

 fnord

 v0.9.3

 Table of contents

 	Fnord

 	Guides

 	Approval Patterns

 	Advanced Asking Questions

 	Learning System

 	Frobs Developer Guide

 	Frob example: HTTP GET

 	Advanced MCP Configuration

 	Advanced OAuth Configuration

 	
 Modules

 	AI.Accumulator

 	AI.Agent

 	AI.Agent.Code.Common

 	AI.Agent.Code.Patcher

 	AI.Agent.Code.RePatcher

 	AI.Agent.Code.TaskImplementor

 	AI.Agent.Code.TaskPlanner

 	AI.Agent.Code.TaskValidator

 	AI.Agent.CodeMapper

 	AI.Agent.ConversationQA

 	AI.Agent.Coordinator

 	AI.Agent.FileInfo

 	AI.Agent.FileSummary

 	AI.Agent.Intuition

 	AI.Agent.MOTD

 	AI.Agent.Memory.Ingest

 	AI.Agent.Nomenclater

 	AI.Agent.Researcher

 	AI.Agent.Spelunker

 	AI.Agent.Troubleshooter

 	AI.Completion

 	AI.Completion.Compaction

 	AI.Completion.Output

 	AI.CompletionAPI

 	AI.Embeddings

 	AI.Endpoint

 	AI.Model

 	AI.Notes

 	AI.PretendTokenizer

 	AI.Splitter

 	AI.Tools

 	AI.Tools.ApplyPatch

 	AI.Tools.Coder

 	AI.Tools.Conversation

 	AI.Tools.File.Contents

 	AI.Tools.File.Edit

 	AI.Tools.File.Edit.OMFG

 	AI.Tools.File.Edit.WhitespaceFitter

 	AI.Tools.File.Info

 	AI.Tools.File.List

 	AI.Tools.File.Notes

 	AI.Tools.File.Reindex

 	AI.Tools.File.Search

 	AI.Tools.File.Spelunker

 	AI.Tools.ListProjects

 	AI.Tools.Memory

 	AI.Tools.Notes

 	AI.Tools.Notify

 	AI.Tools.Research

 	AI.Tools.Shell

 	AI.Tools.TaskValidation

 	AI.Tools.Tasks.AddTask

 	AI.Tools.Tasks.CreateList

 	AI.Tools.Tasks.PushTask

 	AI.Tools.Tasks.ResolveTask

 	AI.Tools.Tasks.ShowList

 	AI.Tools.Troubleshooter

 	AI.Tools.WebSearch

 	AI.Util

 	Browser

 	Browser.Default

 	Cmd

 	Cmd.Ask

 	Cmd.Config

 	Cmd.Config.MCP

 	Cmd.Config.MCP.CheckFormatter

 	Cmd.Config.MCP.Login

 	Cmd.Config.MCP.Status

 	Cmd.Conversations

 	Cmd.Files

 	Cmd.Frobs

 	Cmd.Index

 	Cmd.Memory

 	Cmd.Notes

 	Cmd.Prime

 	Cmd.Projects

 	Cmd.Replay

 	Cmd.Search

 	Cmd.Summary

 	Cmd.Torch

 	Cmd.Upgrade

 	FileLock

 	Fnord

 	Frobs

 	Frobs.Migrate

 	GitCli

 	Http

 	HttpPool

 	Indexer

 	MCP.EndpointDiscovery

 	MCP.OAuth2.Adapter

 	MCP.OAuth2.Adapter.Default

 	MCP.OAuth2.Bridge

 	MCP.OAuth2.Client

 	MCP.OAuth2.CredentialsStore

 	MCP.OAuth2.Discovery

 	MCP.OAuth2.Loopback

 	MCP.OAuth2.Registration

 	MCP.Supervisor

 	MCP.Transport

 	MCP.Util

 	Memory

 	Memory.Global

 	Memory.Presentation

 	Memory.Project

 	Memory.Session

 	Notifier

 	Outputs

 	ResolveProject

 	Search.Conversations

 	Search.Files

 	Services

 	Services.Approvals

 	Services.Approvals.Edit

 	Services.Approvals.Gate

 	Services.Approvals.Shell

 	Services.Approvals.Shell.Prefix

 	Services.Approvals.Workflow

 	Services.BackgroundIndexer

 	Services.BackupFile

 	Services.BgIndexingControl

 	Services.Conversation

 	Services.Conversation.Interrupts

 	Services.ConversationIndexer

 	Services.Globals

 	Services.Globals.Spawn

 	Services.NamePool

 	Services.Notes

 	Services.Once

 	Services.Task

 	Services.TempFile

 	Settings

 	Settings.Approvals

 	Settings.Approvals.RegexMatcher

 	Settings.Frobs

 	Settings.MCP

 	Settings.Migrate

 	Spinner

 	Store

 	Store.APIUsage

 	Store.Project

 	Store.Project.Conversation

 	Store.Project.ConversationIndex

 	Store.Project.Entry

 	Store.Project.Entry.Embeddings

 	Store.Project.Entry.ID

 	Store.Project.Entry.Metadata

 	Store.Project.Entry.MigrateAbsToRelPathKeys

 	Store.Project.Entry.Outline

 	Store.Project.Entry.Storage

 	Store.Project.Entry.StorageBehaviour

 	Store.Project.Entry.Summary

 	Store.Project.EntryFile

 	Store.Project.FilesDirMigration

 	Store.Project.Notes

 	Timed

 	UI

 	UI.Formatter

 	UI.Output

 	UI.Output.Production

 	UI.Queue

 	Util

 	Util.Duration

 	Util.Temp

 Fnord

[image: Tests | Dialyzer]
	Description
	Features
	Installation
	Getting Started
	Tool usage
	User integrations
	Writing code
	Copyright and License

Description
fnord is a command line tool that uses multiple LLM-powered agents and tools to provide a conversational interface to your codebase, notes, and other (non-binary) files.
It can be used to generate on-demand tutorials, playbooks, and documentation for your project, as well as to search for examples, explanations, and solutions to problems in your codebase.
Why fnord?
AI-powered tools are limited to the data built into their training data. RAG (Retrieval-Augmented Generation) using tool calls can supplement the training data with information, such as your code base, to provide more accurate and relevant answers to your questions.
But even with RAG, the AI still runs up against the context window. This is the conversational "memory" of the AI, often making use of an "attention mechanism" to keep it focused on the current instructions, but causing it to lose track of details earlier in the conversation.
If you've ever pasted multiple files into ChatGPT or worked with it iteratively on a piece of code, you've probably seen this in action. It may forget constraints you defined earlier in the conversation or hallucinate entities and functions that don't exist in any of the files you've shown it.
fnord attempts to mitigate this with cleverly designed tool calls that allow the LLM to ask other agents to perform tasks on its behalf. For example, it can generate a prompt to ask another agent to read through a file and retrieve specific details it needs, like a single function definition, the declaration of an interface, or whether a specific function behaves in a certain way. This keeps the entire file out of the "coordinating" agent's context window while still allowing it to use the information in the file to generate a response. This allows fnord to conduct more complex research across many files and directories without losing track of the details it needs to provide accurate answers.
Features
	Semantic search
	On-demand explanations, documentation, and tutorials
	Writing code with ~fancy autocomplete~ AI assistance
	Git archaeology
	Persistent learning about your projects over time
	Persistent conversational memory
	Improves its research capabilities with each interaction
	Layered approvals for shell/file operations
	User integrations
	MCP server support

Installation
Fnord is written in Elixir and is distributed as an escript.
	Install elixir
MacOS
brew install elixir

Debian-based
sudo apt-get install elixir

	Add the escript path to your shell's PATH
echo 'export PATH="$HOME/.mix/escripts:$PATH"' >> ~/.bashrc
source ~/.bashrc

	Install fnord
mix escript.install github sysread/fnord

	Set your OpenAI API key

Fnord reads the key from either FNORD_OPENAI_API_KEY or OPENAI_API_KEY.
Create or view your keys here.
	Optional: Install ripgrep

fnord includes tooling for the LLM to use the ripgrep tool in addition to semantic search.
This enables the LLM to answer questions about your code base, even if the project has not been indexed yet (with the caveat that the results will be less context-aware).
	Optional: Install a markdown viewer

Markdown seems to be the language of choice for LLMs, so installing something like gum or glow to pipe output to will make the output more readable.
You can make your preferred formatter persistent by setting the FNORD_FORMATTER environment variable in your shell.
export FNORD_FORMATTER="gum format"

Getting Started
For the purposes of this guide, we will assume that fnord is installed and we are using it to interact with your project, blarg, which is located at $HOME/dev/blarg.
Tool usage
Index your project
The first step is to index your project to make it searchable with fnord's semantic search capabilities.
The first time you index your project may take a while, especially if there are a lot of files.
fnord respects .gitignore, but you may also wish to exclude certain paths or globs from indexing (e.g., -x 'node_modules').
fnord index --project blarg --dir $HOME/dev/blarg --exclude 'node_modules'

If you cancel partway-through (for example, with Ctrl-C), you can resume indexing by running the same command again.
Once indexed, fnord will automatically reindex while the ask command is running if it detects changes to the code base.
You can also manually re-index your project at any time to pick up changes.
This is done by running the same command again.
fnord stores its index under $HOME/.fnord/projects/<project>.
Note that semantic search requires an existing index. You can still perform text searches via the shell tool (e.g., ripgrep) if installed and approved, but indexing is recommended for full capabilities.
Warning: If you have just created your OpenAI API key, you are likely to encounter rate limits when indexing project (or otherwise using fnord). OpenAI has API rate limits restricted by usage tiers.
Prime the knowledge base
fnord can generate an initial set of learnings about your project to prime its knowledge base.
fnord prime --project blarg

Configuration
You can view and edit the configuration for existing projects with the fnord config command.
fnord config list --project blarg
fnord config set --project blarg --root $HOME/dev/blarg --exclude 'node_modules' --exclude 'vendor'

Approval patterns
For safety, fnord requires approval for shell commands and file operations. You'll be prompted to approve operations as fnord works. To streamline your workflow, you can pre-approve specific commands using regex patterns. See docs/approval-patterns.md for details.
Search your code base
fnord's semantic search is powered by embeddings generated by OpenAI's text-embedding-3-large model. The indexing process does a lot more than simply generate embeddings for the contents of your files. It also generates summary documentation for each file as well as an index of all functions, entities, and symbols in each file to enhance semantic matches for common questions and symbols.
fnord search --project blarg --query "callers of some_function"
fnord search --project blarg --query "some_function definition"
fnord search --project blarg --query "unit tests for some_function"

The summaries generated by the indexing process can also be included in the search results with the --detail flag.
fnord search --project blarg --query "some_function declaration" --detail | glow

If you would like to see more information about a single file, you can use the summary command.
fnord summary --project blarg --file "path/to/some_module.ext" | glow

Search behavior and fallbacks
fnord uses semantic search by default when the project has been indexed.
For fnord search, an index is required; without it you won't get semantic results.
You can still ask questions, and the AI may use shell_tool-assisted text searches (for example, ripgrep) if installed and approved.
For rich, accurate results, index your project first.
Generate answers on-demand
Fnord uses LLM-powered agents and tool calls to research your question, including semantic search and git tools (read only).
fnord ask --project blarg --question "Where is the unit test for some_function?"

Continue a conversation
fnord ask --project blarg --follow <ID> --question "Is some_function still used?"

After each response, you'll see a conversation ID. Use --follow <ID> to continue the conversation or --fork <ID> to branch a new thread.
Use the --save (or -S) flag to save the raw assistant response (before FNORD_FORMATTER) to a file.
By default, files are written under ~/fnord/outputs/<project_id>/<slug>.md.
The <slug> comes from the first line # Title: ... in the response.
fnord ask --project blarg -S --question "Explain foo's behavior"

For advanced options (e.g., unindexed projects, replaying conversations), see docs/asking-questions.md.
Learning over time
Fnord learns about your project while researching your questions. It saves facts and inferences it makes, building a searchable knowledge base that improves over time. As the knowledge base grows, fnord can answer increasingly complex questions with less research.
You can prime this learning process with:
fnord prime --project blarg

For managing and viewing learned knowledge, see docs/learning-system.md.
Upgrades
fnord is under active development and new features are added regularly. To upgrade to the latest version, simply run:
fnord upgrade

Note that this is just a shortcut for:
mix escript.install github sysread/fnord

Other commands
	List projects: fnord projects
	List files: fnord files --project <project>
	View file summary: fnord summary --project <project> --file <path>
	View notes: fnord notes --project <project> (use --reset to clear)
	Delete a project: fnord torch --project <project>
	Upgrade fnord: fnord upgrade

User integrations
Project prompts
Create a project-level FNORD.md file at your project's root for project-specific guidance and optionally a FNORD.local.md file for personal instructions. When both exist, fnord reads FNORD.md first and appends FNORD.local.md, with the local file taking precedence on conflicts unless explicitly overridden in your prompt. We recommend adding FNORD.local.md to your .gitignore to avoid committing personal instructions.
Frobs
Create custom tools (frobs) that fnord can use while researching. Use frobs to query project-specific APIs, check deployment status, retrieve GitHub PR details for review, or gather information from Kubernetes clusters.
fnord frobs create --name my_frob
fnord frobs check --name my_frob
fnord frobs list

Frobs are stored in ~/.fnord/tools. For implementation details, see docs/frobs-guide.md.
MCP support
MCP servers extend fnord with external tools and data sources. Add servers for GitHub, Kubernetes, project-specific APIs, or any MCP-compatible service.
Add a stdio server
fnord config mcp add <name> --transport stdio --command ./server

Add an HTTP server
fnord config mcp add <name> --transport http --url https://api.example.com

Add with OAuth (auto-configures everything)
fnord config mcp add <name> --transport http --url https://api.example.com --oauth
fnord config mcp login <name>

Advanced Configuration: For complete command reference, custom transport options, and manual configuration, see docs/mcp-advanced.md.
OAuth Authentication
Fnord supports OAuth2 for MCP servers with automatic discovery and registration:
fnord config mcp add myserver --transport http --url https://example.com --oauth
fnord config mcp login myserver

For advanced OAuth options, troubleshooting, and security details, see docs/oauth-advanced.md.
Writing code
Fnord can (optionally) automate code changes in your project using the ask command with the --edit flag.
	Use --edit with extreme caution.
	AI-driven code modification is unsafe, may corrupt or break files, and must always be manually reviewed.
	Optionally add --yes to pre-approve edits without prompting.

How it works
The LLM has access to several tools that allow it to modify code within the project directory and perform basic file management tasks.
It cannot perform write operations with git or act on files outside of the project's root and /tmp.
fnord ask --project myproj --edit --question "Add a docstring to foo/thing.ex"

You can also use --worktree to specify a git worktree path to operate within.
fnord ask --project myproj --worktree /path/to/myproj-wt --edit --question "Add a docstring to foo/thing.ex"

Code modification by an LLM is unreliable and is not safe for unsupervised use.
The AI may behave unpredictably.
Copyright and License
This software is copyright (c) 2025 by Jeff Ober.
This is free software; you can redistribute it and/or modify it under the MIT License.

 Approval Patterns

Fnord requires approval for potentially dangerous operations. You can pre-approve specific commands using regex patterns to streamline your workflow.
How Approvals Work
When fnord wants to perform certain operations, it prompts for approval:
fnord wants to run: git log --oneline -10
Approve? [y/n/always]:
Options:
	y - Approve once for this session
	n - Deny
	always - Add an approval pattern (prompts for scope)

Automatic Approvals
Built-in Read-Only Commands
These commands are automatically approved (no prompt):
	git log, git show, git diff, git blame (read-only git operations)
	rg, grep (when invoked by fnord's grep tool)
	Other read-only commands defined in fnord's source

File Edits with --edit
When using --edit mode, you can auto-approve file operations:
fnord ask -p myproject --edit --yes -q "Add validation to the user model"

The --yes flag auto-approves file writes/edits. Shell commands still require approval.
Shell tool path and local executable behavior
Fnord runs shell tool commands from the project root. For bare commands (no /), fnord resolves them only via PATH.
Project-local execution is only allowed when the command starts with ./ (for example ./make or ./scripts/build), and only if the resolved path stays within the project root (fail closed).
Commands like scripts/foo (without the leading ./) are rejected; use ./scripts/foo instead.
Approval patterns treat ./cmd as distinct from cmd (you must explicitly include ./ in a prefix or regex to approve it).
Examples:
Approving 'make check' does not approve './make check'
fnord config approve --project myproject --kind shell '^make check$'

To approve './make check' explicitly:
fnord config approve --project myproject --kind shell '^\./make check$'

Pre-Approval Patterns
You can pre-approve commands using regex patterns, either per-project or globally.
Managing Approvals
List current approvals
fnord config approvals --project myproject
fnord config approvals --global

Add approval pattern
fnord config approve --project myproject --kind shell '<regex>'
fnord config approve --global --kind shell '<regex>'

Remove approval pattern (edit settings.json manually)

Approval Kinds
Currently supported:
	shell - Shell command patterns

Pattern Examples
Approve all npm commands:
fnord config approve --project myproject --kind shell '^npm '

Approve specific test commands:
fnord config approve --project myproject --kind shell '^pytest tests/'

Approve make targets:
fnord config approve --project myproject --kind shell '^make (test|lint|check)'

Approve safe git operations (example - these are already built-in):
fnord config approve --global --kind shell '^git (status|log|show|diff)'

Configuration Storage
Approvals are stored in ~/.fnord/settings.json:
{
 "projects": {
 "myproject": {
 "root": "/path/to/project",
 "approvals": {
 "shell": [
 "^npm test",
 "^pytest "
]
 }
 }
 },
 "approvals": {
 "shell": [
 "^make check"
]
 }
}
Scopes:
	Project-level: Under projects.<name>.approvals
	Global: Under top-level approvals

Security Considerations
Be Conservative
Pre-approving commands reduces security prompts but increases risk:
Prompt injection:
	If FNORD.md and FNORD.local.md are present in the project root, their contents are injected into every conversation, with the local file appended after the shared file
	Avoid including secrets or other sensitive information in that file

Safe patterns:
	Read-only operations (git log, cat, grep)
	Specific, bounded commands (npm test, make check)
	Commands in isolated directories

Risky patterns:
	Broad wildcards (.+ matches everything)
	Commands that modify state (rm, git push, npm publish)
	Commands with user input (command injection risks)

Pattern Safety Tips
	Use anchors - Start with ^ to match from beginning
	Be specific - Match exact commands, not broad patterns
	Avoid .* - Too permissive, matches everything
	Test first - Run commands manually before auto-approving

Bad examples:
TOO BROAD - matches any command!
fnord config approve --global --kind shell '.*'

DANGEROUS - auto-approves destructive commands
fnord config approve --project myproject --kind shell 'rm '

RISKY - allows arbitrary git commands
fnord config approve --global --kind shell '^git '

Good examples:
Specific test command
fnord config approve --project myproject --kind shell '^npm run test:unit$'

Bounded to specific directory
fnord config approve --project myproject --kind shell '^pytest tests/unit/'

Specific make target
fnord config approve --project myproject --kind shell '^make lint$'

Regex Syntax
Patterns use standard regex syntax:
	Pattern	Meaning
	^	Start of command
	$	End of command
	.	Any single character
	.*	Zero or more characters
	\s	Whitespace
	(a|b)	Match a or b
	[abc]	Character class
	\	Escape special chars

Examples:
Exact match
'^npm test$'

Command with any args
'^npm test '

Multiple commands
'^(npm test|npm run lint)'

Path-specific
'^pytest tests/.*\.py$'

Workflow Recommendations
Interactive Approval (Default)
Best for:
	New projects you're exploring
	One-off questions
	When you're unsure what commands will run

Workflow:
	Ask question without pre-approvals
	Review each command prompt
	Approve selectively
	Use always to add patterns for frequently-needed commands

Pre-Approved Workflow
Best for:
	Well-understood projects
	Repetitive tasks
	CI/CD-like operations
	Trusted environments

Workflow:
	Identify safe, repetitive commands
	Add targeted approval patterns
	Use --yes for file operations in --edit mode
	Review occasionally, remove stale patterns

Hybrid Approach
Recommended for most users:
	Pre-approve safe read-only operations globally
	Pre-approve project-specific test/build commands
	Leave destructive operations to manual approval

Example setup:
Global: safe read operations
fnord config approve --global --kind shell '^cat '
fnord config approve --global --kind shell '^ls '

Project: test and lint
fnord config approve --project myproject --kind shell '^npm test'
fnord config approve --project myproject --kind shell '^make lint'

Manual: anything else (rm, git push, npm publish, etc.)

Troubleshooting
Approval not matching
Problem: You added a pattern but still getting prompted
Check:
	Pattern syntax - test regex with a regex tester
	Scope - is pattern in right place (project vs global)?
	Command exact match - check spacing, flags
	Settings file syntax - ensure valid JSON

Debug:
View current patterns
fnord config approvals --project myproject

Check settings file directly
cat ~/.fnord/settings.json | jq '.projects.myproject.approvals'

Too many approvals
Problem: Getting approval prompts for everything
Cause: No pre-approved patterns set up
Solution: Add patterns for your common workflows (see Workflow Recommendations)
Accidentally approved dangerous command
Problem: Used always on a risky command
Solution:
	Edit ~/.fnord/settings.json
	Find and remove the pattern from approvals.shell
	Save and restart fnord

Advanced: Manual Configuration
Edit ~/.fnord/settings.json directly for complex patterns:
{
 "projects": {
 "myproject": {
 "root": "/path/to/project",
 "approvals": {
 "shell": [
 "^npm (test|run test:unit|run test:integration)",
 "^pytest tests/unit/.*",
 "^make (test|lint|check|build)"
]
 }
 }
 },
 "approvals": {
 "shell": [
 "^git (status|log|show|diff|blame)",
 "^rg ",
 "^cat [^/]",
 "^ls "
]
 }
}
Editing tips:
	Validate JSON after editing: cat ~/.fnord/settings.json | jq .

	One pattern per line in the array
	Use double backslashes for escaping in JSON: "\\s", "\\.", etc.
	Test patterns before committing to config

Further Reading
	Main README
	Advanced Asking Questions
	Writing Code

 Advanced Asking Questions

Deep dive into fnord's ask command and research capabilities.
Quick Reference
For basic usage, see the main README.
Persistent Research Notes
fnord learns from each session and retains knowledge across questions in the same project.
This allows it to build a knowledge base over time.
To provide baseline context, use fnord prime --project <project> before asking questions.
Examples:
fnord ask -p myproject -q "Where is the login function defined?"

Follow-up question – retains context
fnord ask -p myproject -f <conversation_id> -q "Where is the idp configuration loaded?"

Prime project knowledge before deep questions
fnord prime -p myproject
fnord ask -p myproject -q "Trace the complete flow from HTTP request to database query and back"

Asking Questions on Unindexed Projects
You don't need a semantic index to ask questions, but you do need a configured project.
Without Index
Setup:
Configure project root (no indexing)
fnord config set --project myproject --root /path/to/project

What works:
	✅ Tool-based research (ripgrep, git commands)
	✅ File reading and analysis
	✅ Learning system
	❌ Semantic search (requires index)

Limitations:
	Searches use text-based tools (ripgrep) instead of semantic search
	Less contextual understanding
	May miss relevant code that doesn't match keywords
	Slower for broad exploratory questions

Example:
fnord ask -p myproject -q "Find all files that reference 'authentication'"
...uses ripgrep instead of semantic search

With Index (Recommended)
For best results, index first:
fnord index --project myproject --dir /path/to/project
fnord ask -p myproject -q "How does authentication work?"
...uses semantic search + tool calls + learning system

Conversation Management
Starting a Conversation
fnord ask --project myproject --question "Where is the user model defined?"

After the response, you'll see:
Conversation saved with ID: c81928aa-6ab2-4346-9b2a-0edce6a639f0
Continuing a Conversation
Use --follow to continue in the same context:
fnord ask -p myproject --follow c81928aa-6ab2-4346-9b2a-0edce6a639f0 \
 --question "How is the user model used in authentication?"

