

 ExUnitOpenAPI

 v0.1.0

 Table of contents

 	ExUnitOpenAPI

 	
 Modules

 	ExUnitOpenAPI

 	ExUnitOpenAPI.Collector

 	ExUnitOpenAPI.Config

 	ExUnitOpenAPI.Generator

 	ExUnitOpenAPI.RouterAnalyzer

 	ExUnitOpenAPI.TypeInferrer

 	
 Mix Tasks

 	mix openapi.generate

ExUnitOpenAPI

Automatically generate OpenAPI specifications from your ExUnit controller tests.
Quick Start
	Add to your test/test_helper.exs:
 ExUnitOpenAPI.start()
 ExUnit.start()

	Configure in config/test.exs:
 config :exunit_openapi,
 router: MyAppWeb.Router,
 output: "priv/static/openapi.json",
 info: [
 title: "My API",
 version: "1.0.0"
]

	Run tests with OpenAPI generation:
 OPENAPI=1 mix test

How It Works
ExUnitOpenAPI attaches to Phoenix telemetry events during test runs. When your
controller tests make requests via Phoenix.ConnTest, the library captures:
	Request method, path, and parameters
	Response status and JSON body
	Route patterns from your Phoenix router

After tests complete, it generates an OpenAPI 3.0 specification with:
	Paths and operations inferred from captured requests
	Schemas inferred from JSON response bodies
	Parameters extracted from route patterns and request data

 Summary

 Functions

 enabled?()

 Returns whether OpenAPI generation is enabled.

 generate(opts \\ [])

 Manually triggers OpenAPI spec generation.

 start(opts \\ [])

 Starts the OpenAPI collector.

 Functions

 enabled?()

 @spec enabled?() :: boolean()

Returns whether OpenAPI generation is enabled.
Generation is enabled when the OPENAPI environment variable is set to any value.

 generate(opts \\ [])

 @spec generate(keyword()) :: {:ok, String.t()} | {:error, term()}

Manually triggers OpenAPI spec generation.
This is called automatically when tests complete if OPENAPI=1 is set.
You can also call it manually if needed.

 start(opts \\ [])

 @spec start(keyword()) :: :ok | {:error, term()}

Starts the OpenAPI collector.
Call this in your test/test_helper.exs before ExUnit.start():
ExUnitOpenAPI.start()
ExUnit.start()
The collector only activates when the OPENAPI environment variable is set:
OPENAPI=1 mix test

ExUnitOpenAPI.Collector

GenServer that collects HTTP request/response data from Phoenix tests.
The Collector captures Plug.Conn structs from telemetry events and stores
them for later processing into an OpenAPI specification.
Collected Data Structure
Each captured request is stored as:
%{
 method: "GET",
 path: "/api/users/123",
 path_params: %{"id" => "123"},
 query_params: %{},
 body_params: %{},
 request_headers: [...],
 response_status: 200,
 response_body: %{...},
 response_headers: [...],
 content_type: "application/json"
}
Requests are grouped by {method, path_pattern} to aggregate multiple
examples of the same endpoint.

 Summary

 Types

 request_data()

 Functions

 capture(conn)

 Captures request/response data from a Plug.Conn.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear()

 Clears all collected data.

 get_collected_data()

 Returns all collected request data.

 start_link(opts \\ [])

 Starts the Collector GenServer.

 Types

 request_data()

 @type request_data() :: %{
 method: String.t(),
 path: String.t(),
 path_params: map(),
 query_params: map(),
 body_params: map(),
 request_headers: [{String.t(), String.t()}],
 response_status: non_neg_integer(),
 response_body: term(),
 response_headers: [{String.t(), String.t()}],
 content_type: String.t() | nil
}

 Functions

 capture(conn)

 @spec capture(map()) :: :ok

Captures request/response data from a Plug.Conn.
Accepts any struct/map with conn-like fields (method, request_path, etc.).

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear()

 @spec clear() :: :ok

Clears all collected data.

 get_collected_data()

 @spec get_collected_data() :: [request_data()]

Returns all collected request data.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the Collector GenServer.

