

    

        Flow

        v1.2.4



    



  

    Table of contents

    
      


  	Modules
    

    	Flow


    	Flow.Window


    

  



      

    


  

    
Flow 
    



      
Computational flows with stages.
Flow allows developers to express computations
on collections, similar to the Enum and Stream modules,
although computations will be executed in parallel using
multiple GenStages.
Flow is designed to work with both bounded (finite) and
unbounded (infinite) data. By default, Flow will work
with batches of 500 items. This means Flow will only show
improvements when working with larger collections. However,
for certain cases, such as IO-bound flows, a smaller batch size
can be configured through the :min_demand and :max_demand
options supported by from_enumerable/2, from_stages/2,
from_specs/2, partition/2, departition/5, etc.
Flow also provides the concepts of "windows" and "triggers",
which allow developers to split the data into arbitrary
windows according to event time. Triggers allow computations
to be materialized at different intervals, allowing developers
to peek at results as they are computed.
This module doc will cover the main constructs and concepts behind
Flow, with examples. There is also a presentation about GenStage
and Flow from José Valim at ElixirConf 2016, which covers
data processing concepts for those unfamiliar with the domain:
https://youtu.be/srtMWzyqdp8?t=244
Example
As an example, let's implement the classic word counting
algorithm using Flow. The word counting program will receive
one file and count how many times each word appears in the
document. Using the Enum module it could be implemented
as follows:
File.stream!("path/to/some/file")
|> Enum.flat_map(&String.split(&1, " "))
|> Enum.reduce(%{}, fn word, acc ->
  Map.update(acc, word, 1, & &1 + 1)
end)
|> Enum.to_list()
Unfortunately, the implementation above is not very efficient,
as Enum.flat_map/2 will build a list with all the words in
the document before reducing it. If the document is, for example,
2GB, we will load 2GB of data into memory.
We can improve the solution above by using the Stream module:
File.stream!("path/to/some/file")
|> Stream.flat_map(&String.split(&1, " "))
|> Enum.reduce(%{}, fn word, acc ->
  Map.update(acc, word, 1, & &1 + 1)
end)
|> Enum.to_list()
Now instead of loading the whole set into memory, we will only
keep the current line in memory while we process it. While this
allows us to process the whole data set efficiently, it does
not leverage concurrency. Flow solves that:
File.stream!("path/to/some/file")
|> Flow.from_enumerable()
|> Flow.flat_map(&String.split(&1, " "))
|> Flow.partition()
|> Flow.reduce(fn -> %{} end, fn word, acc ->
  Map.update(acc, word, 1, & &1 + 1)
end)
|> Enum.to_list()
To convert from Stream to Flow, we have made two changes:
	We have replaced the calls to Stream with Flow
	We call partition/2 so words are properly partitioned between stages

The example above will use all available cores and will
keep an ongoing flow of data instead of traversing them
line by line. Once all data is computed, it is sent to the
process which invoked Enum.to_list/1.
While we gain concurrency by using Flow, many of the benefits
of Flow are in partitioning the data. We will discuss
the need for data partitioning next.
Partitioning
To understand the need to partition the data, let's change the
example above and remove the partition call:
File.stream!("path/to/some/file")
|> Flow.from_enumerable()
|> Flow.flat_map(&String.split(&1, " "))
|> Flow.reduce(fn -> %{} end, fn word, acc ->
  Map.update(acc, word, 1, & &1 + 1)
end)
|> Enum.to_list()
This will execute the flat_map and reduce operations in parallel
inside multiple stages. When running on a machine with two cores:
 [file stream]  # Flow.from_enumerable/1 (producer)
    |    |
  [M1]  [M2]    # Flow.flat_map/2 + Flow.reduce/3 (consumer)
Now imagine that the M1 and M2 stages above receive the
following lines:
M1 - "roses are red"
M2 - "violets are blue"
flat_map/2 will break them into:
M1 - ["roses", "are", "red"]
M2 - ["violets", "are", "blue"]
Then reduce/3 will result in each stage having the following state:
M1 - %{"roses" => 1, "are" => 1, "red" => 1}
M2 - %{"violets" => 1, "are" => 1, "blue" => 1}
Which is converted to the list (in no particular order):
[{"roses", 1},
 {"are", 1},
 {"red", 1},
 {"violets", 1},
 {"are", 1},
 {"blue", 1}]
Although both stages have performed word counting, we have words
like "are" that appear on both stages. This means we would need
to perform yet another pass on the data merging the duplicated
words across stages. This step would have to run on a single process,
which would limit our ability to run concurrently.
Remember that events are batched, so for small files, there is a chance
all lines will be set to the same stage (M1 or M2) and you won't be
able to replicate the issue. If you want to emulate this, either to
follow along or in your test suites, you may set :max_demand to 1
when reading from the stream, so that the code looks like this:
File.stream!("path/to/some/file")
|> Flow.from_enumerable(max_demand: 1)
|> Flow.flat_map(&String.split(&1, " "))
|> Flow.reduce(fn -> %{} end, fn word, acc ->
  Map.update(acc, word, 1, & &1 + 1)
end)
|> Enum.to_list()
Partitioning solves this by introducing a new set of stages and
making sure the same word is always mapped to the same stage
with the help of a hash function. Let's introduce the call to
partition/2 back:
File.stream!("path/to/some/file")
|> Flow.from_enumerable()
|> Flow.flat_map(&String.split(&1, " "))
|> Flow.partition()
|> Flow.reduce(fn -> %{} end, fn word, acc ->
  Map.update(acc, word, 1, & &1 + 1)
end)
|> Enum.to_list()
Now we will have the following topology:
 [file stream]  # Flow.from_enumerable/1 (producer)
    |    |
  [M1]  [M2]    # Flow.flat_map/2 (producer-consumer)
    |\  /|
    | \/ |
    |/ \ |
  [R1]  [R2]    # Flow.reduce/3 (consumer)
If the M1 and M2 stages receive the same lines and break
them into words as before:
M1 - ["roses", "are", "red"]
M2 - ["violets", "are", "blue"]
Now, any given word will be consistently routed to R1 or R2
regardless of its origin. The default hashing function will route
them like this:
R1 - ["roses", "are", "red", "are"]
R2 - ["violets", "blue"]
Resulting in the reduced state of:
R1 - %{"roses" => 1, "are" => 2, "red" => 1}
R2 - %{"violets" => 1, "blue" => 1}
Which is converted to the list (in no particular order):
[{"roses", 1},
 {"are", 2},
 {"red", 1},
 {"violets", 1},
 {"blue", 1}]
Each stage has a distinct subset of the data so we know
that we don't need to merge the data later on, because a given
word is guaranteed to have only been routed to one stage.
Partitioning the data is a very useful technique. For example,
if we wanted to count the number of unique elements in a dataset,
we could perform such a count in each partition and then sum
their results, as the partitioning guarantees the data in
each partition won't overlap. A unique element would never
be counted twice.
The topology above alongside partitioning is very common in
the MapReduce programming model which we will briefly discuss
next.
MapReduce
The MapReduce programming model forces us to break our computations
in two stages: map and reduce. The map stage is often quite easy to
parallelize because events are processed individually and in isolation.
The reduce stages need to group the data either partially or completely.
In the example above, the stages executing flat_map/2 are the
mapper stages. Because the flat_map/2 function works line by line,
we can have two, four, eight or more mapper processes that will
break line by line into words without any need for coordination.
However, the reducing stage is a bit more complicated. Reducer
stages typically aggregate some result based on their inputs, such
as how many times a word has appeared. This implies reducer
computations need to traverse the whole data set and, in order
to do so in parallel, we partition the data into distinct
datasets.
The goal of the reduce/3 operation is to accumulate a value
which then becomes the partition state. Any operation that
happens after reduce/3 works on the whole state and is only
executed after all the data for a partition is collected.
While this approach works well for bounded (finite) data, it
is quite limited for unbounded (infinite) data. After all, if
the reduce operation needs to traverse the whole partition to
complete, how can we do so if the data never finishes?
The answer here lies in triggers. Every partition may have a
on_trigger/2 callback which receives the partition accumulator
and returns the events to be emitted and the accumulator to be
used after the trigger. All flows have at least one trigger:
the :done trigger which is executed when all the data has
been processed. In this case, the accumulator returned by
on_trigger/2 won't be used, only the events it emits.
However, Flow provides many conveniences for working with
unbound data, allowing us to set windows, time-based triggers,
element counters and more.
Data completion, windows and triggers
By default, Flow shuts down its processes when all data has been
processed. However, when working with an unbounded stream of data,
there is no such thing as data completion. So when can we consider
a reduce function to be "completed"?
To handle such cases, Flow provides windows and triggers. Windows
allow us to split the data based on the event time while triggers
tells us when to write the results we have computed so far. By
introducing windows, we no longer think about events being partitioned
across stages. Instead each event belongs to a window and the window
is partitioned across the stages.
By default, all events belong to the same window (called the global
window), which is partitioned across stages. However, different
windowing strategies can be used by building a Flow.Window
and passing it to the Flow.partition/2 function.
Once a window is specified, we can create triggers that tell us
when to checkpoint the data, allowing us to report our progress
while the data streams through the system, regardless of whether
the data is bounded or unbounded. Every time a trigger is invoked,
the on_trigger/2 callback of that partition is invoked, allowing
us to control which events to emit and what accumulator to use for
the next time the partition starts reducing data.
Windows and triggers effectively control how the reduce/3 function
works. While windows and triggers allow us to control when data is
emitted, note that data can be emitted at any time during the reducing
step by using emit_and_reduce/3. In truth, all window and trigger
functionality provided by Flow can also be built by hand using the
emit_and_reduce/3 and on_trigger/2 functions.
In a nutshell, each stage in Flow goes through those steps:
	mapping and filtering (map/2, filter/2, flat_map/2)
	reducing (reduce/3, group_by/3, emit_and_reduce/3)
	emitting events (emit_and_reduce/3, emit/2, on_trigger/2)

