

 Finch

 v0.21.0

 [image: Logo]

 Table of contents

 	Changelog

 	
 Modules

 	Finch

 	Finch.HTTP1.PoolMetrics

 	Finch.HTTP2.PoolMetrics

 	Finch.Request

 	Finch.Response

 	Finch.Telemetry

 	Exceptions

 	Finch.Error

 Changelog

v0.21.0 (2026-01-22)
Enhancements
	Add support for querying default pool metrics via Finch.get_pool_status/2 #329
	Add more details on Finch.request/3 docs #327

Bug Fixes
	Prevent idle HTTP/1 pools from being terminated while connections are in use #292
	Disable unsupported HTTP/2 server push responses to avoid crashes #333
	Drop :cacerts from defaults for HTTP connections to avoid breaking plain HTTP pools #333
	Only track default pool metrics when start_pool_metrics? is enabled #329

Other
	Elixir 1.19 compatibility updates for HTTP/1 pool state handling #331
	CI: update test matrix and x509/deps for Elixir 1.19 #330
	Add ALPN large-body regression test coverage (issue #265) #332

v0.20.0 (2025-07-04)
Enhancements
	Support manual pool termination #299
	Refactor HTTP1 pool state for better maintainability #308
	Add :supported_groups to list of TLS options #307
	Be more explicit about the :default pool in documentation #314
	Upgrade nimble_options to document deprecations #315

Bug Fixes
	Fix Finch.stream_while/5 on halt for both HTTP/1 and HTTP/2 #320
	Return accumulator when Finch.stream/5 and Finch.stream_while/5 fail #295
	Fix documentation reference for get_pool_status/2 #301

Other
	Upgrade CI VM to Ubuntu 24 #321
	CI housekeeping: support Elixir 1.17/Erlang OTP 27, bump Credo and deps #303
	Update GitHub CI badge URL #304

v0.19.0 (2024-09-04)
Enhancements
	Update @mint_tls_opts in pool_manager.ex #266
	Document there is no backpressure on HTTP2 #283
	Fix test: compare file size instead of map #284
	Finch.request/3: Use improper list and avoid Enum.reverse #286
	Require Mint 1.6 #287
	Remove castore dependency #274
	Fix typos and improve language in docs and comments #285
	fix logo size in README #275

Bug Fixes
	Tweak Finch supervisor children startup order #289, fixes #277
	implement handle_cancelled/2 pool callback #268, fixes #257
	type Finch.request_opt() was missing the :request_timeout option #278

v0.18.0 (2024-02-09)
Enhancements
	Add Finch name to telemetry events #252

Bug Fixes
	Fix several minor dialyzer errors and run dialyzer in CI #259, #261

v0.17.0 (2024-01-07)
Enhancements
	Add support for async requests #228, #231
	Add stream example to docs #230
	Fix calls to deprecated Logger.warn/2 #232
	Fix typos #233
	Docs: do not use streams with async_request #238
	Add Finch.stream_while/5 #239
	Set MIX_ENV=test on CI #241
	Update HTTP/2 pool log level to warning for retried action #240
	Split trailers from headers #242
	Introduce :request_timeout option #244
	Support ALPN over HTTP1 pools #250
	Deprecate :protocol in favour of :protocols #251
	Implement pool telemetry #248

v0.16.0 (2023-04-13)
Enhancements
	add Finch.request!/3 #219
	allow usage with nimble_pool 1.0 #220

v0.15.0 (2023-03-16)
Enhancements
	allow usage with nimble_options 1.0 #218
	allow usage with castore 1.0 #210

v0.14.0 (2022-11-30)
Enhancements
	Improve error message for pool timeouts #126
	Relax nimble_options version to allow usage with 0.5.0 #204

v0.13.0 (2022-07-26)
Enhancements
	Define Finch.child_spec/1 which will automatically use the Finch :name as the :id, allowing users to start multiple instances under the same Supervisor without any additional configuration #202
	Include the changelog in the generated HexDocs #201
	Fix typo in Finch.Telemetry docs #198

v0.12.0 (2022-05-03)
Enhancements
	Add support for private request metadata #180
	Hide docs for deprecated Finch.request/6 #195
	Add support for Mint.UnsafeProxy connections #184

Bug Fixes
	In v0.11.0 headers and status codes were added to Telemetry events in a way that made invalid assumptions
regarding the shape of the response accumulator, this has been resolved in #196

