

 Finitomata

 v0.28.0

 [image: Logo]

 Table of contents

 	Finitomata

 	Finite Automata

 	Finitomata Compiler

 	

 	Modules

 	FSM

 	Finitomata

 	Finitomata.Accessible

 	Infinitomata

 	Test

 	Finitomata.ExUnit

 	Goods

 	Finitomata.Cache

 	Finitomata.Pool

 	Finitomata.Throttler

 	Internals

 	Finitomata.ClusterInfo

 	Finitomata.Listener

 	Finitomata.Parser

 	Finitomata.Pool.Actor

 	Finitomata.State

 	Finitomata.Supervisor

 	Finitomata.Transition

 	Finitomata.Transition.Path

 	Persistence

 	Finitomata.Persistency

 	Finitomata.Persistency.Persistable

 	Finitomata.Persistency.Protocol

 	Exceptions

 	Finitomata.TestSyntaxError

 	Finitomata.TestTransitionError

 	Mix Tasks

 	mix finitomata.generate

 	mix finitomata.generate.test

 Finitomata

The FSM boilerplate based on callbacks

 Bird View

Finitomata provides a boilerplate for FSM implementation, allowing to concentrate on the business logic rather than on the process management and transitions/events consistency tweaking.
It reads a description of the FSM from a string in PlantUML, Mermaid, or even custom format.

 Syntax Definition

Mermaid state diagram format is literally the same as PlantUML, so if you want to use it, specify syntax: :state_diagram and
if you want to use mermaid graph, specify syntax: :flowchart. The latter is the default.
Basically, it looks more or less like this

 PlantUML / :state_diagram

[*] --> s1 : to_s1
s1 --> s2 : to_s2
s1 --> s3 : to_s3
s2 --> [*] : ok
s3 --> [*] : ok

 Mermaid / :flowchart

s1 --> |to_s2| s2
s1 --> |to_s3| s3

 Using syntax: :flowchart

Mermaid does not allow to explicitly specify transitions (and hence event names)
from the starting state and to the end state(s), these states names are implicitly set to :*
and events to :__start__ and :__end__ respectively.
Finitomata validates the FSM is consistent, namely it has a single initial state, one or more final states, and no orphan states. If everything is OK, it generates a GenServer that could be used both alone, and with provided supervision tree. This GenServer requires to implement six callbacks
	on_transition/4 — mandatory
	on_failure/3 — optional
	on_enter/2 — optional
	on_exit/2 — optional
	on_terminate/1 — optional
	on_timer/2 — optional

All the callbacks do have a default implementation, that would perfectly handle transitions having a single to state and not requiring any additional business logic attached.
Upon start, it moves to the next to initial state and sits there awaiting for the transition request. Then it would call an on_transition/4 callback and move to the next state, or remain in the current one, according to the response.
Upon reaching a final state, it would terminate itself. The process keeps all the history of states it went through, and might have a payload in its state.

 Special Events

If the event name is ended with a bang (e. g. idle --> |start!| started) and
this event is the only one allowed from this state (there might be several transitions though,)
it’d be considered as determined and FSM will be transitioned into the new state instantly.
If the event name is ended with a question mark (e. g. idle --> |start?| started,)
the transition is considered as expected to fail; no on_failure/2 callback would
be called on failure and no log warning will be printed.

 FSM Tuning and Configuration

 Recurrent Callback

If timer: non_neg_integer() option is passed to use Finitomata,
then Finitomata.on_timer/2 callback will be executed recurrently.
This might be helpful if FSM needs to update its state from the outside
world on regular basis.

 Automatic FSM Termination

If auto_terminate: true() | state() | [state()] option is passed to use Finitomata,
the special __end__ event to transition to the end state will be called automatically
under the hood, if the current state is either listed explicitly, or if the value of
the parameter is true.

 Ensuring State Entry

If ensure_entry: true() | [state()] option is passed to use Finitomata, the transition
attempt will be retried with {:continue, {:transition, {event(), event_payload()}}} message
until succeeded. Neither on_failure/2 callback is called nor warning message is logged.
The payload would be updated to hold __retries__: pos_integer() key. If the payload was not a map,
it will be converted to a map %{payload: payload}.

 Examples

See examples directory for
real-life examples of Finitomata usage.

