

 Finch

 v0.17.0

 [image: Logo]

 Table of contents

 	Changelog

 	Modules

 	Finch

 	Finch.HTTP1.PoolMetrics

 	Finch.HTTP2.PoolMetrics

 	Finch.Request

 	Finch.Response

 	Finch.Telemetry

 	Finch.Error

Changelog

 v0.17.0 (2024-01-07)

 Enhancements

	Add support for async requests #228, #231
	Add stream example to docs #230
	Fix calls to deprecated Logger.warn/2 #232
	Fix typos #233
	Docs: do not use streams with async_request #238
	Add Finch.stream_while/5 #239
	Set MIX_ENV=test on CI #241
	Update HTTP/2 pool log level to warning for retried action #240
	Split trailers from headers #242
	Introduce :request_timeout option #244
	Support ALPN over HTTP1 pools #250
	Deprecate :protocol in favour of :protocols #251
	Implement pool telemetry #248

 v0.16.0 (2023-04-13)

 Enhancements

	add Finch.request!/3 #219
	allow usage with nimble_pool 1.0 #220

 v0.15.0 (2023-03-16)

 Enhancements

	allow usage with nimble_options 1.0 #218
	allow usage with castore 1.0 #210

 v0.14.0 (2022-11-30)

 Enhancements

	Improve error message for pool timeouts #126
	Relax nimble_options version to allow usage with 0.5.0 #204

 v0.13.0 (2022-07-26)

 Enhancements

	Define Finch.child_spec/1 which will automatically use the Finch :name as the :id, allowing users to start multiple instances under the same Supervisor without any additional configuration #202
	Include the changelog in the generated HexDocs #201
	Fix typo in Finch.Telemetry docs #198

 v0.12.0 (2022-05-03)

 Enhancements

	Add support for private request metadata #180
	Hide docs for deprecated Finch.request/6 #195
	Add support for Mint.UnsafeProxy connections #184

 Bug Fixes

	In v0.11.0 headers and status codes were added to Telemetry events in a way that made invalid assumptions
regarding the shape of the response accumulator, this has been resolved in #196

 Breaking Changes

	Telemetry updates #176	Rename the telemetry event :request to :send and :response to :recv.
	Introduce a new :request field which contains the full Finch.Request.t() in place of the :scheme, :host, :port, :path, :method fields wherever possible. The new :request field can be found on the :request, :queue, :send, and :recv events.
	Rename the meta data field :error to :reason for all :exception events to follow the standard introduced in telemetry
	Introduce a new [:finch, :request, :start | :stop | :exception] telemetry event that emits
whenever Finch.request/3 or Finch.stream/5 are called.

 v0.11.0 (2022-03-28)

	Add :pool_max_idle_time option to enable termination of idle HTTP/1 pools.
	Add :conn_max_idle_time and deprecate :max_idle_time to make the distinction from
:pool_max_idle_time more obvious.
	Add headers and status code to Telemetry events.

 v0.10.2 (2022-01-12)

	Complete the typespec for Finch.Request.t()
	Fix the typespec for Finch.build/5
	Update deps

 v0.10.1 (2021-12-27)

	Fix handling of iodata in HTTP/2 request streams.

 v0.10.0 (2021-12-12)

	Add ability to stream the request body for HTTP/2 requests.
	Check and respect window sizes during HTTP/2 requests.

 v0.9.1 (2021-10-17)

	Upgrade NimbleOptions dep to 0.4.0.

 v0.9.0 (2021-10-17)

	Add support for unix sockets.

 v0.8.3 (2021-10-15)

	Return Error struct when HTTP2 connection is closed and a timeout occurs.
	Do not leak messages/connections when cancelling streaming requests.

 v0.8.2 (2021-09-09)

	Demonitor http/2 connections when the request is done.

 v0.8.1 (2021-07-27)

	Update mix.exs to allow compatibility with Telemetry v1.0
	Avoid appending "?" to request_path when query string is an empty string

 v0.8.0 (2021-06-23)

