

 fireside

 v0.2.0

 [image: Logo]

 Table of contents

 	Overview

 	Creating a Fireside component

 	Changelog

 	
 Modules

 	Fireside

 	
 Mix Tasks

 	mix fireside.install

 	mix fireside.uninstall

 	mix fireside.unlock

 	mix fireside.update

 Overview

[image: Logo Light][image: Logo Dark][image: Hex version badge]
[image: Hexdocs badge]
Fireside
Fireside is a small Elixir library that allows importing code components
(templates) into an existing Elixir project together with their dependencies.
It also allows upgrading these components if they have a newer version
available.
Installation
def deps do
 [
 {:fireside, "~> 0.1", only: :dev, runtime: false}
]
end
Use cases
	Embedded microservices: using Fireside allows to split up a monolith into
microservices while still maintaining the monolith. You get the benefits of
both worlds:
	Isolated, testable microservices and improved developer productivity in
larger teams.
	One distributed BEAM runtime.

Typically, a monolith approach comes with slower reviews (in larger teams) and
the microservices approach comes with additional complexity, the need for
communication protocols, queues, etc. With Fireside and Elixir, you can
develop individual microservices and embed them into your monolith
with one command. You can even embed them in multiple monoliths.

	Framework templates: if you ever created a Phoenix project, you most
likely created it with mix phx.new ..., which creates a brand new
Elixir application. This comes with a major drawback: it requires, well, a
new Elixir project. If Phoenix's template was a Fireside component, it
would've been possible to add it to an existing Elixir app.

	Portable business logic: if you are a development agency, you can extract
reusable code into individual Fireside components, reuse them in your
projects, and update all your projects with one command.

	Paid components: if you run something like Petal,
you can make your components installable in one CLI command using Fireside.
If you ever release a new version, they can be updated in one command as
well.

	Tutorials: suppose you are writing a great coding tutorial such as
Small Development Kits or
S3 with Tigris.
You can make the code available as a Fireside component, which means your
readers can import it to an existing project with just one CLI command.

Usage
To see supported Fireside tasks, refer to
Mix Tasks.
Upgrading code components with Fireside
Fireside supports two modes of installing a code component (template): locked
and unlocked. If you are installing a code component in the "unlocked" mode,
it will just install the code and forget about it. If you are installing it in
the "locked" mode (default), it will compute the hash of its AST, annotate each
generated file as "DO NOT EDIT", and record the hash in config/fireside.exs.
Later, when updating to a newer version, Fireside will know which files belong
to which component and whether they have been mistakenly modified.
Example Fireside component
To see an example Fireside component, check out Shopifex,
a component that provides the backbone for an e-commerce online store.

 Creating a Fireside component

Fireside config
In order to turn an existing Elixir project into a Fireside component, you
simply need to add a fireside.exs file in the root of your project,
with contents similar to the following:
defmodule MyComponent.FiresideConfig do
 def config do
 [
 name: :my_component,
 version: 1,
 files: [
 required: [
 "lib/my_component/context.ex",
 "lib/my_component/context/**/*.{ex,exs}",
 "test/my_component/**/*_test.{ex,exs}"
],
 optional: [
 "lib/shopifex_web/endpoint.ex"
]
]
]
 end
end
Igniter will then import all files at the provided globs and replace
MyComponent with the name of your app (e.g. MyApp) and :my_component
with the Mix project name of your app (e.g. :my_app).
Note
Replacing is done by comparing prefixes; that is, MyComponentWeb will
become MyAppWeb. Similarly, :my_component_web will become
my_app_web.
Required files
Files marked as required will be installed if there are no existing
conflicting files with the same name. Fireside will track these files in
config/fireside.exs and they will be updated each time they are updated
in the remote.
Optional files
Files marked as optional will be installed only if they don't already exist.
(This also means that they will only ever be installed once, even if their
remote implementation changes.)
For example, if you're working on a component that emits messages to PubSub
(but doesn't require receiving messages from it), you may add a simple
placeholder implementation like:
defmodule MyComponentWeb.Endpoint do
 def broadcast(_, _, _), do: :ok
end
Then, if the component is being imported into a Phoenix project, the default
Phoenix endpoint.ex will remain used; otherwise, the optional placeholder
implementation will be used.
Fireside does not track optional files in config/fireside.exs.
Additional setup (optional)
Sometimes, simply importing files is not sufficient to fully install a
component. For instance, if the configuration in config/config.exs needs
to change for the component to work, you may define a setup/1 method and
use Igniter to add manual code generation
logic.
For example, if you are adding Ash resources, you may
need to add domains to config :my_app, ash_domains: [] and generate
migrations. You can achieve this with the following setup/1 function:
def setup(igniter) do
 app_name = Igniter.Project.Application.app_name(igniter)