 Example

Let’s define the FSM instance
defmodule MyFSM do
 @fsm """
 s1 --> |to_s2| s2
 s1 --> |to_s3| s3
 """
 use Finitomata, fsm: @fsm, syntax: :flowchart

 ## or uncomment lines below for `:state_diagram` syntax
 # @fsm """
 # [*] --> s1 : to_s1
 # s1 --> s2 : to_s2
 # s1 --> s3 : to_s3
 # s2 --> [*] : __end__
 # s3 --> [*] : __end__
 # """
 # use Finitomata, fsm: @fsm, syntax: :state_diagram

 @impl Finitomata
 def on_transition(:s1, :to_s2, _event_payload, state_payload),
 do: {:ok, :s2, state_payload}
end
Now we can play with it a bit.
or embed into supervision tree using `Finitomata.child_spec()`
{:ok, _pid} = Finitomata.start_link()

Finitomata.start_fsm MyFSM, "My first FSM", %{foo: :bar}
Finitomata.transition "My first FSM", {:to_s2, nil}
Finitomata.state "My first FSM"
#⇒ %Finitomata.State{current: :s2, history: [:s1], payload: %{foo: :bar}}

Finitomata.allowed? "My first FSM", :* # state
#⇒ true
Finitomata.responds? "My first FSM", :to_s2 # event
#⇒ false

Finitomata.transition "My first FSM", {:__end__, nil} # to final state
#⇒ [info] [◉ ⇄] [state: %Finitomata.State{current: :s2, history: [:s1], payload: %{foo: :bar}}]

Finitomata.alive? "My first FSM"
#⇒ false
Typically, one would implement all the on_transition/4 handlers, pattern matching on the state/event.

 Installation

def deps do
 [
 {:finitomata, "~> 0.20"}
]
end

 Changelog

	0.28.0 — [UPD] initial telemetria integration
	0.27.0 — [UPD] options hibernate: boolean() and cache_state: boolean()
	0.26.0 — [UPD] a lot of tiny improvements, Finitomata.Accessible, reset_timer message + tests, experimental Finitomata.Cache
	0.25.0 — [UPD] allow assertions of entry states in Finitomata.ExUnit
	0.24.2 — [UPD/FIX] many fixes for better diagnostics in Finitomata.ExUnit
	0.23.7 — [UPD] allow both :mox and {:mox, MyApp.Listener} as well as just MyApp.Listener as a listener in FSM definition
	0.23.4 — [FIX] many fixes to a Finitomata.ExUnit test scaffold generation
	0.23.0 — [UPD] mix finitomata.generate.test --module MyApp.FSM to generate a Finitomata.ExUnit test scaffold
	0.22.0 — [FIX] Infinitomata.start_fsm/4 is finally 102% sync
	0.21.4 — [FIX] Finitomata.Pool initialization in cluster
	0.21.3 — [FIX] proper return from Infinitomata.start_fsm/4
	0.21.1 — [UPD] listener: :mox and better Finitomata.ExUnit docs
	0.20.2 — [UPD] allow guard matches in the RHO of ~> operator in assert_transition/3
	0.20.0 — [FIX] starting pool on distribution, re-synch on :badrpc failure
	0.19.0 — [UPD] Finitomata.ExUnit lighten options check (compile-time module dependencies suck in >=1.16)
	0.18.0 — [UPD] asynchronous Finitomata.Pool on top of Infinitomata
	0.17.0 — [UPD] careful naming and Finitomata.Throttler
	0.16.0 — [UPD] Infinitomata as a self-contained distributed implementation leveraging :pg
	0.15.0 — [UPD] support snippet formatting for modern Elixir
	0.14.6 — [FIX] persistency flaw when loading [credits @peaceful-james]
	0.14.5 — [FIX] require Logger in Hook
	0.14.4 — [FIX] Docs cleanup (credits: @TwistingTwists), PlantUML proper entry
	0.14.3 — [FIX] Draw diagram in docs
	0.14.2 — [FIX] Stop Events process
	0.14.1 — [FIX] Incorrect detection of superfluous determined transitions
	0.14.0 — Finitomata.ExUnit improvements
	0.13.0 — compile-time helpers for FSM, Finitomata.ExUnit
	0.12.1 — Finitomata.on_start/1 callback
	0.11.3 — [FIX] better error message for options (credits @ray-sh)
	0.11.2 — [DEBT] exported Finitomata.fqn/2
	0.11.1 — Inspect, :flowchart/:state_diagram as default parsers, behaviour Parser
	0.11.0 — {:ok, state_payload} return from on_timer/2, :persistent_term to cache state
	0.10.0 — support for several supervision trees with ids, experimental support for persistence scaffold
	0.9.0 — [FIX] malformed callbacks had the FSM broken
	0.8.2 — last error is now kept in the state (credits to @egidijusz)
	0.8.1 — improvements to :finitomata compiler
	0.8.0 — :finitomata compiler to warn/hint about not implemented ambiguous transitions
	0.7.2 — [FIX] banged! transitions must not be determined
	0.6.3 — soft? events which do not call on_failure/2 and do not log errors
	0.6.2 — ensure_entry: option to retry a transition
	0.6.1 — code cleanup + auto_terminate: option to make :__end__ transition imminent
	0.6.0 — on_timer/2 and banged imminent transitions
	0.5.2 — state() type on generated FSMs
	0.5.1 — fixed specs [credits @egidijusz]
	0.5.0 — all callbacks but on_transition/4 are optional, accept impl_for: param to use Finitomata
	0.4.0 — allow anonymous FSM instances
	0.3.0 — en_entry/2 and on_exit/2 optional callbacks
	0.2.0 — Mermaid support

Documentation.

