following Stack expression it returns a complex String type of default value:
"2022-01-01 00:00:00"
with the following fields:
	date of type Date
.

> datevalue("2022-01-01")
%{"__value__" => "2022-01-01 00:00:00", "date" => ~D[2022-01-01]}
When used as an expression in text, prepend it with an @:
> "... @datevalue("2022-01-01") ..."
"2022-01-01 00:00:00"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @datevalue(\"2022-01-01\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", %{"__value__" => "2022-01-01 00:00:00", "date" => ~D[2022-01-01]}, " impact"] = result
["chat for ", %{"__value__" => "2022-01-01 00:00:00", "date" => ~D[2022-01-01]}, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "datevalue(\"2022-01-01\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert %{"__value__" => "2022-01-01 00:00:00", "date" => ~D[2022-01-01]} = result
%{"__value__" => "2022-01-01 00:00:00", "date" => ~D[2022-01-01]}
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@datevalue(\"2022-01-01\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"2022-01-01 00:00:00"

Example 2:
Convert a date from a piece of text and read the date field

When used in the following Stack expression it returns a value of type Date: ~D[2022-01-02].
> datevalue("2022-01-02").date
~D[2022-01-02]
When used as an expression in text, prepend it with an @:
> "... @datevalue("2022-01-02").date ..."
"2022-01-02"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @datevalue(\"2022-01-02\").date impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", ~D[2022-01-02], " impact"] = result
["chat for ", ~D[2022-01-02], " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "datevalue(\"2022-01-02\").date",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert ~D[2022-01-02] = result
~D[2022-01-02]
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@datevalue(\"2022-01-02\").date",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"2022-01-02"

Example 3:
Convert a date value and read the date field

When used in the following Stack expression it returns a value of type Date: ~D[2022-01-03].
> datevalue(date(2022, 1, 3)).date
~D[2022-01-03]
When used as an expression in text, prepend it with an @:
> "... @datevalue(date(2022, 1, 3)).date ..."
"2022-01-03"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @datevalue(date(2022, 1, 3)).date impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", ~D[2022-01-03], " impact"] = result
["chat for ", ~D[2022-01-03], " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "datevalue(date(2022, 1, 3)).date",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert ~D[2022-01-03] = result
~D[2022-01-03]
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@datevalue(date(2022, 1, 3)).date",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"2022-01-03"

 day(ctx, date)

Returns only the day of the month of a date (1 to 31)
Example 1:
Getting today's day of the month

When used in the following Stack expression it returns a value of type Integer: 10.
> day(date(2022, 9, 10))
10
When used as an expression in text, prepend it with an @:
> "... @day(date(2022, 9, 10)) ..."
"10"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @day(date(2022, 9, 10)) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", 10, " impact"] = result
["chat for ", 10, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "day(date(2022, 9, 10))",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert 10 = result
10
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@day(date(2022, 9, 10))",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"10"

Example 2:
Getting today's day of the month

When used in the following Stack expression it returns a value of type Integer: 21.
> day(now())
21
When used as an expression in text, prepend it with an @:
> "... @day(now()) ..."
"21"
..$> # Evaluate a string with expressions
..$> import ExUnit.Assertions
..$> result = Expression.V2.eval(
...> "chat for @day(now()) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
..$> assert ["chat for ", 21, " impact"] = result
["chat for ", 21, " impact"]
..$>
..$> # Evaluate a standalone expression block
..$> result = Expression.V2.eval_block(
...> "day(now())",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
..$>
..$> assert 21 = result
21
..$>
..$> # Evaluate a string with expressions into a single string
..$> Expression.V2.eval_as_string(
...> "@day(now())",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"21"

 delete(ctx, map, key)

Deletes an element from a map by the given key.
Example 1:
When used in the following Stack expression it returns a value of type Map: %{"age" => 32} when used with the following context:
%{"patient" => %{"age" => 32, "gender" => "?"}}
> delete(patient, "gender")
%{"age" => 32}
When used as an expression in text, prepend it with an @:
> "... @delete(patient, "gender") ..."
"%{"age" => 32}"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @delete(patient, \"gender\") impact",
...> Expression.V2.Context.new(%{"patient" => %{"age" => 32, "gender" => "?"}}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", %{"age" => 32}, " impact"] = result
["chat for ", %{"age" => 32}, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "delete(patient, \"gender\")",
...> Expression.V2.Context.new(%{"patient" => %{"age" => 32, "gender" => "?"}}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert %{"age" => 32} = result
%{"age" => 32}
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@delete(patient, \"gender\")",
...> Expression.V2.Context.new(%{"patient" => %{"age" => 32, "gender" => "?"}}, Expression.V2.Callbacks.Standard)
...>)
"%{\"age\" => 32}"

 edate(ctx, date, months)

Moves a date by the given number of months
Example 1:
Move the date in a date object by 1 month

When used in the following Stack expression it returns a value of type DateTime: ~U[2022-02-01 00:00:00Z] when used with the following context:
%{"right_now" => ~U[2022-01-01 00:00:00Z]}
> edate(right_now, 1)
~U[2022-02-01 00:00:00Z]
When used as an expression in text, prepend it with an @:
> "... @edate(right_now, 1) ..."
"2022-02-01T00:00:00Z"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @edate(right_now, 1) impact",
...> Expression.V2.Context.new(%{"right_now" => ~U[2022-01-01 00:00:00Z]}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", ~U[2022-02-01 00:00:00Z], " impact"] = result
["chat for ", ~U[2022-02-01 00:00:00Z], " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "edate(right_now, 1)",
...> Expression.V2.Context.new(%{"right_now" => ~U[2022-01-01 00:00:00Z]}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert ~U[2022-02-01 00:00:00Z] = result
~U[2022-02-01 00:00:00Z]
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@edate(right_now, 1)",
...> Expression.V2.Context.new(%{"right_now" => ~U[2022-01-01 00:00:00Z]}, Expression.V2.Callbacks.Standard)
...>)
"2022-02-01T00:00:00Z"

Example 2:
Move the date store in a piece of text by 1 month

When used in the following Stack expression it returns a value of type Date: ~D[2022-11-10].
> edate("2022-10-10", 1)
~D[2022-11-10]
When used as an expression in text, prepend it with an @:
> "... @edate("2022-10-10", 1) ..."
"2022-11-10"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @edate(\"2022-10-10\", 1) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", ~D[2022-11-10], " impact"] = result
["chat for ", ~D[2022-11-10], " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "edate(\"2022-10-10\", 1)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert ~D[2022-11-10] = result
~D[2022-11-10]
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@edate(\"2022-10-10\", 1)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"2022-11-10"

 expression_docs()

Return a list of all functions annotated with @expression_docs

 first_word(ctx, binary)

Returns the first word in the given text - equivalent to WORD(text, 1)
Example 1:
When used in the following Stack expression it returns a value of type String: "foo".
> first_word("foo bar baz")
"foo"
When used as an expression in text, prepend it with an @:
> "... @first_word("foo bar baz") ..."
"foo"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @first_word(\"foo bar baz\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "foo", " impact"] = result
["chat for ", "foo", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "first_word(\"foo bar baz\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "foo" = result
"foo"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@first_word(\"foo bar baz\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"foo"

 fixed(ctx, number, precision, no_commas \\ false)

Formats the given number in decimal format using a period and commas
> You have @fixed(contact.balance, 2) in your account
"You have 4.21 in your account"
Example 1:
When used in the following Stack expression it returns a value of type String: "4.21".
> fixed(4.209922, 2, false)
"4.21"
When used as an expression in text, prepend it with an @:
> "... @fixed(4.209922, 2, false) ..."
"4.21"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @fixed(4.209922, 2, false) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "4.21", " impact"] = result
["chat for ", "4.21", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "fixed(4.209922, 2, false)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "4.21" = result
"4.21"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@fixed(4.209922, 2, false)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"4.21"

Example 2:
When used in the following Stack expression it returns a value of type String: "4,000.4242".
> fixed(4000.424242, 4, true)
"4,000.4242"
When used as an expression in text, prepend it with an @:
> "... @fixed(4000.424242, 4, true) ..."
"4,000.4242"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @fixed(4000.424242, 4, true) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "4,000.4242", " impact"] = result
["chat for ", "4,000.4242", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "fixed(4000.424242, 4, true)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "4,000.4242" = result
"4,000.4242"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@fixed(4000.424242, 4, true)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"4,000.4242"

Example 3:
When used in the following Stack expression it returns a value of type String: "3.80".
> fixed(3.7979, 2, false)
"3.80"
When used as an expression in text, prepend it with an @:
> "... @fixed(3.7979, 2, false) ..."
"3.80"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @fixed(3.7979, 2, false) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "3.80", " impact"] = result
["chat for ", "3.80", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "fixed(3.7979, 2, false)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "3.80" = result
"3.80"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@fixed(3.7979, 2, false)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"3.80"

Example 4:
When used in the following Stack expression it returns a value of type String: "3.80".
> fixed(3.7979, 2)
"3.80"
When used as an expression in text, prepend it with an @:
> "... @fixed(3.7979, 2) ..."
"3.80"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @fixed(3.7979, 2) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "3.80", " impact"] = result
["chat for ", "3.80", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "fixed(3.7979, 2)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "3.80" = result
"3.80"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@fixed(3.7979, 2)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"3.80"

 has_all_words(ctx, haystack, words)

Tests whether all the words are contained in text
The words can be in any order and may appear more than once.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_all_words("the quick brown FOX", "the fox")
true
When used as an expression in text, prepend it with an @:
> "... @has_all_words("the quick brown FOX", "the fox") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_all_words(\"the quick brown FOX\", \"the fox\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_all_words(\"the quick brown FOX\", \"the fox\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_all_words(\"the quick brown FOX\", \"the fox\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_all_words("the quick brown FOX", "red fox")
false
When used as an expression in text, prepend it with an @:
> "... @has_all_words("the quick brown FOX", "red fox") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_all_words(\"the quick brown FOX\", \"red fox\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_all_words(\"the quick brown FOX\", \"red fox\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_all_words(\"the quick brown FOX\", \"red fox\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_any_word(ctx, haystack, words)

Tests whether any of the words are contained in the text
Only one of the words needs to match and it may appear more than once.
Example 1:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	match of type String
.

