

 Fivetrex

 v0.2.1

 Table of contents

 	Fivetrex

 	LICENSE

 	
 Modules

 	Fivetrex

 	API Modules

 	Fivetrex.Connectors

 	Fivetrex.Destinations

 	Fivetrex.Groups

 	Fivetrex.Webhooks

 	Webhook Handling

 	Fivetrex.WebhookPlug

 	Fivetrex.WebhookSignature

 	Models

 	Fivetrex.Models.Column

 	Fivetrex.Models.Connector

 	Fivetrex.Models.Destination

 	Fivetrex.Models.Group

 	Fivetrex.Models.LogEntry

 	Fivetrex.Models.Schema

 	Fivetrex.Models.SchemaConfig

 	Fivetrex.Models.SyncStatus

 	Fivetrex.Models.Table

 	Fivetrex.Models.Webhook

 	Fivetrex.Models.WebhookEvent

 	Guides

 	Fivetrex.SyncLogs

 	Infrastructure

 	Fivetrex.Client

 	Fivetrex.Error

 	Fivetrex.Retry

 	Fivetrex.Stream

 Fivetrex

[image: Hex.pm]
[image: Documentation]
Elixir client library for the
Fivetran REST API.
Fivetrex provides a powerful, idiomatic Elixir interface for managing Fivetran
resources including Groups, Connectors, and Destinations. Built on
Req, it offers streaming pagination, structured error
handling, and a clean functional API.
Features
	Core API Coverage - Full CRUD operations for Groups, Connectors,
Destinations, and Webhooks
	Webhook Support - Create/manage webhooks with HMAC-SHA256 signature
verification and a ready-to-use Plug for Phoenix
	Schema Metadata - Query and configure connector schema, table, and column
settings
	Stream-based Pagination - Efficiently iterate over thousands of resources
using Elixir Streams
	Typed Structs - All responses are parsed into typed structs for
compile-time safety
	Structured Errors - Pattern-matchable error types for robust error
handling
	Built-in Retry - Automatic retry with exponential backoff for rate limits
and transient errors
	Safety Valves - Destructive operations like resync! require explicit
confirmation
	Zero Configuration - Works out of the box with just API credentials

API Coverage
Fivetrex covers the core Fivetran API resources needed for managing data
pipelines:
	Fivetran API Resource	Status	Functions
	Groups	✅ Full	list, stream, get, create, update, delete
	Connectors	✅ Full	list, stream, get, create, update, delete, sync, resync!, pause, resume, get_state, get_sync_status, get_schema_config, update_schema_config, reload_schema_config, get_table_columns, set_sync_frequency
	Destinations	✅ Full	get, create, update, delete, test
	Webhooks	✅ Full	list, stream, get, create_account, create_group, update, delete, test
	Users	❌	Not implemented
	Teams	❌	Not implemented
	Roles	❌	Not implemented
	Transformations	❌	Not implemented
	Certificates	❌	Not implemented
	Log Services	❌	Not implemented

Note: The implemented resources (Groups, Connectors, Destinations,
Webhooks) cover the most commonly used Fivetran functionality for managing
data pipelines programmatically.

Installation
Add fivetrex to your list of dependencies in mix.exs:
def deps do
 [
 {:fivetrex, "~> 0.2.0"}
]
end
Quick Start
Creating a Client
All API operations require a client configured with your Fivetran API
credentials:
Create a client with explicit credentials
client = Fivetrex.client(
 api_key: "your_api_key",
 api_secret: "your_api_secret"
)

Or use environment variables
client = Fivetrex.client(
 api_key: System.get_env("FIVETRAN_API_KEY"),
 api_secret: System.get_env("FIVETRAN_API_SECRET")
)
Basic Operations
List all groups
{:ok, %{items: groups, next_cursor: _}} = Fivetrex.Groups.list(client)

Get a specific group
{:ok, group} = Fivetrex.Groups.get(client, "group_id")

Create a new group
{:ok, group} = Fivetrex.Groups.create(client, %{name: "My Data Warehouse"})

List connectors in a group
{:ok, %{items: connectors}} = Fivetrex.Connectors.list(client, group.id)

Trigger a sync
{:ok, _} = Fivetrex.Connectors.sync(client, "connector_id")

Pause and resume connectors
{:ok, _} = Fivetrex.Connectors.pause(client, "connector_id")
{:ok, _} = Fivetrex.Connectors.resume(client, "connector_id")
Streaming
Fivetrex uses Elixir Streams to handle Fivetran's cursor-based pagination
transparently. This allows you to iterate over thousands of resources without
loading them all into memory:
Stream all groups
client
|> Fivetrex.Groups.stream()
|> Enum.each(fn group ->
 IO.puts("Group: #{group.name}")
end)

Find all syncing connectors across all groups
syncing_connectors =
 client
 |> Fivetrex.Groups.stream()
 |> Stream.flat_map(fn group ->
 Fivetrex.Connectors.stream(client, group.id)
 end)
 |> Stream.filter(&Fivetrex.Models.Connector.syncing?/1)
 |> Enum.to_list()

Take only the first 10 broken connectors
broken =
 Fivetrex.Connectors.stream(client, "group_id")
 |> Stream.filter(fn c -> c.status["sync_state"] == "broken" end)
 |> Enum.take(10)
Working with Connectors
Creating a Connector
{:ok, connector} = Fivetrex.Connectors.create(client, %{
 group_id: "group_id",
 service: "postgres",
 config: %{
 host: "db.example.com",
 port: 5432,
 database: "production",
 user: "fivetran_user",
 password: "secret"
 }
})
Sync Operations
Trigger an incremental sync
{:ok, _} = Fivetrex.Connectors.sync(client, connector.id)

Get current sync state
{:ok, state} = Fivetrex.Connectors.get_state(client, connector.id)

Historical resync (DANGEROUS - requires confirmation)
This wipes all data and re-imports from scratch
{:ok, _} = Fivetrex.Connectors.resync!(client, connector.id, confirm: true)
Connector Helper Functions
alias Fivetrex.Models.Connector

Check connector status
Connector.syncing?(connector) # => true/false
Connector.paused?(connector) # => true/false
Connector.sync_state(connector) # => "scheduled" | "syncing" | "paused" | nil
Working with Destinations
Get a destination
{:ok, destination} = Fivetrex.Destinations.get(client, "destination_id")

Create a Snowflake destination
{:ok, destination} = Fivetrex.Destinations.create(client, %{
 group_id: "group_id",
 service: "snowflake",
 region: "US",
 time_zone_offset: "-5",
 config: %{
 host: "account.snowflakecomputing.com",
 port: 443,
 database: "ANALYTICS",
 auth: "PASSWORD",
 user: "FIVETRAN_USER",
 password: "secret"
 }
})

Test destination connectivity
{:ok, result} = Fivetrex.Destinations.test(client, destination.id)
Working with Webhooks
Webhooks provide real-time notifications about Fivetran events like sync starts
and completions.
Creating Webhooks
Create an account-level webhook (receives events for all connectors)
{:ok, webhook} = Fivetrex.Webhooks.create_account(client, %{
 url: "https://example.com/fivetran/webhook",
 events: ["sync_start", "sync_end"],
 active: true,
 secret: "my_webhook_secret"
})

Create a group-level webhook (receives events for connectors in that group)
{:ok, webhook} = Fivetrex.Webhooks.create_group(client, "group_id", %{
 url: "https://example.com/fivetran/webhook",
 events: ["sync_end"],
 active: true
})

List all webhooks
{:ok, %{items: webhooks}} = Fivetrex.Webhooks.list(client)

Test a webhook
{:ok, _} = Fivetrex.Webhooks.test(client, webhook.id)
Handling Incoming Webhooks
Fivetrex includes a Plug for Phoenix/Bandit applications that handles signature
verification automatically:
In your Phoenix controller
defmodule MyAppWeb.FivetranWebhookController do
 use MyAppWeb, :controller

 plug Fivetrex.WebhookPlug,
 secret: {MyApp.Config, :fivetran_webhook_secret, []}

 def receive(conn, _params) do
 event = conn.assigns.fivetran_event

 case event.event do
 "sync_end" -> handle_sync_completion(event)
 "sync_start" -> handle_sync_start(event)
 _ -> :ok
 end

 json(conn, %{status: "ok"})
 end
end
For manual signature verification:
Verify webhook signature
case Fivetrex.WebhookSignature.verify(raw_body, signature, secret) do
 :ok -> process_webhook(payload)
 {:error, :invalid_signature} -> reject_request()
 {:error, :missing_signature} -> reject_request()
end
Schema Metadata
Query and configure which schemas, tables, and columns are synced.
Get schema configuration for a connector
{:ok, config} = Fivetrex.Connectors.get_schema_config(client, "connector_id")

Iterate through schemas and tables
for {schema_name, schema} <- config.schemas, schema.enabled do
 IO.puts("Schema: #{schema_name}")

 for {table_name, table} <- schema.tables, table.enabled do
 IO.puts(" Table: #{table_name} (#{table.sync_mode})")
 end
end

Get columns for a specific table
{:ok, columns} = Fivetrex.Connectors.get_table_columns(
 client,
 "connector_id",
 "schema_name",
 "table_name"
)

Update schema configuration
{:ok, updated} = Fivetrex.Connectors.update_schema_config(client, "connector_id", %{
 schemas: %{
 "public" => %{
 enabled: true,
 tables: %{
 "users" => %{enabled: true},
 "logs" => %{enabled: false}
 }
 }
 }
})

Reload schema (detect new tables/columns from source)
{:ok, config} = Fivetrex.Connectors.reload_schema_config(client, "connector_id")
Sync Status and Frequency
Get current sync status
{:ok, status} = Fivetrex.Connectors.get_sync_status(client, "connector_id")

if Fivetrex.Models.SyncStatus.syncing?(status) do
 IO.puts("Sync in progress...")
end

IO.puts("Last successful sync: #{status.succeeded_at}")

Set sync frequency (in minutes)
{:ok, connector} = Fivetrex.Connectors.set_sync_frequency(client, "connector_id", 60)
Error Handling
All API functions return {:ok, result} on success or
{:error, %Fivetrex.Error{}} on failure. Errors are structured for easy pattern
matching:
case Fivetrex.Connectors.get(client, "connector_id") do
 {:ok, connector} ->
 # Success - connector is a %Fivetrex.Models.Connector{}
 IO.puts("Found connector: #{connector.id}")

 {:error, %Fivetrex.Error{type: :not_found}} ->
 # 404 - Resource doesn't exist
 IO.puts("Connector not found")

 {:error, %Fivetrex.Error{type: :unauthorized}} ->
 # 401 - Invalid API credentials
 IO.puts("Check your API key and secret")

 {:error, %Fivetrex.Error{type: :rate_limited, retry_after: seconds}} ->
 # 429 - Too many requests
 IO.puts("Rate limited, retry after #{seconds} seconds")
 Process.sleep(seconds * 1000)
 # Retry...

 {:error, %Fivetrex.Error{type: :server_error, status: status}} ->
 # 5xx - Fivetran server error
 IO.puts("Server error: #{status}")

 {:error, %Fivetrex.Error{message: message}} ->
 # Catch-all for other errors
 IO.puts("Error: #{message}")
end
Error Types
	Type	HTTP Status	Description
	:unauthorized	401	Invalid or missing API credentials
	:not_found	404	Resource does not exist
	:rate_limited	429	Too many requests (check retry_after)
	:server_error	5xx	Fivetran server error
	:unknown	Other	Unexpected error

API Reference
Groups
	Function	Description
	Fivetrex.Groups.list/2	List all groups with pagination
	Fivetrex.Groups.stream/2	Stream all groups (handles pagination)
	Fivetrex.Groups.get/2	Get a group by ID
	Fivetrex.Groups.create/2	Create a new group
	Fivetrex.Groups.update/3	Update a group
	Fivetrex.Groups.delete/2	Delete a group

Connectors
	Function	Description
	Fivetrex.Connectors.list/3	List connectors in a group
	Fivetrex.Connectors.stream/3	Stream all connectors in a group
	Fivetrex.Connectors.get/2	Get a connector by ID
	Fivetrex.Connectors.create/2	Create a new connector
	Fivetrex.Connectors.update/3	Update a connector
	Fivetrex.Connectors.delete/2	Delete a connector
	Fivetrex.Connectors.sync/2	Trigger an incremental sync
	Fivetrex.Connectors.resync!/3	Trigger a historical resync (destructive!)
	Fivetrex.Connectors.get_state/2	Get connector sync state
	Fivetrex.Connectors.pause/2	Pause a connector
	Fivetrex.Connectors.resume/2	Resume a paused connector
	Fivetrex.Connectors.get_sync_status/2	Get sync status summary
	Fivetrex.Connectors.set_sync_frequency/3	Set sync frequency in minutes
	Fivetrex.Connectors.get_schema_config/2	Get schema/table/column configuration
	Fivetrex.Connectors.update_schema_config/3	Update schema configuration
	Fivetrex.Connectors.reload_schema_config/2	Reload schema from source
	Fivetrex.Connectors.get_table_columns/4	Get columns for a specific table

Destinations
	Function	Description
	Fivetrex.Destinations.get/2	Get a destination by ID
	Fivetrex.Destinations.create/2	Create a new destination
	Fivetrex.Destinations.update/3	Update a destination
	Fivetrex.Destinations.delete/2	Delete a destination
	Fivetrex.Destinations.test/2	Run destination connection tests

Webhooks
	Function	Description
	Fivetrex.Webhooks.list/2	List all webhooks
	Fivetrex.Webhooks.stream/2	Stream all webhooks
	Fivetrex.Webhooks.get/2	Get a webhook by ID
	Fivetrex.Webhooks.create_account/2	Create an account-level webhook
	Fivetrex.Webhooks.create_group/3	Create a group-level webhook
	Fivetrex.Webhooks.update/3	Update a webhook
	Fivetrex.Webhooks.delete/2	Delete a webhook
	Fivetrex.Webhooks.test/2	Send a test event to a webhook

Webhook Handling
	Function/Module	Description
	Fivetrex.WebhookPlug	Plug for Phoenix webhook endpoints
	Fivetrex.WebhookSignature.verify/3	Verify webhook signature
	Fivetrex.WebhookSignature.compute_signature/2	Compute HMAC-SHA256 signature

Configuration
Runtime Configuration
Fivetrex is designed for runtime configuration. Create clients with credentials
at runtime rather than compile-time:
In your application code
defmodule MyApp.Fivetran do
 def client do
 Fivetrex.client(
 api_key: Application.get_env(:my_app, :fivetran_api_key),
 api_secret: Application.get_env(:my_app, :fivetran_api_secret)
)
 end
end

In config/runtime.exs
config :my_app,
 fivetran_api_key: System.get_env("FIVETRAN_API_KEY"),
 fivetran_api_secret: System.get_env("FIVETRAN_API_SECRET")
Testing with Custom Base URL
For testing, you can override the base URL:
client = Fivetrex.client(
 api_key: "test",
 api_secret: "test",
 base_url: "http://localhost:4000"
)
Development
Run all checks (format, credo, compile, test)
mix precommit

Run CI checks (check-formatted, credo, compile, test + integration)
mix ci

Run tests
mix test

Run tests with coverage
mix test --cover

Fivetrex uses Bypass for unit tests. Integration
tests run against the real Fivetran API and require credentials in .env.
Documentation
Generate documentation locally:
mix docs
open doc/index.html

License
MIT License. See LICENSE for details.
Links
	Fivetran REST API Documentation
	Fivetran API Reference
	HexDocs

 LICENSE

MIT License

Copyright (c) 2025 Edgar Gomes de Araujo

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Fivetrex

Elixir client library for the Fivetran REST API.
Fivetrex provides a powerful, idiomatic Elixir interface for managing Fivetran
resources including Groups, Connectors, and Destinations. Built on
Req, it offers streaming pagination, structured error
handling, and a clean functional API.
Features
	Complete API Coverage - Full CRUD operations for Groups, Connectors, and Destinations
	Stream-based Pagination - Efficiently iterate over thousands of resources using Elixir Streams
	Typed Structs - All responses are parsed into typed structs for compile-time safety
	Structured Errors - Pattern-matchable error types for robust error handling
	Built-in Retry - Automatic retry with exponential backoff for transient failures
	Safety Valves - Destructive operations like resync! require explicit confirmation

Quick Start
All API operations require a client configured with your Fivetran API credentials:
Create a client
client = Fivetrex.client(
 api_key: System.get_env("FIVETRAN_API_KEY"),
 api_secret: System.get_env("FIVETRAN_API_SECRET")
)

List all groups
{:ok, %{items: groups}} = Fivetrex.Groups.list(client)

Get connectors in a group
{:ok, %{items: connectors}} = Fivetrex.Connectors.list(client, "group_123")

Trigger a sync
{:ok, _} = Fivetrex.Connectors.sync(client, "connector_abc")
Streaming
Use streams for efficient pagination over large result sets. Streams handle
Fivetran's cursor-based pagination transparently:
Stream all groups
client
|> Fivetrex.Groups.stream()
|> Enum.each(&IO.inspect/1)