Finite Automata

 Above and Beyound

If you have issues fully understanding Finite Automata aka FSM, here is a one-sentence explanation that might clarify everything.
FSM consists of states, transitions, and events, where the state is an adjective (or noun,) the event is a verb and the transition is an adverbial participle.

This definition, while being mathematically lax, shallow, cursory, and maybe even perfunctory, reveals the whole and allows to grasp the very core thing about FSM nature: it describes a life in the same way the human language desribes it.

 Yet Another Library

I’m a big fan of Finite Automata. Always have been. Whenever we deal with a long-lived objects, they eventually have states and FSM does an enormously great job by attesting consistency, eliminating human errors and leaving the implementation with a business logic only. In a mediocre project, fifty if-then-else conditionals might perform as well as one FSM, but unless you are paid for the number of LoCs, FSM is drastically easier to carry on.

 Internals

This library leverages the power of callbacks to not only completely cover the FSM implementation, but also provide a compile-time proof the FSM is valid and functional. One of the most important things this library provides is the FSM description itself, that is fault-tolerant, not error-prone, and easy to grasp. The FSM definition, which is currently supported in both PlantUML and Mermaid syntaxes, would be drawn in the generated docs of the project using this library.
The consumer of this library initiates a transition by calling somewhat like transition(object, event), then the GenServer does its magic and the callback on_transition/4 gets called. From inside this callback, the consumer implements the business logic and returns the result (the next state to move the FSM to.) There are also syntactic sugar callbacks on_enter/2, on_exit/2, on_failure/3, and on_terminate/1 to allow easy state change reactions, handling of errors, and a final cleanup respectively.
All the callbacks do have a default implementation, which would perfectly handle transitions having a single to state and not requiring any additional business logic attached. When needed, this might be turned off.
Upon start, FSM moves to its initial state and sits there awaiting for the transition request. Upon this request, it’d call on_transition/4 callback and either move to the next state, or remain in the current one, according to the response from the callback. Upon reaching a final state, it would terminate itself, that’s where on_terminate/1 callback is called from. The process also keeps all the history of states it went through, and might have a payload in its state.

 Cool stuff

This library has a compilation-time guarantee the FSM is valid, e. g. has the only one begin state, has at least one end state, all states can be reached, and all the necessary callbacks are defined. That said, if we an FSM has an event initiating transitions from the same state to two different states, and there is no on_transition/4 clause covering that case, the compile-time error would be raised. On the other hand, if the transition is predetermined and might lead to the only one state, the callback implementation is not mandatory, because there is no trolley problem between these two states.
The FSM definition allows event names, terminated with bangs and/or question marks. If the event name is terminated with a bang (init!,) and this event is the only one possible from this state, the event will be called automatically once FSM enters this state. This is handy for moving through initialization or through states which do not require a consumer intervention and might be done immediately after FSM reaches the respective state. If the transition failed in any way (the state has not been left either due to {:error, any()} response received from on_transition/4 or due to other unexpected issue, like if on_transition/4 raised,) the on_failure/3 callback would be called and the warning would be printed to the log. To suppress this behaviour and to allow a transition silently fail, the event should have ended with a question mark (try_call?.) The event cannot have both a bang and a question mark in its name.

 Wiki Example

Wikipedia provides a turnstile as an example of FSM.
[image: Turnile State Machine]
Below is the Finitomata take on this FSM.
defmodule Turnstile do
 @fsm """
 built --> |on!| locked
 locked --> |push| locked
 locked --> |coin?| unlocked
 unlocked --> |push| locked
 unlocked --> |coin?| unlocked
 unlocked --> |off| destroyed
 """

 use Finitomata, @fsm, auto_terminate: true

 def on_transition(state, :push, _event_payload, state_payload) do
 if state == :locked, do: electrocute!()
 {:ok, :locked, state_payload}
 end

 def on_transition(:locked, :coin?, _event_payload, state_payload) do
 {:ok, :unlocked, state_payload}
 end

 def on_transition(:unlocked, :coin, _event_payload, state_payload) do
 Logger.info("Thanks, this coin will be donated to the animal shelter!")
 {:error, :unexpected_coin}
 end

 def on_transition(_, :off, _, state_payload),
 do: {:ok, :destroyed, state_payload}

 # def on_failure(…), do: …

 # def on_terminate(…), do: …
end
The docs for this module would have the following diagram contained (see the ex_doc for how to enable Mermaid.)
graph TD
 built --> |on!| locked
 locked --> |push| locked
 locked --> |coin?| unlocked
 unlocked --> |push| locked
 unlocked --> |coin?| unlocked
 unlocked --> |off| destroyed

Finitomata Compiler

Elixir provides an ability to introduce a custom compiler for any mix project. Finitomata leverages this feature, providing a set of diagnostics for modules declaring the FSM.