	HTTP2 connections will now always return Exceptions.

 v0.7.0 (2021-05-10)

	Add support for SSLKEYLOGFILE.
	Drop HTTPS options for default HTTP pools to avoid :badarg errors.

 v0.6.3 (2021-02-22)

	Return more verbose errors when finch is configured with bad URLs.

 v0.6.2 (2021-02-19)

	Fix incorrect type spec for stream/5
	Add default transport options for keepalive, timeouts, and nodelay.

 v0.6.1 (2021-02-17)

	Update Mint to 1.2.1, which properly handles HTTP/1.0 style responses that close
the connection at the same time as sending the response.
	Update NimblePool to 0.2.4 which includes a bugfix that prevents extra connections
being opened.
	Fix the typespec for Finch.stream/5.
	Fix assertion that was not actually being called in a test case.

 v0.6.0 (2020-12-15)

	Add ability to stream the request body for HTTP/1.x requests.

 v0.5.2 (2020-11-10)

	Fix deprecation in nimble_options.

 v0.5.1 (2020-10-27)

	Fix crash in http2 pools when a message is received in disconnected state.

 v0.5.0 (2020-10-26)

	Add :max_idle_time option for http1 pools
	Optimize http2 connection closing.
	Use new lazy pools in NimblePool
	Additional idle_time measurements for all http1 connection telemetry

 v0.4.0 (2020-10-2)

	Update all dependencies. This includes bug fixes for Mint.

 v0.3.2 (2020-09-18)

	Add metadata to connection start telemetry in http/2 pools

 v0.3.1 (2020-08-29)

	Add HTTP method to telemetry events
	BUGFIX - Include query parameters in HTTP/2 requests

 v0.3.0 (2020-06-24)

	HTTP/2 support
	Streaming support for both http/1.1 and http/2 pools
	New api for building and making requests
	typespec fixes

 v0.2.0 (2020-05-06)

	Response body now defaults to an empty string instead of nil

 v0.1.1 (2020-05-04)

	Accepts a URI struct in request/3/4/5/6, Todd Resudek
	Fix http_method() typespec, Ryan Johnson

 v0.1.0 (2020-04-25)

	Initial Release

Finch

An HTTP client with a focus on performance, built on top of
Mint and NimblePool.
We attempt to achieve this goal by providing efficient connection pooling strategies and avoiding copying of memory wherever possible.
Most developers will most likely prefer to use the fabulous HTTP client Req which takes advantage of Finch's pooling and provides an extremely friendly and pleasant to use API.

 Usage

In order to use Finch, you must start it and provide a :name. Often in your
supervision tree:
children = [
 {Finch, name: MyFinch}
]
Or, in rare cases, dynamically:
Finch.start_link(name: MyFinch)
Once you have started your instance of Finch, you are ready to start making requests:
Finch.build(:get, "https://hex.pm") |> Finch.request(MyFinch)
When using HTTP/1, Finch will parse the passed in URL into a {scheme, host, port}
tuple, and maintain one or more connection pools for each {scheme, host, port} you
interact with.
You can also configure a pool size and count to be used for specific URLs that are
known before starting Finch. The passed URLs will be parsed into {scheme, host, port},
and the corresponding pools will be started. See Finch.start_link/1 for configuration
options.
children = [
 {Finch,
 name: MyConfiguredFinch,
 pools: %{
 :default => [size: 10],
 "https://hex.pm" => [size: 32, count: 8]
 }}
]
Pools will be started for each configured {scheme, host, port} when Finch is started.
For any unconfigured {scheme, host, port}, the pool will be started the first time
it is requested. Note pools are not automatically terminated by default, if you need to
terminate them after some idle time, use the pool_max_idle_time option (available only for HTTP1 pools).

 Telemetry

Finch uses Telemetry to provide instrumentation. See the Finch.Telemetry
module for details on specific events.

