

    

        


    


  

    Table of contents

    
      



      	LICENSE





    	Introduction
      


      	Getting Started


      	Process Model


      	Dedication



      

    




        	
          Modules
          


      	Fact.BuildInfo





    	Api
      


      	Fact



      

    




    	Context
      


      	Fact.BootstrapFile


      	Fact.Context


      	Fact.Event


      	Fact.IndexCheckpointFile


      	Fact.IndexFile


      	Fact.LedgerFile


      	Fact.LockFile


      	Fact.RecordFile


      	Fact.Storage


      	Fact.BootstrapFile.Context


      	Fact.BootstrapFile.Decoder


      	Fact.BootstrapFile.Encoder


      	Fact.BootstrapFile.Name


      	Fact.BootstrapFile.Reader


      	Fact.BootstrapFile.Writer


      	Fact.Event.Id


      	Fact.Event.Schema


      	Fact.IndexCheckpointFile.Decoder


      	Fact.IndexCheckpointFile.Encoder


      	Fact.IndexCheckpointFile.Name


      	Fact.IndexCheckpointFile.Reader


      	Fact.IndexCheckpointFile.Writer


      	Fact.IndexFile.Decoder


      	Fact.IndexFile.Encoder


      	Fact.IndexFile.Name


      	Fact.IndexFile.Reader


      	Fact.IndexFile.Writer


      	Fact.LedgerFile.Decoder


      	Fact.LedgerFile.Encoder


      	Fact.LedgerFile.Name


      	Fact.LedgerFile.Reader


      	Fact.LedgerFile.Writer


      	Fact.LockFile.Decoder


      	Fact.LockFile.Encoder


      	Fact.LockFile.Name


      	Fact.LockFile.Reader


      	Fact.LockFile.Writer


      	Fact.RecordFile.Decoder


      	Fact.RecordFile.Encoder


      	Fact.RecordFile.Name


      	Fact.RecordFile.Reader


      	Fact.RecordFile.Writer



      

    




    	Core
      


      	Fact.Database


      	Fact.EventLedger


      	Fact.EventStreamWriter


      	Fact.Query


      	Fact.QueryItem



      

    




    	Genesis
      


      	Fact.Genesis.Command.CreateDatabase.V1


      	Fact.Genesis.Decider


      	Fact.Genesis.Event.DatabaseCreated.V1


      	Fact.Genesis.TheCreator



      

    




    	Indexing
      


      	Fact.EventDataIndexer


      	Fact.EventIndexer


      	Fact.EventStreamCategoryIndexer


      	Fact.EventStreamIndexer


      	Fact.EventStreamsByCategoryIndexer


      	Fact.EventStreamsIndexer


      	Fact.EventTagsIndexer


      	Fact.EventTypeIndexer



      

    




    	Process
      


      	Fact.Bootstrapper


      	Fact.DatabaseSupervisor


      	Fact.Lock


      	Fact.Registry


      	Fact.Supervisor



      

    




    	Pub/Sub
      


      	Fact.CatchUpSubscription


      	Fact.CatchUpSubscription.All


      	Fact.CatchUpSubscription.Index


      	Fact.CatchUpSubscription.Query


      	Fact.CatchUpSubscription.Stream


      	Fact.EventPublisher



      

    




    	Seams
      


      	Fact.Seam


      	Fact.Seam.Adapter


      	Fact.Seam.Decoder


      	Fact.Seam.Encoder


      	Fact.Seam.EventId


      	Fact.Seam.EventSchema


      	Fact.Seam.FileName


      	Fact.Seam.FileReader


      	Fact.Seam.FileWriter


      	Fact.Seam.Instance


      	Fact.Seam.Parsers


      	Fact.Seam.Registry


      	Fact.Seam.Storage


      	Fact.Seam.Decoder.Adapter


      	Fact.Seam.Decoder.Delimited.V1


      	Fact.Seam.Decoder.Integer.V1


      	Fact.Seam.Decoder.Json.V1


      	Fact.Seam.Decoder.Raw.V1


      	Fact.Seam.Decoder.Registry


      	Fact.Seam.Encoder.Adapter


      	Fact.Seam.Encoder.Delimited.V1


      	Fact.Seam.Encoder.Integer.V1


      	Fact.Seam.Encoder.Json.V1


      	Fact.Seam.Encoder.Raw.V1


      	Fact.Seam.Encoder.Registry


      	Fact.Seam.EventId.Adapter


      	Fact.Seam.EventId.Registry


      	Fact.Seam.EventId.Uuid.V4


      	Fact.Seam.EventSchema.Adapter


      	Fact.Seam.EventSchema.Emmett.V1


      	Fact.Seam.EventSchema.Kurrent.V1


      	Fact.Seam.EventSchema.Marten.V1


      	Fact.Seam.EventSchema.Registry


      	Fact.Seam.EventSchema.Standard.V1


      	Fact.Seam.FileName.Adapter


      	Fact.Seam.FileName.EventId.V1


      	Fact.Seam.FileName.Fixed.V1


      	Fact.Seam.FileName.Hash.V1


      	Fact.Seam.FileName.Raw.V1


      	Fact.Seam.FileName.Registry


      	Fact.Seam.FileReader.Adapter


      	Fact.Seam.FileReader.FixedLength.V1


      	Fact.Seam.FileReader.Full.V1


      	Fact.Seam.FileReader.Registry


      	Fact.Seam.FileWriter.Adapter


      	Fact.Seam.FileWriter.Registry


      	Fact.Seam.FileWriter.Standard.V1


      	Fact.Seam.Storage.Adapter


      	Fact.Seam.Storage.Registry


      	Fact.Seam.Storage.Standard.V1


      	Fact.Seam.Storage.Standard.V2



      

    




    	Exceptions
      


      	Fact.ConcurrencyError



      

    




        



          	
            Mix Tasks
            

                	mix fact.create


            

          


      

    

  

    LICENSE


MIT License

Copyright (c) 2025, 2026 Evntd LLC

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.


  

    Getting Started

	Add fact to your list of dependencies in mix.exs:

def deps do
  [{:fact, "~> 0.2.0"}]
end
	If you are using Elixir 1.17.x or earlier, add jason to support JSON serialization:

def deps do
  [
     {:fact, "~> 0.2.0"},
     {:jason, "~> 1.4"}
  ]
end
	Fetch the dependencies:

$ mix deps.get

	Use mix to create a new database:

$ mix fact.create -p tmp/factdb

	Test it out via iex:

$ iex -S mix

iex> {:ok, db} = Fact.open("tmp/factdb")

iex> Fact.read(db, :all)

	Add it to your supervision tree:

# Inside your Supervisor module's init

children = [
  {Fact.Supervisor, databases: ["tmp/factdb"]}
]

	Lookup the database id by name and used as the handle for operations.

# Else where in your code.

{:ok, db} = Fact.Registry.get_database_id("factdb")

You've got want you need, check the Fact module docs for details on appending, reading, and subscribing.


  

    Process Model

Fact is designed around a multi-database architecture. Rather than sharing a single
global runtime, each database operates as an independent unit with its own supervision
tree (Fact.DatabaseSupervisor). This improves fault-tolerance, operational isolation,
and scalability. A failure in one database does not affect the others.
[image: Fact Process Model]
With each database supervision tree, Fact supervises a core set of GenServer processes:
	Fact.Database
	Fact.EventLedger
	Fact.PubSub (which is a Phoenix.PubSub process)

Its own set of indexer processes:
	Fact.EventTypeIndexer
	Fact.EventTagsIndexer
	Fact.EventStreamIndexer
	Fact.EventStreamCategoryIndexer
	Fact.EventStreamsIndexer
	Fact.EventStreamsByCategoryIndexer
	Fact.EventDataIndexer

About Event Data Indexers
These GenServer processes are started on demand when required to fulfill event queries.
Once started, they remain alive under supervision and continue to process and index
new events like any other indexer.
It is much more performant to model your system with queries which only utilize tags and types.
Data queries are a convenience feature to use when a tag or type was missed during design, or
your iterating on a new feature.
In addition, Fact includes Fact.EventStreamWriterSupervisor, a dynamic supervisor responsible
for supervising Fact.EventStreamWriter processes. Each Fact.EventStreamWriter is a GenServer
that enforces and maintains the consistency boundary for an individual event stream, providing
ordered writes, optimistic concurrency control, and stream-specific event enrichment.
The event stream writer processes are started on demand and gracefully terminate after a period
of inactivity (approximately 1 minute), minimizing resource usage while still preserving consistency
guarantees when active.


  

    Fact

A File-System Based Event Sourcing Database Engine

For those who showed me the way

In September 2024, at the Vancouver Event Modeling Unconference, I watched Adam Dymitruk demonstrate something that
seemed almost heretical in its simplicity: building an event sourcing database using a few lines of code and nothing but
the file system. No exotic dependencies. No architectural ceremony. Just the elegant application of first principles to
the problem at hand. Later, through his vibe-coded live streams of 2024 and 2025, I watched him continue to prove that
sometimes the best tools are the ones the operating system already gave us 40 years ago.
It was the kind of moment that makes you question everything you thought you knew; in the best possible way. Like
tasting wood-fired Neapolitan pizza for the first time when you'd only ever eaten frozen pizza. Or landing your first
kickflip
after months of eating pavement. The revelation isn't just in the trick itself; it's in realizing you had everything you
needed all along.
Fact is my response to that revelation. It's a file-system based event sourcing database engine that proves you don't
need to compromise on features to embrace simplicity. Like a good home-brewed beer, it takes time, attention to detail,
and a willingness to iterate until you get it right.
What It Does
Fact handles the fundamentals you'd expect from any event sourcing database: append events to streams, read from the
global stream, replay specific streams. But it also embraces the Dynamic Consistency Boundary specification, allowing
writes directly to the ledger with append conditions to enforce write-side consistency and provide optimistic
concurrency controls. You can query events with precision, and carve the boundaries you need to accomplish the task
at hand.
The indexing system treats your events like a well-curated vinyl collection: organized by type, by tags, by streams, by
stream categories, by event data. Whatever makes sense for your access patterns, you can find it. And because staying in
sync is essential, Fact supports catch-up subscriptions to the global stream, specific streams, indexes, and event
queries. It's reactive when you need it to be, queryable when you don't.
The Shoulders of Giants
This project stands on foundations built by people far smarter and more generous than I could hope to be.

To Greg Young
I found you on YouTube while searching for content regarding Event Tracing for Windows. A happy coincidence that our
technical vocabulary is wildly overloaded. I watched your Code On The Beach 2014 talk, and it caused a fundamental shift
in how I think about software. You handed me the mental models that changed everything. Event Sourcing. CQRS. The idea
that time is a dimension we can navigate, not just endure. The revelation that state is simply a consequence of events,
that we've been throwing away the most valuable data all along.
That talk started a decades-long journey of building and designing better systems. Every time I explain eventual
consistency to a skeptical developer, every time I model a domain as a series of facts instead of a mud-ball of
structural state, every time I choose immutability over mutation, I'm channeling something you taught me.
You gave me a new vocabulary for understanding systems, and with it, a new way of building them. Thank you for the
concepts that refuse to let go, and for making them accessible to someone who stumbled across them on the internet.

To Adam Dymitruk
Years into my journey, I struggled to convey the power of Event Sourcing and its ability to produce better designs to
the powers that be. It wasn't until I came across your Event Modeling blog post that it struck a chord. A step-by-step
guide to modeling event sourced systems written in the language of the business. I, like many others, had been mired in
the constant churn of requirements, going back to the well for additional funding, blowing up budgets and timelines.
These things are treated as normal, almost expected in software consulting. But you called it what it is: signs of poor
planning and questionable practices. Event Modeling solidified software development as a true engineering discipline
like any other traditional field of engineering, and gave me the tools and language to express Event Sourced systems in
terms businesses can relate to.
But beyond the code and the concepts, you've been a mentor in the truest sense. As I've started my own business, you've
been there. Sharing not just technical wisdom, but the hard-won lessons about what it takes to build something
sustainable. The conversations about business models, about finding clients, about staying true to your principles while
still paying the bills. You've shown me that you can be both technically excellent and commercially viable, that
simplicity isn't just a technical virtue but a business one.
Fact exists because you showed me it was possible. My business exists because you showed me it was doable.

To Martin Dilger
The time and energy you've poured into the Event Sourcing and Event Modeling communities is staggering. Your generosity
with sharing knowledge is beyond measure. I've consumed mountains of your content: talks, articles, workshops, insights.
Each piece has shaped how I think about these patterns and how to build a business around them.
You've made this space better just by being in it. You've made my journey better by making your knowledge so freely
available. Fact exists in part because you helped create an environment where these ideas could flourish. My business
exists in part because you helped create the confidence I needed to try.

To Sara Pellegrini, Bastian Waidelich, and Paul Grimshaw
The Dynamic Consistency Boundary pattern you developed is the kind of idea that makes you slap your forehead and say, "
Of course!" It solves the right problem in the right way, and Fact is better for having integrated it. You gave us a
spec that acknowledges the rigidity of DDD Aggregates, and provided guardrails enabling us to embrace the beautiful mess
and difficulty in boundary design. That's craft.

What This Is Really About
At its core, Fact is about trust in simplicity and the conviction that the best solutions are often the ones you can
explain over a beer and a slice of pizza at 2am after a concert. It's about recognizing that complexity is often a
choice, and sometimes the best choice is to say no.
I built Fact because I wanted to see if event sourcing could be as simple as Adam made it look, but with all the
features I'd come to depend on in production systems. I wanted to prove to myself that you could have indexing,
subscriptions, static and dynamic consistency boundaries, and query flexibility without sacrificing the beautiful
directness of "it's just files."
Turns out, you can.
A Final Note
Like skateboarding, brewing beer, or making a perfect pizza, building software is a practice. You're never done
learning. You're never done iterating. You're never done being humbled by how much you don't know.
Fact is my contribution to that practice. It's not perfect. It's not finished. But it's real, it works, and it stands on
the shoulders of people who cared enough to share what they learned.
So here's to the teachers, the builders, the craftspeople, and the pattern-makers. Here's to the decades-long journey of
getting better at this craft, one commit at a time.
And here's to you, reading this, hopefully building something of your own.
Let's make something simple together.

Built with files, inspired by giants, debugged with coffee, while listening to Tool.


  

    
Fact.BuildInfo 
    



      
Compile-time build metadata for the project.
Fun Fact
I went live with my 0.1.0 release, never testing creation of a database outside of this project.
I made a piss poor assumption about Mix.Project, and the result  was databases could not be created
via mix fact.create. This module is the remedy. It stores some of the key metadata fields defined
in mix.exs at compile time so they can be used in downstream projects without bombing. 
Live and learn! 🍺

      


      
        Summary


  
    Functions
  


    
      
        codename()

      


        The release code name.



    


    
      
        docs_url()

      


        The canonical url to the documentation.



    


    
      
        name()

      


        The library name.



    


    
      
        version()

      


        The library version.



    





      


      
        Functions


        


  
    
      
    
    
      codename()



        
          
        

    

  


  

      

          @spec codename() :: binary()


      


The release code name.

  



  
    
      
    
    
      docs_url()



        
          
        

    

  


  

      

          @spec docs_url() :: binary()


      


The canonical url to the documentation.

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: binary()


      


The library name.

  



  
    
      
    
    
      version()



        
          
        

    

  


  

      

          @spec version() :: binary()


      


The library version.

  


        

      


  

    
Fact 
    



      
Fact is an event-sourcing database, an append-only event store designed to make
event-driven systems explicit, observable, and mechanically simple.
Rather than persisting the resulting state of your system, Fact records the
sequence of domain events that led to it. These events form a durable,
ordered ledger that serves as the single source of truth for projections,
workflows, read models, analytics, and audit requirements.
Core Ideas
Fact is built around a few intentional concepts:
	Events are facts - they describe something that happened in the domain  
	The ledger is append-only - state is derived, never mutated in place  
	Streams define static consistency boundaries - typically aligned with DDD aggregates  
	Queries define dynamic consistency boundaries - enabling emergent boundaries based
on event types, tags, and data-level conditions  
	Storage is transparent - files on disk, deterministic layouts, no black boxes; easy
to inspect and manipulate (but never change) with standard OS tooling such as grep,
sed, awk, jq and plenty of other command-line utilities.

The goal is not to be a general-purpose database, but a focused tool for
systems that benefit from traceable history, replayable behavior, and explicit
domain modeling.
What Fact Provides
	A global event ledger (the ordered history of the entire database)
	Event streams for optimistic-concurrency-safe aggregate boundaries
	Ledger-level conditional appends to prevent duplicates and conflicting writes
	Queries and indexes for building read and processing workflows
	Subscription APIs for reacting to new events as they are committed
	A configurable event schema, record format, and identifier strategy

Fact is intentionally small in surface-area but powerful in composition:
everything builds on top of event persistence and deterministic ordering.
Consistency & Concurrency Model
Fact provides two complementary consistency mechanisms:
	Stream expectations - optimistic concurrency within a single stream  
	Append conditions - optional duplicate / conflict detection at the ledger level  

These tools allow you to model invariants where they belong in the domain, 
rather than inside storage mechanics.
Durability, Ordering, and Guarantees
	Events are written atomically and in order
	Positions are stable and monotonic within their scope
	Reads are deterministic and replayable

However, Fact does not promise distributed consensus, global locks, or
cross-process transactional semantics. It is currently designed for single-writer
durability with cooperative correctness enforced by the application model.
Configuration & Event Shape
The structure of an event record is defined by Fact.Event.Schema, including:
	field names for type, data, metadata, and tags  
	storage keys for positions, timestamps, and stream attributes  
	identifier and encoding strategies

Events are represented as plain maps before being persisted and enriched with
system metadata at commit-time.
When to Use Fact
Fact works best when:
	history matters more than just current state
	debugging and auditability are important
	systems benefit from replay and projection
	domain events are a first-class modeling tool

Fact excels when behavior is temporal and state is derived.
Getting Started
Typical workflow:
	Create and open a database
	Append events to streams or the ledger
	Read from streams, queries, or indexes
	Build projections and workflows from subscriptions

See the documentation for append/4, append_stream/5, read/3,
and subscribe/3 for operational details.    
Here there be 🐉🐉
Elixir's type system isn't as strict as say F#. So I've done my best to describe the types, their 
format, and encoding. Many of these are not enforced, and supplying other types may compile but 
produce errors or unexpected behavior. 
Just use the system as I intended, and it'll just work 😉.

      


      
        Summary


  
    Types
  


    
      
        append_condition()

      


        A condition that must not be satisfied in order for an append operation to succeed.



    


    
      
        append_options()

      


        Options for append/5.



    


    
      
        append_stream_expectation()

      


        Provides optimistic concurrency control when appending to event streams.



    


    
      
        append_stream_options()

      


        Options for append_stream/5.



    


    
      
        database_id()

      


        A unique identifier for a Fact database.



    


    
      
        database_name()

      


        The user-friendly name of the Fact database. 



    


    
      
        event()

      


        Represents an event before being written to the event store.



    


    
      
        event_data()

      


        Consumer defined map of data specific to the Fact.event_type/0.



    


    
      
        event_id()

      


        The unique identifier for an event.
The actual value depends on the configuration of Fact.Event.Id.



    


    
      
        event_metadata()

      


        Consumer defined map of metadata, specific to the system which produced the event.



    


    
      
        event_position()

      


        A number indicating the location of the event within the ledger or an event stream. 



    


    
      
        event_record()

      


        A map containing all the event details.



    


    
      
        event_record_schema()

      


        A schema definition describing the field names used in a Fact.event/0.



    


    
      
        event_stream_id()

      


        A consumer defined, domain specific id for a stream of events.



    


    
      
        event_tag()

      


        A consumer defined, domain-specific metadata for an event, allowing for custom logical partitioning. Similar in
concept to a Fact.event_stream_id/0, however events may define many tags. These and Fact.event_type/0
are used to define Fact.Querys and provide the foundation for dynamic consistency boundaries.



    


    
      
        event_tags()

      


    


    
      
        event_type()

      


        A consumer defined, domain-specific name for an event. 



    


    
      
        fail_if_match()

      


        A condition that fails the append operation when matching events are found.



    


    
      
        no_whitespace_string()

      


        A string that contains no whitespace characters of any kind, including 
spaces, tabs, newlines, and non-displayable control characters.



    


    
      
        opaque_string()

      


        A string whose internal structure is opaque to consumers.



    


    
      
        read_count_option()

      


        Specifies the maximum number of items to return from a read operation.



    


    
      
        read_direction_option()

      


        Specifies the direction in which events are read from an event source.



    


    
      
        read_option()

      


        Options for customizing a read operation from an event source.



    


    
      
        read_options()

      


        A keyword list of options customizing a read operation.



    


    
      
        read_position_option()

      


        The position at which a read operation begins.



    


    
      
        read_query_source()

      


        Represents the possible values when reading events from a query source.



    


    
      
        read_result()

      


        An enumerable collection (List or Stream) containing the values returned by the read operation.



    


    
      
        read_result_option()

      


        Specifies the element type returned by the read operation.



    


    
      
        read_source()

      


        Represents the source from which events are read.



    


    
      
        record()

      


        A persisted event paired with its unique identifier.



    


    
      
        record_id()

      


        An opaque string that uniquely identifies a persisted event.



    


    
      
        subscribe_option()

      


    


    
      
        subscribe_options()

      


    


    
      
        subscribe_source()

      


        Represents the event sources that a process may subscribe to for notifications. 



    


    
      
        uuid_v4_base32_uppercase_sans_padding()

      


        An RFC-4122 UUID v4 encoded in Base32, using only uppercase characters. 
The encoding contains no padding characters (=). This defines the 
expected format; it does not perform validation at runtime.



    





  
    Functions
  


    
      
        append(database_id, events, append_condition \\ nil, opts \\ [])

      


        Appends one or more events to the ledger.



    


    
      
        append_stream(database_id, events, event_stream, expected_position \\ :any, options \\ [])

      


        Appends one or more events to a stream.



    


    
      
        open(path)

      


        Initializes a Fact database at the given filesystem path.



    


    
      
        read(database_id, event_source, options \\ [])

      


        Read from an event source.



    


    
      
        subscribe(database_id, event_source, options \\ [])

      


        Subscribe a process to an event source.



    





      


      
        Types


        


  
    
      
    
    
      append_condition()



        
          
        

    

  


  

      

          @type append_condition() ::
  nil | fail_if_match() | {fail_if_match(), after_position :: non_neg_integer()}


      


A condition that must not be satisfied in order for an append operation to succeed.
An Fact.append_condition/0 allows you to express causal or state-dependent constraints
using queries against the event ledger. If the condition evaluates as a match, the append 
is rejected.
When nil, no conditional check is performed. The events are always appended.
When a fail_if_match/0 value is provided, the append function will fail if the 
query matches any events already present in the ledger.
When a {fail_if_match, after_position} tuple is provided, the append function will 
fail if the query matches any events present in the ledger found after the specified position.

  



  
    
      
    
    
      append_options()



        
          
        

    

  


  

      

          @type append_options() :: [{:timeout, timeout()}]


      


Options for append/5.
	:timeout (default: 5000) - the maximum time (in milliseconds) to wait for the append operation to compile.


  



  
    
      
    
    
      append_stream_expectation()



        
          
        

    

  


  

      

          @type append_stream_expectation() :: non_neg_integer() | :any | :none | :exists


      


Provides optimistic concurrency control when appending to event streams.

  



  
    
      
    
    
      append_stream_options()



        
          
        

    

  


  

      

          @type append_stream_options() :: [{:timeout, timeout()}]


      


Options for append_stream/5.
	:timeout (default: 5000) - the maximum time (in milliseconds) to wait for the append operation to compile.


  



  
    
      
    
    
      database_id()



        
          
        

    

  


  

      

          @type database_id() :: uuid_v4_base32_uppercase_sans_padding()


      


A unique identifier for a Fact database.
It is used as the primary handle for all database operations. Many 
Fact subsystems use this identifier to retrieve the database context 
in order to perform file and storage operations.

  



  
    
      
    
    
      database_name()



        
          
        

    

  


  

      

          @type database_name() :: String.t()


      


The user-friendly name of the Fact database. 

  



  
    
      
    
    
      event()



        
          
        

    

  


  

      

          @type event() :: %{
  :type => event_type(),
  optional(:data) => event_data(),
  optional(:metadata) => event_metadata(),
  optional(:tags) => event_tags()
}


      


Represents an event before being written to the event store.
At minimum, it must define a :type key.  
It may also include:
	:data - a map of custom data
	:metadata - a map of custom data about the data
	:tags - a list of custom identifiers to aid in defining context boundaries

Event ids are system defined
Apologies, event ids are system generated at this time.

  



  
    
      
    
    
      event_data()



        
          
        

    

  


  

      

          @type event_data() :: map()


      


Consumer defined map of data specific to the Fact.event_type/0.

  



  
    
      
    
    
      event_id()



        
          
        

    

  


  

      

          @type event_id() :: opaque_string()


      


The unique identifier for an event.
The actual value depends on the configuration of Fact.Event.Id.

  



  
    
      
    
    
      event_metadata()



        
          
        

    

  


  

      

          @type event_metadata() :: map()


      


Consumer defined map of metadata, specific to the system which produced the event.

  



  
    
      
    
    
      event_position()



        
          
        

    

  


  

      

          @type event_position() :: pos_integer()


      


A number indicating the location of the event within the ledger or an event stream. 

  



  
    
      
    
    
      event_record()



        
          
        

    

  


  

      

          @type event_record() :: map()


      


A map containing all the event details.