 Overview

Consider the following FSM.
graph TD
 idle --> |to_s1!| s1
 s1 --> |to_s2| s2
 s1 --> |to_s3| s3
 s2 --> |to_s1| s3
 s2 --> |ambiguous| s3
 s2 --> |ambiguous| s4
 s3 --> |determined| s3
 s3 --> |determined| s4
 s4 --> |determined| s4
 s4 --> |determined| s5
Here we have transitions which do not require a handler (events to_s1!, to_s1, to_s2, and to_s3 define the target state, so just sending the event to the FSM in the respective state would be enough.) Also we have ambiguous and determined events (don’t ask about the name of the latter,) which wouldn’t succeed without the respective Finitomata.on_transition/4 handler declared. This handler must route the event to one of two possible states, conditionally returning {:ok, :s3, state} or {:ok, :s4, state} based on the state, the payload, or the event payload.
An attempt to call ambiguous event from state s2 without this handler defined would result in runtime error of the shape
{:error, {:ambiguous_transition, {:s2, :ambiguous}, [:s3. :s4]}}
but we can do better. Here is the custom compiler shining. Let’s see how the editor would have the code highlighted.
[image: Editor window with the module using Finitomata]

 Warnings, Infos, Hints

There are three different types of diagnostics provided by :finitomata compiler.

 Warning

Warning is reported both to the language server and to console during project compilation. It says “this module declares some ambiguous transitions not handled in the code.” Here is how it looks in the editor.
[image: Finitomata Warning]

 Info

Info is reported in cases when the compiler is not able to determine whether the ambiguous transition has been covered or not.
[image: Finitomata Warning]

 Hint

Hint is emitted when the compiler is positive about the ambiguous transition has been covered, just for the sake of better user experience.
[image: Finitomata Warning]

 WIP

This compiler is very much WIP, but it’s already fully functional, and, despite it is not able yet to report complicated cases when the transition seems to be handled, but one or more branches are unreachable, it could be a very handy tool for the additional self-check on whether the FSM is covered or the application might suffer the ambiguous, or not reachable, or not allowed runtime errors.

Finitomata behaviour

 Bird View

Finitomata provides a boilerplate for FSM implementation, allowing to concentrate on the business logic rather than on the process management and transitions/events consistency tweaking.
It reads a description of the FSM from a string in PlantUML, Mermaid, or even custom format.

 Syntax Definition

Mermaid state diagram format is literally the same as PlantUML, so if you want to use it, specify syntax: :state_diagram and
if you want to use mermaid graph, specify syntax: :flowchart. The latter is the default.
Basically, it looks more or less like this

 PlantUML / :state_diagram

[*] --> s1 : to_s1
s1 --> s2 : to_s2
s1 --> s3 : to_s3
s2 --> [*] : ok
s3 --> [*] : ok

 Mermaid / :flowchart

s1 --> |to_s2| s2
s1 --> |to_s3| s3

 Using syntax: :flowchart

Mermaid does not allow to explicitly specify transitions (and hence event names)
from the starting state and to the end state(s), these states names are implicitly set to :*
and events to :__start__ and :__end__ respectively.
Finitomata validates the FSM is consistent, namely it has a single initial state, one or more final states, and no orphan states. If everything is OK, it generates a GenServer that could be used both alone, and with provided supervision tree. This GenServer requires to implement six callbacks
	on_transition/4 — mandatory
	on_failure/3 — optional
	on_enter/2 — optional
	on_exit/2 — optional
	on_terminate/1 — optional
	on_timer/2 — optional

All the callbacks do have a default implementation, that would perfectly handle transitions having a single to state and not requiring any additional business logic attached.
Upon start, it moves to the next to initial state and sits there awaiting for the transition request. Then it would call an on_transition/4 callback and move to the next state, or remain in the current one, according to the response.
Upon reaching a final state, it would terminate itself. The process keeps all the history of states it went through, and might have a payload in its state.

 Special Events

If the event name is ended with a bang (e. g. idle --> |start!| started) and
this event is the only one allowed from this state (there might be several transitions though,)
it’d be considered as determined and FSM will be transitioned into the new state instantly.
If the event name is ended with a question mark (e. g. idle --> |start?| started,)
the transition is considered as expected to fail; no on_failure/2 callback would
be called on failure and no log warning will be printed.