The accumulator from reducing operations is shared with the one
from emitting events. emit_and_reduce/3 is special operation
that allows both emitting and reducing events in one step.
See Flow.Window for a complete introduction to windows and triggers.
Supervisable flows
In the examples so far we have started a flow dynamically
and consumed it using Enum.to_list/1. Unfortunately calling
a function from Enum will cause the whole computed dataset
to be sent to a single process.
In many situations, this is either too expensive or completely
undesirable. For example, in data-processing pipelines, it is
common to receive data continuously from external sources. At
the end, this data is written to disk or another storage mechanism
after being processed, rather than being sent to a single process.
Flow allows computations to be started as a group of processes
which may run indefinitely. This can be done by starting
the flow as part of a supervision tree using {Flow, your_flow}
as your child specification:
children = [
  {Flow,
   Flow.from_stages(...)
   |> Flow.flat_map(&String.split(&1, " "))
   |> Flow.reduce(fn -> %{} end, fn word, acc ->
     Map.update(acc, word, 1, & &1 + 1)
   end)}
]
It is also possible to move a Flow to its own module. This is done by
calling use Flow and then defining a start_link/1 function that
calls Flow.start_link/1 at the end:
defmodule MyFlow do
  use Flow

  def start_link(_) do
    Flow.from_stages(...)
    |> Flow.flat_map(&String.split(&1, " "))
    |> Flow.reduce(fn -> %{} end, fn word, acc ->
      Map.update(acc, word, 1, & &1 + 1)
    end)
    |> Flow.start_link()
  end
end
By the default the Flow is permanent, which means it is always
restarted. The :shutdown and :restart child spec configurations
can be given to use Flow.
Flow also provides integration with GenStage, allowing you to
specify child specifications of producers, producer consumers, and
consumers that are started alongside the flow and under the same
supervision tree. This is achieved with the from_specs/2 (producers),
through_specs/2 (producer consumers) and into_specs/2 (consumers)
functions.
It is also possible to connect a flow to already running stages,
via the from_stages/2 (producers), through_stages/2 (producer
consumers) and into_stages/2 (consumers) functions.
into_stages/3 and into_specs/3 are alternatives to start_link/1
that start the flow with the given consumers stages or the given
consumers child specification. Similar to start_link/1, they return
either {:ok, pid} or {:error, reason}.
Performance discussions
In this section we will discuss points related to performance
with flows.
Know your code
There are many optimizations we could perform in the flow above
that are not necessarily related to flows themselves. Let's rewrite
the flow using some of them:
# The parent process which will own the table
parent = self()

# Let's compile common patterns for performance
empty_space = :binary.compile_pattern(" ") # BINARY

File.stream!("path/to/some/file", read_ahead: 100_000) # READ_AHEAD
|> Flow.from_enumerable()
|> Flow.flat_map(&String.split(&1, empty_space)) # BINARY
|> Flow.partition()
|> Flow.reduce(fn -> :ets.new(:words, []) end, fn word, ets -> # ETS
  :ets.update_counter(ets, word, {2, 1}, {word, 0})
  ets
end)
|> Flow.on_trigger(fn ets ->
  :ets.give_away(ets, parent, [])
  {[ets], :new_reduce_state_which_wont_be_used} # Emit the ETS
end)
|> Enum.to_list()
We have performed three optimizations:
	BINARY - the first optimization is to compile the pattern we use
to split the string on

	READ_AHEAD - the second optimization is to use the :read_ahead
option for file streams allowing us to do fewer IO operations by
reading large chunks of data at once

	ETS - the third stores the data in a ETS table and uses its counter
operations. For counters and a large dataset this provides a great
performance benefit as it generates less garbage. At the end, we
call on_trigger/2 to transfer the ETS table to the parent process
and wrap the table in a list so we can access it on Enum.to_list/1.
This step is not strictly required. For example, one could write the
table to disk with :ets.tab2file/2 at the end of the computation


Configuration (demand and the number of stages)
from_enumerable/2, from_stages/2 and partition/3 allow a set of
options to configure how flows work. In particular, we recommend that
developers play with the :min_demand and :max_demand options, which
control the amount of data sent between stages. The difference between
max_demand and min_demand works as the batch size when the producer
is full. If the producer has fewer events than requested by consumers,
it usually sends the remaining events available.
If stages perform IO, it may also be worth increasing
the number of stages. The default value is System.schedulers_online/0,
which is a good default if the stages are CPU bound, but if stages
are waiting on external resources or other processes, increasing the
number of stages may be helpful.
Avoid single sources
In the examples so far we have used a single file as our data
source. In practice such single sources should be avoided as they
could end up being the bottleneck of our whole computation.
In the file stream case above, instead of having one single
large file, it is preferable to break the file into smaller
ones:
streams = for file <- File.ls!("dir/with/files") do
  File.stream!("dir/with/files/#{file}", read_ahead: 100_000)
end

streams
|> Flow.from_enumerables()
|> Flow.flat_map(&String.split(&1, " "))
|> Flow.partition()
|> Flow.reduce(fn -> %{} end, fn word, acc ->
  Map.update(acc, word, 1, & &1 + 1)
end)
|> Enum.to_list()
Instead of calling from_enumerable/1, we now called
from_enumerables/1 which expects a list of enumerables to
be used as source. Notice every stream also uses the :read_ahead
option which tells Elixir to buffer file data in memory to
avoid multiple IO lookups.
If the number of enumerables is equal to or greater than the number of
cores, Flow will automatically fuse the enumerables with the mapper
logic. For example, if three file streams are given as enumerables
to a machine with two cores, we will have the following topology:
[F1][F2][F3]  # file stream
[M1][M2][M3]  # Flow.flat_map/2 (producer)
  |\ /\ /|
  | /\/\ |
  |//  \\|
  [R1][R2]    # Flow.reduce/3 (consumer)

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        join()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        bounded_join(mode, left, right, left_key, right_key, join, options \\ [])

      


        Joins two bounded (finite) flows.



    


    
      
        departition(flow, acc_fun, merge_fun, done_fun, options \\ [])

      


        Reduces windows over multiple partitions into a single stage.



    


    
      
        each(flow, each)

          deprecated

      


    


    
      
        emit(flow, type)

      


        Controls which values should be emitted.



    


    
      
        emit_and_reduce(flow, acc_fun, reducer_fun)

      


        Reduces values with the given accumulator and controls which values
should be emitted.



    


    
      
        filter(flow, filter)

      


        Applies the given function filtering each input in parallel.



    


    
      
        flat_map(flow, flat_mapper)

      


        Applies the given function mapping each input in parallel and
flattening the result, but only one level deep.



    


    
      
        from_enumerable(enumerable, options \\ [])

      


        Creates a flow with the given enumerable as the producer.



    


    
      
        from_enumerables(enumerables, options \\ [])

      


        Creates a flow with the given enumerable as producer.



    


    
      
        from_specs(producers, options \\ [])

      


        Creates a flow with a list of producers child specifications.



    


    
      
        from_stages(producers, options \\ [])

      


        Creates a flow with a list of already running stages as producers.



    


    
      
        group_by(flow, key_fun, value_fun \\ fn x -> x end)

      


        Groups events with the given key_fun.



    


    
      
        group_by_key(flow)

      


        Groups a series of {key, value} tuples by keys.



    


    
      
        into_specs(flow, consumers, options \\ [])

      


        Starts a flow and the consumers child specifications.



    


    
      
        into_stages(flow, consumers, options \\ [])

      


        Starts a flow with a list of already running stages as consumers.



    


    
      
        map(flow, mapper)

      


        Applies the given function mapping each input in parallel.



    


    
      
        map_batch(flow, function)

      


        Applies the given function to each "batch" of GenStage events.



    


    
      
        map_values(flow, value_fun)

      


        Maps over the given values in the stage state.



    


    
      
        merge(flow_or_flows, dispatcher, options \\ [])

      


        Merges the given flow or flows into a series of new stages with
the given dispatcher and options.



    


    
      
        on_trigger(flow, on_trigger)

      


        Applies the given function over the window state.



    


    
      
        partition(flow_or_flows, options \\ [])

      


        Creates a new partition for the given flow (or flows) with the given options.



    


    
      
        reduce(flow, acc_fun, reducer_fun)

      


        Reduces the given values with the given accumulator.



    


    
      
        reject(flow, filter)

      


        Applies the given function rejecting each input in parallel.



    


    
      
        run(flow, opts \\ [])

      


        Runs a given flow.



    


    
      
        shuffle(flow_or_flows, options \\ [])

      


        Shuffles the given flow (or flows) into a new series of stages.



    


    
      
        start_link(flow, options \\ [])

      


        Starts and runs the flow as a separate process.



    


    
      
        stream(flow, opts \\ [])

      


        Explicitly converts the Flow into a Stream.



    


    
      
        take_sort(flow, n, sort_fun \\ &<=/2, options \\ [])

      


        Takes n events according to the sort function.



    


    
      
        through_specs(flow, producer_consumers, options \\ [])

      


        Passes a flow through a list of producer_consumers child
specifications and subscriptions that will be started alongside
the flow.



    


    
      
        through_stages(flow, producer_consumers, options \\ [])

      


        Passes a flow through a list of already running stages
as producer_consumers.



    


    
      
        uniq(flow)

      


        Only emit unique events.



    


    
      
        uniq_by(flow, by)

      


        Only emit events that are unique according to the by function.