  



  
    
      
    
    
      event_record_schema()



        
          
        

    

  


  

      

          @type event_record_schema() :: %{
  event_data: String.t(),
  event_id: String.t(),
  event_metadata: String.t(),
  event_tags: String.t(),
  event_type: String.t(),
  event_store_position: String.t(),
  event_store_timestamp: String.t(),
  event_stream_id: String.t(),
  event_stream_position: String.t()
}


      


A schema definition describing the field names used in a Fact.event/0.
Each key in this map represents a logical event attribute, and its value is the
string key under which that attribute is stored in the event map.

  



  
    
      
    
    
      event_stream_id()



        
          
        

    

  


  

      

          @type event_stream_id() :: no_whitespace_string()


      


A consumer defined, domain specific id for a stream of events.
An event stream represents a logical partition within the ledger which
is used to relate events for downstream system capabilities. The default 
consistency boundary for persisting Domain-Driven Design (DDD) Aggregate Roots.

  



  
    
      
    
    
      event_tag()



        
          
        

    

  


  

      

          @type event_tag() :: no_whitespace_string()


      


A consumer defined, domain-specific metadata for an event, allowing for custom logical partitioning. Similar in
concept to a Fact.event_stream_id/0, however events may define many tags. These and Fact.event_type/0
are used to define Fact.Querys and provide the foundation for dynamic consistency boundaries.

  



  
    
      
    
    
      event_tags()



        
          
        

    

  


  

      

          @type event_tags() :: [event_tag()]


      



  



  
    
      
    
    
      event_type()



        
          
        

    

  


  

      

          @type event_type() :: no_whitespace_string()


      


A consumer defined, domain-specific name for an event. 
It is recommended they are named in the past-tense, and describe a fact that is important to capture for the domain. 

  



  
    
      
    
    
      fail_if_match()



        
          
        

    

  


  

      

          @type fail_if_match() :: Fact.Query.t() | Fact.QueryItem.t() | [Fact.QueryItem.t()]


      


A condition that fails the append operation when matching events are found.
May be expressed as a Fact.Query.t/0, a single Fact.QueryItem.t/0, or a list
of Fact.QueryItem.t/0. All forms represent a predicate function evaluated against
events committed to the ledger.

  



  
    
      
    
    
      no_whitespace_string()



        
          
        

    

  


  

      

          @type no_whitespace_string() :: String.t()


      


A string that contains no whitespace characters of any kind, including 
spaces, tabs, newlines, and non-displayable control characters.

  



  
    
      
    
    
      opaque_string()



        
          
        

    

  


  

      

          @type opaque_string() :: String.t()


      


A string whose internal structure is opaque to consumers.
Opaque strings should be treated as identifiers or tokens whose format 
is not meaningful outside the system. Do not make assumptions about their
contents or structure.

  



  
    
      
    
    
      read_count_option()



        
          
        

    

  


  

      

          @type read_count_option() :: :all | non_neg_integer()


      


Specifies the maximum number of items to return from a read operation.

  



  
    
      
    
    
      read_direction_option()



        
          
        

    

  


  

      

          @type read_direction_option() :: :forward | :backward


      


Specifies the direction in which events are read from an event source.

  



  
    
      
    
    
      read_option()



        
          
        

    

  


  

      

          @type read_option() ::
  {:count, read_count_option()}
  | {:direction, read_direction_option()}
  | {:eager, boolean()}
  | {:position, read_position_option()}
  | {:result, read_result_option()}


      


Options for customizing a read operation from an event source.

  



  
    
      
    
    
      read_options()



        
          
        

    

  


  

      

          @type read_options() :: [read_option()]


      


A keyword list of options customizing a read operation.
Each option is a read_option(). Defaults are applied for any options not specified.

  



  
    
      
    
    
      read_position_option()



        
          
        

    

  


  

      

          @type read_position_option() :: :start | :end | non_neg_integer()


      


The position at which a read operation begins.

  



  
    
      
    
    
      read_query_source()



        
          
        

    

  


  

      

          @type read_query_source() ::
  :all | :none | Fact.Query.t() | Fact.QueryItem.t() | [Fact.QueryItem.t()]


      


Represents the possible values when reading events from a query source.

  



  
    
      
    
    
      read_result()



        
          
        

    

  


  

      

          @type read_result() ::
  Enumerable.t(event_record())
  | Enumerable.t(record())
  | Enumerable.t(record_id())


      


An enumerable collection (List or Stream) containing the values returned by the read operation.

  



  
    
      
    
    
      read_result_option()



        
          
        

    

  


  

      

          @type read_result_option() :: :event | :record | :record_id


      


Specifies the element type returned by the read operation.

  



  
    
      
    
    
      read_source()



        
          
        

    

  


  

      

          @type read_source() ::
  :none
  | :all
  | {:stream, event_stream_id()}
  | {:index, Fact.EventIndexer.indexer_id(), Fact.EventIndexer.index_value()}
  | {:query, read_query_source()}


      


Represents the source from which events are read.

  



  
    
      
    
    
      record()



        
          
        

    

  


  

      

          @type record() :: {record_id(), event_record()}


      


A persisted event paired with its unique identifier.

  



  
    
      
    
    
      record_id()



        
          
        

    

  


  

      

          @type record_id() :: opaque_string()


      


An opaque string that uniquely identifies a persisted event.
The actual value and format depend on the configured Fact.RecordFile.Name.

  



  
    
      
    
    
      subscribe_option()



        
          
        

    

  


  

      

          @type subscribe_option() :: {:subscriber, pid()} | {:position, read_position_option()}


      



  



  
    
      
    
    
      subscribe_options()



        
          
        

    

  


  

      

          @type subscribe_options() :: [subscribe_option()]


      



  



  
    
      
    
    
      subscribe_source()



        
          
        

    

  


  

      

          @type subscribe_source() ::
  :all
  | {:stream, event_stream_id()}
  | {:index, Fact.EventIndexer.indexer_id(), Fact.EventIndexer.index_value()}
  | {:query, Fact.QueryItem.t() | [Fact.QueryItem.t()]}


      


Represents the event sources that a process may subscribe to for notifications. 

  



  
    
      
    
    
      uuid_v4_base32_uppercase_sans_padding()



        
          
        

    

  


  

      

          @type uuid_v4_base32_uppercase_sans_padding() :: String.t()


      


An RFC-4122 UUID v4 encoded in Base32, using only uppercase characters. 
The encoding contains no padding characters (=). This defines the 
expected format; it does not perform validation at runtime.

  


        

      

      
        Functions


        


    

    

  
    
      
    
    
      append(database_id, events, append_condition \\ nil, opts \\ [])



        
          
        

    

  


  

      

          @spec append(
  database_id(),
  event() | [event(), ...],
  append_condition(),
  append_options()
) :: {:ok, event_position()} | {:error, term()}


      


Appends one or more events to the ledger.
The ledger represents the full, ordered event history for a database. In
addition to standard optimistic concurrency mechanisms at the stream level,
Fact also supports conditional appends at the ledger level to help prevent
duplicate or conflicting writes.
These conditions are expressed through the append_condition argument.
When appending, you may provide one of the following:
	nil (default) — no condition is applied; the events are always appended

	a Fact.fail_if_match/0 value — the append will be rejected if the query
matches any existing events anywhere in the ledger

	{fail_if_match, after_position} — the append will be rejected if the
query matches any events whose position is strictly greater than
after_position. 


If the condition is violated, the append is rejected and an error tuple including
a Fact.ConcurrencyError is returned. 
On success, each appended event record is enriched with the :event_id, 
:event_store_position, :event_store_timestamp fields defined by the configured 
event schema. In addition the field keys used to define events (type, data, 
metatadata and tags) are renamed according to the configured schema. 
The function returns {:ok, last_position}, where last_position is the store
position of the last appended event.
Examples
Append without conditions:
iex> {:ok, pos} = Fact.append(db, %{type: "user_registered", data: %{id: 123}})
{:ok, 42}
Append a duplicate:
iex> {:ok, pos} = Fact.append(db, %{type: "user_registered", data: %{id: 123}})
{:ok, 43}
Prevent a third duplicate using a fail_if_match query:
iex> import Fact.QueryItem
iex> fail_if_match = types("user_registered") |> data(id: "123")
iex> Fact.append(db, %{type: "user_registered", data: %{id: 123}}, fail_if_match)
{:error, %Fact.ConcurrencyError{source: :all, expected: 0, actual: 42}}
Allow the append only if no matching events exist after a given position:
iex> Fact.append(db, %{type: "user_registered"}, {fail_if_match, last_pos})
{:ok, 44}
The final example was intentionally contrived; in practice, append conditions are
best applied to model explicit business invariants. For deeper guidance and 
real-world usage patterns, see the Dynamic Consistency Boundary
website.  

  



    

    

  
    
      
    
    
      append_stream(database_id, events, event_stream, expected_position \\ :any, options \\ [])



        
          
        

    

  


  

      

          @spec append_stream(
  database_id(),
  event() | [event(), ...],
  event_stream_id(),
  append_stream_expectation(),
  append_stream_options()
) :: {:ok, event_position()} | {:error, term()}


      


Appends one or more events to a stream.
Event streams define a consistency boundary for a set of related events. To 
preserve this boundary, Fact, like many event stores uses stream position
expectations to provide optimistic concurrency control.
When appending to a stream, you may provide an expected position value:
	A non negative integer - verifies that the stream is currently at that exact
position before appending
	:any (default) - no check is performed, the events are just appended
	:none - ensures the stream does not yet exist (equivalent to 0)
	:exists - ensures the stream already exists (i.e. position ≥ 1)

If the expectation is not met, the append is rejected and a 
{:error, %Fact.ConcurrencyError{}} is returned.
On success, each appended event record is enriched with the stream fields as defined 
by :event_stream_id and :event_stream_position of the configured schema 
(see Fact.Event.Schema). The function returns {:ok, last_stream_position}, where
the last_stream_position refers to the stream position of the final event written
to the stream.
It is strongly recommnded that you persis this returned position in your application
state and reuse it in subsequent calls to append_stream/5 to ensure consistency.
Examples
Append a single event.
iex> {:ok, db} = Fact.open("data/turtle")
{:ok, "TURTLE4F7Q6Y2X3VQKBJ5M7P4Z"}

iex> Fact.append_stream(db, %{type: "egg_hatched", data: %{name: "Turts"}}, "turtle-1")
{:ok, 1}

iex> Fact.read(db, {:stream, "turtle-1"}) |> Enum.to_list()
[
  %{
    "event_data" => %{"name" => "Turts"},
    "event_id" => "3bb4808303c847fd9ceb0a1251ef95da",                                                                                                                                                                                                                                                               
    "event_metadata" => %{},                                                                                                                                                                                                                                                                                        
    "event_tags" => [],                                                                                                                                                                                                                                                                                             
    "event_type" => "egg_hatched",                                                                                                                                                                                                                                                                                  
    "store_position" => 2,                                                                                                                                                                                                                                                                                          
    "store_timestamp" => 1765039106962264,                                                                                                                                                                                                                                                                          
    "stream_id" => "turtle-1",                                                                                                                                                                                                                                                                                  
    "stream_position" => 1                                                                                                                                                                                                                                                                                          
  }                                                                                                                                                                                                                                                                                                                 
]  
Append another event, expecting correct stream position.
iex> Fact.append_stream(db, %{type: "MySecondEvent"}, "myteststream", 1)
{:ok, 2}
Append a third event, but provide an invalid expected position.
iex> Fact.append_stream(:mydb, %{type: "MyThirdEvent"}, "myteststream", 1)
{:error, %Fact.ConcurrencyError{source: "myteststream", actual: 2, expected: 1}}
Append multiple events to a new stream.
iex> Fact.append_stream(db, [%{type: "foo"}, %{type: "bar"}, %{type: "baz"}], "foobarbaz-1", :none)
{:ok, 3}
Expect a stream to not exist, yet it does.
iex> Fact.append_stream(db, %{type: "foo"}, "foobarbaz-1", :none)
{:ok, %Fact.ConcurrencyError{source: "foobarbaz-1", expected: :none, actual: 3}}
Expect a stream to exist, when it does not exist.
iex> Fact.append_stream(db, %{type: "foo"}, "foo-1", :exists)
{:ok, %Fact.ConcurrencyError{source: "foo-1", expected: :exists, actual: 0}}

  



  
    
      
    
    
      open(path)



        
          
        

    

  


  

      

          @spec open(Path.t()) :: {:ok, database_id()} | {:error, term()}


      


Initializes a Fact database at the given filesystem path.
This function ensures that the Fact.Supervisor is running and then starts the database 
supervision tree as a child process. Once the Fact.DatabaseSupervisor is running, the
database id is returned, and you may use it as a handle for appending events, reading
and subscribing to event sources.
Examples
  Opens a new database.
iex> {:ok, db} = Fact.open("data/turtles")
{:ok, "EF73AQJ6S5HHZE5PMX7ZP254QQ"}
  Subsequent calls to the same path return the same database id...with the same BEAM.
iex> {:ok, db2} = Fact.open("data/turtles")
{:ok, "EF73AQJ6S5HHZE5PMX7ZP254QQ"}
  Keep that database running. Try to open the database again in another instance
  of IEx. You'll get a database locked error similar to the following: 
iex> Fact.open("data/turtles")
{:error, :database_locked,
 %{
   "locked_at" => "2026-01-07T06:18:57.669109Z",
   "mode" => "run",
   "node" => "nonode@nohost",
   "os_pid" => "933078",
   "vm_pid" => "#PID<0.232.0>"
 }}
  Remember to use mix fact.create -p <path> to create a database before attempting
  to open it. 
iex> Fact.open("does/not/exist")
{:error, :database_not_found}

  



    

  
    
      
    
    
      read(database_id, event_source, options \\ [])



        
          
        

    

  


  

      

          @spec read(database_id(), read_source(), read_options()) :: read_result()


      


Read from an event source.
Event Sources
Like most event stores, you can read from the global stream, or an individual event stream. 
Fact provides a few more options...
	:none - the empty stream  

	:all - the all stream (a.k.a. the global stream; a.k.a. the ledger)

	{:stream, stream_id} - an individual event stream

	{:index, indexer_id, index} - an event index 

	{:query, query_items} - an event query


Options
You may provide a keyword list with the following options to craft the results to fit your need.
If any of the options are not specified, sensible defaults will be provided.
direction:
	:forward (default) - events are read in increasing position order (e.g. 1, 2, 3, ...)
	:backward - events are read in decreasing position order (e.g. 100, 99, 98, ...)

Note
Positions will not always increase or decrease by 1, it totally depends on the event source.
position:
Set the position to begin reading the event source.
	:start (default) - the position immediately before the first item in the event source
	:end - the position immediately after the last item in the event source
	Or a non-negative integer representing the absolute position within the source

A note on specific positions
The meaning of the integer position is specific to the event source.
	For streams, it refers to the stream position.
	Other event sources store position (i.e. the global stream position)

A reminder when reading from the end
Starting reads from the end is typically only used when reading backwards, or subscribing to a live source. 
So if you're unexpectedly getting no results, double-check your direction and position options.
I've made these mistake many a time...🤦
	reading forward from the end
	reading backward from the start 

count:
Control the maximum size of the result set.
	:all (default) - reads everything in the event source
	Or a non-negative integer. 

You've been warned 🤠 🧑‍🚒
This option is super useful if you don't want to return a bazillion events to a consumer,
spiking I/O ops, slowing response times, and generally clogging up the pipes. 
But this is one area where the default value will happily allow you to shoot yourself in the foot.
result:
Control the shape of the elements in result set.
	:event (default) - each element is a map containing the event details. 
	:record - each element is a 2-tuple {record_id, event} containing both the record id and the event.
	:record_id - each element is the record id of the event.

Event schemas are ...kind of... configurable
When using :event or record, the exact "shape" of the event depends on the configured schema.
See the Fact.Seam.EventSchema.Registry for all the available schemas.
What's a record id???
Fact separates the concepts of an event id and a record id. The record id is the actual 
name of file on disk where the event is stored. This could be the same as the event id, and by 
default it is... but it really depends on how the Fact.RecordFile.Name has been configured.
eager:
Controls if the result set will be enumerated or lazy.
	true (default) - The internal Stream is enumerated and a List is returned.
	false - The result is returned as Stream

Fool me once, shame on, shame on you. Fool me ... you can't get fooled again
If the event source being read has many events, and :count is :all, it would be
quite wise 🧙‍♂️ to set this to false.  Nearly all the internal components of Fact 
use lazy reads, this is really just meant as a convenience so you don't have to 
remember to |> Enum.to_list().

  



    

  
    
      
    
    
      subscribe(database_id, event_source, options \\ [])



        
          
        

    

  


  

      

          @spec subscribe(database_id(), subscribe_source(), subscribe_options()) ::
  {:ok, pid()}


      


Subscribe a process to an event source.
A subscription streams new events to the subscriber process as they are appended to the event store.
The subscriber process receives one message per event in the form:
	{:record, record} - where record is a 2-tuple {record_id, event_record} (see t:Fact.record())

The subscription begins by replaying events from the specified source, starting at the configured position.
Once all historical events have been delivered, the processes receives a :caught_up message and the subscription
shifts into live mode, where it waits for and delivers new events as they arrive.
Event Sources
Subscriptions support most of the same sources as read/3, with a few exceptions. 
Subscribing to the empty stream (i.e. :none) would create a very lonely Fact.CatchUpSubscription process
that never delivers any messages, and I don't believe that would be useful. If you have a legitimate use case,
please make your case. It would be straightforward to implement and support.
Subscribing to query sources requires Fact.QueryItem.t/0; a Fact.Query.t/0 won't work here. 
A Fact.Query.t/0 is just a function, and that function depends on data produced by a combination 
of the Fact.EventTypeIndexer, Fact.EventTagsIndexer, and any number of Fact.EventDataIndexer processes. 
A Fact.QueryItem.t/0 contains the metadata needed to subscribe to the correct indexers so the subscription
and coordinate when events become "visible" to the subscriber.
Could a Fact.Query.t/0 be decompiled back into an AST so we could reconstruct that information? Probably! But
for now, I'd rather spend my time building other things. If you're like my good buddy Tim and love spelunking through
abstract syntax trees, I'll happily take your pull request. 
Options
position:
Set the position to begin reading the event source.
	:start (default) - the position immediately before the first item in the event source
	:end - the position immediately after the last item in the event source
	Or a non-negative integer representing the absolute position within the source

Live mode only
If you're not interested in past events, set position: :end to move directly into live mode.
subscriber:
Specifies the PID of the process that will receive subscription message. Defaults to self().

  


        

      


  

    
Fact.BootstrapFile 
    



      
This module encapsulates the adapters used for working with the bootstrap record file.

      


      
        Summary


  
    Types
  


    
      
        bootstrap_record()

      


        A small subset of a Fact.Context.t/0 containing the following keys with .



    





  
    Functions
  


    
      
        read(path)

      


        Reads the bootstrap file.



    


    
      
        write(path, arg)

      


        Writes a minimal amount of the Fact.Context structure to the bootstrap file.



    





      


      
        Types


        


  
    
      
    
    
      bootstrap_record()


        (since 0.2.0)


        
          
        

    

  


  

      

          @type bootstrap_record() :: map()


      


A small subset of a Fact.Context.t/0 containing the following keys with .
	record_id - Fact.record_id/0
	record_file_decoder - Fact.Genesis.Event.DatabaseCreated.V1.component_config/0
	record_file_reader - Fact.Genesis.Event.DatabaseCreated.V1.component_config/0
	event_schema - Fact.Genesis.Event.DatabaseCreated.V1.component_config/0
	storage - Fact.Genesis.Event.DatabaseCreated.V1.component_config/0


  


        

      

      
        Functions


        


  
    
      
    
    
      read(path)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec read(Path.t()) :: {:ok, bootstrap_record()}


      


Reads the bootstrap file.

  



  
    
      
    
    
      write(path, arg)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec write(Path.t(), genesis_record :: Fact.record()) :: :ok | {:error, term()}


      


Writes a minimal amount of the Fact.Context structure to the bootstrap file.
It writes just enough configuration, so that the genesis record (Fact.Genesis.Event.DatabaseCreated.V1)
can be read and a full Fact.Context can be loaded.

  


        

      


  

    
Fact.Context 
    



      
The context for a Fact database.
A Fact.Context holds all the configuration, file handlers, encoders/decoders,
and metadata necessary to operate a database instance. It provides a central
place to access:
	Database identity and versioning information
	Event and record schemas
	File and storage handlers for ledgers, records, indexes, checkpoints, and locks


      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        from_genesis_event_data(event_data)

      


        Constructs a Fact.Context from a genesis event (Fact.Genesis.Event.DatabaseCreated.V1) data.



    


    
      
        from_record(record)

          deprecated

      


        Constructs a Fact.Context from a genesis event record.



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %Fact.Context{
  database_id: Fact.database_id(),
  database_name: Fact.database_name(),
  elixir_version: binary(),
  erts_version: binary(),
  event_id: Fact.Seam.Instance.t(),
  event_schema: Fact.Seam.Instance.t(),
  fact_version: binary(),
  index_checkpoint_file_decoder: Fact.Seam.Instance.t(),
  index_checkpoint_file_encoder: Fact.Seam.Instance.t(),
  index_checkpoint_file_name: Fact.Seam.Instance.t(),
  index_checkpoint_file_reader: Fact.Seam.Instance.t(),
  index_checkpoint_file_writer: Fact.Seam.Instance.t(),
  index_file_decoder: Fact.Seam.Instance.t(),
  index_file_encoder: Fact.Seam.Instance.t(),
  index_file_name: Fact.Seam.Instance.t(),
  index_file_reader: Fact.Seam.Instance.t(),
  index_file_writer: Fact.Seam.Instance.t(),
  ledger_file_decoder: Fact.Seam.Instance.t(),
  ledger_file_encoder: Fact.Seam.Instance.t(),
  ledger_file_name: Fact.Seam.Instance.t(),
  ledger_file_reader: Fact.Seam.Instance.t(),
  ledger_file_writer: Fact.Seam.Instance.t(),
  lock_file_decoder: Fact.Seam.Instance.t(),
  lock_file_encoder: Fact.Seam.Instance.t(),
  lock_file_name: Fact.Seam.Instance.t(),
  lock_file_reader: Fact.Seam.Instance.t(),
  lock_file_writer: Fact.Seam.Instance.t(),
  os_version: binary(),
  otp_version: binary(),
  record_file_decoder: Fact.Seam.Instance.t(),
  record_file_encoder: Fact.Seam.Instance.t(),
  record_file_name: Fact.Seam.Instance.t(),
  record_file_reader: Fact.Seam.Instance.t(),
  record_file_writer: Fact.Seam.Instance.t(),
  storage: Fact.Seam.Instance.t()
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      from_genesis_event_data(event_data)


        (since 0.2.0)


        
          
        

    

  


  

Constructs a Fact.Context from a genesis event (Fact.Genesis.Event.DatabaseCreated.V1) data.

  



  
    
      
    
    
      from_record(record)


        (since 0.1.0)


        
          
        

    

  


    
      This function is deprecated. Use from_genesis_event_data/1 instead.
    


  

Constructs a Fact.Context from a genesis event record.

  


        

      


  

    
Fact.Event 
    



      
Domain-specific module that encapsulates configurable adapters 
for event-related operations. 

      




  

    
Fact.IndexCheckpointFile 
    



      
Domain-specific module that encapsulates configurable adapters for 
working with index checkpoint files.
This provides helper functions to make it easier than directly working 
with the adapters and Fact.Context modules. 

      


      
        Summary


  
    Functions
  


    
      
        ensure_exists(database_id, indexer)

      


    


    
      
        read(database_id, indexer)

      


    


    
      
        write(database_id, indexer, position)

      


    





      


      
        Functions


        


  
    
      
    
    
      ensure_exists(database_id, indexer)



        
          
        

    

  


  


  



  
    
      
    
    
      read(database_id, indexer)



        
          
        

    

  


  


  



  
    
      
    
    
      write(database_id, indexer, position)



        
          
        

    

  


  


  


        

      


  

    
Fact.IndexFile 
    



      
Domain-specific module that encapsulates configurable adapters for 
working with index files.
This provides helper functions to make it easier than working with 
adapters and Fact.Context module.

      


      
        Summary


  
    Functions
  


    
      
        read(database, indexer, index, opts \\ [])

      


    


    
      
        read_last_event(database_id, indexer, index)

      


    


    
      
        write(database_id, indexer, index, record_ids)

      


    





      


      
        Functions


        


    

  
    
      
    
    
      read(database, indexer, index, opts \\ [])



        
          
        

    

  


  


  



  
    
      
    
    
      read_last_event(database_id, indexer, index)



        
          
        

    

  


  


  



  
    
      
    
    
      write(database_id, indexer, index, record_ids)



        
          
        

    

  


  


  


        

      


  

    
Fact.LedgerFile 
    



      
Domain-specific module that encapsulates configurable adapters for 
working with ledger file.
This provides helper functions to make it easier than directly working 
with the adapters and Fact.Context modules. 

      


      
        Summary


  
    Functions
  


    
      
        read(database, opts \\ [])

      


    


    
      
        write(database_id, record_ids)

      


    





      


      
        Functions


        


    

  
    
      
    
    
      read(database, opts \\ [])



        
          
        

    

  


  


  



  
    
      
    
    
      write(database_id, record_ids)



        
          
        

    

  


  


  


        

      


  

    
Fact.LockFile 
    



      
Domain-specific module that encapsulates configurable adapters for 
working with lock files.
This provides helper functions to make it easier than working with 
adapters and Fact.Context module.

      


      
        Summary


  
    Functions
  


    
      
        delete(database_id)

      


    


    
      
        read(database_id)

      


    


    
      
        write(database_id, lock_info)

      


    





      


      
        Functions


        


  
    
      
    
    
      delete(database_id)



        
          
        

    

  


  


  



  
    
      
    
    
      read(database_id)



        
          
        

    

  


  


  



  
    
      
    
    
      write(database_id, lock_info)



        
          
        

    

  


  


  


        

      


  

    
Fact.RecordFile 
    



      
Domain-specific module that encapsulates configurable adapters for 
working with event record files.
This provides helper functions to make it easier than directly working 
with the adapters and Fact.Context modules. 

