

 Flowfull

 v0.1.1

 Table of contents

 	Flowfull Elixir Client

 	Changelog

 	Quick Start Guide

 	
 Modules

 	Flowfull

 	Flowfull.Auth

 	Flowfull.Auth.Password

 	Flowfull.Auth.Social

 	Flowfull.Auth.Token

 	Flowfull.Auth.Types

 	Flowfull.Client

 	Flowfull.Config

 	Flowfull.Operators

 	Flowfull.Phoenix

 	Flowfull.Phoenix.SessionPlug

 	Flowfull.Query

 	Flowfull.Request

 	Flowfull.Session

 	Flowfull.Storage

 	Flowfull.Storage.ETS

 	Flowfull.Storage.File

 	Flowfull.Storage.Memory

 	Flowfull.Types

 Flowfull Elixir Client

[image: Hex.pm]
[image: Elixir Version]
[image: License]
A zero-dependency Elixir client library for Flowfull backends with built-in authentication, session management, and query building. Includes Phoenix integration for WebSockets and LiveView.
Professional, type-safe, and production-ready Elixir client for Flowfull API backends.

Features
	✅ Minimal Dependencies - Only Req and Jason
	✅ Type-Safe - Full typespec coverage
	✅ Session Management - Auto-detection with pluggable storage
	✅ Query Builder - Chainable API with 14+ filter operators
	✅ Authentication - Complete auth system (25+ endpoints)
	✅ Retry Logic - Configurable retries with exponential backoff
	✅ Interceptors - Request/response middleware
	✅ Phoenix Integration - WebSocket and LiveView support
	✅ Multi-Tenant - Built-in multi-tenant support
	✅ File Upload - Multipart form data support

Installation
Add flowfull to your list of dependencies in mix.exs:
def deps do
 [
 {:flowfull, "~> 0.1.0"}
]
end
Quick Start
Create a client
client = Flowfull.new("https://api.example.com")

Make a simple GET request
{:ok, response} = Flowfull.get(client, "/users")

Use query builder
{:ok, users} =
 Flowfull.query(client, "/users")
 |> Flowfull.Query.where("age", Flowfull.Operators.gte(18))
 |> Flowfull.Query.where("status", Flowfull.Operators.eq("active"))
 |> Flowfull.Query.sort("created_at", :desc)
 |> Flowfull.Query.page(1)
 |> Flowfull.Query.limit(10)
 |> Flowfull.Query.execute()

Authentication
{:ok, result} = Flowfull.Auth.login(client, %{
 email: "user@example.com",
 password: "password123"
})

Get current user
{:ok, user} = Flowfull.Auth.me(client)
Configuration
With options
client = Flowfull.new("https://api.example.com",
 session_id: "abc123",
 timeout: 60_000,
 headers: %{"X-Custom" => "value"},
 retry_attempts: 5,
 retry_exponential: true,
 storage: Flowfull.Storage.File.new(".sessions")
)

With session function
client = Flowfull.new("https://api.example.com",
 get_session_id: fn ->
 {:ok, System.get_env("SESSION_ID")}
 end
)

Include session in all requests
client = Flowfull.new("https://api.example.com",
 include_session: true,
 session_header: "X-Session-Id"
)
HTTP Methods
GET
{:ok, response} = Flowfull.get(client, "/users")

POST
{:ok, response} = Flowfull.post(client, "/users", %{
 name: "John Doe",
 email: "john@example.com"
})

PUT
{:ok, response} = Flowfull.put(client, "/users/123", %{
 name: "Jane Doe"
})

PATCH
{:ok, response} = Flowfull.patch(client, "/users/123", %{
 email: "jane@example.com"
})

DELETE
{:ok, response} = Flowfull.delete(client, "/users/123")
Query Builder
Complex query with multiple filters
{:ok, products} =
 Flowfull.query(client, "/products")
 |> Flowfull.Query.where("price", Flowfull.Operators.between(10, 100))
 |> Flowfull.Query.where("category", Flowfull.Operators.in_list(["electronics", "books"]))
 |> Flowfull.Query.where("name", Flowfull.Operators.ilike("%laptop%"))
 |> Flowfull.Query.where("stock", Flowfull.Operators.gt(0))
 |> Flowfull.Query.sort("price", :asc)
 |> Flowfull.Query.sort("created_at", :desc)
 |> Flowfull.Query.page(1)
 |> Flowfull.Query.limit(20)
 |> Flowfull.Query.select(["id", "name", "price"])
 |> Flowfull.Query.execute()
Filter Operators
	Operator	Function	Example	SQL Equivalent
	Equality	eq(value)	where("age", eq(25))	age = 25
	Not Equal	ne(value)	where("status", ne("inactive"))	status != 'inactive'
	Greater Than	gt(value)	where("price", gt(100))	price > 100
	Greater or Equal	gte(value)	where("age", gte(18))	age >= 18
	Less Than	lt(value)	where("stock", lt(10))	stock < 10
	Less or Equal	lte(value)	where("price", lte(50))	price <= 50
	LIKE	like(pattern)	where("name", like("%John%"))	name LIKE '%John%'
	ILIKE	ilike(pattern)	where("email", ilike("%@gmail.com"))	email ILIKE '%@gmail.com'
	Contains	contains(value)	where("description", contains("laptop"))	description LIKE '%laptop%'
	Starts With	starts_with(prefix)	where("name", starts_with("A"))	name LIKE 'A%'
	Ends With	ends_with(suffix)	where("email", ends_with("@example.com"))	email LIKE '%@example.com'
	IN	in_list(values)	where("status", in_list(["active", "pending"]))	status IN ('active', 'pending')
	NOT IN	not_in(values)	where("role", not_in(["admin", "super"]))	role NOT IN ('admin', 'super')
	IS NULL	is_null()	where("deleted_at", is_null())	deleted_at IS NULL
	NOT NULL	not_null()	where("email", not_null())	email IS NOT NULL
	BETWEEN	between(min, max)	where("age", between(18, 65))	age BETWEEN 18 AND 65
	NOT BETWEEN	not_between(min, max)	where("price", not_between(0, 10))	price NOT BETWEEN 0 AND 10