Find all syncing connectors across all groups
client
|> Fivetrex.Groups.stream()
|> Stream.flat_map(fn group ->
 Fivetrex.Connectors.stream(client, group.id)
end)
|> Stream.filter(&Fivetrex.Models.Connector.syncing?/1)
|> Enum.to_list()
Handling Rate Limits and Transient Errors
Use Fivetrex.with_retry/2 to automatically retry on rate limits and server errors:
Retry with default settings (3 attempts, exponential backoff)
{:ok, %{items: groups}} = Fivetrex.with_retry(fn ->
 Fivetrex.Groups.list(client)
end)

Custom retry options
{:ok, connector} = Fivetrex.with_retry(
 fn -> Fivetrex.Connectors.get(client, "connector_id") end,
 max_attempts: 5,
 jitter: true
)

With retry logging
{:ok, _} = Fivetrex.with_retry(
 fn -> Fivetrex.Connectors.sync(client, connector_id) end,
 on_retry: fn error, attempt, delay ->
 Logger.warning("Retry #{attempt}: #{error.message}, waiting #{delay}ms")
 end
)
The retry mechanism:
	Automatically retries on :rate_limited and :server_error errors
	Respects Fivetran's retry-after header for rate limits
	Uses exponential backoff (1s, 2s, 4s, ...) capped at 30 seconds
	Does NOT retry on :unauthorized, :not_found, or :unknown errors

See Fivetrex.Retry for advanced configuration options.
Error Handling
All API functions return {:ok, result} on success or {:error, %Fivetrex.Error{}}
on failure. Errors are structured for easy pattern matching:
case Fivetrex.Connectors.get(client, "connector_id") do
 {:ok, connector} ->
 IO.puts("Found: #{connector.id}")

 {:error, %Fivetrex.Error{type: :not_found}} ->
 IO.puts("Connector not found")

 {:error, %Fivetrex.Error{type: :rate_limited, retry_after: seconds}} ->
 IO.puts("Rate limited, retry after #{seconds} seconds")
end
Modules
	Fivetrex.Groups - Manage Fivetran groups
	Fivetrex.Connectors - Manage connectors and sync operations
	Fivetrex.Destinations - Manage destination warehouses
	Fivetrex.Client - Low-level HTTP client
	Fivetrex.Error - Structured error types
	Fivetrex.Stream - Pagination utilities
	Fivetrex.Retry - Retry with exponential backoff for transient failures

Model Structs
	Fivetrex.Models.Group - Group resource
	Fivetrex.Models.Connector - Connector resource
	Fivetrex.Models.Destination - Destination resource

 Summary

 Functions

 client(opts)

 Creates a new Fivetrex client with the given credentials.

 with_retry(func, opts \\ [])

 Executes a function with automatic retry and exponential backoff.

 Functions

 client(opts)

 @spec client(keyword()) :: Fivetrex.Client.t()

Creates a new Fivetrex client with the given credentials.
The client is used for all API operations and contains authentication
information and HTTP configuration. You can create multiple clients
to work with different Fivetran accounts.
Options
	:api_key - Required. Your Fivetran API key. Generate one from
your Fivetran dashboard under Settings > API Key.

	:api_secret - Required. Your Fivetran API secret. This is shown
only once when you generate the API key.

	:base_url - Optional. Override the API base URL. Defaults to
https://api.fivetran.com/v1. Useful for testing with mock servers.

Examples
Create a client with explicit credentials:
client = Fivetrex.client(
 api_key: "your_api_key",
 api_secret: "your_api_secret"
)
Create a client using environment variables:
client = Fivetrex.client(
 api_key: System.get_env("FIVETRAN_API_KEY"),
 api_secret: System.get_env("FIVETRAN_API_SECRET")
)
Create a client for testing with a custom base URL:
client = Fivetrex.client(
 api_key: "test",
 api_secret: "test",
 base_url: "http://localhost:4000"
)
Raises
	KeyError - If :api_key or :api_secret is not provided

 with_retry(func, opts \\ [])

 @spec with_retry(
 (-> {:ok, any()} | {:error, Fivetrex.Error.t()}),
 Fivetrex.Retry.retry_opts()
) ::
 {:ok, any()} | {:error, Fivetrex.Error.t()}

Executes a function with automatic retry and exponential backoff.
This is a convenience wrapper around Fivetrex.Retry.with_backoff/2. Use it
to handle transient failures like rate limits and server errors automatically.
Parameters
	func - A zero-arity function that returns {:ok, result} or {:error, %Fivetrex.Error{}}
	opts - Optional keyword list:	:max_attempts - Maximum number of attempts (default: 3)
	:base_delay_ms - Initial delay in milliseconds (default: 1000)
	:max_delay_ms - Maximum delay cap in milliseconds (default: 30000)
	:jitter - Add random jitter to delays (default: false)
	:retry_if - Custom function to determine if error is retryable
	:on_retry - Callback function called before each retry

Returns
	{:ok, result} - The successful result from func
	{:error, %Fivetrex.Error{}} - The last error after all retries exhausted

Examples
Basic usage - retry Groups.list on rate limits
{:ok, %{items: groups}} = Fivetrex.with_retry(fn ->
 Fivetrex.Groups.list(client)
end)

With custom options
{:ok, connector} = Fivetrex.with_retry(
 fn -> Fivetrex.Connectors.get(client, "connector_id") end,
 max_attempts: 5,
 jitter: true
)

With logging callback
{:ok, _} = Fivetrex.with_retry(
 fn -> Fivetrex.Connectors.sync(client, connector_id) end,
 on_retry: fn error, attempt, delay ->
 IO.puts("Retry #{attempt} after #{delay}ms: #{error.message}")
 end
)
Retryable Errors
By default, these error types are retried:
	:rate_limited - Respects retry_after header when available
	:server_error - 5xx errors are typically transient

Non-retryable errors (returned immediately):
	:unauthorized - Invalid credentials won't become valid
	:not_found - Resource doesn't exist
	:unknown - Unexpected errors need investigation

Fivetrex.Connectors

Functions for managing Fivetran Connectors.
A Connector is the core operational entity in Fivetran, representing the pipe
between a data source (e.g., Salesforce, PostgreSQL, Google Ads) and a
destination warehouse. This module provides functions for CRUD operations
as well as sync control.
Overview
Connectors handle the actual data movement. Each connector:
	Belongs to a single group
	Connects to a specific data source type (service)
	Has configuration specific to that service type
	Maintains sync state and schedule

Connector States
Connectors have various states tracked in the status field:
	"scheduled" - Waiting for next sync
	"syncing" - Currently syncing data
	"paused" - Manually paused
	"rescheduled" - Sync was rescheduled

Use helper functions on Fivetrex.Models.Connector to check state:
Connector.syncing?(connector) # => true/false
Connector.paused?(connector) # => true/false
Common Operations
List Connectors in a Group
{:ok, %{items: connectors}} = Fivetrex.Connectors.list(client, "group_id")
Get a Connector
{:ok, connector} = Fivetrex.Connectors.get(client, "connector_id")
Trigger a Sync
{:ok, _} = Fivetrex.Connectors.sync(client, "connector_id")
Pause/Resume
{:ok, _} = Fivetrex.Connectors.pause(client, "connector_id")
{:ok, _} = Fivetrex.Connectors.resume(client, "connector_id")
Dangerous Operations
The resync!/3 function triggers a historical resync, which wipes all synced
data and re-imports from scratch. This can be expensive and time-consuming.
It requires explicit confirmation:
{:ok, _} = Fivetrex.Connectors.resync!(client, "connector_id", confirm: true)
See Also
	Fivetrex.Models.Connector - The Connector struct with helper functions
	Fivetrex.Groups - Managing the parent groups

 Summary

 Types

 sync_result()

 Result of a sync operation.

 Functions

 create(client, params)

 Creates a new connector.

 delete(client, connector_id)

 Deletes a connector.

 get(client, connector_id)

 Gets a connector by its ID.

 get_schema_config(client, connector_id)

 Gets the schema configuration for a connector.

 get_state(client, connector_id)

 Gets the current state of a connector.

 get_sync_status(client, connector_id)

 Gets a summary of the connector's current sync status.

 get_table_columns(client, connector_id, schema_name, table_name)

 Gets the columns for a specific table in a connector.

 list(client, group_id, opts \\ [])

 Lists all connectors in a group.

 pause(client, connector_id)

 Pauses a connector.

 reload_schema_config(client, connector_id, opts \\ [])

 Reloads the schema configuration from the source.

 resume(client, connector_id)

 Resumes a paused connector.

 resync!(client, connector_id, opts)

 Triggers a historical resync for a connector.

 set_sync_frequency(client, connector_id, frequency_minutes, opts \\ [])

 Sets the sync frequency for a connector.

 stream(client, group_id, opts \\ [])

 Returns a stream of all connectors in a group, handling pagination automatically.

 sync(client, connector_id)

 Triggers an incremental sync for a connector.

 update(client, connector_id, params)

 Updates an existing connector.

 update_schema_config(client, connector_id, params)

 Updates the schema configuration for a connector.

 Types

 sync_result()

 @type sync_result() :: %{
 success: boolean(),
 message: String.t() | nil,
 sync_state: String.t() | nil
}

Result of a sync operation.
	:success - Whether the sync was triggered successfully
	:message - Optional message from the API
	:sync_state - Current sync state after triggering (if available)

 Functions

 create(client, params)

 @spec create(Fivetrex.Client.t(), map()) ::
 {:ok, Fivetrex.Models.Connector.t()} | {:error, Fivetrex.Error.t()}

Creates a new connector.
The connector configuration is highly dependent on the service type. See
Fivetran's documentation for service-specific configuration options.
Parameters
	client - The Fivetrex client
	params - A map containing:	:group_id - Required. The group to create the connector in.
	:service - Required. The connector type (e.g., "postgres", "salesforce").
	:config - Required. Service-specific configuration map.
	:paused - Optional. Start in paused state (default: false).
	:sync_frequency - Optional. Sync frequency in minutes.

Returns
	{:ok, Connector.t()} - The created connector
	{:error, Fivetrex.Error.t()} - On failure

Examples
Create a PostgreSQL connector:
{:ok, connector} = Fivetrex.Connectors.create(client, %{
 group_id: "group_id",
 service: "postgres",
 config: %{
 host: "db.example.com",
 port: 5432,
 database: "production",
 user: "fivetran_user",
 password: "secret"
 }
})
Create a paused connector:
{:ok, connector} = Fivetrex.Connectors.create(client, %{
 group_id: "group_id",
 service: "salesforce",
 paused: true,
 config: %{...}
})
Create with Connect Card for OAuth flows:
{:ok, connector} = Fivetrex.Connectors.create(client, %{
 group_id: "group_id",
 service: "google_analytics_4",
 connect_card_config: %{
 redirect_uri: "https://your.site/callback",
 hide_setup_guide: false
 }
})

connector.connect_card will contain:
%{
"token" => "eyJ0eXAiOiJKV1QiLCJh...",
"uri" => "https://fivetran.com/connect-card/setup?auth=..."
}

redirect_url = connector.connect_card["uri"]

 delete(client, connector_id)

 @spec delete(Fivetrex.Client.t(), String.t()) :: :ok | {:error, Fivetrex.Error.t()}

Deletes a connector.
Warning: This permanently deletes the connector and all its sync history.
The synced data in your destination is not affected.
Parameters
	client - The Fivetrex client
	connector_id - The ID of the connector to delete

Returns
	:ok - On successful deletion
	{:error, Fivetrex.Error.t()} - On failure

Examples
:ok = Fivetrex.Connectors.delete(client, "old_connector_id")

 get(client, connector_id)

 @spec get(Fivetrex.Client.t(), String.t()) ::
 {:ok, Fivetrex.Models.Connector.t()} | {:error, Fivetrex.Error.t()}

Gets a connector by its ID.
Parameters
	client - The Fivetrex client
	connector_id - The unique identifier of the connector

Returns
	{:ok, Connector.t()} - The connector
	{:error, Fivetrex.Error.t()} - On failure

Examples
{:ok, connector} = Fivetrex.Connectors.get(client, "connector_id")
IO.puts("Service: #{connector.service}")
IO.puts("Syncing: #{Connector.syncing?(connector)}")

 get_schema_config(client, connector_id)

 @spec get_schema_config(Fivetrex.Client.t(), String.t()) ::
 {:ok, Fivetrex.Models.SchemaConfig.t()} | {:error, Fivetrex.Error.t()}

Gets the schema configuration for a connector.
Returns the current schema, table, and column configuration including
enabled/disabled states and sync modes.
Parameters
	client - The Fivetrex client
	connector_id - The ID of the connector

Returns
	{:ok, SchemaConfig.t()} - The schema configuration
	{:error, Fivetrex.Error.t()} - On failure

Note
Only explicitly configured (non-default) columns are returned in this response.
For a complete column list, use get_table_columns/4.
Examples
{:ok, config} = Fivetrex.Connectors.get_schema_config(client, "connector_id")

Iterate through schemas and tables
for {schema_name, schema} <- config.schemas, schema.enabled do
 IO.puts("Schema: #{schema_name}")

 for {table_name, table} <- schema.tables, table.enabled do
 IO.puts(" Table: #{table_name} (sync_mode: #{table.sync_mode})")
 end
end

 get_state(client, connector_id)

 @spec get_state(Fivetrex.Client.t(), String.t()) ::
 {:ok, map()} | {:error, Fivetrex.Error.t()}

Gets the current state of a connector.
Returns detailed sync state information including cursor positions, which
can be useful for debugging sync issues.
Parameters
	client - The Fivetrex client
	connector_id - The ID of the connector

Returns
	{:ok, map()} - The connector state as a raw map
	{:error, Fivetrex.Error.t()} - On failure

Examples
{:ok, state} = Fivetrex.Connectors.get_state(client, "connector_id")
IO.inspect(state["state"])

 get_sync_status(client, connector_id)

 @spec get_sync_status(Fivetrex.Client.t(), String.t()) ::
 {:ok, Fivetrex.Models.SyncStatus.t()} | {:error, Fivetrex.Error.t()}

Gets a summary of the connector's current sync status.
Returns a structured view of the connector's sync state including
last success/failure times. For detailed sync history, configure Fivetran's
Log Service to send logs to your data warehouse.
Parameters
	client - The Fivetrex client
	connector_id - The ID of the connector

Returns
	{:ok, SyncStatus.t()} - A struct containing:
	:sync_state - Current state (e.g., "syncing", "scheduled")
	:succeeded_at - Last successful sync timestamp
	:failed_at - Last failed sync timestamp
	:is_historical_sync - Whether a historical sync is in progress
	:update_state - Update status

	{:error, Fivetrex.Error.t()} - On failure

Examples
{:ok, status} = Fivetrex.Connectors.get_sync_status(client, "connector_id")
IO.puts("Current state: #{status.sync_state}")
IO.puts("Last success: #{status.succeeded_at}")

if SyncStatus.syncing?(status) do
 IO.puts("Sync in progress...")
end

 get_table_columns(client, connector_id, schema_name, table_name)

 @spec get_table_columns(Fivetrex.Client.t(), String.t(), String.t(), String.t()) ::
 {:ok, %{required(String.t()) => Fivetrex.Models.Column.t()}}
 | {:error, Fivetrex.Error.t()}

Gets the columns for a specific table in a connector.
Returns the complete column list for a table, including columns using
default settings (which may be omitted from get_schema_config/2).
Parameters
	client - The Fivetrex client
	connector_id - The ID of the connector
	schema_name - The source schema name
	table_name - The source table name

Returns
	{:ok, %{String.t() => Column.t()}} - Map of column name to Column struct
	{:error, Fivetrex.Error.t()} - On failure

Examples
{:ok, columns} = Fivetrex.Connectors.get_table_columns(
 client,
 "connector_id",
 "public",
 "users"
)

Find primary key columns
primary_keys =
 columns
 |> Enum.filter(fn {_name, col} -> col.is_primary_key end)
 |> Enum.map(fn {name, _col} -> name end)

Find hashed columns
hashed =
 columns
 |> Enum.filter(fn {_name, col} -> col.hashed end)
 |> Enum.map(fn {name, _col} -> name end)

 list(client, group_id, opts \\ [])

 @spec list(Fivetrex.Client.t(), String.t(), keyword()) ::
 {:ok,
 %{items: [Fivetrex.Models.Connector.t()], next_cursor: String.t() | nil}}
 | {:error, Fivetrex.Error.t()}

Lists all connectors in a group.
Returns a paginated list of connectors belonging to the specified group.
Parameters
	client - The Fivetrex client
	group_id - The ID of the group to list connectors from
	opts - Optional keyword list:	:cursor - Pagination cursor from a previous response
	:limit - Maximum items per page (max 1000)

Returns
	{:ok, %{items: [Connector.t()], next_cursor: String.t() | nil}} - Success

	{:error, Fivetrex.Error.t()} - On failure

Examples
{:ok, %{items: connectors, next_cursor: cursor}} =
 Fivetrex.Connectors.list(client, "group_id")