ExUnitOpenAPI.Config

Configuration management for ExUnitOpenAPI.
Configuration Options
config :exunit_openapi,
 router: MyAppWeb.Router, # Required: Your Phoenix router module
 output: "openapi.json", # Output file path (default: openapi.json)
 format: :json, # Output format: :json or :yaml
 info: [# OpenAPI info object
 title: "My API",
 version: "1.0.0",
 description: "API description"
],
 servers: [# Optional: Server URLs
 %{url: "https://api.example.com", description: "Production"}
],
 security_schemes: %{}, # Optional: Security scheme definitions
 merge_with_existing: true # Preserve manual edits when regenerating

 Summary

 Types

 t()

 Functions

 format(map)

 Gets the output format from config.

 info(map)

 Gets the info section from config.

 load(opts \\ [])

 Loads configuration from application env and optional overrides.

 merge_with_existing?(map)

 Returns whether to merge with existing spec file.

 output_path(map)

 Gets the output file path from config.

 router(map)

 Gets the router module from config.

 security_schemes(map)

 Gets the security schemes from config.

 servers(map)

 Gets the servers list from config.

 Types

 t()

 @type t() :: %{
 router: module() | nil,
 output: String.t(),
 format: :json | :yaml,
 info: map(),
 servers: [map()],
 security_schemes: map(),
 merge_with_existing: boolean()
}

 Functions

 format(map)

 @spec format(t()) :: :json | :yaml

Gets the output format from config.

 info(map)

 @spec info(t()) :: map()

Gets the info section from config.

 load(opts \\ [])

 @spec load(keyword()) :: t()

Loads configuration from application env and optional overrides.

 merge_with_existing?(map)

 @spec merge_with_existing?(t()) :: boolean()

Returns whether to merge with existing spec file.

 output_path(map)

 @spec output_path(t()) :: String.t()

Gets the output file path from config.

 router(map)

 @spec router(t()) :: module() | nil

Gets the router module from config.

 security_schemes(map)

 @spec security_schemes(t()) :: map()

Gets the security schemes from config.

 servers(map)

 @spec servers(t()) :: [map()]

Gets the servers list from config.

ExUnitOpenAPI.Generator

Generates OpenAPI 3.0 specifications from collected request/response data.
This module takes the captured HTTP interactions from the Collector and
transforms them into a valid OpenAPI specification, using the RouterAnalyzer
to map requests to route patterns and the TypeInferrer to generate schemas.

 Summary

 Types

 spec()

 Functions

 generate(collected_data, config)

 Generates an OpenAPI specification from collected request data.

 Types

 spec()

 @type spec() :: map()

 Functions

 generate(collected_data, config)

 @spec generate([map()], ExUnitOpenAPI.Config.t()) :: {:ok, spec()} | {:error, term()}

Generates an OpenAPI specification from collected request data.
Parameters
	collected_data - List of captured request/response data from Collector
	config - Configuration map from Config module

Returns
	{:ok, spec} - The generated OpenAPI specification as a map
	{:error, reason} - If generation fails

ExUnitOpenAPI.RouterAnalyzer

Analyzes Phoenix routers to extract route patterns and metadata.
This module parses the compiled route information from a Phoenix router
to match captured requests to their route definitions, extracting:
	Path patterns with parameter placeholders (e.g., /users/:id)
	HTTP methods
	Controller and action names
	Pipe names (for grouping/tagging)

 Summary

 Types

 route_info()

 Functions

 analyze(router)

 Analyzes a Phoenix router module and returns route information.

 extract_path_params(path)

 Extracts path parameter names from a route path.

 match_route(request_path, method, routes)

 Matches a request path to a route pattern.

 to_openapi_path(phoenix_path)

 Converts a route path to an OpenAPI path format.

