

 Floki

 v0.35.3

 [image: Logo]

 Table of contents

 	Changelog

 	Overview

 	Modules

 	Floki

 	Floki.HTMLParser

 	Floki.ParseError

 	Mix Tasks

 	mix generate_entities

 	mix generate_tokenizer_tests

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog
and this project adheres to Semantic Versioning.

 Unreleased

 0.35.3 - 2024-01-25

This release has great performance improvements, thanks to the PRs
from @ypconstante!
Most of the main functions, such as Floki.raw_html/2 and Floki.find/2 are
faster and are using less memory. It's something like twice as fast, and half
usage of memory for find/2, for example.

 Fixed

	Add :leex to Mix compilers. Fixes the build when running with dev version of Elixir.
Thanks @wojtekmach.

	Fix Floki.raw_html/2 when a tree using attributes as maps is given.
Thanks @SupaMic.

	Add a guard to Floki.find/2 so people can have a better error message when an
invalid input is given. Thanks @Hajto.

	Fix parsers to consider IO data as inputs. This may change in the next version
of Floki, as I plan to drop support for IO data.
Thanks @ypconstante.

 Removed

	Remove outdated Gleam wrapper code. The external functions syntax in Gleam
has changed. So now
the wrapper is not needed anymore.
Thanks @michallepicki.

 0.35.2 - 2023-10-25

 Fixed

	Enable usage of IO data by removing a guard for binaries in the main
parser module.

 0.35.1 - 2023-10-16

 Fixed

	Fix a small regression of the mochiweb parser that was breaking when a
malformed HTML was used. For more details, see the original issue:
https://github.com/philss/floki/issues/492

 0.35.0 - 2023-10-13

 Added

	Add support for parsing attributes as maps.
This makes parse_document/2 and parse_fragment/2 accept the option
:attributes_as_maps to change the behaviour and return attributes as
maps instead of lists of tuples.
The only parser that does not support it yet is the fast_html.

 Changed

	Drop support for Elixir v1.11.

	Change the log level of parsing logger calls from "info" to "debug".
This will help to reduce the amount of noise in production apps.

 0.34.3 - 2023-06-02

 Added

	Add boolean option :include_inputs to Floki.text/2 that changes the result
of this function to include the values of inputs. So if there is any input with
a "value" attribute, we now include that value if this option is set to true.
Thanks @viniciusmuller.

 Fixed

	Fix find of elements by classes that contain colons. This is useful for when
people are trying to find elements that contain Tailwind classes.
Thanks @viniciusmuller.

	Fix some typespecs that were using types from private modules. This is a fix
to the documentation.

 0.34.2 - 2023-02-24

 Added

	Add option to pass down arguments to the parser in Floki.parse_document/2 and
Floki.parse_fragment/2. Thanks @Kuret.

	Add support for returning more elements from the Floki.traverse_and_update/2 function callback.
This enables the creation of more elements in the tree, but should be used with care,
since the tree can grow a lot if the change is not controlled. Thanks @martosaur.

 0.34.1 - 2023-02-11

 Fixed

	Fix pseudo-class ":not" selector parsing halting point.
This is a fix for when a "pseudo-class" ":not" that contains an attribute selector is
followed by another selector. This is an example: "a:not([class]), div".

	Ignore decimal numeric char ref when number is negative.

 0.34.0 - 2022-11-03

 Added

	User configurable "self-closing" tags. Now it's possible to define which tags are considered
"self-closing". Thanks @inoas.

 Fixed

	Allow attribute values to not be escaped. This fixes Floki.raw_html/2 when used with the
option encode: false. Thanks @juanazam.
	Fix traverse_and_update/3 spec. Thanks @WLSF.

 Changed

	Drop support for Elixir 1.9 and 1.10.
	Remove html_entities dependency. We now use an internal encoder/decoder for entities.
	Change the main branch name to main.

 0.33.1 - 2022-06-28

 Fixed

	Remove some warnings for unused code.

 0.33.0 - 2022-06-28

 Added

	Add support for searching elements that contains text in a case-insensitive manner with
fl-icontains - thanks @nuno84

 Changed

	Drop support for Elixir 1.8 and 1.9.
	Fix and improve internal things - thanks @derek-zhou and @hissssst

 0.32.1 - 2022-03-24

 Fixed

	Allow root nodes to be selected using pseudo-classes - thanks @rzane

 0.32.0 - 2021-10-18

 Added

	Add an HTML tokenizer written in Elixir - this still experimental and it's not stable API yet.
	Add support for HTML IDs containing periods in the selectors - thanks @Hugo-Hache
	Add support for case-insensitive CSS attribute selectors - thanks @fcapovilla
	Add the :root pseudo-class selector - thanks @fcapovilla

 0.31.0 - 2021-06-11

 Changed

	Treat style and title tags as plaintext in Mochiweb - thanks @SweetMNM

 0.30.1 - 2021-03-29

 Fixed

	Fix typespecs of Floki.traverse_and_update/2 to make clear that it does not accept text nodes directly.

 0.30.0 - 2021-02-06

 Added

	Add ":disabled" pseudo selector - thanks @vnegrisolo
	Add Gleam adapter - thanks @CrowdHailer
	Add pretty option to Floki.raw_html/2 - thanks @evaldobratti
	Add html_parser option to parse_ functions. This enables a more dynamic and functional
configuration of the HTML parser in use.

 Changed

	Remove support for Elixir 1.7 - thanks @carlosfrodrigues
	Replace IO.warn by Logger.info for deprecation warnings - thanks @juulSme

 Fixed

	Fix typespecs for find, attr and attribute functions - thanks @mtarnovan
	Documentation Improvements - thanks @kianmeng

 0.29.0 - 2020-10-02

 Added

	Add Floki.find_and_update/3 that updates nodes inside a tree, like traverse and update
but without allowing changes in the children nodes. There for the tree cannot grow in size,
but can have nodes removed.