 Logging TLS Secrets

Finch supports logging TLS secrets to a file. These can be later used in a tool such as
Wireshark to decrypt HTTPS sessions. To use this feature you must specify the file to
which the secrets should be written. If you are using TLSv1.3 you must also add
keep_secrets: true to your pool :transport_opts. For example:
{Finch,
 name: MyFinch,
 pools: %{
 default: [conn_opts: [transport_opts: [keep_secrets: true]]]
 }}
There are two different ways to specify this file:
	The :ssl_key_log_file connection option in your pool configuration. For example:

{Finch,
 name: MyFinch,
 pools: %{
 default: [
 conn_opts: [
 ssl_key_log_file: "/writable/path/to/the/sslkey.log"
]
]
 }}
	Alternatively, you could also set the SSLKEYLOGFILE environment variable.

 Summary

 Types

 name()

 The :name provided to Finch in start_link/1.

 request_opt()

 request_opts()

 Options used by request functions.

 request_ref()

 The reference used to identify a request sent using async_request/3.

 scheme()

 scheme_host_port()

 stream(acc)

 The stream function given to stream/5.

 stream_while(acc)

 The stream function given to stream_while/5.

 Functions

 async_request(req, name, opts \\ [])

 Sends an HTTP request asynchronously, returning a request reference.

 build(method, url, headers \\ [], body \\ nil, opts \\ [])

 Builds an HTTP request to be sent with request/3 or stream/4.

 cancel_async_request(request_ref)

 Cancels a request sent with async_request/3.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_pool_status(finch_name, url)

 Get pool metrics list.

 request(req, name, opts \\ [])

 Sends an HTTP request and returns a Finch.Response struct.

 request!(req, name, opts \\ [])

 Sends an HTTP request and returns a Finch.Response struct
or raises an exception in case of failure.

 start_link(opts)

 Start an instance of Finch.

 stream(req, name, acc, fun, opts \\ [])

 Streams an HTTP request and returns the accumulator.

 stream_while(req, name, acc, fun, opts \\ [])

 Streams an HTTP request until it finishes or fun returns {:halt, acc}.

 Types

 Link to this type

 name()

 View Source

 @type name() :: atom()

The :name provided to Finch in start_link/1.

 Link to this type

 request_opt()

 View Source

 @type request_opt() ::
 {:pool_timeout, pos_integer()} | {:receive_timeout, pos_integer()}

 Link to this type

 request_opts()

 View Source

 @type request_opts() :: [request_opt()]

Options used by request functions.

 Link to this opaque

 request_ref()

 View Source

 (opaque)

 @opaque request_ref()

The reference used to identify a request sent using async_request/3.

 Link to this type

 scheme()

 View Source

 @type scheme() :: :http | :https

 Link to this type

 scheme_host_port()

 View Source

 @type scheme_host_port() ::
 {scheme(), host :: String.t(), port :: :inet.port_number()}

 Link to this type

 stream(acc)

 View Source

 @type stream(acc) ::
 ({:status, integer()}
 | {:headers, Mint.Types.headers()}
 | {:data, binary()}
 | {:trailers, Mint.Types.headers()},
 acc ->
 acc)

The stream function given to stream/5.

 Link to this type

 stream_while(acc)

 View Source

 @type stream_while(acc) ::
 ({:status, integer()}
 | {:headers, Mint.Types.headers()}
 | {:data, binary()}
 | {:trailers, Mint.Types.headers()},
 acc ->
 {:cont, acc} | {:halt, acc})

The stream function given to stream_while/5.

 Functions

 Link to this function

 async_request(req, name, opts \\ [])

 View Source

 @spec async_request(Finch.Request.t(), name(), request_opts()) :: request_ref()

Sends an HTTP request asynchronously, returning a request reference.
If the request is sent using HTTP1, an extra process is spawned to
consume messages from the underlying socket. The messages are sent
to the current process as soon as they arrive, as a firehose. If
you wish to maximize request rate or have more control over how
messages are streamed, a strategy using request/3 or stream/5
should be used instead.