 Types

 route_info()

 @type route_info() :: %{
 path: String.t(),
 method: String.t(),
 controller: module(),
 action: atom(),
 pipe_through: [atom()]
}

 Functions

 analyze(router)

 @spec analyze(module()) :: [route_info()]

Analyzes a Phoenix router module and returns route information.
Example
iex> RouterAnalyzer.analyze(MyAppWeb.Router)
[
 %{path: "/api/users", method: "GET", controller: UserController, action: :index, ...},
 %{path: "/api/users/:id", method: "GET", controller: UserController, action: :show, ...}
]

 extract_path_params(path)

 @spec extract_path_params(String.t()) :: [String.t()]

Extracts path parameter names from a route path.
Example
iex> RouterAnalyzer.extract_path_params("/users/:id/posts/:post_id")
["id", "post_id"]

 match_route(request_path, method, routes)

 @spec match_route(String.t(), String.t(), [route_info()]) ::
 {:ok, route_info(), map()} | :no_match

Matches a request path to a route pattern.
Returns the matching route info with extracted path parameters.
Example
iex> RouterAnalyzer.match_route("/api/users/123", routes)
{:ok, %{path: "/api/users/:id", ...}, %{"id" => "123"}}

 to_openapi_path(phoenix_path)

 @spec to_openapi_path(String.t()) :: String.t()

Converts a route path to an OpenAPI path format.
Phoenix uses :param syntax, OpenAPI uses {param}.
Example
iex> RouterAnalyzer.to_openapi_path("/users/:id/posts/:post_id")
"/users/{id}/posts/{post_id}"

ExUnitOpenAPI.TypeInferrer

Infers JSON Schema types from Elixir values.
This module analyzes captured request/response data and generates
JSON Schema type definitions for use in OpenAPI specifications.
Type Inference Rules
	nil → {"type": "null"} or marks field as nullable
	Strings → {"type": "string"} with optional format detection
	Integers → {"type": "integer"}
	Floats → {"type": "number"}
	Booleans → {"type": "boolean"}
	Lists → {"type": "array", "items": ...}
	Maps → {"type": "object", "properties": ...}

Format Detection
String values are analyzed for common patterns:
	ISO 8601 dates → {"type": "string", "format": "date-time"}
	UUIDs → {"type": "string", "format": "uuid"}
	Email addresses → {"type": "string", "format": "email"}
	URIs → {"type": "string", "format": "uri"}

 Summary

 Types

 json_schema()

 Functions

 infer(value)

 Infers a JSON Schema from an Elixir value.

 infer_param_type(value)

 Infers the type of a path or query parameter from its string value.

 merge_schemas(schemas)

 Merges multiple schemas into one, combining their properties.

 Types

 json_schema()

 @type json_schema() :: map()

 Functions

 infer(value)

 @spec infer(term()) :: json_schema()

Infers a JSON Schema from an Elixir value.
Examples
iex> TypeInferrer.infer(42)
%{"type" => "integer"}

iex> TypeInferrer.infer(%{"name" => "Alice", "age" => 30})
%{
 "type" => "object",
 "properties" => %{
 "name" => %{"type" => "string"},
 "age" => %{"type" => "integer"}
 }
}

 infer_param_type(value)

 @spec infer_param_type(String.t()) :: json_schema()

Infers the type of a path or query parameter from its string value.
Attempts to detect if the string represents an integer, boolean, etc.
Examples
iex> TypeInferrer.infer_param_type("123")
%{"type" => "integer"}

iex> TypeInferrer.infer_param_type("true")
%{"type" => "boolean"}

iex> TypeInferrer.infer_param_type("hello")
%{"type" => "string"}

 merge_schemas(schemas)

 @spec merge_schemas([json_schema()]) :: json_schema()

Merges multiple schemas into one, combining their properties.
This is useful when the same endpoint returns slightly different
response shapes in different tests.
Example
iex> TypeInferrer.merge_schemas([schema1, schema2])
%{"type" => "object", "properties" => %{...combined...}}

mix openapi.generate

Runs the test suite with OpenAPI collection enabled and generates the spec.
$ mix openapi.generate

This is equivalent to running:
$ OPENAPI=1 mix test

Setup
Add the following to your mix.exs to ensure the task runs in the test environment:
def cli do
 [preferred_envs: ["openapi.generate": :test]]
end
Options
	--output - Output file path (default: from config or "openapi.json")
	--format - Output format: json or yaml (default: json)
	--only - Only run tests matching the given tag
	--exclude - Exclude tests matching the given tag

Examples
$ mix openapi.generate
$ mix openapi.generate --output priv/static/openapi.json
$ mix openapi.generate --only integration

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