 Changed

	Deprecate Floki.map/2 because we have now Floki.find_and_update/3 and Floki.traverse_and_update/2 that
are powerful APIs. Floki.map/2 can be replaced by Enum.map/2 as well - thanks @josevalim for the idea!
	Update optional dependency fast_html to v2.0.4

 Fixed

	Fix a bug when parsing a HTML with a XML inside using Mochiweb's parser

 Improvements

	Add more typespecs

 0.28.0 - 2020-08-26

 Added

	Add support for :checked pseudo-class selector - thanks @wojtekmach

 Changed

	Drop support for Elixir 1.6
	Update version of fast_html to 2.0 in docs and CI - thanks @rinpatch

 Fixed

	Fix docs by mentioning HTML nodes supported for traverse_and_update - thanks @hubertlepicki

 0.27.0 - 2020-07-07

 Added

	Floki.filter_out/2 now can filter text nodes - thanks @ckruse
	Support more encoding entities in Floki.raw_html/1 - thanks @ntenczar

 Fixed

	Fix Floki.attribute/2 when there is only text nodes in the document - thanks @ckruse

 Improvements

	Performance improvements of Floki.raw_html/1 function - thanks @josevalim
	Improvements in the docs and specs of Floki.traverse_and_update/2 and Floki.children/1 - thanks @josevalim
	Improvements in the spec of Floki.traverse_and_update/2 - thanks @Dalgona
	Improve the CI setup to run the formatter correctly - thanks @Cleidiano

 0.26.0 - 2020-02-17

 Added

	Add support for the pseudo-class selectors :nth-last-child and :nth-last-of-type

 Fixed

	Fix the typespecs of Floki.traverse_and_update/3 - thanks @RichMorin

 Changed

	Update optional dependency fast_html to v1.0.3

 0.25.0 - 2020-01-26

 Added

	Add Floki.parse_fragment!/1 and Floki.parse_document!/1 that has the same functionality of
the functions without the bang, but they return the document or fragment without the either tuple
and will raise exception in case of errors - thanks @schneiderderek
	Add Floki.traverse_and_update/3 which accepts an accumulator which is useful to keep
the state while traversing the HTML tree - thanks @Dalgona

 Changed

	Update the html_entities dependency from v0.5.0 to v0.5.1

 0.24.0 - 2020-01-01

 Added

	Add support for fast_html, which is a "C Node" wrapping
Lexborisov's myhtml - thanks @rinpatch
	Add setup to run our test suite against all parsers on CI - thanks @rinpatch
	Add Floki.parse_document/1 and Floki.parse_fragment/1 in order to correct parse documents
and fragments of documents - it also prevents the confusion and inconsistency of parse/1.
	Configure dialyxir in order to run Dialyzer easily.

 Changed

	Deprecate Floki.parse/1 and all the functions that uses it underneath. This means that all
the functions that accepted HTML as binary are deprecated as well. This includes find/2, attr/4,
filter_out/2, text/2 and attribute/2. The recommendation is to use those functions with an
already parsed document or fragment.
	Remove support for Elixir 1.5.

 0.23.1 - 2019-12-01

 Fixed

	It fixes the Mochiweb parser when there is an invalid charref.

 0.23.0 - 2019-09-11

 Changed

	Remove Mochiweb as a hex dependency. It brings the code from the original project
to Floki's codebase - thanks @josevalim

 0.22.0 - 2019-08-21

 Added

	Add Floki.traverse_and_update/2 that works in similar way to Floki.map/2 but
traverse the tree and update the children elements. The difference from "map" is that
this function can create a tree with more or less nodes. - thanks @ericlathrop

 Changed

	Remove support for Elixir 1.4.

 0.21.0 - 2019-04-17

 Added

	Add a possibility to filter style tags on Floki.text/2 - thanks @Vict0rynox

 Fixed

	Fix Floki.text/2 to consider the previous filter of js when filtering style - thanks @Vict0rynox
	Fix typespecs for Floki.filter_out/2 - thanks @myfreeweb

 Changed

	Drop support for Elixir 1.3 and below - thanks @herbstrith

 0.20.4 - 2018-09-24

 Fixed

	Fix Floki.raw_html to accept lists as attribute values - thanks @katehedgpeth

 0.20.3 - 2018-06-22

 Fixed

	Fix style and script tags with comments - thanks @francois2metz

 0.20.2 - 2018-05-09

 Fixed

	Fix Floki.raw_html/1 to correct handle quotes and double quotes on attributes - thanks @grych

 0.20.1 - 2018-04-05

 Fixed

	Remove Enumerable.slice/1 compile warning for Floki.HTMLTree - thanks @thecodeboss
	Fix Floki.find/2 that was failing on HTML that consists entirely of a comment - thanks @ShaneWilton

 0.20.0 - 2018-02-06

 Added

	Configurable raw_html/2 to allow optional encode of HTML entities - thanks @davydog187

 Fixed

	Fix serialization of the tree after updating attribute - thanks @francois2metz

 0.19.3 - 2018-01-25

 Fixed

	Skip HTML entities encode for Floki.raw_html/1 for script or style tags
	Add :html_entities app to the list of OTP applications. It fixes production releases.

 0.19.2 - 2017-12-22

 Fixed

	(BREAKING CHANGE) Re-encode HTML entities on Floki.raw_html/1.

 0.19.1 - 2017-12-04

 Fixed

	Fixed doctype serialization for Floki.raw_html/1 - thanks [@jhchen][https://github.com/jhchen]

 0.19.0 - 2017-11-11

 Added

	Added support for nth-of-type, first-of-type, last-of-type and last-child pseudo-classes - thanks @saleem1337.
	Added support for nth-child pseudo-class functional notation - thanks @nirev.
	Added functional notation support for nth-of-type pseudo-class.
	Added a Contributing guide.

 Fixed

	Format all files according to the Elixir 1.6 formatter - thanks @fcevado.
	Fix Floki.raw_html to support raw text - thanks @craig-day.

 0.18.1 - 2017-10-13

 Added

	Added a Code of Conduct.

 Fixed

	Fix XML tag when building HTML tree.
	Return empty list when Floki.filter_out/2 result is empty.

 0.18.0 - 2017-08-05

 Added

	Added Floki.attr/4 that receives a function enabling manipulation of attribute values - thanks @erikdsi.
	Implement the String.Chars protocol for Floki.Selector.
	Implement the Enumerable protocol for Floki.HTMLTree.

 Changed

	Changed Floki.transform/2 to Floki.map/2 and Floki.Finder.apply_transform/2 to Floki.Finder.map/2 - thanks @aphillipo.