Breaking Changes
	Telemetry updates #176	Rename the telemetry event :request to :send and :response to :recv.
	Introduce a new :request field which contains the full Finch.Request.t() in place of the :scheme, :host, :port, :path, :method fields wherever possible. The new :request field can be found on the :request, :queue, :send, and :recv events.
	Rename the meta data field :error to :reason for all :exception events to follow the standard introduced in telemetry
	Introduce a new [:finch, :request, :start | :stop | :exception] telemetry event that emits
whenever Finch.request/3 or Finch.stream/5 are called.

v0.11.0 (2022-03-28)
	Add :pool_max_idle_time option to enable termination of idle HTTP/1 pools.
	Add :conn_max_idle_time and deprecate :max_idle_time to make the distinction from
:pool_max_idle_time more obvious.
	Add headers and status code to Telemetry events.

v0.10.2 (2022-01-12)
	Complete the typespec for Finch.Request.t()
	Fix the typespec for Finch.build/5
	Update deps

v0.10.1 (2021-12-27)
	Fix handling of iodata in HTTP/2 request streams.

v0.10.0 (2021-12-12)
	Add ability to stream the request body for HTTP/2 requests.
	Check and respect window sizes during HTTP/2 requests.

v0.9.1 (2021-10-17)
	Upgrade NimbleOptions dep to 0.4.0.

v0.9.0 (2021-10-17)
	Add support for unix sockets.

v0.8.3 (2021-10-15)
	Return Error struct when HTTP2 connection is closed and a timeout occurs.
	Do not leak messages/connections when cancelling streaming requests.

v0.8.2 (2021-09-09)
	Demonitor http/2 connections when the request is done.

v0.8.1 (2021-07-27)
	Update mix.exs to allow compatibility with Telemetry v1.0
	Avoid appending "?" to request_path when query string is an empty string

v0.8.0 (2021-06-23)
	HTTP2 connections will now always return Exceptions.

v0.7.0 (2021-05-10)
	Add support for SSLKEYLOGFILE.
	Drop HTTPS options for default HTTP pools to avoid :badarg errors.

v0.6.3 (2021-02-22)
	Return more verbose errors when finch is configured with bad URLs.

v0.6.2 (2021-02-19)
	Fix incorrect type spec for stream/5
	Add default transport options for keepalive, timeouts, and nodelay.

v0.6.1 (2021-02-17)
	Update Mint to 1.2.1, which properly handles HTTP/1.0 style responses that close
the connection at the same time as sending the response.
	Update NimblePool to 0.2.4 which includes a bugfix that prevents extra connections
being opened.
	Fix the typespec for Finch.stream/5.
	Fix assertion that was not actually being called in a test case.

v0.6.0 (2020-12-15)
	Add ability to stream the request body for HTTP/1.x requests.

v0.5.2 (2020-11-10)
	Fix deprecation in nimble_options.

v0.5.1 (2020-10-27)
	Fix crash in http2 pools when a message is received in disconnected state.

v0.5.0 (2020-10-26)
	Add :max_idle_time option for http1 pools
	Optimize http2 connection closing.
	Use new lazy pools in NimblePool
	Additional idle_time measurements for all http1 connection telemetry

v0.4.0 (2020-10-2)
	Update all dependencies. This includes bug fixes for Mint.

v0.3.2 (2020-09-18)
	Add metadata to connection start telemetry in http/2 pools

v0.3.1 (2020-08-29)
	Add HTTP method to telemetry events
	BUGFIX - Include query parameters in HTTP/2 requests

v0.3.0 (2020-06-24)
	HTTP/2 support
	Streaming support for both http/1.1 and http/2 pools
	New api for building and making requests
	typespec fixes

v0.2.0 (2020-05-06)
	Response body now defaults to an empty string instead of nil

v0.1.1 (2020-05-04)
	Accepts a URI struct in request/3/4/5/6, Todd Resudek
	Fix http_method() typespec, Ryan Johnson