Authentication
Login & Registration
Login with email
{:ok, result} = Flowfull.Auth.login(client, %{
 email: "user@example.com",
 password: "password123"
})

Login with username
{:ok, result} = Flowfull.Auth.login(client, %{
 user_name: "johndoe",
 password: "password123"
})

Register new user
{:ok, result} = Flowfull.Auth.register(client, %{
 email: "user@example.com",
 password: "password123",
 name: "John",
 last_name: "Doe"
})

Logout
{:ok, _} = Flowfull.Auth.logout(client)

Get current user
{:ok, user} = Flowfull.Auth.me(client)

Update profile
{:ok, user} = Flowfull.Auth.update_profile(client, %{
 name: "Jane",
 phone: "+1234567890"
})
Password Reset
Request password reset
{:ok, _} = Flowfull.Auth.Password.request_reset(client, %{
 email: "user@example.com",
 reset_url: "https://app.example.com/reset-password"
})

Validate reset token
{:ok, result} = Flowfull.Auth.Password.validate_token(client, token)

Complete password reset
{:ok, _} = Flowfull.Auth.Password.complete_reset(client, %{
 token: token,
 password: "newpassword123"
})

Change password (authenticated)
{:ok, _} = Flowfull.Auth.Password.change_password(client, %{
 old_password: "oldpassword",
 new_password: "newpassword"
})
Token Authentication
Create login token
{:ok, result} = Flowfull.Auth.Token.create(client, %{
 email: "user@example.com",
 token_url: "https://app.example.com/login"
})

Validate token
{:ok, result} = Flowfull.Auth.Token.validate(client, token)

Login with token
{:ok, result} = Flowfull.Auth.Token.login(client, token)
Social OAuth
Get available providers
{:ok, providers} = Flowfull.Auth.Social.get_providers(client)

Start OAuth flow
{:ok, auth_url} = Flowfull.Auth.Social.start_oauth(
 client,
 :google,
 "https://app.example.com/callback"
)

Login with OAuth (after callback)
{:ok, result} = Flowfull.Auth.Social.login_api(client, %{
 provider: "google",
 code: oauth_code
})

Get linked accounts
{:ok, accounts} = Flowfull.Auth.Social.get_accounts(client)

Unlink account
{:ok, _} = Flowfull.Auth.Social.unlink(client, :google)
Phoenix Integration
WebSocket Authentication
In your UserSocket module
defmodule MyAppWeb.UserSocket do
 use Phoenix.Socket

 def connect(%{"session_id" => session_id}, socket, _connect_info) do
 client = Flowfull.new(Application.get_env(:my_app, :flowfull_url))

 case Flowfull.Phoenix.validate_socket_session(client, session_id) do
 {:ok, user} ->
 {:ok, assign(socket, :user, user)}

 {:error, _reason} ->
 :error
 end
 end

 def connect(_params, _socket, _connect_info), do: :error
end
LiveView Authentication
In your LiveView module
defmodule MyAppWeb.DashboardLive do
 use MyAppWeb, :live_view

 def mount(_params, %{"session_id" => session_id}, socket) do
 client = Flowfull.new(Application.get_env(:my_app, :flowfull_url))

 case Flowfull.Phoenix.validate_liveview_session(client, session_id) do
 {:ok, user} ->
 {:ok, assign(socket, :current_user, user)}

 {:error, _reason} ->
 {:ok, redirect(socket, to: "/login")}
 end
 end
end
Controller Authentication Plug
In your router
pipeline :authenticated do
 plug Flowfull.Phoenix.SessionPlug,
 client: fn -> Flowfull.new(Application.get_env(:my_app, :flowfull_url)) end
end

scope "/dashboard", MyAppWeb do
 pipe_through [:browser, :authenticated]

 get "/", DashboardController, :index
end
Storage Adapters
Memory Storage (Agent-based)
Start the memory storage
{:ok, _} = Flowfull.Storage.Memory.start_link()

Use with client
client = Flowfull.new("https://api.example.com",
 storage: Flowfull.Storage.Memory
)
File Storage
Use file storage
client = Flowfull.new("https://api.example.com",
 storage: Flowfull.Storage.File.new(".sessions")
)
ETS Storage (High Performance)
Initialize ETS storage
Flowfull.Storage.ETS.init()

Use with client
client = Flowfull.new("https://api.example.com",
 storage: Flowfull.Storage.ETS
)
Interceptors
Add request interceptor
client = Flowfull.add_request_interceptor(client, fn request ->
 IO.inspect(request, label: "Request")
 {:ok, request}
end)

Add response interceptor
client = Flowfull.add_response_interceptor(client, fn response ->
 IO.inspect(response, label: "Response")
 {:ok, response}
end)
Examples
See the examples directory for complete examples:
	Basic Usage - Simple HTTP requests
	Query Builder - Advanced queries
	Authentication - Complete auth flow
	Phoenix WebSocket - WebSocket integration
	Phoenix LiveView - LiveView integration

Documentation
	Quick Start Guide - Get started in 5 minutes
	API Documentation - Complete API reference
	Phoenix Integration Guide - Phoenix-specific features

Contributing
Contributions are welcome! Please read our Contributing Guide for details.
License
Flowfull Elixir Client is licensed under the AGPL-3.0-only license.
What does this mean?
	✅ Free to use - Use commercially without paying anything
	✅ Modify freely - Change the code as needed
	✅ Distribute - Share with others
	⚠️ Share modifications - If you modify and offer as a web service, you must release your changes
	⚠️ Same license - Derivative works must use AGPL-3.0

Commercial License Available
For organizations that cannot comply with AGPL-3.0 or need:
	💼 Keep modifications private
	🛡️ Legal indemnification
	🎯 Enterprise support and SLA
	🚀 Custom features

Contact: enterprise@pubflow.com
Learn more: https://pubflow.com/dual-licensing
See LICENSE for full details.
Support
	📖 Documentation
	💬 Issues
	🌟 GitHub
	💼 Commercial License

Copyright © 2024-present Pubflow, Inc.
SPDX-License-Identifier: AGPL-3.0-only
Made with ❤️ by the Pubflow team