Benefits of following:
	Maintains context from previous questions
	Can reference earlier findings
	Builds on accumulated knowledge
	More efficient (less re-research)

Branching a Conversation
Use --fork to branch off into a new direction:
fnord ask -p myproject --fork c81928aa-6ab2-4346-9b2a-0edce6a639f0 \
 --question "What about the admin user model?"

When to fork vs follow:
	--follow: Same topic, building on previous answer
	--fork: Related but different direction, keeping original context

Viewing Conversations
List all conversations:
fnord conversations --project myproject

Pruning Old Conversations
Remove conversations older than N days:
fnord conversations --project myproject --prune 30

Replaying Conversations
View a past conversation without re-executing research:
Replay most recent
fnord ask --project myproject --replay

Replay specific conversation
fnord ask --project myproject --replay --follow c81928aa-6ab2-4346-9b2a-0edce6a639f0

Pipe through markdown viewer
fnord ask -p myproject --replay --follow <ID> | glow

Use cases:
	Review past research
	Share findings with teammates
	Document architectural decisions
	Export project knowledge

Debugging Research
Viewing Research Steps
By default, fnord shows high-level research progress on STDERR.
See more detail:
LOGGER_LEVEL=debug fnord ask -p myproject -q "your question"

This shows:
	Tool calls being made
	Search queries executed
	Files being read
	LLM reasoning steps

Output separation:
	STDOUT: Final answer (pipeable to other tools)
	STDERR: Research progress and debugging

Example:
Save answer, see research steps
LOGGER_LEVEL=debug fnord ask -p myproject -q "..." > answer.md

Understanding Tool Calls
During research, fnord may use:
	Semantic search - Find relevant code
	File reading - Read specific files
	Git commands - Check history, blame, log
	Ripgrep - Text-based search (when approved)
	Frobs - Your custom tools
	MCP tools - External server tools

Watch for tool call patterns that indicate:
	Broad exploration (many searches)
	Deep investigation (reading many related files)
	Historical analysis (git commands)
	External data gathering (MCP/frob calls)

Research Quality Tips
1. Be Specific
Vague:
fnord ask -p myproject -q "How does this work?"

Better:
fnord ask -p myproject -q "How does the JWT token validation work in the authentication middleware?"

2. Ask Follow-ups
Don't try to get everything in one question:
First question
fnord ask -p myproject -q "Where is authentication handled?"

Follow up
fnord ask -p myproject --follow <ID> -q "How does it integrate with the database?"

Go deeper
fnord ask -p myproject --follow <ID> -q "What happens if token validation fails?"

3. Prime First for New Projects
fnord index --project myproject --dir /path/to/project
Now ask questions - fnord has baseline knowledge

4. Leverage Learning System
Ask fnord to review its notes first:
fnord ask -p myproject -q "Review your notes about the authentication system, then explain how password reset works"

5. Use FNORD.md (and FNORD.local.md) for Project Context
If FNORD.md is located in your project root, it is used to enrich the conversation with project-specific context. You can also include an optional FNORD.local.md for personal or local instructions; it is appended after the shared FNORD.md and takes precedence on conflicts unless the user's prompt explicitly overrides. To get the best results, keep these files concise (ideally under 500 lines) and focused on key architectural notes, important modules, and coding conventions. Note that if they are large, they will affect context window management and attention allocation.
Advanced Options
Output Formatting
Markdown (default)
fnord ask -p myproject -q "..." | glow

Plain text
fnord ask -p myproject -q "..."

Save to file
fnord ask -p myproject -q "..." > answer.md

Saving Formatted Output
You can also use --save (-S) to save the raw markdown output (before FNORD_FORMATTER):
fnord ask -p myproject -S -q "..."

The file is saved to ~/fnord/outputs/<project_id>/<slug>.md, where the slug is derived from the first # Title: ... line.
Quiet Mode
Suppress research progress (only show answer):
fnord ask -p myproject --quiet -q "..."

Worktrees
Work on a specific git worktree:
fnord ask -p myproject --worktree /path/to/worktree --edit \
 -q "Add validation to the user model"

Combining with Other Commands
Search then Ask
Find relevant files
fnord search -p myproject -q "authentication"

Ask detailed question about findings
fnord ask -p myproject -q "Explain how the authentication flow works"

Ask then Review
Get answer
fnord ask -p myproject -q "How are errors handled?"

Review learned knowledge
fnord notes -p myproject | grep -i error

Troubleshooting
Incomplete Answers
Try:
	Ask follow-up questions
	Be more specific in your question
	Ensure project is indexed

Off-topic Responses
Try:
	Reference specific files or components
	Use follow-up to correct course
	Check that question relates to your code (not general programming)

Slow Research
Causes:
	Large codebase with many potential matches
	Many tool calls needed
	API rate limiting

Solutions:
	Use more specific questions
	Ensure good semantic index quality
	Prime knowledge base for better context

Missing Context
Try:
	Use --follow to maintain context
	Prime project first: fnord prime -p myproject
	Ask fnord to review notes before answering
	Provide more context in question

Further Reading
	Main README
	Learning System
	Frobs Guide - Add custom research tools
	MCP Advanced - Integrate external tools

 Learning System

Fnord builds a searchable knowledge base about your project as it researches your questions, improving its ability to answer complex questions over time.
How It Works
As fnord researches your questions, it:
	Makes observations about your code
	Draws inferences about architecture and patterns
	Saves facts organized by topic
	Makes this knowledge searchable for future questions

This accumulated knowledge helps fnord:
	Answer complex questions faster
	Make better connections between code components
	Understand project-specific terminology and patterns
	Provide more accurate and contextual responses

Viewing Learned Knowledge
See what fnord has learned about your project:
fnord notes --project myproject

Output is markdown, so pipe through a markdown viewer:
fnord notes --project myproject | glow

Notes Organization
Notes are organized by topic:
	Architecture - System design, component relationships
	Patterns - Coding patterns, conventions observed
	Domain Knowledge - Business logic, terminology
	Technical Details - APIs, data structures, algorithms
	Testing - Test strategies, coverage areas

Priming the Knowledge Base
Generate an initial set of learnings without asking specific questions:
fnord prime --project myproject

What priming does:
	Explores project structure and organization
	Identifies key components and their relationships
	Documents common patterns and conventions
	Creates initial set of searchable facts

Options:
fnord prime --project myproject
fnord notes --project myproject | glow

When to prime:
	After initial indexing of a new project
	After major refactoring or architecture changes
	When notes become stale or outdated

Knowledge Growth Over Time
The knowledge base grows naturally through use:
	Ask questions - Each research session adds new facts
	Follow-up questions - Builds deeper understanding
	Cross-file insights - Connects related components
	Pattern recognition - Identifies recurring structures

Example progression:
First question
fnord ask -p myproject -q "Where is authentication handled?"
Learns: auth module location, basic structure

Follow-up
fnord ask -p myproject --follow <ID> -q "How does it integrate with the database?"
Learns: database integration patterns, models used

Later question
fnord ask -p myproject -q "What's the pattern for adding a new API endpoint?"
Can now reference learned patterns and conventions

Managing Knowledge
Knowledge Storage
Notes are stored in: ~/.fnord/projects/<project>/notes.md
Structure:
~/.fnord/projects/myproject/
└── notes.md # Consolidated learned knowledge
Dealing with Staleness
As your codebase evolves, some learned facts may become outdated:
Signs of stale knowledge:
	Fnord references old code that's been refactored
	Architecture descriptions don't match current state
	Pattern recommendations no longer apply

Solutions:
	Re-prime - Regenerate knowledge base
Backup old notes if desired
mv ~/.fnord/myproject/notes ~/.fnord/myproject/notes.backup

Re-prime
fnord prime --project myproject

	Targeted updates - Ask specific questions about changed areas
fnord ask -p myproject -q "The authentication module has been refactored. Please analyze its new structure and update your understanding."

	Re-index - Refresh semantic index to match current code
fnord index --project myproject

Dealing with Redundancy
Over time, notes may accumulate redundant or overlapping information.
Current approach:
	Manual review via fnord notes
	Re-priming periodically to consolidate

Note: Automatic deduplication/consolidation is a potential future enhancement.
Integration with Semantic Search
The learning system complements semantic search:
	Feature	Purpose	When Used
	Semantic Index	Find relevant code	Every search and ask
	Learned Notes	Understand context	Complex questions requiring connections
	Git History	Track changes	Historical questions

Together, these create a comprehensive understanding of your project.
Best Practices
	Prime after indexing - Start with a solid knowledge foundationfnord index --project myproject
fnord prime --project myproject

	Let it grow naturally - Ask questions as they arise, knowledge accumulates
	Use follow-up questions - Builds deeper, more connected understanding
	Provide feedback - Correct the LLM with --follow when it makes a mistake, confuses concepts, or breaks conventions
	Re-prime periodically - After major changes or when notes feel stale
	Review notes occasionally - Understand what fnord knows about your project: fnord notes --project myproject | glow > project-knowledge.md

Technical Details
Storage Format
Notes are stored as structured markdown with topic categorization and metadata for semantic search integration.
Research Process
When fnord researches a question:
	Searches learned notes for relevant context
	Performs semantic search on code
	Executes tool calls as needed
	Synthesizes findings
	Saves new insights to notes

Learning Scope
Fnord learns:
	✅ Code structure and organization
	✅ Patterns and conventions
	✅ Component relationships
	✅ Domain-specific terminology
	❌ Not: Sensitive data, credentials, secrets

Project context
If present in the project root, FNORD.md and FNORD.local.md are injected as system instructions each session.
The local file is appended after the shared file and takes precedence on conflicts unless the user's prompt explicitly overrides.
We recommend adding FNORD.local.md to .gitignore as a per-user configuration file.
Troubleshooting
Notes command returns nothing
Cause: No knowledge has been accumulated yet
Solution:
Prime the knowledge base
fnord prime --project myproject

Or ask some questions first
fnord ask -p myproject -q "What is the overall architecture of this project?"

Notes seem outdated
Cause: Code has changed since notes were generated
Solution: Re-prime or ask targeted update questions (see Managing Knowledge above)
Too much redundant information
Cause: Overlapping learning from multiple research sessions
Solution: Provide feedback:
fnord ask -p myproject -q "Review your memories. Use the memory tool to remove redundant, dated, and incorrect information."

Solution: Re-prime to consolidate:
mv ~/.fnord/myproject/notes ~/.fnord/myproject/notes.old
fnord prime --project myproject

Solution: Edit notes manually:
As a final resort, you can directly edit the notes file:
nvim ~/.fnord/projects/<myproject>/notes.md

Future Enhancements
Potential improvements to the learning system:
	Automatic fact consolidation and deduplication
	Versioned knowledge tracking (matching git commits)
	Knowledge export/import for team sharing
	Confidence scoring for learned facts
	Active learning (requesting clarification)

Further Reading
	Main README
	Advanced Asking Questions
	Search Documentation

 Frobs Developer Guide

Frobs (short for "frobnicate") are custom tools you create that fnord can use as function calls while researching questions about your project.
Quick Start
For basic frob commands, see the main README.
What Are Frobs?
Frobs allow you to extend fnord's capabilities by creating custom tools tailored to your workflow. When fnord researches a question, it can call your frobs just like it calls built-in tools (semantic search, git commands, etc.).
Example use cases:
	Query a project-specific API
	Run custom analysis scripts
	Check deployment status
	Query internal documentation systems
	Perform domain-specific calculations

Frob Structure
Each frob is a directory in ~/.fnord/tools/ containing three files:
~/.fnord/tools/
└── my_frob/
 ├── spec.json # Tool specification
 └── main # Implementation (script or binary)
Creating a Frob
fnord frobs create --name my_frob

This creates the directory structure and template files.
Enabling a Frob
Enable your frob for a project using the CLI or the UI Settings:
Enable for the current project
fnord frobs enable --name my_frob
Or enable globally
fnord frobs enable --name my_frob --global

Disabling a Frob
Disable for the current project
fnord frobs disable --name my_frob
Or disable globally
fnord frobs disable --name my_frob --global
Or disable for a specific project
fnord frobs disable --name my_frob --project other_project

Configuration Files
1. spec.json
2. spec.json
Describes the frob's interface using OpenAI's function calling format:
{
 "name": "my_frob",
 "description": "Brief description of what this tool does",
 "parameters": {
 "type": "object",
 "properties": {
 "query": {
 "type": "string",
 "description": "The query parameter"
 },
 "limit": {
 "type": "integer",
 "description": "Maximum number of results",
 "default": 10
 }
 },
 "required": ["query"]
 }
}
Important:
	name must match the frob directory name
	description helps the LLM understand when to use your tool
	parameters defines the arguments the LLM can provide
	Be descriptive - the LLM uses this to decide when/how to call your tool

3. main
The executable that implements your frob. Can be:
	Shell script (#!/bin/bash)
	Elixir script (escript or plain elixir-run script)
	Compiled binary
	Any executable

Must be executable:
chmod +x ~/.fnord/tools/my_frob/main

Implementation
Input: Environment Variables
Fnord passes data to your frob via environment variables:
	Variable	Description	Format
	FNORD_PROJECT	Current project name	String
	FNORD_CONFIG	Project configuration	JSON object
	FNORD_ARGS_JSON	LLM-provided arguments	JSON object

Example shell script:
#!/bin/bash

Parse JSON arguments
QUERY=$(echo "$FNORD_ARGS_JSON" | jq -r '.query')
LIMIT=$(echo "$FNORD_ARGS_JSON" | jq -r '.limit // 10')

Use project configuration
PROJECT_ROOT=$(echo "$FNORD_CONFIG" | jq -r '.root')

Perform your task
echo "Searching $PROJECT_ROOT for: $QUERY (limit: $LIMIT)"
... your implementation ...

Example Elixir script:
#!/usr/bin/env elixir

Mix.install([{:jason, "~> 1.4"}])

project = System.fetch_env!("FNORD_PROJECT")
config = System.fetch_env!("FNORD_CONFIG") |> Jason.decode!()
args = System.fetch_env!("FNORD_ARGS_JSON") |> Jason.decode!()

query = Map.fetch!(args, "query")
limit = Map.get(args, "limit", 10)

IO.puts("Searching #{project} for: #{query} (limit: #{limit})")
... your implementation ...
Output: STDOUT
Your frob should write its results to STDOUT. Fnord captures this and provides it to the LLM as the tool's response.
Best practices:
	Use clear, structured output (JSON, markdown, plain text)
	Include relevant details but stay concise
	Report errors clearly
	Exit with non-zero code on failure

Example output:
Found 3 matches for "authentication":

1. auth/login.py - Login handler with JWT
2. auth/middleware.py - Authentication middleware
3. tests/auth_test.py - Auth integration tests
Error Handling
Exit codes:
	0 - Success
	Non-zero - Error (output is still captured)

Error output:
#!/bin/bash
if [-z "$QUERY"]; then
 echo "Error: query parameter is required"
 exit 1
fi

Validation
Check your frob before use:
fnord frobs check --name my_frob

This validates:
	All required files exist
	JSON files are valid
	main is executable
	spec.json has required fields

Testing
Use the testing: prefix in your questions to ask the LLM to test your frob:
Verify frob is available
fnord ask -p myproject -q "testing: please confirm that the 'my_frob' tool is available to you"

Test with specific arguments
fnord ask -p myproject -q "testing: call 'my_frob' with query='test' and report the results"

The LLM will call your frob and describe what happened.
Examples
Example 1: API Query Frob
spec.json:
{
 "name": "api_status",
 "description": "Check the status of project deployment environments",
 "parameters": {
 "type": "object",
 "properties": {
 "environment": {
 "type": "string",
 "enum": ["dev", "staging", "production"],
 "description": "The environment to check"
 }
 },
 "required": ["environment"]
 }
}
main:
#!/bin/bash
ENV=$(echo "$FNORD_ARGS_JSON" | jq -r '.environment')
API_KEY=$(echo "$FNORD_CONFIG" | jq -r '.api_key')

curl -s -H "Authorization: Bearer $API_KEY" \
 "https://api.example.com/status/$ENV" | jq .

Example 2: Custom Analysis Frob
spec.json:
{
 "name": "complexity_check",
 "description": "Analyze code complexity for a specific file",
 "parameters": {
 "type": "object",
 "properties": {
 "file_path": {
 "type": "string",
 "description": "Relative path to file from project root"
 }
 },
 "required": ["file_path"]
 }
}
main:
#!/usr/bin/env python3
import os, json, subprocess

args = json.loads(os.environ['FNORD_ARGS_JSON'])
config = json.loads(os.environ['FNORD_CONFIG'])

file_path = os.path.join(config['root'], args['file_path'])

Run complexity analysis
result = subprocess.run(
 ['radon', 'cc', '-s', file_path],
 capture_output=True,
 text=True
)

print(result.stdout)
Best Practices
	Clear descriptions - Help the LLM understand when to use your frob
	Validate input - Check required arguments and fail fast
	Concise output - Return relevant info without overwhelming the LLM
	Error messages - Make errors clear and actionable
	Idempotent - Safe to call multiple times with same args
	Fast - Keep execution time under a few seconds when possible
	No side effects - Avoid modifying project state (read-only preferred)

Security Considerations
Frobs execute with your user permissions:
	Be careful with system commands
	Validate all input from FNORD_ARGS_JSON
	Don't trust LLM-provided arguments blindly
	Avoid executing arbitrary code
	Use absolute paths when modifying files

Example input validation:
#!/bin/bash
FILE=$(echo "$FNORD_ARGS_JSON" | jq -r '.file')

Validate file path is within project
if [["$FILE" == ../*]] || [["$FILE" == /*]]; then
 echo "Error: file path must be relative to project root"
 exit 1
fi

Troubleshooting
Frob not available in ask
	Ensure the frob is enabled (global or project):	Global: fnord frobs enable --name my_frob --global
	Project: fnord frobs enable --name my_frob

	Verify frob passes validation: fnord frobs check --name my_frob
	Test explicitly: fnord ask -p myproject -q "testing: is my_frob available?"

Frob executes but returns nothing
	Check main outputs to STDOUT (not STDERR)
	Ensure main is executable (chmod +x)
	Test directly: FNORD_ARGS_JSON='{"query":"test"}' ~/.fnord/tools/my_frob/main

JSON parsing errors
	Validate JSON files: cat spec.json | jq .

	Check environment variable parsing in main
	Use jq for robust JSON handling in shell scripts

Further Reading
	OpenAI Function Calling Documentation
	Main README
	Advanced MCP Configuration

 Frob example: HTTP GET

This guide shows how to create a frob that performs an HTTP GET with curl, automatically truncates responses larger than 5MB, and appends (truncated) to the output.
	Name: http_get
	Behavior: GET-only; accepts a url and optional headers; truncates body to 5MB
	Output:	Prints the body
	Prints <empty body> for successful empty responses
	Appends (truncated) if capped at the 5MB limit

	Errors: Preserves curl exit codes and prints a message to stderr

1) Create the frob scaffold
You can create these files manually or use fnord frobs create and then overwrite the files. Manual steps:
mkdir -p ~/.fnord/tools/http_get
chmod 755 ~/.fnord/tools/http_get

2) Enable the frob
You can enable the frob via settings or CLI. For example:
fnord frobs enable --name http_get --global

Disable the frob
You can disable the frob via CLI. For example:
fnord frobs disable --name http_get --global

To disable for a specific project:
fnord frobs disable --name http_get --project <project_name>

3) spec.json
Save to: ~/.fnord/tools/http_get/spec.json
{
 "name": "http_get",
 "description": "Perform an HTTP GET request and return the body (truncated to 5MB).",
 "parameters": {
 "type": "object",
 "properties": {
 "url": {
 "type": "string",
 "description": "HTTP or HTTPS URL to fetch"
 },
 "headers": {
 "type": "object",
 "description": "Additional request headers as key/value",
 "additionalProperties": {
 "type": "string"
 }
 }
 },
 "required": ["url"]
 }
}
4) main (bash; make it executable)
Save to: ~/.fnord/tools/http_get/main
Make executable: chmod +x ~/.fnord/tools/http_get/main
#!/usr/bin/env bash
set -euo pipefail

Validate required env vars
: "${FNORD_PROJECT:?FNORD_PROJECT not set}"
: "${FNORD_CONFIG:?FNORD_CONFIG not set}"
: "${FNORD_ARGS_JSON:?FNORD_ARGS_JSON not set}"

Dependencies
command -v jq >/dev/null 2>&1 || { echo "Error: jq is required" >&2; exit 127; }
command -v curl >/dev/null 2>&1 || { echo "Error: curl is required" >&2; exit 127; }

Parse args
URL="$(printf '%s' "$FNORD_ARGS_JSON" | jq -er '.url')"

Enforce GET-only and http(s) scheme
if printf '%s' "$FNORD_ARGS_JSON" | jq -e 'has("method")' >/dev/null; then
 echo "Error: Only GET is supported; do not specify a method." >&2
 exit 2
fi
SCHEME="$(printf '%s' "$URL" | awk -F:// '{print tolower($1)}')"
if [["$SCHEME" != "http" && "$SCHEME" != "https"]]; then
 echo "Error: URL scheme must be http or https" >&2
 exit 2
fi

Optional headers
HAS_HEADERS=false
if printf '%s' "$FNORD_ARGS_JSON" | jq -e 'has("headers") and (.headers | type == "object")' >/dev/null; then
 HAS_HEADERS=true
fi

Build curl args
CURL_ARGS=(--get --fail --silent --show-error --location --max-time 30)
if $HAS_HEADERS; then
 while IFS= read -r key; do
 val="$(printf '%s' "$FNORD_ARGS_JSON" | jq -er --arg k "$key" '.headers[$k]')"
 CURL_ARGS+=(-H "${key}: ${val}")
 done < <(printf '%s' "$FNORD_ARGS_JSON" | jq -r '.headers | keys[]')
fi

Truncate to 5MB, preserve curl exit code
LIMIT=$((5*1024*1024))
tmpdir="$(mktemp -d)"
trap 'rm -rf "$tmpdir"' EXIT
body_file="$tmpdir/body"

set +e
curl "${CURL_ARGS[@]}" "$URL" | dd bs=1 count=$((LIMIT+1)) of="$body_file" status=none
curl_status=${PIPESTATUS[0]}
set -e

if ((curl_status != 0)); then
 echo "Error: HTTP request failed (curl exit $curl_status)" >&2
 exit "$curl_status"
fi

size=$(wc -c <"$body_file")
truncated=false
if ((size > LIMIT)); then
 truncated=true
fi

if ((size == 0)); then
 echo "<empty body>"
else
 if $truncated; then
 head -c "$LIMIT" "$body_file"
 printf ' (truncated)'
 else
 cat "$body_file"
 fi
fi

5) Validate the frob
fnord frobs check --name http_get

6) Use it via fnord ask
	Natural language:
fnord ask -q "Fetch https://example.com with http_get and return up to 5MB of the body."

	With headers:
fnord ask -q "Please call http_get to GET https://httpbin.org/headers with Accept=application/json and X-Test=fnord"

Tips:
	The assistant can choose to call this tool automatically when it sees a suitable URL-shaped request.
	The frob prints <empty body> when the response body is empty and request succeeds.

Safety notes
Note: If you previously configured frobs via registry.json, Fnord will migrate those settings the first time frobs are listed. After migration, registry.json is no longer used.
	GET-only by design: no method parameter is accepted.
	Only http and https URLs are allowed.
	Responses larger than 5MB are truncated and marked with (truncated).
	curl errors are propagated and reported to stderr.

 Advanced MCP Configuration

This guide covers advanced MCP server configuration options beyond what's available through the CLI.
Quick Reference
For basic MCP setup, see the main README.
Command Reference
Complete reference for all MCP configuration commands.
Listing Servers
List project servers (default scope)
fnord config mcp list --project <project>

List global servers
fnord config mcp list --global

View effective configuration (merged global + project)
fnord config mcp list --effective

Adding Servers
Stdio transport
fnord config mcp add <name> --transport stdio --command <cmd> \
 [--arg <arg>] [--env KEY=VALUE] [--timeout-ms <ms>]

HTTP transport
fnord config mcp add <name> --transport http --url <url> \
 [--header KEY=VALUE] [--timeout-ms <ms>]

HTTP with OAuth
fnord config mcp add <name> --transport http --url <url> --oauth \
 [--client-id <id>] [--client-secret <secret>] [--scope <scope>]

WebSocket transport
fnord config mcp add <name> --transport websocket --url <url> \
 [--header KEY=VALUE] [--timeout-ms <ms>]

Add to global scope
fnord config mcp add <name> [...options...] --global

Repeatable flags:
	--arg - Can be specified multiple times for stdio args
	--env - Can be specified multiple times for environment variables
	--header - Can be specified multiple times for HTTP headers
	--scope - Can be specified multiple times for OAuth scopes

Updating Servers
Update server configuration
fnord config mcp update <name> [--transport ...] [--command ...] [--url ...] [...]