v0.1.0 (2020-04-25)
	Initial Release

Finch

An HTTP client with a focus on performance, built on top of
Mint and NimblePool.
We attempt to achieve this goal by providing efficient connection pooling strategies and avoiding copying of memory wherever possible.
Most developers will most likely prefer to use the fabulous HTTP client Req which takes advantage of Finch's pooling and provides an extremely friendly and pleasant to use API.
Usage
In order to use Finch, you must start it and provide a :name. Often in your
supervision tree:
children = [
 {Finch, name: MyFinch}
]
Or, in rare cases, dynamically:
Finch.start_link(name: MyFinch)
Once you have started your instance of Finch, you are ready to start making requests:
Finch.build(:get, "https://hex.pm") |> Finch.request(MyFinch)
When using HTTP/1, Finch will parse the passed in URL into a {scheme, host, port}
tuple, and maintain one or more connection pools for each {scheme, host, port} you
interact with.
You can also configure a pool size and count to be used for specific URLs that are
known before starting Finch. The passed URLs will be parsed into {scheme, host, port},
and the corresponding pools will be started. See Finch.start_link/1 for configuration
options.
children = [
 {Finch,
 name: MyConfiguredFinch,
 pools: %{
 :default => [size: 10, count: 2],
 "https://hex.pm" => [size: 32, count: 8]
 }}
]
Pools will be started for each configured {scheme, host, port} when Finch is started.
For any unconfigured {scheme, host, port}, the pool will be started the first time
it is requested using the :default configuration. This means given the pool
configuration above each origin/{scheme, host, port} will launch 2 (:count) new pool
processes. So, if you encountered 10 separate combinations, that'd be 20 pool processes.
Note pools are not automatically terminated by default, if you need to
terminate them after some idle time, use the pool_max_idle_time option (available only for HTTP1 pools).
Telemetry
Finch uses Telemetry to provide instrumentation. See the Finch.Telemetry
module for details on specific events.
Logging TLS Secrets
Finch supports logging TLS secrets to a file. These can be later used in a tool such as
Wireshark to decrypt HTTPS sessions. To use this feature you must specify the file to
which the secrets should be written. If you are using TLSv1.3 you must also add
keep_secrets: true to your pool :transport_opts. For example:
{Finch,
 name: MyFinch,
 pools: %{
 default: [conn_opts: [transport_opts: [keep_secrets: true]]]
 }}
There are two different ways to specify this file:
	The :ssl_key_log_file connection option in your pool configuration. For example:

{Finch,
 name: MyFinch,
 pools: %{
 default: [
 conn_opts: [
 ssl_key_log_file: "/writable/path/to/the/sslkey.log"
]
]
 }}
	Alternatively, you could also set the SSLKEYLOGFILE environment variable.

 Summary

 Types

 default_pool_metrics()

 Pool metrics grouped by SHP when querying the :default configuration.

 name()

 The :name provided to Finch in start_link/1.

 pool_metrics()

 Pool metrics returned by get_pool_status/2 for a single pool.

 request_opt()

 request_opts()

 Options used by request functions.

 request_ref()

 The reference used to identify a request sent using async_request/3.

 scheme()

 scheme_host_port()

 stream(acc)

 The stream function given to stream/5.

 stream_while(acc)

 The stream function given to stream_while/5.

 Functions

 async_request(req, name, opts \\ [])

 Sends an HTTP request asynchronously, returning a request reference.

 build(method, url, headers \\ [], body \\ nil, opts \\ [])

 Builds an HTTP request to be sent with request/3 or stream/4.

 cancel_async_request(request_ref)

 Cancels a request sent with async_request/3.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_pool_status(finch_name, url)

 Get pool metrics.

 request(req, name, opts \\ [])

 Sends an HTTP request and returns a Finch.Response struct.

 request!(req, name, opts \\ [])

 Sends an HTTP request and returns a Finch.Response struct
or raises an exception in case of failure.

 start_link(opts)

 Start an instance of Finch.

 stop_pool(finch_name, url)

 Stops the pool of processes associated with the given scheme, host, port (aka SHP).

 stream(req, name, acc, fun, opts \\ [])

 Streams an HTTP request and returns the accumulator.

 stream_while(req, name, acc, fun, opts \\ [])

 Streams an HTTP request until it finishes or fun returns {:halt, acc}.

 Types

 default_pool_metrics()

 @type default_pool_metrics() :: %{required(scheme_host_port()) => pool_metrics()}

Pool metrics grouped by SHP when querying the :default configuration.

 name()

 @type name() :: atom()

The :name provided to Finch in start_link/1.

 pool_metrics()

 @type pool_metrics() :: [Finch.HTTP1.PoolMetrics.t()] | [Finch.HTTP2.PoolMetrics.t()]

Pool metrics returned by get_pool_status/2 for a single pool.

 request_opt()

 @type request_opt() ::
 {:pool_timeout, timeout()}
 | {:receive_timeout, timeout()}
 | {:request_timeout, timeout()}

 request_opts()

 @type request_opts() :: [request_opt()]

Options used by request functions.

 request_ref()