    


    
      
        window_join(mode, left, right, window, left_key, right_key, join, options \\ [])

      


        Joins two flows with the given window.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    join()


      
       
       View Source
     


  


  

      

          @type join() :: :inner | :left_outer | :right_outer | :full_outer


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Flow{
  operations: [operation()],
  options: keyword(),
  producers: producers(),
  window: Flow.Window.t()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    bounded_join(mode, left, right, left_key, right_key, join, options \\ [])


      
       
       View Source
     


  


  

      

          @spec bounded_join(
  join(),
  t(),
  t(),
  (... -> any()),
  (... -> any()),
  (... -> any()),
  keyword()
) :: t()


      


Joins two bounded (finite) flows.
It expects the left and right flow, the left_key and
right_key to calculate the key for both flows and the join
function which is invoked whenever there is a match.
A join creates a new partitioned flow that subscribes to the
two flows given as arguments.  The newly created partitions
will accumulate the data received from both flows until there
is no more data. Therefore, this function is useful for merging
finite flows. If used for merging infinite flows, you will
eventually run out of memory due to the accumulated data. See
window_join/8 for applying a window to a join, allowing the
join data to be reset per window.
The join has 4 modes:
	:inner - data will only be emitted when there is a match
between the keys in left and right side
	:left_outer - similar to :inner plus all items given
in the left that did not have a match will be emitted at the
end with nil for the right value
	:right_outer - similar to :inner plus all items given
in the right that did not have a match will be emitted at the
end with nil for the left value
	:full_outer - similar to :inner plus all items given
in the left and right that did not have a match will be emitted
at the end with nil for the right and left value respectively

The joined partitions can be configured via options with the
same values as shown on from_enumerable/2 or from_stages/2.

  
  examples

  
  Examples


iex> posts = [%{id: 1, title: "hello"}, %{id: 2, title: "world"}]
iex> comments = [{1, "excellent"}, {1, "outstanding"},
...>             {2, "great follow up"}, {3, "unknown"}]
iex> flow = Flow.bounded_join(:inner,
...>                          Flow.from_enumerable(posts),
...>                          Flow.from_enumerable(comments),
...>                          & &1.id, # left key
...>                          & elem(&1, 0), # right key
...>                          fn post, {_post_id, comment} -> Map.put(post, :comment, comment) end)
iex> Enum.sort(flow)
[%{id: 1, title: "hello", comment: "excellent"},
 %{id: 2, title: "world", comment: "great follow up"},
 %{id: 1, title: "hello", comment: "outstanding"}]

  



    

  
    
      
      Link to this function
    
    departition(flow, acc_fun, merge_fun, done_fun, options \\ [])


      
       
       View Source
     


  


  

Reduces windows over multiple partitions into a single stage.
Once departition/5 is called, computations no longer
happen concurrently until the data is once again partitioned.
departition/5 is typically invoked as the last step in a flow
to merge the state from all previous partitions per window.
It requires a flow and three functions as arguments as
described:
	the accumulator function - a zero-arity function that returns
the initial accumulator. This function is invoked per window.
	the merger function - a function that receives the state of
a given partition and the accumulator and merges them together.
	the done function - a function that receives the final accumulator.

A set of options may also be given to customize the :window,
:min_demand and :max_demand.

  
  examples

  
  Examples


For example, imagine we are counting words in a document. Each
partition ends up with a map of words as keys and count as values.
In the examples in the module documentation, we streamed those
results to a single client using Enum.to_list/1. However, we
could use departition/5 to reduce the data over multiple stages
returning one single map with all results:
File.stream!("path/to/some/file")
|> Flow.from_enumerable()
|> Flow.map(&String.split/1)
|> Flow.partition()
|> Flow.reduce(fn -> %{} end, fn event, acc -> Map.update(acc, event, 1, & &1 + 1) end)
|> Flow.departition(&Map.new/0, &Map.merge/2, &(&1))
|> Enum.to_list
The departition function expects the initial accumulator, a function
that merges the data, and a final function invoked when the computation
is done.
Departition also works with windows and triggers. A new accumulator
is created per window and the merge function is invoked with the state
every time a trigger is emitted in any of the partitions. This can be
useful to compute the final state as computations happen instead of one
time at the end. For example, we could change the flow above so each
partition emits their whole intermediary state every 1000 items, merging
it into the departition more frequently:
File.stream!("path/to/some/file")
|> Flow.from_enumerable()
|> Flow.map(&String.split/1)
|> Flow.partition(window: Flow.Window.global |> Flow.Window.trigger_every(1000))
|> Flow.reduce(fn -> %{} end, fn event, acc -> Map.update(acc, event, 1, & &1 + 1) end)
|> Flow.on_trigger(fn acc -> {[acc], %{}} end)
|> Flow.departition(&Map.new/0, &Map.merge(&1, &2, fn _, v1, v2 -> v1 + v2 end), &(&1))
|> Enum.to_list
Each approach is going to have different performance characteristics
and it is important to measure to verify which one will be more efficient
to the problem at hand.

  



  
    
      
      Link to this function
    
    each(flow, each)


      
       
       View Source
     


  


    
      This function is deprecated. Use Flow.map/2 returning the input instead.
    


  


  



  
    
      
      Link to this function
    
    emit(flow, type)


      
       
       View Source
     


  


  

      

          @spec emit(t(), :events | :state | :nothing) :: t() | Enumerable.t()


      


Controls which values should be emitted.
The argument can be either :events, :state or :nothing.
This step must be called after the reduce operation and it will
guarantee the state is a list that can be sent downstream.
Most commonly :events is used and each partition will emit the
events it has processed to the next stages. However, sometimes we
want to emit counters or other data structures as a result of
our computations. In such cases, the emit argument can be
set to :state, to return the :state from reduce/3 or even
the processed collection as a whole.

  



  
    
      
      Link to this function
    
    emit_and_reduce(flow, acc_fun, reducer_fun)


      
       
       View Source
     


  


  

      

          @spec emit_and_reduce(t(), (-> acc), (term(), acc -> {[event], acc})) :: t()
when acc: term(), event: term()


      


Reduces values with the given accumulator and controls which values
should be emitted.
acc_fun is a function that receives no arguments and returns
the actual accumulator. The acc_fun function is invoked per window
whenever a new window starts.
This function behaves similarly to reduce/3, but in addition to
accumulating data, it also gives full control over what will be
emitted. reducer_fun must return a tuple where the first element is
the list of events to be emitted and the second is the new state of
the accumulator.

  
  examples

  
  Examples


As an example this is a simple implementation of a sliding window of
3 events. The reducer function always emits a list of the most recent
(at most) 3 events. Note that at the end of the input the current
state of the accumulator will be emitted which we filter in this
example at the last step.
iex> flow = Flow.from_enumerable(1..5, stages: 1)
iex> flow = flow |> Flow.emit_and_reduce(fn -> [] end, fn event, acc ->
...>   acc = [event | acc] |> Enum.take(3)
...>   {[Enum.reverse(acc)], acc}
...> end)
iex> flow |> Enum.filter(&is_list/1)
[[1], [1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5]]

  



  
    
      
      Link to this function
    
    filter(flow, filter)


      
       
       View Source
     


  


  

      

          @spec filter(t(), (term() -> term())) :: t()


      


Applies the given function filtering each input in parallel.

  
  examples

  
  Examples


iex> flow = [1, 2, 3] |> Flow.from_enumerable() |> Flow.filter(&(rem(&1, 2) == 0))
iex> Enum.sort(flow) # Call sort as we have no order guarantee
[2]

  



  
    
      
      Link to this function
    
    flat_map(flow, flat_mapper)


      
       
       View Source
     


  


  

      

          @spec flat_map(t(), (term() -> Enumerable.t())) :: t()


      


Applies the given function mapping each input in parallel and
flattening the result, but only one level deep.

  
  examples

  
  Examples


iex> flow = [1, 2, 3] |> Flow.from_enumerable() |> Flow.flat_map(fn x -> [x, x * 2] end)
iex> Enum.sort(flow) # Call sort as we have no order guarantee
[1, 2, 2, 3, 4, 6]

  



    

  
    
      
      Link to this function
    
    from_enumerable(enumerable, options \\ [])


      
       
       View Source
     


  


  

      

          @spec from_enumerable(
  Enumerable.t(),
  keyword()
) :: t()


      


Creates a flow with the given enumerable as the producer.
Calling this function is equivalent to:
Flow.from_enumerables([enumerable], options)
The enumerable is consumed in batches, retrieving max_demand
items the first time and then max_demand - min_demand the
next times. Therefore, for streams that cannot produce items
that fast, it is recommended to pass a lower :max_demand
value as an option.
It is also expected the enumerable is able to produce the whole
batch on demand or terminate. If the enumerable is a blocking one,
for example, because it needs to wait for data from another source,
it will block until the current batch is fully filled. GenStage and
Flow were created exactly to address such issue. So if you have a
blocking enumerable that you want to use in your Flow, then it must
be implemented with GenStage and integrated with from_stages/2.

  
  examples

  
  Examples


"some/file"
|> File.stream!(read_ahead: 100_000)
|> Flow.from_enumerable()

some_network_based_stream()
|> Flow.from_enumerable(max_demand: 20)

  



    

  
    
      
      Link to this function
    
    from_enumerables(enumerables, options \\ [])


      
       
       View Source
     


  


  

      

          @spec from_enumerables(
  [Enumerable.t()],
  keyword()
) :: t()


      


Creates a flow with the given enumerable as producer.
The enumerable is consumed in batches, retrieving max_demand
items the first time and then max_demand - min_demand the
next times. Therefore, for streams that cannot produce items
that fast, it is recommended to pass a lower :max_demand
value as an option.
See GenStage.from_enumerable/2 for information and
limitations on enumerable-based stages.