> has_any_word("The Quick Brown Fox", "fox quick")
%{"__value__" => true, "match" => "Quick Fox"}
When used as an expression in text, prepend it with an @:
> "... @has_any_word("The Quick Brown Fox", "fox quick") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_any_word(\"The Quick Brown Fox\", \"fox quick\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", %{"__value__" => true, "match" => "Quick Fox"}, " impact"] = result
["chat for ", %{"__value__" => true, "match" => "Quick Fox"}, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_any_word(\"The Quick Brown Fox\", \"fox quick\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert %{"__value__" => true, "match" => "Quick Fox"} = result
%{"__value__" => true, "match" => "Quick Fox"}
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_any_word(\"The Quick Brown Fox\", \"fox quick\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a complex Boolean type of default value:
false
with the following fields:
	match of type Null
.

> has_any_word("The Quick Brown Fox", "yellow")
%{"__value__" => false, "match" => nil}
When used as an expression in text, prepend it with an @:
> "... @has_any_word("The Quick Brown Fox", "yellow") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_any_word(\"The Quick Brown Fox\", \"yellow\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", %{"__value__" => false, "match" => nil}, " impact"] = result
["chat for ", %{"__value__" => false, "match" => nil}, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_any_word(\"The Quick Brown Fox\", \"yellow\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert %{"__value__" => false, "match" => nil} = result
%{"__value__" => false, "match" => nil}
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_any_word(\"The Quick Brown Fox\", \"yellow\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_beginning(ctx, text, beginning)

Tests whether text starts with beginning
Both text values are trimmed of surrounding whitespace, but otherwise matching is
strict without any tokenization.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_beginning("The Quick Brown", "the quick")
true
When used as an expression in text, prepend it with an @:
> "... @has_beginning("The Quick Brown", "the quick") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_beginning(\"The Quick Brown\", \"the quick\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_beginning(\"The Quick Brown\", \"the quick\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_beginning(\"The Quick Brown\", \"the quick\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_beginning("The Quick Brown", "the quick")
false
When used as an expression in text, prepend it with an @:
> "... @has_beginning("The Quick Brown", "the quick") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_beginning(\"The Quick Brown\", \"the quick\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_beginning(\"The Quick Brown\", \"the quick\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_beginning(\"The Quick Brown\", \"the quick\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_beginning("The Quick Brown", "quick brown")
false
When used as an expression in text, prepend it with an @:
> "... @has_beginning("The Quick Brown", "quick brown") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_beginning(\"The Quick Brown\", \"quick brown\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_beginning(\"The Quick Brown\", \"quick brown\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_beginning(\"The Quick Brown\", \"quick brown\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_date(ctx, expression)

Tests whether expression contains a date formatted according to our environment
This is very naively implemented with a regular expression.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_date("the date is 15/01/2017")
true
When used as an expression in text, prepend it with an @:
> "... @has_date("the date is 15/01/2017") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_date(\"the date is 15/01/2017\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_date(\"the date is 15/01/2017\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_date(\"the date is 15/01/2017\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_date("there is no date here, just a year 2017")
false
When used as an expression in text, prepend it with an @:
> "... @has_date("there is no date here, just a year 2017") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_date(\"there is no date here, just a year 2017\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_date(\"there is no date here, just a year 2017\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_date(\"there is no date here, just a year 2017\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_date_eq(ctx, expression, date_string)

Tests whether expression is a date equal to date_string
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_date_eq("the date is 15/01/2017", "2017-01-15")
true
When used as an expression in text, prepend it with an @:
> "... @has_date_eq("the date is 15/01/2017", "2017-01-15") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_date_eq(\"the date is 15/01/2017\", \"2017-01-15\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_date_eq(\"the date is 15/01/2017\", \"2017-01-15\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_date_eq(\"the date is 15/01/2017\", \"2017-01-15\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_date_eq("there is no date here, just a year 2017", "2017-01-15")
false
When used as an expression in text, prepend it with an @:
> "... @has_date_eq("there is no date here, just a year 2017", "2017-01-15") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_date_eq(\"there is no date here, just a year 2017\", \"2017-01-15\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_date_eq(\"there is no date here, just a year 2017\", \"2017-01-15\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_date_eq(\"there is no date here, just a year 2017\", \"2017-01-15\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_date_gt(ctx, expression, date_string)

Tests whether expression is a date after the date date_string
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_date_gt("the date is 15/01/2017", "2017-01-01")
true
When used as an expression in text, prepend it with an @:
> "... @has_date_gt("the date is 15/01/2017", "2017-01-01") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_date_gt(\"the date is 15/01/2017\", \"2017-01-01\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_date_gt(\"the date is 15/01/2017\", \"2017-01-01\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_date_gt(\"the date is 15/01/2017\", \"2017-01-01\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_date_gt("the date is 15/01/2017", "2017-03-15")
false
When used as an expression in text, prepend it with an @:
> "... @has_date_gt("the date is 15/01/2017", "2017-03-15") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_date_gt(\"the date is 15/01/2017\", \"2017-03-15\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_date_gt(\"the date is 15/01/2017\", \"2017-03-15\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_date_gt(\"the date is 15/01/2017\", \"2017-03-15\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_date_lt(ctx, expression, date_string)

Tests whether expression contains a date before the date date_string
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_date_lt("the date is 15/01/2017", "2017-06-01")
true
When used as an expression in text, prepend it with an @:
> "... @has_date_lt("the date is 15/01/2017", "2017-06-01") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_date_lt(\"the date is 15/01/2017\", \"2017-06-01\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_date_lt(\"the date is 15/01/2017\", \"2017-06-01\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_date_lt(\"the date is 15/01/2017\", \"2017-06-01\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_date_lt("the date is 15/01/2021", "2017-03-15")
false
When used as an expression in text, prepend it with an @:
> "... @has_date_lt("the date is 15/01/2021", "2017-03-15") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_date_lt(\"the date is 15/01/2021\", \"2017-03-15\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_date_lt(\"the date is 15/01/2021\", \"2017-03-15\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_date_lt(\"the date is 15/01/2021\", \"2017-03-15\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_email(ctx, expression)

Tests whether an email is contained in text
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_email("my email is foo1@bar.com, please respond")
true
When used as an expression in text, prepend it with an @:
> "... @has_email("my email is foo1@bar.com, please respond") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_email(\"my email is foo1@bar.com, please respond\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_email(\"my email is foo1@bar.com, please respond\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_email(\"my email is foo1@bar.com, please respond\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_email("i'm not sharing my email")
false
When used as an expression in text, prepend it with an @:
> "... @has_email("i'm not sharing my email") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_email(\"i'm not sharing my email\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_email(\"i'm not sharing my email\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_email(\"i'm not sharing my email\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_group(ctx, groups, uuid)

Returns whether the contact is part of group with the passed in UUID
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"contact" => %{"groups" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}]}}
> has_group(contact.groups, "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d")
true
When used as an expression in text, prepend it with an @:
> "... @has_group(contact.groups, "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_group(contact.groups, \"b7cf0d83-f1c9-411c-96fd-c511a4cfa86d\") impact",
...> Expression.V2.Context.new(%{"contact" => %{"groups" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}]}}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_group(contact.groups, \"b7cf0d83-f1c9-411c-96fd-c511a4cfa86d\")",
...> Expression.V2.Context.new(%{"contact" => %{"groups" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}]}}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_group(contact.groups, \"b7cf0d83-f1c9-411c-96fd-c511a4cfa86d\")",
...> Expression.V2.Context.new(%{"contact" => %{"groups" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}]}}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false when used with the following context:
%{"contact" => %{"groups" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}]}}
> has_group(contact.groups, "00000000-0000-0000-0000-000000000000")
false
When used as an expression in text, prepend it with an @:
> "... @has_group(contact.groups, "00000000-0000-0000-0000-000000000000") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_group(contact.groups, \"00000000-0000-0000-0000-000000000000\") impact",
...> Expression.V2.Context.new(%{"contact" => %{"groups" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}]}}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_group(contact.groups, \"00000000-0000-0000-0000-000000000000\")",
...> Expression.V2.Context.new(%{"contact" => %{"groups" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}]}}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_group(contact.groups, \"00000000-0000-0000-0000-000000000000\")",
...> Expression.V2.Context.new(%{"contact" => %{"groups" => [%{"uuid" => "b7cf0d83-f1c9-411c-96fd-c511a4cfa86d"}]}}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_number(ctx, expression)

Tests whether expression contains a number
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number("the number is 42 and 5")
true
When used as an expression in text, prepend it with an @:
> "... @has_number("the number is 42 and 5") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number(\"the number is 42 and 5\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number(\"the number is 42 and 5\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number(\"the number is 42 and 5\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number("العدد ٤٢")
true
When used as an expression in text, prepend it with an @:
> "... @has_number("العدد ٤٢") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number(\"العدد ٤٢\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number(\"العدد ٤٢\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number(\"العدد ٤٢\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number("٠.٥")
true
When used as an expression in text, prepend it with an @:
> "... @has_number("٠.٥") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number(\"٠.٥\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number(\"٠.٥\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number(\"٠.٥\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number("0.6")
true
When used as an expression in text, prepend it with an @:
> "... @has_number("0.6") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number(\"0.6\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number(\"0.6\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number(\"0.6\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 5:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number("")
false
When used as an expression in text, prepend it with an @:
> "... @has_number("") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number(\"\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number(\"\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number(\"\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 6:
When used in the following Stack expression it returns a value of type Boolean: false when used with the following context:
%{"value" => nil}
> has_number(value)
false
When used as an expression in text, prepend it with an @:
> "... @has_number(value) ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number(value) impact",
...> Expression.V2.Context.new(%{"value" => nil}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number(value)",
...> Expression.V2.Context.new(%{"value" => nil}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number(value)",
...> Expression.V2.Context.new(%{"value" => nil}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_number_eq(ctx, expression, float)

Tests whether expression contains a number equal to the value
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_eq("the number is 42", 42)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_eq("the number is 42", 42) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_eq(\"the number is 42\", 42) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_eq(\"the number is 42\", 42)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_eq(\"the number is 42\", 42)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_eq("the number is 42", 42.0)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_eq("the number is 42", 42.0) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_eq(\"the number is 42\", 42.0) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_eq(\"the number is 42\", 42.0)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_eq(\"the number is 42\", 42.0)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_eq("the number is 42", "42")
true
When used as an expression in text, prepend it with an @:
> "... @has_number_eq("the number is 42", "42") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_eq(\"the number is 42\", \"42\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_eq(\"the number is 42\", \"42\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_eq(\"the number is 42\", \"42\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_eq("the number is 42.0", "42")
true
When used as an expression in text, prepend it with an @:
> "... @has_number_eq("the number is 42.0", "42") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_eq(\"the number is 42.0\", \"42\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_eq(\"the number is 42.0\", \"42\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_eq(\"the number is 42.0\", \"42\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 5:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_eq("the number is 40", "42")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_eq("the number is 40", "42") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_eq(\"the number is 40\", \"42\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_eq(\"the number is 40\", \"42\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_eq(\"the number is 40\", \"42\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 6:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_eq("the number is 40", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_eq("the number is 40", "foo") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_eq(\"the number is 40\", \"foo\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_eq(\"the number is 40\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_eq(\"the number is 40\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 7:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_eq("four hundred", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_eq("four hundred", "foo") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_eq(\"four hundred\", \"foo\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_eq(\"four hundred\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_eq(\"four hundred\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_number_gt(ctx, expression, float)