      


      
        Summary


  
    Functions
  


    
      
        read(database_id, record_id)

      


    


    
      
        read_event(database_id, record_id)

      


    


    
      
        write(database_id, records)

      


    





      


      
        Functions


        


  
    
      
    
    
      read(database_id, record_id)



        
          
        

    

  


  


  



  
    
      
    
    
      read_event(database_id, record_id)



        
          
        

    

  


  


  



  
    
      
    
    
      write(database_id, records)



        
          
        

    

  


  


  


        

      


  

    
Fact.Storage 
    



      
Adapter for working with configurable storage implementations.
There is currently only a single implementation, see Fact.Seam.Storage.Standard.V1.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        indices_path(database, options \\ [])

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    


    
      
        initialize_storage(context, options \\ [])

      


    


    
      
        ledger_path(database, options \\ [])

      


    


    
      
        locks_path(database, options \\ [])

      


    


    
      
        path(database, options \\ [])

      


    


    
      
        records_path(database, record_id \\ nil, options \\ [])

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      indices_path(database, options \\ [])



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  



    

  
    
      
    
    
      initialize_storage(context, options \\ [])



        
          
        

    

  


  


  



    

  
    
      
    
    
      ledger_path(database, options \\ [])



        
          
        

    

  


  


  



    

  
    
      
    
    
      locks_path(database, options \\ [])



        
          
        

    

  


  


  



    

  
    
      
    
    
      path(database, options \\ [])



        
          
        

    

  


  


  



    

    

  
    
      
    
    
      records_path(database, record_id \\ nil, options \\ [])



        
          
        

    

  


  


  


        

      


  

    
Fact.BootstrapFile.Context 
    



      
The context for a bootstrapping the Fact database.
The Fact.BootstrapFile.Context holds all the configuration, for reading,
and writing the bootstrap file, which contains just enough configuration information
to read the Fact.Context when bootstrapping a database.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()


        (since 0.2.0)


        
          
        

    

  


  

      

          @type t() :: %{
  decoder: Fact.Seam.Instance.t(),
  encoder: Fact.Seam.Instance.t(),
  name: Fact.Seam.Instance.t(),
  reader: Fact.Seam.Instance.t(),
  writer: Fact.Seam.Instance.t()
}


      



  


        

      


  

    
Fact.BootstrapFile.Decoder 
    



      
Adapter for decoding the contents of the bootstrap file.

      


      
        Summary


  
    Functions
  


    
      
        decode(context, value)

      


        Helper function to decode the bootstrap file using the configured Fact.Seam.Decoder.



    


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


  
    
      
    
    
      decode(context, value)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec decode(Fact.BootstrapFile.Context.t(), binary()) ::
  {:ok, term()} | {:error, term()}


      


Helper function to decode the bootstrap file using the configured Fact.Seam.Decoder.

  



  
    
      
    
    
      from_config(config)


        (since 0.2.0)


        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})


        (since 0.2.0)


        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)


        (since 0.2.0)


        
          
        

    

  


  


  


        

      


  

    
Fact.BootstrapFile.Encoder 
    



      
Adapter for encoding the contents of the bootstrap file.

      


      
        Summary


  
    Functions
  


    
      
        encode(context, value)

      


        Helper function to encode the bootstrap file using the configured Fact.Seam.Encoder.



    


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


  
    
      
    
    
      encode(context, value)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec encode(Fact.BootstrapFile.Context.t(), term()) ::
  {:ok, iodata()} | {:error, term()}


      


Helper function to encode the bootstrap file using the configured Fact.Seam.Encoder.

  



  
    
      
    
    
      from_config(config)


        (since 0.2.0)


        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})


        (since 0.2.0)


        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)


        (since 0.2.0)


        
          
        

    

  


  


  


        

      


  

    
Fact.BootstrapFile.Name 
    



      
Adapter for naming the bootstrap file.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        get(context)

      


        Helper function to get the file name using the configured Fact.Seam.FileName.



    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)


        (since 0.2.0)


        
          
        

    

  


  


  



  
    
      
    
    
      get(context)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec get(Fact.BootstrapFile.Context.t()) :: String.t()


      


Helper function to get the file name using the configured Fact.Seam.FileName.

  



    

  
    
      
    
    
      init(options \\ %{})


        (since 0.2.0)


        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)


        (since 0.2.0)


        
          
        

    

  


  


  


        

      


  

    
Fact.BootstrapFile.Reader 
    



      
Adapter for reading the bootstrap file.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    


    
      
        read(context, path)

      


        Helper function to read the bootstrap file using the configured Fact.Seam.FileReader.



    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)


        (since 0.2.0)


        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})


        (since 0.2.0)


        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)


        (since 0.2.0)


        
          
        

    

  


  


  



  
    
      
    
    
      read(context, path)


        (since 0.2.0)


        
          
        

    

  


  

Helper function to read the bootstrap file using the configured Fact.Seam.FileReader.

  


        

      


  

    
Fact.BootstrapFile.Writer 
    



      
Adapter for writing the bootstrap file.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    


    
      
        write(context, path, record)

      


        Helper function to write the bootstrap file using the configured Fact.Seam.FileWriter.



    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)


        (since 0.2.0)


        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})


        (since 0.2.0)


        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)


        (since 0.2.0)


        
          
        

    

  


  


  



  
    
      
    
    
      write(context, path, record)


        (since 0.2.0)


        
          
        

    

  


  

Helper function to write the bootstrap file using the configured Fact.Seam.FileWriter.

  


        

      


  

    
Fact.Event.Id 
    



      
Adapter for working with configurable event id implementations.
There is currently only a single implementation, see Fact.Seam.EventId.Uuid.V4.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        generate(database, opts \\ [])

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      generate(database, opts \\ [])



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.Event.Schema 
    



      
Adapter for working with configurable event schema implementations.
There is currently only a single implementation, see Fact.Seam.EventSchema.Standard.V1.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        get(database, options \\ [])

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      get(database, options \\ [])



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.IndexCheckpointFile.Decoder 
    



      
Adapter for decoding the contents of index checkpoint files.
There is currently only a single allowed implementation, see Fact.Seam.Decoder.Integer.V1.

      


      
        Summary


  
    Functions
  


    
      
        decode(context, value, opts \\ [])

      


    


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


    

  
    
      
    
    
      decode(context, value, opts \\ [])



        
          
        

    

  


  


  



  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.IndexCheckpointFile.Encoder 
    



      
Adapter for encoding the contents of index checkpoint files.
There is currently only a single allowed implementation, see Fact.Seam.Encoder.Integer.V1.

      


      
        Summary


  
    Functions
  


    
      
        encode(context, value, opts \\ [])

      


    


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


    

  
    
      
    
    
      encode(context, value, opts \\ [])



        
          
        

    

  


  


  



  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.IndexCheckpointFile.Name 
    



      
Adapter for naming the index checkpoint files within the file system.
There is currently only a single allowed implementation, see Fact.Seam.Encoder.Fixed.V1.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        get(context)

      


    


    
      
        get(context, value, options)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



  
    
      
    
    
      get(context)



        
          
        

    

  


  


  



  
    
      
    
    
      get(context, value, options)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.IndexCheckpointFile.Reader 
    



      
Adapter for reading the contents of index checkpoint files.
There is currently only a single allowed implementation, see Fact.Seam.FileReader.Full.V1.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    


    
      
        read(context, path, opts \\ [])

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  



    

  
    
      
    
    
      read(context, path, opts \\ [])



        
          
        

    

  


  


  


        

      


  

    
Fact.IndexCheckpointFile.Writer 
    



      
Adapter for writing the contents of index checkpoint files to the file system.
There is currently only a single allowed implementation, see Fact.Seam.FileWriter.Standard.V1.
Index checkpoint files are opened in write mode, overwriting any existing contents. 

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    


    
      
        write(context, path, value, options \\ [])

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  



    

  
    
      
    
    
      write(context, path, value, options \\ [])



        
          
        

    

  


  


  


        

      


  

    
Fact.IndexFile.Decoder 
    



      
Adapter for decoding the contents of index files.
There is currently only a single allowed implementation, see Fact.Seam.Decoder.Raw.V1.

      


      
        Summary


  
    Functions
  


    
      
        decode(context, value, opts \\ [])

      


    


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


    

  
    
      
    
    
      decode(context, value, opts \\ [])



        
          
        

    

  


  


  



  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.IndexFile.Encoder 
    



      
Adapter for encoding the contents of index files.
There is currently only a single allowed implementation, see Fact.Seam.Encoder.Delimited.V1.

      


      
        Summary


  
    Functions
  


    
      
        encode(context, value, opts \\ [])

      


    


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


    

  
    
      
    
    
      encode(context, value, opts \\ [])



        
          
        

    

  


  


  



  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.IndexFile.Name 
    



      
Adapter for naming the index files within the file system.
This defaults to using the Fact.Seam.FileName.Raw.V1 implementation, 
but can be configured to use Fact.Seam.FileName.Hash.V1.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        get(context, value)

      


    


    
      
        get(context, value, options)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



  
    
      
    
    
      get(context, value)



        
          
        

    

  


  


  



  
    
      
    
    
      get(context, value, options)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.IndexFile.Reader 
    



      
Adapter for reading the contents of index files.
There is currently only a single allowed implementation, see Fact.Seam.FileReader.FixedLength.V1.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    


    
      
        read(context, path, opts \\ [])

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  



    

  
    
      
    
    
      read(context, path, opts \\ [])



        
          
        

    

  


  


  


        

      


  

    
Fact.IndexFile.Writer 
    



      
Adapter for writing the contents of index files to the file system.
There is currently only a single allowed implementation, see Fact.Seam.FileWriter.Standard.V1.
Index files are opened in append mode, writing new data to the end of the file.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    


    
      
        write(context, path, value, options \\ [])

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  



    

  
    
      
    
    
      write(context, path, value, options \\ [])



        
          
        

    

  


  


  


        

      


  

    
Fact.LedgerFile.Decoder 
    



      
Adapter for decoding the contents of ledger file.
There is currently only a single allowed implementation, see Fact.Seam.Decoder.Raw.V1.

      


      
        Summary


  
    Functions
  


    
      
        decode(context, value, opts \\ [])

      


    


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


    

  
    
      
    
    
      decode(context, value, opts \\ [])



        
          
        

    

  


  


  



  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.LedgerFile.Encoder 
    



      
Adapter for encoding the contents of ledger file.
There is currently only a single allowed implementation, see Fact.Seam.Encoder.Delimited.V1.

      


      
        Summary


  
    Functions
  


    
      
        encode(context, value, opts \\ [])

      


    


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


    

  
    
      
    
    
      encode(context, value, opts \\ [])



        
          
        

    

  


  


  



  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.LedgerFile.Name 
    



      
Adapter for naming the ledger file within the file system.
There is currently only a single allowed implementation, see Fact.Seam.Encoder.Fixed.V1.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        get(context)

      


    


    
      
        get(context, value, options)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



  
    
      
    
    
      get(context)



        
          
        

    

  


  


  



  
    
      
    
    
      get(context, value, options)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.LedgerFile.Reader 
    



      
Adapter for reading the contents of the ledger file.
There is currently only a single allowed implementation, see Fact.Seam.FileReader.FixedLength.V1.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    


    
      
        read(context, path, opts \\ [])

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  



    

  
    
      
    
    
      read(context, path, opts \\ [])



        
          
        

    

  


  


  


        

      


  

    
Fact.LedgerFile.Writer 
    



      
Adapter for writing the contents of ledger file to the file system.
There is currently only a single allowed implementation, see Fact.Seam.FileWriter.Standard.V1.
The ledger file opened for append-only writes using raw file descriptors, and each write is synchronously
flushed to disk to ensure durability.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    


    
      
        write(context, path, value, options \\ [])

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  



    

  
    
      
    
    
      write(context, path, value, options \\ [])



        
          
        

    

  


  


  


        

      


  

    
Fact.LockFile.Decoder 
    



      
Adapter for decoding the contents of lock file.
There is currently only a single allowed implementation, see Fact.Seam.Decoder.Json.V1.

      


      
        Summary


  
    Functions
  


    
      
        decode(context, value, opts \\ [])

      


    


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


    

  
    
      
    
    
      decode(context, value, opts \\ [])



        
          
        

    

  


  


  



  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.LockFile.Encoder 
    



      
Adapter for encoding the contents of lock file.
There is currently only a single allowed implementation, see Fact.Seam.Encoder.Json.V1.

      


      
        Summary


  
    Functions
  


    
      
        encode(context, value, opts \\ [])

      


    


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


    

  
    
      
    
    
      encode(context, value, opts \\ [])



        
          
        

    

  


  


  



  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.LockFile.Name 
    



      
Adapter for naming the lock file within the file system.
There is currently only a single allowed implementation, see Fact.Seam.Encoder.Fixed.V1.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        get(context)

      


    


    
      
        get(context, value, options)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



  
    
      
    
    
      get(context)



        
          
        

    

  


  


  



  
    
      
    
    
      get(context, value, options)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.LockFile.Reader 
    



      
Adapter for reading the contents of the lock file.
There is currently only a single allowed implementation, see Fact.Seam.FileReader.Full.V1.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    


    
      
        read(context, path, opts \\ [])

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  



    

  
    
      
    
    
      read(context, path, opts \\ [])



        
          
        

    

  


  


  


        

      


  

    
Fact.LockFile.Writer 
    



      
Adapter for writing the contents of the lock file to the file system.
There is currently only a single allowed implementation, see Fact.Seam.FileWriter.Standard.V1.
The lock file is opened in write mode, overwriting any existing contents. Although the lock file
is normally deleted when the lock is released, certain failure scenarios may leave a stale lock
file behind. 

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    


    
      
        write(context, path, value, options \\ [])

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  



    

  
    
      
    
    
      write(context, path, value, options \\ [])



        
          
        

    

  


  


  


        

      


  

    
Fact.RecordFile.Decoder 
    



      
Adapter for decoding the contents of event record files.
There is currently only a single allowed implementation, see Fact.Seam.Decoder.Json.V1.

      


      
        Summary


  
    Functions
  


    
      
        decode(context, value, opts \\ [])

      


    


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


    

  
    
      
    
    
      decode(context, value, opts \\ [])



        
          
        

    

  


  


  



  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.RecordFile.Encoder 
    



      
Adapter for encoding the contents of event record files.
There is currently only a single allowed implementation, see Fact.Seam.Encoder.Json.V1.

      


      
        Summary


  
    Functions
  


    
      
        encode(context, value, opts \\ [])

      


    


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


    

  
    
      
    
    
      encode(context, value, opts \\ [])



        
          
        

    

  


  


  



  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.RecordFile.Name 
    



      
Adapter for naming the event records files within the file system.
This defaults to using the Fact.Seam.FileName.EventId.V1 implementation, 
but can be configured to use Fact.Seam.FileName.Hash.V1 which provides 
content addressable storage.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        get(context, value)

      


    


    
      
        get(context, value, options)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



  
    
      
    
    
      get(context, value)



        
          
        

    

  


  


  



  
    
      
    
    
      get(context, value, options)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  


        

      


  

    
Fact.RecordFile.Reader 
    



      
Adapter for reading the contents of the event record files.
There is currently only a single allowed implementation, see Fact.Seam.FileReader.Full.V1.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    


    
      
        read(context, path, opts \\ [])

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  



    

  
    
      
    
    
      read(context, path, opts \\ [])



        
          
        

    

  


  


  


        

      


  

    
Fact.RecordFile.Writer 
    



      
Adapter for writing the contents of the lock file to the file system.
There is currently only a single allowed implementation, see Fact.Seam.FileWriter.Standard.V1.
Event records are opened in exclusive write mode, written using raw file descriptors, and explicitly
synchronized to disk. After the write completes, the file is marked read-only to prevent further 
modification.

      


      
        Summary


  
    Functions
  


    
      
        from_config(config)

      


    


    
      
        init(options \\ %{})

      


    


    
      
        init(impl_id, options)

      


    


    
      
        write(context, path, value, options \\ [])

      


    





      


      
        Functions


        


  
    
      
    
    
      from_config(config)



        
          
        

    

  


  


  



    

  
    
      
    
    
      init(options \\ %{})



        
          
        

    

  


  


  



  
    
      
    
    
      init(impl_id, options)



        
          
        

    

  


  


  



    

  
    
      
    
    
      write(context, path, value, options \\ [])



        
          
        

    

  


  


  


        

      


  

    
Fact.Database 
    



      
Represents a running Fact database instance and orchestrates indexing, event tracking, 
and record publishing.
Fact.Database is a GenServer that maintains state about:
	The database's ledger position
	Active indexers and their progress
	Locks for safe concurrent access
	The last published position to subscribers

This module provides:
	Reading events, indexes, and the ledger
	Ensuring and starting indexers
	Tracking indexer progress and publishing indexed positions
	High-level coordination of database internals via Fact.Registry and Fact.EventPublisher


      


      
        Summary


  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        ensure_indexer(database_id, indexer_module, options \\ [])

      


    


    
      
        last_position(database_id)

      


    


    
      
        read_event(database_id, record_id)

      


    


    
      
        read_index(database_id, indexer_id, index, read_opts)

      


    


    
      
        read_ledger(database_id, read_opts)

      


    


    
      
        read_none(database_id, read_opts)

      


    


    
      
        read_query(database_id, query_fun, read_opts)

      


    


    
      
        read_record(database_id, record_id)

      


    


    
      
        start_indexer(database_id, indexer_module, options \\ [])

      


    


    
      
        start_link(options)

      


    


    
      
        subscribe(database_id)

      


    





      


      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



    

  
    
      
    
    
      ensure_indexer(database_id, indexer_module, options \\ [])



        
          
        

    

  


  


  



  
    
      
    
    
      last_position(database_id)



        
          
        

    

  


  


  



  
    
      
    
    
      read_event(database_id, record_id)



        
          
        

    

  


  


  



  
    
      
    
    
      read_index(database_id, indexer_id, index, read_opts)



        
          
        

    

  


  


  



  
    
      
    
    
      read_ledger(database_id, read_opts)



        
          
        

    

  


  


  



  
    
      
    
    
      read_none(database_id, read_opts)



        
          
        

    

  


  


  



  
    
      
    
    
      read_query(database_id, query_fun, read_opts)



        
          
        

    

  


  


  



  
    
      
    
    
      read_record(database_id, record_id)



        
          
        

    

  


  


  



    

  
    
      
    
    
      start_indexer(database_id, indexer_module, options \\ [])



        
          
        

    

  


  


  



  
    
      
    
    
      start_link(options)



        
          
        

    

  


  


  



  
    
      
    
    
      subscribe(database_id)



        
          
        

    

  


  


  


        

      


  

    
Fact.EventLedger 
    



      
This is the Judge Judy of the system, it manages the event ledger for a Fact database instance, 
handling all commits, enforcing optimistic concurrency control via append conditions.
Fact.EventLedger is a GenServer responsible for:
	Writing event record files, and appending to the ledger
	Ensuring events are enriched with metadata, ids, timestamps, and store positions
	Publishing appended events via Fact.EventPublisher
	Tracking the current ledger position and maintaining order


      


      
        Summary


  
    Types
  


    
      
        commit_option()

      


        Defines the options that can be specified when committing.



    


    
      
        option()

      


        Defines the options for starting a Fact.EventLedger.



    





  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        commit(database_id, events, append_condition \\ nil, options \\ [])

      


        Commits an event or set of events.



    


    
      
        start_link(opts)

      


        Starts the event ledger process.



    





      


      
        Types


        


  
    
      
    
    
      commit_option()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type commit_option() :: {:timeout, timeout()}


      


Defines the options that can be specified when committing.
	:timeout (default: 5000) - specifies how long the caller should wait for the commit operation to complete in milliseconds 


  



  
    
      
    
    
      option()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type option() :: {:database_id, Fact.database_id()}


      


Defines the options for starting a Fact.EventLedger.

  


        

      

      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)


        (since 0.1.0)


        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



    

    

  
    
      
    
    
      commit(database_id, events, append_condition \\ nil, options \\ [])


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec commit(
  Fact.database_id(),
  Fact.event() | [Fact.event()],
  Fact.append_condition() | nil,
  [commit_option()]
) :: {:ok, Fact.event_position()} | {:error, term()}


      


Commits an event or set of events.
Each event is enriched with additional metadata, including a timestamp, and assigning a store position.
Events are then written to the configured storage and a reference to the event is appended to the ledger file.
If the commit operation is successful, an {:appended, {record_id, event}} message will be published by the 
Fact.EventPublisher for each event that was written.

  



  
    
      
    
    
      start_link(opts)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec start_link([option()]) :: {:ok, pid()} | {:error, term()}


      


Starts the event ledger process.

  


        

      


  

    
Fact.EventStreamWriter 
    



      
A per-stream, on-demand GenServer responsible for serializing writes to an event stream. 
It ensures that events are appended in order, enriched with stream metadata, and committed atomically.

      


      
        Summary


  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        commit(database_id, events, event_stream, expected_position \\ :any, opts \\ [])

      


    


    
      
        start_link(opts)

      


    





      


      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



    

    

  
    
      
    
    
      commit(database_id, events, event_stream, expected_position \\ :any, opts \\ [])



        
          
        

    

  


  

      

          @spec commit(
  Fact.database_id(),
  Fact.event() | [Fact.event(), ...],
  Fact.event_stream_id(),
  Fact.event_position() | :any | :none | :exists,
  keyword()
) :: {:ok, Fact.event_position()} | {:error, term()}


      



  



  
    
      
    
    
      start_link(opts)



        
          
        

    

  


  


  


        

      


  

    
Fact.Query 
    



      
Provide utilities for constructing event queries for defining consistency boundaries and projection sources.
A query in the Fact system is a higher-order function that takes a database context and returns a predicate
function. This predicate is used by Fact.read/2 and related functions to determine whether each event in the
database should be included in the result set.
Query Construction
This module offers several ways to build queries:
	from_types/1 - match events with an event_type contained in a supplied list.
	from_tags/1 - match events with event_tags containing all given tags.
	from_data/1 - match events with event_data containing specific key-value pairs.
	from_all/0 - match all events.
	from_none/0 - match no events.
	from/3 - a convenience wrapper that combines types, tags, and data into a single compound query.
	combine/2 - combines a list of queries using :and or :or boolean operations to produce a compound query.


      


      
        Summary


  
    Types
  


    
      
        t()

      


        A query is function which takes a database context and returns an event_id predicate function. 



    





  
    Functions
  


    
      
        combine(op, queries)

      


        This combines multiple queries using logical boolean operations returning a new query as a tuple.



    


    
      
        combine!(op, queries)

      


        This combines multiple queries using logical boolean operations returning a new query.



    


    
      
        from(types \\ [], tags \\ [], data \\ [])

      


        This is a helper function for creating compound queries.



    


    
      
        from_all()

      


        Create a query which matches all events.



    


    
      
        from_data(data)

      


        Creates a query which matches events with all the supplied key value pairs and returns it in a tuple.
When duplicate keys are provided, the query will match events with any supplied values.



    


    
      
        from_data!(data)

      


        Creates a query which matches events with all the supplied key value pairs.
When duplicate keys are provided, the query will match events with any supplied values.



    


    
      
        from_none()

      


        Create a query which matches no events.



    


    
      
        from_tags(tags)

      


        Creates a query which matches events tagged with all the supplied tags and returns it in a tuple.



    


    
      
        from_tags!(tags)

      


        Creates a query which matches events tagged with all the supplied tags.



    


    
      
        from_types(types)

      


        Creates a query which matches events with any of the supplied event types and returns it in a tuple.



    


    
      
        from_types!(types)

      


        Creates a query which matches events with any of the supplied event types



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: (Fact.database_id() -> (Fact.record_id() -> boolean()))


      


A query is function which takes a database context and returns an event_id predicate function. 

  


        

      

      
        Functions


        


  
    
      
    
    
      combine(op, queries)



        
          
        

    

  


  

      

          @spec combine(:and | :or, [t(), ...]) :: {:ok, t()} | {:error, term()}


      


This combines multiple queries using logical boolean operations returning a new query as a tuple.

  



  
    
      
    
    
      combine!(op, queries)



        
          
        

    

  


  

      

          @spec combine!(:and | :or, [t(), ...]) :: t()


      


This combines multiple queries using logical boolean operations returning a new query.

  



    

    

    

  
    
      
    
    
      from(types \\ [], tags \\ [], data \\ [])



        
          
        

    

  


  

      

          @spec from(
  Fact.event_type() | [Fact.event_type(), ...],
  Fact.event_tag() | [Fact.event_tag(), ...],
  keyword()
) :: {:ok, t()} | {:error, term()}


      


This is a helper function for creating compound queries.
This provides a shortcut for writing:
Fact.Query.combine(:and, [
  Fact.Query.from_types("StudentSubscribedToCourse"), 
  Fact.Query.from_tags("course:c1"),
  Fact.Query.from_data(student_id: "s1")
])
Which could be shortened to:
Fact.Query.from("StudentSubscribedToCourse", "course:c1", student_id: "s1")

  



  
    
      
    
    
      from_all()



        
          
        

    

  


  

      

          @spec from_all() :: t()


      


Create a query which matches all events.