 Receiving the response

Response information is sent to the calling process as it is received
in {ref, response} tuples.
If the calling process exits before the request has completed, the
request will be canceled.
Responses include:
	{:status, status} - HTTP response status
	{:headers, headers} - HTTP response headers
	{:data, data} - section of the HTTP response body
	{:error, exception} - an error occurred during the request
	:done - request has completed successfully

On a successful request, a single :status message will be followed
by a single :headers message, after which more than one :data
messages may be sent. If trailing headers are present, a final
:headers message may be sent. Any :done or :error message
indicates that the request has succeeded or failed and no further
messages are expected.

 Example

iex> req = Finch.build(:get, "https://httpbin.org/stream/5")
iex> ref = Finch.async_request(req, MyFinch)
iex> flush()
{ref, {:status, 200}}
{ref, {:headers, [...]}}
{ref, {:data, "..."}}
{ref, :done}

 Options

Shares options with request/3.

 Link to this function

 build(method, url, headers \\ [], body \\ nil, opts \\ [])

 View Source

 @spec build(
 Finch.Request.method(),
 Finch.Request.url(),
 Finch.Request.headers(),
 Finch.Request.body(),
 Keyword.t()
) :: Finch.Request.t()

Builds an HTTP request to be sent with request/3 or stream/4.
It is possible to send the request body in a streaming fashion. In order to do so, the
body parameter needs to take form of a tuple {:stream, body_stream}, where body_stream
is a Stream.

 Link to this function

 cancel_async_request(request_ref)

 View Source

 @spec cancel_async_request(request_ref()) :: :ok

Cancels a request sent with async_request/3.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 get_pool_status(finch_name, url)

 View Source

 @spec get_pool_status(name(), url :: String.t() | scheme_host_port()) ::
 {:ok, [Finch.HTTP1.PoolMetrics.t()]}
 | {:ok, [Finch.HTTP2.PoolMetrics.t()]}
 | {:error, :not_found}

Get pool metrics list.
The number of items present on the metrics list depends on the :count option
each metric will have a pool_index going from 1 to :count.
The metrics struct depends on the pool scheme defined on the :protocols option
Finch.HTTP1.PoolMetrics for :http1 and Finch.HTTP2.PoolMetrics for :http2.
See the Finch.HTTP1.PoolMetrics and Finch.HTTP2.PoolMetrics for more details.
{:error, :not_found} may return on 2 scenarios:
	There is no pool registered for the given pair finch instance and url
	The pool is configured with start_pool_metrics? option false (default)

 Example

iex> Finch.get_pool_status(MyFinch, "https://httpbin.org")
{:ok, [
 %Finch.HTTP1.PoolMetrics{
 pool_index: 1,
 pool_size: 50,
 available_connections: 43,
 in_use_connections: 7
 },
 %Finch.HTTP1.PoolMetrics{
 pool_index: 2,
 pool_size: 50,
 available_connections: 37,
 in_use_connections: 13
 }]
}

 Link to this function

 request(req, name, opts \\ [])

 View Source

 @spec request(Finch.Request.t(), name(), request_opts()) ::
 {:ok, Finch.Response.t()} | {:error, Exception.t()}

Sends an HTTP request and returns a Finch.Response struct.

 Options

	:pool_timeout - This timeout is applied when we check out a connection from the pool.
Default value is 5_000.

	:receive_timeout - The maximum time to wait for each chunk to be received before returning an error.
Default value is 15_000.

	:request_timeout - The amount of time to wait for a complete response before returning an error.
This timeout only applies to HTTP/1, and its current implementation is a best effort timeout,
it does not guarantee the call will return precisely when the time has elapsed.
Default value is :infinity.

