

 extty

 v0.4.2

 Table of contents

 	ExTTY

 	Changelog

 	
 Modules

 	ExTTY

ExTTY

[image: Hex version]
[image: CircleCI]
Run an Elixir or Erlang shell as a GenServer process
Installation
Install extty by adding it to your list of dependencies in mix.exs:
def deps() do
 [
 {:extty, "~> 0.2"}
]
end
Usage
This is heavily adapted from ssh_cli.erl
and functions much like the SSH console implementation.
This will start a terminal shell process in a GenServer. You can then send ANSI text
to it to behave like a normal TTY. When starting the shell, you must specify a handler
pid to receive the returned text data. The incoming message will be formatted as
{:tty_data, String.t()}

iex()> {:ok, tty} = ExTTY.start_link(handler: self())
iex()> flush()
{:tty_data, "Interactive Elixir (1.10.3) - press Ctrl+C to exit (type h() ENTER for help)\r\n"}
{:tty_data, "iex(1)> "}
iex()> ExTTY.send_text(tty, "1+1\n")
:ok
iex()> flush()
{:tty_data, "1+1\r\n"}
{:tty_data, "\e[33m2\e[0m\r\n"}
{:tty_data, "iex(2)> "}
When running in a cluster, a shell process can also be started on a remote node by
passing the node name to the remsh option:
iex(foo)1> Node.connect(:bar)
true
iex(foo)2> Node.list()
[:bar]
iex(foo)3> {:ok, tty} = ExTTY.start_link(handler: self(), remsh: :bar)
iex(foo)4> flush()
{:tty_data,
 "Interactive Elixir (1.17.0-dev) - press Ctrl+C to exit (type h() ENTER for help)\r\n"}
{:tty_data, "iex(bar)1> "}

Changelog

 v0.4.2

	Allow spawning remote shells via :remsh option (Thanks @SteffenDE!)
	Attempt to cleanup processes spawned by the underlying shells when
the ExTTY process is closed (#14) (Thanks @joshk!)	This primarily affects :elixir shells because the IEx.Evaluator
process that gets started by Elixir does lots of monitoring to
attempt to stay up. So even though other shell processes are linked
and closed correctly, the IEx.Evaluator process stays running
which can result in many of them running on machines which have
a long uptime and have created multiple ExTTY processes over time

 v0.4.1

	Support :dot_iex or :dot_iex_path option	:dot_iex was mistakenly interpreted as an Elixir 1.17
option, but was being referenced from the main branch.
Elixir 1.17 still requires :dot_iex_path, so this change
adds support to include both for now

 v0.4.0

	Adds support for Elixir 1.17	This required using a different entry point into IEx and
adjusts the shape of :shell_opts to be a flat keyword list
	Elixir also renamed :dot_iex_path -> :dot_iex. The changes
here account for that for now, but if you previously included
this in options you'll need to change from
shell_opts: [[dot_iex_path: path]] to shell_opts: [dot_iex: path]

	Minimum supported Elixir version is now 1.13

 v0.3.0

	Support Elixir 1.15 / OTP 26 with backwards compatibility

 v0.2.1

	Sync tty_cli.erl with ssh_cli.erl in Erlang	:onlcr was set so that the CRLF behavior remained the same

 v0.2.0

	Fixes
	ExTTY no longer defaults a :name option for GenServer start_link.
If you relied on the default ExTTY name, you will need to pass that or
a different name as the :name option explicitly and use it
(or the returned pid of ExTTY.start_link/1) when calling the
functions of ExTTY:

Named GenServer
{:ok, _pid} = ExTTY.start_link(name: TTY1)
ExTTY.send_text(TTY1, "1+1\n")

Unnamed GenServer
{:ok, tty} = ExTTY.start_link()
ExTTY.send_text(tty, "1+1\n")

 v0.1.0

Initial release

ExTTY

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 send_text(tty, text)

 start_link(opts \\ [])

 tty_pty(args \\ [])

 tty_pty(record, args)

 window_change(tty, width, height)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 send_text(tty, text)

 @spec send_text(GenServer.server(), String.t()) :: :ok

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

 tty_pty(args \\ [])

 (macro)

 tty_pty(record, args)

 (macro)

 window_change(tty, width, height)

 @spec window_change(GenServer.server(), non_neg_integer(), non_neg_integer()) :: :ok

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