  



  
    
      
    
    
      from_data(data)



        
          
        

    

  


  

      

          @spec from_data(keyword()) :: {:ok, t()} | {:error, term()}


      


Creates a query which matches events with all the supplied key value pairs and returns it in a tuple.
When duplicate keys are provided, the query will match events with any supplied values.
Examples
Get all events with a capacity of 10.
iex> {:ok, query} = Fact.Query.from_data(capacity: 10)
iex> Fact.read(:mydb, query) |> Enum.to_list()
[
  %{                                                                                                                                                                                                                                                                                                                
    "event_data" => %{"capacity" => 10, "course_id" => "c1"},                                                                                                                                                                                                                                                       
    "event_id" => "a7f82f20b49549748a412797ef6b3c3d",                                                                                                                                                                                                                                                               
    "event_metadata" => %{},                                                                                                                                                                                                                                                                                        
    "event_tags" => ["course:c1"],                                                                                                                                                                                                                                                                                  
    "event_type" => "CourseDefined",                                                                                                                                                                                                                                                                                
    "store_position" => 1,                                                                                                                                                                                                                                                                                          
    "store_timestamp" => 1765222610917506                                                                                                                                                                                                                                                                           
  },                                                                                                                                                                                                                                                                                                                
  %{                                                                                                                                                                                                                                                                                                                
    "event_data" => %{"capacity" => 10, "course_id" => "c4"},                                                                                                                                                                                                                                                       
    "event_id" => "b7a5c4b71f4649e78a2a3347a23331df",                                                                                                                                                                                                                                                               
    "event_metadata" => %{},                                                                                                                                                                                                                                                                                        
    "event_tags" => ["course:c4"],                                                                                                                                                                                                                                                                                  
    "event_type" => "CourseDefined",                                                                                                                                                                                                                                                                                
    "store_position" => 4,                                                                                                                                                                                                                                                                                          
    "store_timestamp" => 1765224048824117                                                                                                                                                                                                                                                                           
  }                                                                                                                                                                                                                                                                                                                 
]
Get all events with a matching course_id and capacity of 10.
iex> {:ok, query} = Fact.Query.from_data(capacity: 10, course_id: "c1")
iex> Fact.read(:mydb, query) |> Enum.to_list()
[
  %{                                                                                                                                                                                                                                                                                                                
    "event_data" => %{"capacity" => 10, "course_id" => "c1"},                                                                                                                                                                                                                                                       
    "event_id" => "a7f82f20b49549748a412797ef6b3c3d",                                                                                                                                                                                                                                                               
    "event_metadata" => %{},                                                                                                                                                                                                                                                                                        
    "event_tags" => ["course:c1"],                                                                                                                                                                                                                                                                                  
    "event_type" => "CourseDefined",                                                                                                                                                                                                                                                                                
    "store_position" => 1,                                                                                                                                                                                                                                                                                          
    "store_timestamp" => 1765222610917506                                                                                                                                                                                                                                                                           
  }                                                                                                                                                                                                                                                                                                                
]
Get all events with a matching course_id and a capacity of 10 or 15.
iex> {:ok, query} = Fact.Query.from_data(course_id: "c1", capacity: 10, capacity: 15)
iex> Fact.read(:mydb, query) |> Enum.to_list()
[
  %{                                                                                                                                                                                                                                                                                                                
    "event_data" => %{"capacity" => 10, "course_id" => "c1"},                                                                                                                                                                                                                                                       
    "event_id" => "a7f82f20b49549748a412797ef6b3c3d",                                                                                                                                                                                                                                                               
    "event_metadata" => %{},                                                                                                                                                                                                                                                                                        
    "event_tags" => ["course:c1"],                                                                                                                                                                                                                                                                                  
    "event_type" => "CourseDefined",                                                                                                                                                                                                                                                                                
    "store_position" => 1,                                                                                                                                                                                                                                                                                          
    "store_timestamp" => 1765222610917506                                                                                                                                                                                                                                                                           
  },                                                                                                                                                                                                                                                                                                                
  %{                                                                                                                                                                                                                                                                                                                
    "event_data" => %{"capacity" => 15, "course_id" => "c1"},                                                                                                                                                                                                                                                       
    "event_id" => "2f575ea536a84b348b5738fd8785dbc7",                                                                                                                                                                                                                                                               
    "event_metadata" => %{},                                                                                                                                                                                                                                                                                        
    "event_tags" => ["course:c1"],                                                                                                                                                                                                                                                                                  
    "event_type" => "CourseCapacityChanged",                                                                                                                                                                                                                                                                        
    "store_position" => 12,                                                                                                                                                                                                                                                                                         
    "store_timestamp" => 1765301503964237                                                                                                                                                                                                                                                                           
  }                                                                                                                                                                                                                                                                                                                 
]

  



  
    
      
    
    
      from_data!(data)



        
          
        

    

  


  

      

          @spec from_data!(keyword()) :: t()


      


Creates a query which matches events with all the supplied key value pairs.
When duplicate keys are provided, the query will match events with any supplied values.
Raises ArgumentError when no keywords are supplied.

  



  
    
      
    
    
      from_none()



        
          
        

    

  


  

      

          @spec from_none() :: t()


      


Create a query which matches no events.
Examples
iex> query = Fact.Query.from_none()
iex> Fact.read(:mydb, query) |> Enum.to_list()
[]

  



  
    
      
    
    
      from_tags(tags)



        
          
        

    

  


  

      

          @spec from_tags(Fact.event_tag() | [Fact.event_tag(), ...]) ::
  {:ok, t()} | {:error, term()}


      


Creates a query which matches events tagged with all the supplied tags and returns it in a tuple.
Examples
Get all events tagged with student:s1.
iex> {:ok, query} = Fact.Query.from_tags(["student:s1"])
iex> Fact.read(:mydb, query) |> Enum.to_list()
[
  %{                                                                                                                                                                                                                                                                                                                
    "event_data" => %{"student_id" => "s1"},                                                                                                                                                                                                                                                                        
    "event_id" => "ead3e5c6a78b493fade1b9fbad68ee35",                                                                                                                                                                                                                                                               
    "event_metadata" => %{},                                                                                                                                                                                                                                                                                        
    "event_tags" => ["student:s1"],                                                                                                                                                                                                                                                                                 
    "event_type" => "StudentRegistered",                                                                                                                                                                                                                                                                            
    "store_position" => 6,                                                                                                                                                                                                                                                                                         
    "store_timestamp" => 1765224325494777                                                                                                                                                                                                                                                                           
  },
  %{                                                                                                                                                                                                                                                                                                                
    "event_data" => %{"course_id" => "c1", "student_id" => "s1"},                                                                                                                                                                                                                                                   
    "event_id" => "90441ac451c74a82ba0e643b510ad429",                                                                                                                                                                                                                                                               
    "event_metadata" => %{},                                                                                                                                                                                                                                                                                        
    "event_tags" => ["course:c1", "student:s1"],                                                                                                                                                                                                                                                                    
    "event_type" => "StudentSubscribedToCourse",                                                                                                                                                                                                                                                                    
    "store_position" => 10,                                                                                                                                                                                                                                                                                          
    "store_timestamp" => 1765242156981475                                                                                                                                                                                                                                                                           
  },                                                                                                                                                                                                                                                                                                                
  %{                                                                                                                                                                                                                                                                                                                
    "event_data" => %{"course_id" => "c3", "student_id" => "s1"},                                                                                                                                                                                                                                                   
    "event_id" => "7ddcbe4fc32f40ac943661a69066f4ef",                                                                                                                                                                                                                                                               
    "event_metadata" => %{},                                                                                                                                                                                                                                                                                        
    "event_tags" => ["student:s1", "course:c3"],                                                                                                                                                                                                                                                                    
    "event_type" => "StudentSubscribedToCourse",                                                                                                                                                                                                                                                                    
    "store_position" => 11,                                                                                                                                                                                                                                                                                         
    "store_timestamp" => 1765242258559384                                                                                                                                                                                                                                                                           
  }                                                                                                                                                                                                                                                                                                                 
]
Get all events tagged with both course:c1 and student:s1
iex> {:ok, query} = Fact.Query.from_tags(["course:c1","student:s1"])
iex> Fact.read(:mydb, query) |> Enum.to_list()
[
  %{                                                                                                                                                                                                                                                                                                                
    "event_data" => %{"course_id" => "c1", "student_id" => "s1"},                                                                                                                                                                                                                                                   
    "event_id" => "90441ac451c74a82ba0e643b510ad429",                                                                                                                                                                                                                                                               
    "event_metadata" => %{},                                                                                                                                                                                                                                                                                        
    "event_tags" => ["course:c1", "student:s1"],                                                                                                                                                                                                                                                                    
    "event_type" => "StudentSubscribedToCourse",                                                                                                                                                                                                                                                                    
    "store_position" => 10,                                                                                                                                                                                                                                                                                          
    "store_timestamp" => 1765242156981475                                                                                                                                                                                                                                                                           
  }                                                                                                                                                                                                                                                                                                                 
]

  



  
    
      
    
    
      from_tags!(tags)



        
          
        

    

  


  

      

          @spec from_tags!(Fact.event_tag() | [Fact.event_tag(), ...]) :: t()


      


Creates a query which matches events tagged with all the supplied tags.
Raises ArgumentError when no event tags are supplied.
Raises ArgumentError if any supplied event tag is not a string.

  



  
    
      
    
    
      from_types(types)



        
          
        

    

  


  

      

          @spec from_types(Fact.event_type() | [Fact.event_type(), ...]) ::
  {:ok, t()} | {:error, term()}


      


Creates a query which matches events with any of the supplied event types and returns it in a tuple.
Examples
iex> {:ok, query} = Fact.Query.from_types(["CourseDefined","StudentRegistered"])
iex> Fact.read(:mydb, query) |> Enum.to_list()
[
  %{                                                                                                                                                                                                                                                                                                                
    "event_data" => %{"capacity" => 10, "course_id" => "c1"},                                                                                                                                                                                                                                                       
    "event_id" => "a7f82f20b49549748a412797ef6b3c3d",                                                                                                                                                                                                                                                               
    "event_metadata" => %{},                                                                                                                                                                                                                                                                                        
    "event_tags" => ["course:c1"],                                                                                                                                                                                                                                                                                  
    "event_type" => "CourseDefined",                                                                                                                                                                                                                                                                                
    "store_position" => 1,                                                                                                                                                                                                                                                                                          
    "store_timestamp" => 1765222610917506                                                                                                                                                                                                                                                                           
  },
  %{                                                                                                                                                                                                                                                                                                                
    "event_data" => %{"student_id" => "s1"},                                                                                                                                                                                                                                                                        
    "event_id" => "ead3e5c6a78b493fade1b9fbad68ee35",                                                                                                                                                                                                                                                               
    "event_metadata" => %{},                                                                                                                                                                                                                                                                                        
    "event_tags" => ["student:s1"],                                                                                                                                                                                                                                                                                 
    "event_type" => "StudentRegistered",                                                                                                                                                                                                                                                                            
    "store_position" => 3,                                                                                                                                                                                                                                                                                         
    "store_timestamp" => 1765224325494777                                                                                                                                                                                                                                                                          
  }                                                                                                                                                                                                                                                                                                                 
]

  



  
    
      
    
    
      from_types!(types)



        
          
        

    

  


  

      

          @spec from_types!(Fact.event_type() | [Fact.event_type(), ...]) :: t()


      


Creates a query which matches events with any of the supplied event types
Raises ArgumentError when no event types are supplied.
Raises ArgumentError if any supplied event type is not a string.

  


        

      


  

    
Fact.QueryItem 
    



      
Provides functions for constructing query item structures and converting them into query functions.
This module defines functions for building query items and combining them into lists.
In Fact, a query item is a struct which defines criteria for matching events, on event types,
event tags, and event data properties. A Fact database can be read using queries, and this
module provides to_function/1 for conveniently converting a single query item or list of
query items into a query function.
iex> Fact.QueryItem.tags("tag1")
%Fact.QueryItem{data: [], tags: ["tag1"], types: []}

iex> Fact.QueryItem.types("EventType1")
%Fact.QueryItem{data: [], tags: [], types: ["EventType1"]}

iex> Fact.QueryItem.data(name: "Jake")
%Fact.QueryItem{data: [name: ["Jake"]]}
Query items can be combined using the pipe operator.
iex> Fact.QueryItem.tags("tag1") |> Fact.QueryItem.types("EventType1")
%Fact.QueryItem{data: [], tags: ["tag1"], types: ["EventType1"]}
This module ensures query items are normalized and prevent duplicates.
iex> import Fact.QueryItem
iex> tags(["tag2","tag1"]) |> tags(["tag1","tag3","tag2"])
%Fact.QueryItem{data: [], tags: ["tag1", "tag2", "tag3"], types: []}
iex> types("EventType1") |> types(["EventType2","EventType1"])
%Fact.QueryItem{data: [], tags: [], types: ["EventType1", "EventType2"]}
iex> data(name: "Jake", name: "Cob", name: "Jacob") |> data(name: "Jake", name: "Statefarm")
%Fact.QueryItem{data: [name: ["Cob", "Jacob", "Jake", "Statefarm"]], tags: [], types: []}
There are two special representations for query items, all/1 and none/1. These are typically used
as single query items when needed, but can be combined. Mathematically speaking, all/1 acts as the 
identity, and none/0 acts as the 
zero object in terms of combining query items.
iex> import Fact.QueryItem
iex> all()
:all
iex> none()
:none
Multiple query items can also be joined together to form a list which represents a compound query. At runtime,
each query item is effectively combined with an OR, which often results in more Events being returned.
iex> import Fact.QueryItem
iex> join([
...>   types(["EventType1","EventType2"]),
...>   tags(["tag1", "tag2"]),
...>   types(["EventType2","EventType3"]) |> tags(["tag1","tag3"])
...> ])
Info
The normalization process used when joining may change the order of the query items.
Ordering may not be consistent across different versions of OTP.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        all(query_item \\ nil)

      


        Returns a query item that matches all events.



    


    
      
        data(query_item \\ %__MODULE__{}, data)

      


        Returns a query item that matches event data properties.



    


    
      
        hash(query_items)

      


        The hash/1 function produces a sha-1 hash of a query item or list of query items.



    


    
      
        join(query_items)

      


        This combines multiple query items into a list of query items to describe a compound query.



    


    
      
        none(query_item \\ %__MODULE__{})

      


        Returns a query item that matches no events.



    


    
      
        sources(query_items)

      


    


    
      
        tags(query_item \\ %__MODULE__{}, tags)

      


        Returns a query item that matches events with all specified event tags.



    


    
      
        to_function(query_items)

      


        Converts a query item or list of query items into a query function.



    


    
      
        types(query_item \\ %__MODULE__{}, types)

      


        Returns a query item that matches events with any of the specified event types



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() ::
  %Fact.QueryItem{data: keyword(), tags: [String.t()], types: [String.t()]}
  | :all
  | :none


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      all(query_item \\ nil)



        
          
        

    

  


  

      

          @spec all(t()) :: t()


      


Returns a query item that matches all events.
When combined with another query item, it acts as the identity query item, and returns the specified query item.
iex> import Fact.QueryItem
iex> all()
:all
iex> tags("tag1") |> all()
%Fact.QueryItem{data: [], tags: ["tag1"], types: []}
iex> all() |> tags("tag1")
%Fact.QueryItem{data: [], tags: ["tag1"], types: []}

  



    

  
    
      
    
    
      data(query_item \\ %__MODULE__{}, data)



        
          
        

    

  


  

      

          @spec data(
  t(),
  keyword()
) :: t()


      


Returns a query item that matches event data properties.
When duplicate keys are specified the individual values are evaluated as an OR when the query is executed.
iex> Fact.QueryItem.data(name: "Jake", name: "Jacob")
%Fact.QueryItem{data: [name: ["Jacob", "Jake"]], tags: [], types: []}
In SQL terms, assuming event_data is a jsonb column, this would be equalivant to: 
SELECT *
FROM events
WHERE event_data->>'name' IN ('Jacob', 'Jake')
Distinct keys are effectively an AND when the query is executed.
iex> Fact.QueryItem.data(name: "Jake", name: "Jacob", hobby: "Homebrewing")
%Fact.QueryItem{
  data: [hobby: ["Homebrewing"], name: ["Jacob", "Jake"]], 
  tags: [], 
  types: []
}
In SQL terms, assuming event_data is a jsonb column, this would be equalivant to:  
SELECT *
FROM events
WHERE event_data->>'hobby' = 'Homebrewing' 
  AND event_data->>'name' IN ('Jacob', 'Jake')
Duplicate key value pairs are ignored.
iex> import Fact.QueryItem
iex> data(name: "Jake", name: "Jacob", name: "Jacob") |> data(name: "Jake")
%Fact.QueryItem{data: [name: ["Jacob", "Jake"]], tags: [], types: []}
Raises an ArgumentError when an invalid tag (not a string) is specified:
iex> Fact.QueryItem.data({"key", "value"})
** (ArgumentError) invalid data keyword

iex> Fact.QueryItem.data([{"key", "value"}])
** (ArgumentError) invalid data keyword

  



  
    
      
    
    
      hash(query_items)



        
          
        

    

  


  

      

          @spec hash(t() | [t()]) :: String.t()


      


The hash/1 function produces a sha-1 hash of a query item or list of query items.
This function is used internally for normalization and caching.

  



  
    
      
    
    
      join(query_items)



        
          
        

    

  


  

      

          @spec join([t()]) :: [t()] | t()


      


This combines multiple query items into a list of query items to describe a compound query.
Each query item is effectively combined with an OR.
iex> import Fact.QueryItem
iex> join([
...>   types(["EventType1","EventType2"]),
...>   tags(["tag1", "tag2"]),
...>   types(["EventType2","EventType3"]) |> tags(["tag1","tag3"])
...> ])
In SQL terms, this would be equivalent to:
SELECT e.*
FROM events e 
WHERE 
  (EXISTS (
     SELECT 1 FROM event_tags t 
     WHERE e.event_id = t.event_id AND t.tag = 'tag1')
   AND EXISTS (
     SELECT 1 FROM event_tags t 
     WHERE e.event_id = t.event_id AND t.tag = 'tag2'))
OR e.event_type IN ('EventType1', 'EventType2')
OR (EXISTS (
      SELECT 1 FROM event_tags t 
      WHERE e.event_id = t.event_id AND t.tag = 'tag1')
    AND EXISTS (
      SELECT 1 FROM event_tags t 
      WHERE e.event_id = t.event_id AND t.tag = 'tag3')
    AND e.event_type IN ('EventType2', 'EventType3'))
Duplicate query items are ignored.
iex> import Fact.QueryItem
iex> join([
...>   tags(["tag1","tag2"]),
...>   tags(["tag2","tag1"])
...> ])
%Fact.QueryItem{data: [], tags: ["tag1", "tag2"], types: []}
Joining all/1 with any other query items will produce :all. In SQL, this is equivalent to OR true.
iex> import Fact.QueryItem
iex> join([
...>   tags(["tag1","tag2"]),
...>   all()
...> ])
:all
Joining none/1 with any other query items will be ignored. In SQL, this is equivalent to OR false. 
iex> import Fact.QueryItem
iex> join([
...>   tags(["tag1","tag2"]),
...>   none()
...> ])
%Fact.QueryItem{data: [], tags: ["tag1", "tag2"], types: []}
Raises an ArgumentError when an invalid query item is supplied.
iex> Fact.QueryItem.join([:invalid_query_item])
** (ArgumentError) invalid query item

  



    

  
    
      
    
    
      none(query_item \\ %__MODULE__{})



        
          
        

    

  


  

      

          @spec none(t()) :: t()


      


Returns a query item that matches no events.
When combined with another query item, it acts as the zero object, and returns :none.
iex> import Fact.QueryItem
iex> none()
:none
iex> tags("tag1") |> none()
:none
iex> none() |> tags("tag1")
:none

  



  
    
      
    
    
      sources(query_items)



        
          
        

    

  


  


  



    

  
    
      
    
    
      tags(query_item \\ %__MODULE__{}, tags)



        
          
        

    

  


  

      

          @spec tags(t(), Fact.event_tag() | [Fact.event_tag(), ...]) :: t()


      


Returns a query item that matches events with all specified event tags.
Multiple tags are effectively an AND when a query is evaluated.
iex> Fact.QueryItem.tags(["tag1", "tag2"])
%Fact.QueryItem{data: [], tags: ["tag1", "tag2"], types: []}
In SQL terms, this would be equivalent to:
 SELECT e.*
 FROM events e
 WHERE EXISTS (
   SELECT 1 FROM event_tags t 
   WHERE e.event_id = t.event_id AND t.tag = 'tag1')
 AND EXISTS (
   SELECT 1 FROM event_tags t 
   WHERE e.event_id = t.event_id AND t.tag = 'tag2')
Duplicate tags are ignored.
iex> import Fact.QueryItem
iex> tags("tag1") |> tags(["tag1", "tag2", "tag2"])
%Fact.QueryItem{data: [], tags: ["tag1", "tag2"], types: []}
Raises an ArgumentError when an invalid tag (not a string) is specified:
iex> Fact.QueryItem.tags(:not_a_tag)
** (ArgumentError) invalid event tag

iex> Fact.QueryItem.tags([:not_a_tag])
** (ArgumentError) invalid event tag

  



  
    
      
    
    
      to_function(query_items)



        
          
        

    

  


  

      

          @spec to_function(t() | [t(), ...]) :: Fact.Query.t()


      


Converts a query item or list of query items into a query function.
iex> import Fact.QueryItem
iex> fun1 = tags("tag1") |> to_function()
iex> is_function(fun1, 1)
:true
iex> fun2 = join([
...>   types(["EventType1","EventType2"]),
...>   tags(["tag1", "tag2"]),
...>   types(["EventType2","EventType3"]) |> tags(["tag1","tag3"])
...> ]) |> to_function()
iex> is_function(fun2, 1)
:true

  



    

  
    
      
    
    
      types(query_item \\ %__MODULE__{}, types)



        
          
        

    

  


  

      

          @spec types(t(), Fact.event_type() | [Fact.event_type(), ...]) :: t()


      


Returns a query item that matches events with any of the specified event types
Multiple event types are effectively an OR when a query is evaluated.
iex> Fact.QueryItem.types(["EventType1", "EventType2"])
%Fact.QueryItem{data: [], tags: [], types: ["EventType1", "EventType2"]}
In SQL terms, this would be equivalent to:
 SELECT *
 FROM events
 WHERE event_type IN ('EventType1', 'EventType2')
Duplicate types are ignored.
iex> import Fact.QueryItem
iex> types(["EventType1", "EventType2"]) |> types(["EventType1", "EventType2"])
%Fact.QueryItem{data: [], tags: [], types: ["EventType1", "EventType2"]}
Raises an ArgumentError when an invalid type (not a string) is specified:
iex> Fact.QueryItem.types(:not_a_type)
** (ArgumentError) invalid event type

iex> Fact.QueryItem.types([:not_a_type])
** (ArgumentError) invalid event type

  


        

      


  

    
Fact.Genesis.Command.CreateDatabase.V1 
    



      
Command representing the creation of a new Fact database.
This command is produced by the mix fact.create task and is processed by
the Fact.Genesis.Decider. If the arguments are valid, the decider emits
a Fact.Genesis.Event.DatabaseCreated.V1 event, recording the creation of the
database as a fact.
The args field contains the keyword options passed to the task, such as the
target path and configuration parameters.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %Fact.Genesis.Command.CreateDatabase.V1{args: keyword()}


      



  


        

      


  

    
Fact.Genesis.Decider 
    



      
Decides which events should be produced in response to Genesis commands.
The Fact.Genesis.Decider is responsible for taking commands related to 
database creation (currently only Fact.Genesis.Command.CreateDatabase.V1) 
and producing the corresponding events (currently only 
Fact.Genesis.Event.DatabaseCreated.V1) if all validation passes.
This decider handles:
	Resolving the database name and path
	Verifying the target directory exists and is empty
	Building the full configuration for all components (event ids, schemas, 
ledger, index, lock, record, and storage files)
	Computing derived values like record filename lengths and reader paddings
	Generating unique database IDs and capturing system compatibility 
(Elixir, Erlang/OTP, OS, Fact version)


      


      
        Summary


  
    Functions
  


    
      
        decide(atom, command)

      


    


    
      
        elixir_version()

      


    


    
      
        erts_version()

      


    


    
      
        evolve(state, event)

      


    


    
      
        fact_version()

      


    


    
      
        initial_state()

      


    


    
      
        otp_version()

      


    


    
      
        resolve(args, key, abstraction)

      


    


    
      
        verify_path(path)

      


    





      


      
        Functions


        


  
    
      
    
    
      decide(atom, command)



        
          
        

    

  


  


  



  
    
      
    
    
      elixir_version()



        
          
        

    

  


  


  



  
    
      
    
    
      erts_version()



        
          
        

    

  


  


  



  
    
      
    
    
      evolve(state, event)



        
          
        

    

  


  


  



  
    
      
    
    
      fact_version()



        
          
        

    

  


  


  



  
    
      
    
    
      initial_state()



        
          
        

    

  


  


  



  
    
      
    
    
      otp_version()



        
          
        

    

  


  


  



  
    
      
    
    
      resolve(args, key, abstraction)



        
          
        

    

  


  


  



  
    
      
    
    
      verify_path(path)



        
          
        

    

  


  


  


        

      


  

    
Fact.Genesis.Event.DatabaseCreated.V1 
    



      
Event representing the creation of a new Fact database.
This event is emitted by the Fact.Genesis.Decider when a valid
Fact.Genesis.Command.CreateDatabase.V1 command has been processed.
It records all the configuration needed to bring a new database into existence
as a fact, but it does not itself create the database on disk.
This event stores the database identity, system compatibility information
(Elixir, Erlang/OTP, OS versions), event adapters, file and index configurations,
ledger and lock file details, record handling, and storage configuration.
The Fact.Bootstrapper uses to_context/1 to convert this event into a 
Fact.Context suitable for starting a new database instance via the supervision tree.