 Link to this function

 request!(req, name, opts \\ [])

 View Source

 @spec request!(Finch.Request.t(), name(), request_opts()) :: Finch.Response.t()

Sends an HTTP request and returns a Finch.Response struct
or raises an exception in case of failure.
See request/3 for more detailed information.

 Link to this function

 start_link(opts)

 View Source

Start an instance of Finch.

 Options

	:name - The name of your Finch instance. This field is required.

	:pools - A map specifying the configuration for your pools. The keys should be URLs
provided as binaries, a tuple {scheme, {:local, unix_socket}} where unix_socket is the path for
the socket, or the atom :default to provide a catch-all configuration to be used for any
unspecified URLs. See "Pool Configuration Options" below for details on the possible map
values. Default value is %{default: [size: 50, count: 1]}.

 Pool Configuration Options

	:protocol

	:protocols - The type of connections to support.
If using :http1 only, an HTTP1 pool without multiplexing is used. If using :http2 only, an HTTP2 pool with multiplexing is used. If both are listed, then both HTTP1/HTTP2 connections are supported (via ALPN), but there is no multiplexing.
The default value is [:http1].

	:size (pos_integer/0) - Number of connections to maintain in each pool. Used only by HTTP1 pools since HTTP2 is able to multiplex requests through a single connection. In other words, for HTTP2, the size is always 1 and the :count should be configured in order to increase capacity. The default value is 50.

	:count (pos_integer/0) - Number of pools to start. HTTP1 pools are able to re-use connections in the same pool and establish new ones only when necessary. However, if there is a high pool count and few requests are made, these requests will be scattered across pools, reducing connection reuse. It is recommended to increase the pool count for HTTP1 only if you are experiencing high checkout times. The default value is 1.

	:max_idle_time (timeout/0) - The maximum number of milliseconds an HTTP1 connection is allowed to be idle before being closed during a checkout attempt.

	:conn_opts (keyword/0) - These options are passed to Mint.HTTP.connect/4 whenever a new connection is established. :mode is not configurable as Finch must control this setting. Typically these options are used to configure proxying, https settings, or connect timeouts. The default value is [].

	:pool_max_idle_time (timeout/0) - The maximum number of milliseconds that a pool can be idle before being terminated, used only by HTTP1 pools. This options is forwarded to NimblePool and it starts and idle verification cycle that may impact performance if misused. For instance setting a very low timeout may lead to pool restarts. For more information see NimblePool's handle_ping/2 documentation. The default value is :infinity.

	:conn_max_idle_time (timeout/0) - The maximum number of milliseconds an HTTP1 connection is allowed to be idle before being closed during a checkout attempt. The default value is :infinity.

	:start_pool_metrics? (boolean/0) - When true, pool metrics will be collected and avaiable through Finch.pool_status/2 The default value is false.

 Link to this function

 stream(req, name, acc, fun, opts \\ [])

 View Source

 @spec stream(Finch.Request.t(), name(), acc, stream(acc), request_opts()) ::
 {:ok, acc} | {:error, Exception.t()}
when acc: term()

Streams an HTTP request and returns the accumulator.
A function of arity 2 is expected as argument. The first argument
is a tuple, as listed below, and the second argument is the
accumulator. The function must return a potentially updated
accumulator.
See also stream_while/5.

 Stream commands

	{:status, status} - the http response status
	{:headers, headers} - the http response headers
	{:data, data} - a streaming section of the http response body
	{:trailers, trailers} - the http response trailers

 Options

Shares options with request/3.

 Examples

path = "/tmp/archive.zip"
file = File.open!(path, [:write, :exclusive])
url = "https://example.com/archive.zip"
request = Finch.build(:get, url)

Finch.stream(request, MyFinch, nil, fn
 {:status, status}, _acc ->
 IO.inspect(status)

 {:headers, headers}, _acc ->
 IO.inspect(headers)

 {:data, data}, _acc ->
 IO.binwrite(file, data)
end)

File.close(file)

 Link to this function

 stream_while(req, name, acc, fun, opts \\ [])

 View Source

 @spec stream_while(Finch.Request.t(), name(), acc, stream_while(acc), request_opts()) ::
 {:ok, acc} | {:error, Exception.t()}
when acc: term()

Streams an HTTP request until it finishes or fun returns {:halt, acc}.
A function of arity 2 is expected as argument. The first argument
is a tuple, as listed below, and the second argument is the
accumulator.
The function must return:
	{:cont, acc} to continue streaming
	{:halt, acc} to halt streaming

See also stream/5.