Tests whether expression contains a number greater than min
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_gt("the number is 42", 40)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gt("the number is 42", 40) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_gt(\"the number is 42\", 40) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_gt(\"the number is 42\", 40)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_gt(\"the number is 42\", 40)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_gt("the number is 42", 40.0)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gt("the number is 42", 40.0) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_gt(\"the number is 42\", 40.0) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_gt(\"the number is 42\", 40.0)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_gt(\"the number is 42\", 40.0)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_gt("the number is 42", "40")
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gt("the number is 42", "40") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_gt(\"the number is 42\", \"40\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_gt(\"the number is 42\", \"40\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_gt(\"the number is 42\", \"40\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_gt("the number is 42.0", "40")
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gt("the number is 42.0", "40") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_gt(\"the number is 42.0\", \"40\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_gt(\"the number is 42.0\", \"40\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_gt(\"the number is 42.0\", \"40\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 5:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_gt("the number is 40", "40")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_gt("the number is 40", "40") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_gt(\"the number is 40\", \"40\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_gt(\"the number is 40\", \"40\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_gt(\"the number is 40\", \"40\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 6:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_gt("the number is 40", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_gt("the number is 40", "foo") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_gt(\"the number is 40\", \"foo\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_gt(\"the number is 40\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_gt(\"the number is 40\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 7:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_gt("four hundred", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_gt("four hundred", "foo") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_gt(\"four hundred\", \"foo\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_gt(\"four hundred\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_gt(\"four hundred\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_number_gte(ctx, expression, float)

Tests whether expression contains a number greater than or equal to min
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_gte("the number is 42", 42)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gte("the number is 42", 42) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_gte(\"the number is 42\", 42) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_gte(\"the number is 42\", 42)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_gte(\"the number is 42\", 42)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_gte("the number is 42", 42.0)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gte("the number is 42", 42.0) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_gte(\"the number is 42\", 42.0) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_gte(\"the number is 42\", 42.0)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_gte(\"the number is 42\", 42.0)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_gte("the number is 42", "42")
true
When used as an expression in text, prepend it with an @:
> "... @has_number_gte("the number is 42", "42") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_gte(\"the number is 42\", \"42\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_gte(\"the number is 42\", \"42\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_gte(\"the number is 42\", \"42\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_gte("the number is 42.0", "45")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_gte("the number is 42.0", "45") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_gte(\"the number is 42.0\", \"45\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_gte(\"the number is 42.0\", \"45\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_gte(\"the number is 42.0\", \"45\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 5:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_gte("the number is 40", "45")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_gte("the number is 40", "45") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_gte(\"the number is 40\", \"45\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_gte(\"the number is 40\", \"45\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_gte(\"the number is 40\", \"45\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 6:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_gte("the number is 40", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_gte("the number is 40", "foo") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_gte(\"the number is 40\", \"foo\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_gte(\"the number is 40\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_gte(\"the number is 40\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 7:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_gte("four hundred", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_gte("four hundred", "foo") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_gte(\"four hundred\", \"foo\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_gte(\"four hundred\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_gte(\"four hundred\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_number_lt(ctx, expression, float)

Tests whether expression contains a number less than max
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_lt("the number is 42", 44)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_lt("the number is 42", 44) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_lt(\"the number is 42\", 44) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_lt(\"the number is 42\", 44)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_lt(\"the number is 42\", 44)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_lt("the number is 42", 44.0)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_lt("the number is 42", 44.0) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_lt(\"the number is 42\", 44.0) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_lt(\"the number is 42\", 44.0)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_lt(\"the number is 42\", 44.0)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lt("the number is 42", "40")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lt("the number is 42", "40") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_lt(\"the number is 42\", \"40\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_lt(\"the number is 42\", \"40\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_lt(\"the number is 42\", \"40\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lt("the number is 42.0", "40")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lt("the number is 42.0", "40") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_lt(\"the number is 42.0\", \"40\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_lt(\"the number is 42.0\", \"40\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_lt(\"the number is 42.0\", \"40\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 5:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lt("the number is 40", "40")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lt("the number is 40", "40") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_lt(\"the number is 40\", \"40\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_lt(\"the number is 40\", \"40\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_lt(\"the number is 40\", \"40\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 6:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lt("the number is 40", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lt("the number is 40", "foo") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_lt(\"the number is 40\", \"foo\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_lt(\"the number is 40\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_lt(\"the number is 40\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 7:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lt("four hundred", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lt("four hundred", "foo") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_lt(\"four hundred\", \"foo\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_lt(\"four hundred\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_lt(\"four hundred\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_number_lte(ctx, expression, float)

Tests whether expression contains a number less than or equal to max
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_lte("the number is 42", 42)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_lte("the number is 42", 42) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_lte(\"the number is 42\", 42) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_lte(\"the number is 42\", 42)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_lte(\"the number is 42\", 42)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_lte("the number is 42", 42.0)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_lte("the number is 42", 42.0) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_lte(\"the number is 42\", 42.0) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_lte(\"the number is 42\", 42.0)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_lte(\"the number is 42\", 42.0)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_number_lte("the number is 42", "42")
true
When used as an expression in text, prepend it with an @:
> "... @has_number_lte("the number is 42", "42") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_lte(\"the number is 42\", \"42\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_lte(\"the number is 42\", \"42\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_lte(\"the number is 42\", \"42\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lte("the number is 42.0", "40")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lte("the number is 42.0", "40") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_lte(\"the number is 42.0\", \"40\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_lte(\"the number is 42.0\", \"40\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_lte(\"the number is 42.0\", \"40\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 5:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lte("the number is 40", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lte("the number is 40", "foo") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_lte(\"the number is 40\", \"foo\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_lte(\"the number is 40\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_lte(\"the number is 40\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 6:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_number_lte("four hundred", "foo")
false
When used as an expression in text, prepend it with an @:
> "... @has_number_lte("four hundred", "foo") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_lte(\"four hundred\", \"foo\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_lte(\"four hundred\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_lte(\"four hundred\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 7:
When used in the following Stack expression it returns a value of type Boolean: true when used with the following context:
%{"response" => 3}
> has_number_lte(response, 5)
true
When used as an expression in text, prepend it with an @:
> "... @has_number_lte(response, 5) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_number_lte(response, 5) impact",
...> Expression.V2.Context.new(%{"response" => 3}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_number_lte(response, 5)",
...> Expression.V2.Context.new(%{"response" => 3}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_number_lte(response, 5)",
...> Expression.V2.Context.new(%{"response" => 3}, Expression.V2.Callbacks.Standard)
...>)
"true"

 has_only_phrase(ctx, expression, phrase)

Tests whether the text contains only phrase
The phrase must be the only text in the text to match
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_only_phrase("Quick Brown", "quick brown")
true
When used as an expression in text, prepend it with an @:
> "... @has_only_phrase("Quick Brown", "quick brown") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_only_phrase(\"Quick Brown\", \"quick brown\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_only_phrase(\"Quick Brown\", \"quick brown\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_only_phrase(\"Quick Brown\", \"quick brown\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_only_phrase("", " ")
true
When used as an expression in text, prepend it with an @:
> "... @has_only_phrase("", " ") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_only_phrase(\"\", \" \") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_only_phrase(\"\", \" \")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_only_phrase(\"\", \" \")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_only_phrase("The Quick Brown Fox", "quick brown")
false
When used as an expression in text, prepend it with an @:
> "... @has_only_phrase("The Quick Brown Fox", "quick brown") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_only_phrase(\"The Quick Brown Fox\", \"quick brown\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_only_phrase(\"The Quick Brown Fox\", \"quick brown\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_only_phrase(\"The Quick Brown Fox\", \"quick brown\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_only_text(ctx, expression_one, expression_two)

Returns whether two text values are equal (case sensitive). In the case that they are, it will return the text as the match.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_only_text("foo", "foo")
true
When used as an expression in text, prepend it with an @:
> "... @has_only_text("foo", "foo") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_only_text(\"foo\", \"foo\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_only_text(\"foo\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_only_text(\"foo\", \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_only_text("", "")
true
When used as an expression in text, prepend it with an @:
> "... @has_only_text("", "") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_only_text(\"\", \"\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_only_text(\"\", \"\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_only_text(\"\", \"\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_only_text("foo", "FOO")
false
When used as an expression in text, prepend it with an @:
> "... @has_only_text("foo", "FOO") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_only_text(\"foo\", \"FOO\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_only_text(\"foo\", \"FOO\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_only_text(\"foo\", \"FOO\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_pattern(ctx, expression, pattern)

Tests whether expression matches the regex pattern
Both text values are trimmed of surrounding whitespace and matching is case-insensitive.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_pattern("Buy cheese please", "buy (\w+)")
true
When used as an expression in text, prepend it with an @:
> "... @has_pattern("Buy cheese please", "buy (\w+)") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_pattern(\"Buy cheese please\", \"buy (\\w+)\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_pattern(\"Buy cheese please\", \"buy (\\w+)\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_pattern(\"Buy cheese please\", \"buy (\\w+)\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_pattern("Sell cheese please", "buy (\w+)")
false
When used as an expression in text, prepend it with an @:
> "... @has_pattern("Sell cheese please", "buy (\w+)") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_pattern(\"Sell cheese please\", \"buy (\\w+)\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_pattern(\"Sell cheese please\", \"buy (\\w+)\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_pattern(\"Sell cheese please\", \"buy (\\w+)\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_phone(ctx, expression)