 FSM Tuning and Configuration

 Recurrent Callback

If timer: non_neg_integer() option is passed to use Finitomata,
then Finitomata.on_timer/2 callback will be executed recurrently.
This might be helpful if FSM needs to update its state from the outside
world on regular basis.

 Automatic FSM Termination

If auto_terminate: true() | state() | [state()] option is passed to use Finitomata,
the special __end__ event to transition to the end state will be called automatically
under the hood, if the current state is either listed explicitly, or if the value of
the parameter is true.

 Ensuring State Entry

If ensure_entry: true() | [state()] option is passed to use Finitomata, the transition
attempt will be retried with {:continue, {:transition, {event(), event_payload()}}} message
until succeeded. Neither on_failure/2 callback is called nor warning message is logged.
The payload would be updated to hold __retries__: pos_integer() key. If the payload was not a map,
it will be converted to a map %{payload: payload}.

 Examples

See examples directory for
real-life examples of Finitomata usage.

 Example

Let’s define the FSM instance
defmodule MyFSM do
 @fsm """
 s1 --> |to_s2| s2
 s1 --> |to_s3| s3
 """
 use Finitomata, fsm: @fsm, syntax: :flowchart

 ## or uncomment lines below for `:state_diagram` syntax
 # @fsm """
 # [*] --> s1 : to_s1
 # s1 --> s2 : to_s2
 # s1 --> s3 : to_s3
 # s2 --> [*] : __end__
 # s3 --> [*] : __end__
 # """
 # use Finitomata, fsm: @fsm, syntax: :state_diagram

 @impl Finitomata
 def on_transition(:s1, :to_s2, _event_payload, state_payload),
 do: {:ok, :s2, state_payload}
end
Now we can play with it a bit.
or embed into supervision tree using `Finitomata.child_spec()`
{:ok, _pid} = Finitomata.start_link()

Finitomata.start_fsm MyFSM, "My first FSM", %{foo: :bar}
Finitomata.transition "My first FSM", {:to_s2, nil}
Finitomata.state "My first FSM"
#⇒ %Finitomata.State{current: :s2, history: [:s1], payload: %{foo: :bar}}

Finitomata.allowed? "My first FSM", :* # state
#⇒ true
Finitomata.responds? "My first FSM", :to_s2 # event
#⇒ false

Finitomata.transition "My first FSM", {:__end__, nil} # to final state
#⇒ [info] [◉ ⇄] [state: %Finitomata.State{current: :s2, history: [:s1], payload: %{foo: :bar}}]

Finitomata.alive? "My first FSM"
#⇒ false
Typically, one would implement all the on_transition/4 handlers, pattern matching on the state/event.

 use Finitomata

When you use Finitomata, the Finitomata module will
do the following things for your module:
	set @behaviour Finitomata
	compile and validate FSM declaration, passed as fsm: keyword argument
	turn the module into GenServer
	inject default implementations of optional callbacks specified with
impl_for: keyword argument (default: :all)
	expose a bunch of functions to query FSM which would be visible in docs
	leaves on_transition/4 mandatory callback to be implemeneted by
the calling module and injects before_compile callback to validate
the implementation (this option required :finitomata to be included
in the list of compilers in mix.exs)

 Use with Telemetría

telemetria library can be used to send all the state changes to the backend,
 configured by this library. To enable metrics sending, one should do the following.

 Add telemetria dependency

telemetria dependency should be added alongside its backend dependency.
 For :telemetry backend, that would be
defp deps do
 [
 ...
 {:telemetry, "~> 1.0"},
 {:telemetry_poller, "~> 1.0"},
 {:telemetria, "~> 0.22"}
]

 Configure telemetria library in a compile-time config

config :telemetria,
 backend: Telemetria.Backend.Telemetry,
 purge_level: :debug,
 level: :info,

 Add :telemetria compiler

:telemetria compiler should be added to the list of mix compilers, alongside
 :finitomata compiler.
def project do
 [
 ...
 compilers: [:finitomata, :telemetria | Mix.compilers()],
 ...
]
end

 Configure :finitomata to use :telemetria

The configuration parameter [:finitomata, :telemetria] accepts the following values:
	false — :telemetria metrics won’t be sent
	true — :telemetria metrics will be send for all the callbacks
	[callback, ...] — :telemetria metrics will be send for the specified callbacks

Available callbacks may be seen below in this module documentation. Please note,
 that the events names would be event: [__MODULE__, :safe_on_transition] and like.
config :finitomata, :telemetria, true
See telemetria docs for further config details.

 Options to use Finitomata

	:fsm (String.t/0) - Required. The FSM declaration with the syntax defined by syntax option.

	:syntax - The FSM dialect parser to convert the declaration to internal FSM representation. The default value is :flowchart.

	:impl_for - The list of transitions to inject default implementation for. The default value is :all.

	:timer - The interval to call on_timer/2 recurrent event. The default value is false.