Check connector states
syncing = Enum.filter(connectors, &Connector.syncing?/1)

 pause(client, connector_id)

 @spec pause(Fivetrex.Client.t(), String.t()) ::
 {:ok, Fivetrex.Models.Connector.t()} | {:error, Fivetrex.Error.t()}

Pauses a connector.
A paused connector will not sync until resumed. This is a convenience
function that calls update/3 with paused: true.
Parameters
	client - The Fivetrex client
	connector_id - The ID of the connector to pause

Returns
	{:ok, Connector.t()} - The paused connector
	{:error, Fivetrex.Error.t()} - On failure

Examples
{:ok, connector} = Fivetrex.Connectors.pause(client, "connector_id")
true = Connector.paused?(connector)

 reload_schema_config(client, connector_id, opts \\ [])

 @spec reload_schema_config(Fivetrex.Client.t(), String.t(), keyword()) ::
 {:ok, Fivetrex.Models.SchemaConfig.t()} | {:error, Fivetrex.Error.t()}

Reloads the schema configuration from the source.
This fetches the latest schema from the data source and updates the
connector's schema configuration with any new schemas, tables, or columns.
This can be slow for large schemas.
Parameters
	client - The Fivetrex client
	connector_id - The ID of the connector
	opts - Optional keyword list:	:exclude_mode - How to handle newly discovered items:	"PRESERVE" (default) - Keep existing enabled/disabled settings
	"INCLUDE" - Enable all new schemas and tables
	"EXCLUDE" - Disable all new schemas and tables

Returns
	{:ok, SchemaConfig.t()} - The reloaded schema configuration
	{:error, Fivetrex.Error.t()} - On failure

Examples
Reload with default settings:
{:ok, config} = Fivetrex.Connectors.reload_schema_config(client, "connector_id")
Reload and enable all new items:
{:ok, config} = Fivetrex.Connectors.reload_schema_config(
 client,
 "connector_id",
 exclude_mode: "INCLUDE"
)
Reload and disable all new items:
{:ok, config} = Fivetrex.Connectors.reload_schema_config(
 client,
 "connector_id",
 exclude_mode: "EXCLUDE"
)

 resume(client, connector_id)

 @spec resume(Fivetrex.Client.t(), String.t()) ::
 {:ok, Fivetrex.Models.Connector.t()} | {:error, Fivetrex.Error.t()}

Resumes a paused connector.
This is a convenience function that calls update/3 with paused: false.
The connector will begin syncing according to its schedule.
Parameters
	client - The Fivetrex client
	connector_id - The ID of the connector to resume

Returns
	{:ok, Connector.t()} - The resumed connector
	{:error, Fivetrex.Error.t()} - On failure

Examples
{:ok, connector} = Fivetrex.Connectors.resume(client, "connector_id")
false = Connector.paused?(connector)

 resync!(client, connector_id, opts)

 @spec resync!(Fivetrex.Client.t(), String.t(), keyword()) ::
 {:ok, map()} | {:error, Fivetrex.Error.t()}

Triggers a historical resync for a connector.
WARNING: This is a destructive operation!
A historical resync:
	Wipes all of the connector's sync state
	Re-imports ALL data from the source from scratch
	Can take a very long time for large data sources
	May incur significant costs (both Fivetran and source API costs)

The confirm: true option is required to prevent accidental invocation.
Parameters
	client - The Fivetrex client
	connector_id - The ID of the connector to resync
	opts - Keyword list:	:confirm - Required. Must be true to confirm the operation.

Returns
	{:ok, map()} - Resync triggered successfully
	{:error, Fivetrex.Error.t()} - On failure

Raises
	ArgumentError - If confirm: true is not provided

Examples
This will raise ArgumentError:
Fivetrex.Connectors.resync!(client, "connector_id", [])

This works:
{:ok, _} = Fivetrex.Connectors.resync!(client, "connector_id", confirm: true)

 set_sync_frequency(client, connector_id, frequency_minutes, opts \\ [])

 @spec set_sync_frequency(Fivetrex.Client.t(), String.t(), pos_integer(), keyword()) ::
 {:ok, Fivetrex.Models.Connector.t()} | {:error, Fivetrex.Error.t()}

Sets the sync frequency for a connector.
A convenience function for updating sync timing configuration.
Parameters
	client - The Fivetrex client
	connector_id - The ID of the connector
	frequency_minutes - Sync frequency in minutes
	opts - Optional keyword list:	:schedule_type - "auto" or "manual"
	:daily_sync_time - Time for daily syncs (e.g., "14:00")

Returns
	{:ok, Connector.t()} - The updated connector
	{:error, Fivetrex.Error.t()} - On failure

Examples
Set to sync every 60 minutes:
{:ok, connector} = Fivetrex.Connectors.set_sync_frequency(client, "id", 60)
Set daily sync at 2pm UTC:
{:ok, connector} = Fivetrex.Connectors.set_sync_frequency(client, "id", 1440,
 schedule_type: "manual",
 daily_sync_time: "14:00"
)

 stream(client, group_id, opts \\ [])

 @spec stream(Fivetrex.Client.t(), String.t(), keyword()) :: Enumerable.t()

Returns a stream of all connectors in a group, handling pagination automatically.
This is memory-efficient for groups with many connectors.
Parameters
	client - The Fivetrex client
	group_id - The ID of the group
	opts - Options passed to each list/3 call

Returns
An Enumerable.t() yielding %Fivetrex.Models.Connector{} structs.
Examples
Find all syncing connectors
syncing =
 Fivetrex.Connectors.stream(client, "group_id")
 |> Stream.filter(&Connector.syncing?/1)
 |> Enum.to_list()

Process connectors one at a time
Fivetrex.Connectors.stream(client, "group_id")
|> Enum.each(&process_connector/1)

 sync(client, connector_id)

 @spec sync(Fivetrex.Client.t(), String.t()) ::
 {:ok, sync_result()} | {:error, Fivetrex.Error.t()}

Triggers an incremental sync for a connector.
This initiates a sync that only processes data that has changed since the
last sync. The sync runs asynchronously; this function returns immediately.
Parameters
	client - The Fivetrex client
	connector_id - The ID of the connector to sync

Returns
	{:ok, sync_result()} - Sync triggered successfully. Returns a map with:
	:success - Always true on success
	:message - Optional message from the API
	:sync_state - Current sync state if available

	{:error, Fivetrex.Error.t()} - On failure

Examples
{:ok, %{success: true}} = Fivetrex.Connectors.sync(client, "connector_id")

With full result inspection
case Fivetrex.Connectors.sync(client, connector_id) do
 {:ok, %{success: true, sync_state: state}} ->
 IO.puts("Sync triggered, state: #{state}")

 {:error, error} ->
 IO.puts("Sync failed: #{error.message}")
end

 update(client, connector_id, params)

 @spec update(Fivetrex.Client.t(), String.t(), map()) ::
 {:ok, Fivetrex.Models.Connector.t()} | {:error, Fivetrex.Error.t()}

Updates an existing connector.
Parameters
	client - The Fivetrex client
	connector_id - The ID of the connector to update
	params - A map with fields to update:	:paused - Pause or resume the connector
	:sync_frequency - Sync frequency in minutes
	:config - Updated configuration (merged with existing)

Returns
	{:ok, Connector.t()} - The updated connector
	{:error, Fivetrex.Error.t()} - On failure

Examples
{:ok, connector} = Fivetrex.Connectors.update(client, "connector_id", %{
 paused: true,
 sync_frequency: 60
})

 update_schema_config(client, connector_id, params)

 @spec update_schema_config(Fivetrex.Client.t(), String.t(), map()) ::
 {:ok, Fivetrex.Models.SchemaConfig.t()} | {:error, Fivetrex.Error.t()}

Updates the schema configuration for a connector.
Use this to enable/disable schemas, tables, or columns, or to change
sync modes and destination names.
Parameters
	client - The Fivetrex client
	connector_id - The ID of the connector
	params - A map with configuration updates:	:schema_change_handling - "ALLOW_ALL", "ALLOW_COLUMNS", or "BLOCK_ALL"
	:schemas - Map of schema configurations to update

Returns
	{:ok, SchemaConfig.t()} - The updated schema configuration
	{:error, Fivetrex.Error.t()} - On failure

Examples
Disable a specific table:
{:ok, config} = Fivetrex.Connectors.update_schema_config(client, "connector_id", %{
 schemas: %{
 "public" => %{
 tables: %{
 "sensitive_data" => %{enabled: false}
 }
 }
 }
})
Hash a column for privacy:
{:ok, config} = Fivetrex.Connectors.update_schema_config(client, "connector_id", %{
 schemas: %{
 "public" => %{
 tables: %{
 "users" => %{
 columns: %{
 "email" => %{hashed: true}
 }
 }
 }
 }
 }
})
Change schema change handling:
{:ok, config} = Fivetrex.Connectors.update_schema_config(client, "connector_id", %{
 schema_change_handling: "BLOCK_ALL"
})

Fivetrex.Destinations

Functions for managing Fivetran Destinations.
A Destination configures the target data warehouse where Fivetran will load
synced data. Each group has exactly one destination. Supported destination
types include Snowflake, BigQuery, Redshift, Databricks, and many others.
Overview
Destinations are the "where" of Fivetran - they define where your data lands.
Each destination:
	Belongs to a single group
	Has a service type (e.g., "snowflake", "big_query")
	Contains credentials and connection information
	Has a region for data processing

Why No list/2 or stream/2?
Unlike Groups and Connectors, this module does not provide list/2 or stream/2
functions. This is intentional:
Fivetran's 1:1 Relationship: Each Fivetran group has exactly one destination,
and the destination ID is the same as its group ID. This means:
	To "list all destinations", simply list all groups and use their IDs
	There's no separate /destinations endpoint that returns multiple items

How to iterate over destinations:
Stream all destinations via their groups
client
|> Fivetrex.Groups.stream()
|> Stream.map(fn group ->
 case Fivetrex.Destinations.get(client, group.id) do
 {:ok, destination} -> destination
 {:error, _} -> nil
 end
end)
|> Stream.reject(&is_nil/1)
|> Enum.to_list()
Common Operations
Get a Destination
{:ok, destination} = Fivetrex.Destinations.get(client, "destination_id")
Create a Destination
{:ok, destination} = Fivetrex.Destinations.create(client, %{
 group_id: "group_id",
 service: "snowflake",
 region: "US",
 time_zone_offset: "-5",
 config: %{...}
})
Test Connection
{:ok, result} = Fivetrex.Destinations.test(client, "destination_id")
Supported Services
Common destination services include:
	"snowflake" - Snowflake Data Cloud
	"big_query" - Google BigQuery
	"redshift" - Amazon Redshift
	"databricks" - Databricks Lakehouse
	"postgres" - PostgreSQL
	"azure_sql_database" - Azure SQL Database

See Fivetran's documentation for the full list and configuration options.
Security Note
Destination configurations contain sensitive credentials. Always:
	Store credentials securely (environment variables, secrets manager)
	Use least-privilege database users
	Rotate credentials periodically

See Also
	Fivetrex.Models.Destination - The Destination struct
	Fivetrex.Groups - Managing groups that contain destinations

 Summary

 Functions

 create(client, params)

 Creates a new destination.

 delete(client, destination_id)

 Deletes a destination.

 get(client, destination_id)

 Gets a destination by its ID.

 test(client, destination_id)

 Runs connection tests for a destination.

 update(client, destination_id, params)

 Updates an existing destination.

 Functions

 create(client, params)

 @spec create(Fivetrex.Client.t(), map()) ::
 {:ok, Fivetrex.Models.Destination.t()} | {:error, Fivetrex.Error.t()}

Creates a new destination.
The configuration options are highly dependent on the destination service type.
See Fivetran's documentation for service-specific options.
Parameters
	client - The Fivetrex client
	params - A map containing:	:group_id - Required. The group to create the destination in.
	:service - Required. The destination type (e.g., "snowflake", "big_query").
	:region - Required. Data processing location (e.g., "US", "EU").
	:time_zone_offset - Required. Timezone offset as string (e.g., "-5", "+1").
	:config - Required. Service-specific configuration.

Returns
	{:ok, Destination.t()} - The created destination
	{:error, Fivetrex.Error.t()} - On failure

Examples
Create a Snowflake destination:
{:ok, destination} = Fivetrex.Destinations.create(client, %{
 group_id: "group_id",
 service: "snowflake",
 region: "US",
 time_zone_offset: "-5",
 config: %{
 host: "myaccount.snowflakecomputing.com",
 port: 443,
 database: "ANALYTICS",
 auth: "PASSWORD",
 user: "FIVETRAN_USER",
 password: System.get_env("SNOWFLAKE_PASSWORD")
 }
})
Create a BigQuery destination:
{:ok, destination} = Fivetrex.Destinations.create(client, %{
 group_id: "group_id",
 service: "big_query",
 region: "US",
 time_zone_offset: "-8",
 config: %{
 project_id: "my-gcp-project",
 data_set_location: "US"
 }
})

 delete(client, destination_id)

 @spec delete(Fivetrex.Client.t(), String.t()) :: :ok | {:error, Fivetrex.Error.t()}

Deletes a destination.
Warning: You cannot delete a destination that has connectors. Delete all
connectors first, or delete the entire group.
Parameters
	client - The Fivetrex client
	destination_id - The ID of the destination to delete

Returns
	:ok - On successful deletion
	{:error, Fivetrex.Error.t()} - On failure

Examples
:ok = Fivetrex.Destinations.delete(client, "destination_id")

 get(client, destination_id)

 @spec get(Fivetrex.Client.t(), String.t()) ::
 {:ok, Fivetrex.Models.Destination.t()} | {:error, Fivetrex.Error.t()}

Gets a destination by its ID.
Parameters
	client - The Fivetrex client
	destination_id - The unique identifier of the destination

Returns
	{:ok, Destination.t()} - The destination
	{:error, Fivetrex.Error.t()} - On failure

Examples
{:ok, destination} = Fivetrex.Destinations.get(client, "destination_id")
IO.puts("Service: #{destination.service}")
IO.puts("Region: #{destination.region}")

 test(client, destination_id)

 @spec test(Fivetrex.Client.t(), String.t()) ::
 {:ok, map()} | {:error, Fivetrex.Error.t()}

Runs connection tests for a destination.
This validates that Fivetran can connect to your destination warehouse with
the provided credentials. Use this after creating or updating a destination
to verify the configuration is correct.
Parameters
	client - The Fivetrex client
	destination_id - The ID of the destination to test

Returns
	{:ok, map()} - Test results including:
	"setup_status" - Overall status (e.g., "connected", "incomplete")
	"tests" - List of individual test results

	{:error, Fivetrex.Error.t()} - On failure

Examples
{:ok, result} = Fivetrex.Destinations.test(client, "destination_id")

case result["setup_status"] do
 "connected" ->
 IO.puts("Destination is properly configured!")

 status ->
 IO.puts("Setup status: #{status}")
 IO.inspect(result["tests"], label: "Test results")
end

 update(client, destination_id, params)

 @spec update(Fivetrex.Client.t(), String.t(), map()) ::
 {:ok, Fivetrex.Models.Destination.t()} | {:error, Fivetrex.Error.t()}

Updates an existing destination.
Use this to modify destination configuration, such as updating credentials
or changing connection settings.
Parameters
	client - The Fivetrex client
	destination_id - The ID of the destination to update
	params - A map with fields to update:	:region - Updated region
	:time_zone_offset - Updated timezone offset
	:config - Updated configuration (merged with existing)

Returns
	{:ok, Destination.t()} - The updated destination
	{:error, Fivetrex.Error.t()} - On failure

Examples
Update credentials:
{:ok, destination} = Fivetrex.Destinations.update(client, "destination_id", %{
 config: %{
 password: System.get_env("NEW_PASSWORD")
 }
})
Change region:
{:ok, destination} = Fivetrex.Destinations.update(client, "destination_id", %{
 region: "EU"
})

Fivetrex.Groups

Functions for managing Fivetran Groups.
A Group is a logical container that holds multiple connectors and maps to a
specific destination schema or database. Groups are the top-level organizational
unit in Fivetran's resource hierarchy.
Overview
Groups serve as containers for organizing related connectors. Each group is
associated with a single destination (data warehouse) and can contain multiple
connectors that load data into that destination.
Common Operations
Listing Groups
{:ok, %{items: groups, next_cursor: cursor}} = Fivetrex.Groups.list(client)
Getting a Group
{:ok, group} = Fivetrex.Groups.get(client, "group_id")
Creating a Group
{:ok, group} = Fivetrex.Groups.create(client, %{name: "Production Data"})
Updating a Group
{:ok, group} = Fivetrex.Groups.update(client, "group_id", %{name: "New Name"})
Deleting a Group
:ok = Fivetrex.Groups.delete(client, "group_id")
Streaming
For iterating over all groups without loading them into memory:
client
|> Fivetrex.Groups.stream()
|> Stream.filter(&String.contains?(&1.name, "prod"))
|> Enum.each(&IO.inspect/1)
See Also
	Fivetrex.Models.Group - The Group struct
	Fivetrex.Connectors - Managing connectors within groups
	Fivetrex.Destinations - Managing destinations for groups

 Summary

 Functions

 create(client, params)

 Creates a new group.

 delete(client, group_id)

 Deletes a group.

 get(client, group_id)

 Gets a group by its ID.

 list(client, opts \\ [])

 Lists all groups accessible to your account.

 stream(client, opts \\ [])

 Returns a stream of all groups, handling pagination automatically.

 update(client, group_id, params)

 Updates an existing group.