Tests whether expression contains a phone number.
The optional country_code argument specifies the country to use for parsing.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_phone("my number is +12067799294 thanks")
true
When used as an expression in text, prepend it with an @:
> "... @has_phone("my number is +12067799294 thanks") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_phone(\"my number is +12067799294 thanks\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_phone(\"my number is +12067799294 thanks\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_phone(\"my number is +12067799294 thanks\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_phone("my number is 2067799294 thanks", "US")
true
When used as an expression in text, prepend it with an @:
> "... @has_phone("my number is 2067799294 thanks", "US") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_phone(\"my number is 2067799294 thanks\", \"US\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_phone(\"my number is 2067799294 thanks\", \"US\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_phone(\"my number is 2067799294 thanks\", \"US\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_phone("my number is 206 779 9294 thanks", "US")
true
When used as an expression in text, prepend it with an @:
> "... @has_phone("my number is 206 779 9294 thanks", "US") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_phone(\"my number is 206 779 9294 thanks\", \"US\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_phone(\"my number is 206 779 9294 thanks\", \"US\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_phone(\"my number is 206 779 9294 thanks\", \"US\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_phone("my number is none of your business", "US")
false
When used as an expression in text, prepend it with an @:
> "... @has_phone("my number is none of your business", "US") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_phone(\"my number is none of your business\", \"US\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_phone(\"my number is none of your business\", \"US\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_phone(\"my number is none of your business\", \"US\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 has_phone(ctx, expression, country_code)

 has_phrase(ctx, expression, phrase)

Tests whether phrase is contained in expression
The words in the test phrase must appear in the same order with no other words in between.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_phrase("the quick brown fox", "brown fox")
true
When used as an expression in text, prepend it with an @:
> "... @has_phrase("the quick brown fox", "brown fox") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_phrase(\"the quick brown fox\", \"brown fox\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_phrase(\"the quick brown fox\", \"brown fox\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_phrase(\"the quick brown fox\", \"brown fox\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_phrase("the quick brown fox", "quick fox")
false
When used as an expression in text, prepend it with an @:
> "... @has_phrase("the quick brown fox", "quick fox") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_phrase(\"the quick brown fox\", \"quick fox\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_phrase(\"the quick brown fox\", \"quick fox\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_phrase(\"the quick brown fox\", \"quick fox\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_phrase("the quick brown fox", "")
true
When used as an expression in text, prepend it with an @:
> "... @has_phrase("the quick brown fox", "") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_phrase(\"the quick brown fox\", \"\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_phrase(\"the quick brown fox\", \"\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_phrase(\"the quick brown fox\", \"\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

 has_text(ctx, expression)

Tests whether there the expression has any characters in it
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_text("quick brown")
true
When used as an expression in text, prepend it with an @:
> "... @has_text("quick brown") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_text(\"quick brown\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_text(\"quick brown\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_text(\"quick brown\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_text("")
false
When used as an expression in text, prepend it with an @:
> "... @has_text("") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_text(\"\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_text(\"\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_text(\"\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_text("
> ")
false
When used as an expression in text, prepend it with an @:
> "... @has_text("
") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_text(\" \n\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_text(\" \n\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_text(\" \n\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: true.
> has_text(123)
true
When used as an expression in text, prepend it with an @:
> "... @has_text(123) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_text(123) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_text(123)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_text(123)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

 has_time(ctx, expression)

Tests whether expression contains a time.
Example 1:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	match of type Time
.

> has_time("the time is 10:30")
%{"__value__" => true, "match" => ~T[10:30:00]}
When used as an expression in text, prepend it with an @:
> "... @has_time("the time is 10:30") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_time(\"the time is 10:30\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", %{"__value__" => true, "match" => ~T[10:30:00]}, " impact"] = result
["chat for ", %{"__value__" => true, "match" => ~T[10:30:00]}, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_time(\"the time is 10:30\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert %{"__value__" => true, "match" => ~T[10:30:00]} = result
%{"__value__" => true, "match" => ~T[10:30:00]}
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_time(\"the time is 10:30\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	match of type Time
.

> has_time("the time is 10:00 pm")
%{"__value__" => true, "match" => ~T[10:00:00]}
When used as an expression in text, prepend it with an @:
> "... @has_time("the time is 10:00 pm") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_time(\"the time is 10:00 pm\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", %{"__value__" => true, "match" => ~T[10:00:00]}, " impact"] = result
["chat for ", %{"__value__" => true, "match" => ~T[10:00:00]}, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_time(\"the time is 10:00 pm\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert %{"__value__" => true, "match" => ~T[10:00:00]} = result
%{"__value__" => true, "match" => ~T[10:00:00]}
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_time(\"the time is 10:00 pm\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 3:
When used in the following Stack expression it returns a complex Boolean type of default value:
true
with the following fields:
	match of type Time
.

> has_time("the time is 10:30:45")
%{"__value__" => true, "match" => ~T[10:30:45]}
When used as an expression in text, prepend it with an @:
> "... @has_time("the time is 10:30:45") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_time(\"the time is 10:30:45\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", %{"__value__" => true, "match" => ~T[10:30:45]}, " impact"] = result
["chat for ", %{"__value__" => true, "match" => ~T[10:30:45]}, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_time(\"the time is 10:30:45\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert %{"__value__" => true, "match" => ~T[10:30:45]} = result
%{"__value__" => true, "match" => ~T[10:30:45]}
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_time(\"the time is 10:30:45\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: false.
> has_time("there is no time here, just the number 25")
false
When used as an expression in text, prepend it with an @:
> "... @has_time("there is no time here, just the number 25") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @has_time(\"there is no time here, just the number 25\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "has_time(\"there is no time here, just the number 25\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@has_time(\"there is no time here, just the number 25\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 hour(ctx, date)

Returns only the hour of a datetime (0 to 23)
Example 1:
Get the current hour

When used in the following Stack expression it returns a value of type Integer: 17.
> hour(now())
17
When used as an expression in text, prepend it with an @:
> "... @hour(now()) ..."
"17"
..$> # Evaluate a string with expressions
..$> import ExUnit.Assertions
..$> result = Expression.V2.eval(
...> "chat for @hour(now()) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
..$> assert ["chat for ", 17, " impact"] = result
["chat for ", 17, " impact"]
..$>
..$> # Evaluate a standalone expression block
..$> result = Expression.V2.eval_block(
...> "hour(now())",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
..$>
..$> assert 17 = result
17
..$>
..$> # Evaluate a string with expressions into a single string
..$> Expression.V2.eval_as_string(
...> "@hour(now())",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"17"

 isbool(ctx, var)

Returns true if the argument is a boolean.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> isbool(true)
true
When used as an expression in text, prepend it with an @:
> "... @isbool(true) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @isbool(true) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "isbool(true)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@isbool(true)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> isbool(false)
true
When used as an expression in text, prepend it with an @:
> "... @isbool(false) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @isbool(false) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "isbool(false)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@isbool(false)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: false.
> isbool(1)
false
When used as an expression in text, prepend it with an @:
> "... @isbool(1) ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @isbool(1) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "isbool(1)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@isbool(1)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: false.
> isbool(0)
false
When used as an expression in text, prepend it with an @:
> "... @isbool(0) ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @isbool(0) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "isbool(0)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@isbool(0)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 5:
When used in the following Stack expression it returns a value of type Boolean: false.
> isbool("true")
false
When used as an expression in text, prepend it with an @:
> "... @isbool("true") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @isbool(\"true\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "isbool(\"true\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@isbool(\"true\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 6:
When used in the following Stack expression it returns a value of type Boolean: false.
> isbool("false")
false
When used as an expression in text, prepend it with an @:
> "... @isbool("false") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @isbool(\"false\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "isbool(\"false\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@isbool(\"false\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 isnumber(ctx, var)

Returns true if the argument is a number.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> isnumber(1)
true
When used as an expression in text, prepend it with an @:
> "... @isnumber(1) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @isnumber(1) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "isnumber(1)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@isnumber(1)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: true.
> isnumber(1.0)
true
When used as an expression in text, prepend it with an @:
> "... @isnumber(1.0) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @isnumber(1.0) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "isnumber(1.0)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@isnumber(1.0)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> isnumber("1.0")
true
When used as an expression in text, prepend it with an @:
> "... @isnumber("1.0") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @isnumber(\"1.0\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "isnumber(\"1.0\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@isnumber(\"1.0\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: false.
> isnumber("a")
false
When used as an expression in text, prepend it with an @:
> "... @isnumber("a") ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @isnumber(\"a\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "isnumber(\"a\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@isnumber(\"a\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 isstring(ctx, binary)

Returns true if the argument is a string.
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> isstring("hello")
true
When used as an expression in text, prepend it with an @:
> "... @isstring("hello") ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @isstring(\"hello\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "isstring(\"hello\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@isstring(\"hello\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
When used in the following Stack expression it returns a value of type Boolean: false.
> isstring(false)
false
When used as an expression in text, prepend it with an @:
> "... @isstring(false) ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @isstring(false) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "isstring(false)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@isstring(false)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: false.
> isstring(1)
false
When used as an expression in text, prepend it with an @:
> "... @isstring(1) ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @isstring(1) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "isstring(1)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@isstring(1)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 left(ctx, binary, size)

Returns the first characters in a text string. This is Unicode safe.
Example 1:
When used in the following Stack expression it returns a value of type String: "foob".
> left("foobar", 4)
"foob"
When used as an expression in text, prepend it with an @:
> "... @left("foobar", 4) ..."
"foob"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @left(\"foobar\", 4) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "foob", " impact"] = result
["chat for ", "foob", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "left(\"foobar\", 4)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "foob" = result
"foob"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@left(\"foobar\", 4)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"foob"

Example 2:
When used in the following Stack expression it returns a value of type String: "Умерла Мадлен Олбрай".
> left("Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США", 20)
"Умерла Мадлен Олбрай"
When used as an expression in text, prepend it with an @:
> "... @left("Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США", 20) ..."
"Умерла Мадлен Олбрай"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @left(\"Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США\", 20) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "Умерла Мадлен Олбрай", " impact"] = result
["chat for ", "Умерла Мадлен Олбрай", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "left(\"Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США\", 20)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "Умерла Мадлен Олбрай" = result
"Умерла Мадлен Олбрай"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@left(\"Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США\", 20)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"Умерла Мадлен Олбрай"

 len(ctx, binary)

Returns the number of characters in a text string
Example 1:
When used in the following Stack expression it returns a value of type Integer: 3.
> len("foo")
3
When used as an expression in text, prepend it with an @:
> "... @len("foo") ..."
"3"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @len(\"foo\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", 3, " impact"] = result
["chat for ", 3, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "len(\"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert 3 = result
3
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@len(\"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"3"

Example 2:
When used in the following Stack expression it returns a value of type Integer: 3.
> len("zoë")
3
When used as an expression in text, prepend it with an @:
> "... @len("zoë") ..."
"3"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @len(\"zoë\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", 3, " impact"] = result
["chat for ", 3, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "len(\"zoë\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert 3 = result
3
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@len(\"zoë\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"3"

 lower(ctx, binary)

