

 fast_global_lock

 v0.1.1

 Table of contents

 	LICENSE

 	NOTICE

 	
 Modules

 	FastGlobalLock

 	Exceptions

 	FastGlobalLock.LockTimeoutError

 	FastGlobalLock.NodesMismatchError

 LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 NOTICE

LEGAL NOTICE INFORMATION

All the files in this distribution are copyright to the terms below.

Copyright 2025 Konrad Zemek <konrad.zemek@gmail.com>

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language

FastGlobalLock

FastGlobalLock is a library that builds on top of :global to minimize the time between locks under contention and to provide a best-effort FIFO locking mechanism.
Key differences from :global
Because FastGlobalLock builds on :global, its lock semantics are similar.
There are several key differences to be aware of:
	:global	FastGlobalLock
	Relies solely on polling with an increasing, random sleep of up to 8 seconds.	Uses inter-process communication to minimize time between locks.
	Which process acquires a lock under contention is fully random.	Orders pending locks and wakes waiting processes in FIFO order.
	Multiple processes can acquire the same lock if they use the same LockRequesterId.	Only one process can hold a lock for a key on any given ndoe.
	Acquires at most one lock no matter how many set_lock/2 calls are made.	Supports lock nesting in its native API.
	Can release the lock only on selected nodes.	Always releases the lock everywhere it was acquired.
	Can extend the lock to more nodes.	If a lock for a key is already held, it can only be nested on the same node set.
	Takes a Retries argument and sleeps for a random time between attempts.	Takes a millisecond timeout.
	The process calling set_lock/2 is monitored for liveness.	A separate linked process is spawned per lock/2 and monitored for liveness.

Important notes
Increased CPU usage compared with :global
FastGlobalLock shortens the wall-clock time between locks, but it achieves this by using more CPU time.
A coordination layer on top of :global inevitably adds some processing overhead.
One particularly bad CPU scenario occurs when there is heavy contention for a key, with some processes locking on a single node while others lock cluster-wide.
To determine if and where the lock is already present, FastGlobalLock probes the :nodes one at a time.
It continues this loop without sleeping until it either acquires the lock or discovers that the key is locked elsewhere.
This design is efficient when all requests target roughly the same set of nodes.
However, if one process tries to lock 100 nodes while the lock is already held on just one of them, merely locating the lock can become expensive.
Concurrent locks for disjoint node sets
Multiple concurrent locks (by different processes) can be acquired for the same key if they lock on disjoint :nodes sets.
If processes attempt to acquire locks for :nodes spanning multiple existing locks, the fairness mechanism is likely to be disturbed.
The fast locking mechanism still works in this scenario.
Note that multiple concurrent locks for the same key cannot be acquired by the same process.
FastGlobalLock will either nest the existing lock, or raise, depending on the :on_nodes_mismatch setting.
See lock/2 for more information.
Correctness
	FastGlobalLock inherits most of its correctness guarantees from :global.
	If any mechanism fails, it falls back to polling :global.set_lock/3.
	While the lock-holder GenServer process is yet to acquire the lock, every callback either returns a timeout value or terminates the server altogether.
	Should a bug in FastGlobalLock cause the lock-holder to crash, the lock is released automatically by :global.
The process that requested the lock will receive an exit signal through their link.

Installation
The package can be installed by adding fast_global_lock to your list of dependencies in mix.exs:
def deps do
 [
 {:fast_global_lock, "~> 0.1.1"}
]
end

 Summary

 Types

 options()

 See lock/2 for options' description.

 Functions

 lock(key, timeout_or_options \\ [])

 Sets a :global lock on key for the current process.

 lock!(key, timeout_or_options \\ [])

 Same as lock/2, but raises FastGlobalLock.LockTimeoutError if the lock is not acquired within
the timeout.

 unlock(key)

 Decrements the lock-count for key.

 with_lock(key, timeout_or_options \\ [], fun)

 Acquires a lock on key and calls fun while the lock is held.
The lock is released after fun finishes, whether it returns normally or with
an exception/signal.

 with_lock!(key, timeout_or_options \\ [], fun)

 Same as with_lock/3, but raises FastGlobalLock.LockTimeoutError if the lock is not acquired
within the timeout.

 Types

 options()

 @type options() :: [
 timeout: timeout(),
 nodes: [node()],
 on_nodes_mismatch: :ignore | :raise | :raise_if_minority_overlap
]

See lock/2 for options' description.