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
0.1.0 - 2025-12-23
Added
	Initial release of Flowfull Elixir client
	Core HTTP client with GET, POST, PUT, PATCH, DELETE methods
	Query builder with chainable API
	14+ filter operators with bracket syntax
	Session management with auto-detection
	Storage adapters: Memory, File, ETS
	Complete authentication system:	Email/username login
	Public registration
	Password reset flow
	Token-based authentication
	Social OAuth (Google, Facebook, GitHub, Apple)
	Profile management

	Retry logic with exponential backoff
	Request/response interceptors
	Phoenix integration:	WebSocket authentication
	LiveView authentication
	Controller authentication plug

	Full typespec coverage
	Comprehensive documentation
	Example files

Features
	Zero external dependencies (only Req and Jason)
	Type-safe with full typespec coverage
	Production-ready with retry logic and error handling
	Multi-tenant support
	File upload support (multipart form data)
	Configurable timeouts and headers
	Session caching for performance

Documentation
	Complete README with examples
	Quick start guide
	API documentation
	Phoenix integration guide
	Contributing guidelines

 Quick Start Guide

Get started with Flowfull Elixir client in 5 minutes!
Installation
Add to your mix.exs:
def deps do
 [
 {:flowfull, "~> 0.1.0"}
]
end
Run:
mix deps.get

Basic Usage
1. Create a Client
client = Flowfull.new("https://api.example.com")
2. Make HTTP Requests
GET request
{:ok, response} = Flowfull.get(client, "/users")

POST request
{:ok, response} = Flowfull.post(client, "/users", %{
 name: "John Doe",
 email: "john@example.com"
})

PUT request
{:ok, response} = Flowfull.put(client, "/users/123", %{
 name: "Jane Doe"
})

DELETE request
{:ok, response} = Flowfull.delete(client, "/users/123")
3. Use Query Builder
alias Flowfull.Operators

{:ok, users} =
 Flowfull.query(client, "/users")
 |> Flowfull.Query.where("age", Operators.gte(18))
 |> Flowfull.Query.where("status", Operators.eq("active"))
 |> Flowfull.Query.sort("created_at", :desc)
 |> Flowfull.Query.page(1)
 |> Flowfull.Query.limit(10)
 |> Flowfull.Query.execute()
4. Authentication
Login
{:ok, result} = Flowfull.Auth.login(client, %{
 email: "user@example.com",
 password: "password123"
})

Session is automatically stored
Now you can make authenticated requests

Get current user
{:ok, user} = Flowfull.Auth.me(client)

Logout
{:ok, _} = Flowfull.Auth.logout(client)
5. Advanced Configuration
With custom options
client = Flowfull.new("https://api.example.com",
 timeout: 60_000,
 headers: %{"X-API-Key" => "your-api-key"},
 retry_attempts: 5,
 retry_exponential: true,
 storage: Flowfull.Storage.File.new(".sessions")
)

With session ID
client = Flowfull.new("https://api.example.com",
 session_id: "your-session-id"
)

With session function
client = Flowfull.new("https://api.example.com",
 get_session_id: fn ->
 {:ok, System.get_env("SESSION_ID")}
 end
)
Phoenix Integration
WebSocket Authentication
defmodule MyAppWeb.UserSocket do
 use Phoenix.Socket

 def connect(%{"session_id" => session_id}, socket, _connect_info) do
 client = Flowfull.new("https://api.example.com")

 case Flowfull.Phoenix.validate_socket_session(client, session_id) do
 {:ok, user} ->
 {:ok, assign(socket, :user, user)}

 {:error, _} ->
 :error
 end
 end
end
LiveView Authentication
defmodule MyAppWeb.DashboardLive do
 use MyAppWeb, :live_view

 def mount(_params, %{"session_id" => session_id}, socket) do
 client = Flowfull.new("https://api.example.com")

 case Flowfull.Phoenix.validate_liveview_session(client, session_id) do
 {:ok, user} ->
 {:ok, assign(socket, :current_user, user)}

 {:error, _} ->
 {:ok, redirect(socket, to: "/login")}
 end
 end
end
Complete Example
defmodule MyApp.FlowfullExample do
 alias Flowfull.Operators

 def run do
 # Create client
 client = Flowfull.new("https://api.example.com")

 # Login
 {:ok, result} = Flowfull.Auth.login(client, %{
 email: "user@example.com",
 password: "password123"
 })

 IO.puts("Logged in as: #{result.user["name"]}")

 # Query users
 {:ok, response} =
 Flowfull.query(client, "/users")
 |> Flowfull.Query.where("age", Operators.gte(18))
 |> Flowfull.Query.where("status", Operators.eq("active"))
 |> Flowfull.Query.sort("created_at", :desc)
 |> Flowfull.Query.limit(10)
 |> Flowfull.Query.execute()

 IO.inspect(response.data, label: "Users")

 # Logout
 {:ok, _} = Flowfull.Auth.logout(client)
 IO.puts("Logged out successfully")
 end
end
Next Steps
	Read the full documentation
	Check out the examples
	Learn about Phoenix integration
	Explore the API reference

Need Help?
	📖 Documentation
	💬 Issues
	🌟 GitHub

Flowfull

Flowfull client library for Elixir.
A zero-dependency client for Flowfull backends with built-in authentication,
session management, and query building.
Features
	Zero Dependencies - Only uses Req and Jason
	Type-Safe - Full typespec coverage
	Session Management - Auto-detection with pluggable storage
	Query Builder - Chainable API with 14+ filter operators
	Authentication - Complete auth system
	Retry Logic - Configurable retries with exponential backoff
	Interceptors - Request/response middleware
	Phoenix Integration - WebSocket and LiveView support

Quick Start
Create a client
client = Flowfull.new("https://api.example.com")

Make requests
{:ok, response} = Flowfull.get(client, "/users")

Use query builder
{:ok, users} =
 Flowfull.query(client, "/users")
 |> Flowfull.Query.where("age", Flowfull.Operators.gte(18))
 |> Flowfull.Query.sort("created_at", :desc)
 |> Flowfull.Query.execute()

Authentication
{:ok, result} = Flowfull.Auth.login(client, %{
 email: "user@example.com",
 password: "password123"
})

 Summary

 Types

 error()

 response()

 t()

 Functions

 add_request_interceptor(client, interceptor)

 Adds a request interceptor.

 add_response_interceptor(client, interceptor)

 Adds a response interceptor.

 delete(client, path, opts \\ [])

 Makes a DELETE request.

 get(client, path, opts \\ [])

 Makes a GET request.

 new(base_url, opts \\ [])

 Creates a new Flowfull client.

 patch(client, path, body, opts \\ [])

 Makes a PATCH request.

 post(client, path, body, opts \\ [])

 Makes a POST request.

 put(client, path, body, opts \\ [])

 Makes a PUT request.

 query(client, endpoint)

 Creates a query builder for advanced queries.