      


      
        Summary


  
    Types
  


    
      
        component_config()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        to_context(event)

      


    





      


      
        Types


        


  
    
      
    
    
      component_config()



        
          
        

    

  


  

      

          @type component_config() :: %{
  family: :atom,
  version: :positive_integer,
  options: map()
}


      



  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %Fact.Genesis.Event.DatabaseCreated.V1{
  database_id: Fact.database_id(),
  database_name: String.t(),
  elixir_version: String.t(),
  erts_version: String.t(),
  event_id: component_config(),
  event_schema: component_config(),
  fact_version: String.t(),
  index_checkpoint_file_decoder: component_config(),
  index_checkpoint_file_encoder: component_config(),
  index_checkpoint_file_name: component_config(),
  index_checkpoint_file_reader: component_config(),
  index_checkpoint_file_writer: component_config(),
  index_file_decoder: component_config(),
  index_file_encoder: component_config(),
  index_file_name: component_config(),
  index_file_reader: component_config(),
  index_file_writer: component_config(),
  ledger_file_decoder: component_config(),
  ledger_file_encoder: component_config(),
  ledger_file_name: component_config(),
  ledger_file_reader: component_config(),
  ledger_file_writer: component_config(),
  lock_file_decoder: component_config(),
  lock_file_encoder: component_config(),
  lock_file_name: component_config(),
  lock_file_reader: component_config(),
  lock_file_writer: component_config(),
  os_version: String.t(),
  otp_version: String.t(),
  record_file_decoder: component_config(),
  record_file_encoder: component_config(),
  record_file_name: component_config(),
  record_file_reader: component_config(),
  record_file_writer: component_config(),
  storage: component_config()
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      to_context(event)



        
          
        

    

  


  


  


        

      


  

    
Fact.Genesis.TheCreator 
    



      
The divine module that brings a Fact database into existence.  
Fact.Genesis.TheCreator is responsible for taking a DatabaseCreated.V1 
event and actually creating the on-disk database via let_there_be_light/1.
Responsibilities:
	Initialize the storage paths for records and indices
	Create necessary directories and a .gitignore file
	Write the genesis event to the record file
	Append the genesis event to the ledger file
	Generate event IDs and populate the event schema


      


      
        Summary


  
    Functions
  


    
      
        let_there_be_light(event)

      


        Creates a Fact database from the Fact.Genesis.Event.DatabaseCreated.V1 event.



    





      


      
        Functions


        


  
    
      
    
    
      let_there_be_light(event)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec let_there_be_light(%Fact.Genesis.Event.DatabaseCreated.V1{
  database_id: term(),
  database_name: term(),
  elixir_version: term(),
  erts_version: term(),
  event_id: term(),
  event_schema: term(),
  fact_version: term(),
  index_checkpoint_file_decoder: term(),
  index_checkpoint_file_encoder: term(),
  index_checkpoint_file_name: term(),
  index_checkpoint_file_reader: term(),
  index_checkpoint_file_writer: term(),
  index_file_decoder: term(),
  index_file_encoder: term(),
  index_file_name: term(),
  index_file_reader: term(),
  index_file_writer: term(),
  ledger_file_decoder: term(),
  ledger_file_encoder: term(),
  ledger_file_name: term(),
  ledger_file_reader: term(),
  ledger_file_writer: term(),
  lock_file_decoder: term(),
  lock_file_encoder: term(),
  lock_file_name: term(),
  lock_file_reader: term(),
  lock_file_writer: term(),
  os_version: term(),
  otp_version: term(),
  record_file_decoder: term(),
  record_file_encoder: term(),
  record_file_name: term(),
  record_file_reader: term(),
  record_file_writer: term(),
  storage: term()
}) :: :ok


      


Creates a Fact database from the Fact.Genesis.Event.DatabaseCreated.V1 event.
It initializes storage, and appends the event as the first record of every database.

  


        

      


  

    
Fact.EventDataIndexer 
    



      
Index events by the values of a specified key within the event data.

      


      
        Summary


  
    Types
  


    
      
        id()

      


        The id for a Fact.EventDataIndexer.



    


    
      
        option()

      


        Custom option values passed to the Fact.EventIndexer.index_event/3 callback function.



    


    
      
        options()

      


        Custom options passed to the Fact.EventIndexer.index_event/3 callback function.



    





  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        index_event(schema, event, opts)

      


        Retrieves the value for the configured :indexer_key from the event's data payload.



    


    
      
        indexer_name()

      


        Gets the friendly name for the indexer.



    


    
      
        start_link(opts \\ [])

      


        Starts the indexer process.



    





      


      
        Types


        


  
    
      
    
    
      id()



        
          
        

    

  


  

      

          @type id() :: {Fact.EventDataIndexer, Fact.EventIndexer.indexer_key()}


      


The id for a Fact.EventDataIndexer.

  



  
    
      
    
    
      option()



        
          
        

    

  


  

      

          @type option() :: {:indexer_key, String.t()} | Fact.EventIndexer.indexer_option()


      


Custom option values passed to the Fact.EventIndexer.index_event/3 callback function.

  



  
    
      
    
    
      options()



        
          
        

    

  


  

      

          @type options() :: [option()]


      


Custom options passed to the Fact.EventIndexer.index_event/3 callback function.

  


        

      

      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      index_event(schema, event, opts)



        
          
        

    

  


  

Retrieves the value for the configured :indexer_key from the event's data payload.
Options
	:indexer_key — required, specified the field to lookup within the event data

Examples
iex> event = %{
...>   "event_type" => "ClutchLaid", 
...>   "event_data" => %{"turtle_id" => "t1", "clutch_id" => "c1", "eggs" => 42}, 
...>   "event_tags" => ["turtle:t1", "clutch:c1"], 
...>   "stream_id" => "turtle_mating-1234",
...>   "stream_position" => 3
...> }
iex> Fact.EventDataIndexer.index_event(event, [indexer_key: "eggs"])
"42"

iex> event = %{
...>   "event_type" => "EggHatched", 
...>   "event_data" => %{"turtle_id" => "t2", "clutch_id" => "c1"}, 
...>   "event_tags" => ["turtle:t2", "clutch:c1"], 
...> } 
iex> Fact.EventDataIndexer.index_event(event, [indexer_key: "turtle_id"])
"t2"

iex> event = %{
...>   "event_type" => "DatabaseCreated", 
...>   "event_data" => %{"database_id" => "RVX27QR6PFDORJZF24C4DIICSQ"}, 
...>   "stream_id" => "__fact", 
...>   "stream_position" => "1"
...> }
iex> Fact.EventDataIndexer.index_event(event, [indexer_key: "turtle_id"])
nil

  



  
    
      
    
    
      indexer_name()


        (since 0.1.2)


        
          
        

    

  


  

      

          @spec indexer_name() :: String.t()


      


Gets the friendly name for the indexer.
This is included in the file path where index files are stored on disk.

  



    

  
    
      
    
    
      start_link(opts \\ [])



        
          
        

    

  


  

      

          @spec start_link([Fact.EventIndexer.option()]) :: GenServer.on_start()


      


Starts the indexer process.

  


        

      


  

    
Fact.EventIndexer behaviour
    



      
Base behaviour and macro for building event indexers.
Fact.EventIndexer defines the callbacks and GenServer scaffolding shared by all event indexers in the Fact storage
system. An indexer listens for new events and extracts zero, one, or many values from each even it processes. For each
extracted value, the indexer create or appends to a file, recording the event's Fact.record_id/0.
Indexers are just event projections, that filter the event ledger, and produce keyed, ordered sets of events.
Safe to Delete
It's safe to delete any of index files and folders written to the file system, when the system is not operating.
They will be recreated, the next time indexer is started.
Behaviour
An indexer must implement the index_event/3 callback, which extracts values from the supplied event.
The __using__/1 macro injects the full GenServer implementation that:
	initializes and ensures the index exists
	rebuilds the index from history on startup
	subscribes to live event notifications
	updates the index as new events arrive

Custom Indexers
Custom indexers only need to implement the callback.
Examples
This would produce an index for every user, including all the events which define a user_id in the event data.
defmodule YourApp.UserIndexer do
  use Fact.EventIndexer

  @impl true
  def index_event(schema, event, _opts) do
    unless is_nil(user_id = Map.get(event[schema.event_data], "user_id")), 
      do: to_string(user_id)
  end 
end
This would produce an index for every tenant, including all the events which define a tenant_id in the event 
metadata.
defmodule YourApp.TenantIndexer do
  use Fact.EventIndexer

  @impl true
  def index_event(schema, event, _opts) do
    unless is_nil(tenant_id = Map.get(event[schema.event_metadata], "tenant_id")),
      do: to_string(tenant_id)          
  end
end

      


      
        Summary


  
    Types
  


    
      
        index_event_result()

      


        The values that can be return by a c:Fact.EventIndexer.index_event callback function.



    


    
      
        index_result()

      


        This describes the results of the indexing process.



    


    
      
        index_value()

      


        The value produced by an Fact.EventIndexer.indexer_id/0 when indexing an Fact.event_record/0. 



    


    
      
        indexed_message()

      


        The message that is published immediately after an indexer processes a Fact.record/0.



    


    
      
        indexer_custom_option()

      


        Custom option values passed to the Fact.EventIndexer.index_event/3 callback function to control the indexing 
of records.



    


    
      
        indexer_id()

      


        The unique identifier for an indexer.



    


    
      
        indexer_key()

      


        This is additional metadata for a specific Fact.EventIndexer.indexer_id/0.



    


    
      
        indexer_module()

      


        A module that implements the Fact.EventIndexer behaviour to index records.



    


    
      
        indexer_option()

      


        Option values passed to the Fact.EventIndexer.index_event/3 callback function to control the indexing of
of records.



    


    
      
        indexer_options()

      


        Options passed to the Fact.EventIndexer.index_event/3 callback function to control the indexing of records.



    


    
      
        option()

      


        Option values used by the start_link/1 functions for indexer modules.



    


    
      
        t()

      


        The state structure used by indexers in the GenServer callback functions. 



    





  
    Callbacks
  


    
      
        index_event(schema, event, indexer_options)

      


        Called when an event needs to be indexed. 



    





  
    Functions
  


    
      
        __using__(opts \\ [])

      


        Injects the GenServer implementation and behavior for an event indexer.



    


    
      
        subscribe(database_id, indexer)

      


        Subscribe to messages published by the specified indexer. 



    


    
      
        topic(indexer)

      


        Gets the name of the topic where the indexer publishes messages. 



    





      


      
        Types


        


  
    
      
    
    
      index_event_result()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type index_event_result() :: index_value() | [index_value()] | nil


      


The values that can be return by a c:Fact.EventIndexer.index_event callback function.

  



  
    
      
    
    
      index_result()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type index_result() :: %{
  position: Fact.event_position(),
  record_id: Fact.record_id(),
  index_values: [index_value()]
}


      


This describes the results of the indexing process.

  



  
    
      
    
    
      index_value()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type index_value() :: String.t()


      


The value produced by an Fact.EventIndexer.indexer_id/0 when indexing an Fact.event_record/0. 

  



  
    
      
    
    
      indexed_message()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type indexed_message() :: {:indexed, indexer_id(), index_result()}


      


The message that is published immediately after an indexer processes a Fact.record/0.

  



  
    
      
    
    
      indexer_custom_option()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type indexer_custom_option() :: {atom(), term()}


      


Custom option values passed to the Fact.EventIndexer.index_event/3 callback function to control the indexing 
of records.

  



  
    
      
    
    
      indexer_id()


        (since 0.1.2)


        
          
        

    

  


  

      

          @type indexer_id() ::
  Fact.EventDataIndexer.id()
  | Fact.EventStreamCategoryIndexer.id()
  | Fact.EventStreamIndexer.id()
  | Fact.EventStreamsByCategoryIndexer.id()
  | Fact.EventStreamsIndexer.id()
  | Fact.EventTagsIndexer.id()
  | Fact.EventTypeIndexer.id()
  | {indexer_module(), indexer_key()}


      


The unique identifier for an indexer.
Built-in Indexers
	Fact.EventDataIndexer - requires an Fact.EventIndexer.indexer_key/0
	Fact.EventStreamCategoryIndexer
	Fact.EventStreamIndexer
	Fact.EventStreamsByCategoryIndexer
	Fact.EventStreamsIndexer
	Fact.EventTagsIndexer
	Fact.EventTypeIndexer


  



  
    
      
    
    
      indexer_key()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type indexer_key() :: String.t()


      


This is additional metadata for a specific Fact.EventIndexer.indexer_id/0.
At the time of writing, only Fact.EventDataIndexer uses an Fact.EventIndexer.indexer_key/0, because there can be 
multiple processes running, each indexing a different key within an Fact.event_data/0

  



  
    
      
    
    
      indexer_module()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type indexer_module() :: :atom


      


A module that implements the Fact.EventIndexer behaviour to index records.

  



  
    
      
    
    
      indexer_option()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type indexer_option() :: {:indexer_key, indexer_key()} | indexer_custom_option()


      


Option values passed to the Fact.EventIndexer.index_event/3 callback function to control the indexing of
of records.

  



  
    
      
    
    
      indexer_options()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type indexer_options() :: [indexer_option()]


      


Options passed to the Fact.EventIndexer.index_event/3 callback function to control the indexing of records.

  



  
    
      
    
    
      option()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type option() ::
  {:database_id, Fact.database_id()}
  | {:id, indexer_id()}
  | {:options, indexer_options()}


      


Option values used by the start_link/1 functions for indexer modules.

  



  
    
      
    
    
      t()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type t() :: %{
  database_id: Fact.database_id(),
  indexer: indexer_id(),
  indexer_opts: indexer_options(),
  checkpoint: Fact.event_position(),
  schema: Fact.event_record_schema()
}


      


The state structure used by indexers in the GenServer callback functions. 

  


        

      

      
        Callbacks


        


  
    
      
    
    
      index_event(schema, event, indexer_options)


        (since 0.1.0)


        
          
        

    

  


  

      

          @callback index_event(
  schema :: Fact.event_record_schema(),
  event :: Fact.event(),
  indexer_options()
) :: index_event_result()


      


Called when an event needs to be indexed. 

  


        

      

      
        Functions


        


    

  
    
      
    
    
      __using__(opts \\ [])


        (since 0.1.2)

        (macro)


        
          
        

    

  


  

Injects the GenServer implementation and behavior for an event indexer.
This macro provides the complete GenServer scaffolding needed to build an event indexer,
including initialization, index rebuilding from history, subscription to live events,
and index updates as new events arrive.
Options
	:name - The filesystem name for the indexer's directory. When not provided, it
is derived automatically from the module name by taking the last segment, converting
it to snake case and removing the _indexer suffix.

Requires
Modules using this macro must implement the index_event/3 callback to define how events are indexed.

  



  
    
      
    
    
      subscribe(database_id, indexer)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec subscribe(Fact.database_id(), indexer_id()) :: :ok


      


Subscribe to messages published by the specified indexer. 
Messages
	Fact.EventIndexer.indexed_message/0 - published whenever any Fact.event_record/0 is processed 
regardless of whether the event is included within the index.


  



  
    
      
    
    
      topic(indexer)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec topic(indexer_id()) :: String.t()


      


Gets the name of the topic where the indexer publishes messages. 

  


        

      


  

    
Fact.EventStreamCategoryIndexer 
    



      
Indexes events by the category portion of an event stream, by splitting the string on a 
specified separator and returns the first segment.

      


      
        Summary


  
    Types
  


    
      
        id()

      


        The id for a Fact.EventStreamCategoryIndexer.



    


    
      
        option()

      


        Custom option values passed to the Fact.EventIndexer.index_event/3 callback function.



    


    
      
        options()

      


        Custom options passed to the Fact.EventIndexer.index_event/3 callback function.



    





  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        index_event(schema, event, opts)

      


        Extracts a category from an event stream id.



    


    
      
        indexer_name()

      


        Gets the friendly name for the indexer.



    


    
      
        start_link(opts \\ [])

      


        Starts the indexer process.



    





      


      
        Types


        


  
    
      
    
    
      id()



        
          
        

    

  


  

      

          @type id() :: {Fact.EventStreamCategoryIndexer, nil}


      


The id for a Fact.EventStreamCategoryIndexer.

  



  
    
      
    
    
      option()



        
          
        

    

  


  

      

          @type option() :: {:separator, String.t()} | Fact.EventIndexer.indexer_option()


      


Custom option values passed to the Fact.EventIndexer.index_event/3 callback function.

  



  
    
      
    
    
      options()



        
          
        

    

  


  

      

          @type options() :: [option()]


      


Custom options passed to the Fact.EventIndexer.index_event/3 callback function.

  


        

      

      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      index_event(schema, event, opts)



        
          
        

    

  


  

Extracts a category from an event stream id.
Options
	:separator - optional delimiter used to split the stream name.
  Defaults to "-".

Examples
iex> event = %{
...>   "event_type" => "ClutchLaid", 
...>   "event_data" => %{"turtle_id" => "t1", "clutch_id" => "c1", "eggs" => 42}, 
...>   "event_tags" => ["turtle:t1", "clutch:c1"], 
...>   "stream_id" => "turtle_mating-1234"
...> }
iex> Fact.EventStreamCategoryIndexer.index_event(event, [])
"turtle_mating"

iex> event = %{
...>   "event_type" => "EggHatched", 
...>   "event_data" => %{"turtle_id" => "t2", "clutch_id" => "c1"}, 
...>   "event_tags" => ["turtle:t2", "clutch:c1"], 
...> }
iex> Fact.EventStreamCategoryIndexer.index_event(event, [])
nil

iex> event = %{
...>   "event_type" => "DatabaseCreated", 
...>   "event_data" => %{"database_id" => "RVX27QR6PFDORJZF24C4DIICSQ"}, 
...>   "stream_id" => "__fact", 
...>   "stream_position" => 1
...> }
iex> Fact.EventStreamCategoryIndexer.index_event(event, [])
"__fact"

  



  
    
      
    
    
      indexer_name()


        (since 0.1.2)


        
          
        

    

  


  

      

          @spec indexer_name() :: String.t()


      


Gets the friendly name for the indexer.
This is included in the file path where index files are stored on disk.

  



    

  
    
      
    
    
      start_link(opts \\ [])



        
          
        

    

  


  

      

          @spec start_link([Fact.EventIndexer.option()]) :: GenServer.on_start()


      


Starts the indexer process.

  


        

      


  

    
Fact.EventStreamIndexer 
    



      
Index events by their event stream if specified.

      


      
        Summary


  
    Types
  


    
      
        id()

      


        The id for a Fact.EventStreamIndexer.



    





  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        index_event(schema, event, opts)

      


        Extracts the stream name of the event.



    


    
      
        indexer_name()

      


        Gets the friendly name for the indexer.



    


    
      
        last_stream_position(database_id, event_stream)

      


        Utility method to determine the last position within an event stream. 
Returns 0 if the event stream does not exist.



    


    
      
        start_link(opts \\ [])

      


        Starts the indexer process.



    





      


      
        Types


        


  
    
      
    
    
      id()



        
          
        

    

  


  

      

          @type id() :: {Fact.EventStreamIndexer, nil}


      


The id for a Fact.EventStreamIndexer.

  


        

      

      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      index_event(schema, event, opts)



        
          
        

    

  


  

Extracts the stream name of the event.
Examples
iex> event = %{
...>   "event_type" => "ClutchLaid", 
...>   "event_data" => %{"turtle_id" => "t1", "clutch_id" => "c1", "eggs" => 42}, 
...>   "event_tags" => ["turtle:t1", "clutch:c1"], 
...>   "stream_id" => "turtle_mating-1234",
...>   "stream_position" => 3
...> }
iex> Fact.EventStreamIndexer.index_event(event, [])
"turtle_mating"

iex> event = %{
...>   "event_type" => "EggHatched", 
...>   "event_data" => %{"turtle_id" => "t2", "clutch_id" => "c1"}, 
...>   "event_tags" => ["turtle:t2", "clutch:c1"], 
...> } 
iex> Fact.EventStreamIndexer.index_event(event, [])
nil

iex> event = %{
...>   "event_type" => "DatabaseCreated", 
...>   "event_data" => %{"database_id" => "RVX27QR6PFDORJZF24C4DIICSQ"}, 
...>   "stream_id" => "__fact", 
...>   "stream_position" => "1"
...> }
iex> Fact.EventStreamIndexer.index_event(event, [])
"__fact"

  



  
    
      
    
    
      indexer_name()


        (since 0.1.2)


        
          
        

    

  


  

      

          @spec indexer_name() :: String.t()


      


Gets the friendly name for the indexer.
This is included in the file path where index files are stored on disk.

  



  
    
      
    
    
      last_stream_position(database_id, event_stream)



        
          
        

    

  


  

      

          @spec last_stream_position(Fact.database_id(), Fact.event_stream_id()) ::
  Fact.event_position()


      


Utility method to determine the last position within an event stream. 
Returns 0 if the event stream does not exist.
This is similar to Fact.Database.last_position/1, but for a stream.

  



    

  
    
      
    
    
      start_link(opts \\ [])



        
          
        

    

  


  

      

          @spec start_link([Fact.EventIndexer.option()]) :: GenServer.on_start()


      


Starts the indexer process.

  


        

      


  

    
Fact.EventStreamsByCategoryIndexer 
    



      
Indexes the first event of each event stream by the stream category. 
Similar to the Fact.EventStreamCategoryIndexer this splits the event stream using a specified separator and returns 
the first segment, but behaves like the Fact.EventStreamsIndexer and only indexes the first event of each stream.
This results in creating an index file per-category, each containing the first event in for each stream in the
category. It is common in systems for all instances of an Aggregate root to write to the same "category", this indexer
makes it easy to find all the instances of that type (e.g. Get All Orders, Get All Customers, etc.).

      


      
        Summary


  
    Types
  


    
      
        id()

      


        The id for a Fact.EventStreamsByCategoryIndexer.



    


    
      
        option()

      


        Custom option values passed to the Fact.EventIndexer.index_event/3 callback function.



    


    
      
        options()

      


        Custom options passed to the Fact.EventIndexer.index_event/3 callback function.



    





  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        index_event(schema, event, opts)

      


        Extracts the stream category from the first event of each event stream.



    


    
      
        indexer_name()

      


        Gets the friendly name for the indexer.



    


    
      
        start_link(opts \\ [])

      


        Starts the indexer process.



    





      


      
        Types


        


  
    
      
    
    
      id()



        
          
        

    

  


  

      

          @type id() :: {Fact.EventStreamsByCategoryIndexer, nil}


      


The id for a Fact.EventStreamsByCategoryIndexer.

  



  
    
      
    
    
      option()



        
          
        

    

  


  

      

          @type option() :: {:separator, String.t()} | Fact.EventIndexer.indexer_option()


      


Custom option values passed to the Fact.EventIndexer.index_event/3 callback function.

  



  
    
      
    
    
      options()



        
          
        

    

  


  

      

          @type options() :: [option()]


      


Custom options passed to the Fact.EventIndexer.index_event/3 callback function.

  


        

      

      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      index_event(schema, event, opts)



        
          
        

    

  


  

Extracts the stream category from the first event of each event stream.
Options
	:separator - optional delimiter used to split the stream name.
Defaults to "-".

Examples
iex> event = %{
...>   "event_type" => "ClutchLaid", 
...>   "event_data" => %{"turtle_id" => "t1", "clutch_id" => "c1", "eggs" => 42}, 
...>   "event_tags" => ["turtle:t1", "clutch:c1"], 
...>   "stream_id" => "turtle_mating-1234",
...>   "stream_position" => 3
...> }
iex> Fact.EventStreamsByCategoryIndexer.index_event(event, [])
nil

iex> event = %{
...>   "event_type" => "EggHatched", 
...>   "event_data" => %{"turtle_id" => "t2", "clutch_id" => "c1"}, 
...>   "event_tags" => ["turtle:t2", "clutch:c1"], 
...> }
iex> Fact.EventStreamsByCategoryIndexer.index_event(event, [])
nil

iex> event = %{
...>   "event_type" => "DatabaseCreated", 
...>   "event_data" => %{"database_id" => "RVX27QR6PFDORJZF24C4DIICSQ"}, 
...>   "stream_id" => "__fact", 
...>   "stream_position" => 1
...> }
iex> Fact.EventStreamsByCategoryIndexer.index_event(event, [])
"__fact"

  



  
    
      
    
    
      indexer_name()


        (since 0.1.2)


        
          
        

    

  


  

      

          @spec indexer_name() :: String.t()


      


Gets the friendly name for the indexer.
This is included in the file path where index files are stored on disk.

  



    

  
    
      
    
    
      start_link(opts \\ [])



        
          
        

    

  


  

      

          @spec start_link([Fact.EventIndexer.option()]) :: GenServer.on_start()


      


Starts the indexer process.

  


        

      


  

    
Fact.EventStreamsIndexer 
    



      
An event indexer which indexes the first event of each event stream.

      


      
        Summary


  
    Types
  


    
      
        id()

      


        The id for a Fact.EventStreamsIndexer.



    





  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        index_event(schema, event, opts)

      


        Returns "index" when the first event of an event stream is indexed.



    


    
      
        indexer_name()

      


        Gets the friendly name for the indexer.



    


    
      
        start_link(opts \\ [])

      


        Starts the indexer process.



    





      


      
        Types


        


  
    
      
    
    
      id()



        
          
        

    

  


  

      

          @type id() :: {Fact.EventStreamsIndexer, nil}


      


The id for a Fact.EventStreamsIndexer.