Scope follows original (project or global)
Use same flags as 'add' command

Removing Servers
Remove from project scope
fnord config mcp remove <name>

Remove from global scope
fnord config mcp remove <name> --global

Testing Connectivity
Test all configured servers
fnord config mcp check

Test specific project scope
fnord config mcp check --project <project>

Test global scope
fnord config mcp check --global

Returns list of servers with their status and available tools.
OAuth Commands
Login to OAuth-enabled server (opens browser)
fnord config mcp login <server> [--timeout <ms>]

Check token status
fnord config mcp status <server>

Understanding Hermes Integration
Fnord uses Hermes MCP as its underlying MCP client library. Your fnord configuration maps directly to Hermes transport options, which means you can use any Hermes transport feature by editing your settings file directly.
Configuration mapping:
	Fnord stores configs in ~/.fnord/settings.json (or project settings)
	MCP.Transport module converts these to Hermes transport tuples
	User-facing transport name: "http" → Hermes internal name: :streamable_http

Additional Transport Options
The CLI exposes common options, but Hermes supports additional parameters for power users.
StreamableHTTP Transport
Beyond base_url and headers, you can configure:
Available options:
	mcp_path (string) - Custom MCP endpoint path (default: "/mcp")
	enable_sse (boolean) - Enable Server-Sent Events for server-initiated messages (default: false)
	transport_opts (keyword list) - Underlying HTTP transport options
	http_options (keyword list) - HTTP client configuration options

Example:
{
 "mcp_servers": {
 "myserver": {
 "transport": "http",
 "base_url": "https://api.example.com",
 "mcp_path": "/custom/mcp/endpoint",
 "enable_sse": true,
 "headers": {
 "X-Custom-Header": "value"
 }
 }
 }
}
Reference: Hermes.Transport.StreamableHTTP
STDIO Transport
Beyond command, args, and env, you can configure:
Available options:
	cwd (string) - Working directory for the server process

Example:
{
 "mcp_servers": {
 "local-server": {
 "transport": "stdio",
 "command": "./my_server",
 "args": ["--verbose"],
 "cwd": "/path/to/server/directory",
 "env": {
 "API_KEY": "secret"
 }
 }
 }
}
Reference: Hermes.Transport.STDIO
Manual Configuration
For complete control, edit ~/.fnord/settings.json directly:
Global Configuration
{
 "mcp_servers": {
 "server1": { /* config */ },
 "server2": { /* config */ }
 }
}
Project-Specific Configuration
In ~/.fnord/settings.json, under a project's settings:
{
 "projects": {
 "myproject": {
 "root": "/path/to/project",
 "mcp_servers": {
 "project-server": { /* config */ }
 }
 }
 }
}
Note: Project-specific servers override global servers with the same name.
Configuration Validation
Fnord validates your configuration when:
	Adding/updating servers via CLI
	Starting MCP operations (fnord config mcp check)

Required fields:
	All transports: transport (must be "stdio", "http", or "websocket")
	stdio: command
	http/websocket: base_url

Optional fields:
	timeout_ms - Request timeout in milliseconds
	headers - HTTP headers (http/websocket only)
	oauth - OAuth configuration (see oauth-advanced.md)

Transport Name Mapping
Fnord uses user-friendly transport names that map to Hermes atoms:
	User Config	Hermes Atom	Description
	"stdio"	:stdio	Standard input/output
	"http"	:streamable_http	HTTP with optional SSE
	"websocket"	:websocket	WebSocket connection

This abstraction allows fnord to:
	Use consistent, intuitive names in user-facing config
	Adapt to Hermes API changes without breaking user configs
	Add custom behavior (like OAuth header injection) at the transport boundary

Troubleshooting
Server not responding
Check connectivity:
fnord config mcp check

For HTTP servers, verify:
	base_url is correct and accessible
	Server is running and listening on specified port
	mcp_path matches server's endpoint (default: "/mcp")

For stdio servers, verify:
	command is in PATH or use absolute path
	Server process can be executed with provided args
	cwd exists (if specified)

Headers not being sent
Headers are only used for HTTP and WebSocket transports. For stdio, use environment variables (env).
OAuth headers
If you've configured OAuth, fnord automatically injects the Authorization header. Manual Authorization headers in your config will be overridden by OAuth tokens.
See oauth-advanced.md for OAuth troubleshooting.
Further Reading
	Hermes MCP Documentation
	Model Context Protocol Specification
	OAuth Advanced Configuration

 Advanced OAuth Configuration

This guide covers advanced OAuth authentication features, troubleshooting, and manual configuration.
Quick Reference
For basic OAuth setup, see the main README.
Command-Line Options
Using Existing Client Credentials
If you have a pre-registered client ID:
fnord config mcp add myserver --transport http --url https://api.example.com \
 --oauth --client-id YOUR_CLIENT_ID

With client secret (for confidential clients):
fnord config mcp add myserver --transport http --url https://api.example.com \
 --oauth --client-id YOUR_CLIENT_ID --client-secret YOUR_SECRET

Custom Scopes
Specify scopes if the default (mcp:access) isn't appropriate:
fnord config mcp add myserver --transport http --url https://api.example.com \
 --oauth --scope custom:scope --scope another:scope

Multiple --scope flags add multiple scopes.
What --oauth Does
The --oauth flag automatically:
	Fetches OAuth configuration from /.well-known/oauth-authorization-server
	Registers your client using dynamic client registration (RFC 7591) if no client_id provided
	Selects appropriate scopes (defaults to mcp:access)
	Stores the configuration in your settings

Manual Configuration
For maximum control, you can edit ~/.fnord/settings.json directly:
{
 "mcp_servers": {
 "myserver": {
 "transport": "http",
 "base_url": "https://api.example.com",
 "oauth": {
 "discovery_url": "https://api.example.com/.well-known/oauth-authorization-server",
 "client_id": "your-client-id",
 "client_secret": "optional-secret",
 "scopes": ["mcp:access"],
 "redirect_port": 8080
 }
 }
 }
}
OAuth Configuration Fields
Required:
	discovery_url - OAuth discovery endpoint (RFC 8414)
	client_id - OAuth client identifier
	scopes - Array of OAuth scope strings

Optional:
	client_secret - For confidential clients (keep this secure!)
	redirect_port - Fixed port for loopback redirects (for exact URI matching)
	redirect_uri - Custom redirect URI (advanced)
	credentials_path - Custom path for token storage (default: ~/.fnord/credentials.json)
	refresh_margin - Seconds before expiry to refresh tokens (default: 300)

Understanding the OAuth Flow
Fnord implements OAuth 2.0 Authorization Code flow with PKCE (Proof Key for Code Exchange) for security.
Flow Steps
	Discovery (RFC 8414)
	Fetch metadata from /.well-known/oauth-authorization-server
	Extract authorization and token endpoints

	Registration (RFC 7591, if needed)
	If no client_id provided and server supports it
	Register as a native app with loopback redirect
	Obtain client_id (and possibly client_secret)

	Authorization (RFC 7636)
	Generate PKCE code verifier and challenge (S256)
	Generate state parameter for CSRF protection
	Build authorization URL with required parameters
	Open browser for user consent

	Token Exchange
	Receive authorization code via loopback callback
	Validate state parameter
	Exchange code for tokens with PKCE verifier
	Store tokens securely

	Token Refresh
	Monitor token expiry
	Automatically refresh before expiration
	Update stored credentials

PKCE (RFC 7636)
Fnord always uses PKCE with S256 challenge method for security:
	Code verifier: 43-128 character random string
	Code challenge: Base64URL(SHA256(verifier))
	Prevents authorization code interception attacks

Security
Token Storage
Tokens are stored in ~/.fnord/credentials.json with strict file permissions:
	File permissions: 0600 (owner read/write only)
	Format: JSON with server name as key
	Contains: access_token, refresh_token, expires_at, token_type, scope

Never commit this file to version control!
Security Best Practices
	Use PKCE - Fnord always enables this
	Loopback redirects - Uses http://127.0.0.1:<port>/callback for native apps
	State parameter - Validates to prevent CSRF attacks
	Secure storage - Restrictive file permissions on credentials
	No logging - Tokens and secrets are never logged

Revoking Access
To revoke access:
	Delete tokens: rm ~/.fnord/credentials.json (or edit to remove specific server)
	Revoke at provider (check provider's OAuth settings)
	Re-authenticate: fnord config mcp login <server>

Token Management
Token Refresh
Fnord automatically refreshes access tokens:
	Default refresh margin: 5 minutes (300 seconds) before expiry
	Configurable via refresh_margin in oauth config
	Uses refresh token from authorization flow

Token Expiry
Check token status:
fnord config mcp status <server>

Shows:
	Token validity
	Expiration time
	Refresh token availability

Manual Token Refresh
Tokens refresh automatically during operations, but you can force re-authentication:
Remove old credentials and login again
rm ~/.fnord/credentials.json
fnord config mcp login <server>

Troubleshooting
Auto-discovery fails
Error: OAuth discovery failed (404)
Causes:
	Server doesn't support OAuth discovery (RFC 8414)
	Wrong discovery URL

Solutions:
	Verify server supports /.well-known/oauth-authorization-server
	Try OpenID Connect discovery: /.well-known/openid-configuration
	Get OAuth endpoints from provider and configure manually

Registration not available
Error: OAuth registration not available
Causes:
	Server requires pre-registered clients
	Dynamic registration (RFC 7591) not supported

Solution:
Register a client with the provider manually, then:
fnord config mcp add <name> --url <url> --oauth --client-id YOUR_CLIENT_ID

Login timeout
Error: Connection timeout during login
Causes:
	Slow browser/user interaction
	Network issues
	OAuth provider delays

Solutions:
	Increase timeout (default: 120s):fnord config mcp login <server> --timeout 300000

	Check browser opened correctly
	Complete OAuth consent promptly

Redirect URI mismatch
Error: Redirect URI doesn't match registered URI
Causes:
	Provider requires exact URI match
	Port changed between registration and login

Solution:
Fnord reserves a port during registration and reuses it during login via redirect_port. If you're manually configuring, ensure the port in redirect_port matches what you registered with the provider.
Browser shows "Connection refused"
Causes:
	Login command exited before sending HTTP response

Solution:
This should not happen in current fnord versions (fixed with 3-second delay). If it does:
	Update fnord: mix escript.install github sysread/fnord
	Report the issue

No refresh token received
Causes:
	Provider doesn't support refresh tokens
	Scopes don't include offline access
	Provider configuration

Solutions:
	Check if provider supports refresh_token grant type
	Try adding scope: --scope offline_access (provider-specific)
	Use shorter-lived sessions and re-authenticate as needed

Authorization header not added
Verify OAuth is configured:
fnord config mcp list | grep oauth

Check credentials exist:
cat ~/.fnord/credentials.json | grep <server-name>

Check token validity:
fnord config mcp status <server>

If token is expired:
fnord config mcp login <server>

Custom Discovery URLs
Some providers use non-standard discovery endpoints:
OpenID Connect
If provider uses OpenID Connect instead of OAuth Authorization Server:
{
 "oauth": {
 "discovery_url": "https://provider.com/.well-known/openid-configuration",
 ...
 }
}
Custom Endpoints
If provider doesn't support discovery, you'll need to manually configure endpoints (not currently supported by fnord CLI - file a feature request).
RFC References
Fnord implements these OAuth RFCs:
	RFC 6749 - OAuth 2.0 Authorization Framework
	RFC 7636 - PKCE (Proof Key for Code Exchange)
	RFC 7591 - Dynamic Client Registration
	RFC 8414 - OAuth 2.0 Authorization Server Metadata

Further Reading
	OAuth 2.0 Simplified
	Advanced MCP Configuration
	Hermes MCP Documentation

AI.Accumulator

When file or other input to too large for the model's context window, this
module may be used to process the file in chunks. It automatically modifies
the supplied agent prompt to include instructions for accumulating a response
across multiple chunks based on the context (max context window tokens)
parameter supplied by the model parameter.
Note that while this makes use of the AI.Completion module, it does NOT
have the same interface and cannot be used for long-running conversations, as
it does not accept a list of messages as its input.

 Summary

 Types

 error()

 response()

 success()

 t()

 Functions

 get_response(opts \\ [])

 process_chunk(acc)

 Types

 error()

 @type error() :: {:error, binary()}

 response()

 @type response() :: success() | error()

 success()

 @type success() :: {:ok, AI.Completion.t()}

 t()

 @type t() :: %AI.Accumulator{
 buffer: binary(),
 compact?: boolean(),
 completion_args: Keyword.t(),
 line_numbers: term(),
 model: AI.Model.t(),
 prompt: binary(),
 question: binary(),
 splitter: AI.Splitter.t(),
 toolbox: AI.Tools.toolbox() | nil
}

 Functions

 get_response(opts \\ [])

 @spec get_response(Keyword.t()) :: response()

 process_chunk(acc)

AI.Agent behaviour

Behavior for AI agents that process instructions and return responses.
This behavior defines the contract between the coordinator and specialized
agents, ensuring consistent interfaces and proper error handling across the
agent system.

 Summary

 Types

 t()

 Callbacks

 get_response(map)

 Functions

 get_completion(agent, args)

 Delegate to AI.Completion.get/1 with the agent's name included in the args.
Intended to be called by implementors of AI.Agent when they need to
generate completions as part of their response processing.

 get_response(agent, args)

 Delegate to the agent implementation's get_response/1 function. Includes
the agent in the args map.

 new(impl, opts \\ [])

 Create a new agent instance.

 tools_used(completion)

 Delegate to AI.Completion.tools_used/1 to extract the tools used from a
completion.

 Types

 t()

 @type t() :: %AI.Agent{impl: module(), name: nil | binary(), named?: boolean()}

 Callbacks

 get_response(map)

 @callback get_response(map()) :: {:ok, any()} | {:error, any()}

 Functions

 get_completion(agent, args)

 @spec get_completion(
 t(),
 keyword()
) :: {:ok, AI.Completion.t()} | {:error, any()}

Delegate to AI.Completion.get/1 with the agent's name included in the args.
Intended to be called by implementors of AI.Agent when they need to
generate completions as part of their response processing.

 get_response(agent, args)

 @spec get_response(t(), map()) :: {:ok, any()} | {:error, any()}

Delegate to the agent implementation's get_response/1 function. Includes
the agent in the args map.
The agent's name is managed here, checking out a name from
Services.NamePool if the agent is named but doesn't yet have a name, or
associating the agent's existing name if it does. The name is checked back in
after the response is generated.
The call is wrapped in a Task to provide a global identifier for logging
and tracing purposes, which is associated with the agent's name.

 new(impl, opts \\ [])

 @spec new(
 module(),
 keyword()
) :: t()

Create a new agent instance.
If :named? is set to false, the agent will not be assigned a name. This
is intended specifically for AI.Agent.Nomenclater, which does the naming on
behalf of Services.NamePool, which can't be used directly by Nomenclater
because that would create a circular dependency.

 tools_used(completion)

 @spec tools_used(AI.Completion.t()) :: %{required(binary()) => non_neg_integer()}

Delegate to AI.Completion.tools_used/1 to extract the tools used from a
completion.

AI.Agent.Code.Common

 Summary

 Types

 new_task()

 t()

 Common state for AI agents that work with code. Includes an internal map
that can be used to store additional state that is specific to the
implementation.

 task()

 Functions

 add_task(list_id, map)

 add_tasks(list_id, new_tasks)

 coder_values_prompt()

 Returns a string that describes the values and principles that guide the code
agent's design and implementation decisions. This is used to inform the AI
agent's behavior and responses, ensuring that it adheres to a consistent set
of coding standards and practices.

 format_new_tasks(new_tasks)

 get_completion(state, prompt, response_format \\ nil, keep_prompt? \\ false)

 Executes a completion request using the AI model specified in the state. The
prompt is appended to the existing messages in the state as a system
message. Unless keep_prompt? is true, the system prompt will be removed
from the messages after the completion is received to keep the cascade of
instructions clean.

 get_state(state, key)

 Retrieves a value from the internal state of the AI agent. key may be
either a single atom or a list of atoms representing a path to a value in the
internal map (per get_in/2 semantics).

 new(agent, model, toolbox, system_prompt, user_prompt)

 Creates a new state for an AI agent that works with code. The initial message
list includes the system prompt and the user prompt, as provided.

 put_state(state, key, value)

 Sets the internal, implementation-specific state for the AI agent. key
may be either a single atom or a list of atoms representing a path to a value
in the internal map (per put_in/3 semantics).

 report_task_outcome(state, task, error, outcome, follow_up_tasks)

 report_task_stack(state)

 Types

 new_task()

 @type new_task() :: %{label: binary(), detail: binary()}

 t()

 @type t() :: %AI.Agent.Code.Common{
 agent: AI.Agent.t(),
 error: any(),
 internal: map(),
 messages: AI.Util.msg_list(),
 model: AI.Model.t(),
 request: binary(),
 response: binary() | nil,
 toolbox: AI.Tools.toolbox()
}

Common state for AI agents that work with code. Includes an internal map
that can be used to store additional state that is specific to the
implementation.

 task()

 @type task() :: Services.Task.task()

 Functions

 add_task(list_id, map)

 @spec add_task(Services.Task.list_id(), new_task()) :: any()

 add_tasks(list_id, new_tasks)

 @spec add_tasks(Services.Task.list_id(), [new_task()]) :: :ok

 coder_values_prompt()

 @spec coder_values_prompt() :: binary()

Returns a string that describes the values and principles that guide the code
agent's design and implementation decisions. This is used to inform the AI
agent's behavior and responses, ensuring that it adheres to a consistent set
of coding standards and practices.

 format_new_tasks(new_tasks)

 @spec format_new_tasks([new_task()]) :: binary()

 get_completion(state, prompt, response_format \\ nil, keep_prompt? \\ false)

 @spec get_completion(
 state :: t(),
 prompt :: binary(),
 response_format :: map() | nil,
 keep_prompt? :: boolean()
) :: t()

Executes a completion request using the AI model specified in the state. The
prompt is appended to the existing messages in the state as a system
message. Unless keep_prompt? is true, the system prompt will be removed
from the messages after the completion is received to keep the cascade of
instructions clean.

 get_state(state, key)

 @spec get_state(
 state :: t(),
 key :: atom() | list()
) :: {:ok, any()} | {:error, any()}

Retrieves a value from the internal state of the AI agent. key may be
either a single atom or a list of atoms representing a path to a value in the
internal map (per get_in/2 semantics).
When passing a list of keys, all keys must exist within the nested structure.
{:error, :not_found} will be returned if any key is missing.
Examples:
Get a single value
{:ok, value} = AI.Agent.Code.Common.get_state(state, :blarg)

Get a nested value
{:ok, value} = AI.Agent.Code.Common.get_state(state, [:blarg, :foo])

 new(agent, model, toolbox, system_prompt, user_prompt)

 @spec new(
 agent :: AI.Agent.t(),
 model :: AI.Model.t(),
 toolbox :: AI.Tools.toolbox(),
 system_prompt :: binary(),
 user_prompt :: binary()
) :: t()

Creates a new state for an AI agent that works with code. The initial message
list includes the system prompt and the user prompt, as provided.

 put_state(state, key, value)

 @spec put_state(
 state :: t(),
 key :: atom() | list(),
 value :: any()
) :: t()

Sets the internal, implementation-specific state for the AI agent. key
may be either a single atom or a list of atoms representing a path to a value
in the internal map (per put_in/3 semantics).
When passing a list of keys, all keys must exist within the nested structure.
An exception will be thrown (by put_in/3) if any key is missing.
Examples:
Set a single value
state = AI.Agent.Code.Common.put_state(state, :blarg, "how now brown beaurocrat")

Set a nested value
state = AI.Agent.Code.Common.put_state(state, [:blarg, :foo], "bar")

 report_task_outcome(state, task, error, outcome, follow_up_tasks)

 @spec report_task_outcome(
 state :: t(),
 task :: task(),
 error :: binary(),
 outcome :: binary(),
 follow_up_tasks :: [new_task()]
) :: :ok

 report_task_stack(state)

 @spec report_task_stack(state :: t()) :: any()

AI.Agent.Code.Patcher

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %AI.Agent.Code.Patcher{
 agent: AI.Agent.t(),
 changes: [binary()],
 contents: binary(),
 file: binary(),
 retry_counts: map(),
 tools: map()
}

AI.Agent.Code.RePatcher

This module's purpose is to highlight the frustrations of working with LLMs.

AI.Agent.Code.TaskImplementor

 Summary

 Types

 t()

 Types

 t()

 @type t() :: AI.Agent.Code.Common.t()

AI.Agent.Code.TaskPlanner

 Summary

 Types

 t()

 Types

 t()

 @type t() :: AI.Agent.Code.Common.t()

AI.Agent.Code.TaskValidator

 Summary

 Types

 t()

 Types

 t()

 @type t() :: AI.Agent.Code.Common.t()

AI.Agent.CodeMapper

AI.Agent.ConversationQA

 Summary

 Functions

 get_response(arg1)

 Callback implementation for AI.Agent.get_response/1.

 Functions

 get_response(arg1)

 @spec get_response(map()) :: {:ok, String.t()} | {:error, term()}

Callback implementation for AI.Agent.get_response/1.

AI.Agent.Coordinator

This agent applies a multi-step reasoning process to research, debug, and
code in response to the user's prompt.

 Summary

 Types

 error()

 input_opts()

 state()

 t()

 Types

 error()

 @type error() :: {:error, binary() | atom() | :testing}

 input_opts()

 @type input_opts() :: %{
 :agent => AI.Agent.t(),
 :conversation_pid => pid(),
 :edit => boolean(),
 :question => binary(),
 :replay => boolean(),
 :smart => boolean(),
 optional(:fonz) => boolean()
}

 state()

 @type state() :: t() | error()

 t()

 @type t() :: %AI.Agent.Coordinator{
 agent: AI.Agent.t(),
 context: non_neg_integer(),
 conversation_pid: pid(),
 edit?: boolean(),
 editing_tools_used: boolean(),
 followup?: boolean(),
 fonz: boolean(),
 interrupt_listener: pid() | nil,
 intuition: binary() | nil,
 last_response: binary() | nil,
 model: AI.Model.t(),
 notes: binary() | nil,
 pending_interrupts: AI.Util.msg_list(),
 project: binary(),
 question: binary(),
 replay: boolean(),
 steps: [atom()],
 usage: non_neg_integer()
}

AI.Agent.FileInfo

AI.Agent.FileSummary

This module provides an agent that summarizes files' contents in order to
generate embeddings for the database and summaries for the user.

AI.Agent.Intuition

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %AI.Agent.Intuition{
 agent: AI.Agent.t(),
 error: nil | term(),
 memories: nil | binary(),
 msgs: [AI.Util.msg()],
 perception: nil | binary(),
 reactions: nil | [binary()]
}

AI.Agent.MOTD

AI.Agent.Memory.Ingest

AI.Agent.Nomenclater

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %AI.Agent.Nomenclater{
 agent: AI.Agent.t(),
 attempt: non_neg_integer(),
 error: nil | binary(),
 names: nil | [binary()],
 used: [binary()],
 want: pos_integer()
}

AI.Agent.Researcher

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 dec_depth()

 depth()

 inc_depth()

 start_link()

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 dec_depth()

 depth()

 inc_depth()

 start_link()

AI.Agent.Spelunker

AI.Agent.Troubleshooter

AI.Completion

This module sends a request to the model and handles the response. It is able
to handle tool calls and responses.
Input options
	toolbox - a map of tool names to modules implementing AI.Tools; the specs list
is derived automatically via AI.Tools.toolbox_to_specs/1.