 @opaque request_ref()

The reference used to identify a request sent using async_request/3.

 scheme()

 @type scheme() :: :http | :https

 scheme_host_port()

 @type scheme_host_port() ::
 {scheme(), host :: String.t(), port :: :inet.port_number()}

 stream(acc)

 @type stream(acc) :: ({:status, integer()}
 | {:headers, Mint.Types.headers()}
 | {:data, binary()}
 | {:trailers, Mint.Types.headers()},
 acc ->
 acc)

The stream function given to stream/5.

 stream_while(acc)

 @type stream_while(acc) :: ({:status, integer()}
 | {:headers, Mint.Types.headers()}
 | {:data, binary()}
 | {:trailers, Mint.Types.headers()},
 acc ->
 {:cont, acc} | {:halt, acc})

The stream function given to stream_while/5.

 Functions

 async_request(req, name, opts \\ [])

 @spec async_request(Finch.Request.t(), name(), request_opts()) :: request_ref()

Sends an HTTP request asynchronously, returning a request reference.
If the request is sent using HTTP1, an extra process is spawned to
consume messages from the underlying socket. The messages are sent
to the current process as soon as they arrive, as a firehose. If
you wish to maximize request rate or have more control over how
messages are streamed, a strategy using request/3 or stream/5
should be used instead.
Receiving the response
Response information is sent to the calling process as it is received
in {ref, response} tuples.
If the calling process exits before the request has completed, the
request will be canceled.
Responses include:
	{:status, status} - HTTP response status
	{:headers, headers} - HTTP response headers
	{:data, data} - section of the HTTP response body
	{:error, exception} - an error occurred during the request
	:done - request has completed successfully

On a successful request, a single :status message will be followed
by a single :headers message, after which more than one :data
messages may be sent. If trailing headers are present, a final
:headers message may be sent. Any :done or :error message
indicates that the request has succeeded or failed and no further
messages are expected.
Example
iex> req = Finch.build(:get, "https://httpbin.org/stream/5")
iex> ref = Finch.async_request(req, MyFinch)
iex> flush()
{ref, {:status, 200}}
{ref, {:headers, [...]}}
{ref, {:data, "..."}}
{ref, :done}
Options
Shares options with request/3.

 build(method, url, headers \\ [], body \\ nil, opts \\ [])

 @spec build(
 Finch.Request.method(),
 Finch.Request.url(),
 Finch.Request.headers(),
 Finch.Request.body(),
 Keyword.t()
) :: Finch.Request.t()

Builds an HTTP request to be sent with request/3 or stream/4.
It is possible to send the request body in a streaming fashion. In order to do so, the
body parameter needs to take form of a tuple {:stream, body_stream}, where body_stream
is a Stream.

 cancel_async_request(request_ref)

 @spec cancel_async_request(request_ref()) :: :ok

Cancels a request sent with async_request/3.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_pool_status(finch_name, url)

 @spec get_pool_status(name(), url :: String.t() | scheme_host_port() | :default) ::
 {:ok, pool_metrics()} | {:ok, default_pool_metrics()} | {:error, :not_found}

Get pool metrics.
When given a URL or SHP tuple, this returns the metrics list for that specific
pool. The number of items in the metrics list depends on the configured
:count option and each entry will have a pool_index going from 1 to
:count.
When :default is provided, Finch returns the metrics for all pools started
from the :default configuration. In this case the return value is a map
keyed by each pool's {scheme, host, port} tuple with the corresponding
metrics list as the value.
The metrics struct depends on the pool scheme defined in the :protocols
option: Finch.HTTP1.PoolMetrics for :http1 and Finch.HTTP2.PoolMetrics
for :http2. See the documentation for those modules for more details.
{:error, :not_found} is returned in the following scenarios:
	There is no pool registered for the given Finch instance and URL/SHP.
	The pool has start_pool_metrics?: false (the default).
	:default is provided but no pools have been started from the
:default configuration (or none have metrics enabled).