 Types

 error()

 @type error() :: Flowfull.Types.error()

 response()

 @type response() :: Flowfull.Types.api_response()

 t()

 @type t() :: Flowfull.Client.t()

 Functions

 add_request_interceptor(client, interceptor)

 @spec add_request_interceptor(t(), function()) :: t()

Adds a request interceptor.

 add_response_interceptor(client, interceptor)

 @spec add_response_interceptor(t(), function()) :: t()

Adds a response interceptor.

 delete(client, path, opts \\ [])

 @spec delete(t(), String.t(), keyword()) :: {:ok, response()} | {:error, error()}

Makes a DELETE request.

 get(client, path, opts \\ [])

 @spec get(t(), String.t(), keyword()) :: {:ok, response()} | {:error, error()}

Makes a GET request.

 new(base_url, opts \\ [])

 @spec new(
 String.t(),
 keyword()
) :: t()

Creates a new Flowfull client.
Options
	:session_id - Static session ID
	:get_session_id - Function to retrieve session ID
	:include_session - Whether to include session in requests (default: false)
	:session_header - Header name for session (default: "X-Session-Id")
	:timeout - Request timeout in milliseconds (default: 30000)
	:headers - Custom headers map
	:retry_attempts - Number of retry attempts (default: 3)
	:retry_delay - Delay between retries in ms (default: 1000)
	:retry_exponential - Use exponential backoff (default: true)
	:storage - Storage adapter for session persistence

Examples
client = Flowfull.new("https://api.example.com")

client = Flowfull.new("https://api.example.com",
 session_id: "abc123",
 timeout: 60000,
 headers: %{"X-Custom" => "value"}
)

 patch(client, path, body, opts \\ [])

 @spec patch(t(), String.t(), map(), keyword()) ::
 {:ok, response()} | {:error, error()}

Makes a PATCH request.

 post(client, path, body, opts \\ [])

 @spec post(t(), String.t(), map(), keyword()) :: {:ok, response()} | {:error, error()}

Makes a POST request.

 put(client, path, body, opts \\ [])

 @spec put(t(), String.t(), map(), keyword()) :: {:ok, response()} | {:error, error()}

Makes a PUT request.

 query(client, endpoint)

 @spec query(t(), String.t()) :: Flowfull.Query.t()

Creates a query builder for advanced queries.

Flowfull.Auth

Authentication helper for Flowfull client.
Provides methods for login, registration, session management, and profile updates.

 Summary

 Functions

 bridge_validate(client, session_id)

 Validate session for bridge integration.

 login(client, credentials)

 Login with email or username.

 logout(client)

 Logout the current user.

 me(client)

 Get current user profile.

 register(client, data)

 Register a new user (public registration).

 update_profile(client, data)

 Update user profile.

 validate_session(client)

 Validate current session.

 Functions

 bridge_validate(client, session_id)

 @spec bridge_validate(Flowfull.Client.t(), String.t()) ::
 {:ok, Flowfull.Auth.Types.session_validation_result()} | {:error, any()}

Validate session for bridge integration.

 login(client, credentials)

 @spec login(Flowfull.Client.t(), Flowfull.Auth.Types.login_credentials()) ::
 {:ok, Flowfull.Auth.Types.login_result()} | {:error, any()}

Login with email or username.
Examples
{:ok, result} = Flowfull.Auth.login(client, %{
 email: "user@example.com",
 password: "password123"
})

 logout(client)

 @spec logout(Flowfull.Client.t()) :: {:ok, map()} | {:error, any()}

Logout the current user.

 me(client)

 @spec me(Flowfull.Client.t()) :: {:ok, Flowfull.Auth.Types.user()} | {:error, any()}

Get current user profile.

 register(client, data)

 @spec register(Flowfull.Client.t(), Flowfull.Auth.Types.register_data()) ::
 {:ok, Flowfull.Auth.Types.login_result()} | {:error, any()}

Register a new user (public registration).

 update_profile(client, data)

 @spec update_profile(Flowfull.Client.t(), Flowfull.Auth.Types.profile_update()) ::
 {:ok, Flowfull.Auth.Types.user()} | {:error, any()}

Update user profile.

 validate_session(client)

 @spec validate_session(Flowfull.Client.t()) ::
 {:ok, Flowfull.Auth.Types.session_validation_result()} | {:error, any()}

Validate current session.

Flowfull.Auth.Password

Password reset and change functionality.

 Summary

 Functions

 change_password(client, data)

 Change password (requires authentication).

 complete_reset(client, data)

 Complete password reset with token.

 request_reset(client, data)

 Request a password reset.

 resend_verification(client, data)

 Resend verification email.

 validate_token(client, token)

 Validate a password reset token.

 validate_token_get(client, token)

 Validate a password reset token (GET method).

 Functions

 change_password(client, data)

 @spec change_password(Flowfull.Client.t(), Flowfull.Auth.Types.password_change()) ::
 {:ok, map()} | {:error, any()}

Change password (requires authentication).

 complete_reset(client, data)

 @spec complete_reset(
 Flowfull.Client.t(),
 Flowfull.Auth.Types.password_reset_complete()
) ::
 {:ok, map()} | {:error, any()}

Complete password reset with token.

 request_reset(client, data)

 @spec request_reset(Flowfull.Client.t(), Flowfull.Auth.Types.password_reset_request()) ::
 {:ok, map()} | {:error, any()}

Request a password reset.
Examples
{:ok, result} = Flowfull.Auth.Password.request_reset(client, %{
 email: "user@example.com",
 reset_url: "https://app.example.com/reset-password"
})

 resend_verification(client, data)

 @spec resend_verification(
 Flowfull.Client.t(),
 Flowfull.Auth.Types.resend_verification()
) ::
 {:ok, map()} | {:error, any()}

Resend verification email.

 validate_token(client, token)

 @spec validate_token(Flowfull.Client.t(), String.t()) ::
 {:ok, Flowfull.Auth.Types.validation_result()} | {:error, any()}

Validate a password reset token.

 validate_token_get(client, token)

 @spec validate_token_get(Flowfull.Client.t(), String.t()) ::
 {:ok, Flowfull.Auth.Types.validation_result()} | {:error, any()}

Validate a password reset token (GET method).