Output options
Output is controlled by the following mechanisms.
	log_msgs - log messages from the user and assistant as info
	log_tool_calls - log tool calls as info and tool call results as debug

LOGGER_LEVEL must be set to debug to see the output of tool call results.

 Summary

 Types

 response()

 t()

 Functions

 get(opts)

 handle_tool_call(state, map)

 new(opts)

 new_from_conversation(conversation, opts)

 tools_used(map)

 Returns a map of tool names to the number of times each tool was called in
the most recent round of the conversation, starting from the most recent user
message.

 Types

 response()

 @type response() ::
 {:ok, t()}
 | {:error, t()}
 | {:error, binary()}
 | {:error, :context_length_exceeded, non_neg_integer()}

 t()

 @type t() :: %AI.Completion{
 archive_notes: boolean(),
 compact?: bool(),
 conversation_pid: term(),
 is_compacting?: bool(),
 log_msgs: boolean(),
 log_tool_calls: boolean(),
 messages: [AI.Util.msg()],
 model: String.t(),
 name: String.t() | nil,
 replay_conversation: boolean(),
 response: String.t() | nil,
 response_format: map() | nil,
 specs: [AI.Tools.tool_spec()] | nil,
 tool_call_requests: list(),
 toolbox: AI.Tools.toolbox() | nil,
 usage: integer(),
 web_search?: boolean()
}

 Functions

 get(opts)

 @spec get(Keyword.t()) :: response()

 handle_tool_call(state, map)

 @spec handle_tool_call(t(), AI.Util.tool_call()) ::
 {:ok, AI.Util.tool_request_msg(), AI.Util.tool_response_msg()}

 new(opts)

 @spec new(Keyword.t()) :: {:ok, t()} | {:error, any()}

 new_from_conversation(conversation, opts)

 @spec new_from_conversation(Store.Project.Conversation.t(), Keyword.t()) ::
 {:ok, t()} | {:error, :conversation_not_found}

 tools_used(map)

 @spec tools_used(t()) :: %{required(binary()) => non_neg_integer()}

Returns a map of tool names to the number of times each tool was called in
the most recent round of the conversation, starting from the most recent user
message.

AI.Completion.Compaction

 Summary

 Functions

 compact(msgs)

 Functions

 compact(msgs)

 @spec compact(AI.Util.msg_list()) :: {:ok, AI.Util.msg_list(), non_neg_integer()}

AI.Completion.Output

 Summary

 Functions

 log_assistant_msg(state, msg)

 log_tool_call(state, step)

 log_tool_call(state, step, msg)

 log_tool_call_error(state, tool, args_json, reason)

 log_tool_call_result(state, step)

 log_tool_call_result(state, step, msg)

 log_user_msg(state, msg)

 on_event(state, arg2, arg3)

 replay_conversation(state)

 Replays an earlier conversation identically to the original interaction,
except that the final response is logged as a typical assistant message, so
that the conversation may be continued.

 replay_conversation_as_output(state)

 Replays the entire conversation, similarly to replay_conversation/1, but
prints the final message to STDOUT, identically to the original interaction.
This is intended to be used when replaying the entire conversation to
replicate the original interaction, rather than for the sake of continuing
the conversation to refine output.

 Functions

 log_assistant_msg(state, msg)

 log_tool_call(state, step)

 log_tool_call(state, step, msg)

 log_tool_call_error(state, tool, args_json, reason)

 log_tool_call_result(state, step)

 log_tool_call_result(state, step, msg)

 log_user_msg(state, msg)

 on_event(state, arg2, arg3)

 replay_conversation(state)

Replays an earlier conversation identically to the original interaction,
except that the final response is logged as a typical assistant message, so
that the conversation may be continued.

 replay_conversation_as_output(state)

Replays the entire conversation, similarly to replay_conversation/1, but
prints the final message to STDOUT, identically to the original interaction.
This is intended to be used when replaying the entire conversation to
replicate the original interaction, rather than for the sake of continuing
the conversation to refine output.

AI.CompletionAPI

 Summary

 Types

 model()

 msg_response()

 msgs()

 response()

 response_format()

 tool_response()

 tools()

 usage()

 web_search?()

 Functions

 get(model, msgs, tools \\ nil, response_format \\ nil, web_search? \\ false)

 Types

 model()

 @type model() :: AI.Model.t()

 msg_response()

 @type msg_response() :: {:ok, :msg, binary(), usage()}

 msgs()

 @type msgs() :: [map()]

 response()

 @type response() ::
 msg_response()
 | tool_response()
 | {:error, map()}
 | {:error, binary()}
 | {:error, :api_unavailable, any()}
 | {:error, :context_length_exceeded, non_neg_integer()}

 response_format()

 @type response_format() :: nil | map()

 tool_response()

 @type tool_response() :: {:ok, :tool, [map()]}

 tools()

 @type tools() :: nil | [AI.Tools.tool_spec()]

 usage()

 @type usage() :: non_neg_integer()

 web_search?()

 @type web_search?() :: boolean()

 Functions

 get(model, msgs, tools \\ nil, response_format \\ nil, web_search? \\ false)

 @spec get(model(), msgs(), tools(), response_format(), web_search?()) :: response()

AI.Embeddings

 Summary

 Types

 attempt()

 embedding()

 embeddings()

 error()

 inputs()

 Functions

 get(input)

 model_name()

 Returns the embeddings model name.

 Types

 attempt()

 @type attempt() :: non_neg_integer()

 embedding()

 @type embedding() :: [float()]

 embeddings()

 @type embeddings() :: [embedding()]

 error()

 @type error() ::
 {:error, :max_attempts_reached}
 | {:error, :http_error}
 | {:error, :transport_error}
 | {:error, String.t()}

 inputs()

 @type inputs() :: [String.t()]

 Functions

 get(input)

 @spec get(String.t()) :: {:ok, embeddings()} | error()

 model_name()

 @spec model_name() :: String.t()

Returns the embeddings model name.

AI.Endpoint behaviour

API endpoint abstraction.
This behavior encapsulates the common mechanics for calling API endpoints via
Http.post_json/3 and applying API-level retry semantics.
In particular, OpenAI rate limiting is surfaced as HTTP 429 with a JSON
body containing an error code (commonly "rate_limit_exceeded" or
"rate_limit").
Callers implement endpoint_path/0 and then call AI.Endpoint.post_json/3.

 Summary

 Types

 endpoint()

 headers()

 http_error()

 http_status()

 payload()

 response()

 success()

 transport_error()

 Callbacks

 endpoint_path()

 Functions

 post_json(endpoint_module, headers, payload)

 Perform a JSON POST request against the endpoint module's endpoint_path/0.
Retries up to 3 times when the server indicates throttling.

 retry_limit()

 The fixed retry limit for API calls.

 Types

 endpoint()

 @type endpoint() :: module()

 headers()

 @type headers() :: [{String.t(), String.t()}]

 http_error()

 @type http_error() :: {:http_error, {http_status(), String.t()}}

 http_status()

 @type http_status() :: integer()

 payload()

 @type payload() :: map()

 response()

 @type response() :: success() | http_error() | transport_error()

 success()

 @type success() :: {:ok, %{body: map(), headers: headers(), status: http_status()}}

 transport_error()

 @type transport_error() :: {:transport_error, any()}

 Callbacks

 endpoint_path()

 @callback endpoint_path() :: String.t()

 Functions

 post_json(endpoint_module, headers, payload)

 @spec post_json(endpoint(), headers(), payload()) :: response()

Perform a JSON POST request against the endpoint module's endpoint_path/0.
Retries up to 3 times when the server indicates throttling.

 retry_limit()

 @spec retry_limit() :: pos_integer()

The fixed retry limit for API calls.

AI.Model

 Summary

 Types

 reasoning_level()

 speed()

 t()

 Functions

 balanced()

 coding()

 fast()

 gpt5(reasoning \\ :medium)

 gpt5_mini(reasoning \\ :medium)

 gpt5_nano(reasoning \\ :medium)

 gpt41()

 gpt41_mini()

 gpt41_nano()

 gpt_4o_mini_search_preview()

 large_context()

 large_context(atom)

 new(model, context, reasoning \\ :medium)

 o4_mini(reasoning \\ :medium)

 smart()

 web_search()

 Types

 reasoning_level()

 @type reasoning_level() :: :none | :minimal | :low | :medium | :high | :default

 speed()

 @type speed() :: :smart | :balanced | :fast

 t()

 @type t() :: %AI.Model{
 context: non_neg_integer(),
 model: String.t(),
 reasoning: reasoning_level()
}

 Functions

 balanced()

 coding()

 fast()

 gpt5(reasoning \\ :medium)

 gpt5_mini(reasoning \\ :medium)

 gpt5_nano(reasoning \\ :medium)

 gpt41()

 gpt41_mini()

 gpt41_nano()

 gpt_4o_mini_search_preview()

 large_context()

 large_context(atom)

 new(model, context, reasoning \\ :medium)

 @spec new(String.t(), non_neg_integer(), reasoning_level()) :: t()

 o4_mini(reasoning \\ :medium)

 smart()

 web_search()

AI.Notes

Coordinates the mini-agents that manage project research notes. The workflow for this is:
	Initialize the notes with init/1, which loads existing notes from disk.
	Consolidate new notes from the prior research session.
This incorporates the new facts in the NEW NOTES section into the main body of the notes file.
	As user prompts arrive, ingest user messages with ingest_user_msg/2, which updates the user traits based on the user's messages.
	As tool calls are made, ingest research results with ingest_research/4, which extracts facts from the tool call results.
	Commit the newly gathered facts to disk with commit/1, which appends the new facts to the existing notes.
The new facts are stored in a special NEW NOTES section that is recognized by the consolidation agent.
These will be incorporated into the main notes body at the beginning of the next session.

The reason for this inverted workflow is because the consolidation process takes much longer than any of the other steps.
By performing it at the outset of a session, we reduce the impact of that unfortunate, abeit necessary, time delay on the user experience.

 Summary

 Types

 t()

 Functions

 ask(state, question, attempt \\ 1)

 collapse_unconsolidated_sections(text)

 commit(state)

 consolidate(state, attempt \\ 1)

 has_new_facts?()

 Returns true if the given notes struct's text contains the section header
"# new notes (unconsolidated)" (case-insensitive), indicating uncategorized
notes pending consolidation.

 has_new_facts?(state)

 deprecated

 ingest_research(state, func, args_json, result)

 ingest_user_msg(state, msg_text)

 init(state)

 new()

 Types

 t()

 @type t() :: %AI.Notes{new_facts: [binary()], user: binary()}

 Functions

 ask(state, question, attempt \\ 1)

 @spec ask(t(), binary(), non_neg_integer()) :: binary()

 collapse_unconsolidated_sections(text)

 commit(state)

 @spec commit(t()) :: {:ok, t()} | {:error, any()}

 consolidate(state, attempt \\ 1)

 @spec consolidate(t(), non_neg_integer()) ::
 {:ok, t()}
 | {:error, binary()}
 | {:error, :lock_failed}
 | {:callback_error, Exception.t()}

 has_new_facts?()

 @spec has_new_facts?() :: boolean()

Returns true if the given notes struct's text contains the section header
"# new notes (unconsolidated)" (case-insensitive), indicating uncategorized
notes pending consolidation.

 has_new_facts?(state)

 This function is deprecated. use has_new_facts?/0.

 @spec has_new_facts?(t()) :: boolean()

 ingest_research(state, func, args_json, result)

 @spec ingest_research(t(), binary(), binary(), any()) :: t()

 ingest_user_msg(state, msg_text)

 @spec ingest_user_msg(t(), binary()) :: t()

 init(state)

 @spec init(t()) :: t()

 new()

 @spec new() :: t()

AI.PretendTokenizer

OpenAI's tokenizer uses regexes that are not compatible with Erlang's regex
engine. There are a couple of modules available on hex, but all of them
require a working python installation, access to rustc, a number of external
dependencies, and some env flags set to allow it to compile.
Rather than impose that on end users, this module guesstimates token counts
based on OpenAI's assertion that 1 token is approximately 4 characters.
Callers must take that into account when selecting their chunk size,
including some amount of buffer to account for the inaccuracy of this
approximation.

 Summary

 Types

 chunk_size()

 chunked_input()

 input()

 reduction_factor()

 Functions

 chunk(input, chunk_size, reduction_factor)

 guesstimate_tokens(input)

 over_max_for_openai_embeddings?(input)

 Types

 chunk_size()

 @type chunk_size() :: non_neg_integer() | AI.Model.t()

 chunked_input()

 @type chunked_input() :: [String.t()]

 input()

 @type input() :: String.t()

 reduction_factor()

 @type reduction_factor() :: float()

 Functions

 chunk(input, chunk_size, reduction_factor)

 @spec chunk(input(), chunk_size(), reduction_factor()) :: chunked_input()

 guesstimate_tokens(input)

 over_max_for_openai_embeddings?(input)

AI.Splitter

This module is used to split a string into chunks by the number of tokens,
while accounting for other data that might be going with it to the API
endpoint with the limited token count.
For example, the search entry agent may be processing a large file, one that
must be split into 3 slices just to fit it into the payload of an API call.
In order to retain context between chunks, the agent essentially reduces
over the file, keeping track of information in the previous chunks to
generate a final summary. Doing that means that we need to not only split the
file by the number of tokens in each slice, but also keep some space for the
bespoke data that will be added to the payload as the agent's "accumulator".

 Summary

 Types

 t()

 Functions

 new(input, model)

 next_chunk(tok, bespoke_input)

 next_chunk(tok, bespoke_input, max_chunk_tokens)

 Returns the next chunk and updated splitter state, accounting for the bespoke input tokens.

 Types

 t()

 @type t() :: %AI.Splitter{done: boolean(), input: binary(), model: AI.Model.t()}

 Functions

 new(input, model)

 next_chunk(tok, bespoke_input)

 next_chunk(tok, bespoke_input, max_chunk_tokens)

Returns the next chunk and updated splitter state, accounting for the bespoke input tokens.
Optionally, a max_chunk_tokens can be provided to limit the chunk size explicitly.

AI.Tools behaviour

This module defines the behaviour for tool calls. Defining a new tool
requires implementing the spec/0 and call/2 functions.
The spec/0 function should return a map that describes the tool's
capabilities and arguments, using a map to represent the OpenAPI spec.
The call/2 function generates the tool call response. It accepts the
requesting AI.Completion's struct and a map derived from the parsed JSON
provided by the agent, containing the tool call arguments. Note that, because
the arguments are parsed from JSON, the keys will all be strings. Whether
those are converted to symbols is between the tool implementation and the
code it calls. What happens behind closed APIs is none of MY business.
Skeleton Implementation
defmodule AI.Tools.MyNewTool do
 @behaviour AI.Tools

 @impl AI.Tools
 def async?(), do: true

 @impl AI.Tools
 def ui_note_on_request(_args) do
 {"Doing something", "This tool is doing something."}
 end

 @impl AI.Tools
 def ui_note_on_result(_args, _result) do
 {"Did something", "This tool did something."}
 end

 @impl AI.Tools
 def read_args(args) do
 {:ok, args}
 end

 @impl AI.Tools
 def spec() do
 %{
 type: "function",
 function: %{
 name: "something_tool",
 description: "This tool does something.",
 strict: true,
 parameters: %{
 additionalProperties: false,
 type: "object",
 required: ["thing"],
 properties: %{
 thing: %{
 type: "string",
 description: "The thing to do."
 }
 }
 }
 }
 }
 end

 @impl AI.Tools
 def call(args) do
 {:ok, "IMPLEMENT ME"}
 end
end

 Summary

 Types

 args_error()

 entry()

 entry_not_found()

 frob_error()

 invalid_arg_error()

 json_parse_error()

 missing_arg_error()

 parsed_args()

 project()

 project_name()

 project_not_found()

 raw_tool_result()

 something_not_found()

 tool_error()

 tool_name()

 tool_result()

 tool_spec()

 toolbox()

 unknown_tool_error()

 unparsed_args()

 Callbacks

 async?()

 Returns true if the tool is asynchronous, false otherwise. If false, when
the LLM performs a multi-tool call, this tool will be called synchronously,
after all other (asynchronous) tools have been called.

 call(args)

 Calls the tool with the provided arguments and returns the response as an :ok
tuple.

 is_available?()

 Returns true if the tool is available for use, false otherwise. This is used
to determine whether the tool can be used in the current context, such as
whether the tool is available in the current project or if it requires
specific conditions to be met (e.g., a project being set, availability of an
external tool like ripgrep, etc.).

 read_args(args)

 Reads the arguments and returns a map of the arguments if they are valid.
This is used to validate args before the tool is called. The result is what
is passed to call/2, ui_note_on_request/1, and ui_note_on_result/2.

 spec()

 Returns the OpenAPI spec for the tool as an elixir map.

 tool_call_failure_message(args, reason)

 Returns a message to be displayed when a tool call fails. May return
:default, :ignore, a binary message, or a {label, detail} tuple.

 ui_note_on_request(args)

 Return either a short string or a string tuple of label + detail to be
displayed when the tool is called.

 ui_note_on_result(args, result)

 Return either a short string or a string tuple of label + detail to be
displayed when the tool call is successful.

 Functions

 all_tools()

 Returns a toolbox that includes all tools (basic, read/write, coding, task, and web tools).

 basic_tools()

 Returns a toolbox that includes all generally available tools and frobs.

 build_toolbox(modules)

 Given a list of modules, returns a map from tool_name => module, using each
module's spec().function.name value as the key.

 get_arg(opts, key)

 Retrieves an argument from the parsed arguments map. Empty strings or nil
values will return an error indicating a missing argument.

 get_entry(file)

 get_entry(project, file)

 get_file_contents(file)

 get_project()

 has_indexed_project()

 is_async?(tool_name, tools \\ nil)

 on_tool_error(tool, args, reason, tools \\ nil)

 on_tool_request(tool, args, tools \\ nil)

 on_tool_result(tool, args, result, tools \\ nil)

 perform_tool_call(tool, args, tools \\ nil)

 required_arg_error(key)

 tool_module(tool_name, tools \\ nil)

 tool_spec(tool, tools \\ nil)

 tool_spec!(tool, tools \\ nil)

 toolbox_to_specs(toolbox)

 Generate a list of tool specs from a toolbox map.

 tools()

 validate_required_args(tool, args, tools \\ nil)

 with_args(tool, args, fun, tools \\ nil)

 with_coding_tools(toolbox \\ %{})

 Adds the coding tools to the toolbox. Coding tools mutate the codebase, but
do so in an organized, planned way, rather than directly managing files.

 with_rw_tools(toolbox \\ %{})

 Adds the read/write tools to the toolbox. This includes tools that can
directly perform file edits, shell commands, and other read/write
operations.

 with_task_tools(toolbox \\ %{})

 Adds the task management tools to the toolbox. This includes tools that can
create and manage task lists.

 with_web_tools(toolbox \\ %{})

 Adds the web tools to the toolbox. This includes tools that can access the
web, such as web search.

 Types

 args_error()

 @type args_error() :: missing_arg_error() | invalid_arg_error()

 entry()

 @type entry() :: Store.Project.Entry.t()

 entry_not_found()

 @type entry_not_found() :: {:error, :enoent}

 frob_error()

 @type frob_error() :: {:error, non_neg_integer(), binary()}

 invalid_arg_error()

 @type invalid_arg_error() :: {:error, :invalid_argument, binary()}

 json_parse_error()

 @type json_parse_error() :: {:error, Jason.DecodeError.t()}

 missing_arg_error()

 @type missing_arg_error() :: {:error, :missing_argument, binary()}

 parsed_args()

 @type parsed_args() :: %{required(binary()) => any()} | %{required(atom()) => any()}

 project()

 @type project() :: Store.Project.t()

 project_name()

 @type project_name() :: binary() | nil

 project_not_found()

 @type project_not_found() :: {:error, :project_not_found} | {:error, :project_not_set}

 raw_tool_result()

 @type raw_tool_result() ::
 :ok | {:ok, any()} | {:error, any()} | :error | args_error() | frob_error()

 something_not_found()

 @type something_not_found() :: project_not_found() | entry_not_found()

 tool_error()

 @type tool_error() :: {:error, binary()}

 tool_name()

 @type tool_name() :: binary()

 tool_result()

 @type tool_result() ::
 {:ok, binary()}
 | unknown_tool_error()
 | args_error()
 | tool_error()
 | frob_error()

 tool_spec()

 @type tool_spec() :: %{
 type: binary(),
 function: %{
 :name => binary(),
 :description => binary(),
 optional(:strict) => boolean(),
 parameters: %{
 optional(:additionalProperties) => boolean(),
 type: binary(),
 required: [binary()],
 properties: %{
 required(binary()) => %{
 :type => binary(),
 :description => binary(),
 optional(:default) => any()
 }
 }
 }
 }
}

 toolbox()

 @type toolbox() :: %{required(binary()) => module()}

 unknown_tool_error()

 @type unknown_tool_error() :: {:error, :unknown_tool, binary()}

 unparsed_args()

 @type unparsed_args() :: binary()

 Callbacks

 async?()

 @callback async?() :: boolean()

Returns true if the tool is asynchronous, false otherwise. If false, when
the LLM performs a multi-tool call, this tool will be called synchronously,
after all other (asynchronous) tools have been called.

 call(args)

 @callback call(args :: map()) :: raw_tool_result()

Calls the tool with the provided arguments and returns the response as an :ok
tuple.

 is_available?()

 @callback is_available?() :: boolean()

Returns true if the tool is available for use, false otherwise. This is used
to determine whether the tool can be used in the current context, such as
whether the tool is available in the current project or if it requires
specific conditions to be met (e.g., a project being set, availability of an
external tool like ripgrep, etc.).

 read_args(args)

 @callback read_args(args :: map()) :: {:ok, map()} | args_error()

Reads the arguments and returns a map of the arguments if they are valid.
This is used to validate args before the tool is called. The result is what
is passed to call/2, ui_note_on_request/1, and ui_note_on_result/2.

 spec()

 @callback spec() :: tool_spec()

Returns the OpenAPI spec for the tool as an elixir map.

 tool_call_failure_message(args, reason)

 @callback tool_call_failure_message(args :: map(), reason :: any()) ::
 :default | :ignore | binary() | {binary(), binary()}

Returns a message to be displayed when a tool call fails. May return
:default, :ignore, a binary message, or a {label, detail} tuple.

 ui_note_on_request(args)

 @callback ui_note_on_request(args :: map()) :: {binary(), binary()} | binary() | nil

Return either a short string or a string tuple of label + detail to be
displayed when the tool is called.

 ui_note_on_result(args, result)

 @callback ui_note_on_result(args :: map(), result :: any()) ::
 {binary(), binary()} | binary() | nil

Return either a short string or a string tuple of label + detail to be
displayed when the tool call is successful.