 Functions

 create(client, params)

 @spec create(Fivetrex.Client.t(), map()) ::
 {:ok, Fivetrex.Models.Group.t()} | {:error, Fivetrex.Error.t()}

Creates a new group.
Parameters
	client - The Fivetrex client
	params - A map with group parameters:	:name - Required. The name of the group.

Returns
	{:ok, Group.t()} - The created group
	{:error, Fivetrex.Error.t()} - On failure

Examples
{:ok, group} = Fivetrex.Groups.create(client, %{name: "My Analytics Warehouse"})
IO.puts("Created group with ID: #{group.id}")

 delete(client, group_id)

 @spec delete(Fivetrex.Client.t(), String.t()) :: :ok | {:error, Fivetrex.Error.t()}

Deletes a group.
Warning: Deleting a group will also delete all connectors within it.
This operation cannot be undone.
Parameters
	client - The Fivetrex client
	group_id - The ID of the group to delete

Returns
	:ok - On successful deletion
	{:error, Fivetrex.Error.t()} - On failure

Examples
:ok = Fivetrex.Groups.delete(client, "old_group_id")

 get(client, group_id)

 @spec get(Fivetrex.Client.t(), String.t()) ::
 {:ok, Fivetrex.Models.Group.t()} | {:error, Fivetrex.Error.t()}

Gets a group by its ID.
Parameters
	client - The Fivetrex client
	group_id - The unique identifier of the group

Returns
	{:ok, Group.t()} - The group as a %Fivetrex.Models.Group{} struct
	{:error, Fivetrex.Error.t()} - On failure (e.g., :not_found if ID is invalid)

Examples
{:ok, group} = Fivetrex.Groups.get(client, "decent_dropsy")
IO.puts("Group name: #{group.name}")
Handle not found:
case Fivetrex.Groups.get(client, "invalid_id") do
 {:ok, group} -> group
 {:error, %Fivetrex.Error{type: :not_found}} -> nil
end

 list(client, opts \\ [])

 @spec list(
 Fivetrex.Client.t(),
 keyword()
) ::
 {:ok, %{items: [Fivetrex.Models.Group.t()], next_cursor: String.t() | nil}}
 | {:error, Fivetrex.Error.t()}

Lists all groups accessible to your account.
Returns a paginated list of groups. Use the next_cursor from the response
to fetch the next page, or use stream/2 for automatic pagination.
Options
	:cursor - Pagination cursor from a previous response's next_cursor.
Pass nil or omit for the first page.

	:limit - Maximum number of groups to return per page. Defaults to Fivetran's
default (usually 100). Maximum is 1000.

Returns
	{:ok, %{items: [Group.t()], next_cursor: String.t() | nil}} - A map containing:
	:items - List of %Fivetrex.Models.Group{} structs
	:next_cursor - Cursor for the next page, or nil if this is the last page

	{:error, Fivetrex.Error.t()} - On failure

Examples
Fetch the first page:
{:ok, %{items: groups, next_cursor: cursor}} = Fivetrex.Groups.list(client)
Fetch the next page using a cursor:
{:ok, %{items: more_groups, next_cursor: next}} =
 Fivetrex.Groups.list(client, cursor: cursor)
Limit results per page:
{:ok, result} = Fivetrex.Groups.list(client, limit: 50)

 stream(client, opts \\ [])

 @spec stream(
 Fivetrex.Client.t(),
 keyword()
) :: Enumerable.t()

Returns a stream of all groups, handling pagination automatically.
This function returns an Elixir Stream that lazily fetches pages as needed.
It's memory-efficient for iterating over large numbers of groups.
Options
	:limit - Number of items per page (passed to each API call)

Returns
An Enumerable.t() that yields %Fivetrex.Models.Group{} structs.
Examples
Stream all groups:
Fivetrex.Groups.stream(client)
|> Enum.each(fn group ->
 IO.puts("Group: #{group.name}")
end)
Filter and collect:
production_groups =
 Fivetrex.Groups.stream(client)
 |> Stream.filter(&String.contains?(&1.name, "prod"))
 |> Enum.to_list()
Take first 5:
first_five = Fivetrex.Groups.stream(client) |> Enum.take(5)
Error Handling
If an API error occurs during streaming, a Fivetrex.Error is raised.
Use try/rescue to handle errors:
try do
 Fivetrex.Groups.stream(client) |> Enum.to_list()
rescue
 e in Fivetrex.Error ->
 Logger.error("Failed: #{e.message}")
 []
end

 update(client, group_id, params)

 @spec update(Fivetrex.Client.t(), String.t(), map()) ::
 {:ok, Fivetrex.Models.Group.t()} | {:error, Fivetrex.Error.t()}

Updates an existing group.
Parameters
	client - The Fivetrex client
	group_id - The ID of the group to update
	params - A map with fields to update:	:name - The new name of the group

Returns
	{:ok, Group.t()} - The updated group
	{:error, Fivetrex.Error.t()} - On failure

Examples
{:ok, group} = Fivetrex.Groups.update(client, "decent_dropsy", %{
 name: "Production Analytics"
})

Fivetrex.Webhooks

Functions for managing Fivetran Webhooks.
Webhooks provide real-time notifications about Fivetran events such as sync
starts, completions, and failures. This module supports creating, managing,
and testing webhooks at both account and group levels.
Overview
Webhooks can be configured at two levels:
	Account-level - Receives events for all connectors in your account
	Group-level - Receives events only for connectors in a specific group

Common Operations
Listing Webhooks
{:ok, %{items: webhooks, next_cursor: cursor}} = Fivetrex.Webhooks.list(client)
Getting a Webhook
{:ok, webhook} = Fivetrex.Webhooks.get(client, "webhook_id")
Creating an Account Webhook
{:ok, webhook} = Fivetrex.Webhooks.create_account(client, %{
 url: "https://example.com/webhook",
 events: ["sync_start", "sync_end"],
 active: true,
 secret: "my_webhook_secret"
})
Creating a Group Webhook
{:ok, webhook} = Fivetrex.Webhooks.create_group(client, "group_id", %{
 url: "https://example.com/webhook",
 events: ["sync_end"],
 active: true
})
Testing a Webhook
{:ok, result} = Fivetrex.Webhooks.test(client, "webhook_id")
Streaming
For iterating over all webhooks without loading them into memory:
client
|> Fivetrex.Webhooks.stream()
|> Stream.filter(&Webhook.account_level?/1)
|> Enum.each(&IO.inspect/1)
Security
When creating webhooks with a secret, Fivetran signs each payload using
HMAC-SHA256. Use Fivetrex.WebhookSignature.verify/3 to validate incoming
requests in your webhook handler.
See Also
	Fivetrex.Models.Webhook - The Webhook struct
	Fivetrex.Models.WebhookEvent - Struct for incoming webhook payloads
	Fivetrex.WebhookSignature - Signature verification for incoming webhooks
	Fivetrex.WebhookPlug - Plug for Phoenix/Bandit webhook handling

 Summary

 Functions

 create_account(client, params)

 Creates an account-level webhook.

 create_group(client, group_id, params)

 Creates a group-level webhook.

 delete(client, webhook_id)

 Deletes a webhook.

 get(client, webhook_id)

 Gets a webhook by its ID.

 list(client, opts \\ [])

 Lists all webhooks (both account and group level).

 stream(client, opts \\ [])

 Returns a stream of all webhooks, handling pagination automatically.

 test(client, webhook_id, opts \\ [])

 Sends a test event to a webhook.

 update(client, webhook_id, params)

 Updates an existing webhook.

 Functions

 create_account(client, params)

 @spec create_account(Fivetrex.Client.t(), map()) ::
 {:ok, Fivetrex.Models.Webhook.t()} | {:error, Fivetrex.Error.t()}

Creates an account-level webhook.
Account webhooks receive events for all connectors in your Fivetran account.
Parameters
	client - The Fivetrex client
	params - A map with webhook parameters:	:url - Required. Endpoint URL for webhook delivery.
	:events - Required. List of event types (e.g., ["sync_start", "sync_end"]).
	:active - Optional. Whether webhook is active (default: true).
	:secret - Optional. Secret for HMAC signature verification.

Returns
	{:ok, Webhook.t()} - The created webhook
	{:error, Fivetrex.Error.t()} - On failure

Examples
{:ok, webhook} = Fivetrex.Webhooks.create_account(client, %{
 url: "https://example.com/fivetran/webhook",
 events: ["sync_end"],
 active: true,
 secret: "my_secret_key"
})
IO.puts("Created webhook: #{webhook.id}")

 create_group(client, group_id, params)

 @spec create_group(Fivetrex.Client.t(), String.t(), map()) ::
 {:ok, Fivetrex.Models.Webhook.t()} | {:error, Fivetrex.Error.t()}

Creates a group-level webhook.
Group webhooks receive events only for connectors in the specified group.
Parameters
	client - The Fivetrex client
	group_id - The ID of the group to attach the webhook to
	params - A map with webhook parameters (same as create_account/2):	:url - Required. Endpoint URL for webhook delivery.
	:events - Required. List of event types.
	:active - Optional. Whether webhook is active (default: true).
	:secret - Optional. Secret for HMAC signature verification.

Returns
	{:ok, Webhook.t()} - The created webhook
	{:error, Fivetrex.Error.t()} - On failure

Examples
{:ok, webhook} = Fivetrex.Webhooks.create_group(client, "group_id", %{
 url: "https://example.com/fivetran/webhook",
 events: ["sync_start", "sync_end"],
 active: true
})
IO.puts("Created group webhook: #{webhook.id}")

 delete(client, webhook_id)

 @spec delete(Fivetrex.Client.t(), String.t()) :: :ok | {:error, Fivetrex.Error.t()}

Deletes a webhook.
Warning: This operation cannot be undone. The webhook will immediately
stop receiving events.
Parameters
	client - The Fivetrex client
	webhook_id - The ID of the webhook to delete

Returns
	:ok - On successful deletion
	{:error, Fivetrex.Error.t()} - On failure

Examples
:ok = Fivetrex.Webhooks.delete(client, "webhook_id")

 get(client, webhook_id)

 @spec get(Fivetrex.Client.t(), String.t()) ::
 {:ok, Fivetrex.Models.Webhook.t()} | {:error, Fivetrex.Error.t()}

Gets a webhook by its ID.
Parameters
	client - The Fivetrex client
	webhook_id - The unique identifier of the webhook

Returns
	{:ok, Webhook.t()} - The webhook as a %Fivetrex.Models.Webhook{} struct
	{:error, Fivetrex.Error.t()} - On failure (e.g., :not_found if ID is invalid)

Examples
{:ok, webhook} = Fivetrex.Webhooks.get(client, "webhook_id")
IO.puts("Webhook URL: #{webhook.url}")
Handle not found:
case Fivetrex.Webhooks.get(client, "invalid_id") do
 {:ok, webhook} -> webhook
 {:error, %Fivetrex.Error{type: :not_found}} -> nil
end

 list(client, opts \\ [])

 @spec list(
 Fivetrex.Client.t(),
 keyword()
) ::
 {:ok, %{items: [Fivetrex.Models.Webhook.t()], next_cursor: String.t() | nil}}
 | {:error, Fivetrex.Error.t()}

Lists all webhooks (both account and group level).
Returns a paginated list of webhooks. Use the next_cursor from the response
to fetch the next page, or use stream/2 for automatic pagination.
Options
	:cursor - Pagination cursor from a previous response's next_cursor.
Pass nil or omit for the first page.

	:limit - Maximum number of webhooks to return per page. Maximum is 1000.

Returns
	{:ok, %{items: [Webhook.t()], next_cursor: String.t() | nil}} - A map containing:
	:items - List of %Fivetrex.Models.Webhook{} structs
	:next_cursor - Cursor for the next page, or nil if this is the last page

	{:error, Fivetrex.Error.t()} - On failure

Examples
Fetch the first page:
{:ok, %{items: webhooks, next_cursor: cursor}} = Fivetrex.Webhooks.list(client)
Fetch the next page using a cursor:
{:ok, %{items: more_webhooks, next_cursor: next}} =
 Fivetrex.Webhooks.list(client, cursor: cursor)

 stream(client, opts \\ [])

 @spec stream(
 Fivetrex.Client.t(),
 keyword()
) :: Enumerable.t()

Returns a stream of all webhooks, handling pagination automatically.
This function returns an Elixir Stream that lazily fetches pages as needed.
It's memory-efficient for iterating over large numbers of webhooks.
Options
	:limit - Number of items per page (passed to each API call)

Returns
An Enumerable.t() that yields %Fivetrex.Models.Webhook{} structs.
Examples
Stream all webhooks:
Fivetrex.Webhooks.stream(client)
|> Enum.each(fn webhook ->
 IO.puts("Webhook: #{webhook.id} -> #{webhook.url}")
end)
Filter by type:
account_webhooks =
 Fivetrex.Webhooks.stream(client)
 |> Stream.filter(&Webhook.account_level?/1)
 |> Enum.to_list()
Error Handling
If an API error occurs during streaming, a Fivetrex.Error is raised.
Use try/rescue to handle errors:
try do
 Fivetrex.Webhooks.stream(client) |> Enum.to_list()
rescue
 e in Fivetrex.Error ->
 Logger.error("Failed: #{e.message}")
 []
end

 test(client, webhook_id, opts \\ [])

 @spec test(Fivetrex.Client.t(), String.t(), keyword()) ::
 {:ok, map()} | {:error, Fivetrex.Error.t()}

Sends a test event to a webhook.
Fivetran sends a test webhook with a dummy connection identifier _connection_1.
Use this to verify your webhook endpoint is correctly configured and can
receive events.
Parameters
	client - The Fivetrex client
	webhook_id - The ID of the webhook to test
	opts - Optional keyword list:	:event - Specific event type to test (e.g., "sync_end")

Returns
	{:ok, map()} - Test result from Fivetran
	{:error, Fivetrex.Error.t()} - On failure

Examples
Send a default test event:
{:ok, result} = Fivetrex.Webhooks.test(client, "webhook_id")
Test a specific event type:
{:ok, result} = Fivetrex.Webhooks.test(client, "webhook_id", event: "sync_end")

 update(client, webhook_id, params)

 @spec update(Fivetrex.Client.t(), String.t(), map()) ::
 {:ok, Fivetrex.Models.Webhook.t()} | {:error, Fivetrex.Error.t()}

Updates an existing webhook.
Parameters
	client - The Fivetrex client
	webhook_id - The ID of the webhook to update
	params - A map with fields to update:	:url - New endpoint URL
	:events - Updated list of event types
	:active - Enable/disable the webhook
	:secret - New secret for signature verification

Returns
	{:ok, Webhook.t()} - The updated webhook
	{:error, Fivetrex.Error.t()} - On failure

Examples
{:ok, webhook} = Fivetrex.Webhooks.update(client, "webhook_id", %{
 active: false
})

{:ok, webhook} = Fivetrex.Webhooks.update(client, "webhook_id", %{
 events: ["sync_end", "sync_start"],
 url: "https://new-url.example.com/webhook"
})

Fivetrex.WebhookPlug

A Plug for handling incoming Fivetran webhooks in Phoenix/Bandit applications.
This plug verifies webhook signatures and parses the payload into a
Fivetrex.Models.WebhookEvent struct, making it easy to integrate Fivetran
webhooks into your Phoenix application.
Features
	Verifies HMAC-SHA256 signatures to ensure requests are from Fivetran
	Parses webhook payloads into typed structs
	Returns appropriate HTTP error responses for invalid requests
	Assigns the parsed event to the connection for downstream handlers

Installation
Step 1: Capture Raw Body
This plug requires access to the raw request body for signature verification.
Add a body reader to your endpoint:
In lib/my_app_web/endpoint.ex
plug Plug.Parsers,
 parsers: [:urlencoded, :multipart, :json],
 pass: ["*/*"],
 body_reader: {Fivetrex.WebhookPlug, :cache_raw_body, []}, # Add this
 json_decoder: Phoenix.json_library()
Step 2: Add Route
Add a route for the webhook endpoint:
In lib/my_app_web/router.ex
scope "/webhooks", MyAppWeb do
 pipe_through :api

 post "/fivetran", FivetranWebhookController, :receive
end
Step 3: Use the Plug
Add the plug to your controller:
defmodule MyAppWeb.FivetranWebhookController do
 use MyAppWeb, :controller

 plug Fivetrex.WebhookPlug,
 secret: {MyApp.Config, :fivetran_webhook_secret, []}
 # Or: secret: "my_static_secret"
 # Or: secret: {:system, "FIVETRAN_WEBHOOK_SECRET"}

 def receive(conn, _params) do
 event = conn.assigns.fivetran_event

 case event.event do
 "sync_end" ->
 # Handle sync completion
 handle_sync_end(event)

 "sync_start" ->
 # Handle sync start
 handle_sync_start(event)
 end

 json(conn, %{status: "ok"})
 end
end
Configuration Options
	:secret - Required. The webhook secret for signature verification.
Can be provided as:
	A string: secret: "my_secret"
	A tuple for runtime fetching: secret: {Module, :function, args}
	A system env tuple: secret: {:system, "ENV_VAR_NAME"}

	:event_key - Optional. The key to use in conn.assigns for the parsed
event. Defaults to :fivetran_event.