Flowfull.Auth.Social

Social OAuth authentication functionality.

 Summary

 Functions

 get_accounts(client)

 Get linked social accounts.

 get_providers(client)

 Get available OAuth providers.

 login_api(client, data)

 Login with social provider (API method).

 start_oauth(client, provider, redirect_uri)

 Start OAuth flow (redirect to provider).

 unlink(client, provider)

 Unlink a social account.

 Functions

 get_accounts(client)

 @spec get_accounts(Flowfull.Client.t()) ::
 {:ok, Flowfull.Auth.Types.social_accounts_result()} | {:error, any()}

Get linked social accounts.

 get_providers(client)

 @spec get_providers(Flowfull.Client.t()) ::
 {:ok, Flowfull.Auth.Types.social_providers_result()} | {:error, any()}

Get available OAuth providers.
Examples
{:ok, result} = Flowfull.Auth.Social.get_providers(client)

 login_api(client, data)

 @spec login_api(Flowfull.Client.t(), Flowfull.Auth.Types.social_login_data()) ::
 {:ok, Flowfull.Auth.Types.login_result()} | {:error, any()}

Login with social provider (API method).

 start_oauth(client, provider, redirect_uri)

 @spec start_oauth(
 Flowfull.Client.t(),
 Flowfull.Auth.Types.social_provider(),
 String.t()
) ::
 {:ok, map()} | {:error, any()}

Start OAuth flow (redirect to provider).

 unlink(client, provider)

 @spec unlink(Flowfull.Client.t(), Flowfull.Auth.Types.social_provider()) ::
 {:ok, map()} | {:error, any()}

Unlink a social account.

Flowfull.Auth.Token

Token-based authentication functionality.

 Summary

 Functions

 create(client, data)

 Create a login token.

 login(client, token)

 Login with a token.

 validate(client, token)

 Validate a login token (POST).

 validate_get(client, token)

 Validate a login token (GET).

 Functions

 create(client, data)

 @spec create(Flowfull.Client.t(), Flowfull.Auth.Types.token_create()) ::
 {:ok, Flowfull.Auth.Types.token_create_result()} | {:error, any()}

Create a login token.
Examples
{:ok, result} = Flowfull.Auth.Token.create(client, %{
 email: "user@example.com",
 token_url: "https://app.example.com/login"
})

 login(client, token)

 @spec login(Flowfull.Client.t(), String.t()) ::
 {:ok, Flowfull.Auth.Types.login_result()} | {:error, any()}

Login with a token.

 validate(client, token)

 @spec validate(Flowfull.Client.t(), String.t()) ::
 {:ok, Flowfull.Auth.Types.validation_result()} | {:error, any()}

Validate a login token (POST).

 validate_get(client, token)

 @spec validate_get(Flowfull.Client.t(), String.t()) ::
 {:ok, Flowfull.Auth.Types.validation_result()} | {:error, any()}

Validate a login token (GET).

Flowfull.Auth.Types

Type definitions for authentication.

 Summary

 Types

 login_credentials()

 login_result()

 password_change()

 password_reset_complete()

 password_reset_request()

 profile_update()

 register_data()

 resend_verification()

 session()

 session_validation_result()

 social_account()

 social_accounts_result()

 social_login_data()

 social_provider()

 social_provider_info()

 social_providers_result()

 token_create()

 token_create_result()

 token_validation()

 user()

 validation_result()

 Types

 login_credentials()

 @type login_credentials() :: %{
 email: String.t() | nil,
 user_name: String.t() | nil,
 password: String.t()
}

 login_result()

 @type login_result() :: %{
 success: boolean(),
 user: user(),
 session_id: String.t(),
 expires_at: String.t(),
 message: String.t() | nil,
 is_new_user: boolean() | nil
}

 password_change()

 @type password_change() :: %{old_password: String.t(), new_password: String.t()}

 password_reset_complete()

 @type password_reset_complete() :: %{token: String.t(), password: String.t()}

 password_reset_request()

 @type password_reset_request() :: %{email: String.t(), reset_url: String.t() | nil}

 profile_update()

 @type profile_update() :: %{
 name: String.t() | nil,
 last_name: String.t() | nil,
 user_name: String.t() | nil,
 phone: String.t() | nil,
 picture: String.t() | nil
}

 register_data()

 @type register_data() :: %{
 email: String.t(),
 password: String.t(),
 name: String.t(),
 last_name: String.t() | nil,
 user_name: String.t() | nil,
 phone: String.t() | nil,
 user_type: String.t() | nil
}

 resend_verification()

 @type resend_verification() :: %{
 email: String.t(),
 verification_url: String.t() | nil
}

 session()

 @type session() :: %{
 id: String.t(),
 user_id: String.t(),
 expires_at: String.t(),
 ip_address: String.t(),
 user_agent: String.t(),
 last_used_at: String.t()
}

 session_validation_result()

 @type session_validation_result() :: %{
 success: boolean(),
 valid: boolean(),
 user: user() | nil,
 session: session() | nil,
 message: String.t() | nil
}

 social_account()

 @type social_account() :: %{
 id: String.t(),
 user_id: String.t(),
 provider: String.t(),
 provider_user_id: String.t(),
 email: String.t(),
 created_at: String.t()
}

 social_accounts_result()

 @type social_accounts_result() :: %{success: boolean(), accounts: [social_account()]}

 social_login_data()

 @type social_login_data() :: %{
 provider: String.t(),
 code: String.t() | nil,
 id_token: String.t() | nil,
 access_token: String.t() | nil
}

 social_provider()