Converts a text string to lowercase
Example 1:
When used in the following Stack expression it returns a value of type String: "foo bar".
> lower("Foo Bar")
"foo bar"
When used as an expression in text, prepend it with an @:
> "... @lower("Foo Bar") ..."
"foo bar"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @lower(\"Foo Bar\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "foo bar", " impact"] = result
["chat for ", "foo bar", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "lower(\"Foo Bar\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "foo bar" = result
"foo bar"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@lower(\"Foo Bar\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"foo bar"

 map(ctx, enumerable, mapper)

map over a list of items and apply the mapper function to every item, returning
the result.
Example 1:
Map over the range of numbers, create a date in January for every number

When used in the following Stack expression it returns a value of type List with values Date, Date, Date: [~D[2022-01-01], ~D[2022-01-02], ~D[2022-01-03]].
> map(1..3, &date(2022, 1, &1))
[~D[2022-01-01], ~D[2022-01-02], ~D[2022-01-03]]
When used as an expression in text, prepend it with an @:
> "... @map(1..3, &date(2022, 1, &1)) ..."
"2022-01-012022-01-022022-01-03"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @map(1..3, &date(2022, 1, &1)) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", [~D[2022-01-01], ~D[2022-01-02], ~D[2022-01-03]], " impact"] = result
["chat for ", [~D[2022-01-01], ~D[2022-01-02], ~D[2022-01-03]], " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "map(1..3, &date(2022, 1, &1))",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert [~D[2022-01-01], ~D[2022-01-02], ~D[2022-01-03]] = result
[~D[2022-01-01], ~D[2022-01-02], ~D[2022-01-03]]
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@map(1..3, &date(2022, 1, &1))",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"2022-01-012022-01-022022-01-03"

Example 2:
Map over the range of numbers, multiple each by itself and return the result

When used in the following Stack expression it returns a value of type List with values Integer, Integer, Integer: [1, 4, 9].
> map(1..3, &(&1 * &1))
[1, 4, 9]
When used as an expression in text, prepend it with an @:
> "... @map(1..3, &(&1 * &1)) ..."
"149"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @map(1..3, &(&1 * &1)) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", [1, 4, 9], " impact"] = result
["chat for ", [1, 4, 9], " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "map(1..3, &(&1 * &1))",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert [1, 4, 9] = result
[1, 4, 9]
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@map(1..3, &(&1 * &1))",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"149"

 max_vargs(ctx, arguments)

Returns the maximum value of all arguments
Example 1:
When used in the following Stack expression it returns a value of type Integer: 3.
> max(1, 2, 3)
3
When used as an expression in text, prepend it with an @:
> "... @max(1, 2, 3) ..."
"3"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @max(1, 2, 3) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", 3, " impact"] = result
["chat for ", 3, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "max(1, 2, 3)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert 3 = result
3
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@max(1, 2, 3)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"3"

 min_vargs(ctx, arguments)

Returns the minimum value of all arguments
Example 1:
When used in the following Stack expression it returns a value of type Integer: 1.
> min(1, 2, 3)
1
When used as an expression in text, prepend it with an @:
> "... @min(1, 2, 3) ..."
"1"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @min(1, 2, 3) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", 1, " impact"] = result
["chat for ", 1, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "min(1, 2, 3)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert 1 = result
1
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@min(1, 2, 3)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"1"

 minute(ctx, date)

Returns only the minute of a datetime (0 to 59)
Example 1:
Get the current minute

When used in the following Stack expression it returns a value of type Integer: 6.
> minute(now())
6
When used as an expression in text, prepend it with an @:
> "... @minute(now()) ..."
"6"
..$> # Evaluate a string with expressions
..$> import ExUnit.Assertions
..$> result = Expression.V2.eval(
...> "chat for @minute(now()) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
..$> assert ["chat for ", 6, " impact"] = result
["chat for ", 6, " impact"]
..$>
..$> # Evaluate a standalone expression block
..$> result = Expression.V2.eval_block(
...> "minute(now())",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
..$>
..$> assert 6 = result
6
..$>
..$> # Evaluate a string with expressions into a single string
..$> Expression.V2.eval_as_string(
...> "@minute(now())",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"6"

 month(ctx, date)

Returns only the month of a date (1 to 12)
Example 1:
Get the current month

When used in the following Stack expression it returns a value of type Integer: 1.
> month(now())
1
When used as an expression in text, prepend it with an @:
> "... @month(now()) ..."
"1"
..$> # Evaluate a string with expressions
..$> import ExUnit.Assertions
..$> result = Expression.V2.eval(
...> "chat for @month(now()) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
..$> assert ["chat for ", 1, " impact"] = result
["chat for ", 1, " impact"]
..$>
..$> # Evaluate a standalone expression block
..$> result = Expression.V2.eval_block(
...> "month(now())",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
..$>
..$> assert 1 = result
1
..$>
..$> # Evaluate a string with expressions into a single string
..$> Expression.V2.eval_as_string(
...> "@month(now())",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"1"

 not_(ctx, argument)

Returns false if the argument supplied evaluates to truth-y
Example 1:
When used in the following Stack expression it returns a value of type Boolean: true.
> not(false)
true
When used as an expression in text, prepend it with an @:
> "... @not(false) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @not(false) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "not(false)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@not(false)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

 now(ctx)

Returns the current date time as UTC
It is currently @NOW()
Example 1:
return the current timestamp as a DateTime value

When used in the following Stack expression it returns a value of type DateTime: ~U[2026-01-21 17:06:31.949177Z].
> now()
~U[2026-01-21 17:06:31.949177Z]
When used as an expression in text, prepend it with an @:
> "... @now() ..."
"2026-01-21T17:06:31.949177Z"
..$> # Evaluate a string with expressions
..$> import ExUnit.Assertions
..$> result = Expression.V2.eval(
...> "chat for @now() impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
..$> assert ["chat for ", ~U[2026-01-21 17:06:31.949177Z], " impact"] = result
["chat for ", ~U[2026-01-21 17:06:31.949177Z], " impact"]
..$>
..$> # Evaluate a standalone expression block
..$> result = Expression.V2.eval_block(
...> "now()",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
..$>
..$> assert ~U[2026-01-21 17:06:31.949177Z] = result
~U[2026-01-21 17:06:31.949177Z]
..$>
..$> # Evaluate a string with expressions into a single string
..$> Expression.V2.eval_as_string(
...> "@now()",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"2026-01-21T17:06:31.949177Z"

Example 2:
return the current datetime and format it using datevalue

When used in the following Stack expression it returns a complex String type of default value:
"2026-01-21"
with the following fields:
	date of type DateTime
.

> datevalue(now(), "%Y-%m-%d")
%{"__value__" => "2026-01-21", "date" => ~U[2026-01-21 17:06:32.024213Z]}
When used as an expression in text, prepend it with an @:
> "... @datevalue(now(), "%Y-%m-%d") ..."
"2026-01-21"
..$> # Evaluate a string with expressions
..$> import ExUnit.Assertions
..$> result = Expression.V2.eval(
...> "chat for @datevalue(now(), \"%Y-%m-%d\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
..$> assert ["chat for ", %{"__value__" => "2026-01-21", "date" => ~U[2026-01-21 17:06:32.024213Z]}, " impact"] = result
["chat for ", %{"__value__" => "2026-01-21", "date" => ~U[2026-01-21 17:06:32.024213Z]}, " impact"]
..$>
..$> # Evaluate a standalone expression block
..$> result = Expression.V2.eval_block(
...> "datevalue(now(), \"%Y-%m-%d\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
..$>
..$> assert %{"__value__" => "2026-01-21", "date" => ~U[2026-01-21 17:06:32.024213Z]} = result
%{"__value__" => "2026-01-21", "date" => ~U[2026-01-21 17:06:32.024213Z]}
..$>
..$> # Evaluate a string with expressions into a single string
..$> Expression.V2.eval_as_string(
...> "@datevalue(now(), \"%Y-%m-%d\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"2026-01-21"

 or_vargs(ctx, arguments)

Returns true if any argument is true.
Returns the first truthy value found or otherwise false.
Accepts any amount of arguments for testing truthiness.
Example 1:
Return true if any of the values are true

When used in the following Stack expression it returns a value of type Boolean: true.
> true or false
true
When used as an expression in text, prepend it with an @:
> "... @or(true, false) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @or(true, false) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "or(true, false)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@or(true, false)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 2:
Return the first value that is truthy

When used in the following Stack expression it returns a value of type String: "foo".
> false or "foo"
"foo"
When used as an expression in text, prepend it with an @:
> "... @or(false, "foo") ..."
"foo"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @or(false, \"foo\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "foo", " impact"] = result
["chat for ", "foo", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "or(false, \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "foo" = result
"foo"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@or(false, \"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"foo"

Example 3:
When used in the following Stack expression it returns a value of type Boolean: true.
> true or true
true
When used as an expression in text, prepend it with an @:
> "... @or(true, true) ..."
"true"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @or(true, true) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", true, " impact"] = result
["chat for ", true, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "or(true, true)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert true = result
true
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@or(true, true)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"true"

Example 4:
When used in the following Stack expression it returns a value of type Boolean: false.
> false or false
false
When used as an expression in text, prepend it with an @:
> "... @or(false, false) ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @or(false, false) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "or(false, false)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@or(false, false)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

Example 5:
When used in the following Stack expression it returns a value of type String: "bee" when used with the following context:
%{"a" => false, "b" => "bee"}
> a or b
"bee"
When used as an expression in text, prepend it with an @:
> "... @or(a, b) ..."
"bee"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @or(a, b) impact",
...> Expression.V2.Context.new(%{"a" => false, "b" => "bee"}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "bee", " impact"] = result
["chat for ", "bee", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "or(a, b)",
...> Expression.V2.Context.new(%{"a" => false, "b" => "bee"}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "bee" = result
"bee"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@or(a, b)",
...> Expression.V2.Context.new(%{"a" => false, "b" => "bee"}, Expression.V2.Callbacks.Standard)
...>)
"bee"

Example 6:
When used in the following Stack expression it returns a value of type String: "a" when used with the following context:
%{"a" => "a", "b" => false}
> a or b
"a"
When used as an expression in text, prepend it with an @:
> "... @or(a, b) ..."
"a"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @or(a, b) impact",
...> Expression.V2.Context.new(%{"a" => "a", "b" => false}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "a", " impact"] = result
["chat for ", "a", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "or(a, b)",
...> Expression.V2.Context.new(%{"a" => "a", "b" => false}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "a" = result
"a"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@or(a, b)",
...> Expression.V2.Context.new(%{"a" => "a", "b" => false}, Expression.V2.Callbacks.Standard)
...>)
"a"