 Stream commands

	{:status, status} - the http response status
	{:headers, headers} - the http response headers
	{:data, data} - a streaming section of the http response body
	{:trailers, trailers} - the http response trailers

 Options

Shares options with request/3.

 Examples

path = "/tmp/archive.zip"
file = File.open!(path, [:write, :exclusive])
url = "https://example.com/archive.zip"
request = Finch.build(:get, url)

Finch.stream_while(request, MyFinch, nil, fn
 {:status, status}, acc ->
 IO.inspect(status)
 {:cont, acc}

 {:headers, headers}, acc ->
 IO.inspect(headers)
 {:cont, acc}

 {:data, data}, acc ->
 IO.binwrite(file, data)
 {:cont, acc}
end)

File.close(file)

Finch.HTTP1.PoolMetrics

HTTP1 Pool metrics.
Available metrics:
	:pool_index - Index of the pool
	:pool_size - Total number of connections of the pool
	:available_connections - Number of avaialable connections
	:in_use_connections - Number of connections currently in use

Caveats:
	A given number X of available_connections does not mean that currently
exists X connections to the server sitting on the pool. Because Finch uses
a lazy strategy for workers initialization, every pool starts with it's
size as available connections even if they are not started yet. In practice
this means that available_connections may be connections sitting on the pool
or available space on the pool for a new one if required.

 Summary

 Types

 t()

 Functions

 get_pool_status(ref)

 get_pool_status(name, shp, pool_idx)

 init(registry, shp, pool_idx, pool_size)

 maybe_add(ref, metrics_list)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Finch.HTTP1.PoolMetrics{
 available_connections: term(),
 in_use_connections: term(),
 pool_index: term(),
 pool_size: term()
}

 Functions

 Link to this function

 get_pool_status(ref)

 View Source

 Link to this function

 get_pool_status(name, shp, pool_idx)

 View Source

 Link to this function

 init(registry, shp, pool_idx, pool_size)

 View Source

 Link to this function

 maybe_add(ref, metrics_list)

 View Source

Finch.HTTP2.PoolMetrics

HTTP2 Pool metrics.
Available metrics:
	:pool_index - Index of the pool
	:in_flight_requests - Number of requests currently on the connection

Caveats:
	HTTP2 pools have only one connection and leverage the multiplex nature
of the protocol. That's why we only keep the in flight requests, representing
the number of streams currently running on the connection.

 Summary

 Types

 t()

 Functions

 get_pool_status(ref)

 get_pool_status(name, shp, pool_idx)

 init(finch_name, shp, pool_idx)

 maybe_add(ref, metrics_list)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Finch.HTTP2.PoolMetrics{in_flight_requests: term(), pool_index: term()}

 Functions

 Link to this function

 get_pool_status(ref)

 View Source

 Link to this function

 get_pool_status(name, shp, pool_idx)

 View Source

 Link to this function

 init(finch_name, shp, pool_idx)

 View Source

 Link to this function

 maybe_add(ref, metrics_list)

 View Source

Finch.Request

A request struct.

 Summary

 Types

 body()

 Optional request body.

 headers()

 Request headers.

 method()

 An HTTP request method represented as an atom() or a String.t().

 private_metadata()

 t()

 url()

 A Uniform Resource Locator, the address of a resource on the Web.

 Functions

 put_private(request, key, value)

 Sets a new private key and value in the request metadata. This storage is meant to be used by libraries
and frameworks to inject information about the request that needs to be retrieved later on, for example,
from handlers that consume Finch.Telemetry events.