	:on_error - Optional. A function to customize error responses.
Signature: fn conn, error_type -> conn. Defaults to sending JSON errors.

Assigns
On successful verification, this plug adds:
	conn.assigns.fivetran_event - The %Fivetrex.Models.WebhookEvent{} struct
	conn.assigns.raw_body - The raw request body (for debugging)

Error Handling
Invalid requests receive appropriate HTTP responses:
	400 Bad Request - Missing signature header
	401 Unauthorized - Invalid signature
	422 Unprocessable Entity - Invalid JSON payload

See Also
	Fivetrex.WebhookSignature - Low-level signature verification
	Fivetrex.Models.WebhookEvent - The event struct
	Fivetrex.Webhooks - API for managing webhooks

 Summary

 Functions

 cache_raw_body(conn, opts)

 Custom body reader that caches the raw body for signature verification.

 Functions

 cache_raw_body(conn, opts)

 @spec cache_raw_body(
 Plug.Conn.t(),
 keyword()
) :: {:ok, binary(), Plug.Conn.t()} | {:more, binary(), Plug.Conn.t()}

Custom body reader that caches the raw body for signature verification.
Use this as the :body_reader option in Plug.Parsers:
plug Plug.Parsers,
 parsers: [:json],
 body_reader: {Fivetrex.WebhookPlug, :cache_raw_body, []},
 json_decoder: Jason

Fivetrex.WebhookSignature

HMAC-SHA256 signature verification for Fivetran webhook payloads.
When you create a webhook with a secret, Fivetran signs each request body
using HMAC-SHA256 and includes the signature in the X-Fivetran-Signature-256
header. This module provides functions to verify these signatures.
Security
Signature verification is crucial for ensuring webhook requests actually
originate from Fivetran and haven't been tampered with. Always verify
signatures before processing webhook payloads.
Usage
In your webhook handler (e.g., a Phoenix controller):
def webhook(conn, _params) do
 signature = get_req_header(conn, "x-fivetran-signature-256") |> List.first()
 body = conn.assigns[:raw_body] # Requires custom plug to capture raw body
 secret = Application.get_env(:my_app, :fivetran_webhook_secret)

 case Fivetrex.WebhookSignature.verify(body, signature, secret) do
 :ok ->
 # Process the webhook
 json(conn, %{status: "ok"})

 {:error, :invalid_signature} ->
 conn |> put_status(401) |> json(%{error: "Invalid signature"})

 {:error, :missing_signature} ->
 conn |> put_status(400) |> json(%{error: "Missing signature"})
 end
end
Capturing Raw Body
To verify signatures, you need access to the raw request body. Phoenix
typically parses JSON automatically, so you need to capture the raw body
first. Add a custom plug:
In your endpoint.ex, before Plug.Parsers:
plug :capture_raw_body

defp capture_raw_body(conn, _opts) do
 {:ok, body, conn} = Plug.Conn.read_body(conn)
 conn
 |> assign(:raw_body, body)
 |> Plug.Conn.put_req_header("x-raw-body", body)
end
Or use Fivetrex.WebhookPlug which handles this automatically.
Security Notes
	This module uses constant-time comparison via Plug.Crypto.secure_compare/2
to prevent timing attacks
	Store webhook secrets securely (environment variables, secrets manager)
	Never log secrets or raw signatures in production
	Rotate secrets periodically

See Also
	Fivetrex.Webhooks - API functions for managing webhooks
	Fivetrex.WebhookPlug - Plug that handles signature verification
	Fivetrex.Models.WebhookEvent - Struct for parsing webhook payloads

 Summary

 Functions

 compute_signature(payload, secret)

 Computes the HMAC-SHA256 signature for a payload.

 signature_header()

 Returns the expected HTTP header name for Fivetran signatures.

 verify(payload, signature, secret)

 Verifies that a webhook payload signature is valid.

 Functions

 compute_signature(payload, secret)

 @spec compute_signature(String.t(), String.t()) :: String.t()

Computes the HMAC-SHA256 signature for a payload.
Returns the hex-encoded signature in uppercase, matching Fivetran's format.
Parameters
	payload - The raw request body as a string
	secret - Your webhook secret

Returns
The hex-encoded HMAC-SHA256 signature in uppercase.
Examples
signature = Fivetrex.WebhookSignature.compute_signature(
 ~s({"event":"sync_end"}),
 "my_secret"
)
Returns something like "A1B2C3D4..."

 signature_header()

 @spec signature_header() :: String.t()

Returns the expected HTTP header name for Fivetran signatures.
Fivetran sends the signature in the X-Fivetran-Signature-256 header.
Use this function to get the header name for extracting signatures from
incoming requests.
Returns
The string "x-fivetran-signature-256" (lowercase, as headers are
case-insensitive in HTTP).
Examples
header_name = Fivetrex.WebhookSignature.signature_header()
signature = get_req_header(conn, header_name) |> List.first()

 verify(payload, signature, secret)

 @spec verify(String.t(), String.t() | nil, String.t()) ::
 :ok | {:error, :invalid_signature | :missing_signature}

Verifies that a webhook payload signature is valid.
Computes the expected HMAC-SHA256 signature for the payload using the
provided secret and compares it to the signature from the request header.
Parameters
	payload - The raw request body as a string (before JSON parsing)
	signature - The signature from the X-Fivetran-Signature-256 header
	secret - Your webhook secret configured in Fivetran

Returns
	:ok - Signature is valid
	{:error, :invalid_signature} - Signature does not match
	{:error, :missing_signature} - No signature provided (nil or empty)

Examples
Valid signature
payload = ~s({"event":"sync_end","connector_id":"abc123"})
secret = "my_webhook_secret"
signature = Fivetrex.WebhookSignature.compute_signature(payload, secret)

:ok = Fivetrex.WebhookSignature.verify(payload, signature, secret)

Invalid signature
{:error, :invalid_signature} =
 Fivetrex.WebhookSignature.verify(payload, "wrong_signature", secret)

Missing signature
{:error, :missing_signature} =
 Fivetrex.WebhookSignature.verify(payload, nil, secret)

Fivetrex.Models.Column

Represents a column within a table configuration.
Columns are the individual fields being synced from source to destination.
Each column can be independently enabled/disabled or hashed for privacy.
Fields
	:name_in_destination - The name used in the destination warehouse
	:enabled - Whether this column is being synced
	:hashed - Whether the column value is hashed for privacy
(useful for PII like emails)
	:is_primary_key - Whether this column is part of the primary key
	:type - The Fivetran source data type (e.g., "STRING", "INTEGER",
"TIMESTAMP", "FLOAT", "BOOLEAN", "DATE", etc.)
	:enabled_patch_settings - Advanced patch settings

Privacy Hashing
When :hashed is true, Fivetran applies a one-way hash to column values.
This is useful for:
	Removing personally identifiable information (PII)
	Maintaining referential integrity while anonymizing data
	Compliance with privacy regulations (GDPR, CCPA)

Examples
Find primary key columns
primary_keys =
 columns
 |> Enum.filter(fn {_name, col} -> col.is_primary_key end)
 |> Enum.map(fn {name, _col} -> name end)

Find hashed (anonymized) columns
hashed_columns =
 columns
 |> Enum.filter(fn {_name, col} -> col.hashed end)
 |> Enum.map(fn {name, _col} -> name end)

 Summary

 Types

 t()

 A Fivetran Column struct.

 Functions

 from_map(map)

 Converts a map (from JSON response) to a Column struct.

 Types

 t()

 @type t() :: %Fivetrex.Models.Column{
 enabled: boolean() | nil,
 enabled_patch_settings: map() | nil,
 hashed: boolean() | nil,
 is_primary_key: boolean() | nil,
 name_in_destination: String.t() | nil,
 type: String.t() | nil
}

A Fivetran Column struct.
All fields may be nil if not provided in the API response.

 Functions

 from_map(map)

 @spec from_map(map()) :: t()

Converts a map (from JSON response) to a Column struct.

Fivetrex.Models.Connector

Represents a Fivetran Connector.
A Connector is the core operational entity in Fivetran, representing the
pipeline between a data source (e.g., Salesforce, PostgreSQL, Google Ads)
and a destination warehouse. Connectors handle the actual data extraction,
transformation, and loading (ELT).
Fields
	:id - The unique identifier for the connector
	:group_id - The ID of the parent group
	:service - The connector type (e.g., "postgres", "salesforce", "google_ads")
	:service_version - The version number of the connector service
	:schema - The destination schema/dataset name
	:paused - Whether the connector is paused
	:pause_after_trial - Whether to pause after free trial ends
	:sync_frequency - Sync interval in minutes
	:status - A map containing sync state and timing information
	:setup_state - Setup status (e.g., "connected", "incomplete")
	:created_at - ISO 8601 timestamp of creation
	:succeeded_at - ISO 8601 timestamp of last successful sync
	:failed_at - ISO 8601 timestamp of last failed sync
	:config - Service-specific configuration (connection details, etc.)
	:connect_card - OAuth redirect information (only present when created with connect_card_config)

Status Map
The :status field contains detailed sync information:
%{
 "sync_state" => "scheduled", # Current state
 "update_state" => "on_schedule", # Update status
 "is_historical_sync" => false, # Historical sync in progress?
 "tasks" => [...], # Active tasks
 "warnings" => [...] # Any warnings
}
Sync States
The sync_state within the status map can be:
	"scheduled" - Waiting for next scheduled sync
	"syncing" - Currently syncing data
	"paused" - Manually paused
	"rescheduled" - Sync was rescheduled

Helper Functions
This module provides helper functions to check connector state:
if Connector.syncing?(connector) do
 IO.puts("Sync in progress...")
end

if Connector.paused?(connector) do
 IO.puts("Connector is paused")
end
Examples
Working with a connector:
{:ok, connector} = Fivetrex.Connectors.get(client, "connector_id")
IO.puts("Service: #{connector.service}")
IO.puts("Schema: #{connector.schema}")
IO.puts("Sync state: #{Connector.sync_state(connector)}")
Filtering connectors by state:
{:ok, %{items: connectors}} = Fivetrex.Connectors.list(client, group_id)

syncing = Enum.filter(connectors, &Connector.syncing?/1)
paused = Enum.filter(connectors, &Connector.paused?/1)
See Also
	Fivetrex.Connectors - API functions for managing connectors
	Fivetrex.Models.Group - Parent group for connectors

 Summary

 Types

 status()

 The sync state string from the connector's status.

 t()

 A Fivetran Connector struct.

 Functions

 from_map(map)

 Converts a map (from JSON response) to a Connector struct.

 paused?(connector)

 Returns true if the connector is paused.

 sync_state(arg1)

 Returns the sync state from the connector's status map.

 syncing?(connector)

 Returns true if the connector is currently syncing.

 Types

 status()

 @type status() :: String.t()

The sync state string from the connector's status.
Common values: "scheduled", "syncing", "paused", "rescheduled"

 t()

 @type t() :: %Fivetrex.Models.Connector{
 config: map() | nil,
 connect_card: map() | nil,
 created_at: String.t() | nil,
 failed_at: String.t() | nil,
 group_id: String.t() | nil,
 id: String.t() | nil,
 pause_after_trial: boolean() | nil,
 paused: boolean() | nil,
 schema: String.t() | nil,
 service: String.t() | nil,
 service_version: integer() | nil,
 setup_state: String.t() | nil,
 status: map() | nil,
 succeeded_at: String.t() | nil,
 sync_frequency: integer() | nil
}

A Fivetran Connector struct.
All fields may be nil if not provided in the API response.

 Functions

 from_map(map)

 @spec from_map(map()) :: t()

Converts a map (from JSON response) to a Connector struct.
This function is used internally by Fivetrex.Connectors functions to parse
API responses into typed structs.
Parameters
	map - A map with string keys from a decoded JSON response

Returns
A %Fivetrex.Models.Connector{} struct with fields populated from the map.
Examples
iex> map = %{"id" => "conn_123", "service" => "postgres", "paused" => false}
iex> connector = Fivetrex.Models.Connector.from_map(map)
iex> connector.service
"postgres"

 paused?(connector)

 @spec paused?(t()) :: boolean()

Returns true if the connector is paused.
A paused connector will not sync until resumed via Fivetrex.Connectors.resume/2.
Parameters
	connector - A %Fivetrex.Models.Connector{} struct

Returns
	true - If the connector is paused
	false - If the connector is active (not paused)

Examples
if Connector.paused?(connector) do
 IO.puts("Connector is paused, resuming...")
 Fivetrex.Connectors.resume(client, connector.id)
end

Find all paused connectors
paused_connectors = Enum.filter(connectors, &Connector.paused?/1)

 sync_state(arg1)

 @spec sync_state(t()) :: String.t() | nil

Returns the sync state from the connector's status map.
The sync state indicates what the connector is currently doing.
Parameters
	connector - A %Fivetrex.Models.Connector{} struct

Returns
	String.t() - The sync state (e.g., "scheduled", "syncing", "paused")
	nil - If the status map is missing or doesn't contain sync_state

Possible Values
	"scheduled" - Waiting for next scheduled sync
	"syncing" - Currently syncing data
	"paused" - Connector is paused
	"rescheduled" - Sync was rescheduled

Examples
iex> connector = %Fivetrex.Models.Connector{status: %{"sync_state" => "syncing"}}
iex> Fivetrex.Models.Connector.sync_state(connector)
"syncing"

iex> connector = %Fivetrex.Models.Connector{status: nil}
iex> Fivetrex.Models.Connector.sync_state(connector)
nil

 syncing?(connector)

 @spec syncing?(t()) :: boolean()

Returns true if the connector is currently syncing.
This is a convenience function that checks if the sync_state is "syncing".
Parameters
	connector - A %Fivetrex.Models.Connector{} struct

Returns
	true - If the connector is actively syncing data
	false - If the connector is not syncing (scheduled, paused, etc.)

Examples
if Connector.syncing?(connector) do
 IO.puts("Sync in progress, please wait...")
end

Find all syncing connectors
syncing_connectors = Enum.filter(connectors, &Connector.syncing?/1)

Fivetrex.Models.Destination

Represents a Fivetran Destination.
A Destination configures the target data warehouse where Fivetran will load
synced data. Each group has exactly one destination, and all connectors in
that group load data into this destination.
Fields
	:id - The unique identifier for the destination (same as the group ID)
	:group_id - The ID of the parent group
	:service - The destination type (e.g., "snowflake", "big_query", "redshift")
	:region - Data processing region (e.g., "US", "EU", "APAC")
	:time_zone_offset - Timezone offset as a string (e.g., "-5", "+1")
	:setup_status - Connection status (e.g., "connected", "incomplete")
	:config - Service-specific configuration (connection details, credentials)

Supported Services
Common destination services include:
	"snowflake" - Snowflake Data Cloud
	"big_query" - Google BigQuery
	"redshift" - Amazon Redshift
	"databricks" - Databricks Lakehouse
	"postgres" - PostgreSQL (as destination)
	"azure_sql_database" - Azure SQL Database
	"azure_synapse_analytics" - Azure Synapse
	"mysql" - MySQL (as destination)

See Fivetran's documentation for the complete list.
Configuration
The :config field contains service-specific settings. For example, a
Snowflake destination might have:
%{
 "host" => "myaccount.snowflakecomputing.com",
 "port" => 443,
 "database" => "ANALYTICS",
 "auth" => "PASSWORD",
 "user" => "FIVETRAN_USER"
 # password is not returned for security
}
Security Note
The config map may contain sensitive information. However, Fivetran's API
masks secrets in responses (passwords appear as "******"). Never log
or expose destination configs in production.
Examples
Working with a destination:
{:ok, destination} = Fivetrex.Destinations.get(client, "destination_id")
IO.puts("Service: #{destination.service}")
IO.puts("Region: #{destination.region}")
IO.puts("Status: #{destination.setup_status}")
Pattern matching on destination type:
case destination.service do
 "snowflake" -> configure_snowflake_settings(destination)
 "big_query" -> configure_bigquery_settings(destination)
 _ -> use_default_settings(destination)
end
See Also
	Fivetrex.Destinations - API functions for managing destinations
	Fivetrex.Models.Group - Parent group for destinations

 Summary

 Types

 t()

 A Fivetran Destination struct.