Example 7:
When used in the following Stack expression it returns a value of type Boolean: false when used with the following context:
%{}
> b or b
false
When used as an expression in text, prepend it with an @:
> "... @or(b, b) ..."
"false"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @or(b, b) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", false, " impact"] = result
["chat for ", false, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "or(b, b)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> refute result
false
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@or(b, b)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"false"

 parse_float(number)

 @spec parse_float(number() | String.t()) :: number() | nil

 percent(ctx, float)

Formats a number as a percentage
Example 1:
When used in the following Stack expression it returns a value of type String: "20%".
> percent(2/10)
"20%"
When used as an expression in text, prepend it with an @:
> "... @percent(2/10) ..."
"20%"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @percent(2/10) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "20%", " impact"] = result
["chat for ", "20%", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "percent(2/10)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "20%" = result
"20%"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@percent(2/10)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"20%"

Example 2:
When used in the following Stack expression it returns a value of type String: "20%".
> percent(0.2)
"20%"
When used as an expression in text, prepend it with an @:
> "... @percent(0.2) ..."
"20%"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @percent(0.2) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "20%", " impact"] = result
["chat for ", "20%", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "percent(0.2)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "20%" = result
"20%"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@percent(0.2)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"20%"

Example 3:
When used in the following Stack expression it returns a value of type String: "20%" when used with the following context:
%{"d" => "0.2"}
> percent(d)
"20%"
When used as an expression in text, prepend it with an @:
> "... @percent(d) ..."
"20%"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @percent(d) impact",
...> Expression.V2.Context.new(%{"d" => "0.2"}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "20%", " impact"] = result
["chat for ", "20%", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "percent(d)",
...> Expression.V2.Context.new(%{"d" => "0.2"}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "20%" = result
"20%"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@percent(d)",
...> Expression.V2.Context.new(%{"d" => "0.2"}, Expression.V2.Callbacks.Standard)
...>)
"20%"

 power(ctx, a, b)

Returns the result of a number raised to a power - equivalent to the ^ operator
Example 1:
When used in the following Stack expression it returns a value of type Float: 8.0.
> power(2, 3)
8.0
When used as an expression in text, prepend it with an @:
> "... @power(2, 3) ..."
"8.0"
..$> # Evaluate a string with expressions
..$> import ExUnit.Assertions
..$> result = Expression.V2.eval(
...> "chat for @power(2, 3) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
..$> assert ["chat for ", 8.0, " impact"] = result
["chat for ", 8.0, " impact"]
..$>
..$> # Evaluate a standalone expression block
..$> result = Expression.V2.eval_block(
...> "power(2, 3)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
..$>
..$> assert 8.0 = result
8.0
..$>
..$> # Evaluate a string with expressions into a single string
..$> Expression.V2.eval_as_string(
...> "@power(2, 3)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"8.0"

 proper(ctx, binary)

Capitalizes the first letter of every word in a text string
Example 1:
When used in the following Stack expression it returns a value of type String: "Foo Bar".
> proper("foo bar")
"Foo Bar"
When used as an expression in text, prepend it with an @:
> "... @proper("foo bar") ..."
"Foo Bar"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @proper(\"foo bar\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "Foo Bar", " impact"] = result
["chat for ", "Foo Bar", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "proper(\"foo bar\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "Foo Bar" = result
"Foo Bar"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@proper(\"foo bar\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"Foo Bar"

 read_digits(ctx, binary)

Formats digits in text for reading in TTS
Example 1:
When used in the following Stack expression it returns a value of type String: "plus two seven one".
> read_digits("+271")
"plus two seven one"
When used as an expression in text, prepend it with an @:
> "... @read_digits("+271") ..."
"plus two seven one"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @read_digits(\"+271\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "plus two seven one", " impact"] = result
["chat for ", "plus two seven one", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "read_digits(\"+271\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "plus two seven one" = result
"plus two seven one"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@read_digits(\"+271\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"plus two seven one"

 rem(ctx, integer1, integer2)

Return the division remainder of two integers.
Example 1:
When used in the following Stack expression it returns a value of type Integer: 0.
> rem(4, 2)
0
When used as an expression in text, prepend it with an @:
> "... @rem(4, 2) ..."
"0"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @rem(4, 2) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", 0, " impact"] = result
["chat for ", 0, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "rem(4, 2)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert 0 = result
0
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@rem(4, 2)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"0"

Example 2:
When used in the following Stack expression it returns a value of type Integer: 1.
> rem(85, 3)
1
When used as an expression in text, prepend it with an @:
> "... @rem(85, 3) ..."
"1"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @rem(85, 3) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", 1, " impact"] = result
["chat for ", 1, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "rem(85, 3)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert 1 = result
1
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@rem(85, 3)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"1"

 remove_first_word(ctx, binary)

Removes the first word from the given text. The remaining text will be unchanged
Example 1:
When used in the following Stack expression it returns a value of type String: "bar".
> remove_first_word("foo bar")
"bar"
When used as an expression in text, prepend it with an @:
> "... @remove_first_word("foo bar") ..."
"bar"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @remove_first_word(\"foo bar\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "bar", " impact"] = result
["chat for ", "bar", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "remove_first_word(\"foo bar\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "bar" = result
"bar"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@remove_first_word(\"foo bar\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"bar"

Example 2:
When used in the following Stack expression it returns a value of type String: "bar".
> remove_first_word("foo-bar", "-")
"bar"
When used as an expression in text, prepend it with an @:
> "... @remove_first_word("foo-bar", "-") ..."
"bar"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @remove_first_word(\"foo-bar\", \"-\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "bar", " impact"] = result
["chat for ", "bar", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "remove_first_word(\"foo-bar\", \"-\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "bar" = result
"bar"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@remove_first_word(\"foo-bar\", \"-\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"bar"

 remove_first_word(ctx, binary, separator)

 rept(ctx, value, amount)

Repeats text a given number of times
Example 1:
When used in the following Stack expression it returns a value of type String: "**********".
> rept("*", 10)
"**********"
When used as an expression in text, prepend it with an @:
> "... @rept("*", 10) ..."
"**********"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @rept(\"*\", 10) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "**********", " impact"] = result
["chat for ", "**********", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "rept(\"*\", 10)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "**********" = result
"**********"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@rept(\"*\", 10)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"**********"

 right(ctx, binary, size)

Returns the last characters in a text string.
This is Unicode safe.
Example 1:
When used in the following Stack expression it returns a value of type String: "ing".
> right("testing", 3)
"ing"
When used as an expression in text, prepend it with an @:
> "... @right("testing", 3) ..."
"ing"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @right(\"testing\", 3) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "ing", " impact"] = result
["chat for ", "ing", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "right(\"testing\", 3)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "ing" = result
"ing"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@right(\"testing\", 3)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"ing"

Example 2:
When used in the following Stack expression it returns a value of type String: "ту главы Госдепа США".
> right("Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США", 20)
"ту главы Госдепа США"
When used as an expression in text, prepend it with an @:
> "... @right("Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США", 20) ..."
"ту главы Госдепа США"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @right(\"Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США\", 20) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "ту главы Госдепа США", " impact"] = result
["chat for ", "ту главы Госдепа США", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "right(\"Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США\", 20)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "ту главы Госдепа США" = result
"ту главы Госдепа США"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@right(\"Умерла Мадлен Олбрайт - первая женщина на посту главы Госдепа США\", 20)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"ту главы Госдепа США"

 second(ctx, date)

Returns only the second of a datetime (0 to 59)
Example 1:
When used in the following Stack expression it returns a value of type Integer: 32 when used with the following context:
%{"now" => ~U[2026-01-21 17:06:32.024551Z]}
> second(now)
32
When used as an expression in text, prepend it with an @:
> "... @second(now) ..."
"32"
..$> # Evaluate a string with expressions
..$> import ExUnit.Assertions
..$> result = Expression.V2.eval(
...> "chat for @second(now) impact",
...> Expression.V2.Context.new(%{"now" => ~U[2026-01-21 17:06:32.024551Z]}, Expression.V2.Callbacks.Standard)
...>)
..$> assert ["chat for ", 32, " impact"] = result
["chat for ", 32, " impact"]
..$>
..$> # Evaluate a standalone expression block
..$> result = Expression.V2.eval_block(
...> "second(now)",
...> Expression.V2.Context.new(%{"now" => ~U[2026-01-21 17:06:32.024551Z]}, Expression.V2.Callbacks.Standard)
...>)
..$>
..$> assert 32 = result
32
..$>
..$> # Evaluate a string with expressions into a single string
..$> Expression.V2.eval_as_string(
...> "@second(now)",
...> Expression.V2.Context.new(%{"now" => ~U[2026-01-21 17:06:32.024551Z]}, Expression.V2.Callbacks.Standard)
...>)
"32"

 substitute(ctx, subject, pattern, replacement)

Substitutes new_text for old_text in a text string. If instance_num is given, then only that instance will be substituted
Example 1:
When used in the following Stack expression it returns a value of type String: "I can do".
> substitute("I can't", "can't", "can do")
"I can do"
When used as an expression in text, prepend it with an @:
> "... @substitute("I can't", "can't", "can do") ..."
"I can do"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @substitute(\"I can't\", \"can't\", \"can do\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "I can do", " impact"] = result
["chat for ", "I can do", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "substitute(\"I can't\", \"can't\", \"can do\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "I can do" = result
"I can do"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@substitute(\"I can't\", \"can't\", \"can do\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"I can do"

 sum_vargs(ctx, arguments)

Returns the sum of all arguments, equivalent to the + operator
You have @SUM(contact.reports, contact.forms) reports and forms
Example 1:
When used in the following Stack expression it returns a value of type Integer: 6.
> sum(1, 2, 3)
6
When used as an expression in text, prepend it with an @:
> "... @sum(1, 2, 3) ..."
"6"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @sum(1, 2, 3) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", 6, " impact"] = result
["chat for ", 6, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "sum(1, 2, 3)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert 6 = result
6
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@sum(1, 2, 3)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"6"

 time(ctx, hours, minutes, seconds)

Defines a time value which can be used for time arithmetic
Example 1:
When used in the following Stack expression it returns a value of type Time: ~T[12:13:14].
> time(12, 13, 14)
~T[12:13:14]
When used as an expression in text, prepend it with an @:
> "... @time(12, 13, 14) ..."
"~T[12:13:14]"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @time(12, 13, 14) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", ~T[12:13:14], " impact"] = result
["chat for ", ~T[12:13:14], " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "time(12, 13, 14)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert ~T[12:13:14] = result
~T[12:13:14]
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@time(12, 13, 14)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"~T[12:13:14]"

 timevalue(ctx, expression)