 Functions

 all_tools()

 @spec all_tools() :: toolbox()

Returns a toolbox that includes all tools (basic, read/write, coding, task, and web tools).
WARNING: all_tools/0 includes mutational tools (file edits, shell commands, coding tools).
For normal runs, prefer basic_tools/0 with selective with_* merges. Reserve all_tools/0 for cases requiring full lookup fidelity
(e.g., replay, diagnostics).

 basic_tools()

 @spec basic_tools() :: toolbox()

Returns a toolbox that includes all generally available tools and frobs.

 build_toolbox(modules)

 @spec build_toolbox([module()] | %{required(binary()) => module()} | nil) :: toolbox()

Given a list of modules, returns a map from tool_name => module, using each
module's spec().function.name value as the key.

 get_arg(opts, key)

 @spec get_arg(parsed_args(), atom() | binary()) :: {:ok, any()} | missing_arg_error()

Retrieves an argument from the parsed arguments map. Empty strings or nil
values will return an error indicating a missing argument.

 get_entry(file)

 @spec get_entry(binary()) :: {:ok, entry()} | something_not_found()

 get_entry(project, file)

 @spec get_entry(Store.Project.t(), binary()) :: {:ok, entry()} | entry_not_found()

 get_file_contents(file)

 @spec get_file_contents(binary()) :: {:ok, binary()} | something_not_found()

 get_project()

 @spec get_project() :: {:ok, project()} | project_not_found()

 has_indexed_project()

 @spec has_indexed_project() :: boolean()

 is_async?(tool_name, tools \\ nil)

 @spec is_async?(tool_name(), toolbox() | nil) :: boolean()

 on_tool_error(tool, args, reason, tools \\ nil)

 @spec on_tool_error(tool_name(), parsed_args(), any(), toolbox() | nil) ::
 :default | :ignore | binary() | {binary(), binary()}

 on_tool_request(tool, args, tools \\ nil)

 @spec on_tool_request(tool_name(), parsed_args(), toolbox() | nil) ::
 {binary(), binary()} | binary() | nil

 on_tool_result(tool, args, result, tools \\ nil)

 @spec on_tool_result(tool_name(), parsed_args(), any(), toolbox() | nil) ::
 {binary(), binary()} | binary() | nil

 perform_tool_call(tool, args, tools \\ nil)

 @spec perform_tool_call(tool_name(), parsed_args(), toolbox() | nil) :: tool_result()

 required_arg_error(key)

 @spec required_arg_error(binary()) :: missing_arg_error()

 tool_module(tool_name, tools \\ nil)

 @spec tool_module(tool_name(), toolbox() | nil) ::
 {:ok, module()} | unknown_tool_error()

 tool_spec(tool, tools \\ nil)

 @spec tool_spec(tool_name(), toolbox() | nil) ::
 {:ok, tool_spec()} | {:error, :unknown_tool, binary()}

 tool_spec!(tool, tools \\ nil)

 @spec tool_spec!(tool_name(), toolbox() | nil) :: tool_spec()

 toolbox_to_specs(toolbox)

 @spec toolbox_to_specs(toolbox()) :: [tool_spec()]

Generate a list of tool specs from a toolbox map.

 tools()

 validate_required_args(tool, args, tools \\ nil)

 @spec validate_required_args(tool_name(), parsed_args(), toolbox() | nil) ::
 :ok | args_error()

 with_args(tool, args, fun, tools \\ nil)

 @spec with_args(tool_name(), parsed_args(), (parsed_args() -> any()), toolbox() | nil) ::
 any()

 with_coding_tools(toolbox \\ %{})

 @spec with_coding_tools(toolbox :: toolbox()) :: toolbox()

Adds the coding tools to the toolbox. Coding tools mutate the codebase, but
do so in an organized, planned way, rather than directly managing files.

 with_rw_tools(toolbox \\ %{})

 @spec with_rw_tools(toolbox :: toolbox()) :: toolbox()

Adds the read/write tools to the toolbox. This includes tools that can
directly perform file edits, shell commands, and other read/write
operations.

 with_task_tools(toolbox \\ %{})

 @spec with_task_tools(toolbox :: toolbox()) :: toolbox()

Adds the task management tools to the toolbox. This includes tools that can
create and manage task lists.

 with_web_tools(toolbox \\ %{})

 @spec with_web_tools(toolbox :: toolbox()) :: toolbox()

Adds the web tools to the toolbox. This includes tools that can access the
web, such as web search.

AI.Tools.ApplyPatch

Note: The current crop of LLMs appear to be extremely overfitted to a tool
called "apply_patch" for making code changes. This module is me giving up on
trying to prevent them from using the shell tool to call a non-existent
apply_patch command and instead trying rolling with it.

AI.Tools.Coder

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %AI.Tools.Coder{
 changes: [binary()],
 requirements: binary(),
 steps: non_neg_integer(),
 task_list_id: binary()
}

AI.Tools.Conversation

AI.Tools.File.Contents

AI.Tools.File.Edit

 Summary

 Types

 change()

 edit_result()

 exact()

 natural_language()

 Types

 change()

 @type change() :: natural_language() | exact()

 edit_result()

 @type edit_result() :: %{file: binary(), backup_file: binary(), diff: binary()}

 exact()

 @type exact() :: %{
 type: :exact,
 instruction: String.t(),
 old_string: String.t(),
 new_string: String.t(),
 replace_all: boolean()
}

 natural_language()

 @type natural_language() :: %{type: :natural_language, instruction: String.t()}

AI.Tools.File.Edit.OMFG

!@#$%^&*()_+ agents and their %$#@ing parameter shenanigans.
Goddamn Calling Patterns This Handles
The "Patch" Shenanigans
	{"patch": "some instruction"} → converts to proper instructions format
	{"changes": [{"patch": "..."}]} → normalizes patch params within changes

The "Insert After/Before" Madness
	{"insert_after": "anchor", "content": "new stuff"} → natural language instructions
	{"insert_before": "anchor", "content": "new stuff"} → natural language instructions
	Uses pattern field as anchor if provided, otherwise "the specified location"

The "Context + Pattern" Confusion
	{"context": "...", "pattern": "old", "content": "new"} → exact string matching
	{"pattern": "find this", "replacement": "replace with"} → old_string/new_string
	{"pattern": "modify this"} → natural language instruction when no replacement

The "Diff-Style Patch" Nightmare
	Parses *** Begin Patch / @@ / --- / +++ format patches
	Extracts meaningful + and - lines into "Add:" / "Remove:" instructions
	Falls back to using entire diff as instruction if parsing fails

Multiple Shenanigans Simultaneously
	Handles agents that use multiple insane patterns in one request
	Preserves unknown parameters for debugging (doesn't break on mystery params)
	Processes top-level patch + changes array without losing data

 Summary

 Functions

 normalize_agent_chaos(args)

 Normalize agent parameter chaos into something resembling sanity.

 Functions

 normalize_agent_chaos(args)

 @spec normalize_agent_chaos(map()) ::
 {:ok, map()} | {:error, String.t()} | AI.Tools.args_error()

Normalize agent parameter chaos into something resembling sanity.
Takes whatever creative parameter combinations agents dream up and
attempts to convert them into the expected format for the file edit tool.
Returns {:ok, normalized_args} or {:error, reason} if the shenanigans
are too creative even for us to handle.

AI.Tools.File.Edit.WhitespaceFitter

Deterministic, language-agnostic whitespace fitting for file hunks.
This module is intentionally not wired into AI.Tools.File.Edit yet.
It exists as a proof-of-concept for how we might:
	Infer indentation style (tabs vs spaces, indent width) from local context
	Re-base a replacement hunk's indentation to match the original region
	Prepare new_hunk_fitted that can be spliced in literally

The goal is to make fuzzy / whitespace-tolerant matching safer by
ensuring that once we have found the right region, we can adjust the
replacement's indentation to dovetail with the surrounding code
without relying on language-specific formatters or additional LLM
calls.

 Summary

 Types

 indent_style()

 line_info()

 Functions

 fit(context_before, orig_hunk, context_after, new_hunk_raw)

 Fit a replacement hunk's indentation to match local context.

 infer_indent_style(lines)

 Infer indentation style (tabs vs spaces, and space width) from a list of lines.

 Types

 indent_style()

 @type indent_style() :: %{type: :spaces | :tabs, width: pos_integer()}

 line_info()

 @type line_info() :: %{
 indent_cols: non_neg_integer(),
 content: String.t(),
 raw: String.t()
}

 Functions

 fit(context_before, orig_hunk, context_after, new_hunk_raw)

 @spec fit([String.t()], [String.t()], [String.t()], String.t()) :: String.t()

Fit a replacement hunk's indentation to match local context.
Inputs:
	context_before - lines before the original hunk (nearest first preferred)
	orig_hunk - the original lines in the region being replaced
	context_after - lines after the original hunk
	new_hunk_raw - the proposed replacement text (may have arbitrary indentation)

Output:
	A single string containing new_hunk_raw with indentation adjusted to
match the inferred style and depth of the original region.

Behavior (high level):
	Infer indentation style from context_before ++ orig_hunk ++ context_after.
	Determine the target base indentation for the region using the original
hunk, falling back to neighbors if needed.
	Compute relative indentation within new_hunk_raw and re-base it at the
target depth, preserving the replacement's internal structure.

This function is deliberately conservative: it only changes leading
whitespace and leaves the rest of each line untouched.

 infer_indent_style(lines)

 @spec infer_indent_style([String.t()]) :: indent_style()

Infer indentation style (tabs vs spaces, and space width) from a list of lines.
This looks only at leading whitespace on non-empty lines. If it sees any
leading tabs and no spaced indentation, it assumes a tab-indented style.
Otherwise, it looks at the distribution of leading space counts and picks a
representative width (e.g., 2 or 4).
If there is not enough information, it falls back to %{type: :spaces, width: 2}.

AI.Tools.File.Info

AI.Tools.File.List

AI.Tools.File.Notes

AI.Tools.File.Reindex

AI.Tools.File.Search

 Summary

 Functions

 is_available?()

 This tool requires that the project has been indexed to use. If the project
has not been indexed, the tool should not be made available.

 Functions

 is_available?()

This tool requires that the project has been indexed to use. If the project
has not been indexed, the tool should not be made available.

AI.Tools.File.Spelunker

AI.Tools.ListProjects

Lists all available projects except for the current project.

AI.Tools.Memory

AI.Tools.Notes

AI.Tools.Notify

AI.Tools.Research

AI.Tools.Shell

AI.Tools.TaskValidation

Explicit validation tool that wraps the heavy QA validator.
Use this when you want to validate the set of completed tasks holistically.
The tool will compute a change summary from the current task list.

AI.Tools.Tasks.AddTask

Tool to add a new task to a Services.Task list.

AI.Tools.Tasks.CreateList

Tool to create a new Services.Task list.

AI.Tools.Tasks.PushTask

Tool to push a new task to the front of a Services.Task list.

AI.Tools.Tasks.ResolveTask

Tool to resolve a task as success or failure in a Services.Task list.

AI.Tools.Tasks.ShowList

Tool to return a task list as a formatted, detailed string.

AI.Tools.Troubleshooter

AI.Tools.WebSearch

AI.Util

 Summary

 Types

 content_msg()

 msg()

 msg_list()

 tool_call()

 tool_call_parsed()

 tool_request_msg()

 tool_response_msg()

 Functions

 assistant_msg(msg)

 Creates an assistant message object, representing the assistant's response.

 assistant_tool_msg(id, func, args)

 This is the tool call message, which must come immediately before the
tool_msg/3 message with the same tool_call_id (id).

 cosine_similarity(vec1, vec2)

 is_system_msg?(msg)

 A guard to identify system messages.

 research_transcript(msgs)

 Builds a "transcript" of the research process by converting the messages into
text. This is most commonly used to generate a transcript of the research
performed in a conversation for various agents and tool calls.

 system_msg(msg)

 Creates a system message object, used to define the assistant's behavior for
the conversation.

 tool_msg(id, func, output)

 This is the tool outputs message, which must come immediately after the
assistant_tool_msg/3 message with the same tool_call_id (id).

 user_msg(msg)

 Creates a user message object, representing the user's input prompt.

 user_query(messages)

 Extracts the user's most recent query from the conversation messages.

 Types

 content_msg()

 @type content_msg() :: %{role: binary(), content: binary()}

 msg()

 @type msg() :: content_msg() | tool_request_msg() | tool_response_msg()

 msg_list()

 @type msg_list() :: [msg()]

 tool_call()

 @type tool_call() :: %{
 id: binary(),
 type: binary(),
 function: %{name: binary(), arguments: binary()}
}

 tool_call_parsed()

 @type tool_call_parsed() :: %{
 id: binary(),
 type: binary(),
 function: %{name: binary(), arguments: map()}
}

 tool_request_msg()

 @type tool_request_msg() :: %{
 role: binary(),
 content: nil,
 tool_calls: [tool_call_parsed()]
}

 tool_response_msg()

 @type tool_response_msg() :: %{
 role: binary(),
 name: binary(),
 tool_call_id: binary(),
 content: binary()
}

 Functions

 assistant_msg(msg)

 @spec assistant_msg(binary()) :: content_msg()

Creates an assistant message object, representing the assistant's response.

 assistant_tool_msg(id, func, args)

 @spec assistant_tool_msg(binary(), binary(), binary()) :: tool_request_msg()

This is the tool call message, which must come immediately before the
tool_msg/3 message with the same tool_call_id (id).

 cosine_similarity(vec1, vec2)

 @spec cosine_similarity([float()], [float()]) :: float()

 is_system_msg?(msg)

 (macro)

A guard to identify system messages.

 research_transcript(msgs)

 @spec research_transcript([msg()]) :: binary()

Builds a "transcript" of the research process by converting the messages into
text. This is most commonly used to generate a transcript of the research
performed in a conversation for various agents and tool calls.

 system_msg(msg)

 @spec system_msg(binary()) :: content_msg()

Creates a system message object, used to define the assistant's behavior for
the conversation.

 tool_msg(id, func, output)

 @spec tool_msg(binary(), binary(), any()) :: tool_response_msg()

This is the tool outputs message, which must come immediately after the
assistant_tool_msg/3 message with the same tool_call_id (id).

 user_msg(msg)

 @spec user_msg(binary()) :: content_msg()

Creates a user message object, representing the user's input prompt.

 user_query(messages)

 @spec user_query([msg()]) :: binary() | nil

Extracts the user's most recent query from the conversation messages.

Browser behaviour

Behaviour for launching a browser (or equivalent) to open a URL.
Abstracts OS-specific browser launch semantics behind open/1.
Tests can inject a no-op or recording mock; production uses Browser.Default.
Introduced: M3 (DI boundary for browser launching).

 Summary

 Callbacks

 open(t)

 Callbacks

 open(t)

 @callback open(String.t()) :: :ok | {:error, term()}

Browser.Default

Default OS-aware browser launcher.
macOS: uses open.
Linux: uses xdg-open.
Fallback: prints the URL via UI.info/2 when a suitable launcher is not available.
Notes:
	Designed for DI; tests should inject a mock instead of using this module.

Introduced: M3.

Cmd behaviour

 Summary

 Callbacks

 requires_project?()

 run(opts, subcommands, unknown)

 spec()

 Functions

 default_workers()

 perform_command(cmd, opts, subcommands, unknown)

 project_arg()

 quiet_flag()

 workers_arg()

 Callbacks

 requires_project?()

 @callback requires_project?() :: boolean()

 run(opts, subcommands, unknown)

 @callback run(opts :: map(), subcommands :: list(), unknown :: list()) :: any()

 spec()

 @callback spec() :: Keyword.t()

 Functions

 default_workers()

 perform_command(cmd, opts, subcommands, unknown)

 project_arg()

 quiet_flag()

 workers_arg()

Cmd.Ask

 Summary

 Functions

 set_auto_policy(arg1)

 validate_auto(opts)

 Functions

 set_auto_policy(arg1)

 validate_auto(opts)

 @spec validate_auto(map()) :: :ok | {:error, atom() | binary()}

Cmd.Config

Cmd.Config.MCP

Aggregator for MCP commands. Directly handles list, check, add, update, and remove operations,
and delegates login and status commands to specialized submodules.

 Summary

 Functions

 run(opts, list, args)

 Functions

 run(opts, list, args)

 @spec run(map(), list(), list()) :: :ok

Cmd.Config.MCP.CheckFormatter

Formats MCP check results in a human-friendly format with checkmarks.

 Summary

 Functions

 format_results(map)

 Formats the test results from Services.MCP.test/1 into human-readable output.

 Functions

 format_results(map)

 @spec format_results(map()) :: :ok

Formats the test results from Services.MCP.test/1 into human-readable output.

Cmd.Config.MCP.Login

MCP OAuth2 login entrypoint under the config namespace.
Performs the Authorization Code + PKCE flow using the configured adapter,
opens the authorization URL in a browser, awaits the loopback callback, and
persists tokens in the credentials store.

 Summary

 Functions

 run(opts, list1, list2)

 Functions

 run(opts, list1, list2)

 @spec run(map(), list(), list()) :: :ok

Cmd.Config.MCP.Status

Show MCP OAuth token status for a server under the config namespace.

 Summary

 Functions

 run(opts, list1, list2)

 Functions

 run(opts, list1, list2)

 @spec run(map(), list(), list()) :: :ok

Cmd.Conversations

Cmd.Files

Cmd.Frobs

Cmd.Index

 Summary

 Types

 t()

 Functions

 index_project(idx)

 new(opts)

 perform_task(other)

 run_as_tool_call(opts)

 This function is used to run the indexing process as a tool call from within
the file_reindex_tool tool.

 Types

 t()

 @type t() :: %Cmd.Index{
 has_notes?: term(),
 indexer: term(),
 opts: term(),
 project: term()
}

 Functions

 index_project(idx)

 new(opts)

 perform_task(other)

 run_as_tool_call(opts)

This function is used to run the indexing process as a tool call from within
the file_reindex_tool tool.

Cmd.Memory

Cmd.Notes

Cmd.Prime

Cmd.Projects

Cmd.Replay

Cmd.Search

Cmd.Summary

Cmd.Torch

 Summary

 Functions

 run(opts, subcommands, unknown)

 Permanently deletes the project from the store.

 Functions

 run(opts, subcommands, unknown)

Permanently deletes the project from the store.

Cmd.Upgrade

FileLock

Cross-process filesystem lock helpers for arbitrary files. Uses a lock dir
with atomic stale lock takeover.
API is intentionally small:
	acquire_lock(path)
	release_lock(path)
	with_lock(path, fun, opts \ [])

 Summary

 Functions

 acquire_lock(path)

 Acquire a lock directory alongside the file at path.

 release_lock(path)

 Release the lock directory created for path.

 with_lock(path, fun, opts \\ [])

 Execute fun while holding a lock for path.

 Functions

 acquire_lock(path)

 @spec acquire_lock(path :: binary()) :: :ok | {:error, term()}

Acquire a lock directory alongside the file at path.
Returns :ok on success, {:error, reason} on failure.

 release_lock(path)

 @spec release_lock(path :: binary()) :: :ok

Release the lock directory created for path.

 with_lock(path, fun, opts \\ [])

 @spec with_lock(binary(), (-> any()), keyword()) ::
 {:ok, any()}
 | {:error, :lock_failed}
 | {:error, term()}
 | {:callback_error, Exception.t()}

Execute fun while holding a lock for path.
Returns:
	{:ok, result} when the callback returns normally
	{:error, :lock_failed} when the lock cannot be acquired
	{:callback_error, exception} when the callback raises
	any {:error, reason} tuple returned by the callback itself

Fnord

Fnord is a code search tool that uses OpenAI's embeddings API to index and
search code files.

 Summary

 Functions

 configure_logger()

 main(args)

 Main entry point for the application. Parses command line arguments and
dispatches to the appropriate subcommand.

 spec()

 Functions

 configure_logger()

 main(args)

Main entry point for the application. Parses command line arguments and
dispatches to the appropriate subcommand.

 spec()

Frobs

Frobs are external tool call integrations. They allow users to define
external actions that can be executed by the LLM while researching the user's
query.
Frobs are stored in $HOME/.fnord/tools/$frob_name and are composed of:
	spec.json: A JSON file that defines the tool call's calling semantics
	main: A script or binary that performs the action
	available: A script or binary that exits non-zero if the frob is not available in the current context (e.g. dependencies,
 environment, etc.)

Enablement via Settings.Frobs:
Frobs are enabled via settings.json using approvals-style arrays managed by Settings.Frobs:
	Global: top-level frobs array of names
	Project: per-project projects.<name>.frobs arrays
The effective enabled set is the union of global and the currently selected project's list.

Runtime environment:
Fnord communicates run-time information to the frob via environment variables:
	FNORD_PROJECT # The name of the currently selected project
	FNORD_CONFIG # JSON object of project config
	FNORD_ARGS_JSON # JSON object of LLM-provided arguments

 Summary

 Types

 t()

 Functions

 create(name)

 create_tool_module(frobs)

 create_tool_module(name, spec)

 is_available?(name)

 list()

 load(name)

 load_all_modules()

 module_map()

 perform_tool_call(name, args_json)

 Types

 t()

 @type t() :: %Frobs{
 available: term(),
 home: term(),
 main: term(),
 module: term(),
 name: term(),
 spec: term()
}

 Functions

 create(name)

 create_tool_module(frobs)

 create_tool_module(name, spec)

 is_available?(name)

 list()

 @spec list() :: [t()]

 load(name)

 load_all_modules()

 @spec load_all_modules() :: :ok

 module_map()

 @spec module_map() :: %{required(binary()) => module()}

 perform_tool_call(name, args_json)

Frobs.Migrate

One-time migration from per-frob registry.json files to settings.json
frob arrays. After successful migration of a frob, its registry.json is
deleted to prevent stale configuration.

 Summary

 Functions

 maybe_migrate_registry_to_settings()

 Functions

 maybe_migrate_registry_to_settings()

 @spec maybe_migrate_registry_to_settings() :: :ok

GitCli

Wrapper for direct git CLI calls. Provides helper functions for repo checks,
formatted info messages, and listing ignored files in a given root.

 Summary

 Functions

 current_branch()

 git_info()

 ignored_files(root)

 Returns an empty map if root is nil, otherwise behaves as before.

 is_git_repo?()

 is_worktree?()

 repo_root()

 worktree_root()

 Functions

 current_branch()

 @spec current_branch() :: String.t() | nil

 git_info()

 @spec git_info() :: String.t()

 ignored_files(root)

 @spec ignored_files(String.t() | nil) :: map()

Returns an empty map if root is nil, otherwise behaves as before.

 is_git_repo?()

 @spec is_git_repo?() :: boolean()

 is_worktree?()

 repo_root()

 worktree_root()

Http

 Summary

 Types

 get_response()

 header()

 headers()

 http_error()

 http_status()

 json_response()

 options()

 payload()

 post_response()

 query()

 success()

 transport_error()

 url()

 Functions

 get(url, headers \\ [], query \\ nil)

 Sends a GET request to the specified URL with the given headers and query
parameters. Returns a tuple with the response status and body, or an error if
the request fails.

 post_json(url, headers, payload)

 Sends a POST request with a JSON payload to the specified URL with the given
headers. Returns a tuple with the response status and body, or an error if
the request fails.

 Types

 get_response()

 @type get_response() :: {:ok, String.t()} | http_error() | transport_error()

 header()

 @type header() :: {String.t(), String.t()}

 headers()

 @type headers() :: [header()]

 http_error()

 @type http_error() :: {:http_error, {http_status(), String.t()}}

 http_status()

 @type http_status() :: integer()

 json_response()

 @type json_response() :: %{body: map(), headers: list(), status: http_status()}

 options()

 @type options() :: keyword()

 payload()

 @type payload() :: map()

 post_response()

 @type post_response() :: success() | http_error() | transport_error()

 query()

 @type query() :: map() | String.t() | nil

 success()

 @type success() :: {:ok, json_response()}

 transport_error()

 @type transport_error() :: {:transport_error, any()}

 url()

 @type url() :: String.t()

 Functions

 get(url, headers \\ [], query \\ nil)

 @spec get(url(), headers(), query()) :: get_response()

Sends a GET request to the specified URL with the given headers and query
parameters. Returns a tuple with the response status and body, or an error if
the request fails.
Retries up to 10 times on 5xx HTTP responses and on select
transient transport errors using exponential backoff with jitter.

 post_json(url, headers, payload)

 @spec post_json(url(), headers(), payload()) :: post_response()

Sends a POST request with a JSON payload to the specified URL with the given
headers. Returns a tuple with the response status and body, or an error if
the request fails.
Retries up to 10 times on 5xx HTTP responses and on select
transient transport errors using exponential backoff with jitter.

HttpPool

Provides a per-process HTTP pool override mechanism for Hackney pools.
By default, calls to HTTP clients will use the :ai_api pool. Processes such
as background indexers can override this setting locally, ensuring their
HTTP requests are routed through a dedicated :ai_indexer pool without
affecting other processes.

 Summary

 Functions

 clear()

 Clears any HTTP pool override in the current process, reverting to default.

 get()

 Returns the current process HTTP pool override, defaulting to :ai_api.

 set(pool)

 Overrides the HTTP pool for the current process.

 with_pool(pool, fun)

 Temporarily sets the HTTP pool override for the duration of the given function.