	:auto_terminate - When true, the transition to the end state is initiated automatically. The default value is false.

	:cache_state (boolean/0) - When true, the FSM state is cached in :persistent_term The default value is true.

	:hibernate - When true, the FSM process is hibernated between transitions The default value is false.

	:ensure_entry - The list of states to retry transition to until succeeded. The default value is [].

	:shutdown (pos_integer/0) - The shutdown interval for the GenServer behind the FSM. The default value is 5000.

	:persistency - The implementation of Finitomata.Persistency behaviour to backup FSM with a persistent storage. The default value is nil.

	:listener - The implementation of Finitomata.Listener behaviour or a GenServer.name() to receive notification after transitions. The default value is nil.

	:mox_envs - The list of environments to implement mox listener for The default value is [:test, :finitomata].

 Summary

 Types

 Finitomata.Accessible - Finitomata v0.28.0

Finitomata.Accessible

The convenience module, exposing start_link/1 to embed Finitomata.Supervisor
implementation into a supervision tree in an agnostic way.
This module implements Access in a contrived way, allowing to deal with underlying
FSM instances in a following way.
iex|🌢|1 ▶ Finitomata.Accessible.start_link(type: Finitomata, implementation: L, id: L1)
{:ok, #PID<0.214.0>}

iex|🌢|2 ▶ sup = Finitomata.Accessible.lookup(L1)
%Finitomata.Accessible{
 type: Finitomata,
 id: L1,
 implementation: Finitomata.Test.Log,
 last_event: nil,
 cached_pid: #PID<0.214.0>
}

iex|🌢|3 ▶ put_in(sup, ["MyFSM"], :accept)
07:16:34.736 [debug] [→ ↹] […]
07:16:34.738 [debug] [✓ ⇄] with: [current: :*, event: :__start__, event_payload: %{payload: nil, __retries__: 1}, state: %{}]
07:16:34.738 [debug] [← ↹] […]
07:16:34.738 [debug] [→ ↹] […]
07:16:34.739 [debug] [✓ ⇄] with: [current: :idle, event: :accept, event_payload: nil, state: %{}]
07:16:34.739 [debug] [← ↹] […]

%Finitomata.Accessible{
 type: Finitomata,
 id: L1,
 implementation: Finitomata.Test.Log,
 last_event: {"MyFSM", :accept},
 cached_pid: #PID<0.214.0>
}

iex|🌢|4 ▶ get_in(sup, ["MyFSM"])
#Finitomata<[
 name: {Finitomata.L1.Registry, "MyFSM"},
 state: [current: :accepted, previous: :idle, payload: %{}],
 internals: [errored?: false, persisted?: false, timer: false]
]>

 Summary

 Types

 Infinitomata - Finitomata v0.28.0

Infinitomata

The sibling of Finitomata, but runs transparently in the cluster.
If you want to use a stateful consistent hash ring like libring,
 implement the behaviour Finitomata.ClusterInfo wrapping calls to it and
 invoke Finitomata.ClusterInfo.init(Impl) before using Infinitomata.start_fsm/4.
The example of such an implementation for libring (assuming the named ring @ring
 has been started in the supervision tree) follows.
defmodule MyApp.ClusterInfo do
 @moduledoc false
 @behaviour Finitomata.ClusterInfo

 @impl Finitomata.ClusterInfo
 def nodes, do: HashRing.nodes(@ring)

 @impl Finitomata.ClusterInfo
 def whois(id), do: HashRing.key_to_node(@ring, id)
end

 Summary

 Functions

 Finitomata.ExUnit - Finitomata v0.28.0

Finitomata.ExUnit

Helpers and assertions to make Finitomata implementation easily testable.

 Testing with Finitomata.ExUnit

There are several steps needed to enable extended testing with Finitomata.ExUnit.
In the first place, mox dependency should be included in your mix.exs project file
{:mox, "~> 1.0", only: [:test]}
Then, the Finitomata declaration should include a listener. If you already have the
 listener, it should be changed to Mox in :test environment, and the respecive Mox
 should be defined somewhere in test/support or like
@listener (if Mix.env() == :test, do: MyFSM.Mox, else: MyFSM.Listener)
use Finitomata, fsm: @fsm, listener: @listener
or
use Finitomata, fsm: @fsm, listener: {:mox, MyFSM.Listener}
If you don’t have an actual listener, the special :mox value for listener would do
 everything, including an actual Mox declaration in test environment.
use Finitomata, fsm: @fsm, listener: :mox
The last thing you need, import Mox into your test file which also does
 import Finitomata.ExUnit. That’s it, now your code is ready to use Finitomata.ExUnit
 fancy testing.