Examples
iex> Finch.get_pool_status(MyFinch, "https://httpbin.org")
{:ok, [
 %Finch.HTTP1.PoolMetrics{
 pool_index: 1,
 pool_size: 50,
 available_connections: 43,
 in_use_connections: 7
 },
 %Finch.HTTP1.PoolMetrics{
 pool_index: 2,
 pool_size: 50,
 available_connections: 37,
 in_use_connections: 13
 }]
}

iex> Finch.get_pool_status(MyFinch, :default)
{:ok,
 %{
 {:https, "httpbin.org", 443} => [
 %Finch.HTTP1.PoolMetrics{
 pool_index: 1,
 pool_size: 50,
 available_connections: 43,
 in_use_connections: 7
 }
]
 }}

 request(req, name, opts \\ [])

 @spec request(Finch.Request.t(), name(), request_opts()) ::
 {:ok, Finch.Response.t()} | {:error, Exception.t()}

Sends an HTTP request and returns a Finch.Response struct.
It can still raise exceptions if it was not possible to check out a connection in the given :pool_timeout.
Options
	:pool_timeout - This timeout is applied when we check out a connection from the pool.
Default value is 5_000.

	:receive_timeout - The maximum time to wait for each chunk to be received before returning an error.
Default value is 15_000.

	:request_timeout - The amount of time to wait for a complete response before returning an error.
This timeout only applies to HTTP/1, and its current implementation is a best effort timeout,
it does not guarantee the call will return precisely when the time has elapsed.
Default value is :infinity.

 request!(req, name, opts \\ [])

 @spec request!(Finch.Request.t(), name(), request_opts()) :: Finch.Response.t()

Sends an HTTP request and returns a Finch.Response struct
or raises an exception in case of failure.
See request/3 for more detailed information.

 start_link(opts)

Start an instance of Finch.
Options
	:name - The name of your Finch instance. This field is required.

	:pools - A map specifying the configuration for your pools. The keys should be URLs
provided as binaries, a tuple {scheme, {:local, unix_socket}} where unix_socket is the path for
the socket, or the atom :default to provide a catch-all configuration to be used for any
unspecified URLs - meaning that new pools for unspecified URLs will be started using the :default
configuration. See "Pool Configuration Options" below for details on the possible map
values. Default value is %{default: [size: 50, count: 1]}.

Pool Configuration Options
	:protocol - This option is deprecated. Use :protocols instead.

	:protocols - The type of connections to support.
If using :http1 only, an HTTP1 pool without multiplexing is used. If using :http2 only, an HTTP2 pool with multiplexing is used. If both are listed, then both HTTP1/HTTP2 connections are supported (via ALPN), but there is no multiplexing.
The default value is [:http1].

	:size (pos_integer/0) - Number of connections to maintain in each pool. Used only by HTTP1 pools since HTTP2 is able to multiplex requests through a single connection. In other words, for HTTP2, the size is always 1 and the :count should be configured in order to increase capacity. The default value is 50.

	:count (pos_integer/0) - Number of pools to start. HTTP1 pools are able to re-use connections in the same pool and establish new ones only when necessary. However, if there is a high pool count and few requests are made, these requests will be scattered across pools, reducing connection reuse. It is recommended to increase the pool count for HTTP1 only if you are experiencing high checkout times. The default value is 1.

	:max_idle_time (timeout/0) - This option is deprecated. Use :conn_max_idle_time instead. The maximum number of milliseconds an HTTP1 connection is allowed to be idle before being closed during a checkout attempt.

	:conn_opts (keyword/0) - These options are passed to Mint.HTTP.connect/4 whenever a new connection is established. :mode is not configurable as Finch must control this setting. Typically these options are used to configure proxying, https settings, or connect timeouts. The default value is [].

	:pool_max_idle_time (timeout/0) - The maximum number of milliseconds that a pool can be idle before being terminated, used only by HTTP1 pools. This options is forwarded to NimblePool and it starts and idle verification cycle that may impact performance if misused. For instance setting a very low timeout may lead to pool restarts. For more information see NimblePool's handle_ping/2 documentation. The default value is :infinity.

	:conn_max_idle_time (timeout/0) - The maximum number of milliseconds an HTTP1 connection is allowed to be idle before being closed during a checkout attempt. The default value is :infinity.

	:start_pool_metrics? (boolean/0) - When true, pool metrics will be collected and available through get_pool_status/2 The default value is false.

 stop_pool(finch_name, url)

 @spec stop_pool(name(), url :: String.t() | scheme_host_port()) ::
 :ok | {:error, :not_found}

Stops the pool of processes associated with the given scheme, host, port (aka SHP).
This function can be invoked to manually stop the pool to the given SHP when you know it's not
going to be used anymore.
Note that this function is not safe with respect to concurrent requests. Invoking it while
another request to the same SHP is taking place might result in the failure of that request. It
is the responsibility of the client to ensure that no request to the same SHP is taking place
while this function is being invoked.

 stream(req, name, acc, fun, opts \\ [])