 Fixed

	Fix Floki.raw_html/1 to consider XML prefixes - thanks @sergey-kintsel.
	Fix raw_html for self closing tags with content - thanks @navinpeiris.

 Removed

	Removed support for Elixir 1.2.

 0.17.2 - 2017-05-25

 Fixed

	Fix attribute selectors in :not() - thanks @jjcarstens and @Eiji7
	Fix selector parser to consider combinators across selectors separated by commas.
For further details, please check the pull request - thanks @jjcarstens and @mischov

 0.17.1 - 2017-05-22

 Fixed

	Fix search when body has unencoded angles (< and >) - thanks @sergey-kintsel
	Fix crash caused by XML declaration inside body - thanks @erikdsi
	Fix issue when finding fails if HTML begins with XML tag - thanks @sergey-kintsel

 0.17.0 - 2017-04-12

 Added

	Add support for multiple pseudo-selectors, line :not() and :nth-child() - thanks @jjcarstens
	Add support for multiple selectors inside the :not() pseudo-class selector - thanks @jjcarstens

 0.16.0 - 2017-04-05

 Added

	Add support for selectors that only include a pseudo-class selector - thanks @buhman
	Add support for a new selector: fl-contains, which returns elements that contains a given text - thanks @buhman

 Fixed

	Fix :not() pseudo-class selector to accept simple pseudo-class selectors as well - thanks @mischov

 0.15.0 - 2017-03-14

 Added

	Added support for the :not() pseudo-class selector.

 Fixed

	Fixed pseudo-class selectors that are used in conjunction with combinators - thanks @Eiji7
	Fixed order of elements after search using descendant combinator - thanks @Eiji7

 0.14.0 - 2017-02-07

 Added

	Added support for configuring html5ever as the HTML parser. Issue #83 - thanks @hansihe
and @aphillipo!

 0.13.2 - 2017-02-07

 Fixed

	Fixed bug that was causing Floki.text/1 and Floki.filter_out/2
to ignore "trees" with only text nodes. Issue #91 - thanks @boydm.

 0.13.1 - 2017-01-22

 Fixed

	Fix ordering of duplicated descendant matches - thanks @mmmries
	Fix ordering of Floki.text/1 when there are only root nodes - thanks @mmmries

 0.13.0 - 2017-01-22

 Added

	Floki.filter_out/2 is now able to understand complex selectors to filter out from the tree.

 0.12.1 - 2017-01-20

 Fixed

	Fix search for elements using descendant combinator - issue #84 - thanks @mmmries

 0.12.0 - 2016-12-28

 Added

	Add basic support for nth-child pseudo-class selector.
Closes issue #64.

 Changed

	Remove support for Elixir 1.1 and below.
	Remove public documentation for internal code.

 0.11.0 - 2016-10-12

 Added

	First attempt to transform nodes with Floki.transform/2. It is not able to update
the tree yet, but works good with results from Floki.find/2 - thanks @bobjflong

 Changed

	Using Logger to notify unknown tokens in selector parser - thanks @teamon and @geonnave
	Replace mochiweb_html with mochiweb package. This is needed to fix conflict with other
packages that are using mochiweb. - thanks @aphillipo

 0.10.1 - 2016-08-28

 Fixed

	Fix sibling search after immediate children - thanks @gmile.

 0.10.0 - 2016-08-05

 Changed

	Change the search for namespaced elements using the correct CSS3 syntax.

 Fixed

	Fix the search for child elements when is more than two elements deep - thanks @gmile

 0.9.0 - 2016-06-16

 Added

	A separator between text when getting text from nodes - thanks @rochdi.

 0.8.1 - 2016-05-20

 Added

	Support rendering boolean attributes on Floki.raw_html/1 - thanks @iamvery.

 Changed

	Update Mochiweb HTML parser dependency to version 2.15.0.

 0.8.0 - 2016-03-06

 Added

	Add possibility to search tags with namespaces.
	Accept Floki.Selector as parameter of Floki.find/2 instead of only strings - thanks @hansihe.

 Changed

	Using a smaller package with only the Mochiweb HTML parser.

 0.7.2 - 2016-02-23

 Fixed

	Replace
 nodes by newline (\n) in DeepText - thanks @maxneuvians.
	Allow FilterOut to filter special nodes, like comment.

 0.7.1 - 2015-11-14

 Fixed

	Ignore PHP scripts when finding nodes.

 0.7.0 - 2015-11-03

 Added

	Add support for excluding script notes in Floki.text.
By default, it will exclude those nodes, but it can be enabled with
the flag js: true - thanks @vikeri!

 Fixed

	Fix find for sibling nodes when the precedent selector match an element
at the end of sibling list - fix issue #39

 0.6.1 - 2015-10-11

 Fixed

	Fix the Floki.raw_html/1 to build HTML comments properly.

 0.6.0 - 2015-10-07

 Added

	Add Floki.raw_html/2.

 0.5.0 - 2015-09-27

 Added

	Add the child combinator to Floki.find/2.
	Add the adjacent sibling combinator to Floki.find/2.
	Add the general adjacent sibling combinator to Floki.find/2.

 0.4.1 - 2015-09-18

 Fixed

	Ignoring other files that are not lexer files (".xrl") under src/ directory
in Hex package. This fixes a crash when compiling using OTP 17.5 on Mac OS X.
Huge thanks to @henrik and @licyeus that pointed the
issue!

 0.4.0 - 2015-09-17

 Added

	A robust representation of selectors in order to enable queries using a mix of selector types,
such as classes with attributes, attributes with types, classes with classes and so on.
Here is a list with examples of what is possible now:	Floki.find(html, "a.foo")
	Floki.find(html, "a.foo[data-action=post]")
	Floki.find(html, ".foo.bar")
	Floki.find(html, "a.foo[href$='.org']")
Thanks to @licyeus to point out the issue!

	Include mochiweb in the applications list at mix.exs - thanks @EricDykstra

 Changed

	Floki.find/2 will now return a list instead of tuple when searching only by IDs.
For now on, Floki should always return the results inside a list, even if it's an ID match.

 Removed

	Floki.find/2 does not accept tuples as selectors anymore.
This is because with the robust selectors representation, it won't be necessary to query directly using
tuples or another data structures rather than string.

 0.3.3 - 2015-08-23

 Fixed

	Fix Floki.find/2 when there is a non-HTML input.
It closes the issue #17

 0.3.2 - 2015-06-27

 Fixed

	Fix Floki.DeepText when there is a comment inside nodes.