 Example

Consider the following simple FSM
defmodule Turnstile do
 @fsm ~S[
 ready --> |on!| closed
 opened --> |walk_in| closed
 closed --> |coin_in| opened
 closed --> |switch_off| switched_off
]
 use Finitomata, fsm: @fsm, auto_terminate: true

 @impl Finitomata
 def on_transition(:opened, :walk_in, _payload, state) do
 {:ok, :closed, update_in(state, [:data, :passengers], & &1 + 1)}
 end
 def on_transition(:closed, :coin_in, _payload, state) do
 {:ok, :opened, state}
 end
 def on_transition(:closed, :off, _payload, state) do
 {:ok, :switched_off, state}
 end
end
Of course, in the real life, one would not only collect the total number of passengers passed
 in the state, but also validate the coin value to let in or fail a transition, but
 for the demonstration purposes this one is already good enough.
We now want to test it works as expected. Without Finitomata.ExUnit, one would
 write the test like below
somewhere else → Mox.defmock(Turnstile.Mox, for: Finitomata.Listener)
test "standard approach" do
 start_supervised(Finitomata.Supervisor)

 fini_name = "Turnstile_1"
 fsm_name = {:via, Registry, {Finitomata.Registry, fini_name}}

 Finitomata.start_fsm(Turnstile, fini_name, %{data: %{passengers: 0}})

 Finitomata.transition(fini_name, :coin_in)
 assert %{data: %{passengers: 0}}} = Finitomata.state(Turnstile, "Turnstile_1", :payload)

 Finitomata.transition(fini_name, :walk_in)
 assert %{data: %{passengers: 1}}} = Finitomata.state(Turnstile, "Turnstile_1", :payload)

 Finitomata.transition(fini_name, :switch_off)

 Process.sleep(200)
 refute Finitomata.alive?(Turnstile, "Turnstile_1")
end
At the first glance, there is nothing wrong with this approach, but it requires
 an enormous boilerplate, it cannot check it’s gone without using Process.sleep/1,
 but most importantly, it does not allow testing intermediate states.
If the FSM has instant transitions (named with a trailing bang, like foo!) which
 are invoked automatically by Finitomata itself, there is no way to test intermediate
 states with the approach above.
OK, let’s use Mox then (assuming Turnstile.Mox has been declared and added
 as a listener in test environment to use Finitomata)
somewhere else → Mox.defmock(Turnstile.Mox, for: Finitomata.Listener)
test "standard approach" do
 start_supervised(Finitomata.Supervisor)

 fini_name = "Turnstile_1"
 fsm_name = {:via, Registry, {Finitomata.Registry, fini_name}}
 parent = self()

 Turnstile.Mox
 |> allow(parent, fn -> GenServer.whereis(fsm_name) end)
 |> expect(:after_transition, 4, fn id, state, payload ->
 parent |> send({:on_transition, id, state, payload}) |> then(fn _ -> :ok end)
 end)

 Finitomata.start_fsm(Turnstile, fini_name, %{data: %{passengers: 0}})

 Finitomata.transition(fini_name, :coin_in)
 assert_receive {:on_transition, ^fsm_name, :opened, %{data: %{passengers: 0}}}
 # assert %{data: %{passengers: 0}}} = Finitomata.state(Turnstile, "Turnstile_1", :payload)

 Finitomata.transition(fini_name, :walk_in)
 assert_receive {:on_transition, ^fsm_name, :closed, %{data: %{passengers: 1}}}
 # assert %{data: %{passengers: 1}}} = Finitomata.state(Turnstile, "Turnstile_1", :payload)

 Finitomata.transition(fini_name, :switch_off)
 assert_receive {:on_transition, ^fsm_name, :switched_off, %{data: %{passengers: 1}}}

 Process.sleep(200)
 refute Finitomata.alive?(Turnstile, "Turnstile_1")
end
That looks better, but there is still too much of boilerplate. Let’s see how it’d look like
 with Finitomata.ExUnit.
describe "Turnstile" do
 setup_finitomata do
 parent = self()
 initial_passengers = 42

 [
 fsm: [implementation: Turnstile, payload: %{data: %{passengers: initial_passengers}})],
 context: [passengers: initial_passengers]
]
 end

 test_path "respectful passenger", %{passengers: initial_passengers} do
 :coin_in ->
 assert_state :opened do
 assert_payload do
 data.passengers ~> ^initial_passengers
 end
 end

 :walk_in ->
 assert_state :closed do
 assert_payload do
 data.passengers ~> one_more when one_more == 1 + initial_passengers
 end
 end

 :switch_off ->
 assert_state :switched_off
 assert_state :*
 end
With this approach, one could test the payload in the intermediate states, and validate
 messages received from the FSM with assert_receive/3.
No other code besides assert_state/2, assert_payload/1, and ExUnit.Assertions.assert_receive/3 is
 permitted to fully isolate the FSM execution from side effects.