Converts time stored in text to an actual time
Example 1:
When used in the following Stack expression it returns a value of type Time: ~T[02:30:00].
> timevalue("2:30")
~T[02:30:00]
When used as an expression in text, prepend it with an @:
> "... @timevalue("2:30") ..."
"~T[02:30:00]"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @timevalue(\"2:30\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", ~T[02:30:00], " impact"] = result
["chat for ", ~T[02:30:00], " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "timevalue(\"2:30\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert ~T[02:30:00] = result
~T[02:30:00]
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@timevalue(\"2:30\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"~T[02:30:00]"

Example 2:
When used in the following Stack expression it returns a value of type Time: ~T[02:30:55].
> timevalue("2:30:55")
~T[02:30:55]
When used as an expression in text, prepend it with an @:
> "... @timevalue("2:30:55") ..."
"~T[02:30:55]"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @timevalue(\"2:30:55\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", ~T[02:30:55], " impact"] = result
["chat for ", ~T[02:30:55], " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "timevalue(\"2:30:55\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert ~T[02:30:55] = result
~T[02:30:55]
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@timevalue(\"2:30:55\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"~T[02:30:55]"

 today(ctx)

Returns the current date
Example 1:
When used in the following Stack expression it returns a value of type Date: ~D[2026-01-21].
> today()
~D[2026-01-21]
When used as an expression in text, prepend it with an @:
> "... @today() ..."
"2026-01-21"
..$> # Evaluate a string with expressions
..$> import ExUnit.Assertions
..$> result = Expression.V2.eval(
...> "chat for @today() impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
..$> assert ["chat for ", ~D[2026-01-21], " impact"] = result
["chat for ", ~D[2026-01-21], " impact"]
..$>
..$> # Evaluate a standalone expression block
..$> result = Expression.V2.eval_block(
...> "today()",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
..$>
..$> assert ~D[2026-01-21] = result
~D[2026-01-21]
..$>
..$> # Evaluate a string with expressions into a single string
..$> Expression.V2.eval_as_string(
...> "@today()",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"2026-01-21"

 unichar(ctx, code)

Returns the unicode character specified by a number
Example 1:
When used in the following Stack expression it returns a value of type String: "A".
> unichar(65)
"A"
When used as an expression in text, prepend it with an @:
> "... @unichar(65) ..."
"A"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @unichar(65) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "A", " impact"] = result
["chat for ", "A", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "unichar(65)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "A" = result
"A"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@unichar(65)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"A"

Example 2:
When used in the following Stack expression it returns a value of type String: "é".
> unichar(233)
"é"
When used as an expression in text, prepend it with an @:
> "... @unichar(233) ..."
"é"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @unichar(233) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "é", " impact"] = result
["chat for ", "é", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "unichar(233)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "é" = result
"é"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@unichar(233)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"é"

 unicode(ctx, arg)

Returns a numeric code for the first character in a text string
Example 1:
When used in the following Stack expression it returns a value of type Integer: 65.
> unicode("A")
65
When used as an expression in text, prepend it with an @:
> "... @unicode("A") ..."
"65"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @unicode(\"A\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", 65, " impact"] = result
["chat for ", 65, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "unicode(\"A\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert 65 = result
65
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@unicode(\"A\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"65"

Example 2:
When used in the following Stack expression it returns a value of type Integer: 233.
> unicode("é")
233
When used as an expression in text, prepend it with an @:
> "... @unicode("é") ..."
"233"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @unicode(\"é\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", 233, " impact"] = result
["chat for ", 233, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "unicode(\"é\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert 233 = result
233
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@unicode(\"é\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"233"

 upper(ctx, binary)

Converts a text string to uppercase
Example 1:
When used in the following Stack expression it returns a value of type String: "FOO".
> upper("foo")
"FOO"
When used as an expression in text, prepend it with an @:
> "... @upper("foo") ..."
"FOO"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @upper(\"foo\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "FOO", " impact"] = result
["chat for ", "FOO", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "upper(\"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "FOO" = result
"FOO"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@upper(\"foo\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"FOO"

 weekday(ctx, date)

Returns the day of the week of a date (1 for Sunday to 7 for Saturday)
Example 1:
When used in the following Stack expression it returns a value of type Integer: 1 when used with the following context:
%{"today" => ~D[2022-11-06]}
> weekday(today)
1
When used as an expression in text, prepend it with an @:
> "... @weekday(today) ..."
"1"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @weekday(today) impact",
...> Expression.V2.Context.new(%{"today" => ~D[2022-11-06]}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", 1, " impact"] = result
["chat for ", 1, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "weekday(today)",
...> Expression.V2.Context.new(%{"today" => ~D[2022-11-06]}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert 1 = result
1
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@weekday(today)",
...> Expression.V2.Context.new(%{"today" => ~D[2022-11-06]}, Expression.V2.Callbacks.Standard)
...>)
"1"

Example 2:
When used in the following Stack expression it returns a value of type Integer: 3 when used with the following context:
%{"today" => ~D[2022-11-01]}
> weekday(today)
3
When used as an expression in text, prepend it with an @:
> "... @weekday(today) ..."
"3"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @weekday(today) impact",
...> Expression.V2.Context.new(%{"today" => ~D[2022-11-01]}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", 3, " impact"] = result
["chat for ", 3, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "weekday(today)",
...> Expression.V2.Context.new(%{"today" => ~D[2022-11-01]}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert 3 = result
3
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@weekday(today)",
...> Expression.V2.Context.new(%{"today" => ~D[2022-11-01]}, Expression.V2.Callbacks.Standard)
...>)
"3"

 word(ctx, binary, n)

Extracts the nth word from the given text string. If stop is a negative number,
then it is treated as count backwards from the end of the text. If by_spaces is
specified and is true then the function splits the text into words only by spaces.
Otherwise the text is split by punctuation characters as well
Example 1:
When used in the following Stack expression it returns a value of type String: "cow".
> word("hello cow-boy", 2)
"cow"
When used as an expression in text, prepend it with an @:
> "... @word("hello cow-boy", 2) ..."
"cow"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @word(\"hello cow-boy\", 2) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "cow", " impact"] = result
["chat for ", "cow", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "word(\"hello cow-boy\", 2)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "cow" = result
"cow"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@word(\"hello cow-boy\", 2)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"cow"

Example 2:
When used in the following Stack expression it returns a value of type String: "cow-boy".
> word("hello cow-boy", 2, true)
"cow-boy"
When used as an expression in text, prepend it with an @:
> "... @word("hello cow-boy", 2, true) ..."
"cow-boy"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @word(\"hello cow-boy\", 2, true) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "cow-boy", " impact"] = result
["chat for ", "cow-boy", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "word(\"hello cow-boy\", 2, true)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "cow-boy" = result
"cow-boy"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@word(\"hello cow-boy\", 2, true)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"cow-boy"

Example 3:
When used in the following Stack expression it returns a value of type String: "boy".
> word("hello cow-boy", -1)
"boy"
When used as an expression in text, prepend it with an @:
> "... @word("hello cow-boy", -1) ..."
"boy"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @word(\"hello cow-boy\", -1) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "boy", " impact"] = result
["chat for ", "boy", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "word(\"hello cow-boy\", -1)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "boy" = result
"boy"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@word(\"hello cow-boy\", -1)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"boy"

 word(ctx, binary, n, by_spaces)

 word_count(ctx, binary)

Returns the number of words in the given text string. If by_spaces is specified and is true then the function splits the text into words only by spaces. Otherwise the text is split by punctuation characters as well
> You entered @word_count("one two three") words
You entered 3 words
Example 1:
When used in the following Stack expression it returns a value of type Integer: 3.
> word_count("hello cow-boy")
3
When used as an expression in text, prepend it with an @:
> "... @word_count("hello cow-boy") ..."
"3"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @word_count(\"hello cow-boy\") impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", 3, " impact"] = result
["chat for ", 3, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "word_count(\"hello cow-boy\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert 3 = result
3
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@word_count(\"hello cow-boy\")",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"3"

Example 2:
When used in the following Stack expression it returns a value of type Integer: 2.
> word_count("hello cow-boy", true)
2
When used as an expression in text, prepend it with an @:
> "... @word_count("hello cow-boy", true) ..."
"2"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @word_count(\"hello cow-boy\", true) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", 2, " impact"] = result
["chat for ", 2, " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "word_count(\"hello cow-boy\", true)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert 2 = result
2
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@word_count(\"hello cow-boy\", true)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"2"

 word_count(ctx, binary, by_spaces)

 word_slice(ctx, binary, start)

Extracts a substring of the words beginning at start, and up to but not-including stop.
If stop is omitted then the substring will be all words from start until the end of the text.
If stop is a negative number, then it is treated as count backwards from the end of the text.
If by_spaces is specified and is true then the function splits the text into words only by spaces.
Otherwise the text is split by punctuation characters as well
Example 1:
When used in the following Stack expression it returns a value of type String: "expressions are".
> word_slice("FLOIP expressions are fun", 2, 4)
"expressions are"
When used as an expression in text, prepend it with an @:
> "... @word_slice("FLOIP expressions are fun", 2, 4) ..."
"expressions are"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @word_slice(\"FLOIP expressions are fun\", 2, 4) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "expressions are", " impact"] = result
["chat for ", "expressions are", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "word_slice(\"FLOIP expressions are fun\", 2, 4)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "expressions are" = result
"expressions are"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@word_slice(\"FLOIP expressions are fun\", 2, 4)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"expressions are"

Example 2:
When used in the following Stack expression it returns a value of type String: "expressions are fun".
> word_slice("FLOIP expressions are fun", 2)
"expressions are fun"
When used as an expression in text, prepend it with an @:
> "... @word_slice("FLOIP expressions are fun", 2) ..."
"expressions are fun"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @word_slice(\"FLOIP expressions are fun\", 2) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "expressions are fun", " impact"] = result
["chat for ", "expressions are fun", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "word_slice(\"FLOIP expressions are fun\", 2)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "expressions are fun" = result
"expressions are fun"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@word_slice(\"FLOIP expressions are fun\", 2)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"expressions are fun"

Example 3:
When used in the following Stack expression it returns a value of type String: "FLOIP expressions".
> word_slice("FLOIP expressions are fun", 1, -2)
"FLOIP expressions"
When used as an expression in text, prepend it with an @:
> "... @word_slice("FLOIP expressions are fun", 1, -2) ..."
"FLOIP expressions"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @word_slice(\"FLOIP expressions are fun\", 1, -2) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "FLOIP expressions", " impact"] = result
["chat for ", "FLOIP expressions", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "word_slice(\"FLOIP expressions are fun\", 1, -2)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "FLOIP expressions" = result
"FLOIP expressions"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@word_slice(\"FLOIP expressions are fun\", 1, -2)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"FLOIP expressions"