 Functions

 clear()

 @spec clear() :: :ok

Clears any HTTP pool override in the current process, reverting to default.

 get()

 @spec get() :: atom()

Returns the current process HTTP pool override, defaulting to :ai_api.

 set(pool)

 @spec set(atom()) :: :ok

Overrides the HTTP pool for the current process.
Examples
HttpPool.set(:ai_indexer)

 with_pool(pool, fun)

 @spec with_pool(atom(), (-> any())) :: any()

Temporarily sets the HTTP pool override for the duration of the given function.
The pool override is restored to its previous value after the function returns or raises.

Indexer behaviour

This behaviour wraps the AI-powered operations used by Cmd.Index to allow
overrides for testing. See impl/0.

 Summary

 Types

 completion()

 embeddings()

 error()

 file_content()

 file_path()

 indexer()

 Callbacks

 get_embeddings(file_content)

 get_outline(file_path, file_content)

 get_summary(file_path, file_content)

 Functions

 impl()

 Returns the current indexer module. This can be overridden by config for unit
testing. See test/test_helper.exs.

 Types

 completion()

 @type completion() :: {:ok, String.t()}

 embeddings()

 @type embeddings() :: {:ok, [float()]}

 error()

 @type error() :: {:error, term()}

 file_content()

 @type file_content() :: String.t()

 file_path()

 @type file_path() :: String.t()

 indexer()

 @type indexer() :: module()

 Callbacks

 get_embeddings(file_content)

 @callback get_embeddings(file_content()) :: embeddings() | error()

 get_outline(file_path, file_content)

 @callback get_outline(file_path(), file_content()) :: completion() | error()

 get_summary(file_path, file_content)

 @callback get_summary(file_path(), file_content()) :: completion() | error()

 Functions

 impl()

Returns the current indexer module. This can be overridden by config for unit
testing. See test/test_helper.exs.

MCP.EndpointDiscovery

Auto-discovers MCP endpoint paths when the default path returns 404.

 Summary

 Functions

 discover(base_url, paths \\ ["/mcp", "/", "/api/mcp", "/mcp/v1"], opts \\ [])

 Attempts to discover the MCP endpoint path by trying common paths.
Returns {:ok, path} if a working path is found, {:error, reason} otherwise.

 prompt_and_save(server_name, path, scope)

 Prompts the user to save the discovered path to settings.
Returns :ok if saved (or user declined), {:error, reason} on failure.

 Functions

 discover(base_url, paths \\ ["/mcp", "/", "/api/mcp", "/mcp/v1"], opts \\ [])

 @spec discover(String.t(), [String.t()], keyword()) ::
 {:ok, String.t()} | {:error, term()}

Attempts to discover the MCP endpoint path by trying common paths.
Returns {:ok, path} if a working path is found, {:error, reason} otherwise.
Options
	:server - Server name for OAuth header lookup
	:config - Server configuration map (for OAuth)

 prompt_and_save(server_name, path, scope)

 @spec prompt_and_save(String.t(), String.t(), :global | {:project, String.t()}) ::
 :ok | {:error, term()}

Prompts the user to save the discovered path to settings.
Returns :ok if saved (or user declined), {:error, reason} on failure.

MCP.OAuth2.Adapter behaviour

Behaviour for DI-friendly OAuth2/OIDC Authorization Code + PKCE flow.
This behaviour abstracts the "start flow" step so tests can inject a mock
implementation and production can perform real discovery/flow creation.
Responsibilities:
	Provide a single entry point for beginning the auth flow and returning
{port, state, verifier, auth_url, redirect_uri} semantics required by the
loopback finalize path.

Introduced: M3 (OAuth CLI orchestration, DI boundary).

 Summary

 Callbacks

 start_flow(map)

 Callbacks

 start_flow(map)

 @callback start_flow(map()) ::
 {:ok, non_neg_integer(), String.t(), String.t(), String.t(), String.t()}
 | {:error, term()}

MCP.OAuth2.Adapter.Default

Default OAuth2 Authorization Code + PKCE adapter.
Reserves an ephemeral 127.0.0.1 port, composes the loopback redirect_uri,
and delegates to MCP.OAuth2.Client.start_flow/1. Maps common provider
rejections (e.g., HTTP 400 for redirect URIs) to actionable error tuples.
Security:
	Avoids logging sensitive values.
	Redirect URIs use 127.0.0.1 ephemeral port per RFC 8252 guidance.

Introduced: M3.
Updated: M7 - Switched from OidccAdapter to pure OAuth2 Client

 Summary

 Functions

 start_flow(oauth)

 Callback implementation for MCP.OAuth2.Adapter.start_flow/1.

 Functions

 start_flow(oauth)

 @spec start_flow(map()) ::
 {:ok, non_neg_integer(), String.t(), String.t(), String.t(), String.t()}
 | {:error, term()}

Callback implementation for MCP.OAuth2.Adapter.start_flow/1.

MCP.OAuth2.Bridge

Builds Authorization header for MCP transports.
If token is near expiry, attempts a refresh via Client and persists.

 Summary

 Functions

 authorization_header(server, cfg, opts \\ [])

 Functions

 authorization_header(server, cfg, opts \\ [])

 @spec authorization_header(String.t(), map(), keyword()) ::
 {:ok, [{String.t(), String.t()}]} | {:error, term()}

MCP.OAuth2.Client

Pure OAuth2 + PKCE client implementation for MCP servers.
Unlike OIDC libraries (like oidcc), this works with OAuth2 Authorization Server
discovery (RFC 8414) at /.well-known/oauth-authorization-server, not just
OpenID Connect discovery at /.well-known/openid-configuration.
Implements:
	Authorization Code flow with PKCE (RFC 7636)
	Token refresh (RFC 6749)
	OAuth2 server metadata discovery (RFC 8414)

Security:
	PKCE is always required (S256 challenge method)
	Tokens are never logged
	Uses secure random generation for state and verifier

 Summary

 Types

 config()

 tokens()

 Functions

 handle_callback(cfg, params, expected_state, code_verifier)

 Handle OAuth2 callback and exchange authorization code for tokens.

 refresh_token(cfg, refresh_token)

 Refresh an expired access token using the refresh token.

 start_flow(cfg)

 Start OAuth2 authorization flow with PKCE.

 Types

 config()

 @type config() :: %{
 :discovery_url => String.t(),
 :client_id => String.t(),
 optional(:client_secret) => String.t(),
 redirect_uri: String.t(),
 scopes: [String.t()]
}

 tokens()

 @type tokens() :: %{
 access_token: String.t(),
 token_type: String.t(),
 expires_at: non_neg_integer(),
 refresh_token: String.t() | nil,
 scope: String.t() | nil
}

 Functions

 handle_callback(cfg, params, expected_state, code_verifier)

 @spec handle_callback(config(), map(), String.t(), String.t()) ::
 {:ok, tokens()} | {:error, term()}

Handle OAuth2 callback and exchange authorization code for tokens.
Validates state, extracts code, exchanges for tokens with PKCE verifier.
Returns: {:ok, tokens} with normalized token map

 refresh_token(cfg, refresh_token)

 @spec refresh_token(config(), String.t()) :: {:ok, tokens()} | {:error, term()}

Refresh an expired access token using the refresh token.
Returns: {:ok, tokens} with new access token and possibly new refresh token

 start_flow(cfg)

 @spec start_flow(config()) ::
 {:ok, %{auth_url: String.t(), state: String.t(), code_verifier: String.t()}}
 | {:error, term()}

Start OAuth2 authorization flow with PKCE.
Fetches server metadata, generates PKCE parameters, and builds authorization URL.
Returns: {:ok, %{auth_url: String.t(), state: String.t(), code_verifier: String.t()}}

MCP.OAuth2.CredentialsStore

Minimal credentials store for OAuth2 tokens.
	JSON file at ~/.fnord/credentials.json
	Atomic writes (.tmp + rename), final perms set to 0600
	Per-server entries under the "servers" key

MVP: no encryption; keep tokens out of logs; caller is responsible for locking if needed.

 Summary

 Functions

 delete(server)

 path()

 read(server)

 read_all()

 write(server, token_map)

 Functions

 delete(server)

 @spec delete(String.t()) :: :ok | {:error, term()}

 path()

 @spec path() :: String.t()

 read(server)

 @spec read(String.t()) :: {:ok, map()} | {:error, :not_found | term()}

 read_all()

 @spec read_all() :: {:ok, map()} | {:error, term()}

 write(server, token_map)

 @spec write(String.t(), map()) :: :ok | {:error, term()}

MCP.OAuth2.Discovery

OAuth2 server discovery and automatic configuration.
Implements RFC 8414 Authorization Server Metadata discovery.

 Summary

 Functions

 discover_and_setup(base_url, opts \\ [])

 Discover OAuth2 configuration and set up authentication automatically.

 Functions

 discover_and_setup(base_url, opts \\ [])

 @spec discover_and_setup(
 String.t(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Discover OAuth2 configuration and set up authentication automatically.
Parameters
	base_url: The MCP server's base URL
	opts: Configuration options	:client_id - Use existing client_id (skip registration)
	:client_secret - Client secret (optional)
	:scope - List of scopes (default: auto-detect)
	:redirect_port - Port to use for redirect URI (for registration)

Returns
	{:ok, oauth_config} - Ready-to-use OAuth configuration map
	{:error, reason} - Discovery or setup failed

OAuth Config Structure
 %{
"discovery_url" => String.t(),
"client_id" => String.t(),
"client_secret" => String.t() | nil,
"scopes" => [String.t()]
 }

MCP.OAuth2.Loopback

Minimal loopback HTTP server for OAuth2 Authorization Code callback.
	Binds to 127.0.0.1 on an ephemeral port
	Exposes GET /callback to capture code and state
	Delegates token exchange to MCP.OAuth2.Client.handle_callback/4
	Persists tokens via MCP.OAuth2.CredentialsStore
	Returns a tiny HTML page and stops itself

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 run(cfg, base_url, server_key, expected_state, code_verifier, port \\ 0, timeout_ms \\ 120_000)

 Run the loopback flow until one callback is handled or timeout.
Returns the token map on success.

 start(cfg, server_key, expected_state, code_verifier, port \\ 0)

 Start the server and return {pid, port} so the caller can construct the redirect_uri.

 start_link(opts)

 Start the loopback server on 127.0.0.1:0, returning bound port.

 Types

 t()

 @type t() :: %{
 server_ref: pid(),
 port: non_neg_integer(),
 state: String.t(),
 code_verifier: String.t(),
 cfg: map(),
 server_key: String.t()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 run(cfg, base_url, server_key, expected_state, code_verifier, port \\ 0, timeout_ms \\ 120_000)

 @spec run(
 map(),
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 non_neg_integer(),
 non_neg_integer()
) :: {:ok, map()} | {:error, term()}

Run the loopback flow until one callback is handled or timeout.
Returns the token map on success.

 start(cfg, server_key, expected_state, code_verifier, port \\ 0)

 @spec start(map(), String.t(), String.t(), String.t(), non_neg_integer()) ::
 {:ok, pid(), non_neg_integer()} | {:error, term()}

Start the server and return {pid, port} so the caller can construct the redirect_uri.

 start_link(opts)

 @spec start_link(keyword()) :: GenServer.on_start()

Start the loopback server on 127.0.0.1:0, returning bound port.

MCP.OAuth2.Registration

RFC 7591 Dynamic Client Registration for OAuth2.
Allows automatic registration of native clients with OAuth providers.

 Summary

 Functions

 register(registration_endpoint, opts \\ [])

 Register a new OAuth client with the authorization server.

 Functions

 register(registration_endpoint, opts \\ [])

 @spec register(
 String.t(),
 keyword()
) ::
 {:ok, %{client_id: String.t(), client_secret: String.t() | nil}}
 | {:error, term()}

Register a new OAuth client with the authorization server.
Uses RFC 7591 Dynamic Client Registration to automatically obtain a client_id
without requiring manual pre-registration.
Parameters
	registration_endpoint: The registration endpoint URL from discovery
	opts: Optional overrides	:client_name - Application name (default: "fnord")
	:redirect_uris - Callback URIs (default: ["http://127.0.0.1/callback"])

Returns
	{:ok, %{client_id: String.t(), client_secret: String.t() | nil}}

	{:error, reason}

MCP.Supervisor

Supervisor for MCP client instances for the current invocation.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 instance_name(server)

 start_link(opts \\ [])

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 instance_name(server)

 @spec instance_name(String.t()) :: atom()

 start_link(opts \\ [])

 @spec start_link(keyword()) :: Supervisor.on_start()

MCP.Transport

Convert MCP server config into Hermes transport tuples and helpers for OAuth header injection

 Summary

 Types

 t()

 Hermes transport tuple

 Functions

 map(server, cfg)

 Convert server config map into a Hermes transport tuple

 Types

 t()

 @type t() ::
 {:stdio, keyword()} | {:streamable_http, keyword()} | {:websocket, keyword()}

Hermes transport tuple

 Functions

 map(server, cfg)

 @spec map(String.t(), map()) :: {atom(), keyword()}

Convert server config map into a Hermes transport tuple

MCP.Util

 Summary

 Functions

 debug(msg)

 debug(msg, detail)

 Functions

 debug(msg)

 debug(msg, detail)

Memory behaviour

 Summary

 Types

 scope()

 t()

 Callbacks

 exists?(title)

 Returns true if a memory with the given title exists in the impl's storage.

 forget(title)

 Deletes the given memory from the impl's storage. The impl is responsible
for locking any shared resources and ensuring atomic delete behavior. Expects
an :error tuple if the memory does not exist.

 init()

 Performs any necessary one-time initialization for the impl's storage. For
example, creating directories, loading currently select project from
Services.Globals, etc.

 is_available?()

 Returns true if this memory implementation is available in the current context.
For example, project memory requires a selected project, and session memory
requires an active conversation.

 list()

 Returns a list of all memory titles available in the impl's storage. Ordering
is not guaranteed.

 read(title)

 Reads and returns the memory with the given title from the impl's storage.
The impl is responsible for ensuring that the returned memory is in the
correct structural format, including atomic keys (e.g. not strings if
unmarshalling JSON from disk).

 save(memory)

 Saves the given memory to the impl's storage. The impl is responsible for
locking any shared resources and ensuring atomic write behavior. It is
expected that the title of the memory is unique, and any existing memory
with the same title will be overwritten.

 Functions

 append(memory, new_content)

 exists?(arg1, title)

 forget(map)

 generate_embeddings(memory)

 ingest_all_conversations()

 Ingest all conversations in the current project into long-term memory.
Conversations that have not changed since their last ingestion are skipped.
The current conversation (if any) is also skipped.

 ingest_conversation(conversation)

 Ingest a single conversation into long-term memory. Conversations that have
not changed since their last ingestion are skipped. Conversations that have
never been ingested are treated as changed, and ingested.

 init()

 is_available?()

 is_stale?(arg1)

 is_unique_title?(scope, title)

 A title is unique within the given scope if no existing memory with the
same title exists.

 is_valid_title?(title)

 A title is valid if it is non-empty, does not contain more than one non-word
character in a row (which would lead to either multiple hyphens in the slug
or cases where multiple titles map to the same slug), and does not start or
end with a non-word character.

 list()

 list(atom)

 marshal(memory)

 Serializes the given memory to a JSON binary.

 new(scope, title, content, topics)

 new_from_map(data)

 Creates a new Memory struct from the given map. Expects keys to be atoms.
Returns a Memory.t.

 perform_memory_consolidation()

 Spawns a task that performs memory consolidation by ingesting all
conversations in the current project into long-term memory. Returns :ok
immediately. Ingestion is restricted to @ingestion_concurrency workers
(currently 2).

 read(scope, title)

 read_me()

 save(memory)

 search(query, limit)

 slug_to_title(slug)

 Converts a slug back to a title by replacing hyphens with spaces and
capitalizing each word.

 title_to_slug(title)

 Converts a title to a slug by lowercasing it, replacing non-word
characters with hyphens, and trimming leading/trailing hyphens.

 unmarshal(json)

 Deserializes the given JSON binary to a Memory struct.

 validate_title(title)

 Types

 scope()

 @type scope() :: :global | :project | :session

 t()

 @type t() :: %Memory{
 content: binary(),
 embeddings: [float()] | nil,
 inserted_at: binary() | nil,
 scope: scope(),
 slug: binary() | nil,
 title: binary(),
 topics: [binary()],
 updated_at: binary() | nil
}

 Callbacks

 exists?(title)

 @callback exists?(title :: binary()) :: boolean()

Returns true if a memory with the given title exists in the impl's storage.

 forget(title)

 @callback forget(title :: binary()) :: :ok | {:error, term()}

Deletes the given memory from the impl's storage. The impl is responsible
for locking any shared resources and ensuring atomic delete behavior. Expects
an :error tuple if the memory does not exist.

 init()

 @callback init() :: :ok | {:error, term()}

Performs any necessary one-time initialization for the impl's storage. For
example, creating directories, loading currently select project from
Services.Globals, etc.

 is_available?()

 @callback is_available?() :: boolean()

Returns true if this memory implementation is available in the current context.
For example, project memory requires a selected project, and session memory
requires an active conversation.

 list()

 @callback list() :: {:ok, [binary()]} | {:error, term()}

Returns a list of all memory titles available in the impl's storage. Ordering
is not guaranteed.

 read(title)

 @callback read(title :: binary()) :: {:ok, t()} | {:error, term()}

Reads and returns the memory with the given title from the impl's storage.
The impl is responsible for ensuring that the returned memory is in the
correct structural format, including atomic keys (e.g. not strings if
unmarshalling JSON from disk).

 save(memory)

 @callback save(memory :: t()) :: :ok | {:error, term()}

Saves the given memory to the impl's storage. The impl is responsible for
locking any shared resources and ensuring atomic write behavior. It is
expected that the title of the memory is unique, and any existing memory
with the same title will be overwritten.

 Functions

 append(memory, new_content)

 @spec append(t(), binary()) :: t()

 exists?(arg1, title)

 @spec exists?(scope(), binary()) :: boolean()

 forget(map)

 @spec forget(t()) :: :ok | {:error, term()}

 generate_embeddings(memory)

 ingest_all_conversations()

 @spec ingest_all_conversations() :: :ok | {:error, term()}

Ingest all conversations in the current project into long-term memory.
Conversations that have not changed since their last ingestion are skipped.
The current conversation (if any) is also skipped.

 ingest_conversation(conversation)

 @spec ingest_conversation(Store.Project.Conversation.t()) :: :ok | {:error, term()}

Ingest a single conversation into long-term memory. Conversations that have
not changed since their last ingestion are skipped. Conversations that have
never been ingested are treated as changed, and ingested.

 init()

 @spec init() :: {:ok, Task.t()} | {:error, term()}

 is_available?()

 @spec is_available?() :: boolean()

 is_stale?(arg1)

 @spec is_stale?(t()) :: boolean()

 is_unique_title?(scope, title)

 @spec is_unique_title?(scope(), binary()) :: boolean()

A title is unique within the given scope if no existing memory with the
same title exists.

 is_valid_title?(title)

 @spec is_valid_title?(binary()) :: boolean()

A title is valid if it is non-empty, does not contain more than one non-word
character in a row (which would lead to either multiple hyphens in the slug
or cases where multiple titles map to the same slug), and does not start or
end with a non-word character.

 list()

 @spec list() :: {:ok, [{:scope, binary()}]} | {:error, term()}

 list(atom)

 marshal(memory)

 @spec marshal(t()) :: {:ok, binary()} | {:error, term()}

Serializes the given memory to a JSON binary.

 new(scope, title, content, topics)

 @spec new(scope(), binary(), binary(), [binary()]) :: {:ok, t()} | {:error, term()}

 new_from_map(data)

 @spec new_from_map(map()) :: t()

Creates a new Memory struct from the given map. Expects keys to be atoms.
Returns a Memory.t.

 perform_memory_consolidation()

 @spec perform_memory_consolidation() :: Task.t()

Spawns a task that performs memory consolidation by ingesting all
conversations in the current project into long-term memory. Returns :ok
immediately. Ingestion is restricted to @ingestion_concurrency workers
(currently 2).

 read(scope, title)

 @spec read(scope(), binary()) :: {:ok, t()} | {:error, term()}

 read_me()

 @spec read_me() :: {:ok, t()} | {:error, term()}

 save(memory)

 @spec save(t()) :: {:ok, t()} | {:error, term()}

 search(query, limit)

 @spec search(binary(), non_neg_integer()) ::
 {:ok, [{t(), float()}]} | {:error, term()}

 slug_to_title(slug)

 @spec slug_to_title(binary()) :: binary()

Converts a slug back to a title by replacing hyphens with spaces and
capitalizing each word.

 title_to_slug(title)

 @spec title_to_slug(binary()) :: binary()

Converts a title to a slug by lowercasing it, replacing non-word
characters with hyphens, and trimming leading/trailing hyphens.

 unmarshal(json)

 @spec unmarshal(binary()) :: {:ok, t()} | {:error, term()}

Deserializes the given JSON binary to a Memory struct.

 validate_title(title)

 @spec validate_title(binary()) :: :ok | {:error, [binary()]}

Memory.Global

Global memory storage implementation for the Memory behaviour.
Memories are stored as JSON files in ~/.fnord/memory.

Memory.Presentation

Helpers for presenting %Memory{} metadata to humans.
This module is intentionally small and pure (no I/O) so it can be reused by:
	AI.Tools.Memory (tool output)
	Cmd.Memory (CLI output)
	AI.Agent.Coordinator (auto-injected recall section)

Timestamps are stored on %Memory{} as ISO8601 strings (DateTime.to_iso8601/1).

 Summary

 Types

 iso8601()

 Functions

 age_days(dt, now)

 Returns the age in whole days since dt relative to now.

 age_line(mem, now)

 Returns an "Age" line for a memory.

 parse_ts(ts)

 Parse an ISO8601 timestamp string into a DateTime.

 warning_line(mem, now, opts \\ [])

 Returns an optional warning line based on how long ago the memory was updated.

 Types

 iso8601()

 @type iso8601() :: binary()

 Functions

 age_days(dt, now)

 @spec age_days(DateTime.t(), DateTime.t()) :: non_neg_integer()

Returns the age in whole days since dt relative to now.
If dt is in the future, returns 0.

 age_line(mem, now)

 @spec age_line(Memory.t(), DateTime.t()) :: binary()

Returns an "Age" line for a memory.
Examples:
	"Age: unknown (missing timestamps)"
	"Age: 312 days (updated 12 days ago)"

Notes:
	Uses updated_at if present; otherwise uses inserted_at.
	Uses now for deterministic testing.

 parse_ts(ts)

 @spec parse_ts(nil | iso8601()) :: {:ok, DateTime.t()} | :error

Parse an ISO8601 timestamp string into a DateTime.
Returns {:ok, dt} or :error.

 warning_line(mem, now, opts \\ [])

 @spec warning_line(Memory.t(), DateTime.t(), keyword()) :: binary() | nil

Returns an optional warning line based on how long ago the memory was updated.
	If updated_at is missing/unparseable, returns nil.
	If updated_days >= strong_days, returns a strong warning.
	Else if updated_days >= mild_days, returns a mild warning.
	Else returns nil.

This is intended as a gentle prompt to check for cobwebs.

Memory.Project

Project-level memory storage implementation for the Memory behaviour.
Memories are stored as JSON files in ~/.fnord/projects/<project>/memory.

Memory.Session

Notifier

A simple notification module that works on MacOS and Linux.
On macOS it uses AppleScript (osascript); on Linux it uses notify-send or
dunstify.
If neither is available, it falls back to printing a bell to STDERR.

 Summary

 Types

 platform()

 Functions

 dismiss(group \\ "fnord", opts \\ [])

 Attempts to dismiss/clear notifications for the given group.
Only works on systems that support notification dismissal.

 notify(title, body, opts \\ [])

 Types

 platform()

 @type platform() :: :mac | :linux | :other

 Functions

 dismiss(group \\ "fnord", opts \\ [])

 @spec dismiss(
 String.t(),
 keyword()
) :: :ok | {:error, term()}

Attempts to dismiss/clear notifications for the given group.
Only works on systems that support notification dismissal.

 notify(title, body, opts \\ [])

 @spec notify(String.t(), String.t(), keyword()) :: :ok | {:error, term()}

Outputs

Helpers for persisting raw assistant outputs for a project.
Outputs are written under:
~/fnord/outputs/<project_id>/<slug>.md
The content saved is the raw assistant response.