  


        

      

      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      index_event(schema, event, opts)



        
          
        

    

  


  

Returns "index" when the first event of an event stream is indexed.
This is done so that a single index file is written that contains all the first events. If the stream name was
returned instead, an index file would be created for each stream, and each index file would contain a single
record id.  
Examples
iex> event = %{
...>   "event_type" => "ClutchLaid", 
...>   "event_data" => %{"turtle_id" => "t1", "clutch_id" => "c1", "eggs" => 42}, 
...>   "event_tags" => ["turtle:t1", "clutch:c1"], 
...>   "stream_id" => "turtle_mating-1234",
...>   "stream_position" => 3
...> }
iex> Fact.EventStreamsIndexer.index_event(event, [])
nil

iex> event = %{
...>   "event_type" => "EggHatched", 
...>   "event_data" => %{"turtle_id" => "t2", "clutch_id" => "c1"}, 
...>   "event_tags" => ["turtle:t2", "clutch:c1"], 
...> }
iex> Fact.EventStreamsIndexer.index_event(event, [])
nil

iex> event = %{
...>   "event_type" => "DatabaseCreated", 
...>   "event_data" => %{"database_id" => "RVX27QR6PFDORJZF24C4DIICSQ"}, 
...>   "stream_id" => "__fact", 
...>   "stream_position" => 1
...> }
iex> Fact.EventStreamsIndexer.index_event(event, [])
"index"

  



  
    
      
    
    
      indexer_name()


        (since 0.1.2)


        
          
        

    

  


  

      

          @spec indexer_name() :: String.t()


      


Gets the friendly name for the indexer.
This is included in the file path where index files are stored on disk.

  



    

  
    
      
    
    
      start_link(opts \\ [])



        
          
        

    

  


  

      

          @spec start_link([Fact.EventIndexer.option()]) :: GenServer.on_start()


      


Starts the indexer process.

  


        

      


  

    
Fact.EventTagsIndexer 
    



      
Indexs events by each of their specified tags.

      


      
        Summary


  
    Types
  


    
      
        id()

      


        The id for a Fact.EventTagsIndexer.



    





  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        index_event(schema, event, opts)

      


        Extracts the tags defined on the event.



    


    
      
        indexer_name()

      


        Gets the friendly name for the indexer.



    


    
      
        start_link(opts \\ [])

      


        Starts the indexer process.



    





      


      
        Types


        


  
    
      
    
    
      id()



        
          
        

    

  


  

      

          @type id() :: {Fact.EventTagsIndexer, nil}


      


The id for a Fact.EventTagsIndexer.

  


        

      

      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      index_event(schema, event, opts)



        
          
        

    

  


  

Extracts the tags defined on the event.
iex> event = %{
...>   "event_type" => "ClutchLaid", 
...>   "event_data" => %{"turtle_id" => "t1", "clutch_id" => "c1", "eggs" => 42}, 
...>   "event_tags" => ["turtle:t1", "clutch:c1"], 
...>   "stream_id" => "turtle_mating-1234",
...>   "stream_position" => 3
...> }
iex> Fact.EventTagsIndexer.index_event(event, [])
["turtle:t1", "clutch:c1"]

iex> event = %{
...>   "event_type" => "EggHatched", 
...>   "event_data" => %{"turtle_id" => "t2", "clutch_id" => "c1"}, 
...>   "event_tags" => ["turtle:t2", "clutch:c1"], 
...>   "stream_position" => 1
...> }
iex> Fact.EventTagsIndexer.index_event(event, [])
["turtle:t2", "clutch:c1"]

iex> event = %{
...>   "event_type" => "DatabaseCreated", 
...>   "event_data" => %{"database_id" => "RVX27QR6PFDORJZF24C4DIICSQ"}, 
...>   "stream_id" => "__fact", 
...>   "stream_position" => "1"
...> }
iex> Fact.EventTagsIndexer.index_event(event, [])
nil

  



  
    
      
    
    
      indexer_name()


        (since 0.1.2)


        
          
        

    

  


  

      

          @spec indexer_name() :: String.t()


      


Gets the friendly name for the indexer.
This is included in the file path where index files are stored on disk.

  



    

  
    
      
    
    
      start_link(opts \\ [])



        
          
        

    

  


  

      

          @spec start_link([Fact.EventIndexer.option()]) :: GenServer.on_start()


      


Starts the indexer process.

  


        

      


  

    
Fact.EventTypeIndexer 
    



      
Index events by their event type.

      


      
        Summary


  
    Types
  


    
      
        id()

      


        The id for a Fact.EventTypeIndexer.



    





  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        index_event(schema, event, opts)

      


        Extracts the type of the event.



    


    
      
        indexer_name()

      


        Gets the friendly name for the indexer.



    


    
      
        start_link(opts \\ [])

      


        Starts the indexer process.



    





      


      
        Types


        


  
    
      
    
    
      id()



        
          
        

    

  


  

      

          @type id() :: {Fact.EventTypeIndexer, nil}


      


The id for a Fact.EventTypeIndexer.

  


        

      

      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      index_event(schema, event, opts)



        
          
        

    

  


  

Extracts the type of the event.
iex> event = %{
...>   "event_type" => "ClutchLaid", 
...>   "event_data" => %{"turtle_id" => "t1", "clutch_id" => "c1", "eggs" => 42}, 
...>   "event_tags" => ["turtle:t1", "clutch:c1"], 
...>   "stream_id" => "turtle_mating-1234",
...>   "stream_position" => 3
...> }
iex> Fact.EventTypeIndexer.index_event(event, [])
"ClutchLaid"

iex> event = %{
...>   "event_type" => "EggHatched", 
...>   "event_data" => %{"turtle_id" => "t2", "clutch_id" => "c1"}, 
...>   "event_tags" => ["turtle:t2", "clutch:c1"], 
...> } 
iex> Fact.EventTypeIndexer.index_event(event, [])
"EggHatched"

iex> event = %{
...>   "event_type" => "DatabaseCreated", 
...>   "event_data" => %{"database_id" => "RVX27QR6PFDORJZF24C4DIICSQ"}, 
...>   "stream_id" => "__fact", 
...>   "stream_position" => "1"
...> }
iex> Fact.EventTypeIndexer.index_event(event, [])
"DatabaseCreated"

  



  
    
      
    
    
      indexer_name()


        (since 0.1.2)


        
          
        

    

  


  

      

          @spec indexer_name() :: String.t()


      


Gets the friendly name for the indexer.
This is included in the file path where index files are stored on disk.

  



    

  
    
      
    
    
      start_link(opts \\ [])



        
          
        

    

  


  

      

          @spec start_link([Fact.EventIndexer.option()]) :: GenServer.on_start()


      


Starts the indexer process.

  


        

      


  

    
Fact.Bootstrapper 
    



      
Boots a Fact database from disk.
The bootstrapper read the genesis event (see Fact.Genesis.Event.DatabaseCreated.V1) from 
the specified path, builds a Fact.Context, and starts the database under a Fact.DatabaseSupervisor.
On success, the database is started and the bootstrapping process stops normally.
If a caller PID is provided in the options, it will receive:
	{:database_started, database_id}

This process is temporary and is intended to run during startup.

      


      
        Summary


  
    Types
  


    
      
        option()

      


    


    
      
        options()

      


    





  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        start_link(opts)

      


    





      


      
        Types


        


  
    
      
    
    
      option()



        
          
        

    

  


  

      

          @type option() :: {:path, Path.t()} | {:caller, pid()}


      



  



  
    
      
    
    
      options()



        
          
        

    

  


  

      

          @type options() :: [option()]


      



  


        

      

      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

      

          @spec child_spec(options()) :: Supervisor.child_spec()


      


Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      start_link(opts)



        
          
        

    

  


  

      

          @spec start_link(options()) :: GenServer.on_start()


      



  


        

      


  

    
Fact.DatabaseSupervisor 
    



      
Supervises all processes for a single Fact database instance.
Fact.DatabaseSupervisor is the top-level supervisor for a database, responsible for:
	Registering the database in Fact.Registry
	Supervising per-database registries and PubSub
	Starting core database processes.
	Starting indexers.

Each child process is registered under a database-specific name via Fact.Registry,
ensuring isolation between multiple database instances.
This supervisor is automatically started by Fact.Supervisor when a database is initialized, and consumers 
typically interact with the database through higher-level APIs rather than directly starting this supervisor.

      


      
        Summary


  
    Types
  


    
      
        option()

      


        Options used when starting a Fact.DatabaseSupervisor.



    





  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        start_link(list)

      


        Starts a Fact.DatabaseSupervisor.



    





      


      
        Types


        


  
    
      
    
    
      option()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type option() :: {:context, Fact.Context.t()}


      


Options used when starting a Fact.DatabaseSupervisor.
Current requires a :context, which provides the database identity and configuration needed to scope
and register all supervised processes.

  


        

      

      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec child_spec([option()]) :: Supervisor.child_spec()


      


Returns a specification to start this module under a supervisor.
The child spec is keyed by Fact.database_id/0, allowing multiple database instances to be supervised concurrently.
Requires the :context option to be specified.

  



  
    
      
    
    
      start_link(list)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec start_link([option()]) :: Supervisor.on_start()


      


Starts a Fact.DatabaseSupervisor.
This supervisor defines the runtime boundary for a single Fact database instance.
It is registered under a database-scoped name via Fact.Registry, ensuring full isolation between
multiple database instances running in the same VM.
At startup, this supervisor initializes all database-scope infrastructure, including registries, PubSub,
core write coordination processes, and event indexers.
This function is typically invoked by Fact.Supervisor as part of database initialization and is not
intended to be called directly by application code.

  


        

      


  

    
Fact.Lock 
    



      
Provides a cross-VM exclusive lock for Fact database instances.
This modules uses a UNIX Domain Socket to coordinate access to a Fact instance,
ensuring that only one BEAM VM can perform certain operations at a time. The 
lock defines three modes.
	:run - normal instance operation
	:restore - doing an overwrite restore of a backup
	:create - initialization of a new instance

Features
	Cross-VM safe: Only one process across all BEAM VMs can hold the lock at a time.
	Crash-safe: The lock is automatically released if the owning VM exits.
	Stale cleanup: Detects and removes stale socket files left by crashed processes.
	Metadata: Store JSON metadata including the OS PID, BEAM PID, BEAM node, lock mode, and timestamp.


      


      
        Summary


  
    Types
  


    
      
        metadata()

      


    


    
      
        metadata_record()

      


        The deserialized representation of Fact.Lock.metadata/0, with string keys instead of atoms.



    


    
      
        mode()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        acquire(database_id, mode)

      


        Acquire a lock for the instance in the specified mode.



    


    
      
        release(database_id, lock)

      


        Release an acquired lock.



    


    
      
        status(context)

      


    





      


      
        Types


        


  
    
      
    
    
      metadata()



        
          
        

    

  


  

      

          @type metadata() :: %{
  mode: mode(),
  os_pid: pid(),
  vm_pid: pid(),
  node: node(),
  locked_at: binary()
}


      



  



  
    
      
    
    
      metadata_record()



        
          
        

    

  


  

      

          @type metadata_record() :: map()


      


The deserialized representation of Fact.Lock.metadata/0, with string keys instead of atoms.

  



  
    
      
    
    
      mode()



        
          
        

    

  


  

      

          @type mode() :: :run | :restore | :create


      



  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %Fact.Lock{mode: mode(), socket: port(), socket_path: Path.t()}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      acquire(database_id, mode)



        
          
        

    

  


  

      

          @spec acquire(Fact.database_id(), mode()) ::
  {:ok, t()} | {:error, {:locked, metadata()}} | {:error, term()}


      


Acquire a lock for the instance in the specified mode.

  



  
    
      
    
    
      release(database_id, lock)



        
          
        

    

  


  

      

          @spec release(Fact.database_id(), t()) :: :ok


      


Release an acquired lock.
Closes the socket, deletes the socket file, and deletes the metadata file.

  



  
    
      
    
    
      status(context)



        
          
        

    

  


  


  


        

      


  

    
Fact.Registry 
    



      
Registry utilities for process discovery and naming within the Fact system.
Fact.Registry provides two related layers of process registration:
	the global Fact.Registry, which tracks running databases and exposes
lookup helpers for resolving a database's Fact.Context by identifier or name
	database-specific registries, one per database instance, which are used
for naming and locating processes that belong to that database.

The global registry stores:
	the Fact.Context for a database under both its :database_id and
:database_name, and
	the :database_id under the :database_name.

Helper functions such as get_context/1 and get_database_id/1 provide
convenient access to this information.
For database-local processes, this module exposes helpers like registry/1,
via/2, and lookup/2, which construct or reference the appropriate
database-specific Registry module for the given database_id. It also
provides pubsub/1 and supervisor/1 to derive the corresponding PubSub
and supervisor module names for that database.

      


      
        Summary


  
    Functions
  


    
      
        get_context(id_or_name)

      


        Get the Fact.Context for a running database by its :database_id or :database_name.



    


    
      
        get_database_id(name)

      


        Get the :database_id for a running database by its :database_name.



    


    
      
        lookup(database_id, key)

      


        Wrapper around Registry.lookup/2 to simplify lookup of Fact database processes.



    


    
      
        pubsub(database_id)

      


        Gets the name of the PubSub process for the specified database.



    


    
      
        register(context)

      


        This registers the supplied Fact.Context with the Fact.Registry keyed by Fact.database_id/0 
and Fact.database_name/0.



    


    
      
        registry(database_id)

      


        Gets the name of the Registry process for the specified database.



    


    
      
        supervisor(database_id)

      


        Gets the name of the Supervisor process for the specified database.



    


    
      
        via(database_id, key)

      


        Utility method to create Fact database specific {:via, Registry, {registry, key}} tuples.
This is used extensively for process lookup for messaging within Fact.



    





      


      
        Functions


        


  
    
      
    
    
      get_context(id_or_name)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec get_context(Fact.database_id() | Fact.database_name()) ::
  {:ok, Fact.Context.t()} | {:error, :not_found}


      


Get the Fact.Context for a running database by its :database_id or :database_name.

  



  
    
      
    
    
      get_database_id(name)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec get_database_id(Fact.database_name()) :: Fact.database_id()


      


Get the :database_id for a running database by its :database_name.

  



  
    
      
    
    
      lookup(database_id, key)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec lookup(Fact.database_id(), atom()) :: [{pid(), term()}]


      


Wrapper around Registry.lookup/2 to simplify lookup of Fact database processes.

  



  
    
      
    
    
      pubsub(database_id)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec pubsub(Fact.database_id()) :: atom()


      


Gets the name of the PubSub process for the specified database.

  



  
    
      
    
    
      register(context)


        (since 0.1.0)


        
          
        

    

  


  

This registers the supplied Fact.Context with the Fact.Registry keyed by Fact.database_id/0 
and Fact.database_name/0.
This is an internal function used by Fact.DatabaseSupervisor when it is initialized. If the process
terminates for any reason these registry entries will be automagically cleaned up.

  



  
    
      
    
    
      registry(database_id)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec registry(Fact.database_id()) :: atom()


      


Gets the name of the Registry process for the specified database.

  



  
    
      
    
    
      supervisor(database_id)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec supervisor(Fact.database_id()) :: atom()


      


Gets the name of the Supervisor process for the specified database.

  



  
    
      
    
    
      via(database_id, key)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec via(Fact.database_id(), atom()) :: {:via, Registry, {atom(), atom()}}


      


Utility method to create Fact database specific {:via, Registry, {registry, key}} tuples.
This is used extensively for process lookup for messaging within Fact.

  


        

      


  

    
Fact.Supervisor 
    



      
Top-level supervisor for the Fact database system.
Fact.Supervisor is the root of the supervision tree and is responsible for
starting and supervising all database instances for the lifetime of the system.
This module is responsible for:
	Owning the Fact supervision tree
	Managing database lifecycle and supervision
	Coordinating database startup through Fact.Bootstrapper.

It does not expose database APIs or persistence operations; it is concerned solely with system
structure and process lifecycle.

      


      
        Summary


  
    Types
  


    
      
        option()

      


        Option values used by the start_link/1 function.



    





  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        start_database(path)

      


        Starts a database at the given filesystem path.



    


    
      
        start_link(opts)

      


        Starts the Fact.Supervisor.



    





      


      
        Types


        


  
    
      
    
    
      option()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type option() :: {:databases, [Path.t()]}


      


Option values used by the start_link/1 function.
	{:databases, paths} - A list of file-system paths identifying databases that should be bootstrapped automatically
at startup.


  


        

      

      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)


        (since 0.1.0)


        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      start_database(path)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec start_database(Path.t()) ::
  {:ok, Fact.database_id()}
  | {:error, :database_locked, Fact.Lock.metadata_record()}
  | {:error, :database_failure}
  | {:error, term()}


      


Starts a database at the given filesystem path.
This function delegates startup to a Fact.Bootstrapper process under this supervisor and waits
for a startup acknowledgement message.
The caller will block until one the following occurs:
	The database is successfully started and the database identifier is returned
	The database is already locked by another process
	An error occurs during initialization.
	The startup process times out.

Process interaction
The bootstrapper is started as a supervised child and is expected to send of the following
messages back to the calling process:
	{:database_started, database_id}
	{:database_locked, lock_metadata}
	{:database_error, reason}

If no message is received within 3 seconds, the call fails with {:error, :database_failure}

  



  
    
      
    
    
      start_link(opts)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec start_link([option()]) :: Supervisor.on_start()


      


Starts the Fact.Supervisor.
At startup, the supervisor:
	Starts the global Fact.Registry, used for process and Fact.Context lookup across the system.
	Bootstraps any databases specified via the :databases option by starting a Fact.Bootstrapper process
for each configured path.

Databases listed in the :databases option are started eagerly as part of supervisor initialization. 
Additional databases may be started later at runtime using start_database/1.

  


        

      


  

    
Fact.CatchUpSubscription behaviour
    



      
Behaviour and helper implementation for catch-up subscriptions.
A catch-up subscription replays historical events from a source up to the
current high-water mark, delivers them to a subscriber, and then switches
into live mode to stream new events as they arrive.
This module defines the callback contract and provides a __using__/1
macro that implements the common GenServer lifecycle:
  • :init phase — the subscriber is monitored and the implementation
subscribes to the event source.
  • The high-water mark is read and a replay is performed from the
starting position up to that point.
  • Any events that arrive during replay are buffered and delivered
after replay completes.
  • When catch-up finishes, the subscriber receives :caught_up and the
subscription transitions to live mode.
Implementations provide the mechanics for subscription and replay by
defining the required callbacks, while optional hooks allow customization
of state and position handling.

      


      
        Summary


  
    Callbacks
  


    
      
        get_position(state, message)

      


    


    
      
        high_water_mark(state)

      


    


    
      
        on_init(state)

      


    


    
      
        replay(state, from, to, deliver_fun)

      


    


    
      
        subscribe(state)

      


    





      


      
        Callbacks


        


  
    
      
    
    
      get_position(state, message)



        
          
        

    

  


  

      

          @callback get_position(state :: term(), message :: term()) :: Fact.event_position()


      



  



  
    
      
    
    
      high_water_mark(state)



        
          
        

    

  


  

      

          @callback high_water_mark(state :: term()) :: Fact.event_position()


      



  



  
    
      
    
    
      on_init(state)



        
          
        

    

  


  

      

          @callback on_init(state :: term()) :: term()


      



  



  
    
      
    
    
      replay(state, from, to, deliver_fun)



        
          
        

    

  


  

      

          @callback replay(
  state :: term(),
  from :: Fact.read_position_option(),
  to :: Fact.event_position(),
  deliver_fun :: (term() -> any())
) :: :ok


      



  



  
    
      
    
    
      subscribe(state)



        
          
        

    

  


  

      

          @callback subscribe(state :: term()) :: :ok


      



  


        

      


  

    
Fact.CatchUpSubscription.All 
    



      
Catch-up subscription for the all stream.
This subscription replays every event in the database from the selected
starting position up to the current position, delivers them to the
subscriber, and then transitions into live mode to stream new events as
they are appended.

      


      
        Summary


  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        start_link(options)

      


    





      


      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      start_link(options)



        
          
        

    

  


  


  


        

      


  

    
Fact.CatchUpSubscription.Index 
    



      
Catch-up subscription for a single index value.
This subscription replays and streams events that appear in the given index,
starting from the configured position and continuing in live mode once caught up.

      


      
        Summary


  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        start_link(options)

      


    





      


      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      start_link(options)



        
          
        

    

  


  


  


        

      


  

    
Fact.CatchUpSubscription.Query 
    



      
Catch-up subscription for event queries.
This subscription replays and streams events that match a set of
Fact.QueryItem.t/0 query items. It coordinates with the underlying
indexers to ensure only relevant events are delivered.

      


      
        Summary


  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        start_link(options)

      


    





      


      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      start_link(options)



        
          
        

    

  


  


  


        

      


  

    
Fact.CatchUpSubscription.Stream 
    



      
Catch-up subscription for a single event stream.
This subscription replays and streams events from a specific event
stream in the database, starting from the configured position and
delivering them to the subscriber. Once caught up, it continues streaming
new events as they are appended to the stream.

      


      
        Summary


  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        start_link(options)

      


    





      


      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      start_link(options)



        
          
        

    

  


  


  


        

      


  

    
Fact.EventPublisher 
    



      
The central hub for broadcasting events within a Fact database.
Fact.EventPublisher is a GenServer responsible for publishing newly appended
event records to subscribers, either to a specific stream or to the global 
:all stream. Consumers, catch-up subscriptions, and indexers rely on this 
module to receive live notifications of changes in the database.
Features
	Subscribing to a specific event stream or all events
	Publishing newly appended records to the appropriate topics
	Integrates with Phoenix.PubSub for low-latency event delivery
	Ensures that each record is broadcasted both to the global stream and its
specific event stream, if present


      


      
        Summary


  
    Types
  


    
      
        appended_message()

      


    





  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        publish_appended(database_id, record_ids)

      


    


    
      
        start_link(options \\ [])

      


    


    
      
        subscribe(database_id, arg2)

      


    





      


      
        Types


        


  
    
      
    
    
      appended_message()



        
          
        

    

  


  

      

          @type appended_message() :: {:appended, Fact.record()}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      publish_appended(database_id, record_ids)



        
          
        

    

  


  


  



    

  
    
      
    
    
      start_link(options \\ [])



        
          
        

    

  


  


  



  
    
      
    
    
      subscribe(database_id, arg2)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam 
    



      
This module is the foundation for building flexible, versioned, and configurable
components throughout the Fact system, providing consistency and reducing boilerplate.
Fact.Seam defines a standard interface and default implementation for modules
that expose configurable components, providing:
	Identification: id/0, family/0, and version/0 to uniquely identify implementations.
	Options management: mechanisms to define default options, validate user-provided options,
normalize options, and prepare them for internal use.
	Meta-programming helpers: a __using__/1 macro to easily inject behaviour and
standard implementation into other modules.

Key Features
	Behaviour Definition
Modules that use Fact.Seam must implement:
	id/0 – returns a {family, version} tuple
	family/0 – the component family
	version/0 – numeric version of the component
	default_options/0 – default configuration options
	init/1 – initializes the module with validated options
	normalize_options/1 – normalizes and validates a given options map
	option_specs/0 – specifications for each option including parsing and allowed values
	prepare_options/1 – prepares the validated options for struct creation


	Option Validation
Validates options against a provided option_specs/0 map, applying parsing
functions, checking allowed values, and returning detailed errors for unknown
or invalid options.

	Struct Initialization
Automatically merges user-provided options with defaults, validates them,
and constructs a struct for the module.

	Meta-programming Convenience
Injects default implementations for behaviours via the __using__/1 macro,
allowing modules to focus on implementing only unique functionality.



      




  

    
Fact.Seam.Adapter behaviour
    



      
Base behaviour module providing the "glue" between a specific Seam and its implementations.
This module handles:
	Resolving allowed and default implementations.
	Merging default, fixed, and supplied options for a given implementation.
	Initializing a seam instance (Fact.Seam.Instance) with the correct configuration.
	Generic dispatch to the underlying implementation via __seam_call__/3.

Responsibilities
	Registry Interaction – Uses the seam's registry to resolve implementation modules and versions.
	Option Management – Combines fixed options, default options, and user-supplied options and normalizes them.
	Instance Creation – Produces a %Fact.Seam.Instance{} struct that encapsulates the module and its initialized state.
	Dispatch Helper – Provides __seam_call__/3 to call a function on the underlying seam instance cleanly.

Initialization
	init/0 – Initializes the default implementation.
	init/2 – Initializes a specific implementation with optional custom options.
	from_config/1 – Initializes a seam instance from a map-based configuration.

Option Normalization
The adapter ensures that only allowed options for a given implementation are used, 
and merges fixed options that cannot be overridden.

      


      
        Summary


  
    Callbacks
  


    
      
        allowed_impls()

      


    


    
      
        default_impl()

      


    


    
      
        default_options({})

      


    


    
      
        fixed_options({})

      


    


    
      
        normalize_options({}, map)

      


    


    
      
        registry()

      


    





  
    Functions
  


    
      
        __seam_call__(instance, fun, args)

      


        Generic dispatch



    





      


      
        Callbacks


        


  
    
      
    
    
      allowed_impls()



        
          
        

    

  


  

      

          @callback allowed_impls() :: [{atom(), pos_integer()}]


      



  



  
    
      
    
    
      default_impl()



        
          
        

    

  


  

      

          @callback default_impl() :: {atom(), pos_integer()}


      



  



  
    
      
    
    
      default_options({})



        
          
        

    

  


  

      

          @callback default_options({atom(), pos_integer()}) :: map()


      



  



  
    
      
    
    
      fixed_options({})



        
          
        

    

  


  

      

          @callback fixed_options({atom(), pos_integer()}) :: map()


      



  



  
    
      
    
    
      normalize_options({}, map)



        
          
        

    

  


  

      

          @callback normalize_options(
  {atom(), pos_integer()},
  map()
) :: map()


      



  



  
    
      
    
    
      registry()



        
          
        

    

  


  

      

          @callback registry() :: module()


      



  


        

      

      
        Functions


        


  
    
      
    
    
      __seam_call__(instance, fun, args)



        
          
        

    

  


  

Generic dispatch

  


        

      


  

    
Fact.Seam.Decoder behaviour
    



      
Behaviour defining how to decode stored records back into Elixir terms.
Implementations of this seam provide the logic for transforming a binary
or iodata record retrieved from storage into a usable Elixir data structure.
Callback
	decode/3 – Decodes the given binary value using the seam instance.
Accepts optional parameters via opts. Returns {:ok, decoded} on success
or {:error, reason} on failure.