 @spec stream(Finch.Request.t(), name(), acc, stream(acc), request_opts()) ::
 {:ok, acc} | {:error, Exception.t(), acc}
when acc: term()

Streams an HTTP request and returns the accumulator.
A function of arity 2 is expected as argument. The first argument
is a tuple, as listed below, and the second argument is the
accumulator. The function must return a potentially updated
accumulator.
See also stream_while/5.
HTTP2 streaming and back-pressure
At the moment, streaming over HTTP2 connections do not provide
any back-pressure mechanism: this means the response will be
sent to the client as quickly as possible. Therefore, you must
not use streaming over HTTP2 for non-terminating responses or
when streaming large responses which you do not intend to keep
in memory.
Stream commands
	{:status, status} - the http response status
	{:headers, headers} - the http response headers
	{:data, data} - a streaming section of the http response body
	{:trailers, trailers} - the http response trailers

Options
Shares options with request/3.
Examples
path = "/tmp/archive.zip"
file = File.open!(path, [:write, :exclusive])
url = "https://example.com/archive.zip"
request = Finch.build(:get, url)

Finch.stream(request, MyFinch, nil, fn
 {:status, status}, _acc ->
 IO.inspect(status)

 {:headers, headers}, _acc ->
 IO.inspect(headers)

 {:data, data}, _acc ->
 IO.binwrite(file, data)
end)

File.close(file)

 stream_while(req, name, acc, fun, opts \\ [])

 @spec stream_while(Finch.Request.t(), name(), acc, stream_while(acc), request_opts()) ::
 {:ok, acc} | {:error, Exception.t(), acc}
when acc: term()

Streams an HTTP request until it finishes or fun returns {:halt, acc}.
A function of arity 2 is expected as argument. The first argument
is a tuple, as listed below, and the second argument is the
accumulator.
The function must return:
	{:cont, acc} to continue streaming
	{:halt, acc} to halt streaming

See also stream/5.
HTTP2 streaming and back-pressure
At the moment, streaming over HTTP2 connections do not provide
any back-pressure mechanism: this means the response will be
sent to the client as quickly as possible. Therefore, you must
not use streaming over HTTP2 for non-terminating responses or
when streaming large responses which you do not intend to keep
in memory.
Stream commands
	{:status, status} - the http response status
	{:headers, headers} - the http response headers
	{:data, data} - a streaming section of the http response body
	{:trailers, trailers} - the http response trailers

Options
Shares options with request/3.
Examples
path = "/tmp/archive.zip"
file = File.open!(path, [:write, :exclusive])
url = "https://example.com/archive.zip"
request = Finch.build(:get, url)

Finch.stream_while(request, MyFinch, nil, fn
 {:status, status}, acc ->
 IO.inspect(status)
 {:cont, acc}

 {:headers, headers}, acc ->
 IO.inspect(headers)
 {:cont, acc}

 {:data, data}, acc ->
 IO.binwrite(file, data)
 {:cont, acc}
end)

File.close(file)

Finch.HTTP1.PoolMetrics

HTTP1 Pool metrics.
Available metrics:
	:pool_index - Index of the pool
	:pool_size - Total number of connections of the pool
	:available_connections - Number of available connections
	:in_use_connections - Number of connections currently in use

Caveats:
	A given number X of available_connections does not mean that currently
exists X connections to the server sitting on the pool. Because Finch uses
a lazy strategy for workers initialization, every pool starts with it's
size as available connections even if they are not started yet. In practice
this means that available_connections may be connections sitting on the pool
or available space on the pool for a new one if required.

 Summary

 Types

 t()

 Functions

 get_pool_status(ref)

 get_pool_status(name, shp, pool_idx)

 init(registry, shp, pool_idx, pool_size)

 maybe_add(ref, metrics_list)

 Types

 t()

 @type t() :: %Finch.HTTP1.PoolMetrics{
 available_connections: term(),
 in_use_connections: term(),
 pool_index: term(),
 pool_size: term()
}

 Functions

 get_pool_status(ref)

 get_pool_status(name, shp, pool_idx)

 init(registry, shp, pool_idx, pool_size)

 maybe_add(ref, metrics_list)

Finch.HTTP2.PoolMetrics

HTTP2 Pool metrics.
Available metrics:
	:pool_index - Index of the pool
	:in_flight_requests - Number of requests currently on the connection

Caveats:
	HTTP2 pools have only one connection and leverage the multiplex nature
of the protocol. That's why we only keep the in flight requests, representing
the number of streams currently running on the connection.