 0.3.1 - 2015-06-21

 Fixed

	Fix Floki.find/2 to consider XML trees.

 0.3.0 - 2015-06-07

 Added

	Add attribute equals selector. This feature enables the user to search using
HTML attributes other than "class" or "id".
E.g: Floki.find(html, "[data-model=user]") - @nelsonr

 0.2.1 - 2015-06-04

 Fixed

	Fix parse/1 when parsing a part of HTML without a root node - @antonmi

 0.2.0 - 2015-05-03

 Added

	Support HTML string when searching for attributes with Floki.attribute/2.
	Option for Floki.text/2 to disable deep search and use flat search instead.

 Changed

	Change Floki.text/1 to perform a deep search of text nodes.
	Consider doctests in the test suite.

 0.1.1 - 2015-03-25

 Added

	Add CHANGELOG.md following the Keep a changelog.

 Changed

	Using MochiWeb as a hex dependency instead of embedded code.
It closes the issue #5

 0.1.0 - 2015-02-15

 Added

	Descendant selectors, like ".class tag" to Floki.find/2.
	Multiple selection, like ".class1, .class2" to Floki.find/2.

 0.0.5 - 2014-12-21

 Added

	Floki.text/1, which returns all text in the same level
of the parent element inside HTML.

 Changed

	Elixir version requirement from "~> 1.0.0" to ">= 1.0.0".

Overview

[image: Actions Status]
[image: Floki version]
[image: Hex Docs]
[image: Hex.pm]
[image: License]
[image: Last Updated]
[image: Floki logo]Floki is a simple HTML parser that enables search for nodes using CSS selectors.
Check the documentation 📙.

 Usage

Take this HTML as an example:
<!doctype html>
<html>
<body>
 <section id="content">
 <p class="headline">Floki</p>
 Enables search using CSS selectors
 Github page
 philss
 </section>
 Hex package
</body>
</html>
Here are some queries that you can perform (with return examples):
{:ok, document} = Floki.parse_document(html)

Floki.find(document, "p.headline")
=> [{"p", [{"class", "headline"}], ["Floki"]}]

document
|> Floki.find("p.headline")
|> Floki.raw_html
=> <p class="headline">Floki</p>
Each HTML node is represented by a tuple like:
{tag_name, attributes, children_nodes}
Example of node:
{"p", [{"class", "headline"}], ["Floki"]}
So even if the only child node is the element text, it is represented inside a list.

 Installation

Add Floki to your mix.exs:
defp deps do
 [
 {:floki, "~> 0.35.0"}
]
end
After that, run mix deps.get.
You can check the changelog for changes.

 Dependencies

Floki needs the :leex module in order to compile.
Normally this module is installed with Erlang in a complete installation.
If you get this "module :leex is not available" error message, you need to install the erlang-dev and erlang-parsetools packages in order get the :leex module. The packages names may be different depending on your OS.

 Alternative HTML parsers

By default Floki uses a patched version of mochiweb_html for parsing fragments
due to its ease of installation (it's written in Erlang and has no outside dependencies).
However one might want to use an alternative parser due to the following
concerns:
	Performance - It can be up to 20 times slower than the alternatives on big HTML
documents.
	Correctness - in some cases mochiweb_html will produce different results
from what is specified in HTML5 specification.
For example, a correct parser would parse <title> bold text </title>
as {"title", [], [" bold text "]} since content inside <title> is
to be treated as plaintext.
Albeit mochiweb_html would parse it as {"title", [], [{"b", [], [" bold "]}, " text "]}.

Floki supports the following alternative parsers:
	fast_html - A wrapper for lexbor. A pure C HTML parser.
	html5ever - A wrapper for html5ever written in Rust, developed as a part of the Servo project.

fast_html is generally faster, according to the
benchmarks conducted by
its developers.
You can perform a benchmark by running the following:
$ sh benchs/extract.sh
$ mix run benchs/parse_document.exs

Extracting the files is needed only once.
Using html5ever as the HTML parser
This dependency is written with a NIF using Rustler, but
you don't need to install anything to compile it thanks to RustlerPrecompiled.
defp deps do
 [
 {:floki, "~> 0.35.0"},
 {:html5ever, "~> 0.15.0"}
]
end
Run mix deps.get and compiles the project with mix compile to make sure it works.
Then you need to configure your app to use html5ever:
in config/config.exs

config :floki, :html_parser, Floki.HTMLParser.Html5ever
Notice that you can pass the HTML parser as an option in parse_document/2 and parse_fragment/2.
Using fast_html as the HTML parser
A C compiler, GNU\Make and CMake need to be installed on the system in order to
compile lexbor.
First, add fast_html to your dependencies:
defp deps do
 [
 {:floki, "~> 0.35.0"},
 {:fast_html, "~> 2.0"}
]
end
Run mix deps.get and compiles the project with mix compile to make sure it works.
Then you need to configure your app to use fast_html:
in config/config.exs

config :floki, :html_parser, Floki.HTMLParser.FastHtml

 More about Floki API

To parse a HTML document, try:
html = """
 <html>
 <body>
 <div class="example"></div>
 </body>
 </html>
"""

{:ok, document} = Floki.parse_document(html)
=> {:ok, [{"html", [], [{"body", [], [{"div", [{"class", "example"}], []}]}]}]}
To find elements with the class example, try:
Floki.find(document, ".example")
=> [{"div", [{"class", "example"}], []}]
To convert your node tree back to raw HTML (spaces are ignored):
document
|> Floki.find(".example")
|> Floki.raw_html
=> <div class="example"></div>
To fetch some attribute from elements, try:
Floki.attribute(document, ".example", "class")
=> ["example"]
You can get attributes from elements that you already have:
document
|> Floki.find(".example")
|> Floki.attribute("class")
=> ["example"]
If you want to get the text from an element, try:
document
|> Floki.find(".headline")
|> Floki.text

=> "Floki"