  
  options

  
  Options


These options configure the stages connected to producers before partitioning.
	:window - a window to run the next stages in, see Flow.Window
	:stages - the number of stages
	:buffer_keep - how the buffer should behave, see GenStage.init/1
	:buffer_size - how many events to buffer, see GenStage.init/1
	:shutdown - the shutdown time for this stage when the flow is shut down.
The same as the :shutdown value in a Supervisor, defaults to 5000 milliseconds.
	:on_init - a function invoked during the initialization of each stage.
The function receives a single argument in the form of {i, total} where:	i is the stage index
	total is the total number of stages



All remaining options are sent during subscription, allowing developers
to customize :min_demand, :max_demand and others.

  
  examples

  
  Examples


files = [File.stream!("some/file1", read_ahead: 100_000),
         File.stream!("some/file2", read_ahead: 100_000),
         File.stream!("some/file3", read_ahead: 100_000)]
Flow.from_enumerables(files)

  



    

  
    
      
      Link to this function
    
    from_specs(producers, options \\ [])


      
       
       View Source
     


  


  

      

          @spec from_specs(
  [Supervisor.child_spec() | {module(), term()} | module()],
  keyword()
) :: t()


      


Creates a flow with a list of producers child specifications.
The child specification is the one defined in the Supervisor
module. The producers will only be started when the flow starts.
If the flow terminates, the producers will also be terminated.
The :id field of the child specification will be randomized.
The :restart option is set to :temporary but it behaves
as :transient. If a producer terminates, its exit reason will
propagate through the flow. The exit is considered abnormal
unless the reason is :normal, :shutdown or {:shutdown, _}.
All other child specification fields are kept unchanged.
For options and termination behaviour, see from_stages/2.

  
  examples

  
  Examples


specs = [{MyProducer, arg1}, {MyProducer, arg2}]
Flow.from_specs(specs)

  



    

  
    
      
      Link to this function
    
    from_stages(producers, options \\ [])


      
       
       View Source
     


  


  

      

          @spec from_stages(
  [GenStage.stage()],
  keyword()
) :: t()


      


Creates a flow with a list of already running stages as producers.
producers are already running stages that have type :producer
 If instead you want the producers to be started alongside the flow,
 see from_specs/2 instead.

  
  options

  
  Options


These options configure the stages connected to producers before partitioning.
	:window - a window to run the next stages in, see Flow.Window
	:stages - the number of stages
	:buffer_keep - how the buffer should behave, see GenStage.init/1
	:buffer_size - how many events to buffer, see GenStage.init/1
	:shutdown - the shutdown time for this stage when the flow is shut down.
The same as the :shutdown value in a Supervisor, defaults to 5000 milliseconds.

All remaining options are sent during subscription, allowing developers
to customize :min_demand, :max_demand and others.

  
  examples

  
  Examples


stages = [pid1, pid2, pid3]
Flow.from_stages(stages)

  
  termination

  
  Termination


Flow subscribes to producer stages using cancel: :transient. This
means producer stages can signal the flow that it has emitted all events
by terminating with reason :normal, :shutdown or {:shutdown, _}.
Therefore, if you are implementing a producer that may eventually
terminate, then the producer must exit with reason :normal, :shutdown
or {:shutdown, _} after emitting all events. This is often done in the
producer by using GenStage.async_info(self(), :terminate) to send a
message to itself once all events have been dispatched:
def handle_info(:terminate, state) do
  {:stop, :shutdown, state}
end
Once all producers have finished, the stages subscribed to the producer
will terminate, causing the next layer of stages in the flow to terminate
and so forth, until the whole flow shuts down.
If the exit reason is none of the above, it will cause the next stages to
terminate immediately, eventually causing the whole flow to terminate.

  



    

  
    
      
      Link to this function
    
    group_by(flow, key_fun, value_fun \\ fn x -> x end)


      
       
       View Source
     


  


  

      

          @spec group_by(t(), (term() -> term()), (term() -> term())) :: t()


      


Groups events with the given key_fun.
This is a reduce operation that groups events into maps
where the key is the key returned by key_fun and the
value is a list of values in reverse order as returned by
value_fun. The resulting map becomes the stage state.

  
  examples

  
  Examples


iex> flow = Flow.from_enumerable(~w[the quick brown fox], stages: 1)
iex> flow |> Flow.group_by(&String.length/1) |> Enum.sort()
[{3, ["fox", "the"]}, {5, ["brown", "quick"]}]

  



  
    
      
      Link to this function
    
    group_by_key(flow)


      
       
       View Source
     


  


  

      

          @spec group_by_key(t()) :: t()


      


Groups a series of {key, value} tuples by keys.
This is a reduce operation that groups events into maps
with the given key and a list of values with the given keys
in reverse order. The resulting map becomes the stage state.

  
  examples

  
  Examples


iex> flow = Flow.from_enumerable([foo: 1, foo: 2, bar: 3, foo: 4, bar: 5], stages: 1)
iex> flow |> Flow.group_by_key() |> Flow.emit(:state) |> Enum.to_list()
[%{foo: [4, 2, 1], bar: [5, 3]}]

  



    

  
    
      
      Link to this function
    
    into_specs(flow, consumers, options \\ [])


      
       
       View Source
     


  


  

      

          @spec into_specs(t(), [{Supervisor.child_spec(), keyword()}], keyword()) ::
  GenServer.on_start()


      


Starts a flow and the consumers child specifications.
consumers is a list of tuples where the first element is the child
specification and the second is a list of subscription options.
The child specification is the one defined in the Supervisor
module. The consumers will only be started when the flow starts.
If the flow terminates, the consumers will also be terminated.
The :id field of the child specification will be randomized.
All other fields are kept as in. If the consumer terminates,
it will behave according to its restart strategy. Once a consumer
terminates, the whole flow is terminated.
For options and termination behaviour, see into_stages/3.

  
  examples

  
  Examples


spec = {MyConsumer, arg}
subscription_opts = []
specs = [{spec, subscription_opts}]
Flow.into_specs(some_flow, specs)

  



    

  
    
      
      Link to this function
    
    into_stages(flow, consumers, options \\ [])


      
       
       View Source
     


  


  

      

          @spec into_stages(t(), consumers, keyword()) :: GenServer.on_start()
when consumers: [GenStage.stage() | {GenStage.stage(), keyword()}]


      


Starts a flow with a list of already running stages as consumers.
consumers is a list of already running stages that have type
:consumer or :producer_consumer. Each element represents the
consumer or a tuple with the consumer and the subscription options
as defined in GenStage.sync_subscribe/2.
The consumer stages given to this function won't be managed
by Flow. If the Flow terminates, they will continue running.
If instead you want the consumers to be started and managed
alongside the flow, use into_specs/3 instead.
The pid returned by this function identifies a coordinator
process. While it is possible to send subscribe requests to
the coordinator process, the coordinator process will simply
redirect the subscription to the proper flow processes and
cancel the initial subscription. This means subscriptions
to the flow should use at cancel: :transient (which is
the default for stage subscriptions).
The coordinator exits with reason :normal only if all
consumers exit with reason :normal. Otherwise exits with
reason :shutdown.

  
  options

  
  Options


This function receives the same options as start_link/2 with
the addition of a :dispatcher option that configures how the
consumers get data from the flow and defaults to
GenStage.DemandDispatch. It may be either an atom or a tuple
with the dispatcher and the dispatcher options.

  
  termination

  
  Termination


Flow subscribes to stages using cancel: :transient. This means stages
can signal the flow that it has emitted all events by terminating with
reason :normal, :shutdown or {:shutdown, _}. If you are implementing
your own consumer and you are subscribing to a flow that is finite,
you need to take this into account in your consumer implementation
if you want proper consumer termination:
	You need implement GenStage.handle_subscribe/4 and store
whenever the stage gets a new producer

	You need implement GenStage.handle_cancel/3 and decrease
whenever the stage loses a producer

	Once all producers are cancelled, you can terminate:
def handle_info(:terminate, state) do
  {:stop, :shutdown, state}
end


Given the complexity in guaranteeing termination, we recommend
developers to use into_stages/3 and into_specs/3 only
when subscribing to unbounded (infinite) flows.

  



  
    
      
      Link to this function
    
    map(flow, mapper)


      
       
       View Source
     


  


  

      

          @spec map(t(), (term() -> term())) :: t()


      


Applies the given function mapping each input in parallel.

  
  examples

  
  Examples


iex> flow = [1, 2, 3] |> Flow.from_enumerable() |> Flow.map(&(&1 * 2))
iex> Enum.sort(flow) # Call sort as we have no order guarantee
[2, 4, 6]

iex> flow = Flow.from_enumerables([[1, 2, 3], 1..3]) |> Flow.map(&(&1 * 2))
iex> Enum.sort(flow)
[2, 2, 4, 4, 6, 6]

  



  
    
      
      Link to this function
    
    map_batch(flow, function)


      
       
       View Source
     


  


  

Applies the given function to each "batch" of GenStage events.
Flow uses GenStage which sends events in batches, controlled by
min_demand and max_demand. This callback allows you to hook
into this batch, before any map or reduce operation is invoked.
This often useful to preload data that is used in later stages.