 Summary

 Types

 conversation_id()

 A conversation identifier used for default slug generation.

 output_path()

 The path to an output file.

 project_id()

 Represents a project identifier.

 raw_response()

 The raw response text from the assistant.

 save_opts()

 Options for the save function, currently supported keys

 save_result()

 Result of a save operation.
On success returns {:ok, output_path}, on failure {:error, reason}.

 slug()

 A slug generated for output filenames.

 Functions

 extract_title(raw_response)

 Extracts the title from the raw response.
Expects the first line in the format "# Title: <title>" (case-insensitive).
Returns the trimmed title or nil if missing or blank.

 outputs_dir(project_id)

 Returns the directory path for outputs for a given project.
Uses Settings.get_user_home() and returns ~/fnord/outputs/<project_id>.

 save(project_id, raw_response, opts \\ [])

 Saves the raw assistant markdown response for a project.
Derives the filename slug from the first line "# Title: ..." if present, falls back to "conversation-<conversation_id>" or "untitled".
Resolves filename collisions by appending "-N".
Uses FileLock.with_lock and Settings.write_atomic! for atomic writes.
Returns {:ok, output_path} on success or {:error, reason} on failure.

 slugify(text)

 Converts a text string into a URL-friendly slug.
Lowercases, trims whitespace, replaces non-alphanumeric characters with hyphens, and trims leading/trailing hyphens.

 Types

 conversation_id()

 @type conversation_id() :: String.t()

A conversation identifier used for default slug generation.

 output_path()

 @type output_path() :: String.t()

The path to an output file.

 project_id()

 @type project_id() :: String.t()

Represents a project identifier.

 raw_response()

 @type raw_response() :: String.t()

The raw response text from the assistant.

 save_opts()

 @type save_opts() :: [{:conversation_id, conversation_id()}]

Options for the save function, currently supported keys:
	:conversation_id - a conversation_id

 save_result()

 @type save_result() :: {:ok, output_path()} | {:error, term()}

Result of a save operation.
On success returns {:ok, output_path}, on failure {:error, reason}.

 slug()

 @type slug() :: String.t()

A slug generated for output filenames.

 Functions

 extract_title(raw_response)

 @spec extract_title(raw_response()) :: String.t() | nil

Extracts the title from the raw response.
Expects the first line in the format "# Title: <title>" (case-insensitive).
Returns the trimmed title or nil if missing or blank.

 outputs_dir(project_id)

 @spec outputs_dir(project_id()) :: String.t()

Returns the directory path for outputs for a given project.
Uses Settings.get_user_home() and returns ~/fnord/outputs/<project_id>.

 save(project_id, raw_response, opts \\ [])

 @spec save(project_id(), raw_response(), save_opts()) :: save_result()

Saves the raw assistant markdown response for a project.
Derives the filename slug from the first line "# Title: ..." if present, falls back to "conversation-<conversation_id>" or "untitled".
Resolves filename collisions by appending "-N".
Uses FileLock.with_lock and Settings.write_atomic! for atomic writes.
Returns {:ok, output_path} on success or {:error, reason} on failure.

 slugify(text)

 @spec slugify(String.t()) :: slug()

Converts a text string into a URL-friendly slug.
Lowercases, trims whitespace, replaces non-alphanumeric characters with hyphens, and trims leading/trailing hyphens.

ResolveProject

Project resolution from the current working directory.
Behavior:
	If inside a git worktree, resolve/1 will map the cwd to the repository root.
	Select the configured project whose root contains that directory, choosing the one with the deepest (longest) root path.

Returns {:ok, project_name} or {:error, :not_in_project}.

 Summary

 Types

 project_name()

 Functions

 resolve(cwd \\ nil)

 Types

 project_name()

 @type project_name() :: binary()

 Functions

 resolve(cwd \\ nil)

 @spec resolve(cwd :: binary() | nil) ::
 {:ok, project_name()} | {:error, :not_in_project}

Search.Conversations

Semantic search over indexed conversations.
This module uses conversation embeddings stored via
Store.Project.ConversationIndex to find relevant conversations for a
natural language query.

 Summary

 Functions

 search(project, query, opts \\ [])

 Functions

 search(project, query, opts \\ [])

 @spec search(Store.Project.t(), String.t(), keyword()) ::
 {:ok, [map()]} | {:error, term()}

Search.Files

 Summary

 Functions

 get_results(search)

 new(opts)

 Functions

 get_results(search)

 new(opts)

Services

 Summary

 Functions

 start_all()

 start_config_dependent_services(command \\ nil)

 Starts services that depend on CLI configuration.

 Functions

 start_all()

 start_config_dependent_services(command \\ nil)

Starts services that depend on CLI configuration.
These services must be started AFTER set_globals() is called because they need
to read configuration settings parsed from CLI arguments in set_globals().

Services.Approvals

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 confirm(args, kind)

 start_link(opts \\ [])

 Types

 t()

 @type t() :: %Services.Approvals{session: [any()]}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 confirm(args, kind)

 @spec confirm(term(), atom()) ::
 {:ok, :approved} | {:denied, binary()} | {:error, binary()}

 start_link(opts \\ [])

Services.Approvals.Edit

 Summary

 Functions

 approved?(_, _)

 Functions

 approved?(_, _)

Services.Approvals.Gate

Minimal in-memory approvals gate for sensitive "finalize" steps (M4).
Provides a tiny API:
	require/2 requests approval (:approved or {:pending, ref})
	approve/1 and deny/2 control a pending reference
	status/1 and list/0 allow inspection

Policy:
	Reads "approvals" -> "mcp_auth_finalize" from Settings.
	Default: "auto_approve". "require_approval" returns pending.

Usage:
	Insert a single checkpoint before writing sensitive data (e.g., tokens).
	Return pending + ref and instruct operators to use the CLI to approve.

Introduced: M4.

 Summary

 Types

 ref()

 status()

 Functions

 approve(ref)

 Approve a pending reference.

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 deny(ref, reason)

 Deny a pending reference with a reason.

 list()

 List all current approvals tracked in memory.

 require(resource, opts \\ [])

 Require approval for a resource. Returns :approved immediately when policy is
auto_approve; otherwise returns {:pending, ref}.

 start_link(opts \\ [])

 status(ref)

 Get status of a reference.

 Types

 ref()

 @type ref() :: String.t()

 status()

 @type status() :: :pending | :approved | {:denied, String.t()}

 Functions

 approve(ref)

 @spec approve(ref()) :: :ok | {:error, :not_found}

Approve a pending reference.

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 deny(ref, reason)

 @spec deny(ref(), String.t()) :: :ok | {:error, :not_found}

Deny a pending reference with a reason.

 list()

 @spec list() :: [map()]

List all current approvals tracked in memory.

 require(resource, opts \\ [])

 @spec require(resource :: term(), opts :: keyword()) :: :approved | {:pending, ref()}

Require approval for a resource. Returns :approved immediately when policy is
auto_approve; otherwise returns {:pending, ref}.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: {:ok, pid()} | {:error, term()}

 status(ref)

 @spec status(ref()) :: status() | {:error, :not_found}

Get status of a reference.

Services.Approvals.Shell

 Summary

 Types

 args()

 decision()

 state()

 Functions

 customize(state, stages)

 extract_prefix(map)

 Delegate to the pure prefix extraction logic.

 full_cmd_preapproved?(state, full)

 list_user_prefixes()

 Returns a sorted, de-duplicated list of user-configured prefix approvals
for shell commands (kind: "shell") across both global and project scopes.

 list_user_regexes()

 Returns a sorted, de-duplicated list of user-configured full-command regex
approvals for shell commands (kind: "shell_full") across both global and
project scopes.

 preapproved_cmds()

 prefix_approved?(state, prefix)

 Types

 args()

 @type args() :: {String.t(), [map()], String.t()}

 decision()

 @type decision() :: Services.Approvals.Workflow.decision()

 state()

 @type state() :: Services.Approvals.Workflow.state()

 Functions

 customize(state, stages)

 @spec customize(state(), [{String.t(), String.t()}]) :: {:approved, state()}

 extract_prefix(map)

Delegate to the pure prefix extraction logic.

 full_cmd_preapproved?(state, full)

 list_user_prefixes()

 @spec list_user_prefixes() :: [String.t()]

Returns a sorted, de-duplicated list of user-configured prefix approvals
for shell commands (kind: "shell") across both global and project scopes.

 list_user_regexes()

 @spec list_user_regexes() :: [String.t()]

Returns a sorted, de-duplicated list of user-configured full-command regex
approvals for shell commands (kind: "shell_full") across both global and
project scopes.

 preapproved_cmds()

 prefix_approved?(state, prefix)

Services.Approvals.Shell.Prefix

Pure helper to extract a stable prefix for shell approvals.

 Summary

 Functions

 extract(cmd, args)

 Given a base command and its args, extract the most specific approval prefix.

 Functions

 extract(cmd, args)

 @spec extract(String.t(), [String.t()]) :: String.t()

Given a base command and its args, extract the most specific approval prefix.
For commands in @subcmd_families (like git, mix, npm), returns:
	"cmd sub" if a first positional token (subcommand) exists after flags
	"cmd" if no subcommand is found

For unknown commands, returns just "cmd" since we cannot distinguish between
subcommands and file arguments (e.g., "rm file_without_extension" vs "git log").
Examples:
	extract("mix", ["test"]) -> "mix test"
	extract("git", ["-c", "color.ui=always", "log"]) -> "git log"
	extract("rm", ["file.txt"]) -> "rm" (unknown command, can't assume subcommand)
	extract("custom-tool", ["build"]) -> "custom-tool" (unknown command)

Services.Approvals.Workflow behaviour

 Summary

 Types

 args()

 decision()

 state()

 Callbacks

 confirm(state, args)

 Types

 args()

 @type args() :: term()

 decision()

 @type decision() ::
 {:approved, state()}
 | {:denied, binary(), state()}
 | {:error, binary(), state()}

 state()

 @type state() :: term()

 Callbacks

 confirm(state, args)

 @callback confirm(state(), args()) :: decision()

Services.BackgroundIndexer

Overview
The BackgroundIndexer is a silent, cancellable GenServer that indexes project files
one at a time. It generates per-file derivatives (summary, outline, embeddings)
and saves them to the project store.
This module is intentionally designed to be both:
	sequential (one file at a time) for predictability and resource control
	promptly cancellable so the parent command (e.g., ask) can stop it immediately

Strategy (literate walkthrough)
	We do not pre-queue a large list of files. Instead, we:	Optionally accept a small explicit files_queue from the caller (mainly used by tests)
	Otherwise fetch exactly one stale entry dynamically between tasks

	Each file is processed in a linked Task so the GenServer stays responsive
	We monitor the Task and, when it finishes, we schedule processing of the next file
	If there is no next file, we stop the server with :normal
	On shutdown, we kill any in-flight Task to guarantee prompt cancellation

Lifecycle checkpoints
	init/1: set per-process HTTP pool, determine project & initial files_queue, prime state
	handle_continue(:process_next): run the state machine to start the next Task or stop
	handle_info({:DOWN, ...}): clear task state and schedule the next step
	terminate/2: kill in-flight Task and clear HttpPool override

Why one-at-a-time?
	Prevents overwhelming APIs (summaries, outlines, embeddings)
	Simplifies cancellation and error isolation
	Ensures the background indexer does not keep running long after ask completes

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 handle_continue(atom, state)

 handle_continue(:process_next) operates in these modes

 handle_info(msg, state)

 When a monitored Task completes, we receive a :DOWN message.
We clear the task state and trigger the next file via {:continue, :process_next}.
This guarantees one-at-a-time processing and ensures prompt stop semantics.

 init(opts)

 init/1 sets up the GenServer state, performing the following steps

 start_link(opts \\ [])

 stop(pid)

 Stop the BackgroundIndexer GenServer safely.
This function is idempotent, swallows exits, and accepts non-pid values.
Always returns :ok.

 terminate(reason, state)

 terminate/2 ensures prompt cancellation and cleanup

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 handle_continue(atom, state)

handle_continue(:process_next) operates in these modes:
	If a Task is already running, do nothing and wait for :DOWN
	If files_queue has entries, pop one and start a Task to process it
	If files_queue is empty but we have a project, fetch one stale entry
and start a Task for it; if none remain, stop normally
	If there is no project and no files, stop normally

 handle_info(msg, state)

When a monitored Task completes, we receive a :DOWN message.
We clear the task state and trigger the next file via {:continue, :process_next}.
This guarantees one-at-a-time processing and ensures prompt stop semantics.

 init(opts)

init/1 sets up the GenServer state, performing the following steps:
	Configure HttpPool for AI indexer requests (efficient, reusable connections)
	Determine project context from opts or Store.get_project/0
	Build files_queue from opts (if provided) or default to []
	Initialize state and immediately continue to :process_next

 start_link(opts \\ [])

 @spec start_link(
 opts :: [project: Store.Project.t(), files: [Store.Project.Entry.t()]]
) ::
 GenServer.on_start()

 stop(pid)

 @spec stop(pid() | any()) :: :ok

Stop the BackgroundIndexer GenServer safely.
This function is idempotent, swallows exits, and accepts non-pid values.
Always returns :ok.

 terminate(reason, state)

terminate/2 ensures prompt cancellation and cleanup:
	Kills any in-flight Task to stop work immediately
	Clears the HttpPool override for this process

Services.BackupFile

GenServer that manages backup file creation for file editing operations with dual counter system.
Backup files follow the naming pattern:
original_filename.global_session_counter.change_counter.bak
	global_session_counter: Per-file, per-OS-process counter that increments when
existing backup files from previous processes are detected
	change_counter: Per-file counter that increments for each successful edit
within the current session

 Summary

 Types

 state()

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 cleanup_backup_files()

 Delete all backup files created during this session.

 create_backup(file_path)

 Creates a backup file for the given file path and returns the backup path.
Uses the dual counter system to generate unique backup filenames.

 describe_backup(path)

 Returns a descriptive note for backup files, or nil for non-backup files.
Includes session information if the backup was created this session.

 get_session_backups()

 Returns all backup files created during this session (current OS process).

 is_backup_file?(path)

 Checks if a file path represents a backup file created by fnord.
Returns true if the filename matches the pattern: filename.X.Y.bak

 is_session_backup?(path)

 Checks if a backup file was created during the current session.
Returns true if the file exists in the current session's backup list.

 offer_cleanup()

 Offers to cleanup backup files created during this session.

 reset()

 Resets the server state. Primarily used for testing.

 start_link(opts \\ [])

 Starts the backup file server with a globally registered name.

 Types

 state()

 @type state() :: %{
 global_counters: %{required(binary()) => non_neg_integer()},
 change_counters: %{required(binary()) => non_neg_integer()},
 backup_files: [binary()]
}

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 cleanup_backup_files()

 @spec cleanup_backup_files() :: :ok

Delete all backup files created during this session.

 create_backup(file_path)

 @spec create_backup(binary()) :: {:ok, binary()} | {:error, term()}

Creates a backup file for the given file path and returns the backup path.
Uses the dual counter system to generate unique backup filenames.

 describe_backup(path)

 @spec describe_backup(binary()) :: binary() | nil

Returns a descriptive note for backup files, or nil for non-backup files.
Includes session information if the backup was created this session.

 get_session_backups()

 @spec get_session_backups() :: [binary()]

Returns all backup files created during this session (current OS process).
This includes backup files for all edited files during the current session,
but excludes any backup files that may exist from previous sessions.
Files are returned in reverse chronological order (most recent first).

 is_backup_file?(path)

 @spec is_backup_file?(binary()) :: boolean()

Checks if a file path represents a backup file created by fnord.
Returns true if the filename matches the pattern: filename.X.Y.bak

 is_session_backup?(path)

 @spec is_session_backup?(binary()) :: boolean()

Checks if a backup file was created during the current session.
Returns true if the file exists in the current session's backup list.

 offer_cleanup()

 @spec offer_cleanup() :: :ok

Offers to cleanup backup files created during this session.
If backup files exist, lists them and prompts the user for confirmation
before deleting them. If no backup files exist, does nothing silently.

 reset()

 @spec reset() :: :ok

Resets the server state. Primarily used for testing.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: {:ok, pid()} | {:error, term()}

Starts the backup file server with a globally registered name.

Services.BgIndexingControl

Session-local (per BEAM node) control plane for pausing background indexing
on a per-model basis.
Why this exists
Background indexing is a convenience feature. When OpenAI starts returning
throttling responses (HTTP 429 with a recognized throttling code), we can
disable background indexing for the affected model(s) to reduce load.
This module is intentionally:
	model-agnostic: any model string encountered can be tracked
	boolean-only: models are either paused or not paused (no timers)
	session-local: state is stored in Services.Globals and initialized
once via Services.Once

State
Stored in Services.Globals under the :fnord app:
	:bg_indexer_paused_models => %{model => true}
	:bg_indexer_throttle_counts => %{model => consecutive_throttles}
	:bg_indexer_throttle_threshold => integer (default: 3)

 Summary

 Functions

 clear_pause(model)

 ensure_init()

 note_success(model)

 Reset the consecutive throttling count for the model back to 0.

 note_throttle(model)

 Increment the consecutive throttling count for the model.

 pause(model)

 paused?(model)

 set_threshold(n)

 threshold()

 Functions

 clear_pause(model)

 @spec clear_pause(binary() | nil) :: :ok

 ensure_init()

 @spec ensure_init() :: :ok

 note_success(model)

 @spec note_success(binary() | nil) :: :ok

Reset the consecutive throttling count for the model back to 0.
Returns :ok and ignores nil models.

 note_throttle(model)

 @spec note_throttle(binary() | nil) :: :ok

Increment the consecutive throttling count for the model.
If the count reaches the configured threshold, the model is paused.
Returns :ok and ignores nil models.

 pause(model)

 @spec pause(binary() | nil) :: :ok

 paused?(model)

 @spec paused?(binary() | nil) :: boolean()

 set_threshold(n)

 @spec set_threshold(non_neg_integer()) :: :ok

 threshold()

 @spec threshold() :: non_neg_integer()

Services.Conversation

 Summary

 Functions

 append_msg(new_msg, pid)

 Append a new message to the conversation.
Does not save the conversation.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_agent(pid)

 Get the current agent instance.

 get_conversation(pid)

 Get the current conversation object.

 get_id(pid)

 Get the conversation ID of the current conversation.

 get_memory(pid)

 Get the current session memory list for this conversation.

 get_messages(pid)

 Get the list of messages in the current conversation.

 get_metadata(pid)

 Get the conversation metadata.

 get_response(pid, opts)

 Get a response from the AI.Agent.Coordinator. The opts is passed directly
to AI.Agent.get_response/2 after converting to a map and adding the
conversation server's PID under :conversation_pid.

 get_task_list(pid, task_list_id)

 Get the task list with the given ID for this conversation.

 get_task_lists(pid)

 Get all task lists for this conversation.

 init(id)

 Callback implementation for GenServer.init/1.

 interrupt(pid, content)

 Request an interrupt by enqueuing a new user message to be injected at the next safe point.

 load(conversation_id, pid)

 Load an existing conversation from persistent storage. If conversation_id
is nil, a new conversation is created. If a conversation with the given ID
does not exist or is corrupt, an error is returned.

 put_memory(pid, memory)

 Replace the session memory list for this conversation.

 replace_msgs(new_msgs, pid)

 Replace all messages in the conversation with a new list of messages.
This does not save the conversation.

 save(pid)

 Save the current conversation to persistent storage. This updates the
conversation's timestamp and writes the messages to disk. If the conversation
is successfully saved, the server state is reloaded with the latest data.

 start_link(conversation_id \\ nil)

 upsert_task_list(pid, task_list_id, tasks)

 Upsert (insert or update) the given task list in the conversation's task
store, replacing any existing list with the same ID.

 Functions

 append_msg(new_msg, pid)

 @spec append_msg(AI.Util.msg(), pid()) :: :ok

Append a new message to the conversation.
Does not save the conversation.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_agent(pid)

 @spec get_agent(pid()) :: AI.Agent.t()

Get the current agent instance.

 get_conversation(pid)

 @spec get_conversation(pid()) :: Store.Project.Conversation.t()

Get the current conversation object.

 get_id(pid)

 @spec get_id(pid()) :: binary()

Get the conversation ID of the current conversation.

 get_memory(pid)

 @spec get_memory(pid()) :: list()

Get the current session memory list for this conversation.

 get_messages(pid)

 @spec get_messages(pid()) :: [AI.Util.msg()]

Get the list of messages in the current conversation.

 get_metadata(pid)

 @spec get_metadata(pid()) :: map()

Get the conversation metadata.

 get_response(pid, opts)

 @spec get_response(
 pid(),
 keyword()
) :: {:ok, any()} | {:error, any()}

Get a response from the AI.Agent.Coordinator. The opts is passed directly
to AI.Agent.get_response/2 after converting to a map and adding the
conversation server's PID under :conversation_pid.

 get_task_list(pid, task_list_id)

 @spec get_task_list(pid(), Services.Task.task_id()) :: Services.Task.task_list() | nil

Get the task list with the given ID for this conversation.

 get_task_lists(pid)

 @spec get_task_lists(pid()) :: [Services.Task.task_id()]

Get all task lists for this conversation.

 init(id)

Callback implementation for GenServer.init/1.

 interrupt(pid, content)

 @spec interrupt(pid(), String.t()) :: :ok | {:error, any()}

Request an interrupt by enqueuing a new user message to be injected at the next safe point.

 load(conversation_id, pid)

 @spec load(binary() | nil, pid()) :: :ok | {:error, any()}

Load an existing conversation from persistent storage. If conversation_id
is nil, a new conversation is created. If a conversation with the given ID
does not exist or is corrupt, an error is returned.

 put_memory(pid, memory)

 @spec put_memory(pid(), list()) :: :ok

Replace the session memory list for this conversation.
This does not save the conversation to disk; callers should invoke save/1
if they want the updated memory list to be persisted.

 replace_msgs(new_msgs, pid)

 @spec replace_msgs([AI.Util.msg()], pid()) :: :ok

Replace all messages in the conversation with a new list of messages.
This does not save the conversation.

 save(pid)

 @spec save(pid()) :: {:ok, Store.Project.Conversation.t()} | {:error, any()}

Save the current conversation to persistent storage. This updates the
conversation's timestamp and writes the messages to disk. If the conversation
is successfully saved, the server state is reloaded with the latest data.

 start_link(conversation_id \\ nil)

 upsert_task_list(pid, task_list_id, tasks)

 @spec upsert_task_list(pid(), Services.Task.task_id(), Services.Task.task_list()) ::
 :ok

Upsert (insert or update) the given task list in the conversation's task
store, replacing any existing list with the same ID.

Services.Conversation.Interrupts

Queue for injecting user messages into a conversation mid-completion.
This GenServer stores a FIFO list of pending injected user messages per
conversation pid. AI.Completion will drain and apply these messages at safe
checkpoints before sending a model request or between tool-call checkpoints.
Additionally, it supports temporarily blocking interrupts for a conversation
during critical phases (e.g., finalization). When blocked, attempts to
interrupt should be rejected at the UI layer; this server tracks blocked state
so callers can check/decide behavior.

 Summary

 Types

 msg()

 state()

 Functions

 block(conversation_pid)

 Block interrupts for a given conversation pid.

 blocked?(conversation_pid)

 Return true if interrupts are currently blocked for conversation pid.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 pending?(conversation_pid)

 Returns true if any interrupts are pending for the conversation pid.

 request(conversation_pid, content)

 Enqueue an injected user message for the given conversation pid.

 start_link(opts \\ [])

 Start the interrupt queue server.

 take_all(conversation_pid)

 Drain all pending injected messages for a conversation.
Returns an empty list if none are pending.

 unblock(conversation_pid)

 Unblock interrupts for a given conversation pid.