 Supported selectors

Here you find all the CSS selectors supported in the current version:
	Pattern	Description
	*	any element
	E	an element of type E
	E[foo]	an E element with a "foo" attribute
	E[foo="bar"]	an E element whose "foo" attribute value is exactly equal to "bar"
	E[foo~="bar"]	an E element whose "foo" attribute value is a list of whitespace-separated values, one of which is exactly equal to "bar"
	E[foo^="bar"]	an E element whose "foo" attribute value begins exactly with the string "bar"
	E[foo$="bar"]	an E element whose "foo" attribute value ends exactly with the string "bar"
	E[foo*="bar"]	an E element whose "foo" attribute value contains the substring "bar"
	E[foo|="en"]	an E element whose "foo" attribute has a hyphen-separated list of values beginning (from the left) with "en"
	E:nth-child(n)	an E element, the n-th child of its parent
	E:nth-last-child(n)	an E element, the n-th child of its parent, counting from bottom to up
	E:first-child	an E element, first child of its parent
	E:last-child	an E element, last child of its parent
	E:nth-of-type(n)	an E element, the n-th child of its type among its siblings
	E:nth-last-of-type(n)	an E element, the n-th child of its type among its siblings, counting from bottom to up
	E:first-of-type	an E element, first child of its type among its siblings
	E:last-of-type	an E element, last child of its type among its siblings
	E:checked	An E element (checkbox, radio, or option) that is checked
	E:disabled	An E element (button, input, select, textarea, or option) that is disabled
	E.warning	an E element whose class is "warning"
	E#myid	an E element with ID equal to "myid" (for ids containing periods, use #my\\.id or [id="my.id"])
	E:not(s)	an E element that does not match simple selector s
	:root	the root node or nodes (in case of fragments) of the document. Most of the times this is the html tag
	E F	an F element descendant of an E element
	E > F	an F element child of an E element
	E + F	an F element immediately preceded by an E element
	E ~ F	an F element preceded by an E element

There are also some selectors based on non-standard specifications. They are:
	Pattern	Description
	E:fl-contains('foo')	an E element that contains "foo" inside a text node
	E:fl-icontains('foo')	an E element that contains "foo" inside a text node (case insensitive)

 Suppressing log messages

Floki may log debug messages related to problems in the parsing of selectors, or parsing of the HTML tree.
It also may log some "info" messages related to deprecated APIs. If you want to suppress these log messages,
please consider setting the :compile_time_purge_matching option for :logger in your compile time configuration.
See https://hexdocs.pm/logger/Logger.html#module-compile-configuration for details.

 Special thanks

	@arasatasaygin for Floki's logo from the Open Logos project.

 License

Copyright (c) 2014 Philip Sampaio Silva
Floki is under MIT license. Check the LICENSE file for more details.

Floki

Floki is a simple HTML parser that enables search for nodes using CSS selectors.

 Example

Assuming that you have the following HTML:
<!doctype html>
<html>
<body>
 <section id="content">
 <p class="headline">Floki</p>
 Github page
 philss
 </section>
</body>
</html>
To parse this, you can use the function Floki.parse_document/1:
{:ok, html} = Floki.parse_document(doc)
=>
[{"html", [],
[
{"body", [],
[
{"section", [{"id", "content"}],
[
{"p", [{"class", "headline"}], ["Floki"]},
{"a", [{"href", "http://github.com/philss/floki"}], ["Github page"]},
{"span", [{"data-model", "user"}], ["philss"]}
]}
]}
]}]
With this document you can perform queries such as:
	Floki.find(html, "#content")
	Floki.find(html, ".headline")
	Floki.find(html, "a")
	Floki.find(html, "[data-model=user]")
	Floki.find(html, "#content a")
	Floki.find(html, ".headline, a")

Each HTML node is represented by a tuple like:
{tag_name, attributes, children_nodes}
Example of node:
{"p", [{"class", "headline"}], ["Floki"]}
So even if the only child node is the element text, it is represented
inside a list.

 Summary

 Types

 css_selector()

 html_attribute()

 html_attributes()

 html_attributes_map()

 html_comment()

 html_declaration()

 html_doctype()

 html_node()

 html_tag()

 html_text()

 html_tree()

 Functions

 attr(html_elem_tuple, selector, attribute_name, mutation)

 Changes the attribute values of the elements matched by selector
with the function mutation and returns the whole element tree.

 attribute(html, attribute_name)

 Returns a list with attribute values from elements.

 attribute(html, selector, attribute_name)

 Returns a list with attribute values for a given selector.

 children(html_node, opts \\ [include_text: true])

 Returns the direct child nodes of a HTML node.

 filter_out(html, selector)

 Returns the nodes from a HTML tree that don't match the filter selector.

 find(html, selector)

 Find elements inside an HTML tree or string.

 find_and_update(html_tree, selector, fun)

 Searches for elements inside the HTML tree and update those that matches the selector.

 is_html_node(value)

 map(html_tree_list, fun)

 deprecated

 parse(html)

 deprecated

 Parses a HTML Document from a String.

 parse_document(document, opts \\ [])

 Parses an HTML document from a string.

 parse_document!(document, opts \\ [])

 Parses a HTML Document from a string.

 parse_fragment(fragment, opts \\ [])

 Parses an HTML fragment from a string.

 parse_fragment!(fragment, opts \\ [])

 Parses a HTML fragment from a string.

 raw_html(html_tree, options \\ [])

 Converts HTML tree to raw HTML.

 text(html, opts \\ [])

 Returns the text nodes from a HTML tree.

 traverse_and_update(html_tree, fun)

 Traverses and updates a HTML tree structure.

 traverse_and_update(html_tree, acc, fun)

 Traverses and updates a HTML tree structure with an accumulator.