 Functions

 lock(key, timeout_or_options \\ [])

 @spec lock(key :: any(), timeout() | options()) :: boolean()

Sets a :global lock on key for the current process.
This function is synchronous and will either return true if the lock was acquired, or false
if the lock was not acquired within the timeout.
As with :global.set_lock/3, if a process that holds a lock dies, or the node goes down,
the locks held by the process are released.
If the lock is already held by the current process, lock/2 will return true and increment
the lock-count. While the current process is alive, it must call unlock/2 the same number
of times to release the lock.
Important
If a key is already locked by this process, FastGlobalLock will not allow another lock to be
acquired, even if given a different set of nodes. See :on_nodes_mismatch option.
Options
	:timeout - a millisecond timeout after which the operation will fail. Defaults to :infinity

	:nodes - nodes to lock on. Defaults to Node.list([:this, :visible]).

	:on_nodes_mismatch - what to do if the lock is already held by this process on a different
set of nodes:
	:ignore - increment the lock-count without raising an error
	:raise - raise FastGlobalLock.NodesMismatchError
	:raise_if_disjoint - raise FastGlobalLock.NodesMismatchError if the requested :nodes
have no overlap with the existing lock's :nodes. Otherwise increment the lock-count.
This is the default setting.

Example
Acquire the first lock
FastGlobalLock.lock(:foo, nodes: [:a, :b])

Raises an error because of the nodes mismatch
This would also happen if we didn't provide the `:nodes` option and the cluster membership
changed between the first and second lock
FastGlobalLock.lock(:foo, nodes: [:a, :b, :c], on_nodes_mismatch: :raise)

Won't fail as there's an overlap [:a] node with the existing lock's `nodes: [:a, :b]`
FastGlobalLock.lock(:foo, nodes: [:a, :c], on_nodes_mismatch: :raise_if_disjoint)

Raises an error because the nodes are disjoint with the existing lock's `nodes: [:a, :b]`
FastGlobalLock.lock(:foo, nodes: [:c, :d], on_nodes_mismatch: :raise_if_disjoint)

Won't fail no matter what the requested `:nodes` are
FastGlobalLock.lock(:foo, nodes: [:c, :d], on_nodes_mismatch: :ignore)

 lock!(key, timeout_or_options \\ [])

 @spec lock!(key :: any(), timeout() | options()) :: true | no_return()

Same as lock/2, but raises FastGlobalLock.LockTimeoutError if the lock is not acquired within
the timeout.

 unlock(key)

 @spec unlock(key :: any()) :: boolean()

Decrements the lock-count for key.
If the lock-count is decremented to 0, the lock is synchronously released.
Returns true if the lock-count was decremented, false if the lock is not held by the current
process.

 with_lock(key, timeout_or_options \\ [], fun)

 @spec with_lock(key :: any(), timeout() | options(), (-> result)) ::
 {:ok, result} | {:error, :lock_timeout}
when result: any()

Acquires a lock on key and calls fun while the lock is held.
The lock is released after fun finishes, whether it returns normally or with
an exception/signal.
Returns {:ok, result} if the lock was acquired and fun returned result,
or {:error, :lock_timeout} if the lock was not acquired within the timeout.
See lock/2 for more details on options taken by this function.

 with_lock!(key, timeout_or_options \\ [], fun)

 @spec with_lock!(key :: any(), timeout() | options(), (-> result)) ::
 result | no_return()
when result: any()

Same as with_lock/3, but raises FastGlobalLock.LockTimeoutError if the lock is not acquired
within the timeout.

FastGlobalLock.LockTimeoutError exception

Raised by FastGlobalLock.lock!/2 and FastGlobalLock.with_lock!/3
when lock acquisition times out.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %FastGlobalLock.LockTimeoutError{
 __exception__: true,
 key: term(),
 nodes: [node()],
 timeout: timeout()
}

FastGlobalLock.NodesMismatchError exception

Raised when FastGlobalLock.lock/2 (as well as with_lock/3 and the bang! variants) is called
on a key that is already locked by the current process for a different set of nodes.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %FastGlobalLock.NodesMismatchError{
 __exception__: true,
 existing_nodes: [node()],
 key: term(),
 owner: pid(),
 requested_nodes: [node()]
}

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