 Custom environments

In the bigger application, it might be not convenient to declare mocks for
 each and every case when Finitomata/Infinitomata might have been called under the hood.
For such cases, one might pass mox_envs: :finitomata to an FSM declaration,
 or set such a config options as config :finitomata, :mox_envs, :finitomata. That would result
 in mocks implemented for listener: :mox in this environment(s) only.
Then the tests should have been split into two groups assuming the finitomata tests
 were generated with the mix task (see below)
mix test --exclude finitomata
MIX_ENV=finitomata mix test --exclude test --include finitomata
Don’t forget to add :finitomata env to the list of envs where mox is installed

 Test Scaffold Generation

 mix tasks to simplify testing

One might generate the tests scaffold for all possible paths in the FSM with a mix task
 mix finitomata.generate.test --module MyApp.FSM

besides the mandatory --module ModuleWithUseFinitomata argument, it also accepts
--dir and --file arguments (defaulted to test/finitomata and
Macro.underscore(module) <> "_test.exs) respectively.)

 Summary

 Functions

 Finitomata.Cache - Finitomata v0.28.0

Finitomata.Cache

The self-curing cache based on Finitomata implementation.
This implementation should not be chosen for typical caching scenarios,
 use cachex and/or con_cache
 instead.
The use-case for this implementation would be somewhat like a self-updated local replica
 of the remote data. Unlike typical cache implementations, this one might keep the cached
 values up-to-date, configured by ttl: argument. Bsaed on processes (backed by Finitomata,)
 this implementation updates itself periodically, making the value retrieval almost instant.
Consider a remote service supplying currency exchange rates by polling. One might instruct
 Finitomata.Cache to retrieve values periodically (say, once per a minute,) and then
 the consumers of this cache would be able to retrieve the up-to-date values locally without
 a penalty of getting a value after a long period (cache miss.)
First of all, the Finitomata.Cache implementation should be added to a supervision tree
 {Finitomata.Cache, [
 [id: MyCache, ttl: 60_000, live?: true, type: Infinitomata, getter: &MyMod.getter/1]]}
Once the supervisor is started, the values might be retrieven as
 Finitomata.Cache.get(MyCache, :my_key_1, live?: false) # use default getter
 Finitomata.Cache.get(MyCache, :my_key, getter: fn _ -> ExtService.get(:my_key) end)

 Summary

 Functions

 Finitomata.Pool - Finitomata v0.28.0

Finitomata.Pool

The instance of FSM backed up by Finitomata.
	entry event → :__start__
	persistency → false
	listener → false
	timer → disabled
	hibernate → no
	cache_state → true

 FSM representation

graph TD
 ◎ --> |__start__| idle
 idle --> |init| ready
 idle --> |do| ready
 ready --> |do| ready
 ready --> |stop| done
 done --> |__end__| ◉

 FSM paths

↝‹:* ⇥ "__start__" ↦ :idle ⇥ "init" ↦ :ready ⇥ "do" ↦ :ready ⇥ "stop" ↦ :done ⇥ "__end__" ↦ :*›
↝‹:* ⇥ "__start__" ↦ :idle ⇥ "init" ↦ :ready ⇥ "stop" ↦ :done ⇥ "__end__" ↦ :*›
↝‹:* ⇥ "__start__" ↦ :idle ⇥ "do" ↦ :ready ⇥ "do" ↦ :ready ⇥ "stop" ↦ :done ⇥ "__end__" ↦ :*›
↝‹:* ⇥ "__start__" ↦ :idle ⇥ "do" ↦ :ready ⇥ "stop" ↦ :done ⇥ "__end__" ↦ :*›

 FSM loops

↺‹:ready ⇥ "do" ↦ :ready›

Fully asynchronous pool to manage many similar processes, like connections.
The pool is to be started using start_pool/1 directly or with pool_spec/1 in the
 supervision tree.
initialize/2 is explicitly separated because usually this is to be done after some
 external service initialization. In a case of AMQP connection management, one
 would probably start the connection process and then a pool to manage channels.
Once initialize/2 has been called, the run/3 function might be invoked to
 asynchronously execute the function passed as actor to start_pool/1.
If the callbacks on_result/2 and/or on_error/2 are defined, they will be invoked
 respectively. Finally, the message to the calling process will be sent, unless
 the third argument in a call to run/3 is nil.

 Summary

 Types

 Finitomata.Throttler - Finitomata v0.28.0

Finitomata.Throttler

The internal definition of the call to throttle.
Finitomata.Throttler.call/3 is a blocking call similar to GenServer.call/3, but
 served by the underlying GenStage producer-consumer pair.
Despite this implementation of throttling based on GenStage is provided
 mostly for internal needs, it is generic enough to use wherever. Use the childspec
 {Finitomata.Throttler, name: name, initial: [], max_demand: 3, interval: 1_000}
 to start a throttling process a