 Types

 Link to this type

 body()

 View Source

 @type body() :: iodata() | {:stream, Enumerable.t()} | nil

Optional request body.

 Link to this type

 headers()

 View Source

 @type headers() :: Mint.Types.headers()

Request headers.

 Link to this type

 method()

 View Source

 @type method() ::
 :get | :post | :head | :patch | :delete | :options | :put | String.t()

An HTTP request method represented as an atom() or a String.t().
The following atom methods are supported: :get, :post, :put, :patch, :delete, :head, :options.
You can use any arbitrary method by providing it as a String.t().

 Link to this type

 private_metadata()

 View Source

 @type private_metadata() :: %{optional(atom()) => term()}

 Link to this type

 t()

 View Source

 @type t() :: %Finch.Request{
 body: body(),
 headers: headers(),
 host: String.t() | nil,
 method: String.t(),
 path: String.t(),
 port: :inet.port_number(),
 private: private_metadata(),
 query: String.t() | nil,
 scheme: Mint.Types.scheme(),
 unix_socket: String.t() | nil
}

 Link to this type

 url()

 View Source

 @type url() :: String.t() | URI.t()

A Uniform Resource Locator, the address of a resource on the Web.

 Functions

 Link to this function

 put_private(request, key, value)

 View Source

 @spec put_private(t(), key :: atom(), value :: term()) :: t()

Sets a new private key and value in the request metadata. This storage is meant to be used by libraries
and frameworks to inject information about the request that needs to be retrieved later on, for example,
from handlers that consume Finch.Telemetry events.

Finch.Response

A response to a request.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Finch.Response{
 body: binary(),
 headers: Mint.Types.headers(),
 status: Mint.Types.status(),
 trailers: Mint.Types.headers()
}

Finch.Telemetry

Telemetry integration.
Unless specified, all times are in :native units.
Finch executes the following events:

 Request Start

[:finch, :request, :start] - Executed when Finch.request/3 or Finch.stream/5 is called.
Measurements
	:system_time - The system time.

Metadata
	:name - The name of the Finch instance.
	:request - The request (Finch.Request).

 Request Stop

[:finch, :request, :stop] - Executed after Finch.request/3 or Finch.stream/5 ended.
Measurements
	:duration - Time taken from the request start event.

Metadata
	:name - The name of the Finch instance.
	:request - The request (Finch.Request).
	:result - The result of the operation. In case of Finch.stream/5 this is
{:ok, acc} | {:error, Exception.t()}, where acc is the accumulator result of the
reducer passed in Finch.stream/5. In case of Finch.request/3 this is
{:ok, Finch.Response.t()} | {:error, Exception.t()}.

 Request Exception

[:finch, :request, :exception] - Executed when an exception occurs while executing
 Finch.request/3 or Finch.stream/5.
Measurements
	:duration - The time it took since the start before raising the exception.

Metadata
	:name - The name of the Finch instance.
	:request - The request (Finch.Request).
	:kind - The type of exception.
	:reason - Error description or error data.
	:stacktrace - The stacktrace.

 Queue Start

[:finch, :queue, :start] - Executed before checking out an HTTP1 connection from the pool.
Measurements
	:system_time - The system time.

Metadata
	:pool - The pool's PID.
	:request - The request (Finch.Request).

 Queue Stop

[:finch, :queue, :stop] - Executed after an HTTP1 connection is retrieved from the pool.
Measurements
	:duration - Time taken to check out a pool connection.
	:idle_time - Elapsed time since the connection was last checked in or initialized.

Metadata
	:pool - The pool's PID.
	:request - The request (Finch.Request).

 Queue Exception

[:finch, :queue, :exception] - Executed if checking out an HTTP1 connection throws an exception.
Measurements
	:duration - The time it took since queue start event before raising an exception.