  



  
    
      
      Link to this function
    
    map_values(flow, value_fun)


      
       
       View Source
     


  


  

Maps over the given values in the stage state.
It is expected the state to emit two-elements tuples,
such as list, maps, etc.

  
  examples

  
  Examples


iex> flow = Flow.from_enumerable([a: 1, b: 2, c: 3, d: 4, e: 5], stages: 1)
iex> flow |> Flow.map_values(& &1 * 2) |> Enum.sort()
[a: 2, b: 4, c: 6, d: 8, e: 10]

  



    

  
    
      
      Link to this function
    
    merge(flow_or_flows, dispatcher, options \\ [])


      
       
       View Source
     


  


  

Merges the given flow or flows into a series of new stages with
the given dispatcher and options.
This is the function used as building block by partition/2 and
shuffle/2.

  
  options

  
  Options


	:window - a Flow.Window struct which controls how the
 reducing function behaves, see Flow.Window for more information.
	:stages - the number of partitions (reducer stages)
	:shutdown - the shutdown time for this stage when the flow is shut down.
The same as the :shutdown value in a Supervisor, defaults to 5000 milliseconds.


  



  
    
      
      Link to this function
    
    on_trigger(flow, on_trigger)


      
       
       View Source
     


  


  

      

          @spec on_trigger(
  t(),
  (acc -> {[event], acc})
  | (acc, partition_info -> {[event], acc})
  | (acc, partition_info, window_info -> {[event], acc})
) :: t()
when acc: term(),
     event: term(),
     partition_info: {non_neg_integer(), pos_integer()},
     window_info: {Flow.Window.type(), Flow.Window.id(), Flow.Window.trigger()}


      


Applies the given function over the window state.
This function must be called after group_by/3, reduce/3 or
emit_and_reduce/3 as it works on the accumulated state.
on_trigger/2 is invoked per window on every stage whenever
there is a trigger: this gives us an understanding of the window
data while leveraging the parallelism between stages.
The given callback must return a tuple with elements to emit
and the new accumulator. The new accumulator will then be used
for subsequent reductions by reduce/3, group_by/3, and friends.

  
  the-callback-arguments

  
  The callback arguments


The callback function may have arity 1, 2 or 3.
The first argument is the state.
The second argument is optional and contains the partition index.
The partition index is a two-element tuple identifying the current
partition and the total number of partitions as the second element. For
example, for a partition with 4 stages, the partition index will be
the values {0, 4}, {1, 4}, {2, 4} and {3, 4}.
The third argument is optional and contains the window-trigger information.
This information is a three-element tuple containing the window name,
the window identifier, and the trigger name. For example, a global window
created with Flow.Window.global/0 will emit on termination:
{:global, :global, :done}
A Flow.Window.global/0 window with a count trigger created with
Flow.Window.trigger_every/2 will also emit:
{:global, :global, {:every, 20}}
A Flow.Window.fixed/3 window will emit on done:
{:fixed, window, :done}
Where window is an integer identifying the timestamp for the window
being triggered.

  
  examples

  
  Examples


We can use on_trigger/2 to transform the collection after
processing. For example, if we want to count the amount of
unique letters in a sentence, we can partition the data,
then reduce over the unique entries and finally return the
size of each stage, summing it all:
iex> flow = Flow.from_enumerable(["the quick brown fox"]) |> Flow.flat_map(fn word ->
...>    String.graphemes(word)
...> end)
iex> flow = Flow.partition(flow)
iex> flow = Flow.reduce(flow, fn -> %{} end, &Map.put(&2, &1, true))
iex> flow |> Flow.on_trigger(fn map -> {[map_size(map)], map} end) |> Enum.sum()
16

  



    

  
    
      
      Link to this function
    
    partition(flow_or_flows, options \\ [])


      
       
       View Source
     


  


  

      

          @spec partition(
  t() | [t()],
  keyword()
) :: t()


      


Creates a new partition for the given flow (or flows) with the given options.
Every time this function is called, a new partition is created.
It is typically recommended to invoke it before a reducing function,
such as reduce/3, so data belonging to the same partition can be
kept together.
However, notice that unnecessary partitioning will increase memory
usage and reduce throughput with no benefit whatsoever. Flow takes
care of using all cores regardless of the number of times you call
partition. You should only partition when the problem you are trying
to solve requires you to route the data around. Such as the problem
presented in Flow's module documentation. If you can solve a problem
without using partition at all, that is typically preferred. Those
are typically called "embarrassingly parallel" problems.

  
  examples

  
  Examples


flow |> Flow.partition(window: Flow.Window.global)
flow |> Flow.partition(stages: 4)

  
  options

  
  Options


	:window - a Flow.Window struct which controls how the
 reducing function behaves, see Flow.Window for more information.
	:stages - the number of partitions (reducer stages)
	:shutdown - the shutdown time for this stage when the flow is shut down.
The same as the :shutdown value in a Supervisor, defaults to 5000 milliseconds.
	:key - the key to use when partitioning. It is a function
that receives a single argument (the event) and must return its key.
The key will then be hashed by Flow. To facilitate customization, :key
also allows common values, such as {:elem, integer} and {:key, atom},
to calculate the hash based on a tuple or a map field. See the "Key shortcuts"
section below
	:hash - the hashing function. By default a hashing function is built
on the key but a custom one may be specified as described in
GenStage.PartitionDispatcher
	:min_demand - the minimum demand for this subscription
	:max_demand - the maximum demand for this subscription


  
  key-shortcuts

  
  Key shortcuts


The following shortcuts can be given to the :key option:
	{:elem, index} - apply the hash function to the element
at index (zero-based) in the given tuple

	{:key, key} - apply the hash function to the key of a given map



  



  
    
      
      Link to this function
    
    reduce(flow, acc_fun, reducer_fun)


      
       
       View Source
     


  


  

      

          @spec reduce(t(), (-> acc), (term(), acc -> acc)) :: t() when acc: term()


      


Reduces the given values with the given accumulator.
acc_fun is a function that receives no arguments and returns
the actual accumulator. The acc_fun function is invoked per window
whenever a new window starts.
Reducing will accumulate data until a trigger is emitted
or until a window completes. When that happens, the returned
accumulator will be the new state of the stage and all functions
after reduce will be invoked.

  
  examples

  
  Examples


iex> flow = Flow.from_enumerable(["the quick brown fox"]) |> Flow.flat_map(fn word ->
...>    String.graphemes(word)
...> end)
iex> flow = flow |> Flow.partition |> Flow.reduce(fn -> %{} end, fn grapheme, map ->
...>   Map.update(map, grapheme, 1, & &1 + 1)
...> end)
iex> Enum.sort(flow)
[{" ", 3}, {"b", 1}, {"c", 1}, {"e", 1}, {"f", 1},
 {"h", 1}, {"i", 1}, {"k", 1}, {"n", 1}, {"o", 2},
 {"q", 1}, {"r", 1}, {"t", 1}, {"u", 1}, {"w", 1},
 {"x", 1}]

  



  
    
      
      Link to this function
    
    reject(flow, filter)


      
       
       View Source
     


  


  

      

          @spec reject(t(), (term() -> term())) :: t()


      


Applies the given function rejecting each input in parallel.

  
  examples

  
  Examples


iex> flow = [1, 2, 3] |> Flow.from_enumerable() |> Flow.reject(&(rem(&1, 2) == 0))
iex> Enum.sort(flow) # Call sort as we have no order guarantee
[1, 3]

  



    

  
    
      
      Link to this function
    
    run(flow, opts \\ [])


      
       
       View Source
     


  


  

Runs a given flow.
This runs the given flow as a stream for its side-effects. No
items are sent from the flow to the current process.

  
  options

  
  Options


	:link - if the Flow supervision tree should be linked
to the current process. Defaults to true.


  
  examples

  
  Examples


iex> parent = self()
iex> [1, 2, 3] |> Flow.from_enumerable() |> Flow.map(&send(parent, &1)) |> Flow.run()
:ok
iex> receive do
...>   1 -> :ok
...> end
:ok

  



    

  
    
      
      Link to this function
    
    shuffle(flow_or_flows, options \\ [])


      
       
       View Source
     


  


  

      

          @spec shuffle(
  t() | [t()],
  keyword()
) :: t()


      


Shuffles the given flow (or flows) into a new series of stages.
This function defines a new series of stages with the given window
and options using GenStage.DemandDispatcher to coordinate the
demand between them. This function does not shuffle the data by
itself. However, given the concurrent nature of Flow, adding new
stages often have the indirect consequence of shuffling data too.

  
  examples

  
  Examples


Flow.shuffle(flow1, window: Flow.Window.global)
Flow.shuffle([flow1, flow2], stages: 4)

  
  options

  
  Options


	:window - a Flow.Window struct which controls how the
 reducing function behaves, see Flow.Window for more information.
	:stages - the number of partitions (reducer stages)
	:shutdown - the shutdown time for this stage when the flow is shut down.
The same as the :shutdown value in a Supervisor, defaults to 5000 milliseconds.


  



    

  
    
      
      Link to this function
    
    start_link(flow, options \\ [])


      
       
       View Source
     


  


  

      

          @spec start_link(
  t(),
  keyword()
) :: GenServer.on_start()


      


Starts and runs the flow as a separate process.
See into_stages/3 in case you want the flow to
work as a producer for another series of stages.

  
  options

  
  Options


	:name - the name of the flow

	:demand - configures the demand on the flow producers to :forward
or :accumulate. The default is :forward. See GenStage.demand/2
for more information.

	:subscribe_timeout - timeout for the subscription between stages
when setting up the flow. Defaults to 5_000 milliseconds.


The flow exits with reason :normal only if all consumers exit with
reason :normal. Otherwise exits with reason :shutdown.