 Types

 Link to this type

 css_selector()

 View Source

 @type css_selector() ::
 String.t()
 | %Floki.Selector{
 attributes: term(),
 classes: term(),
 combinator: term(),
 id: term(),
 namespace: term(),
 pseudo_classes: term(),
 type: term()
 }
 | [
 %Floki.Selector{
 attributes: term(),
 classes: term(),
 combinator: term(),
 id: term(),
 namespace: term(),
 pseudo_classes: term(),
 type: term()
 }
]

 Link to this type

 html_attribute()

 View Source

 @type html_attribute() :: {String.t(), String.t()}

 Link to this type

 html_attributes()

 View Source

 @type html_attributes() :: [html_attribute()] | html_attributes_map()

 Link to this type

 html_attributes_map()

 View Source

 @type html_attributes_map() :: %{required(String.t()) => String.t()}

 Link to this type

 html_comment()

 View Source

 @type html_comment() :: {:comment, String.t()}

 Link to this type

 html_declaration()

 View Source

 @type html_declaration() :: {:pi, String.t(), html_attributes()}

 Link to this type

 html_doctype()

 View Source

 @type html_doctype() :: {:doctype, String.t(), String.t(), String.t()}

 Link to this type

 html_node()

 View Source

 @type html_node() ::
 html_tag()
 | html_comment()
 | html_doctype()
 | html_declaration()
 | html_text()

 Link to this type

 html_tag()

 View Source

 @type html_tag() :: {String.t(), html_attributes(), [html_node()]}

 Link to this type

 html_text()

 View Source

 @type html_text() :: String.t()

 Link to this type

 html_tree()

 View Source

 @type html_tree() :: [html_node()]

 Functions

 Link to this function

 attr(html_elem_tuple, selector, attribute_name, mutation)

 View Source

 @spec attr(
 binary() | html_tree() | html_node(),
 css_selector(),
 binary(),
 (binary() -> binary())
) ::
 html_tree()

Changes the attribute values of the elements matched by selector
with the function mutation and returns the whole element tree.

 Examples

iex> Floki.attr([{"div", [{"id", "a"}], []}], "#a", "id", fn(id) -> String.replace(id, "a", "b") end)
[{"div", [{"id", "b"}], []}]

iex> Floki.attr([{"div", [{"class", "name"}], []}], "div", "id", fn _ -> "b" end)
[{"div", [{"id", "b"}, {"class", "name"}], []}]

 Link to this function

 attribute(html, attribute_name)

 View Source

 @spec attribute(binary() | html_tree() | html_node(), binary()) :: list()

Returns a list with attribute values from elements.

 Examples

iex> Floki.attribute([{"a", [{"href", "https://google.com"}], ["Google"]}], "href")
["https://google.com"]

iex> Floki.attribute([{"a", [{"href", "https://google.com"}, {"data-name", "google"}], ["Google"]}], "data-name")
["google"]

 Link to this function

 attribute(html, selector, attribute_name)

 View Source

 @spec attribute(binary() | html_tree() | html_node(), binary(), binary()) :: list()

Returns a list with attribute values for a given selector.

 Examples

iex> Floki.attribute([{"a", [{"href", "https://google.com"}], ["Google"]}], "a", "href")
["https://google.com"]

iex> Floki.attribute(
iex> [{"a", [{"class", "foo"}, {"href", "https://google.com"}], ["Google"]}],
iex> "a",
iex> "class"
iex>)
["foo"]

iex> Floki.attribute(
iex> [{"a", [{"href", "https://e.corp.com"}, {"data-name", "e.corp"}], ["E.Corp"]}],
iex> "a[data-name]",
iex> "data-name"
iex>)
["e.corp"]

 Link to this function

 children(html_node, opts \\ [include_text: true])

 View Source

 @spec children(html_node(), Keyword.t()) :: html_tree() | nil

Returns the direct child nodes of a HTML node.
By default, it will also include all texts. You can disable
this behaviour by using the option include_text to false.
If the given node is not an HTML tag, then it returns nil.

 Examples

iex> Floki.children({"div", [], ["text", {"span", [], []}]})
["text", {"span", [], []}]

iex> Floki.children({"div", [], ["text", {"span", [], []}]}, include_text: false)
[{"span", [], []}]

iex> Floki.children({:comment, "comment"})
nil

 Link to this function

 filter_out(html, selector)

 View Source

 @spec filter_out(
 html_node() | html_tree() | binary(),
 :comment | :text | css_selector()
) ::
 html_node() | html_tree()

Returns the nodes from a HTML tree that don't match the filter selector.

 Examples

iex> Floki.filter_out({"div", [], [{"script", [], ["hello"]}, " world"]}, "script")
{"div", [], [" world"]}

iex> Floki.filter_out([{"body", [], [{"script", [], []}, {"div", [], []}]}], "script")
[{"body", [], [{"div", [], []}]}]

iex> Floki.filter_out({"div", [], [{:comment, "comment"}, " text"]}, :comment)
{"div", [], [" text"]}

iex> Floki.filter_out({"div", [], ["text"]}, :text)
{"div", [], []}

 Link to this function

 find(html, selector)

 View Source

 @spec find(binary() | html_tree() | html_node(), css_selector()) :: html_tree()

Find elements inside an HTML tree or string.

 Examples

iex> {:ok, html} = Floki.parse_fragment("<p>hello</p>")
iex> Floki.find(html, ".hint")
[{"span", [{"class", "hint"}], ["hello"]}]

iex> {:ok, html} = Floki.parse_fragment("<div id=important><div>Content</div></div>")
iex> Floki.find(html, "#important")
[{"div", [{"id", "important"}], [{"div", [], ["Content"]}]}]

iex> {:ok, html} = Floki.parse_fragment("<p>Google</p>")
iex> Floki.find(html, "a")
[{"a", [{"href", "https://google.com"}], ["Google"]}]

iex> Floki.find([{ "div", [], [{"a", [{"href", "https://google.com"}], ["Google"]}]}], "div a")
[{"a", [{"href", "https://google.com"}], ["Google"]}]

 Link to this function

 find_and_update(html_tree, selector, fun)

 View Source

 @spec find_and_update(
 html_tree(),
 css_selector(),
 ({String.t(), html_attributes()} -> {String.t(), html_attributes()} | :delete)
) :: html_tree()

Searches for elements inside the HTML tree and update those that matches the selector.
It will return the updated HTML tree.
This function works in a way similar to traverse_and_update, but instead of updating
the children nodes, it will only updates the tag and attributes of the matching nodes.
If fun returns :delete, the HTML node will be removed from the tree.

 Examples

iex> Floki.find_and_update([{"a", [{"href", "http://elixir-lang.com"}], ["Elixir"]}], "a", fn
iex> {"a", [{"href", href}]} ->
iex> {"a", [{"href", String.replace(href, "http://", "https://")}]}
iex> other ->
iex> other
iex> end)
[{"a", [{"href", "https://elixir-lang.com"}], ["Elixir"]}]

 Link to this macro

 is_html_node(value)

 View Source

 (macro)

 Link to this function

 map(html_tree_list, fun)

 View Source

 This function is deprecated. Use `find_and_update/3` or `Enum.map/2` instead.
.