 Functions

 from_map(map)

 Converts a map (from JSON response) to a Destination struct.

 Types

 t()

 @type t() :: %Fivetrex.Models.Destination{
 config: map() | nil,
 group_id: String.t() | nil,
 id: String.t() | nil,
 region: String.t() | nil,
 service: String.t() | nil,
 setup_status: String.t() | nil,
 time_zone_offset: String.t() | nil
}

A Fivetran Destination struct.
All fields may be nil if not provided in the API response.

 Functions

 from_map(map)

 @spec from_map(map()) :: t()

Converts a map (from JSON response) to a Destination struct.
This function is used internally by Fivetrex.Destinations functions to parse
API responses into typed structs.
Parameters
	map - A map with string keys from a decoded JSON response

Returns
A %Fivetrex.Models.Destination{} struct with fields populated from the map.
Examples
iex> map = %{
...> "id" => "dest_123",
...> "service" => "snowflake",
...> "region" => "US",
...> "setup_status" => "connected"
...> }
iex> destination = Fivetrex.Models.Destination.from_map(map)
iex> destination.service
"snowflake"
iex> destination.setup_status
"connected"

Fivetrex.Models.Group

Represents a Fivetran Group.
A Group is the top-level organizational unit in Fivetran's resource hierarchy.
It serves as a logical container that holds multiple connectors and maps to a
specific destination schema or database.
Fields
	:id - The unique identifier for the group (e.g., "decent_dropsy")
	:name - The display name of the group
	:created_at - ISO 8601 timestamp of when the group was created

Structure
Groups have a one-to-one relationship with destinations and a one-to-many
relationship with connectors:
Group
├── Destination (exactly one)
└── Connectors (zero or more)
Examples
Working with a group struct:
{:ok, group} = Fivetrex.Groups.get(client, "decent_dropsy")
IO.puts("Group: #{group.name} (ID: #{group.id})")
IO.puts("Created: #{group.created_at}")
Pattern matching:
case Fivetrex.Groups.get(client, group_id) do
 {:ok, %Fivetrex.Models.Group{name: name}} ->
 IO.puts("Found group: #{name}")

 {:error, _} ->
 IO.puts("Group not found")
end
See Also
	Fivetrex.Groups - API functions for managing groups
	Fivetrex.Models.Connector - Connectors that belong to groups
	Fivetrex.Models.Destination - Destinations associated with groups

 Summary

 Types

 t()

 A Fivetran Group struct.

 Functions

 from_map(map)

 Converts a map (from JSON response) to a Group struct.

 Types

 t()

 @type t() :: %Fivetrex.Models.Group{
 created_at: String.t() | nil,
 id: String.t() | nil,
 name: String.t() | nil
}

A Fivetran Group struct.
All fields may be nil if not provided in the API response.

 Functions

 from_map(map)

 @spec from_map(map()) :: t()

Converts a map (from JSON response) to a Group struct.
This function is used internally by Fivetrex.Groups functions to parse
API responses into typed structs.
Parameters
	map - A map with string keys from a decoded JSON response

Returns
A %Fivetrex.Models.Group{} struct with fields populated from the map.
Examples
iex> map = %{"id" => "abc123", "name" => "Production", "created_at" => "2024-01-15T10:30:00Z"}
iex> Fivetrex.Models.Group.from_map(map)
%Fivetrex.Models.Group{id: "abc123", name: "Production", created_at: "2024-01-15T10:30:00Z"}

iex> Fivetrex.Models.Group.from_map(%{})
%Fivetrex.Models.Group{id: nil, name: nil, created_at: nil}

Fivetrex.Models.LogEntry

Represents a row from the Fivetran Platform LOG table.
This struct is useful for parsing warehouse query results when querying the
Fivetran LOG table. The LOG table contains detailed records of connector
activity including sync events, schema changes, and error messages.
Fields
	:id - Unique identifier for the log entry
	:time_stamp - When the event occurred (parsed as DateTime)
	:connector_id - The connector that generated this log entry
	:event - Event type (e.g., "sync_start", "sync_end", "create_table")
	:message_event - Additional event classification
	:message_data - Event-specific data, often JSON (kept as string)

Common Event Types
	"sync_start" - Connector sync started
	"sync_end" - Connector sync completed
	"create_table" - New table created in destination
	"alter_table" - Table schema modified
	"drop_table" - Table removed from destination
	"create_schema" - New schema created in destination

Helper Functions
This module provides convenience functions to check event types:
if LogEntry.sync_start?(entry) do
 IO.puts("Sync started at: #{entry.time_stamp}")
end

if LogEntry.schema_change?(entry) do
 IO.puts("Schema changed: #{entry.event}")
end
Examples
Parsing warehouse query results:
rows = MyWarehouse.query("SELECT * FROM fivetran_log.log LIMIT 100")
entries = Fivetrex.Models.LogEntry.from_rows(rows)

Find sync events
sync_events = Enum.filter(entries, fn entry ->
 LogEntry.sync_start?(entry) or LogEntry.sync_end?(entry)
end)
See Also
	Fivetrex.SyncLogs - Query examples and utilities for working with log data

 Summary

 Types

 t()

 A Fivetran LOG table row struct.

 Functions

 from_row(row)

 Parses a map (with string keys from warehouse query) into a LogEntry struct.

 from_rows(rows)

 Parses a list of maps into a list of LogEntry structs.

 schema_change?(log_entry)

 Returns true if this is a schema change event.

 sync_end?(log_entry)

 Returns true if this is a sync_end event.

 sync_start?(log_entry)

 Returns true if this is a sync_start event.

 Types

 t()

 @type t() :: %Fivetrex.Models.LogEntry{
 connector_id: String.t() | nil,
 event: String.t() | nil,
 id: String.t() | nil,
 message_data: String.t() | nil,
 message_event: String.t() | nil,
 time_stamp: DateTime.t() | nil
}

A Fivetran LOG table row struct.
All fields may be nil if not provided in the query results.

 Functions

 from_row(row)

 @spec from_row(map()) :: t()

Parses a map (with string keys from warehouse query) into a LogEntry struct.
This function handles DateTime parsing for the time_stamp field. If the value
is already a DateTime, it is kept as-is. If it's a string, it attempts to parse
using DateTime.from_iso8601/1. If parsing fails, the field is set to nil.
Parameters
	row - A map with string keys from a warehouse query result

Returns
A %Fivetrex.Models.LogEntry{} struct with fields populated from the map.
Examples
iex> row = %{
...> "id" => "log_123",
...> "time_stamp" => "2024-01-15T10:30:00Z",
...> "connector_id" => "conn_456",
...> "event" => "sync_start"
...> }
iex> entry = Fivetrex.Models.LogEntry.from_row(row)
iex> entry.event
"sync_start"

 from_rows(rows)

 @spec from_rows([map()]) :: [t()]

Parses a list of maps into a list of LogEntry structs.
Parameters
	rows - A list of maps with string keys from warehouse query results

Returns
A list of %Fivetrex.Models.LogEntry{} structs.
Examples
iex> rows = [
...> %{"id" => "log_1", "event" => "sync_start"},
...> %{"id" => "log_2", "event" => "sync_end"}
...>]
iex> entries = Fivetrex.Models.LogEntry.from_rows(rows)
iex> length(entries)
2

 schema_change?(log_entry)

 @spec schema_change?(t()) :: boolean()

Returns true if this is a schema change event.
Schema change events indicate modifications to the destination schema,
including table creation, alteration, and deletion.
The following events are considered schema changes:
	"create_table" - New table created
	"alter_table" - Table schema modified
	"drop_table" - Table removed
	"create_schema" - New schema created

Parameters
	entry - A %Fivetrex.Models.LogEntry{} struct

Returns
	true - If the event is a schema change event
	false - Otherwise

Examples
iex> entry = %Fivetrex.Models.LogEntry{event: "create_table"}
iex> Fivetrex.Models.LogEntry.schema_change?(entry)
true

iex> entry = %Fivetrex.Models.LogEntry{event: "alter_table"}
iex> Fivetrex.Models.LogEntry.schema_change?(entry)
true

iex> entry = %Fivetrex.Models.LogEntry{event: "sync_start"}
iex> Fivetrex.Models.LogEntry.schema_change?(entry)
false

 sync_end?(log_entry)

 @spec sync_end?(t()) :: boolean()

Returns true if this is a sync_end event.
Parameters
	entry - A %Fivetrex.Models.LogEntry{} struct

Returns
	true - If the event type is "sync_end"
	false - Otherwise

Examples
iex> entry = %Fivetrex.Models.LogEntry{event: "sync_end"}
iex> Fivetrex.Models.LogEntry.sync_end?(entry)
true

iex> entry = %Fivetrex.Models.LogEntry{event: "sync_start"}
iex> Fivetrex.Models.LogEntry.sync_end?(entry)
false

 sync_start?(log_entry)

 @spec sync_start?(t()) :: boolean()

Returns true if this is a sync_start event.
Parameters
	entry - A %Fivetrex.Models.LogEntry{} struct

Returns
	true - If the event type is "sync_start"
	false - Otherwise

Examples
iex> entry = %Fivetrex.Models.LogEntry{event: "sync_start"}
iex> Fivetrex.Models.LogEntry.sync_start?(entry)
true

iex> entry = %Fivetrex.Models.LogEntry{event: "sync_end"}
iex> Fivetrex.Models.LogEntry.sync_start?(entry)
false

Fivetrex.Models.Schema

Represents a database schema within a connector's schema configuration.
A schema is a namespace containing tables. In some databases (e.g., PostgreSQL),
this maps directly to database schemas. In others (e.g., MySQL), it may represent
a database name.
Fields
	:name_in_destination - The name used in the destination warehouse
(may differ from source due to Fivetran naming rules)
	:enabled - Whether this schema is being synced
	:tables - Map of table name to Fivetrex.Models.Table structs

Examples
Check if a schema is enabled
if schema.enabled do
 IO.puts("Syncing schema: #{schema.name_in_destination}")
end

Get all enabled tables
enabled_tables =
 schema.tables
 |> Enum.filter(fn {_name, table} -> table.enabled end)
 |> Map.new()

 Summary

 Types

 t()

 A Fivetran Schema struct.

 Functions

 from_map(map)

 Converts a map (from JSON response) to a Schema struct.

 Types

 t()

 @type t() :: %Fivetrex.Models.Schema{
 enabled: boolean() | nil,
 name_in_destination: String.t() | nil,
 tables: %{required(String.t()) => Fivetrex.Models.Table.t()} | nil
}

A Fivetran Schema struct.
All fields may be nil if not provided in the API response.

 Functions

 from_map(map)

 @spec from_map(map()) :: t()

Converts a map (from JSON response) to a Schema struct.

Fivetrex.Models.SchemaConfig

Represents the schema configuration for a Fivetran connector.
Schema configuration controls which schemas, tables, and columns are synced
from your data source to your destination. This struct contains the hierarchical
configuration of all database objects.
Structure
The configuration follows a nested hierarchy:
SchemaConfig
 └── schemas (map of Schema by name)
 └── tables (map of Table by name)
 └── columns (map of Column by name)
Fields
	:enable_new_by_default - Whether newly discovered schemas/tables are
enabled by default
	:schema_change_handling - How to handle schema changes:	"ALLOW_ALL" - All new schemas/tables/columns are included
	"ALLOW_COLUMNS" - New schemas/tables excluded, new columns included
	"BLOCK_ALL" - All new items excluded from syncs

	:schemas - Map of schema name to Fivetrex.Models.Schema structs

Examples
Working with schema configuration:
{:ok, config} = Fivetrex.Connectors.get_schema_config(client, "connector_id")

Iterate through enabled schemas
for {name, schema} <- config.schemas, schema.enabled do
 IO.puts("Schema: #{name}")

 for {table_name, table} <- schema.tables, table.enabled do
 IO.puts(" Table: #{table_name}")
 end
end
See Also
	Fivetrex.Connectors.get_schema_config/2 - Fetch schema configuration
	Fivetrex.Connectors.update_schema_config/3 - Modify schema configuration
	Fivetrex.Models.Schema - Individual schema struct

 Summary

 Types

 t()

 A Fivetran Schema Configuration struct.

 Functions

 from_map(map)

 Converts a map (from JSON response) to a SchemaConfig struct.

 Types

 t()

 @type t() :: %Fivetrex.Models.SchemaConfig{
 enable_new_by_default: boolean() | nil,
 schema_change_handling: String.t() | nil,
 schemas: %{required(String.t()) => Fivetrex.Models.Schema.t()} | nil
}

A Fivetran Schema Configuration struct.
All fields may be nil if not provided in the API response.

 Functions

 from_map(map)

 @spec from_map(map()) :: t()

Converts a map (from JSON response) to a SchemaConfig struct.
Recursively parses nested schemas, tables, and columns.
Parameters
	map - A map with string keys from a decoded JSON response

Returns
A %Fivetrex.Models.SchemaConfig{} struct with nested Schema structs.

Fivetrex.Models.SyncStatus

Represents the sync status summary for a Fivetran Connector.
This struct provides a structured view of a connector's current sync state,
including timing information and sync progress. It's returned by
Fivetrex.Connectors.get_sync_status/2.
Fields
	:sync_state - Current sync state of the connector
	:succeeded_at - DateTime of the last successful sync (parsed from ISO 8601)
	:failed_at - DateTime of the last failed sync (parsed from ISO 8601)
	:is_historical_sync - Whether a historical sync is currently in progress
	:update_state - The update status of the connector

Sync State Values
The :sync_state field can be one of:
	"syncing" - Connector is actively syncing data
	"scheduled" - Connector is waiting for its next scheduled sync
	"paused" - Connector has been manually paused
	"rescheduled" - Sync was rescheduled (e.g., due to rate limiting)

Update State Values
The :update_state field indicates the connector's update status:
	"on_schedule" - Connector is syncing on its normal schedule
	"delayed" - Connector sync is delayed

Helper Functions
This module provides helper functions to check sync state:
if SyncStatus.syncing?(status) do
 IO.puts("Sync in progress...")
end

if SyncStatus.paused?(status) do
 IO.puts("Connector is paused")
end
Examples
{:ok, status} = Fivetrex.Connectors.get_sync_status(client, "connector_id")
IO.puts("Current state: #{status.sync_state}")
IO.puts("Last success: #{status.succeeded_at}")

if SyncStatus.syncing?(status) do
 IO.puts("Sync in progress...")
end
See Also
	Fivetrex.Connectors.get_sync_status/2 - Retrieves sync status for a connector
	Fivetrex.Models.Connector - The full connector struct

 Summary

 Types

 t()

 A sync status summary struct.

 Functions

 from_connector(connector)

 Creates a SyncStatus struct from a Connector struct.

 paused?(sync_status)

 Returns true if the sync state is "paused".

 scheduled?(sync_status)

 Returns true if the sync state is "scheduled".

 syncing?(sync_status)

 Returns true if the sync state is "syncing".

 Types

 t()

 @type t() :: %Fivetrex.Models.SyncStatus{
 failed_at: DateTime.t() | nil,
 is_historical_sync: boolean() | nil,
 succeeded_at: DateTime.t() | nil,
 sync_state: String.t() | nil,
 update_state: String.t() | nil
}

A sync status summary struct.
All fields may be nil if not provided in the API response.