  



    

  
    
      
      Link to this function
    
    stream(flow, opts \\ [])


      
       
       View Source
     


  


  

Explicitly converts the Flow into a Stream.
All Flows behave as a stream but this function performs an
explicit conversion. However, since Flow will link to the
current process, this function can be useful to convert it
to a non-linked stream by passing the link: false option.

  
  options

  
  Options


	:link - if the Flow supervision tree should be linked
to the current process. Defaults to true.


  
  examples

  
  Examples


iex> Flow.from_enumerable([1, 2, 3])
...> |> Flow.map(& &1 * 2)
...> |> Flow.stream()
...> |> Enum.to_list()
[2, 4, 6]

  



    

    

  
    
      
      Link to this function
    
    take_sort(flow, n, sort_fun \\ &<=/2, options \\ [])


      
       
       View Source
     


  


  

Takes n events according to the sort function.
This function allows developers to calculate the top n entries
(or the bottom n entries) by performing most of the work
concurrently.
First n events are taken from every partition and then those n
events from every partition are merged into a single partition. The
final result is a flow with a single partition that will emit a list
with the top n events. The sorting is given by the sort_fun.
take_sort/3 is built on top of departition/5, which means it will
also take and sort entries across windows. A set of options may also
be given to customize the :window, :min_demand and :max_demand
of when departitioning.

  
  examples

  
  Examples


As an example, imagine you are processing a list of URLs and you want
the list of the most accessed URLs.
iex> urls = ~w(www.foo.com www.bar.com www.foo.com www.foo.com www.baz.com)
iex> flow = urls |> Flow.from_enumerable() |> Flow.partition()
iex> flow = flow |> Flow.reduce(fn -> %{} end, fn url, map ->
...>   Map.update(map, url, 1, & &1 + 1)
...> end)
iex> flow = flow |> Flow.take_sort(1, fn {_url_a, count_a}, {_url_b, count_b} ->
...>   count_b <= count_a
...> end)
iex> Enum.to_list(flow)
[[{"www.foo.com", 3}]]

  



    

  
    
      
      Link to this function
    
    through_specs(flow, producer_consumers, options \\ [])


      
       
       View Source
     


  


  

      

          @spec through_specs(t(), [{Supervisor.child_spec(), keyword()}], keyword()) :: t()


      


Passes a flow through a list of producer_consumers child
specifications and subscriptions that will be started alongside
the flow.
producers_consumers is a list of tuples where the first element
is the child specification and the second is a list of subscription
options. The child specification is the one defined in the Supervisor
module. The producers_consumers will only be started when the flow
starts. If the flow terminates, the producer consumers will also be
terminated.
The :id field of the child specification will be randomized.
The :restart option is set to :temporary but it behaves
as :transient. If a producer terminates, its exit reason will
propagate through the flow. The exit is considered abnormal
unless the reason is :normal, :shutdown or {:shutdown, _}.
All other child specification fields are kept unchanged.
For options and termination behaviour, see through_stages/3.

  
  examples

  
  Examples


spec = {MyConsumerProducer, arg}
subscription_opts = []
specs = [{spec, subscription_opts}]
Flow.through_specs(some_flow, specs)

  



    

  
    
      
      Link to this function
    
    through_stages(flow, producer_consumers, options \\ [])


      
       
       View Source
     


  


  

      

          @spec through_stages(t(), producer_consumers, keyword()) :: t()
when producer_consumers: [GenStage.stage() | {GenStage.stage(), keyword()}]


      


Passes a flow through a list of already running stages
as producer_consumers.
producers_consumers are already running stages that have type
:producer_consumer. Each element represents the consumer or a
tuple with the consumer and the subscription options as defined
in GenStage.sync_subscribe/2. If instead you want the producer
consumers to be started alongside the flow, see through_specs/3
instead.
You are required to pass an existing flow and it returns a new
flow that you can continue processing.

  
  options

  
  Options


These options configure the stages after the producer consumers:
	:window - a window to run the next stages in, see Flow.Window
	:stages - the number of stages
	:buffer_keep - how the buffer should behave, see GenStage.init/1
	:buffer_size - how many events to buffer, see GenStage.init/1
	:shutdown - the shutdown time for this stage when the flow is shut down.
The same as the :shutdown value in a Supervisor, defaults to 5000 milliseconds.

All remaining options are sent during subscription, allowing developers
to customize :min_demand, :max_demand and others.

  
  examples

  
  Examples


stages = [{pid1, min_demand: 10}, pid2, SomeProducerConsumer]
Flow.from_enumerable([1, 2, 3])
|> Flow.through_stages(stages)
|> Flow.start_link()

  
  termination

  
  Termination


Flow subscribes to stages using cancel: :transient. This means stages
can signal the flow that it has emitted all events by terminating with
reason :normal, :shutdown or {:shutdown, _}. If you are implementing
your own producer consumer and you are subscribing to a flow that is finite,
you need to take this into account in your producer consumer implementation:
	You need implement GenStage.handle_subscribe/4 and store
whenever the stage gets a new producer

	You need implement GenStage.handle_cancel/3 and decrease
whenever the stage loses a producer

	Once all producers are cancelled, you need to call
GenStage.async_info(self(), :terminate) to send a message
to yourself, allowing you to terminate after all events have
been consumed:
def handle_info(:terminate, state) do
  {:stop, :shutdown, state}
end


Given the complexity in guaranteeing termination, we recommend
developers to use through_stages/3 and through_specs/3 only
when subscribing to unbounded (infinite) flows.
If the exit reason is none of the above, it will cause the next stages
to terminate immediately, eventually causing the whole flow to terminate.

  



  
    
      
      Link to this function
    
    uniq(flow)


      
       
       View Source
     


  


  

Only emit unique events.
Calling this function is equivalent to:
Flow.uniq_by(flow, & &1)
See uniq_by/2 for more information.

  



  
    
      
      Link to this function
    
    uniq_by(flow, by)


      
       
       View Source
     


  


  

      

          @spec uniq_by(t(), (term() -> term())) :: t()


      


Only emit events that are unique according to the by function.
In order to verify if an item is unique or not, uniq_by/2
must store the value computed by by/1 into a set. This means
that, when working with unbounded data, it is recommended to
wrap uniq_by/2 in a window otherwise the data set will grow
forever, eventually using all memory available.
Also keep in mind that uniq_by/2 is applied per partition.
Therefore, if the data is not uniquely divided per partition,
it won't be able to calculate the unique items properly.

  
  examples

  
  Examples


To get started, let's create a flow that emits only the first
odd and even number for a range:
iex> flow = Flow.from_enumerable(1..100)
iex> flow = Flow.partition(flow, stages: 1)
iex> flow |> Flow.uniq_by(&rem(&1, 2)) |> Enum.sort()
[1, 2]
Since we have used only one stage when partitioning, we
correctly calculate [1, 2] for the given partition. Let's see
what happens when we increase the number of stages in the partition:
iex> flow = Flow.from_enumerable(1..100)
iex> flow = Flow.partition(flow, stages: 4)
iex> flow |> Flow.uniq_by(&rem(&1, 2)) |> Enum.sort()
[1, 2, 3, 4, 10, 16, 23, 39]
Now we got 8 numbers, one odd and one even per partition. If
we want to compute the unique items per partition, we must properly
hash the events into two distinct partitions, one for odd numbers
and another for even numbers:
iex> flow = Flow.from_enumerable(1..100)
iex> flow = Flow.partition(flow, stages: 2, hash: fn event -> {event, rem(event, 2)} end)
iex> flow |> Flow.uniq_by(&rem(&1, 2)) |> Enum.sort()
[1, 2]

  



    

  
    
      
      Link to this function
    
    window_join(mode, left, right, window, left_key, right_key, join, options \\ [])


      
       
       View Source
     


  


  

      

          @spec window_join(
  join(),
  t(),
  t(),
  Flow.Window.t(),
  (... -> any()),
  (... -> any()),
  (... -> any()),
  keyword()
) :: t()


      


Joins two flows with the given window.
It is similar to bounded_join/7 with the addition a window
can be given. The window function applies to elements of both
left and right side in isolation (and not the joined value). A
trigger will cause the join state to be cleared.

  
  examples

  
  Examples


As an example, let's expand the example given in bounded_join/7
and apply a window to it. The example in bounded_join/7 returned
3 results but in this example, because we will split the posts
and comments in two different windows, we will get only two results
as the later comment for post_id=1 won't have a matching comment for
its window:
iex> posts = [%{id: 1, title: "hello", timestamp: 0}, %{id: 2, title: "world", timestamp: 1000}]
iex> comments = [{1, "excellent", 0}, {1, "outstanding", 1000},
...>             {2, "great follow up", 1000}, {3, "unknown", 1000}]
iex> window = Flow.Window.fixed(1, :second, fn
...>   {_, _, timestamp} -> timestamp
...>   %{timestamp: timestamp} -> timestamp
...> end)
iex> flow = Flow.window_join(:inner,
...>                         Flow.from_enumerable(posts),
...>                         Flow.from_enumerable(comments),
...>                         window,
...>                         & &1.id, # left key
...>                         & elem(&1, 0), # right key
...>                         fn post, {_post_id, comment, _ts} -> Map.put(post, :comment, comment) end,
...>                         stages: 1, max_demand: 1)
iex> Enum.sort(flow)
[%{id: 1, title: "hello", comment: "excellent", timestamp: 0},
 %{id: 2, title: "world", comment: "great follow up", timestamp: 1000}]

  


        

      



  

    
Flow.Window 
    



      
Splits a flow into windows that are materialized at certain triggers.
Windows allow developers to split data so we can understand incoming
data as time progresses. Once a window is created, we can specify
triggers that allow us to customize when the data accumulated on every
window is materialized.
Windows must be created by calling one of the window type functions.
The supported window types are as follows:
	Global windows - that's the default window which means all data
belongs to one single window. In other words, the data is not
split in any way. The window finishes when all producers notify
there is no more data

	Fixed windows - splits incoming events into periodic, non-
overlapping windows based on event times. In other words, a given
event belongs to a single window. If data arrives late, a configured
lateness can be specified.

	Periodic windows - splits incoming events into periodic, non-
overlapping windows based on processing times. Similar to fixed
windows, a given event belongs to a single window.