 Link to this function

 parse(html)

 View Source

 This function is deprecated. Use `parse_document/1` or `parse_fragment/1` instead..

 @spec parse(binary()) :: html_tag() | html_tree() | String.t()

Parses a HTML Document from a String.
The expect string is a valid HTML, but the parser will try
to parse even with errors.

 Link to this function

 parse_document(document, opts \\ [])

 View Source

 @spec parse_document(binary(), Keyword.t()) ::
 {:ok, html_tree()} | {:error, String.t()}

Parses an HTML document from a string.
This is the main function to get a tree from an HTML string.

 Options

	:attributes_as_maps - Change the behaviour of the parser to return the attributes
as maps, instead of a list of {"key", "value"}. Default to false.

	:html_parser - The module of the backend that is responsible for parsing
the HTML string. By default it is set to the built-in parser, and the module
name is equal to Floki.HTMLParser.Mochiweb, or from the value of the
application env of the same name.
See https://github.com/philss/floki#alternative-html-parsers for more details.

	:parser_args - A list of options to the parser. This can be used to pass options
that are specific for a given parser. Defaults to an empty list.

 Examples

iex> Floki.parse_document("<html><head></head><body>hello</body></html>")
{:ok, [{"html", [], [{"head", [], []}, {"body", [], ["hello"]}]}]}

iex> Floki.parse_document("<html><head></head><body>hello</body></html>", html_parser: Floki.HTMLParser.Mochiweb)
{:ok, [{"html", [], [{"head", [], []}, {"body", [], ["hello"]}]}]}

iex> Floki.parse_document(
...> "<html><head></head><body class=main>hello</body></html>",
...> attributes_as_maps: true,
...> html_parser: Floki.HTMLParser.Mochiweb
...>)
{:ok, [{"html", %{}, [{"head", %{}, []}, {"body", %{"class" => "main"}, ["hello"]}]}]}

 Link to this function

 parse_document!(document, opts \\ [])

 View Source

 @spec parse_document!(binary(), Keyword.t()) :: html_tree()

Parses a HTML Document from a string.
Similar to Floki.parse_document/1, but raises Floki.ParseError if there was an
error parsing the document.

 Example

iex> Floki.parse_document!("<html><head></head><body>hello</body></html>")
[{"html", [], [{"head", [], []}, {"body", [], ["hello"]}]}]

 Link to this function

 parse_fragment(fragment, opts \\ [])

 View Source

 @spec parse_fragment(binary(), Keyword.t()) ::
 {:ok, html_tree()} | {:error, String.t()}

Parses an HTML fragment from a string.
This is mostly for parsing sections of an HTML document.

 Options

	:attributes_as_maps - Change the behaviour of the parser to return the attributes
as maps, instead of a list of {"key", "value"}. Remember that maps are no longer
ordered since OTP 26. Default to false.

	:html_parser - The module of the backend that is responsible for parsing
the HTML string. By default it is set to the built-in parser, and the module
name is equal to Floki.HTMLParser.Mochiweb, or from the value of the
application env of the same name.
See https://github.com/philss/floki#alternative-html-parsers for more details.

	:parser_args - A list of options to the parser. This can be used to pass options
that are specific for a given parser. Defaults to an empty list.

 Link to this function

 parse_fragment!(fragment, opts \\ [])

 View Source

 @spec parse_fragment!(binary(), Keyword.t()) :: html_tree()

Parses a HTML fragment from a string.
Similar to Floki.parse_fragment/1, but raises Floki.ParseError if there was an
error parsing the fragment.

 Link to this function

 raw_html(html_tree, options \\ [])

 View Source

 @spec raw_html(
 html_tree() | binary(),
 keyword()
) :: binary()

Converts HTML tree to raw HTML.
Note that the resultant HTML may be different from the original one.
Spaces after tags and doctypes are ignored.

 Options

	:encode - A boolean option to control if special HTML characters
should be encoded as HTML entities. Defaults to true.

 You can also control the encoding behaviour at the application level via
 config :floki, :encode_raw_html, false
	:pretty - Controls if the output should be formatted, ignoring
breaklines and spaces from the input and putting new ones in order
to pretty format the html. Defaults to false.

 Examples

iex> Floki.raw_html({"div", [{"class", "wrapper"}], ["my content"]})
~s(<div class="wrapper">my content</div>)

iex> Floki.raw_html({"div", [{"class", "wrapper"}], ["10 > 5"]})
~s(<div class="wrapper">10 > 5</div>)

iex> Floki.raw_html({"div", [{"class", "wrapper"}], ["10 > 5"]}, encode: false)
~s(<div class="wrapper">10 > 5</div>)

iex> Floki.raw_html({"div", [], ["\n ", {"span", [], "Fully indented"}, " \n"]}, pretty: true)
"""
<div>

 Fully indented

</div>
"""

 Link to this function

 text(html, opts \\ [])

 View Source

 @spec text(html_tree() | html_node() | binary(), Keyword.t()) :: binary()

Returns the text nodes from a HTML tree.
By default, it will perform a deep search through the HTML tree.
You can disable deep search with the option deep assigned to false.
You can include content of script tags with the option js assigned to true.
You can specify a separator between nodes content.

 Options

	:deep - A boolean option to control how deep the search for
text is going to be. If false, only the level of the HTML node
or the first level of the HTML document is going to be considered.
Defaults to true.

	:js - A boolean option to control if the contents of script tags
should be considered as text. Defaults to false.

	:sep - A separator string that is added between text nodes.
Defaults to "".

	:include_inputs - A boolean to control if <input> or <textarea>
values should be included in the resultant string.
Defaults to false.

	:html_parser - The module of the backend that is responsible for parsing
the HTML string. By default it is set to Floki.HTMLParser.Mochiweb.