 Summary

 Types

 t()

 Functions

 get_pool_status(ref)

 get_pool_status(name, shp, pool_idx)

 init(finch_name, shp, pool_idx)

 maybe_add(ref, metrics_list)

 Types

 t()

 @type t() :: %Finch.HTTP2.PoolMetrics{in_flight_requests: term(), pool_index: term()}

 Functions

 get_pool_status(ref)

 get_pool_status(name, shp, pool_idx)

 init(finch_name, shp, pool_idx)

 maybe_add(ref, metrics_list)

Finch.Request

A request struct.

 Summary

 Types

 body()

 Optional request body.

 headers()

 Request headers.

 method()

 An HTTP request method represented as an atom() or a String.t().

 private_metadata()

 t()

 url()

 A Uniform Resource Locator, the address of a resource on the Web.

 Functions

 put_private(request, key, value)

 Sets a new private key and value in the request metadata. This storage is meant to be used by libraries
and frameworks to inject information about the request that needs to be retrieved later on, for example,
from handlers that consume Finch.Telemetry events.

 Types

 body()

 @type body() :: iodata() | {:stream, Enumerable.t()} | nil

Optional request body.

 headers()

 @type headers() :: Mint.Types.headers()

Request headers.

 method()

 @type method() ::
 :get | :post | :head | :patch | :delete | :options | :put | String.t()

An HTTP request method represented as an atom() or a String.t().
The following atom methods are supported: :get, :post, :put, :patch, :delete, :head, :options.
You can use any arbitrary method by providing it as a String.t().

 private_metadata()

 @type private_metadata() :: %{optional(atom()) => term()}

 t()

 @type t() :: %Finch.Request{
 body: body(),
 headers: headers(),
 host: String.t() | nil,
 method: String.t(),
 path: String.t(),
 port: :inet.port_number(),
 private: private_metadata(),
 query: String.t() | nil,
 scheme: Mint.Types.scheme(),
 unix_socket: String.t() | nil
}

 url()

 @type url() :: String.t() | URI.t()

A Uniform Resource Locator, the address of a resource on the Web.

 Functions

 put_private(request, key, value)

 @spec put_private(t(), key :: atom(), value :: term()) :: t()

Sets a new private key and value in the request metadata. This storage is meant to be used by libraries
and frameworks to inject information about the request that needs to be retrieved later on, for example,
from handlers that consume Finch.Telemetry events.

Finch.Response

A response to a request.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Finch.Response{
 body: binary(),
 headers: Mint.Types.headers(),
 status: Mint.Types.status(),
 trailers: Mint.Types.headers()
}

Finch.Telemetry

Telemetry integration.
Unless specified, all times are in :native units.
Finch executes the following events:
Request Start
[:finch, :request, :start] - Executed when Finch.request/3 or Finch.stream/5 is called.
Measurements
	:system_time - The system time.

Metadata
	:name - The name of the Finch instance.
	:request - The request (Finch.Request).

Request Stop
[:finch, :request, :stop] - Executed after Finch.request/3 or Finch.stream/5 ended.
Measurements
	:duration - Time taken from the request start event.

Metadata
	:name - The name of the Finch instance.
	:request - The request (Finch.Request).
	:result - The result of the operation. In case of Finch.stream/5 this is
{:ok, acc} | {:error, Exception.t()}, where acc is the accumulator result of the
reducer passed in Finch.stream/5. In case of Finch.request/3 this is
{:ok, Finch.Response.t()} | {:error, Exception.t()}.

Request Exception
[:finch, :request, :exception] - Executed when an exception occurs while executing
 Finch.request/3 or Finch.stream/5.
Measurements
	:duration - The time it took since the start before raising the exception.

Metadata
	:name - The name of the Finch instance.
	:request - The request (Finch.Request).
	:kind - The type of exception.
	:reason - Error description or error data.
	:stacktrace - The stacktrace.

Queue Start
[:finch, :queue, :start] - Executed before checking out an HTTP1 connection from the pool.
Measurements
	:system_time - The system time.

Metadata
	:name - The name of the Finch instance.
	:pool - The pool's PID.
	:request - The request (Finch.Request).

Queue Stop
[:finch, :queue, :stop] - Executed after an HTTP1 connection is retrieved from the pool.
Measurements
	:duration - Time taken to check out a pool connection.
	:idle_time - Elapsed time since the connection was last checked in or initialized.