	Count windows - splits incoming events based on a count.
Similar to fixed windows, a given event belongs to a single
window.


Other common window types can be expressed with Flow functions:
	Session windows - splits incoming events into unique windows
which is grouped until there is a configured gap between event
times. Sessions are useful for data that is irregularly
distributed with respect to time.

We discuss all types and include examples below. In the first section,
"Global windows", we build the basic intuition about windows and triggers
as well as discuss the distinction between "Event time and processing time".
Then we explore "Fixed windows" and the concept of lateness before moving
on to other window types.
Global windows
By default, all events belong to the global window. The global window
is automatically attached to a partition if no window is specified.
The flow below:
Flow.from_stages([some_producer])
|> Flow.partition()
|> Flow.reduce(fn -> 0 end, & &1 + 2)
is equivalent to:
Flow.from_stages([some_producer])
|> Flow.partition(window: Flow.Window.global())
|> Flow.reduce(fn -> 0 end, & &1 + 2)
Even though the global window does not split the data in any way, it
already provides conveniences for working with both bounded (finite)
and unbounded (infinite) via triggers.
For example, the flow below uses a global window with a count-based
trigger to emit the values being summed as we sum them:
iex> window = Flow.Window.global() |> Flow.Window.trigger_every(10)
iex> flow = Flow.from_enumerable(1..100) |> Flow.partition(window: window, stages: 1)
iex> flow |> Flow.reduce(fn -> 0 end, &(&1 + &2)) |> Flow.emit(:state) |> Enum.to_list()
[55, 210, 465, 820, 1275, 1830, 2485, 3240, 4095, 5050, 5050]
Let's explore the types of triggers available next.
Triggers
Triggers allow us to check point the data processed so far. There
are different triggers we can use:
	Event count triggers - compute state operations every X events

	Processing time triggers - compute state operations every X time
units for every stage

	Punctuation - hand-written triggers based on the data


Flow supports the triggers above via the trigger_every/2,
trigger_periodically/3 and trigger/3 respectively.
Once a trigger is emitted, the Flow.reduce/3 step halts and invokes
the Flow.on_trigger/2 callback, allowing you to emit events and change
the reducer accumulator.
Event time and processing time
Before we move to other window types, it is important to discuss
the distinction between event time and processing time. In particular,
triggers created with the trigger_periodically/3 function are
intrinsically inaccurate and therefore should not be used to split the
data. For example, if you are measuring the frequency that events arrive,
using the event time will always yield the same result, while processing
time will be vulnerable to fluctuations if, for instance, an external
factor causes events to processed slower or faster than usual.
Furthermore, periodic triggers are established per partition and are
message-based, which means partitions will emit the triggers at different
times and possibly with delays based on the partition message queue size.
However, it is exactly this lack of precision which makes them efficient
for checkpointing data.
Flow provides other window types, such as fixed windows, exactly to address
the issues with processing time. Such windows use the event time which is
based on the data itself. When working with event time, we can assign the
data into proper windows even when late or out of order. Such windows can
be used to gather time-based insight from the data (for example, the most
popular hashtags in the last 10 minutes) as well as for checkpointing data.
Fixed windows (event time)
Fixed windows group the data based on the event times. Regardless if
the data is bounded or not, fixed windows give us time-based insight
about the data.
Fixed windows are created via the fixed/3 function which specified
the duration of the window and a function that retrieves the event time
from each event:
Flow.Window.fixed(1, :hour, fn {word, timestamp} -> timestamp end)
Let's see an example that will use the window above to count the frequency
of words based on windows that are 1 hour long. The timestamps used by
Flow are integers in milliseconds. For now, we will also set the concurrency
down 1 and max demand down to 5 as it is simpler to reason about the results:
iex> data = [{"elixir", 0}, {"elixir", 1_000}, {"erlang", 60_000},
...>         {"concurrency", 3_200_000}, {"elixir", 4_000_000},
...>         {"erlang", 5_000_000}, {"erlang", 6_000_000}]
iex> window = Flow.Window.fixed(1, :hour, fn {_word, timestamp} -> timestamp end)
iex> flow = Flow.from_enumerable(data, max_demand: 5, stages: 1)
iex> flow = Flow.partition(flow, window: window, stages: 1)
iex> flow = Flow.reduce(flow, fn -> %{} end, fn {word, _}, acc ->
...>   Map.update(acc, word, 1, & &1 + 1)
...> end)
iex> flow |> Flow.emit(:state) |> Enum.to_list
[%{"elixir" => 2, "erlang" => 1, "concurrency" => 1},
 %{"elixir" => 1, "erlang" => 2}]
Since the data has been broken in two windows, the first four events belong
to the same window while the last 3 belongs to the second one. Notice that
Flow.reduce/3 is executed per window and that each event belongs to a single
window exclusively.
Similar to global windows, fixed windows can also have triggers, allowing
us to checkpoint the data as the computation happens.
Data ordering, watermarks and lateness
When working with event time, Flow assumes by default that events are time
ordered. This means that, when we move from one window to another, like
when we received the entry {"elixir", 4_000_000} in the example above,
we assume the previous window has been completed.
Let's change the events above to be out of order and move the first event
to the end of the dataset and see what happens:
iex> data = [{"elixir", 1_000}, {"erlang", 60_000},
...>         {"concurrency", 3_200_000}, {"elixir", 4_000_000},
...>         {"erlang", 5_000_000}, {"erlang", 6_000_000}, {"elixir", 0}]
iex> window = Flow.Window.fixed(1, :hour, fn {_word, timestamp} -> timestamp end)
iex> flow = Flow.from_enumerable(data) |> Flow.partition(window: window, stages: 1, max_demand: 5)
iex> flow = Flow.reduce(flow, fn -> %{} end, fn {word, _}, acc ->
...>   Map.update(acc, word, 1, & &1 + 1)
...> end)
iex> flow |> Flow.emit(:state) |> Enum.to_list
[%{"elixir" => 1, "erlang" => 1, "concurrency" => 1},
 %{"elixir" => 1, "erlang" => 2}]
Notice that now the first map did not count the "elixir" word twice.
Since the event arrived late, it was marked as lost. However, in many
flows we actually expect data to arrive late or out of order, especially
when talking about concurrent data processing.
Luckily, event time windows include the concept of lateness, which is a
processing time base period we would wait to receive late events.
Let's change the example above once more but now change the window
to also call allowed_lateness/3:
iex> data = [{"elixir", 1_000}, {"erlang", 60_000},
...>         {"concurrency", 3_200_000}, {"elixir", 4_000_000},
...>         {"erlang", 5_000_000}, {"erlang", 6_000_000}, {"elixir", 0}]
iex> window = Flow.Window.fixed(1, :hour, fn {_word, timestamp} -> timestamp end)
iex> window = Flow.Window.allowed_lateness(window, 5, :minute)
iex> flow = Flow.from_enumerable(data) |> Flow.partition(window: window, stages: 1, max_demand: 5)
iex> flow = Flow.reduce(flow, fn -> %{} end, fn {word, _}, acc ->
...>   Map.update(acc, word, 1, & &1 + 1)
...> end)
iex> flow |> Flow.emit(:state) |> Enum.to_list
[%{"concurrency" => 1, "elixir" => 1, "erlang" => 1},
 %{"concurrency" => 1, "elixir" => 2, "erlang" => 1},
 %{"elixir" => 1, "erlang" => 2}]
Now that we allow late events, we can see the first window emitted
twice. Instead of the window being marked as done when 1 hour passes,
we say it emits a watermark trigger. The window will be effectively
done only after the allowed lateness period. If desired, we can use
Flow.on_trigger/2 to get more information about each particular window
and its trigger. Replace the last line above by the following:
flow
|> Flow.on_trigger(fn state, _index, trigger -> {[{state, trigger}], state} end)
|> Enum.to_list()
The trigger parameter will include the type of window, the current
window and what caused the window to be emitted (:watermark or
:done).
Note that all stages must receive an event that is outside of a specific
window before that window is considered complete. In other words if there are
multiple stages in the partition preceding a reduce operation that has
a window, the reduce step won't release a window until it has seen an event
that is outside of that window from all processes that it receives data from.
This could have an effect on how long events are delayed in the reduce step.
Periodic windows (processing time)
Periodic windows are similar to fixed windows except triggers are
emitted based on processing time instead of event time. Remember that
relying on periodic windows or triggers is intrinsically inaccurate and
should not be used to split the data, only as a checkpointing device.
Periodic windows are also similar to global windows that use
trigger_periodically/2 to emit events periodically. The difference is
that periodic windows emit a window in a given interval while a trigger
emits a trigger. This behaviour may affect functions such as Flow.departition/4,
which calls the merge callback per trigger but the done callback per
window. Unless you are relying on functions such as Flow.departition/4,
there is no distinction between periodic windows and global windows with
periodic triggers.
Count windows (event count)
Count windows are simpler versions of fixed windows where windows are split
apart by event count. Since it is not timed-based, it does not provide the
concept of lateness.
iex> window = Flow.Window.count(10)
iex> flow = Flow.from_enumerable(1..100) |> Flow.partition(window: window, stages: 1)
iex> flow |> Flow.reduce(fn -> 0 end, &(&1 + &2)) |> Flow.emit(:state) |> Enum.to_list()
[55, 155, 255, 355, 455, 555, 655, 755, 855, 955, 0]
Count windows are also similar to global windows that use trigger_every/2
to emit events per count. The difference is that count windows emit a
window per event count while a trigger belongs to a window. This behaviour
may affect functions such as Flow.departition/4, which calls the merge
callback per trigger but the done callback per window.  Unless you are
relying on functions such as Flow.departition/4, there is no distinction
between count windows and global windows with count triggers.
Session windows (gap between events)
Session windows allow events to accumulate until a configured time gap
between events occurs. This allows for grouping events that occurred close to
each other, while allowing the length of the window to vary. Flow does not
provide a dedicated Session window type, but it can be constructed using
emit_and_reduce/3 and on_trigger/2.
iex> data = [
...>   {"elixir", 2_000_000},
...>   {"erlang", 3_100_000},
...>   {"elixir", 3_200_000},
...>   {"erlang", 4_000_000},
...>   {"elixir", 4_100_000},
...>   {"erlang", 4_150_000}
...> ]
iex> max_gap_between_events = 1_000_000
iex> flow = Flow.from_enumerable(data) |> Flow.partition(key: fn {k, _} -> k end, stages: 1)
iex> flow =
...>   Flow.emit_and_reduce(flow, fn -> %{} end, fn {word, time}, acc ->
...>     {count, previous_time} = Map.get(acc, word, {1, time})
...>
...>     if time - previous_time > max_gap_between_events do
...>       {[{word, {count, previous_time}}], Map.put(acc, word, {1, time})}
...>     else
...>       {[], Map.update(acc, word, {1, time}, fn {count, _} -> {count + 1, time} end)}
...>     end
...>   end)
iex> flow = Flow.on_trigger(flow, fn acc -> {Enum.to_list(acc), :unused} end)
iex> Enum.to_list(flow)
[{"elixir", {1, 2000000}}, {"elixir", {2, 4100000}}, {"erlang", {3, 4150000}}]