 igniter
 |> Igniter.Project.Config.configure(
 "config.exs",
 app_name,
 [:ash_domains],
 [MyComponent.Products],
 updater: fn zipper ->
 Igniter.Code.List.append_new_to_list(zipper, MyComponent.Products)
 end
)
 |> Ash.Igniter.codegen("setup_products")
 |> Igniter.add_notice("Make sure to run `mix ash.migrate`.")
end
Note: setup/1 needs to return an %Igniter{} as well.
Versioning
Fireside supports component versioning. Sometimes, these version changes
require manual steps such as changing configuration, generating migrations, or
simply adding plain notices. In that case, optional upgrade/3 hooks can be
defined. They look as follows:
def upgrade(igniter, 1, 2) do
 # add component migration logic here
 igniter
 |> ...
end

 Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.
v0.2.0 (2025-06-24)
Improvements
	migrate to using .fireside.exs instead of config/fireside.exs. NOTE: this is a breaking
change that requires manual migration of the component config.
	add --force and --no-hash options to mix fireside.update.
	add --no-hash option to mix fireside.install.
	upgrade to Igniter ~> 0.6.

v0.1.4 (2024-09-09)
Fixes
	use Igniter.Util.DepsCompile.run() instead of Mix.Task.run("deps.compile")
	upgrade deprecated code

v0.1.3 (2024-08-16)
Fixes
	remove append?: true when installing components (will be reverted)
	minor wording changes across documentation

v0.1.2 (2024-08-14)
Improvements
	add small Fireside logo to docs

v0.1.1 (2024-08-14)
Improvements
	add Fireside logo and hex badges

Fixes
	typos

v0.1.0 (2024-08-14)
Improvements
	change the format of fireside.exs and config/fireside.exs
	add fireside.unlock and fireside.uninstall
	add versioning and component upgrades
	add --unlocked option to fireside.install and --yes option to all tasks
	add Git and Github support
	documentation improvements

v0.0.3 (2024-08-01)
Improvements
	Add Changelog to docs

Bug fixes
	support no overwritable in fireside.install.

v0.0.2 (2024-07-21)
Improvements
	replace OTP application name in addition to module prefixes
(i.e. :my_app in addition to MyApp)

Fireside

This is the documentation for the Fireside project.

 Summary

 Functions

 component_installed?(component_name)

 Checks if the provided component is installed in the current project.

 install(component_name, source, opts \\ [])

 Installs a Fireside component into the project.

 uninstall(component_name, opts \\ [])

 Uninstalls a Fireside component from the project.

 unlock(component_name, opts)

 Unlocks a Fireside component, removing it from Fireside's tracking without deleting it.

 update(component_name, source \\ nil, opts \\ [])

 Updates a previously installed Fireside component.

 update_component_config(igniter, component_name, new_config)

 Functions

 component_installed?(component_name)

Checks if the provided component is installed in the current project.
Examples
iex> Fireside.component_installed?(:example_component)
false

 install(component_name, source, opts \\ [])

Installs a Fireside component into the project.
This is done by importing files listed in config/0 (in fireside.exs) of the target component.
If the component defines a setup/1 method, it will also be called.
Parameters
	component_name: The name of the component to install. It can be an atom or a string.
	source: The source from which to install the component. The supported formats are:	[path: component_path]: Install from a local path.
	[{:git, git_url} | git_opts]: Install from a Git repository. git_opts can include :ref, :branch, or :tag.

	[{:github, github_repo} | git_opts]: Install from a GitHub repository. git_opts can include :ref, :branch, or :tag.

	opts: A keyword list of options. Supported options include:	:unlocked? - When true, the component is installed without being tracked by Fireside.
	:yes? - When true, auto-accepts all prompts during installation.
	:no_hash? - When true, skips adding hash to files and .fireside.exs.

Examples
iex> Fireside.install(:my_component, [path: "/path/to/component"], unlocked?: true)
:ok

iex> Fireside.install(:my_component, [git: "https://github.com/user/repo.git"] ++ [tag: "v1.0.0"])
:ok

iex> Fireside.install(:my_component, [github: "user/repo"] ++ [branch: "main"])
:ok

 uninstall(component_name, opts \\ [])

Uninstalls a Fireside component from the project.
This function will attempt to remove all files and configurations associated with the component that were
managed by Fireside. However, there are certain manual steps you may need to perform after the
uninstallation; read more in the "Warning" below.
Parameters
	component_name: The name of the component to uninstall. It can be an atom or a string.
	opts: A keyword list of options. Supported options include:	:yes? - When true, auto-accepts all prompts during the uninstallation.