 Functions

 from_connector(connector)

 @spec from_connector(Fivetrex.Models.Connector.t()) :: t()

Creates a SyncStatus struct from a Connector struct.
Extracts the relevant sync status fields from a full Connector struct.
Parameters
	connector - A %Fivetrex.Models.Connector{} struct

Returns
A %Fivetrex.Models.SyncStatus{} struct with fields populated from the connector.
Examples
iex> connector = %Fivetrex.Models.Connector{
...> status: %{"sync_state" => "syncing", "is_historical_sync" => false, "update_state" => "on_schedule"},
...> succeeded_at: "2024-01-01T00:00:00Z",
...> failed_at: nil
...> }
iex> status = Fivetrex.Models.SyncStatus.from_connector(connector)
iex> status.sync_state
"syncing"
iex> status.succeeded_at
~U[2024-01-01 00:00:00Z]

 paused?(sync_status)

 @spec paused?(t()) :: boolean()

Returns true if the sync state is "paused".
Parameters
	status - A %Fivetrex.Models.SyncStatus{} struct

Returns
	true - If the connector is paused
	false - If the connector is not paused

Examples
iex> status = %Fivetrex.Models.SyncStatus{sync_state: "paused"}
iex> Fivetrex.Models.SyncStatus.paused?(status)
true

iex> status = %Fivetrex.Models.SyncStatus{sync_state: "syncing"}
iex> Fivetrex.Models.SyncStatus.paused?(status)
false

 scheduled?(sync_status)

 @spec scheduled?(t()) :: boolean()

Returns true if the sync state is "scheduled".
Parameters
	status - A %Fivetrex.Models.SyncStatus{} struct

Returns
	true - If the connector is scheduled for sync
	false - If the connector is not in scheduled state

Examples
iex> status = %Fivetrex.Models.SyncStatus{sync_state: "scheduled"}
iex> Fivetrex.Models.SyncStatus.scheduled?(status)
true

iex> status = %Fivetrex.Models.SyncStatus{sync_state: "syncing"}
iex> Fivetrex.Models.SyncStatus.scheduled?(status)
false

 syncing?(sync_status)

 @spec syncing?(t()) :: boolean()

Returns true if the sync state is "syncing".
Parameters
	status - A %Fivetrex.Models.SyncStatus{} struct

Returns
	true - If the connector is actively syncing data
	false - If the connector is not syncing

Examples
iex> status = %Fivetrex.Models.SyncStatus{sync_state: "syncing"}
iex> Fivetrex.Models.SyncStatus.syncing?(status)
true

iex> status = %Fivetrex.Models.SyncStatus{sync_state: "scheduled"}
iex> Fivetrex.Models.SyncStatus.syncing?(status)
false

Fivetrex.Models.Table

Represents a table within a schema configuration.
Tables contain the actual data being synced. Each table can have its own
sync mode and column configuration.
Fields
	:name_in_destination - The name used in the destination warehouse
	:enabled - Whether this table is being synced
	:sync_mode - How data changes are handled:	"SOFT_DELETE" - Deleted rows are marked with _fivetran_deleted
	"HISTORY" - Historical tracking with _fivetran_start/_fivetran_end
	"LIVE" - Real-time sync (deletes are hard deletes)

	:supports_columns_config - Whether per-column configuration is supported
	:enabled_patch_settings - Advanced patch settings
	:columns - Map of column name to Fivetrex.Models.Column structs

Sync Modes
The sync mode determines how Fivetran handles data modifications:
	Mode	Inserts	Updates	Deletes
	SOFT_DELETE	Appended	In-place	Marked with flag
	HISTORY	New row	New row	End timestamp set
	LIVE	Appended	In-place	Hard deleted

Examples
Check sync mode
case table.sync_mode do
 "SOFT_DELETE" -> "Deleted rows are marked, not removed"
 "HISTORY" -> "Full history is preserved"
 "LIVE" -> "Deletes are permanent"
end

 Summary

 Types

 t()

 A Fivetran Table struct.

 Functions

 from_map(map)

 Converts a map (from JSON response) to a Table struct.

 Types

 t()

 @type t() :: %Fivetrex.Models.Table{
 columns: %{required(String.t()) => Fivetrex.Models.Column.t()} | nil,
 enabled: boolean() | nil,
 enabled_patch_settings: map() | nil,
 name_in_destination: String.t() | nil,
 supports_columns_config: boolean() | nil,
 sync_mode: String.t() | nil
}

A Fivetran Table struct.
All fields may be nil if not provided in the API response.

 Functions

 from_map(map)

 @spec from_map(map()) :: t()

Converts a map (from JSON response) to a Table struct.

Fivetrex.Models.Webhook

Represents a Fivetran Webhook.
Webhooks provide real-time notifications about Fivetran events such as sync
starts, completions, and failures. Webhooks can be configured at either the
account level (all connectors) or group level (specific group's connectors).
Fields
	:id - The unique identifier for the webhook
	:type - Webhook scope: "account" or "group"
	:group_id - Group ID (only for group-level webhooks)
	:url - Endpoint URL where webhook events are delivered
	:events - List of event types that trigger this webhook
	:active - Whether the webhook is actively sending events
	:secret - Secret string for HMAC signature verification (masked in responses)
	:created_at - DateTime of creation (parsed from ISO 8601)
	:created_by - User ID who created the webhook

Webhook Types
	"account" - Receives events for all connectors in your Fivetran account
	"group" - Receives events only for connectors in the specified group

Event Types
Common events include:
	"sync_start" - Connector sync started
	"sync_end" - Connector sync completed (success or failure)
	"status" - Connector status changed
	"dbt_run_start" - dbt transformation started
	"dbt_run_succeeded" - dbt transformation succeeded
	"dbt_run_failed" - dbt transformation failed

Security
When creating webhooks with a secret, Fivetran signs each payload using
HMAC-SHA256. Use Fivetrex.WebhookSignature.verify/3 to validate incoming
requests are authentically from Fivetran.
Helper Functions
This module provides helper functions to check webhook scope:
if Webhook.account_level?(webhook) do
 IO.puts("Account-wide webhook")
end

if Webhook.group_level?(webhook) do
 IO.puts("Group webhook for: #{webhook.group_id}")
end
Examples
Working with webhooks:
{:ok, webhooks} = Fivetrex.Webhooks.list(client)
account_webhooks = Enum.filter(webhooks.items, &Webhook.account_level?/1)
group_webhooks = Enum.filter(webhooks.items, &Webhook.group_level?/1)
See Also
	Fivetrex.Webhooks - API functions for managing webhooks
	Fivetrex.WebhookSignature - Signature verification for incoming webhooks
	Fivetrex.Models.WebhookEvent - Struct for incoming webhook event payloads

 Summary

 Types

 t()

 A Fivetran Webhook struct.

 Functions

 account_level?(webhook)

 Returns true if this is an account-level webhook.

 from_map(map)

 Converts a map (from JSON response) to a Webhook struct.

 group_level?(webhook)

 Returns true if this is a group-level webhook.

 Types

 t()

 @type t() :: %Fivetrex.Models.Webhook{
 active: boolean() | nil,
 created_at: DateTime.t() | nil,
 created_by: String.t() | nil,
 events: [String.t()] | nil,
 group_id: String.t() | nil,
 id: String.t() | nil,
 secret: String.t() | nil,
 type: String.t() | nil,
 url: String.t() | nil
}

A Fivetran Webhook struct.
All fields may be nil if not provided in the API response.

 Functions

 account_level?(webhook)

 @spec account_level?(t()) :: boolean()

Returns true if this is an account-level webhook.
Account-level webhooks receive events for all connectors in the Fivetran account.
Parameters
	webhook - A %Fivetrex.Models.Webhook{} struct

Returns
	true - If the webhook type is "account"
	false - Otherwise

Examples
iex> webhook = %Fivetrex.Models.Webhook{type: "account"}
iex> Fivetrex.Models.Webhook.account_level?(webhook)
true

iex> webhook = %Fivetrex.Models.Webhook{type: "group"}
iex> Fivetrex.Models.Webhook.account_level?(webhook)
false

 from_map(map)

 @spec from_map(map()) :: t()

Converts a map (from JSON response) to a Webhook struct.
This function is used internally by Fivetrex.Webhooks functions to parse
API responses into typed structs.
Parameters
	map - A map with string keys from a decoded JSON response

Returns
A %Fivetrex.Models.Webhook{} struct with fields populated from the map.
Examples
iex> map = %{"id" => "wh_123", "type" => "account", "active" => true}
iex> webhook = Fivetrex.Models.Webhook.from_map(map)
iex> webhook.type
"account"

 group_level?(webhook)

 @spec group_level?(t()) :: boolean()

Returns true if this is a group-level webhook.
Group-level webhooks receive events only for connectors in the specified group.
Parameters
	webhook - A %Fivetrex.Models.Webhook{} struct

Returns
	true - If the webhook type is "group"
	false - Otherwise

Examples
iex> webhook = %Fivetrex.Models.Webhook{type: "group", group_id: "g_123"}
iex> Fivetrex.Models.Webhook.group_level?(webhook)
true

iex> webhook = %Fivetrex.Models.Webhook{type: "account"}
iex> Fivetrex.Models.Webhook.group_level?(webhook)
false

Fivetrex.Models.WebhookEvent

Represents an incoming Fivetran webhook event payload.
When Fivetran sends a webhook notification to your endpoint, the payload
contains information about what triggered the event. Use this struct to
parse and work with webhook payloads in a typed manner.
Fields
	:event - Event type (e.g., "sync_start", "sync_end")
	:created - DateTime when the event was created (parsed from ISO 8601)
	:connector_id - The connector that triggered the event
	:connector_type - Connector service type (e.g., "postgres", "salesforce")
	:group_id - Group containing the connector
	:data - Event-specific data (varies by event type)

Event Types
	"sync_start" - Connector sync started
	"sync_end" - Connector sync completed (check data for success/failure)
	"status" - Connector status changed
	"dbt_run_start" - dbt transformation started
	"dbt_run_succeeded" - dbt transformation succeeded
	"dbt_run_failed" - dbt transformation failed

Data Field
The :data field contains event-specific information. For sync_end events,
it typically includes:
%{
 "status" => "SUCCESSFUL", # or "FAILURE_WITH_TASK"
 "reason" => nil # Error message on failure
}
Helper Functions
This module provides convenience functions to check event types:
if WebhookEvent.sync_end?(event) do
 handle_sync_completion(event)
end
Examples
Parsing a webhook payload in a Phoenix controller:
def receive(conn, params) do
 event = Fivetrex.Models.WebhookEvent.from_map(params)

 case event.event do
 "sync_end" ->
 IO.puts("Sync finished for connector: #{event.connector_id}")
 "sync_start" ->
 IO.puts("Sync started for connector: #{event.connector_id}")
 _ ->
 IO.puts("Received event: #{event.event}")
 end

 json(conn, %{status: "ok"})
end
Filtering for specific events:
if WebhookEvent.sync_end?(event) do
 process_completed_sync(event.connector_id, event.data)
end
See Also
	Fivetrex.Webhooks - API functions for managing webhooks
	Fivetrex.WebhookSignature - Signature verification for incoming webhooks
	Fivetrex.WebhookPlug - Plug for Phoenix/Bandit webhook handling

 Summary

 Types

 t()

 A Fivetran Webhook Event struct.

 Functions

 from_map(map)

 Converts a map (from webhook JSON payload) to a WebhookEvent struct.

 sync_end?(webhook_event)

 Returns true if this is a sync_end event.

 sync_start?(webhook_event)

 Returns true if this is a sync_start event.

 Types

 t()

 @type t() :: %Fivetrex.Models.WebhookEvent{
 connector_id: String.t() | nil,
 connector_type: String.t() | nil,
 created: DateTime.t() | nil,
 data: map() | nil,
 event: String.t() | nil,
 group_id: String.t() | nil
}

A Fivetran Webhook Event struct.
All fields may be nil if not provided in the webhook payload.

 Functions

 from_map(map)

 @spec from_map(map()) :: t()

Converts a map (from webhook JSON payload) to a WebhookEvent struct.
This function parses incoming webhook payloads into typed structs for
easier processing.
Parameters
	map - A map with string keys from a decoded JSON webhook payload

Returns
A %Fivetrex.Models.WebhookEvent{} struct with fields populated from the map.
Examples
iex> map = %{"event" => "sync_end", "connector_id" => "conn_123"}
iex> event = Fivetrex.Models.WebhookEvent.from_map(map)
iex> event.event
"sync_end"

 sync_end?(webhook_event)

 @spec sync_end?(t()) :: boolean()

Returns true if this is a sync_end event.
Sync end events indicate a connector has finished syncing. Check the
data field for success/failure status.
Parameters
	event - A %Fivetrex.Models.WebhookEvent{} struct

Returns
	true - If the event type is "sync_end"
	false - Otherwise

Examples
iex> event = %Fivetrex.Models.WebhookEvent{event: "sync_end"}
iex> Fivetrex.Models.WebhookEvent.sync_end?(event)
true

Check if sync was successful
if WebhookEvent.sync_end?(event) do
 case event.data do
 %{"status" => "SUCCESSFUL"} -> handle_success(event)
 %{"status" => "FAILURE_WITH_TASK"} -> handle_failure(event)
 end
end

 sync_start?(webhook_event)

 @spec sync_start?(t()) :: boolean()

Returns true if this is a sync_start event.
Parameters
	event - A %Fivetrex.Models.WebhookEvent{} struct

Returns
	true - If the event type is "sync_start"
	false - Otherwise

Examples
iex> event = %Fivetrex.Models.WebhookEvent{event: "sync_start"}
iex> Fivetrex.Models.WebhookEvent.sync_start?(event)
true

Fivetrex.SyncLogs

Documentation for accessing Fivetran sync logs via your data warehouse.
Fivetran does not provide a REST API for accessing sync logs. Instead, sync
logs and operational metadata are available through the Fivetran Platform
Connector, which syncs this data directly to your data warehouse.
Overview
To access sync logs, you need to set up the Fivetran Platform Connector:
	Create a new connector in your Fivetran dashboard
	Select "Fivetran Platform" as the source type
	Configure it to sync to your destination warehouse
	The connector will populate metadata tables with sync history

Schema Location
By default, Fivetran Platform Connector data is stored in a schema named
fivetran_metadata (or fivetran_log for legacy setups). The schema name
is configurable when setting up the connector.
Key Tables
The Fivetran Platform Connector provides several tables:
LOG
The primary table for sync event logs. Contains:
	id - Unique log entry identifier
	connector_id - The connector that generated the log
	event - Event type (e.g., "sync_start", "sync_end", "write_to_table")
	message_event - Detailed event category
	message_data - JSON with event-specific details
	time_stamp - When the event occurred

CONNECTOR_SDK_LOG
Logs from SDK-based connectors (custom connectors). Contains:
	connector_id - The SDK connector ID
	log_message - The log message text
	log_level - Log severity (INFO, WARNING, ERROR)
	time_stamp - When the log was generated

AUDIT_TRAIL
Account-level audit events. Contains:
	id - Unique audit entry identifier
	actor - Who performed the action
	action - What action was performed
	object_type - Type of object affected
	object_id - ID of the affected object
	time_stamp - When the action occurred

Example SQL Queries
Recent Sync Events
Get the last 10 sync events for a specific connector:
SELECT
 time_stamp,
 event,
 message_event,
 message_data
FROM fivetran_metadata.log
WHERE connector_id = 'your_connector_id'
ORDER BY time_stamp DESC
LIMIT 10;
Failed Syncs
Find recent failed syncs:
SELECT
 connector_id,
 time_stamp,
 message_event,
 message_data
FROM fivetran_metadata.log
WHERE event = 'SEVERE'
 OR message_event LIKE '%error%'
 OR message_event LIKE '%fail%'
ORDER BY time_stamp DESC
LIMIT 50;
Sync Duration
Calculate sync duration for recent syncs:
WITH sync_events AS (
 SELECT
 connector_id,
 time_stamp,
 message_event,
 LAG(time_stamp) OVER (
 PARTITION BY connector_id
 ORDER BY time_stamp
) AS prev_time
 FROM fivetran_metadata.log
 WHERE message_event IN ('sync_start', 'sync_end')
)
SELECT
 connector_id,
 time_stamp AS sync_end_time,
 DATEDIFF('minute', prev_time, time_stamp) AS duration_minutes
FROM sync_events
WHERE message_event = 'sync_end'
 AND connector_id = 'your_connector_id'
ORDER BY time_stamp DESC
LIMIT 20;
Schema Changes
Find schema modification events:
SELECT
 connector_id,
 time_stamp,
 message_event,
 message_data
FROM fivetran_metadata.log
WHERE message_event LIKE '%schema%'
 OR message_event LIKE '%column%'
 OR message_event LIKE '%table%'
ORDER BY time_stamp DESC
LIMIT 100;
Usage with Fivetrex
While Fivetrex cannot query sync logs directly (no REST API exists), you can
use the connector state and status information:
Get current sync state
{:ok, connector} = Fivetrex.Connectors.get(client, "connector_id")
Fivetrex.Models.Connector.sync_state(connector)

Get sync status summary
{:ok, status} = Fivetrex.Connectors.get_sync_status(client, "connector_id")
For historical sync logs and detailed event data, query the fivetran_metadata
schema in your data warehouse using the SQL examples above.
See Also
	Fivetrex.Connectors - For real-time connector status
	Fivetrex.Models.Connector - Connector struct with status helpers
	Fivetran Platform Connector docs

 Summary

 Types

 query_type()

 Query type atoms for common sync log queries.

 Functions

 query_example(atom)

 Returns an example SQL query for common sync log use cases.