 @type social_provider() :: :google | :facebook | :github | :apple

 social_provider_info()

 @type social_provider_info() :: %{
 provider: String.t(),
 client_id: String.t(),
 auth_url: String.t(),
 enabled: boolean()
}

 social_providers_result()

 @type social_providers_result() :: %{
 success: boolean(),
 providers: [social_provider_info()]
}

 token_create()

 @type token_create() :: %{email: String.t(), token_url: String.t() | nil}

 token_create_result()

 @type token_create_result() :: %{success: boolean(), message: String.t()}

 token_validation()

 @type token_validation() :: %{token: String.t()}

 user()

 @type user() :: %{
 id: String.t(),
 email: String.t(),
 name: String.t(),
 last_name: String.t() | nil,
 user_name: String.t() | nil,
 user_type: String.t() | nil,
 picture: String.t() | nil,
 phone: String.t() | nil,
 is_verified: boolean(),
 two_factor: boolean(),
 created_at: String.t(),
 updated_at: String.t()
}

 validation_result()

 @type validation_result() :: %{
 success: boolean(),
 valid: boolean(),
 message: String.t() | nil
}

Flowfull.Client

Main HTTP client for Flowfull backends.

 Summary

 Types

 t()

 Functions

 add_request_interceptor(client, interceptor)

 Adds a request interceptor.

 add_response_interceptor(client, interceptor)

 Adds a response interceptor.

 delete(client, path, opts \\ [])

 Makes a DELETE request.

 get(client, path, opts \\ [])

 Makes a GET request.

 new(base_url, opts \\ [])

 Creates a new Flowfull client.

 patch(client, path, body, opts \\ [])

 Makes a PATCH request.

 post(client, path, body, opts \\ [])

 Makes a POST request.

 put(client, path, body, opts \\ [])

 Makes a PUT request.

 session_manager(client)

 Gets the session manager.

 Types

 t()

 @type t() :: %Flowfull.Client{
 config: Flowfull.Config.t(),
 session_manager: Flowfull.Session.t()
}

 Functions

 add_request_interceptor(client, interceptor)

 @spec add_request_interceptor(t(), function()) :: t()

Adds a request interceptor.

 add_response_interceptor(client, interceptor)

 @spec add_response_interceptor(t(), function()) :: t()

Adds a response interceptor.

 delete(client, path, opts \\ [])

 @spec delete(t(), String.t(), keyword()) ::
 {:ok, Flowfull.Types.api_response()} | {:error, Flowfull.Types.error()}

Makes a DELETE request.

 get(client, path, opts \\ [])

 @spec get(t(), String.t(), keyword()) ::
 {:ok, Flowfull.Types.api_response()} | {:error, Flowfull.Types.error()}

Makes a GET request.

 new(base_url, opts \\ [])

 @spec new(
 String.t(),
 keyword()
) :: t()

Creates a new Flowfull client.

 patch(client, path, body, opts \\ [])

 @spec patch(t(), String.t(), map(), keyword()) ::
 {:ok, Flowfull.Types.api_response()} | {:error, Flowfull.Types.error()}

Makes a PATCH request.

 post(client, path, body, opts \\ [])

 @spec post(t(), String.t(), map(), keyword()) ::
 {:ok, Flowfull.Types.api_response()} | {:error, Flowfull.Types.error()}

Makes a POST request.

 put(client, path, body, opts \\ [])

 @spec put(t(), String.t(), map(), keyword()) ::
 {:ok, Flowfull.Types.api_response()} | {:error, Flowfull.Types.error()}

Makes a PUT request.

 session_manager(client)

 @spec session_manager(t()) :: Flowfull.Session.t()

Gets the session manager.

Flowfull.Config

Configuration for Flowfull client.

 Summary

 Types

 t()

 Functions

 add_request_interceptor(config, interceptor)

 Adds a request interceptor.

 add_response_interceptor(config, interceptor)

 Adds a response interceptor.

 new(base_url, opts \\ [])

 Creates a new configuration with default values.

 Types

 t()

 @type t() :: %Flowfull.Config{
 base_url: String.t(),
 get_session_id: (-> {:ok, String.t()} | {:error, any()}) | nil,
 headers: map(),
 include_session: boolean(),
 request_interceptors: [function()],
 response_interceptors: [function()],
 retry_attempts: integer(),
 retry_delay: integer(),
 retry_exponential: boolean(),
 session_header: String.t(),
 session_id: String.t() | nil,
 storage: module() | nil,
 timeout: integer()
}

 Functions

 add_request_interceptor(config, interceptor)

 @spec add_request_interceptor(t(), function()) :: t()

Adds a request interceptor.

 add_response_interceptor(config, interceptor)

 @spec add_response_interceptor(t(), function()) :: t()

Adds a response interceptor.

 new(base_url, opts \\ [])

 @spec new(
 String.t(),
 keyword()
) :: t()

Creates a new configuration with default values.

Flowfull.Operators

Filter operators for query building.
Provides 14+ operators for building complex queries with bracket syntax.

 Summary

 Functions

 between(min, max)

 BETWEEN operator (field BETWEEN min AND max).

 contains(value)

 Contains operator (alias for LIKE).

 ends_with(suffix)

 Ends with operator.

 eq(value)

 Equality operator (field = value).

 format_value(map)

 Formats an operator value for URL encoding.

 gt(value)

 Greater than operator (field > value).

 gte(value)

 Greater than or equal operator (field >= value).

 ilike(pattern)

 ILIKE operator (case-insensitive pattern matching).

 in_list(values)

 IN operator (field IN [values]).

 is_null()

 IS NULL operator.

 like(pattern)

 LIKE operator (case-sensitive pattern matching).

 lt(value)

 Less than operator (field < value).

 lte(value)

 Less than or equal operator (field <= value).

 ne(value)

 Not equal operator (field != value).

 not_between(min, max)

 NOT BETWEEN operator.

 not_in(values)

 NOT IN operator (field NOT IN [values]).

 not_null()

 IS NOT NULL operator.

 starts_with(prefix)

 Starts with operator.