Warning
After uninstalling a component, you may need to manually:
	Remove Optional or Manually Added Files: If the component installation added files that were not tracked by Fireside
(e.g., files that were marked as :optional or added outside the standard component structure via Igniter),
these will not be automatically deleted. You will need to identify and remove these files yourself, if needed.
	Cleanup Configuration Changes: If the component installation modified configuration files
(e.g., config/config.exs, config/dev.exs), these changes will not be reverted automatically.
Review these files and manually remove any settings or configurations related to the uninstalled component.
	Remove Unused Dependencies: Dependencies installed alongside the component will not be automatically
removed, as Fireside cannot determine if they are used elsewhere in your project. You may need to manually
remove these dependencies from your mix.exs file and run mix deps.clean to fully remove them from your project.

Examples
iex> Fireside.uninstall(:my_component)
:ok

 unlock(component_name, opts)

Unlocks a Fireside component, removing it from Fireside's tracking without deleting it.
This is useful if you want to continue using the component but no longer want it to be managed
by Fireside.
Parameters
	component_name: The name of the component to unlock. It can be an atom or a string.
	opts: A keyword list of options. Supported options include:	:yes? - When true, auto-accepts all prompts during the unlock process.

Examples
iex> Fireside.unlock(:my_component)
:ok

 update(component_name, source \\ nil, opts \\ [])

Updates a previously installed Fireside component.
This is done by reimporting files listed in config/0 (in fireside.exs) of the target component.
If the component's version is being changed and a corresponding upgrade/3 migration is defined,
it will also be executed. (Note: multiple upgrade/3 migrations may be executed if the app's
version is changed by more than 1.)
Before updating, the integrity of the installed component will be checked by comparing the hash
of the AST with the hash listed in config/fireside.exs. If the installed component has been
modified and has diverged from its original source, the operation will be aborted, as it might
lead to a regression since any added/removed functionality may be overwritten by remote updates.
In this case, it is recommended to run unlock/2 to instruct Fireside to stop tracking the
component's source.
Parameters
	component_name: The name of the component to update. It can be an atom or a string.
	source: The source from which to update the component. If nil (default), the source from the
local component configuration is used. Otherwise, the supported formats are:	[path: component_path]: Install from a local path.
	[{:git, git_url} | git_opts]: Install from a Git repository. git_opts can include :ref, :branch, or :tag.

	[{:github, github_repo} | git_opts]: Install from a GitHub repository. git_opts can include :ref, :branch, or :tag.

	opts: A keyword list of options. Supported options include:	:yes? - When true, auto-accepts all prompts during the update.
	:force? - When true, skips integrity check and overwrites files.
	:no_hash? - When true, skips adding hash to files and .fireside.exs.

Examples
iex> Fireside.update(:my_component)
:ok

iex> Fireside.update(:my_component, [git: "https://github.com/user/repo.git"] ++ [branch: "dev"])
:ok

 update_component_config(igniter, component_name, new_config)

mix fireside.install

Installs a Fireside component. This task runs Fireside.install/3.
Usage
mix fireside.install component@...
Supported formats
	component@path:/path/to/component
	component@git:{git_uri}
	component@git:{git_uri}@ref:{ref}
	component@git:{git_uri}@branch:{ref}
	component@git:{git_uri}@tag:{ref}
	component@github:{org}/{repo_name}
	component@github:{org}/{repo_name}@ref:{ref}
	component@github:{org}/{repo_name}@branch:{branch}
	component@github:{org}/{repo_name}@tag:{tag}

Options
	--unlocked - the component will be installed without being tracked by Fireside.
	--yes - auto-accept all prompts
	--no-hash - skip adding hash to files and .fireside.exs

mix fireside.uninstall

Uninstalls a Fireside component. This task runs Fireside.uninstall/2.
Usage
mix fireside.uninstall component
Supported formats
	component - The installed component's name.

Options
	--yes - auto-accept all prompts

mix fireside.unlock

Unlocks a Fireside component. This task runs Fireside.unlock/2.
Usage
mix fireside.unlock component
Supported formats
	component - The installed component's name.

Options
	--yes - auto-accept all prompts

mix fireside.update

Updates a Fireside component. This task runs Fireside.update/3.
Usage
mix fireside.update component@...
Supported formats
	component - The component's source will be fetched from the local component config (in config/fireside.exs).
	component@path:/path/to/component
	component@git:{git_uri}
	component@git:{git_uri}@ref:{ref}
	component@git:{git_uri}@branch:{ref}
	component@git:{git_uri}@tag:{ref}
	component@github:{org}/{repo_name}
	component@github:{org}/{repo_name}@ref:{ref}
	component@github:{org}/{repo_name}@branch:{branch}
	component@github:{org}/{repo_name}@tag:{tag}

Options
	--yes - auto-accept all prompts
	--force - skip integrity check and overwrite files
	--no-hash - skip adding hash to files and .fireside.exs

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png