 Types

 query_type()

 @type query_type() :: :recent_syncs | :failed_syncs | :sync_duration | :schema_changes

Query type atoms for common sync log queries.
	:recent_syncs - Query for recent sync events
	:failed_syncs - Query for failed sync events
	:sync_duration - Query for sync timing information
	:schema_changes - Query for schema modification events

 Functions

 query_example(atom)

 @spec query_example(query_type()) :: String.t()

Returns an example SQL query for common sync log use cases.
These queries are templates designed to work with the Fivetran Platform
Connector's fivetran_metadata schema. You will need to substitute the
placeholder 'your_connector_id' with an actual connector ID.
Parameters
	query_type - The type of query to return:	:recent_syncs - Last 10 sync events for a connector
	:failed_syncs - Recent failure events
	:sync_duration - Sync timing and duration information
	:schema_changes - Schema modification events

Returns
A SQL query string that can be executed against your data warehouse.
Note
The returned queries use fivetran_metadata as the schema name. If your
Fivetran Platform Connector uses a different schema name, you will need
to adjust the queries accordingly.
Examples
iex> sql = Fivetrex.SyncLogs.query_example(:recent_syncs)
iex> String.contains?(sql, "fivetran_metadata.log")
true

Substitute the connector ID before executing
sql = Fivetrex.SyncLogs.query_example(:failed_syncs)
actual_sql = String.replace(sql, "your_connector_id", "my_actual_connector_id")

Fivetrex.Client

Low-level HTTP client for the Fivetran REST API.
This module handles authentication, request building, and response parsing.
It is used internally by the API modules (Fivetrex.Groups, Fivetrex.Connectors,
etc.) and is not typically used directly.
Authentication
The client uses HTTP Basic Authentication with your Fivetran API key and secret.
Credentials are Base64-encoded and sent in the Authorization header with each request.
Creating a Client
Use Fivetrex.client/1 to create a new client instance:
client = Fivetrex.client(
 api_key: "your_api_key",
 api_secret: "your_api_secret"
)
Request Methods
The client provides methods for each HTTP verb:
	get/3 - GET requests with optional query parameters
	post/3 - POST requests with JSON body
	patch/3 - PATCH requests with JSON body
	delete/2 - DELETE requests

Response Handling
All request methods return {:ok, body} on success (2xx status) or
{:error, %Fivetrex.Error{}} on failure. The response body is automatically
decoded from JSON.
Error Mapping
HTTP errors are mapped to structured Fivetrex.Error types:
	401 → :unauthorized
	404 → :not_found
	429 → :rate_limited (includes retry_after from header)
	5xx → :server_error
	Other → :unknown

 Summary

 Types

 t()

 A Fivetrex client struct containing the configured Req request.

 Functions

 delete(client, path)

 Performs a DELETE request to the specified path.

 get(client, path, opts \\ [])

 Performs a GET request to the specified path.

 new(opts)

 Creates a new client with the given options.

 patch(client, path, body)

 Performs a PATCH request to the specified path with a JSON body.

 post(client, path, body \\ %{})

 Performs a POST request to the specified path with a JSON body.

 Types

 t()

 @type t() :: %Fivetrex.Client{req: Req.Request.t()}

A Fivetrex client struct containing the configured Req request.
This struct is opaque and should be created using Fivetrex.client/1.

 Functions

 delete(client, path)

 @spec delete(t(), String.t()) :: {:ok, map()} | {:error, Fivetrex.Error.t()}

Performs a DELETE request to the specified path.
Parameters
	client - The Fivetrex client
	path - The API path

Examples
{:ok, _} = Fivetrex.Client.delete(client, "/groups/abc")
Returns
	{:ok, map()} - The decoded JSON response body (usually empty)
	{:error, Fivetrex.Error.t()} - A structured error

 get(client, path, opts \\ [])

 @spec get(t(), String.t(), keyword()) :: {:ok, map()} | {:error, Fivetrex.Error.t()}

Performs a GET request to the specified path.
Parameters
	client - The Fivetrex client
	path - The API path (e.g., "/groups" or "/connectors/abc123")
	opts - Optional keyword list:	:params - Query parameters as a keyword list or map

Examples
Simple GET
{:ok, body} = Fivetrex.Client.get(client, "/groups")

GET with query parameters
{:ok, body} = Fivetrex.Client.get(client, "/groups", params: [limit: 10])
Returns
	{:ok, map()} - The decoded JSON response body
	{:error, Fivetrex.Error.t()} - A structured error

 new(opts)

 @spec new(keyword()) :: t()

Creates a new client with the given options.
This function is called internally by Fivetrex.client/1. Prefer using
that function for creating clients.
Options
	:api_key - Required. Your Fivetran API key.
	:api_secret - Required. Your Fivetran API secret.
	:base_url - Optional. Override the API base URL. Defaults to
https://api.fivetran.com/v1.

Examples
client = Fivetrex.Client.new(
 api_key: "key",
 api_secret: "secret"
)

 patch(client, path, body)

 @spec patch(t(), String.t(), map()) :: {:ok, map()} | {:error, Fivetrex.Error.t()}

Performs a PATCH request to the specified path with a JSON body.
Parameters
	client - The Fivetrex client
	path - The API path
	body - The request body (will be JSON-encoded)

Examples
{:ok, body} = Fivetrex.Client.patch(client, "/groups/abc", %{name: "New Name"})
Returns
	{:ok, map()} - The decoded JSON response body
	{:error, Fivetrex.Error.t()} - A structured error

 post(client, path, body \\ %{})

 @spec post(t(), String.t(), map()) :: {:ok, map()} | {:error, Fivetrex.Error.t()}

Performs a POST request to the specified path with a JSON body.
Parameters
	client - The Fivetrex client
	path - The API path
	body - The request body (will be JSON-encoded)

Examples
{:ok, body} = Fivetrex.Client.post(client, "/groups", %{name: "My Group"})
Returns
	{:ok, map()} - The decoded JSON response body
	{:error, Fivetrex.Error.t()} - A structured error

Fivetrex.Error exception

Structured error types for Fivetran API responses.
All API functions in Fivetrex return {:error, %Fivetrex.Error{}} on failure.
This struct provides structured information about what went wrong, making it
easy to pattern match on error types and handle them appropriately.
Error Types
The :type field indicates the category of error:
	:unauthorized - Invalid or missing API credentials (HTTP 401)
	:not_found - The requested resource does not exist (HTTP 404)
	:rate_limited - Too many requests; check :retry_after (HTTP 429)
	:server_error - Fivetran server error (HTTP 5xx)
	:unknown - Unexpected or unclassified error

Fields
	:type - The error category (see above)
	:message - Human-readable error message from Fivetran
	:status - The HTTP status code (if applicable)
	:retry_after - Seconds to wait before retrying (for :rate_limited errors)

Examples
Pattern matching on error types:
case Fivetrex.Connectors.get(client, "invalid_id") do
 {:ok, connector} ->
 # Handle success
 connector

 {:error, %Fivetrex.Error{type: :not_found}} ->
 # Resource doesn't exist
 nil

 {:error, %Fivetrex.Error{type: :unauthorized}} ->
 # Invalid credentials - re-authenticate
 raise "Invalid API credentials"

 {:error, %Fivetrex.Error{type: :rate_limited, retry_after: seconds}} ->
 # Wait and retry
 Process.sleep(seconds * 1000)
 Fivetrex.Connectors.get(client, "invalid_id")

 {:error, %Fivetrex.Error{type: :server_error, status: status}} ->
 # Log and maybe retry
 Logger.error("Fivetran server error: #{status}")
 {:error, :server_error}

 {:error, %Fivetrex.Error{message: message}} ->
 # Catch-all for other errors
 {:error, message}
end
Exception Behavior
Fivetrex.Error implements the Exception behaviour, so you can raise it:
{:error, error} = Fivetrex.Connectors.get(client, "invalid")
raise error
=> ** (Fivetrex.Error) Resource not found

 Summary

 Types

 error_type()

 The category of error that occurred.

 t()

 A structured Fivetran API error.

 Functions

 message(exception)

 Returns the error message for exception handling.

 Types

 error_type()

 @type error_type() ::
 :unauthorized | :not_found | :rate_limited | :server_error | :unknown

The category of error that occurred.
	:unauthorized - Authentication failed (401)
	:not_found - Resource not found (404)
	:rate_limited - Rate limit exceeded (429)
	:server_error - Server-side error (5xx)
	:unknown - Unexpected error

 t()

 @type t() :: %Fivetrex.Error{
 __exception__: true,
 message: String.t(),
 retry_after: integer() | nil,
 status: integer() | nil,
 type: error_type()
}

A structured Fivetran API error.
See module documentation for field descriptions and usage examples.

 Functions

 message(exception)

Returns the error message for exception handling.
This is called automatically when the error is raised.

Fivetrex.Retry

Retry utilities with exponential backoff for handling transient failures.
This module provides retry logic for Fivetran API calls that may fail due to
rate limiting, temporary server errors, or network issues. It implements
exponential backoff with optional jitter to prevent thundering herd problems.
Quick Start
Retry with defaults (3 attempts, exponential backoff)
{:ok, groups} = Fivetrex.Retry.with_backoff(fn ->
 Fivetrex.Groups.list(client)
end)

Custom retry configuration
{:ok, connector} = Fivetrex.Retry.with_backoff(
 fn -> Fivetrex.Connectors.get(client, connector_id) end,
 max_attempts: 5,
 base_delay_ms: 500,
 max_delay_ms: 30_000
)
How It Works
	Executes the provided function
	If successful, returns the result immediately
	If it fails with a retryable error, waits with exponential backoff
	Repeats until success or max attempts reached

Retryable Errors
By default, these error types are retried:
	:rate_limited - Respects retry_after header when available
	:server_error - 5xx errors are typically transient

Non-retryable errors (returned immediately):
	:unauthorized - Invalid credentials won't become valid
	:not_found - Resource doesn't exist
	:unknown - Unexpected errors need investigation

Exponential Backoff
Delays increase exponentially: base_delay * 2^attempt
With default settings (base_delay: 1000ms):
	Attempt 1 fails → wait ~1 second
	Attempt 2 fails → wait ~2 seconds
	Attempt 3 fails → wait ~4 seconds
	(capped at max_delay)

Jitter
Optional random jitter prevents synchronized retries when multiple clients
hit rate limits simultaneously:
Fivetrex.Retry.with_backoff(func, jitter: true)
Examples
Basic Usage
case Fivetrex.Retry.with_backoff(fn -> Fivetrex.Groups.list(client) end) do
 {:ok, %{items: groups}} ->
 process_groups(groups)

 {:error, error} ->
 # All retries exhausted
 Logger.error("Failed after retries: #{error.message}")
end
With Rate Limit Handling
Respects Fivetran's retry-after header automatically
{:ok, _} = Fivetrex.Retry.with_backoff(fn ->
 Fivetrex.Connectors.sync(client, connector_id)
end)
Custom Retry Predicate
Only retry on specific errors
Fivetrex.Retry.with_backoff(
 fn -> Fivetrex.Connectors.get(client, id) end,
 retry_if: fn
 %Fivetrex.Error{type: :rate_limited} -> true
 _ -> false
 end
)
Fire and Forget with Logging
Fivetrex.Retry.with_backoff(
 fn -> Fivetrex.Connectors.sync(client, connector_id) end,
 on_retry: fn error, attempt, delay ->
 Logger.warn("Retry #{attempt}: #{error.message}, waiting #{delay}ms")
 end
)

 Summary

 Types

 retry_opts()

 Options for configuring retry behavior.

 Functions

 calculate_delay(error, attempt, base_delay_ms, max_delay_ms, jitter)

 Calculates the delay before the next retry attempt.

 default_retry_predicate(error)

 The default retry predicate - determines which errors are retryable.

 with_backoff(func, opts \\ [])

 Executes a function with automatic retry and exponential backoff.

 Types

 retry_opts()

 @type retry_opts() :: [
 max_attempts: pos_integer(),
 base_delay_ms: pos_integer(),
 max_delay_ms: pos_integer(),
 jitter: boolean(),
 retry_if: (Fivetrex.Error.t() -> boolean()),
 on_retry: (Fivetrex.Error.t(), pos_integer(), pos_integer() -> any())
]

Options for configuring retry behavior.
	:max_attempts - Maximum number of attempts (default: 3)
	:base_delay_ms - Initial delay in milliseconds (default: 1000)
	:max_delay_ms - Maximum delay cap in milliseconds (default: 30000)
	:jitter - Add random jitter to delays (default: false)
	:retry_if - Custom function to determine if error is retryable
	:on_retry - Callback function called before each retry

 Functions

 calculate_delay(error, attempt, base_delay_ms, max_delay_ms, jitter)

 @spec calculate_delay(
 Fivetrex.Error.t(),
 pos_integer(),
 pos_integer(),
 pos_integer(),
 boolean()
) ::
 pos_integer()

Calculates the delay before the next retry attempt.
For rate-limited errors with a retry_after value, uses that directly.
Otherwise, uses exponential backoff: base_delay * 2^(attempt-1)
Parameters
	error - The error that triggered the retry
	attempt - The current attempt number (1-based)
	base_delay_ms - Base delay in milliseconds
	max_delay_ms - Maximum delay cap
	jitter - Whether to add random jitter

Examples
iex> error = %Fivetrex.Error{type: :server_error, retry_after: nil}
iex> Fivetrex.Retry.calculate_delay(error, 1, 1000, 30000, false)
1000

iex> error = %Fivetrex.Error{type: :server_error, retry_after: nil}
iex> Fivetrex.Retry.calculate_delay(error, 3, 1000, 30000, false)
4000

iex> error = %Fivetrex.Error{type: :rate_limited, retry_after: 60}
iex> Fivetrex.Retry.calculate_delay(error, 1, 1000, 30000, false)
60000

 default_retry_predicate(error)

 @spec default_retry_predicate(Fivetrex.Error.t()) :: boolean()

The default retry predicate - determines which errors are retryable.
Returns true for:
	:rate_limited - API rate limits are transient
	:server_error - 5xx errors are typically transient

Returns false for:
	:unauthorized - Invalid credentials
	:not_found - Resource doesn't exist
	:unknown - Unexpected errors

Examples
iex> Fivetrex.Retry.default_retry_predicate(%Fivetrex.Error{type: :rate_limited})
true

iex> Fivetrex.Retry.default_retry_predicate(%Fivetrex.Error{type: :not_found})
false

 with_backoff(func, opts \\ [])

 @spec with_backoff((-> {:ok, any()} | {:error, Fivetrex.Error.t()}), retry_opts()) ::
 {:ok, any()} | {:error, Fivetrex.Error.t()}

Executes a function with automatic retry and exponential backoff.
Parameters
	func - A zero-arity function that returns {:ok, result} or {:error, %Fivetrex.Error{}}
	opts - Optional keyword list (see module docs for options)

Returns
	{:ok, result} - The successful result from func
	{:error, %Fivetrex.Error{}} - The last error after all retries exhausted

Examples
Simple usage
{:ok, groups} = Fivetrex.Retry.with_backoff(fn ->
 Fivetrex.Groups.list(client)
end)

With options
{:ok, connector} = Fivetrex.Retry.with_backoff(
 fn -> Fivetrex.Connectors.get(client, id) end,
 max_attempts: 5,
 jitter: true
)

Fivetrex.Stream

Utilities for cursor-based pagination as Elixir Streams.
Fivetran's REST API uses cursor-based pagination for list endpoints. This module
provides utilities to transparently handle pagination, allowing you to iterate
over all results as a lazy Elixir Stream without loading everything into memory.
How It Works
When you call a streaming function like Fivetrex.Groups.stream/2, this module:
	Fetches the first page of results
	Yields each item from the page
	If there's a next_cursor, automatically fetches the next page
	Continues until all pages are exhausted

Because Elixir Streams are lazy, pages are only fetched as needed. If you
Enum.take(5) from a stream, only enough pages to provide 5 items are fetched.
Example
Stream through all groups, processing one at a time
Fivetrex.Groups.stream(client)
|> Stream.filter(&(&1.name =~ "production"))
|> Enum.each(fn group ->
 IO.puts("Found production group: #{group.name}")
end)

Take only the first 10 broken connectors
(stops fetching pages once 10 are found)
Fivetrex.Connectors.stream(client, group_id)
|> Stream.filter(fn c -> c.status["sync_state"] == "broken" end)
|> Enum.take(10)
Memory Efficiency
Unlike Enum.flat_map/2 which loads all results into memory, streams process
items one at a time. This makes it safe to iterate over thousands or millions
of resources:
Memory-efficient: processes one connector at a time
Fivetrex.Groups.stream(client)
|> Stream.flat_map(fn group ->
 Fivetrex.Connectors.stream(client, group.id)
end)
|> Enum.each(&process_connector/1)
Error Handling
If an API error occurs during pagination, the error is raised as an exception.
Wrap stream operations in try/rescue if you need to handle errors:
try do
 Fivetrex.Groups.stream(client)
 |> Enum.to_list()
rescue
 e in Fivetrex.Error ->
 Logger.error("Failed to fetch groups: #{e.message}")
 []
end

 Summary

 Functions

 paginate(fetch_fn)

 Creates a stream that handles cursor-based pagination.

 Functions

 paginate(fetch_fn)

 @spec paginate((String.t() | nil ->
 {:ok, %{items: list(), next_cursor: String.t() | nil}}
 | {:error, any()})) ::
 Enumerable.t()

Creates a stream that handles cursor-based pagination.
This function is used internally by API modules to implement streaming.
You typically won't call it directly - use functions like
Fivetrex.Groups.stream/2 instead.
Parameters
	fetch_fn - A function that takes a cursor (or nil for the first page)
and returns {:ok, %{items: items, next_cursor: cursor}} or {:error, error}

Returns
An Enumerable.t() that yields items from all pages.
Examples
This is how Groups.stream/2 is implemented internally
def stream(client, opts \\ []) do
 Fivetrex.Stream.paginate(fn cursor ->
 list(client, Keyword.put(opts, :cursor, cursor))
 end)
end
Raises
	Fivetrex.Error - If the fetch function returns an error

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