 Examples

iex> Floki.text({"div", [], [{"span", [], ["hello"]}, " world"]})
"hello world"

iex> Floki.text({"div", [], [{"span", [], ["hello"]}, " world"]}, deep: false)
" world"

iex> Floki.text({"div", [], [{"script", [], ["hello"]}, " world"]})
" world"

iex> Floki.text([{"input", [{"type", "date"}, {"value", "2017-06-01"}], []}], include_inputs: true)
"2017-06-01"

iex> Floki.text({"div", [], [{"script", [], ["hello"]}, " world"]}, js: true)
"hello world"

iex> Floki.text({"ul", [], [{"li", [], ["hello"]}, {"li", [], ["world"]}]}, sep: "-")
"hello-world"

iex> Floki.text([{"div", [], ["hello world"]}])
"hello world"

iex> Floki.text([{"p", [], ["1"]},{"p", [], ["2"]}])
"12"

iex> Floki.text({"div", [], [{"style", [], ["hello"]}, " world"]}, style: false)
" world"

iex> Floki.text({"div", [], [{"style", [], ["hello"]}, " world"]}, style: true)
"hello world"

 Link to this function

 traverse_and_update(html_tree, fun)

 View Source

 @spec traverse_and_update(
 html_node() | html_tree(),
 (html_node() -> html_node() | [html_node()] | nil)
) :: html_node() | html_tree()

Traverses and updates a HTML tree structure.
This function returns a new tree structure that is the result of applying the
given fun on all nodes except text nodes.
The tree is traversed in a post-walk fashion, where the children are traversed
before the parent.
When the function fun encounters HTML tag, it receives a tuple with {name, attributes, children}, and should either return a similar tuple, a list of
tuples to split current node or nil to delete it.
The function fun can also encounter HTML doctype, comment or declaration and
will receive, and should return, different tuple for these types. See the
documentation for html_comment/0, html_doctype/0 and
html_declaration/0 for details.
Note: this won't update text nodes, but you can transform them when working
with children nodes.

 Examples

iex> html = [{"div", [], ["hello"]}]
iex> Floki.traverse_and_update(html, fn
...> {"div", attrs, children} -> {"p", attrs, children}
...> other -> other
...> end)
[{"p", [], ["hello"]}]

iex> html = [{"div", [], [{:comment, "I am comment"}, {"span", [], ["hello"]}]}]
iex> Floki.traverse_and_update(html, fn
...> {"span", _attrs, _children} -> nil
...> {:comment, text} -> {"span", [], text}
...> other -> other
...> end)
[{"div", [], [{"span", [], "I am comment"}]}]

 Link to this function

 traverse_and_update(html_tree, acc, fun)

 View Source

 @spec traverse_and_update(
 html_node() | html_tree(),
 traverse_acc,
 (html_node(), traverse_acc ->
 {html_node() | [html_node()] | nil, traverse_acc})
) :: {html_node() | html_tree(), traverse_acc}
when traverse_acc: any()

Traverses and updates a HTML tree structure with an accumulator.
This function returns a new tree structure and the final value of accumulator
which are the result of applying the given fun on all nodes except text nodes.
The tree is traversed in a post-walk fashion, where the children are traversed
before the parent.
When the function fun encounters HTML tag, it receives a tuple with
{name, attributes, children} and an accumulator. It and should return a
2-tuple like {new_node, new_acc}, where new_node is either a similar tuple
or nil to delete the current node, and new_acc is an updated value for the
accumulator.
The function fun can also encounter HTML doctype, comment or declaration and
will receive, and should return, different tuple for these types. See the
documentation for html_comment/0, html_doctype/0 and
html_declaration/0 for details.
Note: this won't update text nodes, but you can transform them when working
with children nodes.

 Examples

iex> html = [{"div", [], [{:comment, "I am a comment"}, "hello"]}, {"div", [], ["world"]}]
iex> Floki.traverse_and_update(html, 0, fn
...> {"div", attrs, children}, acc ->
...> {{"p", [{"data-count", to_string(acc)} | attrs], children}, acc + 1}
...> other, acc -> {other, acc}
...> end)
{[
 {"p", [{"data-count", "0"}], [{:comment, "I am a comment"}, "hello"]},
 {"p", [{"data-count", "1"}], ["world"]}
], 2}

iex> html = {"div", [], [{"span", [], ["hello"]}]}
iex> Floki.traverse_and_update(html, [deleted: 0], fn
...> {"span", _attrs, _children}, acc ->
...> {nil, Keyword.put(acc, :deleted, acc[:deleted] + 1)}
...> tag, acc ->
...> {tag, acc}
...> end)
{{"div", [], []}, [deleted: 1]}

Floki.HTMLParser behaviour

A entry point to dynamic dispatch functions to
the configured HTML parser.
The configuration can be done with the :html_parser
option when calling the functions, or for the :floki application:
Floki.parse_document(document, html_parser: Floki.HTMLParser.FastHtml)
Or:
use Mix.Config
config :floki, :html_parser, Floki.HTMLParser.Mochiweb
The default parser is Mochiweb, which comes with Floki.
You can also choose between Html5ever or FastHtml.
And it's possible to pass down options to the parsers using
the parser_args option.
This module is also a behaviour that those parsers must implement.

 Summary

 Callbacks

 parse_document(html, t)

 parse_document_with_attributes_as_maps(html, t)

 parse_fragment(html, t)

 parse_fragment_with_attributes_as_maps(html, t)

 Functions

 parse_document(html, opts \\ [])

 parse_fragment(html, opts \\ [])

 Callbacks

 Link to this callback

 parse_document(html, t)

 View Source

 @callback parse_document(html(), Keyword.t()) :: result(Floki.html_tree())

 Link to this callback

 parse_document_with_attributes_as_maps(html, t)

 View Source

 @callback parse_document_with_attributes_as_maps(html(), Keyword.t()) ::
 result(Floki.html_tree())

 Link to this callback

 parse_fragment(html, t)

 View Source

 @callback parse_fragment(html(), Keyword.t()) :: result(Floki.html_tree())

 Link to this callback

 parse_fragment_with_attributes_as_maps(html, t)

 View Source

 @callback parse_fragment_with_attributes_as_maps(html(), Keyword.t()) ::
 result(Floki.html_tree())

 Functions

 Link to this function

 parse_document(html, opts \\ [])

 View Source

 Link to this function

 parse_fragment(html, opts \\ [])

 View Source

Floki.ParseError exception

mix generate_entities

mix generate_tokenizer_tests

It generates tests based on test files from WHATWG.
This task will take a look at tokenizer test files
that are located in "./test/html5lib-tests/tokenizer"
and generate modules to run those tests.
This is necessary every time the specs of HTML change,
so we can keep up to date and also we can keep track
of what changed.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