      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Callbacks
  


    
      
        decode(impl, value, opts)

      


    


    
      
        default_options()

      


    


    
      
        family()

      


    


    
      
        id()

      


    


    
      
        init(map)

      


    


    
      
        normalize_options(map)

      


    


    
      
        option_specs()

      


    


    
      
        prepare_options(map)

      


    


    
      
        version()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: struct()


      



  


        

      

      
        Callbacks


        


  
    
      
    
    
      decode(impl, value, opts)



        
          
        

    

  


  

      

          @callback decode(impl :: t(), value :: binary(), opts :: keyword()) ::
  {:ok, decoded :: term()} | {:error, reason :: term()}


      



  



  
    
      
    
    
      default_options()



        
          
        

    

  


  

      

          @callback default_options() :: map()


      



  



  
    
      
    
    
      family()



        
          
        

    

  


  

      

          @callback family() :: atom()


      



  



  
    
      
    
    
      id()



        
          
        

    

  


  

      

          @callback id() :: {atom(), non_neg_integer()}


      



  



  
    
      
    
    
      init(map)



        
          
        

    

  


  

      

          @callback init(map()) :: struct() | {:error, term()}


      



  



  
    
      
    
    
      normalize_options(map)



        
          
        

    

  


  

      

          @callback normalize_options(map()) :: {:ok, map()} | {:error, term()}


      



  



  
    
      
    
    
      option_specs()



        
          
        

    

  


  

      

          @callback option_specs() :: %{required(atom()) => map()}


      



  



  
    
      
    
    
      prepare_options(map)



        
          
        

    

  


  

      

          @callback prepare_options(map()) :: map()


      



  



  
    
      
    
    
      version()



        
          
        

    

  


  

      

          @callback version() :: non_neg_integer()


      



  


        

      


  

    
Fact.Seam.Encoder behaviour
    



      
Behaviour defining how to encode records before they are written to storage.
Implementations of this seam provide the logic for transforming a record into
a binary or iodata format suitable for persistence.
Callback
	encode/3 – Encodes the given record using the seam instance. Accepts
optional parameters via opts. Returns {:ok, iodata()} on success or
{:error, reason} on failure.


      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Callbacks
  


    
      
        default_options()

      


    


    
      
        encode(t, term, keyword)

      


    


    
      
        family()

      


    


    
      
        id()

      


    


    
      
        init(map)

      


    


    
      
        normalize_options(map)

      


    


    
      
        option_specs()

      


    


    
      
        prepare_options(map)

      


    


    
      
        version()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: struct()


      



  


        

      

      
        Callbacks


        


  
    
      
    
    
      default_options()



        
          
        

    

  


  

      

          @callback default_options() :: map()


      



  



  
    
      
    
    
      encode(t, term, keyword)



        
          
        

    

  


  

      

          @callback encode(t(), term(), keyword()) :: {:ok, iodata()} | {:error, term()}


      



  



  
    
      
    
    
      family()



        
          
        

    

  


  

      

          @callback family() :: atom()


      



  



  
    
      
    
    
      id()



        
          
        

    

  


  

      

          @callback id() :: {atom(), non_neg_integer()}


      



  



  
    
      
    
    
      init(map)



        
          
        

    

  


  

      

          @callback init(map()) :: struct() | {:error, term()}


      



  



  
    
      
    
    
      normalize_options(map)



        
          
        

    

  


  

      

          @callback normalize_options(map()) :: {:ok, map()} | {:error, term()}


      



  



  
    
      
    
    
      option_specs()



        
          
        

    

  


  

      

          @callback option_specs() :: %{required(atom()) => map()}


      



  



  
    
      
    
    
      prepare_options(map)



        
          
        

    

  


  

      

          @callback prepare_options(map()) :: map()


      



  



  
    
      
    
    
      version()



        
          
        

    

  


  

      

          @callback version() :: non_neg_integer()


      



  


        

      


  

    
Fact.Seam.EventId behaviour
    



      
Behaviour defining how to generate event ids for events in a Fact database.
Implementations of this seam provide the logic for producing unique identifiers
for events. The generated ID can be any binary value, such as a UUID or hash.
Callback
	generate/2 – Generates a new event ID for the given seam instance. Accepts
optional parameters via opts. Returns a binary ID or an error tuple.


      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Callbacks
  


    
      
        default_options()

      


    


    
      
        family()

      


    


    
      
        generate(state, opts)

      


    


    
      
        id()

      


    


    
      
        init(map)

      


    


    
      
        normalize_options(map)

      


    


    
      
        option_specs()

      


    


    
      
        prepare_options(map)

      


    


    
      
        version()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: struct()


      



  


        

      

      
        Callbacks


        


  
    
      
    
    
      default_options()



        
          
        

    

  


  

      

          @callback default_options() :: map()


      



  



  
    
      
    
    
      family()



        
          
        

    

  


  

      

          @callback family() :: atom()


      



  



  
    
      
    
    
      generate(state, opts)



        
          
        

    

  


  

      

          @callback generate(state :: t(), opts :: keyword()) :: binary() | {:error, term()}


      



  



  
    
      
    
    
      id()



        
          
        

    

  


  

      

          @callback id() :: {atom(), non_neg_integer()}


      



  



  
    
      
    
    
      init(map)



        
          
        

    

  


  

      

          @callback init(map()) :: struct() | {:error, term()}


      



  



  
    
      
    
    
      normalize_options(map)



        
          
        

    

  


  

      

          @callback normalize_options(map()) :: {:ok, map()} | {:error, term()}


      



  



  
    
      
    
    
      option_specs()



        
          
        

    

  


  

      

          @callback option_specs() :: %{required(atom()) => map()}


      



  



  
    
      
    
    
      prepare_options(map)



        
          
        

    

  


  

      

          @callback prepare_options(map()) :: map()


      



  



  
    
      
    
    
      version()



        
          
        

    

  


  

      

          @callback version() :: non_neg_integer()


      



  


        

      


  

    
Fact.Seam.EventSchema behaviour
    



      
Behaviour defining how to retrieve the event schema for a Fact database.
Implementations of this seam provide the mapping between logical event attributes
and the string keys under which they are stored in the underlying event map.
The schema returned must conform to Fact.event_record_schema/0, which defines
the required keys for an event:
	:event_data
	:event_id
	:event_metadata
	:event_tags
	:event_type
	:event_store_position
	:event_store_timestamp
	:event_stream_id
	:event_stream_position

Callback
	get/2 – Returns the event schema for a given seam instance and optional parameters.


      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Callbacks
  


    
      
        default_options()

      


    


    
      
        family()

      


    


    
      
        get(t, opts)

      


    


    
      
        id()

      


    


    
      
        init(map)

      


    


    
      
        normalize_options(map)

      


    


    
      
        option_specs()

      


    


    
      
        prepare_options(map)

      


    


    
      
        version()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: struct()


      



  


        

      

      
        Callbacks


        


  
    
      
    
    
      default_options()



        
          
        

    

  


  

      

          @callback default_options() :: map()


      



  



  
    
      
    
    
      family()



        
          
        

    

  


  

      

          @callback family() :: atom()


      



  



  
    
      
    
    
      get(t, opts)



        
          
        

    

  


  

      

          @callback get(t(), opts :: keyword()) :: Fact.event_record_schema()


      



  



  
    
      
    
    
      id()



        
          
        

    

  


  

      

          @callback id() :: {atom(), non_neg_integer()}


      



  



  
    
      
    
    
      init(map)



        
          
        

    

  


  

      

          @callback init(map()) :: struct() | {:error, term()}


      



  



  
    
      
    
    
      normalize_options(map)



        
          
        

    

  


  

      

          @callback normalize_options(map()) :: {:ok, map()} | {:error, term()}


      



  



  
    
      
    
    
      option_specs()



        
          
        

    

  


  

      

          @callback option_specs() :: %{required(atom()) => map()}


      



  



  
    
      
    
    
      prepare_options(map)



        
          
        

    

  


  

      

          @callback prepare_options(map()) :: map()


      



  



  
    
      
    
    
      version()



        
          
        

    

  


  

      

          @callback version() :: non_neg_integer()


      



  


        

      


  

    
Fact.Seam.FileName behaviour
    



      
Behaviour defining the contract for generating file names within the Fact system.
Implementations of this seam are responsible for producing a file name based 
on a given value and optional parameters. This allows flexible naming strategies 
that can be swapped or configured per database or file type.
Callback
	get/3 – Generates a file name for the given value using the configured
implementation and options. Returns {:ok, path} on success or
{:error, reason} on failure.


      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Callbacks
  


    
      
        default_options()

      


    


    
      
        family()

      


    


    
      
        get(state, value, opts)

      


    


    
      
        id()

      


    


    
      
        init(map)

      


    


    
      
        normalize_options(map)

      


    


    
      
        option_specs()

      


    


    
      
        prepare_options(map)

      


    


    
      
        version()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: struct()


      



  


        

      

      
        Callbacks


        


  
    
      
    
    
      default_options()



        
          
        

    

  


  

      

          @callback default_options() :: map()


      



  



  
    
      
    
    
      family()



        
          
        

    

  


  

      

          @callback family() :: atom()


      



  



  
    
      
    
    
      get(state, value, opts)



        
          
        

    

  


  

      

          @callback get(state :: t(), value :: term(), opts :: keyword()) ::
  {:ok, Path.t()} | {:error, term()}


      



  



  
    
      
    
    
      id()



        
          
        

    

  


  

      

          @callback id() :: {atom(), non_neg_integer()}


      



  



  
    
      
    
    
      init(map)



        
          
        

    

  


  

      

          @callback init(map()) :: struct() | {:error, term()}


      



  



  
    
      
    
    
      normalize_options(map)



        
          
        

    

  


  

      

          @callback normalize_options(map()) :: {:ok, map()} | {:error, term()}


      



  



  
    
      
    
    
      option_specs()



        
          
        

    

  


  

      

          @callback option_specs() :: %{required(atom()) => map()}


      



  



  
    
      
    
    
      prepare_options(map)



        
          
        

    

  


  

      

          @callback prepare_options(map()) :: map()


      



  



  
    
      
    
    
      version()



        
          
        

    

  


  

      

          @callback version() :: non_neg_integer()


      



  


        

      


  

    
Fact.Seam.FileReader behaviour
    



      
Behaviour defining the contract for reading files within the Fact system.
Implementations of this seam are responsible for reading file contents from
a specified path. Different reading strategies or formats can be implemented
and swapped transparently (watch out for implicit coupling, it can bite).
Callback
	read/3 – Reads data from the given path using the configured implementation
and options. Returns {:ok, enumerable} on success or {:error, reason} on failure.


      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Callbacks
  


    
      
        default_options()

      


    


    
      
        family()

      


    


    
      
        id()

      


    


    
      
        init(map)

      


    


    
      
        normalize_options(map)

      


    


    
      
        option_specs()

      


    


    
      
        prepare_options(map)

      


    


    
      
        read(impl, path, opts)

      


    


    
      
        version()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: struct()


      



  


        

      

      
        Callbacks


        


  
    
      
    
    
      default_options()



        
          
        

    

  


  

      

          @callback default_options() :: map()


      



  



  
    
      
    
    
      family()



        
          
        

    

  


  

      

          @callback family() :: atom()


      



  



  
    
      
    
    
      id()



        
          
        

    

  


  

      

          @callback id() :: {atom(), non_neg_integer()}


      



  



  
    
      
    
    
      init(map)



        
          
        

    

  


  

      

          @callback init(map()) :: struct() | {:error, term()}


      



  



  
    
      
    
    
      normalize_options(map)



        
          
        

    

  


  

      

          @callback normalize_options(map()) :: {:ok, map()} | {:error, term()}


      



  



  
    
      
    
    
      option_specs()



        
          
        

    

  


  

      

          @callback option_specs() :: %{required(atom()) => map()}


      



  



  
    
      
    
    
      prepare_options(map)



        
          
        

    

  


  

      

          @callback prepare_options(map()) :: map()


      



  



  
    
      
    
    
      read(impl, path, opts)



        
          
        

    

  


  

      

          @callback read(impl :: t(), path :: Path.t(), opts :: keyword()) ::
  {:ok, Enumerable.t()} | {:error, term()}


      



  



  
    
      
    
    
      version()



        
          
        

    

  


  

      

          @callback version() :: non_neg_integer()


      



  


        

      


  

    
Fact.Seam.FileWriter behaviour
    



      
Behaviour defining the contract for writing files within the Fact system.
Implementations of this seam are responsible for writing arbitrary values
to a specified path. The behaviour allows different file writing strategies
or formats to be used interchangeably.
Callback
	write/4 – Writes a given value to the provided path using the configured
implementation and options. Returns :ok on success, or {:error, reason}
on failure.


      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Callbacks
  


    
      
        default_options()

      


    


    
      
        family()

      


    


    
      
        id()

      


    


    
      
        init(map)

      


    


    
      
        normalize_options(map)

      


    


    
      
        option_specs()

      


    


    
      
        prepare_options(map)

      


    


    
      
        version()

      


    


    
      
        write(impl, path, value, options)

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: struct()


      



  


        

      

      
        Callbacks


        


  
    
      
    
    
      default_options()



        
          
        

    

  


  

      

          @callback default_options() :: map()


      



  



  
    
      
    
    
      family()



        
          
        

    

  


  

      

          @callback family() :: atom()


      



  



  
    
      
    
    
      id()



        
          
        

    

  


  

      

          @callback id() :: {atom(), non_neg_integer()}


      



  



  
    
      
    
    
      init(map)



        
          
        

    

  


  

      

          @callback init(map()) :: struct() | {:error, term()}


      



  



  
    
      
    
    
      normalize_options(map)



        
          
        

    

  


  

      

          @callback normalize_options(map()) :: {:ok, map()} | {:error, term()}


      



  



  
    
      
    
    
      option_specs()



        
          
        

    

  


  

      

          @callback option_specs() :: %{required(atom()) => map()}


      



  



  
    
      
    
    
      prepare_options(map)



        
          
        

    

  


  

      

          @callback prepare_options(map()) :: map()


      



  



  
    
      
    
    
      version()



        
          
        

    

  


  

      

          @callback version() :: non_neg_integer()


      



  



  
    
      
    
    
      write(impl, path, value, options)



        
          
        

    

  


  

      

          @callback write(
  impl :: t(),
  path :: Path.t(),
  value :: term(),
  options :: keyword()
) :: :ok | {:error, reason :: term()}


      



  


        

      


  

    
Fact.Seam.Instance 
    



      
Represents a specific configured instance of a Fact.Seam component.
A Fact.Seam.Instance holds:
	:module – the implementation module (usually a module that uses Fact.Seam)
	:state – the initialized struct of the module, created via init/1 with options

This struct allows the Fact system to treat configured components uniformly,
storing the module reference and its initialized state together for easy access.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %{module: atom(), state: struct()}


      



  


        

      


  

    
Fact.Seam.Parsers 
    




      
        Summary


  
    Functions
  


    
      
        parse_directory(value)

      


    


    
      
        parse_existing_atom(value)

      


    


    
      
        parse_field_name(value)

      


        Parses a value as a valid field name.



    


    
      
        parse_filename(value)

      


    


    
      
        parse_integer_range(value, min, max)

      


        Parses a value as an integer and verifies it is within the specified range.



    


    
      
        parse_non_neg_integer(value)

      


    


    
      
        parse_pos_integer(value)

      


    





      


      
        Functions


        


  
    
      
    
    
      parse_directory(value)



        
          
        

    

  


  


  



  
    
      
    
    
      parse_existing_atom(value)



        
          
        

    

  


  


  



  
    
      
    
    
      parse_field_name(value)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec parse_field_name(binary() | atom()) :: {:ok, binary()} | :error


      


Parses a value as a valid field name.
A valid field name must start with a letter (A-Z, a-z) or underscore (_),
followed by zero or more letters, digits (0-9), or underscores.

  



  
    
      
    
    
      parse_filename(value)



        
          
        

    

  


  


  



  
    
      
    
    
      parse_integer_range(value, min, max)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec parse_integer_range(binary() | integer(), integer(), integer()) ::
  {:ok, integer()} | :error


      


Parses a value as an integer and verifies it is within the specified range.

  



  
    
      
    
    
      parse_non_neg_integer(value)



        
          
        

    

  


  


  



  
    
      
    
    
      parse_pos_integer(value)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.Registry behaviour
    



      
Provides a registry for all implementations of a configurable Fact.Seam component. 📚
A Fact.Seam.Registry is responsible for:
	Listing all available implementations (all/0)
	Resolving a specific implementation by {family, version} (resolve/1 or resolve/2)
	Returning the latest implementation for a family (latest_impl/1)
	Returning the latest version number for a family (latest_version/1)

Usage
When a module uses Fact.Seam.Registry, it generates:
	A static list of all known implementations
	A map of the latest version per family
	Convenience functions to resolve specific versions or get the latest

This registry is key for the system's configurable architecture, allowing
different components to be swapped, upgraded, or resolved dynamically
without changing the core system logic.
Essentially, this module provides the source of truth for what implementations exist,
their versions, and which one is considered the latest for a given family.

      


      
        Summary


  
    Callbacks
  


    
      
        all()

      


    


    
      
        latest_impl(atom)

      


    


    
      
        latest_version(atom)

      


    


    
      
        resolve({})

      


    





      


      
        Callbacks


        


  
    
      
    
    
      all()



        
          
        

    

  


  

      

          @callback all() :: list()


      



  



  
    
      
    
    
      latest_impl(atom)



        
          
        

    

  


  

      

          @callback latest_impl(atom()) :: module()


      



  



  
    
      
    
    
      latest_version(atom)



        
          
        

    

  


  

      

          @callback latest_version(atom()) :: non_neg_integer()


      



  



  
    
      
    
    
      resolve({})



        
          
        

    

  


  

      

          @callback resolve({atom(), non_neg_integer()}) :: {:ok, module()} | {:error, term()}


      



  


        

      


  

    
Fact.Seam.Storage behaviour
    



      
Behaviour defining the storage configuration for a Fact database.
This Fact.Seam implementation specifies the paths used by the system
for storing events, indices, ledgers, and locks. Implementations of this
behaviour allow different storage layouts, file structures, or storage
backends to be plugged in.
Responsibilities
	path/2 – Returns the root path of the database.
	records_path/3 – Returns the path where event records are stored, or the path to a specific record.
	indices_path/2 – Returns the path where index files are stored.
	ledger_path/2 – Returns the path for the event ledger file(s).
	locks_path/2 – Returns the path for lock files used for database concurrency.

Each function receives a configured instance (t()) and optional keyword
arguments, and should return either a valid Path.t() or an error tuple.
This allows the Fact system to operate on different storage strategies
without changing the core database or event logic.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Callbacks
  


    
      
        default_options()

      


    


    
      
        family()

      


    


    
      
        id()

      


    


    
      
        indices_path(t, opts)

      


        A callback function that gets the base path to the directory where all index files are stored. 



    


    
      
        init(map)

      


    


    
      
        initialize_storage(t, opts)

      


        A callback function that initializes the directory structure used for records, indexes, 
and any other files used by the database.



    


    
      
        ledger_path(t, opts)

      


        A callback function that gets the path to the directory containing the ledger file.



    


    
      
        locks_path(t, opts)

      


        A callback function that gets the path to the directory containing the lock files.



    


    
      
        normalize_options(map)

      


    


    
      
        option_specs()

      


    


    
      
        path(t, opts)

      


        A callback function that gets the path to configured root directory for the database.



    


    
      
        prepare_options(map)

      


    


    
      
        records_path(t, record_id, opts)

      


        A callback function that gets the directory containing all records, or the path to a specific record.



    


    
      
        version()

      


    





      


      
        Types


        


  
    
      
    
    
      t()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type t() :: struct()


      



  


        

      

      
        Callbacks


        


  
    
      
    
    
      default_options()


        (since 0.1.0)


        
          
        

    

  


  

      

          @callback default_options() :: map()


      



  



  
    
      
    
    
      family()


        (since 0.1.0)


        
          
        

    

  


  

      

          @callback family() :: atom()


      



  



  
    
      
    
    
      id()


        (since 0.1.0)


        
          
        

    

  


  

      

          @callback id() :: {atom(), non_neg_integer()}


      



  



  
    
      
    
    
      indices_path(t, opts)


        (since 0.1.0)


        
          
        

    

  


  

      

          @callback indices_path(t(), opts :: keyword()) :: Path.t() | {:error, term()}


      


A callback function that gets the base path to the directory where all index files are stored. 

  



  
    
      
    
    
      init(map)


        (since 0.1.0)


        
          
        

    

  


  

      

          @callback init(map()) :: struct() | {:error, term()}


      



  



  
    
      
    
    
      initialize_storage(t, opts)


        (since 0.2.0)


        
          
        

    

  


  

      

          @callback initialize_storage(t(), opts :: keyword()) :: {:ok, Path.t()} | {:error, term()}


      


A callback function that initializes the directory structure used for records, indexes, 
and any other files used by the database.

  



  
    
      
    
    
      ledger_path(t, opts)


        (since 0.1.0)


        
          
        

    

  


  

      

          @callback ledger_path(t(), opts :: keyword()) :: Path.t() | {:error, term()}


      


A callback function that gets the path to the directory containing the ledger file.

  



  
    
      
    
    
      locks_path(t, opts)


        (since 0.1.0)


        
          
        

    

  


  

      

          @callback locks_path(t(), opts :: keyword()) :: Path.t() | {:error, term()}


      


A callback function that gets the path to the directory containing the lock files.

  



  
    
      
    
    
      normalize_options(map)


        (since 0.1.0)


        
          
        

    

  


  

      

          @callback normalize_options(map()) :: {:ok, map()} | {:error, term()}


      



  



  
    
      
    
    
      option_specs()


        (since 0.1.0)


        
          
        

    

  


  

      

          @callback option_specs() :: %{required(atom()) => map()}


      



  



  
    
      
    
    
      path(t, opts)


        (since 0.1.0)


        
          
        

    

  


  

      

          @callback path(t(), opts :: keyword()) :: Path.t() | {:error, term()}


      


A callback function that gets the path to configured root directory for the database.

  



  
    
      
    
    
      prepare_options(map)


        (since 0.1.0)


        
          
        

    

  


  

      

          @callback prepare_options(map()) :: map()


      



  



  
    
      
    
    
      records_path(t, record_id, opts)


        (since 0.2.0)


        
          
        

    

  


  

      

          @callback records_path(t(), record_id :: String.t(), opts :: keyword()) ::
  Path.t() | {:error, term()}


      


A callback function that gets the directory containing all records, or the path to a specific record.

  



  
    
      
    
    
      version()


        (since 0.1.0)


        
          
        

    

  


  

      

          @callback version() :: non_neg_integer()


      



  


        

      


  

    
Fact.Seam.Decoder.Adapter 
    



      
Meta module providing an adapter for dispatching to decoder implementations.
Wraps calls to the underlying Fact.Seam.Decoder implementations and handles context injection.

      




  

    
Fact.Seam.Decoder.Delimited.V1 
    



      
A decoder for delimited content.
Splits a binary string into a list of values based on a configurable delimiter.
Returns {:error, {:decode, value}} if the input is not a binary.

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.Decoder.Integer.V1 
    



      
A decoder for integers.
Converts a binary string representation of an integer into an actual integer.
Returns {:error, {:decode, value}} if the input cannot be converted.

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.Decoder.Json.V1 
    



      
A JSON decoder implementation.
Supports either the Elixir.JSON or Jason libraries if available.
If neither library is loaded, decoding will return {:error, :no_json_impl}.

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.Decoder.Raw.V1 
    



      
A raw decoder implementation that returns the binary value as-is.
If the input is not binary, returns an error tuple.

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.Decoder.Registry 
    



      
Registry of available decoder implementations.
Includes decoders for raw binaries, delimited sequences, integers, and JSON content.

      


      
        Summary


  
    Functions
  


    
      
        resolve(family, version)

      


    





      


      
        Functions


        


  
    
      
    
    
      resolve(family, version)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.Encoder.Adapter 
    



      
Meta module that provides an adapter for calling Fact.Seam.Encoder implementations.
This adapter handles resolution of the encoder instance from a context and
forwards the encode/3 call to the underlying implementation.

      




  

    
Fact.Seam.Encoder.Delimited.V1 
    



      
Delimited encoder implementation for event records.
Transforms a list of values (or a single binary) into a delimited sequence using the 
configured delimiter. Supports :lf, :crlf, and :rs delimiters. Returns {:ok, iodata}.

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.Encoder.Integer.V1 
    



      
Integer encoder implementation for event records.
Converts an integer value into its string representation. Returns {:ok, string} 
if the input is a valid integer.

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.Encoder.Json.V1 
    



      
JSON encoder implementation for event records.
Encodes the given data to JSON format using either the JSON module if available, 
or Jason. If neither library is present, encoding returns {:error, :no_json_impl}.

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.Encoder.Raw.V1 
    



      
Standard raw encoder implementation that passes binary content through unchanged.
This encoder only accepts binary data. Non-binary input returns an :encode_error.

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.Encoder.Registry 
    



      
Registry of all available Fact.Seam.Encoder implementations.
This module tracks the known encoder versions and allows resolution of
specific encoder implementations by family and version.