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        by()

      


        A function that returns the event time to window by.



    


    
      
        id()

      


        The window identifier.



    


    
      
        t()

      


    


    
      
        time_unit()

      


        The supported time units for fixed and periodic windows.



    


    
      
        trigger()

      


        The name of the trigger.



    


    
      
        type()

      


        The supported window types.



    





  
    Functions
  


    
      
        allowed_lateness(window, count, unit)

      


        Sets a duration, in processing time, of how long we will
wait for late events for a given window.



    


    
      
        count(count)

      


        Returns a count-based window of every count elements.



    


    
      
        fixed(count, unit, by)

      


        Returns a fixed window of duration count unit where the
event time is calculated by the given function by.



    


    
      
        global()

      


        Returns a global window.



    


    
      
        periodic(count, unit)

      


        Returns a period-based window of every count unit.



    


    
      
        trigger(window, acc_fun, trigger_fun)

      


        Calculates when to emit a trigger.



    


    
      
        trigger_every(window, count)

      


        A trigger emitted every count elements in a window.



    


    
      
        trigger_periodically(window, count, unit)

      


        Emits a trigger periodically every count unit.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    by()


      
       
       View Source
     


  


  

      

          @type by() :: (term() -> non_neg_integer())


      


A function that returns the event time to window by.
It must return an integer representing the time in milliseconds.
Flow does not care if the integer is using the UNIX epoch,
Gregorian epoch or any other as long as it is consistent.

  



  
    
      
      Link to this type
    
    id()


      
       
       View Source
     


  


  

      

          @type id() :: :global | non_neg_integer()


      


The window identifier.
It is :global for :global windows or an integer for fixed windows.

  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %{
  :trigger => {(... -> any()), (... -> any())} | nil,
  :periodically => [trigger()],
  optional(atom()) => term()
}


      



  



  
    
      
      Link to this type
    
    time_unit()


      
       
       View Source
     


  


  

      

          @type time_unit() :: :millisecond | :second | :minute | :hour


      


The supported time units for fixed and periodic windows.

  



  
    
      
      Link to this type
    
    trigger()


      
       
       View Source
     


  


  

      

          @type trigger() :: term()


      


The name of the trigger.

  



  
    
      
      Link to this type
    
    type()


      
       
       View Source
     


  


  

      

          @type type() :: :global | :fixed | :periodic | :count | any()


      


The supported window types.

  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    allowed_lateness(window, count, unit)


      
       
       View Source
     


  


  

      

          @spec allowed_lateness(t(), pos_integer(), time_unit()) :: t()


      


Sets a duration, in processing time, of how long we will
wait for late events for a given window.
If allowed lateness is configured, once the window is finished,
it won't trigger a :done event but instead emit a :watermark.
The window will be done only when the allowed lateness time expires,
effectively emitting the :done trigger.
count is a positive number. The unit may be a time unit
(:millisecond, :second, :minute, or :hour).

  



  
    
      
      Link to this function
    
    count(count)


      
       
       View Source
     


  


  

      

          @spec count(pos_integer()) :: t()


      


Returns a count-based window of every count elements.
count must be a positive integer.
Count window triggers have the shape of {:count, window, trigger_name},
where window is an incrementing integer identifying the window.
See the section on "Count windows" in the module documentation for examples.

  



  
    
      
      Link to this function
    
    fixed(count, unit, by)


      
       
       View Source
     


  


  

      

          @spec fixed(pos_integer(), time_unit(), (t() -> pos_integer())) :: t()


      


Returns a fixed window of duration count unit where the
event time is calculated by the given function by.
count is a positive integer and unit is one of :millisecond,
:second, :minute, or :hour.
Fixed window triggers have the shape of {:fixed, window, trigger_name},
where window is an integer that represents the beginning timestamp
for the current window.
If allowed_lateness/3 is used with fixed windows, the window will
first emit a {:fixed, window, :watermark} trigger when the window
terminates and emit {:fixed, window, :done} only after the
allowed_lateness/3 duration has passed.
See the section on "Fixed windows" in the module documentation for examples.

  



  
    
      
      Link to this function
    
    global()


      
       
       View Source
     


  


  

      

          @spec global() :: t()


      


Returns a global window.
Global window triggers have the shape of {:global, :global, trigger_name}.
See the section on "Global windows" in the module documentation for examples.

  



  
    
      
      Link to this function
    
    periodic(count, unit)


      
       
       View Source
     


  


  

      

          @spec periodic(pos_integer(), time_unit()) :: t()


      


Returns a period-based window of every count unit.
count is a positive integer and unit is one of :millisecond,
:second, :minute, or :hour. Remember periodic triggers are established
per partition and are message-based, which means partitions will emit the
triggers at different times and possibly with delays based on the partition
message queue size.
Periodic window triggers have the shape of {:periodic, window, trigger_name},
where window is an incrementing integer identifying the window.
See the section on "Periodic windows" in the module documentation for examples.

  



  
    
      
      Link to this function
    
    trigger(window, acc_fun, trigger_fun)


      
       
       View Source
     


  


  

      

          @spec trigger(t(), (-> acc), trigger_fun) :: t()
when trigger_fun: ([event], acc -> trigger_fun_return),
     trigger_fun_return:
       cont_tuple | cont_tuple_with_emitted_events | trigger_tuple,
     cont_tuple: {:cont, acc},
     cont_tuple_with_emitted_events: {:cont, [event], acc},
     trigger_tuple: {:trigger, trigger(), pre, pos, acc},
     pre: [event],
     pos: [event],
     acc: term(),
     event: term()


      


Calculates when to emit a trigger.
Triggers are calculated per window and are used to temporarily
halt the window accumulation, typically done with Flow.reduce/3,
allowing the next operations to execute before accumulation is
resumed.
This function expects the trigger accumulator function, which will
be invoked at the beginning of every window, and a trigger function
that receives the current batch of events and its own accumulator.
The trigger function must return one of the three values:
	{:cont, acc} - the reduce operation should continue as usual.
acc is the trigger state.

	{:cont, events, acc} - the reduce operation should continue, but
only with the events you want to emit as part of the next state.
acc is the trigger state.

	{:trigger, name, pre, pos, acc} - where name is the trigger name,
pre are the events to be consumed before the trigger, pos controls
events to be processed after the trigger with the acc as the new trigger
accumulator.


We recommend looking at the implementation of trigger_every/2 as
an example of a custom trigger.

  



  
    
      
      Link to this function
    
    trigger_every(window, count)


      
       
       View Source
     


  


  

      

          @spec trigger_every(t(), pos_integer()) :: t()


      


A trigger emitted every count elements in a window.
The trigger will be named {:every, count}.

  
  examples

  
  Examples


Below is an example that checkpoints the sum from 1 to 100, emitting
a trigger with the state every 10 items. The extra 5050 value at the
end is the trigger emitted because processing is done.
iex> window = Flow.Window.global() |> Flow.Window.trigger_every(10)
iex> flow = Flow.from_enumerable(1..100) |> Flow.partition(window: window, stages: 1)
iex> flow |> Flow.reduce(fn -> 0 end, &(&1 + &2)) |> Flow.emit(:state) |> Enum.to_list()
[55, 210, 465, 820, 1275, 1830, 2485, 3240, 4095, 5050, 5050]

  



  
    
      
      Link to this function
    
    trigger_periodically(window, count, unit)


      
       
       View Source
     


  


  

      

          @spec trigger_periodically(t(), pos_integer(), time_unit()) :: t()


      


Emits a trigger periodically every count unit.
Such trigger will apply to every window that has changed since the last
periodic trigger.
count is a positive integer and unit is one of :millisecond,
:second, :minute, or :hour. Remember periodic triggers are established
per partition and are message-based, which means partitions will emit the
triggers at different times and possibly with delays based on the partition
message queue size.
The trigger will be named {:periodically, count, unit}.

  
  message-based-triggers-timers

  
  Message-based triggers (timers)


It is also possible to dispatch a trigger by sending a message to
self() with the format of {:trigger, name}. This is useful for
custom triggers and timers. One example is to send the message when
building the accumulator for Flow.reduce/3.
Similar to periodic triggers, message-based triggers will also be
invoked to all windows that have changed since the last trigger.

  


        

      



  OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();