 Functions

 between(min, max)

 @spec between(any(), any()) :: Flowfull.Types.filter_operator()

BETWEEN operator (field BETWEEN min AND max).

 contains(value)

 @spec contains(String.t()) :: Flowfull.Types.filter_operator()

Contains operator (alias for LIKE).

 ends_with(suffix)

 @spec ends_with(String.t()) :: Flowfull.Types.filter_operator()

Ends with operator.

 eq(value)

 @spec eq(any()) :: Flowfull.Types.filter_operator()

Equality operator (field = value).

 format_value(map)

 @spec format_value(Flowfull.Types.filter_operator()) :: String.t()

Formats an operator value for URL encoding.

 gt(value)

 @spec gt(any()) :: Flowfull.Types.filter_operator()

Greater than operator (field > value).

 gte(value)

 @spec gte(any()) :: Flowfull.Types.filter_operator()

Greater than or equal operator (field >= value).

 ilike(pattern)

 @spec ilike(String.t()) :: Flowfull.Types.filter_operator()

ILIKE operator (case-insensitive pattern matching).

 in_list(values)

 @spec in_list(list()) :: Flowfull.Types.filter_operator()

IN operator (field IN [values]).

 is_null()

 @spec is_null() :: Flowfull.Types.filter_operator()

IS NULL operator.

 like(pattern)

 @spec like(String.t()) :: Flowfull.Types.filter_operator()

LIKE operator (case-sensitive pattern matching).

 lt(value)

 @spec lt(any()) :: Flowfull.Types.filter_operator()

Less than operator (field < value).

 lte(value)

 @spec lte(any()) :: Flowfull.Types.filter_operator()

Less than or equal operator (field <= value).

 ne(value)

 @spec ne(any()) :: Flowfull.Types.filter_operator()

Not equal operator (field != value).

 not_between(min, max)

 @spec not_between(any(), any()) :: Flowfull.Types.filter_operator()

NOT BETWEEN operator.

 not_in(values)

 @spec not_in(list()) :: Flowfull.Types.filter_operator()

NOT IN operator (field NOT IN [values]).

 not_null()

 @spec not_null() :: Flowfull.Types.filter_operator()

IS NOT NULL operator.

 starts_with(prefix)

 @spec starts_with(String.t()) :: Flowfull.Types.filter_operator()

Starts with operator.

Flowfull.Phoenix

Phoenix integration for WebSockets and LiveView.
Provides helpers for validating sessions in Phoenix Channels and LiveView.

 Summary

 Functions

 validate_liveview_session(client, session_id)

 Validates a session from LiveView mount params.

 validate_socket_session(client, session_id)

 Validates a session from Phoenix Socket connection params.

 Functions

 validate_liveview_session(client, session_id)

 @spec validate_liveview_session(Flowfull.Client.t(), String.t()) ::
 {:ok, map()} | {:error, any()}

Validates a session from LiveView mount params.
Examples
In your LiveView module
defmodule MyAppWeb.DashboardLive do
 use MyAppWeb, :live_view

 def mount(_params, %{"session_id" => session_id}, socket) do
 client = Flowfull.new(Application.get_env(:my_app, :flowfull_url))

 case Flowfull.Phoenix.validate_liveview_session(client, session_id) do
 {:ok, user} ->
 {:ok, assign(socket, :current_user, user)}

 {:error, _reason} ->
 {:ok, redirect(socket, to: "/login")}
 end
 end
end

 validate_socket_session(client, session_id)

 @spec validate_socket_session(Flowfull.Client.t(), String.t()) ::
 {:ok, map()} | {:error, any()}

Validates a session from Phoenix Socket connection params.
Examples
In your UserSocket module
defmodule MyAppWeb.UserSocket do
 use Phoenix.Socket

 def connect(%{"session_id" => session_id}, socket, _connect_info) do
 client = Flowfull.new(Application.get_env(:my_app, :flowfull_url))

 case Flowfull.Phoenix.validate_socket_session(client, session_id) do
 {:ok, user} ->
 {:ok, assign(socket, :user, user)}

 {:error, _reason} ->
 :error
 end
 end

 def connect(_params, _socket, _connect_info), do: :error
end

Flowfull.Phoenix.SessionPlug

Plug for validating Flowfull sessions in Phoenix.

 Summary

 Functions

 call(conn, opts)

 init(opts)

 Creates a plug for validating Flowfull sessions in Phoenix controllers.

 Functions

 call(conn, opts)

 init(opts)

Creates a plug for validating Flowfull sessions in Phoenix controllers.
Examples
In your router
pipeline :authenticated do
 plug Flowfull.Phoenix.SessionPlug,
 client: fn -> Flowfull.new(Application.get_env(:my_app, :flowfull_url)) end
end

Flowfull.Query

Query builder for constructing complex queries with chainable API.
Examples
Flowfull.query(client, "/users")
|> Flowfull.Query.where("age", Flowfull.Operators.gte(18))
|> Flowfull.Query.where("status", Flowfull.Operators.eq("active"))
|> Flowfull.Query.sort("created_at", :desc)
|> Flowfull.Query.page(1)
|> Flowfull.Query.limit(10)
|> Flowfull.Query.execute()

 Summary

 Types

 t()

 Functions

 build_query_string(query)

 Builds the query string from the query builder.

 execute(query)

 Executes the query and returns the result.

 limit(query, limit_num)

 Sets the limit for pagination.

 new(client, endpoint)

 Creates a new query builder.

 page(query, page_num)

 Sets the page number for pagination.

 param(query, key, value)

 Adds a custom query parameter.

 select(query, fields)

 Adds fields to select.

 sort(query, field, direction \\ :asc)

 Adds a sort directive to the query.

 where(query, field, operator)

 Adds a filter to the query.