      


      
        Summary


  
    Functions
  


    
      
        resolve(family, version)

      


    





      


      
        Functions


        


  
    
      
    
    
      resolve(family, version)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.EventId.Adapter 
    



      
Meta module providing an adapter for Fact.Seam.EventId implementations.
Provides a unified interface for generating event IDs across different implementations,
allowing initialization and delegation via the Fact.Seam.Adapter system.

      




  

    
Fact.Seam.EventId.Registry 
    



      
Registry for Fact.Seam.EventId implementations.
Currently includes:
	Fact.Seam.EventId.Uuid.V4


      


      
        Summary


  
    Functions
  


    
      
        resolve(family, version)

      


    





      


      
        Functions


        


  
    
      
    
    
      resolve(family, version)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.EventId.Uuid.V4 
    



      
Fact.Seam.EventId implementation that generates UUID v4 identifiers.
This module produces unique event IDs using the standard UUID v4 algorithm
and formats them as a string without dashes.

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.EventSchema.Adapter 
    



      
Meta module providing an adapter for Fact.Seam.EventSchema.
This module injects functions for dispatching calls to a configured Fact.Seam.EventSchema
implementation, handling database context lookup, and passing options to the selected instance.

      




  

    
Fact.Seam.EventSchema.Emmett.V1 
    



      
An EventSchema similar to the schema used in the Emmett NodeJs library.
See the definition on GitHub
Differences
Emmetts event records do not support a field for event tags. By default __tags__
is used, but this may be configured when the database is created.
$ mix fact.create --path tmp/emmett-ish \
    --event-schema emmett@1 \
    --event-schema-options event_tags=tags

Additionally, Emmett supports a kind field, which Fact does not support at this time.
Example
When using emmett@1, persisted event records will take the following shape, with the caveat that
__tags__ may differ if configured to something else.
{
  "data": {name: "Turts"},
  "messageId": "3bb4808303c847fd9ceb0a1251ef95da",
  "metadata": {"correlationId": "240d3c0e-3251-4076-a769-97a6a705533e"},
  "__tags__": ["turtle:1"],
  "type": "egg_hatched",
  "globalPosition": "2",
  "created": 1765039106962264,
  "streamName": "turtle-1",
  "streamPosition": 1,
}

      


      
        Summary


  
    Types
  


    
      
        t()

      


        Configuration options for the Emmett event schema.



    





  
    Functions
  


    
      
        default_options()

      


        Gets the default options.



    


    
      
        get(v1, opts)

      


        Gets a map of the keys used for Emmett-like event records.



    


    
      
        option_specs()

      


        Gets the specification for the configuration options. 



    


    
      
        validate_options(options, specs)

      


    





      


      
        Types


        


  
    
      
    
    
      t()


        (since 0.2.0)


        
          
        

    

  


  

      

          @type t() :: %Fact.Seam.EventSchema.Emmett.V1{event_tags: String.t()}


      


Configuration options for the Emmett event schema.

  


        

      

      
        Functions


        


  
    
      
    
    
      default_options()


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec default_options() :: t()


      


Gets the default options.

  



  
    
      
    
    
      get(v1, opts)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec get(
  t(),
  keyword()
) :: Fact.event_record_schema()


      


Gets a map of the keys used for Emmett-like event records.

  



  
    
      
    
    
      option_specs()


        (since 0.2.0)


        
          
        

    

  


  

Gets the specification for the configuration options. 

  



  
    
      
    
    
      validate_options(options, specs)


        (since 0.2.0)


        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.EventSchema.Kurrent.V1 
    



      
An EventSchema similar to the schema used in the KurrentDB .NET client.
See the definition on GitHub
Differences
Kurrent event records do not support a field for event tags. By default __Tags__
is used, but this may be configured when the database is created.
$ mix fact.create --path tmp/kurrent-ish \
    --event-schema kurrent@1 \
    --event-schema-options event_tags=Tags

Additionally, Kurrent supports a ContentType field, which Fact does not support at this time.
Example
When using kurrent@1, persisted event records will take the following shape, with the caveat that
__Tags__ may differ if configured to something else.
{
  "Data": {name: "Turts"},
  "EventId": "3bb4808303c847fd9ceb0a1251ef95da",
  "EventMetadata": {"correlationId": "240d3c0e-3251-4076-a769-97a6a705533e"},
  "__Tags__": ["turtle:1"],
  "EventType": "egg_hatched",
  "Position": "2",
  "Created": 1765039106962264,
  "EventStreamId": "turtle-1",
  "EventNumber": 1,
}

      


      
        Summary


  
    Types
  


    
      
        t()

      


        Configuration options for the Kurrent v1 event schema.



    





  
    Functions
  


    
      
        default_options()

      


        Gets the default options.



    


    
      
        get(v1, opts)

      


        Gets a map of the keys used for Kurrent-like event records.



    


    
      
        option_specs()

      


        Gets the specification for the configuration options. 



    


    
      
        validate_options(options, specs)

      


    





      


      
        Types


        


  
    
      
    
    
      t()


        (since 0.2.0)


        
          
        

    

  


  

      

          @type t() :: %Fact.Seam.EventSchema.Kurrent.V1{event_tags: String.t()}


      


Configuration options for the Kurrent v1 event schema.

  


        

      

      
        Functions


        


  
    
      
    
    
      default_options()


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec default_options() :: t()


      


Gets the default options.

  



  
    
      
    
    
      get(v1, opts)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec get(
  t(),
  keyword()
) :: Fact.event_record_schema()


      


Gets a map of the keys used for Kurrent-like event records.

  



  
    
      
    
    
      option_specs()


        (since 0.2.0)


        
          
        

    

  


  

Gets the specification for the configuration options. 

  



  
    
      
    
    
      validate_options(options, specs)


        (since 0.2.0)


        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.EventSchema.Marten.V1 
    



      
An EventSchema similar to the schema used in the MartenDB .NET client.
See the Marten documentation
Differences
MartenDB event records do not support a field for metadata or event tags. 
By default __metadata__ and __tags__ are used, but this may be configured 
when the database is created.
$ mix fact.create --path tmp/marten-ish \
    --event-schema marten@1 \
    --event-schema-options event_metadata=metadata,event_tags=tags

Additionally, Marten supports tenant_id and mt_dotnet_type fields, which Fact does not support at this time.
Example
When using marten@1, persisted event records will take the following shape, with the caveat that
__metadata__ and __tags__ may differ if configured to something else.
{
  "data": {name: "Turts"},
  "id": "3bb4808303c847fd9ceb0a1251ef95da",
  "__metadata__": {"correlationId": "240d3c0e-3251-4076-a769-97a6a705533e"},
  "__tags__": ["turtle:1"],
  "type": "egg_hatched",
  "seq_id": "2",
  "timestamp": 1765039106962264,
  "stream_id": "turtle-1",
  "version": 1,
}

      


      
        Summary


  
    Types
  


    
      
        t()

      


        Configuration options for the Marten event schema.



    





  
    Functions
  


    
      
        default_options()

      


        Gets the default options.



    


    
      
        get(v1, opts)

      


        Gets a map of the keys used for MartenDB-like event records.



    


    
      
        option_specs()

      


        Gets the specification for the configuration options. 



    


    
      
        validate_options(options, specs)

      


    





      


      
        Types


        


  
    
      
    
    
      t()


        (since 0.2.0)


        
          
        

    

  


  

      

          @type t() :: %Fact.Seam.EventSchema.Marten.V1{
  event_metadata: String.t(),
  event_tags: String.t()
}


      


Configuration options for the Marten event schema.

  


        

      

      
        Functions


        


  
    
      
    
    
      default_options()


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec default_options() :: t()


      


Gets the default options.

  



  
    
      
    
    
      get(v1, opts)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec get(
  t(),
  keyword()
) :: Fact.event_record_schema()


      


Gets a map of the keys used for MartenDB-like event records.

  



  
    
      
    
    
      option_specs()


        (since 0.2.0)


        
          
        

    

  


  

Gets the specification for the configuration options. 

  



  
    
      
    
    
      validate_options(options, specs)


        (since 0.2.0)


        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.EventSchema.Registry 
    



      
Registry of available Fact.Seam.EventSchema implementations.
Currently includes the standard version 1 implementation.

      


      
        Summary


  
    Functions
  


    
      
        resolve(family, version)

      


    





      


      
        Functions


        


  
    
      
    
    
      resolve(family, version)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.EventSchema.Standard.V1 
    



      
Standard Fact.Seam.EventSchema implementation. 
Provides the default mapping of logical event attributes to the string keys
used in event records. This schema defines the field names for all events
in the standard event store.

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.FileName.Adapter 
    



      
Meta module providing a Fact.Seam.Adapter for file name generation.
Injects get/3 into the calling module, dispatching to the configured Fact.Seam.FileName implementation
for a given context and value.

      




  

    
Fact.Seam.FileName.EventId.V1 
    



      
A file name implementation that derives the file name from the event_id of a given event.
This Fact.Seam.FileName implementation uses the event schema from the provided context
to extract the :event_id from the event and returns it as the file name.

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.FileName.Fixed.V1 
    



      
A file name implementation that returns a fixed, preconfigured name.
This Fact.Seam.FileName implementation ignores the value input and always returns
the fixed :name specified in its configuration.

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.FileName.Hash.V1 
    



      
A file name implementation that generates a deterministic hashed name.
This Fact.Seam.FileName implementation hashes the given value using a configurable
algorithm (e.g., :sha, :md5, :sha256, etc.) and encodes the result in a configurable
format (:base16, :base32, or :base64url).

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.FileName.Raw.V1 
    



      
A raw file name implementation that returns the input value unchanged.
This Fact.Seam.FileName implementation simply passes through the given value as the file name.

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.FileName.Registry 
    



      
Registry for all Fact.Seam.FileName implementations.
Keeps track of available versions for generating file names, including event ID-based,
fixed, hash-based, and raw strategies.

      


      
        Summary


  
    Functions
  


    
      
        resolve(family, version)

      


    





      


      
        Functions


        


  
    
      
    
    
      resolve(family, version)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.FileReader.Adapter 
    



      
Meta module providing a Fact.Seam.Adapter for Fact.Seam.FileReader implementations.
This adapter injects a read/3 function into the using module that dispatches
calls to the configured file reader implementation associated with the given context.

      




  

    
Fact.Seam.FileReader.FixedLength.V1 
    



      
A Fact.Seam.FileReader implementation for fixed-length records.
Reads a file in chunks of a specified length, optionally skipping padding bytes
between records. Supports both forward and backward streaming from a given
position (:start, :end, or a specific record index).
This allows processing large files efficiently without loading the entire file
into memory.

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.FileReader.Full.V1 
    



      
A Fact.Seam.FileReader implementation that reads the entire file content at once.
The file is read as a single binary, then wrapped in a Stream to provide
a consistent streaming interface for downstream consumers.

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.FileReader.Registry 
    



      
Registry for all Fact.Seam.FileReader implementations.
Tracks available reader implementations and their versions, allowing the system to resolve and select a specific reader module when requested.

      


      
        Summary


  
    Functions
  


    
      
        resolve(family, version)

      


    





      


      
        Functions


        


  
    
      
    
    
      resolve(family, version)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.FileWriter.Adapter 
    



      
Meta module providing the adapter interface for Fact.Seam.FileWriter.
Handles dispatching calls to the configured file writer implementation for a given context.

      




  

    
Fact.Seam.FileWriter.Registry 
    



      
Registry of all configured Fact.Seam.FileWriter implementations.
Provides a lookup for allowed implementations, their versions, and the latest default implementation.

      


      
        Summary


  
    Functions
  


    
      
        resolve(family, version)

      


    





      


      
        Functions


        


  
    
      
    
    
      resolve(family, version)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.FileWriter.Standard.V1 
    



      
Standard V1 implementation of Fact.Seam.FileWriter.
Provides configurable file writing with options for access mode, binary mode, exclusive/open flags, raw mode, synchronous writes, and WORM (write-once, read-many) file protection.

      


      
        Summary


  
    Functions
  


    
      
        validate_options(options, specs)

      


    





      


      
        Functions


        


  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.Storage.Adapter 
    



      
Meta module providing an adapter for accessing storage-related functionality
via a Fact.Seam.Storage implementation.
This module is intended to be used by other modules to inject functions
that simplify retrieval of paths associated with a database context:
	path/2 – the root path for the database storage.
	records_path/2 – path for storing event records.
	indices_path/2 – path for storing index files.
	ledger_path/2 – path for the event ledger.
	locks_path/2 – path for database locks.

Each function can be called with either a database id (String.t()) or a
Fact.Context containing the configured storage instance. When called with a
database ID, the adapter automatically retrieves the corresponding context.
All operations are delegated to the underlying storage implementation
using the configured seam instance. This module primarily provides
compile-time injection of these helper functions.

      




  

    
Fact.Seam.Storage.Registry 
    



      
Registry for Fact.Seam.Storage implementations.
This module provides:
	A list of all known storage implementations.
	Resolution of a specific implementation by {family, version}.
	Access to the latest version of a storage implementation for a given family.

Usage
Use this registry to:
	Retrieve all storage implementations via all/0.
	Resolve a specific implementation via resolve/1 or resolve/2.
	Get the latest implementation or version for a given storage family.

This registry currently contains the following implementation(s):
* `Fact.Seam.Storage.Standard.V1`

      


      
        Summary


  
    Functions
  


    
      
        resolve(family, version)

      


    





      


      
        Functions


        


  
    
      
    
    
      resolve(family, version)



        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.Storage.Standard.V1 
    



      
Standard V1 implementation of the Fact.Seam.Storage seam.
This module provides file-system–based storage paths for a database context. 
It defines where event records, indices, ledgers, and locks are stored on disk.
Options:
	:path – the root directory for the database storage. All sub-paths are derived from this.


      


      
        Summary


  
    Types
  


    
      
        t()

      


        The configuration options for the Standard v1 storage seam impl.



    





  
    Functions
  


    
      
        indices_path(v1, opts)

      


        Gets the path to the base directory for all indexes.



    


    
      
        initialize_storage(this, opts)

      


        Creates the directory structure used for events and indexes.



    


    
      
        ledger_path(v1, opts)

      


        Gets the path to the directory containing the ledger.



    


    
      
        locks_path(v1, opts)

      


        Gets the path to the directory containing the database lock file.



    


    
      
        path(v1, opts)

      


        Gets the configured root path for the database.



    


    
      
        records_path(v1, record_id, opts)

      


        Gets the path to base directory for records, or the path to a specific record.



    


    
      
        validate_options(options, specs)

      


    





      


      
        Types


        


  
    
      
    
    
      t()


        (since 0.1.0)


        
          
        

    

  


  

      

          @type t() :: %Fact.Seam.Storage.Standard.V1{path: Path.t()}


      


The configuration options for the Standard v1 storage seam impl.

  


        

      

      
        Functions


        


  
    
      
    
    
      indices_path(v1, opts)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec indices_path(
  t(),
  keyword()
) :: Path.t()


      


Gets the path to the base directory for all indexes.

  



  
    
      
    
    
      initialize_storage(this, opts)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec initialize_storage(
  t(),
  keyword()
) :: {:ok, Path.t()} | {:error, term()}


      


Creates the directory structure used for events and indexes.

  



  
    
      
    
    
      ledger_path(v1, opts)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec ledger_path(
  t(),
  keyword()
) :: Path.t()


      


Gets the path to the directory containing the ledger.

  



  
    
      
    
    
      locks_path(v1, opts)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec locks_path(
  t(),
  keyword()
) :: Path.t()


      


Gets the path to the directory containing the database lock file.

  



  
    
      
    
    
      path(v1, opts)


        (since 0.1.0)


        
          
        

    

  


  

      

          @spec path(
  t(),
  keyword()
) :: Path.t()


      


Gets the configured root path for the database.

  



  
    
      
    
    
      records_path(v1, record_id, opts)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec records_path(t(), nil | Fact.record_id(), keyword()) :: Path.t()


      


Gets the path to base directory for records, or the path to a specific record.

  



  
    
      
    
    
      validate_options(options, specs)


        (since 0.1.0)


        
          
        

    

  


  


  


        

      


  

    
Fact.Seam.Storage.Standard.V2 
    



      
Standard V2 implementation of the Fact.Seam.Storage seam.
This module creates 0 to 3 character buckets (i.e. sub-directories) for events.
Directories with a large number of files can cause performance and operational issues.
Most filesystems store directory entries in data structures (like B-trees or linear lists) that
degrade as the entry count grows. Listing, searching, or opening files requires scanning or
traversing these structures, which becomes slower as directories grow into thousands or millions of files.
Tool Limitations
Many common tools struggle with huge directories.
	Shell glob expansion can exceed argument length limes or consume excessive memory
	ls becomes slow and unwieldy
	File browsers may hang or become unresponsive
	Backup tools and file synchronization can slow dramatically

Inode and Metadata Overhead
Directory metadata must often be read into memory. A directory with millions of entries can
consume significant memory just for the directory itself, separate from the files it contains.
Bucket Configurations
This implementation will create a sub-directory within the base records_path. The default event
record encoding is base16, with a default bucket_length of 2, which would result in 256 "buckets" 
directories for storing events 00 to ff. Using an alternate encoding for record file names or
increasing the bucket length will increase this. 
	encoding	bucket_length: 1	bucket_length: 2	bucket_length: 3
	base16	16	256	1,024
	base32	32	1,024	32,768
	base64url	64	4,096	262,144

Too many buckets
Having too many buckets is also not good, I would recommend not exceeding 4,096.
Configure the system accordingly.
Future
A future storage implementation, may add support for nested buckets.

      


      
        Summary


  
    Types
  


    
      
        t()

      


        The configuration options for the Standard v2 storage seam impl.



    





  
    Functions
  


    
      
        default_options()

      


        Get the default configuration options.



    


    
      
        indices_path(v2, opts)

      


        Gets the path to the base directory for all indexes.



    


    
      
        initialize_storage(this, opts)

      


        Creates the directory structure used for events and indexes.



    


    
      
        ledger_path(v2, opts)

      


        Gets the path to the directory containing the ledger. 



    


    
      
        locks_path(v2, opts)

      


        Gets the path to the directory containing the lock file. 



    


    
      
        option_specs()

      


        Gets the specification for the configuration options.



    


    
      
        path(v2, opts)

      


        Gets the configured base path for the database.



    


    
      
        records_path(v2, record_id, opts)

      


        Gets the path to the base directory for records, or the path to a specific record.



    


    
      
        validate_options(options, specs)

      


    





      


      
        Types


        


  
    
      
    
    
      t()


        (since 0.2.0)


        
          
        

    

  


  

      

          @type t() :: %Fact.Seam.Storage.Standard.V2{
  bucket_length: non_neg_integer(),
  path: Path.t()
}


      


The configuration options for the Standard v2 storage seam impl.
	:path - The base path to the database directory.
	:bucket_length - The length of event bucket directories.  


  


        

      

      
        Functions


        


  
    
      
    
    
      default_options()


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec default_options() :: t()


      


Get the default configuration options.

  



  
    
      
    
    
      indices_path(v2, opts)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec indices_path(
  t(),
  keyword()
) :: Path.t()


      


Gets the path to the base directory for all indexes.

  



  
    
      
    
    
      initialize_storage(this, opts)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec initialize_storage(
  t(),
  keyword()
) :: {:ok, Path.t()} | {:error, term()}


      


Creates the directory structure used for events and indexes.

  



  
    
      
    
    
      ledger_path(v2, opts)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec ledger_path(
  t(),
  keyword()
) :: Path.t()


      


Gets the path to the directory containing the ledger. 

  



  
    
      
    
    
      locks_path(v2, opts)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec locks_path(
  t(),
  keyword()
) :: Path.t()


      


Gets the path to the directory containing the lock file. 

  



  
    
      
    
    
      option_specs()


        (since 0.2.0)


        
          
        

    

  


  

Gets the specification for the configuration options.

  



  
    
      
    
    
      path(v2, opts)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec path(
  t(),
  keyword()
) :: Path.t()


      


Gets the configured base path for the database.

  



  
    
      
    
    
      records_path(v2, record_id, opts)


        (since 0.2.0)


        
          
        

    

  


  

      

          @spec records_path(t(), nil | Fact.record_id(), keyword()) :: Path.t()


      


Gets the path to the base directory for records, or the path to a specific record.

  



  
    
      
    
    
      validate_options(options, specs)



        
          
        

    

  


  


  


        

      


  

    
Fact.ConcurrencyError exception
    



      
This exception is raised when the optimistic concurrency control logic determines an event or events
cannot be written to the ledger.
The following fields of this exception are public and can be accessed:
	:source - the event store (:all) or the event stream 
	:expected - the expectation or position during the append operation
	:actual - the actual position during the append operation


      




  

    
mix fact.create 
    



      
Creates a new database.
Usage
Options
There are a lot of options to control how the database stores information. However many of these options currently
only support a single value. Each represents a seam within the system, and each can be supplied with a set of
implementation specific options. Each seam implementation is configured using {family}@{version} format, while
options are specified using a comma-delimited list of key value pairs {key1}={value1},{key2}={value2}.
Maybe this all just a big old YAGNI...but I think it will prove its worth in time.
Event options
	--event-id - Controls how event ids are generated. (default: uuid@4)
	--event-id-options - Configuration options for the selected event id format. (default: "")
	--event-schema - Controls the schema of events. (default: standard@1)
	--event-schema-options - Configuration options for the selected event schema. (default: "")

Index file options
	--index-file-decoder - Controls how record are decoded after reading. (default: raw@1)  
	--index-file-decoder-options - Configuration options for the selected record file decoder. (default: "")
	--index-file-encoder - Controls how record are encoded for writing. (default: delimited@1)
	--index-file-encoder-options - Configuration options for the selected record file encoder. (default: "")
	--index-file-name - Controls how record files are named. (default: raw@1)
	--index-file-name-options - Configuration options for the selected record file name seam. (default: "") 
	--index-file-reader - Controls how record files are read. (default: fixed_length@1)
	--index-file-reader-options - Configuration options for the selected record file reader. (default: "")
	--index-file-writer - Controls how record files are written. (default: standard@1)
	--index-file-writer-options - Configuration options for the selected record file writer. (default: "")

Index checkpoint file options
	--index-checkpoint-file-decoder - Controls how record are decoded after reading. (default: integer@1)
	--index-checkpoint-file-decoder-options - Configuration options for the selected record file decoder. (default: "")
	--index-checkpoint-file-encoder - Controls how record are encoded for writing. (default: integer@1)
	--index-checkpoint-file-encoder-options - Configuration options for the selected record file encoder. (default: "")
	--index-checkpoint-file-name - Controls how record files are named. (default: fixed@1)
	--index-checkpoint-file-name-options - Configuration options for the selected record file name seam. (default: "") 
	--index-checkpoint-file-reader - Controls how record files are read. (default: full@1)
	--index-checkpoint-file-reader-options - Configuration options for the selected record file reader. (default: "")
	--index-checkpoint-file-writer - Controls how record files are written. (default: standard@1)
	--index-checkpoint-file-writer-options - Configuration options for the selected record file writer. (default: "")    

Ledger file options
	--ledger-file-decoder - Controls how record are decoded after reading. (default: raw@1)
	--ledger-file-decoder-options - Configuration options for the selected record file decoder. (default: "")
	--ledger-file-encoder - Controls how record are encoded for writing. (default: delimited@1)
	--ledger-file-encoder-options - Configuration options for the selected record file encoder. (default: "")
	--ledger-file-name - Controls how record files are named. (default: fixed@1)
	--ledger-file-name-options - Configuration options for the selected record file name seam. (default: "") 
	--ledger-file-reader - Controls how record files are read. (default: fixed_length@1)
	--ledger-file-reader-options - Configuration options for the selected record file reader. (default: "")
	--ledger-file-writer - Controls how record files are written. (default: standard@1)
	--ledger-file-writer-options - Configuration options for the selected record file writer. (default: "")

Lock file options
	--lock-file-decoder - Controls how record are decoded after reading. (default: json@1)
	--lock-file-decoder-options - Configuration options for the selected record file decoder. (default: "")
	--lock-file-encoder - Controls how record are encoded for writing. (default: json@1)
	--lock-file-encoder-options - Configuration options for the selected record file encoder. (default: "")
	--lock-file-name - Controls how record files are named. (default: fixed@1)
	--lock-file-name-options - Configuration options for the selected record file name seam. (default: "") 
	--lock-file-reader - Controls how record files are read. (default: full@1)
	--lock-file-reader-options - Configuration options for the selected record file reader. (default: "")
	--lock-file-writer - Controls how record files are written. (default: standard@1)
	--lock-file-writer-options - Configuration options for the selected record file writer. (default: "")  

Record file options
	--record-file-decoder - Controls how record are decoded after reading. (default: json@1)
	--record-file-decoder-options - Configuration options for the selected record file decoder. (default: "")
	--record-file-encoder - Controls how record are encoded for writing. (default: json@1)
	--record-file-encoder-options - Configuration options for the selected record file encoder. (default: "")
	--record-file-name - Controls how record files are named. (default: event_id@1)
	--record-file-name-options - Configuration options for the selected record file name seam. (default: "") 
	--record-file-reader - Controls how record files are read. (default: full@1)
	--record-file-reader-options - Configuration options for the selected record file reader. (default: "")
	--record-file-writer - Controls how record files are written. (default: standard@1)
	--record-file-writer-options - Configuration options for the selected record file writer. (default: "")

Storage options
	--storage - Controls how the files are organized within the file system. (default: standard@1)
	--storage-options - Configuration options for the selected storage. (default: "")


      




  OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();




OEBPS/assets/cover.png





OEBPS/assets/logo.png