Metadata
	:request - The request (Finch.Request).
	:kind - The type of exception.
	:reason - Error description or error data.
	:stacktrace - The stacktrace.

 Connect Start

[:finch, :connect, :start] - Executed before opening a new connection.
 If a connection is being re-used this event will not be executed.
Measurements
	:system_time - The system time.

Metadata
	:scheme - The scheme used in the connection. either http or https.
	:host - The host address.
	:port - The port to connect on.

 Connect Stop

[:finch, :connect, :stop] - Executed after a connection is opened.
Measurements
	:duration - Time taken to connect to the host.

Metadata
	:scheme - The scheme used in the connection. either http or https.
	:host - The host address.
	:port - The port to connect on.
	:error - This value is optional. It includes any errors that occurred while opening the connection.

 Send Start

[:finch, :send, :start] - Executed before sending a request.
Measurements
	:system_time - The system time.
	:idle_time - Elapsed time since the connection was last checked in or initialized.

Metadata
	:request - The request (Finch.Request).

 Send Stop

[:finch, :send, :stop] - Executed after a request is finished.
Measurements
	:duration - Time taken to make the request.
	:idle_time - Elapsed time since the connection was last checked in or initialized.

Metadata
	:request - The request (Finch.Request).
	:error - This value is optional. It includes any errors that occurred while making the request.

 Receive Start

[:finch, :recv, :start] - Executed before receiving the response.
Measurements
	:system_time - The system time.
	:idle_time - Elapsed time since the connection was last checked in or initialized.

Metadata
	:request - The request (Finch.Request).

 Receive Stop

[:finch, :recv, :stop] - Executed after a response has been fully received.
Measurements
	:duration - Duration to receive the response.
	:idle_time - Elapsed time since the connection was last checked in or initialized.

Metadata
	:request - The request (Finch.Request).
	:status - The response status (Mint.Types.status()).
	:headers - The response headers (Mint.Types.headers()).
	:error - This value is optional. It includes any errors that occurred while receiving the response.

 Receive Exception

[:finch, :recv, :exception] - Executed if an exception is thrown before the response has
 been fully received.
Measurements
	:duration - The time it took before raising an exception

Metadata
	:request - The request (Finch.Request).
	:kind - The type of exception.
	:reason - Error description or error data.
	:stacktrace - The stacktrace.

 Reused Connection

[:finch, :reused_connection] - Executed if an existing HTTP1 connection is reused. There are no measurements provided with this event.
Metadata
	:scheme - The scheme used in the connection. either http or https.
	:host - The host address.
	:port - The port to connect on.

 Conn Max Idle Time Exceeded

[:finch, :conn_max_idle_time_exceeded] - Executed if an HTTP1 connection was discarded because the conn_max_idle_time had been reached.
Measurements
	:idle_time - Elapsed time since the connection was last checked in or initialized.

Metadata
	:scheme - The scheme used in the connection. either http or https.
	:host - The host address.
	:port - The port to connect on.

 Pool Max Idle Time Exceeded

[:finch, :pool_max_idle_time_exceeded] - Executed if an HTTP1 pool was terminated because the pool_max_idle_time has been reached. There are no measurements provided with this event.
Metadata
	:scheme - The scheme used in the connection. either http or https.
	:host - The host address.
	:port - The port to connect on.

 Max Idle Time Exceeded (Deprecated)

[:finch, :max_idle_time_exceeded] - Executed if an HTTP1 connection was discarded because the max_idle_time had been reached.
Deprecated: use :conn_max_idle_time_exceeded event instead.
Measurements
	:idle_time - Elapsed time since the connection was last checked in or initialized.

Metadata
	:scheme - The scheme used in the connection. either http or https.
	:host - The host address.
	:port - The port to connect on.

Finch.Error exception

An HTTP error.
This exception struct is used to represent errors of all sorts for the HTTP/2 protocol.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Finch.Error{__exception__: true, reason: atom()}

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