Metadata
	:name - The name of the Finch instance.
	:pool - The pool's PID.
	:request - The request (Finch.Request).

Queue Exception
[:finch, :queue, :exception] - Executed if checking out an HTTP1 connection throws an exception.
Measurements
	:duration - The time it took since queue start event before raising an exception.

Metadata
	:name - The name of the Finch instance.
	:request - The request (Finch.Request).
	:kind - The type of exception.
	:reason - Error description or error data.
	:stacktrace - The stacktrace.

Connect Start
[:finch, :connect, :start] - Executed before opening a new connection.
 If a connection is being re-used this event will not be executed.
Measurements
	:system_time - The system time.

Metadata
	:name - The name of the Finch instance.
	:scheme - The scheme used in the connection. either http or https.
	:host - The host address.
	:port - The port to connect on.

Connect Stop
[:finch, :connect, :stop] - Executed after a connection is opened.
Measurements
	:duration - Time taken to connect to the host.

Metadata
	:name - The name of the Finch instance.
	:scheme - The scheme used in the connection. either http or https.
	:host - The host address.
	:port - The port to connect on.
	:error - This value is optional. It includes any errors that occurred while opening the connection.

Send Start
[:finch, :send, :start] - Executed before sending a request.
Measurements
	:name - The name of the Finch instance.
	:system_time - The system time.
	:idle_time - Elapsed time since the connection was last checked in or initialized.

Metadata
	:request - The request (Finch.Request).

Send Stop
[:finch, :send, :stop] - Executed after a request is finished.
Measurements
	:name - The name of the Finch instance.
	:duration - Time taken to make the request.
	:idle_time - Elapsed time since the connection was last checked in or initialized.

Metadata
	:request - The request (Finch.Request).
	:error - This value is optional. It includes any errors that occurred while making the request.

Receive Start
[:finch, :recv, :start] - Executed before receiving the response.
Measurements
	:system_time - The system time.
	:idle_time - Elapsed time since the connection was last checked in or initialized.

Metadata
	:name - The name of the Finch instance.
	:request - The request (Finch.Request).

Receive Stop
[:finch, :recv, :stop] - Executed after a response has been fully received.
Measurements
	:duration - Duration to receive the response.
	:idle_time - Elapsed time since the connection was last checked in or initialized.

Metadata
	:name - The name of the Finch instance.
	:request - The request (Finch.Request).
	:status - The response status (Mint.Types.status()).
	:headers - The response headers (Mint.Types.headers()).
	:error - This value is optional. It includes any errors that occurred while receiving the response.

Receive Exception
[:finch, :recv, :exception] - Executed if an exception is thrown before the response has
 been fully received.
Measurements
	:duration - The time it took before raising an exception

Metadata
	:name - The name of the Finch instance.
	:request - The request (Finch.Request).
	:kind - The type of exception.
	:reason - Error description or error data.
	:stacktrace - The stacktrace.

Reused Connection
[:finch, :reused_connection] - Executed if an existing HTTP1 connection is reused. There are no measurements provided with this event.
Metadata
	:name - The name of the Finch instance.
	:scheme - The scheme used in the connection. either http or https.
	:host - The host address.
	:port - The port to connect on.

Conn Max Idle Time Exceeded
[:finch, :conn_max_idle_time_exceeded] - Executed if an HTTP1 connection was discarded because the conn_max_idle_time had been reached.
Measurements
	:idle_time - Elapsed time since the connection was last checked in or initialized.

Metadata
	:scheme - The scheme used in the connection. either http or https.
	:host - The host address.
	:port - The port to connect on.

Pool Max Idle Time Exceeded
[:finch, :pool_max_idle_time_exceeded] - Executed if an HTTP1 pool was terminated because the pool_max_idle_time has been reached. There are no measurements provided with this event.
Metadata
	:scheme - The scheme used in the connection. either http or https.
	:host - The host address.
	:port - The port to connect on.

Max Idle Time Exceeded (Deprecated)
[:finch, :max_idle_time_exceeded] - Executed if an HTTP1 connection was discarded because the max_idle_time had been reached.
Deprecated: use :conn_max_idle_time_exceeded event instead.
Measurements
	:idle_time - Elapsed time since the connection was last checked in or initialized.

Metadata
	:scheme - The scheme used in the connection. either http or https.
	:host - The host address.
	:port - The port to connect on.

Finch.Error exception

An HTTP error.
This exception struct is used to represent errors of all sorts for the HTTP/2 protocol.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Finch.Error{__exception__: true, reason: atom()}

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png