 Types

 t()

 @type t() :: %Flowfull.Query{
 client: Flowfull.Client.t(),
 endpoint: String.t(),
 filters: map(),
 pagination: Flowfull.Types.pagination(),
 params: map(),
 sorts: [Flowfull.Types.sort()]
}

 Functions

 build_query_string(query)

 @spec build_query_string(t()) :: String.t()

Builds the query string from the query builder.

 execute(query)

 @spec execute(t()) ::
 {:ok, Flowfull.Types.api_response()} | {:error, Flowfull.Types.error()}

Executes the query and returns the result.

 limit(query, limit_num)

 @spec limit(t(), integer()) :: t()

Sets the limit for pagination.

 new(client, endpoint)

 @spec new(Flowfull.Client.t(), String.t()) :: t()

Creates a new query builder.

 page(query, page_num)

 @spec page(t(), integer()) :: t()

Sets the page number for pagination.

 param(query, key, value)

 @spec param(t(), String.t(), String.t()) :: t()

Adds a custom query parameter.

 select(query, fields)

 @spec select(t(), [String.t()]) :: t()

Adds fields to select.

 sort(query, field, direction \\ :asc)

 @spec sort(t(), String.t(), :asc | :desc) :: t()

Adds a sort directive to the query.

 where(query, field, operator)

 @spec where(t(), String.t(), Flowfull.Types.filter_operator()) :: t()

Adds a filter to the query.

Flowfull.Request

HTTP request handler with retry logic and interceptors.

 Summary

 Functions

 execute(client, method, path, body, opts)

 Executes an HTTP request with retry logic.

 Functions

 execute(client, method, path, body, opts)

 @spec execute(
 Flowfull.Client.t(),
 Flowfull.Types.http_method(),
 String.t(),
 map() | nil,
 keyword()
) ::
 {:ok, Flowfull.Types.api_response()} | {:error, Flowfull.Types.error()}

Executes an HTTP request with retry logic.

Flowfull.Session

Session manager for handling session ID retrieval and caching.
Priority logic:
	Static session_id from config
	get_session_id() function from config
	Storage adapter
	Auto-detect from common storage keys

 Summary

 Types

 t()

 Functions

 clear_session(manager)

 Clears the session.

 get_session_id(manager)

 Gets the session ID using priority logic.

 has_session?(manager)

 Checks if a session exists.

 new(config)

 Creates a new session manager.

 set_session_id(manager, session_id)

 Sets the session ID.

 Types

 t()

 @type t() :: %Flowfull.Session{
 cached_session_id: String.t() | nil,
 config: Flowfull.Config.t()
}

 Functions

 clear_session(manager)

 @spec clear_session(t()) :: {:ok, t()} | {:error, any()}

Clears the session.

 get_session_id(manager)

 @spec get_session_id(t()) :: {:ok, String.t()} | {:error, :no_session}

Gets the session ID using priority logic.

 has_session?(manager)

 @spec has_session?(t()) :: boolean()

Checks if a session exists.

 new(config)

 @spec new(Flowfull.Config.t()) :: t()

Creates a new session manager.

 set_session_id(manager, session_id)

 @spec set_session_id(t(), String.t()) :: {:ok, t()} | {:error, any()}

Sets the session ID.

Flowfull.Storage behaviour

Storage behaviour for session persistence.

 Summary

 Callbacks

 get_item(key)

 remove_item(key)

 set_item(key, value)

 Callbacks

 get_item(key)

 @callback get_item(key :: String.t()) :: {:ok, String.t()} | {:error, any()}

 remove_item(key)

 @callback remove_item(key :: String.t()) :: :ok | {:error, any()}

 set_item(key, value)

 @callback set_item(key :: String.t(), value :: String.t()) :: :ok | {:error, any()}

Flowfull.Storage.ETS

ETS-based storage implementation for high-performance caching.

 Summary

 Functions

 init()

 Initializes the ETS table.

 Functions

 init()

Initializes the ETS table.

Flowfull.Storage.File

File-based storage implementation.

 Summary

 Functions

 get_item(map, key)

 new(base_path \\ ".flowfull")

 Creates a new file storage with the given base path.

 remove_item(map, key)

 set_item(map, key, value)

 Functions

 get_item(map, key)

 new(base_path \\ ".flowfull")

Creates a new file storage with the given base path.

 remove_item(map, key)

 set_item(map, key, value)

Flowfull.Storage.Memory

In-memory storage implementation using Agent.

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts \\ [])

 Starts the memory storage.

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts \\ [])

Starts the memory storage.

Flowfull.Types

Type definitions for Flowfull client.

 Summary

 Types

 api_response()

 error()

 filter_operator()

 http_method()

 interceptor()

 pagination()

 pagination_meta()

 request()

 response()

 response_interceptor()

 sort()

 Functions

 error_response(error, status \\ 400, message \\ nil)

 Creates an error API response.

 parse_response(map)

 Parses a raw response into an API response.

 success_response(data, status \\ 200, meta \\ nil)

 Creates a successful API response.

 Types

 api_response()

 @type api_response() :: %{
 success: boolean(),
 data: any(),
 error: String.t() | nil,
 message: String.t() | nil,
 status: integer(),
 meta: pagination_meta() | nil
}

 error()

 @type error() ::
 {:network_error, String.t()}
 | {:api_error, String.t(), integer()}
 | {:session_error, String.t()}
 | {:validation_error, String.t()}

 filter_operator()

 @type filter_operator() :: %{operator: String.t(), value: any()}

 http_method()

 @type http_method() :: :get | :post | :put | :patch | :delete

 interceptor()

 @type interceptor() :: (request() -> {:ok, request()} | {:error, error()})

 pagination()

 @type pagination() :: %{page: integer() | nil, limit: integer() | nil}

 pagination_meta()

 @type pagination_meta() :: %{
 page: integer() | nil,
 limit: integer() | nil,
 total: integer() | nil,
 total_pages: integer() | nil
}

 request()

 @type request() :: %{
 method: http_method(),
 url: String.t(),
 headers: map(),
 body: any()
}

 response()

 @type response() :: %{status_code: integer(), headers: map(), body: binary()}

 response_interceptor()

 @type response_interceptor() :: (response() -> {:ok, response()} | {:error, error()})

 sort()

 @type sort() :: %{field: String.t(), direction: :asc | :desc}

 Functions

 error_response(error, status \\ 400, message \\ nil)

 @spec error_response(String.t(), integer(), String.t() | nil) :: api_response()

Creates an error API response.

 parse_response(map)

 @spec parse_response(response()) :: {:ok, api_response()} | {:error, error()}

Parses a raw response into an API response.

 success_response(data, status \\ 200, meta \\ nil)

 @spec success_response(any(), integer(), pagination_meta() | nil) :: api_response()

Creates a successful API response.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