Example 4:
When used in the following Stack expression it returns a value of type String: "fun".
> word_slice("FLOIP expressions are fun", -1)
"fun"
When used as an expression in text, prepend it with an @:
> "... @word_slice("FLOIP expressions are fun", -1) ..."
"fun"
iex> # Evaluate a string with expressions
iex> import ExUnit.Assertions
iex> result = Expression.V2.eval(
...> "chat for @word_slice(\"FLOIP expressions are fun\", -1) impact",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex> assert ["chat for ", "fun", " impact"] = result
["chat for ", "fun", " impact"]
iex>
iex> # Evaluate a standalone expression block
iex> result = Expression.V2.eval_block(
...> "word_slice(\"FLOIP expressions are fun\", -1)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
iex>
iex> assert "fun" = result
"fun"
iex>
iex> # Evaluate a string with expressions into a single string
iex> Expression.V2.eval_as_string(
...> "@word_slice(\"FLOIP expressions are fun\", -1)",
...> Expression.V2.Context.new(%{}, Expression.V2.Callbacks.Standard)
...>)
"fun"

 word_slice(ctx, binary, start, stop)

 word_slice(ctx, binary, start, stop, by_spaces)

 year(ctx, date)

Returns only the year of a date
Example 1:
When used in the following Stack expression it returns a value of type Integer: 2026 when used with the following context:
%{"now" => ~U[2026-01-21 17:06:32.027586Z]}
> year(now)
2026
When used as an expression in text, prepend it with an @:
> "... @year(now) ..."
"2026"
..$> # Evaluate a string with expressions
..$> import ExUnit.Assertions
..$> result = Expression.V2.eval(
...> "chat for @year(now) impact",
...> Expression.V2.Context.new(%{"now" => ~U[2026-01-21 17:06:32.027586Z]}, Expression.V2.Callbacks.Standard)
...>)
..$> assert ["chat for ", 2026, " impact"] = result
["chat for ", 2026, " impact"]
..$>
..$> # Evaluate a standalone expression block
..$> result = Expression.V2.eval_block(
...> "year(now)",
...> Expression.V2.Context.new(%{"now" => ~U[2026-01-21 17:06:32.027586Z]}, Expression.V2.Callbacks.Standard)
...>)
..$>
..$> assert 2026 = result
2026
..$>
..$> # Evaluate a string with expressions into a single string
..$> Expression.V2.eval_as_string(
...> "@year(now)",
...> Expression.V2.Context.new(%{"now" => ~U[2026-01-21 17:06:32.027586Z]}, Expression.V2.Callbacks.Standard)
...>)
"2026"

Expression.V2.Compat

Compatibility module to make the transition from V1 to V2 a bit easier, hopefully.
It does a few things:
	It swaps out V2 callbacks for V1 callbacks when evaluating expressions with V1.
	It does some patching of the context to match V1's assumptions:	case insensitive context keys
	casting of integers
	casting of datetimes

	It compares the output of V1 to V2, if those aren't equal it will log an error and return the V1 response.
	If there is no error it will return the value from V2.

NOTE: This module does twice the work because it runs V1 and V2 sequentially
and then compares the result before returning a value.

NOTE: This was throwing more errors in prod than anticipated, hacking in a revert temporarily

 Summary

 Functions

 attempt_boolean(binary)

 attempt_datetime(binary)

 attempt_float(binary)

 attempt_integer(binary)

 evaluate!(expression, context \\ %{}, callback_module \\ Expression.Callbacks.Standard)

 evaluate_as_string!(expression, context, callback_module \\ Expression.Callbacks.Standard)

 evaluate_block!(expression, context \\ %{}, callback_module \\ Callbacks.Standard, opts \\ [])

 log_error(expression, context, v1_resp, v2_resp)

 normalize_value(datetime)

 patch_v1_context(datetime)

 patch_v1_key(key)

 return_or_raise(expression, context, v1_resp, v2_resp)

 return_or_raise_binaries(expression, context, v1_resp, v2_resp)

 unpack_returned_value(other)

 Functions

 attempt_boolean(binary)

 attempt_datetime(binary)

 attempt_float(binary)

 attempt_integer(binary)

 evaluate!(expression, context \\ %{}, callback_module \\ Expression.Callbacks.Standard)

 evaluate_as_string!(expression, context, callback_module \\ Expression.Callbacks.Standard)

 evaluate_block!(expression, context \\ %{}, callback_module \\ Callbacks.Standard, opts \\ [])

 log_error(expression, context, v1_resp, v2_resp)

 normalize_value(datetime)

 patch_v1_context(datetime)

 patch_v1_key(key)

 return_or_raise(expression, context, v1_resp, v2_resp)

 return_or_raise_binaries(expression, context, v1_resp, v2_resp)

 unpack_returned_value(other)

Expression.V2.Compile

An compiler for AST returned by Expression.V2.Parser.
This reads the AST output returned by Expression.V2.parse/1 and
compiles it to Elixir code.
It does this by emitting valid Elixir AST, mimicking what quote/2 does.
The Elixir AST is then supplied to Code.eval_quoted_with_env/3 without any
variable binding. What is returned is an anonymous function that accepts an
Expression.V2.Context.t struct and evaluates the code against that context.
Any function calls are applied to the callback module referenced in the context.
So if an expression uses a function called foo(1, 2, 3) then the callback's
callback/3 function will be called as follows:
apply(context.callback_module, :callback, ["foo", [1, 2, 3]])
There is some special handling of some functions that have specific Elixir AST
syntax requirements.
These are documented in the to_quoted/2 function.
All variables referenced by the expression are scoped to context.vars.
However the full context is supplied to any function calls, giving
functions the privilege of doing more than the context.vars scope alone
would allow them to do.

 Summary

 Functions

 compile(ast)

 Accepts AST as emitted by Expression.V2.parse/1 and returns an anonymous function
that accepts a Context.t as an argument and returns the result of the expression
against the given Context.

 to_quoted(ast)

 Convert the AST returned from Expression.V2.parse/1 into valid Elixir AST
that can be used by Code.eval_quoted_with_env/3.

 wrap_in_context(quoted)

 Wrap an AST block into an anonymous function that accepts
a single argument called context.

 Functions

 compile(ast)

 @spec compile([any()]) :: (Expression.V2.Context.t() -> any())

Accepts AST as emitted by Expression.V2.parse/1 and returns an anonymous function
that accepts a Context.t as an argument and returns the result of the expression
against the given Context.
If the callback functions defined in the callback module are pure then this function
is also pure and is suitable for caching.

 to_quoted(ast)

 @spec to_quoted([term()] | term()) :: Macro.t()

Convert the AST returned from Expression.V2.parse/1 into valid Elixir AST
that can be used by Code.eval_quoted_with_env/3.
There is some special handling here:
	Lists are recursed to ensure that all list items are properly quoted.
	""Quoted strings"" are unquoted and returned as regular strings to the AST.
	"Normal strings" are converted into Atoms and treated as such during eval.
	Literals such as numbers & booleans are left as is.
	Range.t items are converted to valid Elixir AST.
	& and &1 captures are generated into valid Elixir AST captures.
	Any functions are generated as being function calls for the given callback module.

 wrap_in_context(quoted)

 @spec wrap_in_context(Macro.t()) :: Macro.t()

Wrap an AST block into an anonymous function that accepts
a single argument called context.
This happens after all the code generation completes. The code
generated expects a variable called context to exist, wrapping
it in this function ensures that it does.
This is the anonymous function that is returned to the caller.
The caller is then responsible to call it with the correct context
variables.

Expression.V2.Context

The context supplied to a function generated by Expression.V2.Compile.compile/1
This will be expanded with support for more attributes that a callback function
can access but normal Expression evaluation can not.

 Summary

 Types

 t()

 Functions

 new(vars \\ %{}, callback_module \\ Expression.V2.Callbacks.Standard)

 private(ctx, key, value)

 Types

 t()

 @type t() :: %Expression.V2.Context{
 callback_module: module(),
 private: map(),
 vars: map()
}

 Functions

 new(vars \\ %{}, callback_module \\ Expression.V2.Callbacks.Standard)

 private(ctx, key, value)

Expression.V2.Parser

A NimbleParsec parser for FLOIP expressions.
FLOIP Expressions consist of plain text and of blocks. Plain text is returned untouched
but blocks are evaluated.
Blocks are prefixed with an @ sign. Blocks can either have expressions between brackets or
be used in a shorthand form when wanting to use a single function or variable substitution.
As an example, the following are identical:
	@(now()) and @now()
	@contact.name and @(contact.name)

However, a full expression needs to be within brackets:
Tomorrow's is @(today().day + 1)
This parses it into an Abstract Syntax Tree (AST) which follows a style much like a Lisp would.
It parses expressions in Infix notation such as
1 + 1 and parses it into lists where the operator is the first element and the second element
is the list of arguments for the operator.
["+", [1, 1]]
Functions are expressed as:
{"function name", [arg1, arg2]}
Until we have a fixed scope of allowed functions, or if we can dynamically look up whether an
atom is a function or a variable reference, we will need to rely on tuples to represent functions
as otherwise the system has no means to distinguish the following AST as being a function call
or a list as a variable:
["echo", [1, 2, 3]]
Without being able to say ahead of time whether or not echo/1 is a known function, the
system cannot reliable determine whether the result of this AST should be ["echo", [1, 2, 3]]
or the result of echo(1, 2, 3).
Variable references are single values.
"contact"
This module provides two functions for parsing. parse/2 which will parse a full FLOIP expression
including text and blocks, and expression/2 which will parse expression blocks.
Internally parse/2 refers to the same parsers as expression/2 for things that are expressions.

 Summary

 Functions

 expression(binary, opts \\ [])

 Parse a block and return the AST

 parse(binary, opts \\ [])

 Parse an expression and return the AST

 to_double_quoted_string(charlist)

 Functions

 expression(binary, opts \\ [])

 @spec expression(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parse a block and return the AST
Example
iex> Expression.V2.Parser.expression("contact.age + 1")
{:ok, [{"+", [{"__property__", ["contact", "age"]}, 1]}], "", %{}, {1, 0}, 15}

 parse(binary, opts \\ [])

 @spec parse(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parse an expression and return the AST
Example
iex> Expression.V2.Parser.parse("hello @world the time is @now()")
{:ok, ["hello ", ["world"], " the time is ", [{"now", []}]], "", %{}, {1, 0}, 31}

 to_double_quoted_string(charlist)

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

