

 fanotify

 v0.1.1

 Table of contents

 	fanotify

 	LICENSE

 	
 Modules

 	fanotify

 fanotify

A low-level Erlang interface to the Linux fanotify API.
This library only works on Linux and is experimental; I am not a great Erlang
programmer and this is the first Erlang library I publish; let alone the first time
I've written NIFs. Did I mention this library uses dirty NIFs?
The 0.x version number is there for a reason. You have been warned.
Build
$ rebar3 compile

Usage
fanotify is an API that allows efficiently monitoring changes to many filesystem objects at once.
In practice, this means that you can monitor changes to files inside a set of directories
without spawning an external inotifywatch process.
% Create a notification group.
Group = fanotify:new().

% Observe create and delete events on files inside /tmp/dir1
% and keep the file handle for later use.
nil = fanotify:mark(Group, "/tmp/dir1", [add, onlydir], [create, delete, ondir, event_on_child]).
Dir1Handle = fanotify:file_handle("/tmp/dir1").

% Also observe create and delete events on files inside /tmp/dir2.
nil = fanotify:mark(Group, "/tmp/dir2", [add, onlydir], [create, delete, ondir, event_on_child]).
Dir2Handle = fanotify:file_handle("/tmp/dir2").

% Receive filesystem events.
[{event, EventType, [{dfid_name, Handle, File}]}] = fanotify:read(Group).

case Handle of
 Dir1Handle ->
 io:format("Received ~w event on /tmp/dir1/~s~n", [EventType, File]);
 Dir2Handle ->
 io:format("Received ~w event on /tmp/dir2/~s~n", [EventType, File])
end.

% Close the notification group when done.
nil = fanotify:close(Group).

 LICENSE

Copyright (c) 2025, steenuil <steenuil.owl@gmail.com>

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

fanotify

 Summary

 Types

 action()

 Action to perform on the notification group.

 event()

 A notification for an event that occurred on a monitored filesystem object.
Corresponds to the fanotify_event_metadata struct returned by a read(2)
on an fanotify file descriptor.

 event_type()

 Type of event that occurred for a single filesystem object.
Corresponds to the bits on the mask argument on fanotify_mark and
to the mask field in the fanotify_event_metadata struct returned by
a read(2) on an fanotify file descriptor.

 file_handle()

 Filesystem object handle.

 group()

 A fanotify group.

 info()

 Additional event information.

 posix()

 An atom representation of the errno value returned by a failed call
to one of the fanotify functions.

 Functions

 close/1

 file_handle(Path)

 mark/4

 new()

 read/1

 Types

 action()

 -type action() :: add | remove | dont_follow | onlydir | ignored_mask | evictable | ignore | flush.

Action to perform on the notification group.

 event()

 -type event() :: {event, [event_type()], [info()]}.

A notification for an event that occurred on a monitored filesystem object.
Corresponds to the fanotify_event_metadata struct returned by a read(2)
on an fanotify file descriptor.

 event_type()

 -type event_type() ::
 access | modify | attrib | close_write | close_nowrite | open | moved_from | moved_to |
 create | delete | delete_self | move_self | open_exec | fs_error | open_perm | access_perm |
 open_exec_perm | event_on_child | rename | ondir.

Type of event that occurred for a single filesystem object.
Corresponds to the bits on the mask argument on fanotify_mark and
to the mask field in the fanotify_event_metadata struct returned by
a read(2) on an fanotify file descriptor.

 file_handle()

 -opaque file_handle()

Filesystem object handle.
Can be used to identify the filesystem object that the event occurred on.
Corresponds to the file_handle struct returned by name_to_handle_at

 group()

 -opaque group()

A fanotify group.
Internally, this is represented as a file descriptor for the event queue
associated with the group.

 info()

 -type info() ::
 {dfid_name, file_handle(), binary()} |
 {new_dfid_name, file_handle(), binary()} |
 {old_dfid_name, file_handle(), binary()} |
 {unknown, non_neg_integer(), binary()}.

Additional event information.
Corresponds to the fanotify_event_info_fid struct.

 posix()

 -type posix() :: file:posix().

An atom representation of the errno value returned by a failed call
to one of the fanotify functions.

 Functions

 close/1

 -spec close(group()) -> nil | {error, posix()}.

 file_handle(Path)

 -spec file_handle(string() | unicode:unicode_binary()) -> file_handle() | {error, posix() | nil}.

 mark/4

 -spec mark(group(), string() | unicode:unicode_binary(), [action()], [event_type()]) ->
 nil | {error, posix()}.

 new()

 -spec new() -> group() | {error, posix()}.

 read/1

 -spec read(group()) -> [event()] | {error, posix()}.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