 Types

 msg()

 @type msg() :: AI.Util.msg()

 state()

 @type state() :: %{queues: %{optional(pid()) => [msg()]}, blocked: MapSet.t()}

 Functions

 block(conversation_pid)

 @spec block(pid()) :: :ok

Block interrupts for a given conversation pid.

 blocked?(conversation_pid)

 @spec blocked?(pid()) :: boolean()

Return true if interrupts are currently blocked for conversation pid.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 pending?(conversation_pid)

 @spec pending?(pid()) :: boolean()

Returns true if any interrupts are pending for the conversation pid.

 request(conversation_pid, content)

 @spec request(pid(), String.t()) :: :ok

Enqueue an injected user message for the given conversation pid.

 start_link(opts \\ [])

 @spec start_link(Keyword.t()) :: GenServer.on_start()

Start the interrupt queue server.

 take_all(conversation_pid)

 @spec take_all(pid()) :: [msg()]

Drain all pending injected messages for a conversation.
Returns an empty list if none are pending.

 unblock(conversation_pid)

 @spec unblock(pid()) :: :ok

Unblock interrupts for a given conversation pid.

Services.ConversationIndexer

Background indexer for conversations.
This GenServer mirrors Services.BackgroundIndexer, but operates on
conversations instead of file entries. It processes one conversation at a
time, generating embeddings from the conversation messages JSON and writing
them to the conversation index.

 Summary

 Types

 state()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts \\ [])

 stop(pid)

 Types

 state()

 @type state() :: %{
 project: Store.Project.t() | nil,
 impl: module(),
 convo_queue: [Store.Project.Conversation.t()],
 task: pid() | nil,
 mon_ref: reference() | nil,
 seen: map()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

 stop(pid)

 @spec stop(pid() | any()) :: :ok

Services.Globals

Drop-in-ish replacement for Application env that shadows values down a
process tree. Think: dynamic scope via process ancestry.
	put_env/3 sets an override in the current tree (installing the caller as a root if needed).
	get_env/3 first checks the current tree's overrides, then falls back to Application.get_env/3.
	delete_env/2 removes the tree-local override.
	get_all_env/1 lists all overrides in the current tree, overlaying them on top of Application.get_all_env/1 if the caller is the root.
	put_all_env/2 bulk-inserts multiple overrides for one or more apps in the current tree (installing the caller as a root if needed).
	install_root/0 explicitly installs the caller as a shadowing root (rarely needed; put_env/3 auto-installs).
	current_root/0 returns the current shadowing root PID (or nil). Useful for debugging.
	explain/0 prints the current process tree and its overrides (for debugging).

 Summary

 Types

 app()

 key()

 value()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 current_root()

 Return the current shadowing root PID (or nil). Useful for debugging.

 delete_env(app, key)

 Delete a tree-local override (no-op if none). Returns :ok.

 explain()

 get_all_env(app)

 Get all tree-local overrides for the given app, overlaying them on top of
Application.get_all_env/1 if the caller is the root.

 get_env(app, key, default \\ nil)

 Get a value with tree-local shadowing, else falls back to
Application.get_env/3.

 install_root()

 Install the caller as a shadowing root explicitly (rarely needed; put_env/3
auto-installs).

 put_all_env(app_kvs_list, kvs \\ [])

 Bulk put multiple overrides for one or more apps in the current tree
(installing the caller as a root if needed).

 put_env(app, key, value)

 Put a tree-local override. Creates a root for the current process if none
exists.

 start_link(opts \\ [])

 Types

 app()

 @type app() :: atom()

 key()

 @type key() :: term()

 value()

 @type value() :: term()

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 current_root()

 @spec current_root() :: pid() | nil

Return the current shadowing root PID (or nil). Useful for debugging.

 delete_env(app, key)

 @spec delete_env(atom(), term()) :: :ok

Delete a tree-local override (no-op if none). Returns :ok.

 explain()

 get_all_env(app)

 @spec get_all_env(atom()) :: keyword()

Get all tree-local overrides for the given app, overlaying them on top of
Application.get_all_env/1 if the caller is the root.

 get_env(app, key, default \\ nil)

 @spec get_env(atom(), term(), term()) :: term()

Get a value with tree-local shadowing, else falls back to
Application.get_env/3.

 install_root()

 @spec install_root() :: :ok

Install the caller as a shadowing root explicitly (rarely needed; put_env/3
auto-installs).

 put_all_env(app_kvs_list, kvs \\ [])

 @spec put_all_env(
 [{app(), [{key(), value()}]}],
 keyword()
) :: :ok

Bulk put multiple overrides for one or more apps in the current tree
(installing the caller as a root if needed).

 put_env(app, key, value)

 @spec put_env(atom(), term(), term()) :: :ok

Put a tree-local override. Creates a root for the current process if none
exists.

 start_link(opts \\ [])

Services.Globals.Spawn

 Summary

 Functions

 async(fun)

 async_stream(enum, fun, opts \\ [])

 spawn(fun)

 Functions

 async(fun)

 async_stream(enum, fun, opts \\ [])

 spawn(fun)

Services.NamePool

A service that manages a pool of AI agent names, batch-allocating them from
the nomenclater for efficiency. Names can be checked out and optionally
checked back in for reuse within the same session.
Each checked-out name is now associated with the caller's pid, and you can
retrieve it via get_name_by_pid/1.
The pool allocates names in chunks sized to the configured workers setting to
maximize API efficiency without overwhelming the connection pool.

 Summary

 Types

 t()

 Functions

 associate_name(name, server \\ Services.NamePool)

 Restores the association between a pid and a name. This is useful to
re-associate a name after a process restart or similar event.

 checkin_name(name, server \\ Services.NamePool)

 Checks a name back into the pool for potential reuse. This is optional -
names that are never checked back in will simply be lost when the session ends.

 checkout_name(server \\ Services.NamePool)

 Checks out a name from the pool. If the pool is empty or running low,
automatically allocates a new chunk of names.

 checkout_name(server, timeout_ms)

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 default_name()

 get_name_by_pid(pid, server \\ Services.NamePool)

 Returns {:ok, name} if the given pid has a checked‐out name,
or {:error, :not_found} otherwise.

 pool_stats(server \\ Services.NamePool)

 Returns pool statistics for debugging/monitoring

 reset(server \\ Services.NamePool)

 Resets the pool state (mainly for testing)

 start_link(opts \\ [])

 Starts the name pool service

 Types

 t()

 @type t() :: %Services.NamePool{
 all_used: MapSet.t(String.t()),
 available: [String.t()],
 checked_out: MapSet.t(String.t()),
 chunk_size: pos_integer(),
 name_to_pid: %{optional(String.t()) => pid()},
 pid_to_name: %{optional(pid()) => String.t()}
}

 Functions

 associate_name(name, server \\ Services.NamePool)

Restores the association between a pid and a name. This is useful to
re-associate a name after a process restart or similar event.

 checkin_name(name, server \\ Services.NamePool)

 @spec checkin_name(String.t(), atom() | pid()) :: :ok

Checks a name back into the pool for potential reuse. This is optional -
names that are never checked back in will simply be lost when the session ends.

 checkout_name(server \\ Services.NamePool)

 @spec checkout_name(atom() | pid()) :: {:ok, String.t()} | {:error, term()}

Checks out a name from the pool. If the pool is empty or running low,
automatically allocates a new chunk of names.
Returns {:ok, name} or {:error, reason}.

 checkout_name(server, timeout_ms)

 @spec checkout_name(atom() | pid(), pos_integer()) ::
 {:ok, String.t()} | {:error, term()}

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 default_name()

 get_name_by_pid(pid, server \\ Services.NamePool)

 @spec get_name_by_pid(pid(), atom() | pid()) ::
 {:ok, String.t()} | {:error, :not_found}

Returns {:ok, name} if the given pid has a checked‐out name,
or {:error, :not_found} otherwise.

 pool_stats(server \\ Services.NamePool)

Returns pool statistics for debugging/monitoring

 reset(server \\ Services.NamePool)

Resets the pool state (mainly for testing)

 start_link(opts \\ [])

Starts the name pool service

Services.Notes

 Summary

 Functions

 ask(question)

 Uses an AI model to answer a question about the existing research notes. The
question should be a concise request for information about the project, such
as "What is the purpose of this project?" or "What languages and technologies
are used in this project?". The AI model will analyze the existing notes and
return a concise answer.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 consolidate()

 Consolidates all newly extracted facts and user insights into the existing
research notes. This uses an AI model to reorganize and consolidate the notes
according to specified guidelines. The consolidated notes are saved to
persistent storage.

 ingest_research(func, args_json, result)

 Uses an AI model to analyze the result of a tool call and extract facts about
the project. The facts are stored in the server's state and can be
consolidated later.

 ingest_user_msg(msg_text)

 Uses an AI model to analyze the user's message and extract insights about
their coding preferences, learning style, personality, and other relevant
traits. The insights are stored in the server's state and can be consolidated
later.

 join()

 Waits for the server to complete all operations before returning. This is
useful to ensure that all notes have been saved and consolidated before
exiting the application or moving on to the next step in the workflow.

 load_notes()

 Load existing research notes from persistent storage. The project must be set
from the --project command line option or CWD.

 pending?()

 True if there are any pending asynchronous operations being processed by the
notes server. Backed by a non-blocking ETS counter.

 pending_count()

 Returns the current number of pending operations.

 save()

 Saves the new notes that have been collected over the course of the current
session to persistent storage. This saves any newly extracted facts and user
insights that have not yet been consolidated into the main research notes.

 start_link(opts \\ [])

 Functions

 ask(question)

 @spec ask(binary()) :: binary()

Uses an AI model to answer a question about the existing research notes. The
question should be a concise request for information about the project, such
as "What is the purpose of this project?" or "What languages and technologies
are used in this project?". The AI model will analyze the existing notes and
return a concise answer.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 consolidate()

 @spec consolidate() :: :ok

Consolidates all newly extracted facts and user insights into the existing
research notes. This uses an AI model to reorganize and consolidate the notes
according to specified guidelines. The consolidated notes are saved to
persistent storage.
Currently, consolidation generally happens at the beginning of a new research
session (from AI.Agent.Coordinator).

 ingest_research(func, args_json, result)

 @spec ingest_research(binary(), binary(), any()) :: :ok

Uses an AI model to analyze the result of a tool call and extract facts about
the project. The facts are stored in the server's state and can be
consolidated later.

 ingest_user_msg(msg_text)

 @spec ingest_user_msg(binary()) :: :ok

Uses an AI model to analyze the user's message and extract insights about
their coding preferences, learning style, personality, and other relevant
traits. The insights are stored in the server's state and can be consolidated
later.

 join()

Waits for the server to complete all operations before returning. This is
useful to ensure that all notes have been saved and consolidated before
exiting the application or moving on to the next step in the workflow.

 load_notes()

 @spec load_notes() :: :ok | {:error, any()}

Load existing research notes from persistent storage. The project must be set
from the --project command line option or CWD.

 pending?()

True if there are any pending asynchronous operations being processed by the
notes server. Backed by a non-blocking ETS counter.

 pending_count()

Returns the current number of pending operations.

 save()

Saves the new notes that have been collected over the course of the current
session to persistent storage. This saves any newly extracted facts and user
insights that have not yet been consolidated into the main research notes.
Returns immediately, but the actual saving process may take some time. Use
join/0 to wait for the server to complete all operations if needed.
The new notes are added to a special section at the end of the existing
research notes, labeled # NEW NOTES (unconsolidated). This section is meant
to be consolidated later by the consolidate/0 function.

 start_link(opts \\ [])

 @spec start_link(opts :: keyword()) :: GenServer.on_start()

Services.Once

This module provides a mechanism to perform actions only once, using a unique
key provided by the caller to determine whether the action has already been
performed this session.

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 get(key)

 Checks if a key has been seen before. If the key has not been seen, it
returns {:error, :not_seen}. If the key has been seen, it returns {:ok, value} where value is the value associated with the key, or true if no
value was specified.

 run(key, fun)

 Run the given zero-arity function only once per unique key.
Subsequent calls with the same key will be ignored.

 set(key, value \\ true)

 Marks a key as seen. If the key has not been seen before, it returns true
and updates the internal state. If the key has already been seen, it returns
false without updating the state.

 start_link()

 Starts the agent that keeps track of seen keys.

 warn(msg)

 Emits a warning (using UI.warn/1) if the message has not yet been emitted
during this session.

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get(key)

Checks if a key has been seen before. If the key has not been seen, it
returns {:error, :not_seen}. If the key has been seen, it returns {:ok, value} where value is the value associated with the key, or true if no
value was specified.

 run(key, fun)

 @spec run(term(), (-> any())) :: any() | :ignore

Run the given zero-arity function only once per unique key.
Subsequent calls with the same key will be ignored.

 set(key, value \\ true)

Marks a key as seen. If the key has not been seen before, it returns true
and updates the internal state. If the key has already been seen, it returns
false without updating the state.

 start_link()

Starts the agent that keeps track of seen keys.

 warn(msg)

Emits a warning (using UI.warn/1) if the message has not yet been emitted
during this session.

Services.Task

 Summary

 Types

 list_id()

 task()

 task_data()

 task_id()

 task_list()

 task_result()

 Functions

 add_task(list_id, task_id, task_data)

 Appends a new :todo task with the given ID and data to the end of the list.
If the list does not exist or the task ID already exists, this call is ignored.

 all_tasks_complete?(list_id)

 Returns true if there are no remaining :todos in the list.

 as_string(subject, detail? \\ false)

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 complete_task(list_id, task_id, result)

 Marks the first task matching task_id as :done and stores the result.
Only the first matching ID is updated; others are unchanged.
No-op if list or task not found.

 fail_task(list_id, task_id, msg)

 Marks the first task matching task_id as :failed and stores the result.
Only the first matching ID is updated; others are unchanged.
No-op if list or task not found.

 get_list(list_id)

 Fetches all tasks for the given list in chronological (oldest-first) order.
Returns {:error, :not_found} if the list does not exist.

 list_ids()

 Returns all active task list IDs.

 new_task(task_id, data, opts \\ [])

 Creates a new task with the given ID and data. Optionally accepts :outcome
(default :todo) and :result (default nil).

 peek_task(list_id)

 Returns {:ok, task} for the first :todo task in chronological order.
Returns {:error, :empty} if no pending tasks, or {:error, :not_found} if the list does not exist.

 push_task(list_id, task_id, task_data)

 Inserts a new :todo task with the given ID and data to the front of the list.
If the list does not exist or the task ID already exists, this call is ignored.

 start_link(opts \\ [])

 start_list()

 Types

 list_id()

 @type list_id() :: non_neg_integer()

 task()

 @type task() :: %{
 id: task_id(),
 outcome: :todo | :done | :failed,
 data: task_data(),
 result: task_result() | nil
}

 task_data()

 @type task_data() :: any()

 task_id()

 @type task_id() :: binary()

 task_list()

 @type task_list() :: [task()]

 task_result()

 @type task_result() :: any()

 Functions

 add_task(list_id, task_id, task_data)

 @spec add_task(list_id(), task_id(), task_data()) :: :ok

Appends a new :todo task with the given ID and data to the end of the list.
If the list does not exist or the task ID already exists, this call is ignored.

 all_tasks_complete?(list_id)

 @spec all_tasks_complete?(list_id()) :: {:ok, boolean()}

Returns true if there are no remaining :todos in the list.

 as_string(subject, detail? \\ false)

 @spec as_string(list_id() | [task()], boolean()) :: binary()

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 complete_task(list_id, task_id, result)

 @spec complete_task(list_id(), task_id(), task_result()) :: :ok

Marks the first task matching task_id as :done and stores the result.
Only the first matching ID is updated; others are unchanged.
No-op if list or task not found.

 fail_task(list_id, task_id, msg)

 @spec fail_task(list_id(), task_id(), task_result()) :: :ok

Marks the first task matching task_id as :failed and stores the result.
Only the first matching ID is updated; others are unchanged.
No-op if list or task not found.

 get_list(list_id)

 @spec get_list(list_id()) :: task_list() | {:error, :not_found}

Fetches all tasks for the given list in chronological (oldest-first) order.
Returns {:error, :not_found} if the list does not exist.

 list_ids()

 @spec list_ids() :: [list_id()]

Returns all active task list IDs.

 new_task(task_id, data, opts \\ [])

 @spec new_task(task_id(), task_data(), keyword()) :: task()

Creates a new task with the given ID and data. Optionally accepts :outcome
(default :todo) and :result (default nil).

 peek_task(list_id)

 @spec peek_task(list_id()) :: {:ok, task()} | {:error, :not_found} | {:error, :empty}

Returns {:ok, task} for the first :todo task in chronological order.
Returns {:error, :empty} if no pending tasks, or {:error, :not_found} if the list does not exist.

 push_task(list_id, task_id, task_data)

 @spec push_task(list_id(), task_id(), task_data()) :: :ok

Inserts a new :todo task with the given ID and data to the front of the list.
If the list does not exist or the task ID already exists, this call is ignored.

 start_link(opts \\ [])

 @spec start_link(any()) :: GenServer.on_start()

 start_list()

 @spec start_list() :: list_id()

Services.TempFile

Singleton service for creating temporary files via Briefly.
This centralizes ownership of Briefly-created temp files to a single
long-lived process, so that files can survive across multiple tool calls
within the same BEAM node. All options are passed through to
Briefly.create/1 unchanged, allowing future callers to migrate without
changing their option shapes.

 Summary

 Types

 opts()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 mktemp(opts \\ [])

 Create a new temporary file via Briefly.

 mktemp!(opts \\ [])

 Like mktemp/1, but raises on error.

 start_link(opts)

 Types

 opts()

 @type opts() :: Keyword.t()

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 mktemp(opts \\ [])

 @spec mktemp(opts()) :: {:ok, Path.t()} | {:error, term()}

Create a new temporary file via Briefly.
Accepts an optional keyword list of options and forwards them unchanged
to Briefly.create/1.

 mktemp!(opts \\ [])

 @spec mktemp!(opts()) :: Path.t()

Like mktemp/1, but raises on error.

 start_link(opts)

 @spec start_link(any()) :: GenServer.on_start()

Settings

 Summary

 Types

 t()

 Functions

 debug_models?()

 Check if model performance debugging is enabled via environment variable.

 delete_project_data(settings, project_name)

 Delete project data from the settings, handling both old and new format.

 fnord_home()

 Get the path to the store root directory.

 get(settings, key, default \\ nil)

 Get a value from the settings store.

 get_auto_approve()

 Get current auto-approve setting.

 get_auto_policy()

 Get current auto-approval policy setting.

 get_edit_mode()

 Get current edit mode setting.

 get_fonz_mode()

 Get fonz mode setting.

 get_hint_docs_auto_inject?()

 Check if automatic injection of hint docs is enabled. Defaults to true if unset.

 get_hint_docs_enabled?()

 Check if hint docs feature is enabled. Defaults to true if unset.

 get_project(settings)

 get_project_data(settings, project_name)

 Get project data from the settings, handling both old and new format.

 get_project_root_override()

 Gets the project root override path, or nil if not set.

 get_projects(settings)

 Get all project configurations.
Returns a map of project_name => project_config.

 get_root(settings)

 get_running_version()

 get_selected_project()

 Get the project specified with --project. If the project name is not set, an
error tuple is returned.

 get_user_home()

 Get the user's home directory, allowing override for testing.

 get_yes_count()

 Get yes count from settings.

 global_config_keys()

 Get the list of global configuration keys that should not be treated as project names.

 is_valid_project_name?(name)

 Check if a given key represents a valid project name (not a global config key).
Returns false for global configuration keys like "approvals".

 list_projects(settings)

 new()

 project_is_set?()

 Check if the --project option is set.

 set_auto_approve(auto_approve)

 Set auto-approve mode for the application. In this mode, file edits
are automatically approved without user confirmation.

 set_auto_policy(policy)

 Set auto-approval policy for the application. This setting controls how
unattended approvals are handled.

 set_edit_mode(edit_mode)

 Set edit mode for the application.

 set_fonz_mode(fonz_mode)

 Set fonz mode for application.

 set_project(project_name)

 Set the project name for the --project option.

 set_project(settings, data)

 set_project_data(settings, project_name, data)

 Set project data in the settings using the new nested format.

 set_project_root_override(path)

 Set or clear a temporary project root override path. Pass a directory path to
override or nil to clear the override.

 set_quiet(quiet)

 Set the quiet mode for UI output.

 set_workers(workers)

 Set the number of workers for concurrent operations.

 set_yes_count(count)

 Set yes count in settings.

 settings_file()

 Get the path to the settings file. If the file does not exist, it will be
created.

 update(settings, key, updater, default \\ %{})

 Atomically update a top-level key in the settings file using a cross-process
lock and a read-merge-write cycle.

 write_atomic!(path, content)

 Types

 t()

 @type t() :: %Settings{data: map(), path: binary()}

 Functions

 debug_models?()

 @spec debug_models?() :: boolean()

Check if model performance debugging is enabled via environment variable.

 delete_project_data(settings, project_name)

 @spec delete_project_data(t(), binary()) :: t()

Delete project data from the settings, handling both old and new format.

 fnord_home()

 @spec fnord_home() :: binary()

Get the path to the store root directory.

 get(settings, key, default \\ nil)

 @spec get(t(), binary(), any()) :: any()

Get a value from the settings store.

 get_auto_approve()

 @spec get_auto_approve() :: boolean()

Get current auto-approve setting.

 get_auto_policy()

 @spec get_auto_policy() ::
 {:approve, non_neg_integer()} | {:deny, non_neg_integer()} | nil

Get current auto-approval policy setting.

 get_edit_mode()

 @spec get_edit_mode() :: boolean()

Get current edit mode setting.

 get_fonz_mode()

 @spec get_fonz_mode() :: boolean()

Get fonz mode setting.

 get_hint_docs_auto_inject?()

 @spec get_hint_docs_auto_inject?() :: boolean()

Check if automatic injection of hint docs is enabled. Defaults to true if unset.

 get_hint_docs_enabled?()

 @spec get_hint_docs_enabled?() :: boolean()

Check if hint docs feature is enabled. Defaults to true if unset.

 get_project(settings)

 @spec get_project(t()) :: {:ok, map()} | {:error, :project_not_found}

 get_project_data(settings, project_name)

 @spec get_project_data(t(), binary()) :: map() | nil

Get project data from the settings, handling both old and new format.

 get_project_root_override()

 @spec get_project_root_override() :: binary() | nil

Gets the project root override path, or nil if not set.

 get_projects(settings)

 @spec get_projects(t()) :: %{required(binary()) => map()}

Get all project configurations.
Returns a map of project_name => project_config.

 get_root(settings)

 @spec get_root(t()) :: {:ok, binary()} | {:error, :not_found}

 get_running_version()

 get_selected_project()

 @spec get_selected_project() :: {:ok, binary()} | {:error, :project_not_set}

Get the project specified with --project. If the project name is not set, an
error tuple is returned.

 get_user_home()

 @spec get_user_home() :: binary() | nil | no_return()

Get the user's home directory, allowing override for testing.

 get_yes_count()

 @spec get_yes_count() :: non_neg_integer()

Get yes count from settings.

 global_config_keys()

 @spec global_config_keys() :: [binary()]

Get the list of global configuration keys that should not be treated as project names.

 is_valid_project_name?(name)

 @spec is_valid_project_name?(binary()) :: boolean()

Check if a given key represents a valid project name (not a global config key).
Returns false for global configuration keys like "approvals".

 list_projects(settings)

 @spec list_projects(t()) :: [binary()]

 new()

 @spec new() :: t()

 project_is_set?()

Check if the --project option is set.

 set_auto_approve(auto_approve)

 @spec set_auto_approve(boolean()) :: :ok

Set auto-approve mode for the application. In this mode, file edits
are automatically approved without user confirmation.

 set_auto_policy(policy)

 @spec set_auto_policy({:approve | :deny, non_neg_integer()} | nil) :: :ok

Set auto-approval policy for the application. This setting controls how
unattended approvals are handled.
The policy is a tuple consisting of an action and a timeout (or nil to
disable):
	:approve to automatically approve changes after a timeout.
	:deny to automatically deny changes after a timeout.
	nil to disable auto-approval.

The timeout is specified in milliseconds and determines how long to wait
before applying the auto-approval policy.
When an approval is required, the system will first send a notification to
the user after 60 seconds. If the user does not respond within the timeout
specified by the auto-approval policy, the specified action will be taken
automatically.

 set_edit_mode(edit_mode)

 @spec set_edit_mode(boolean()) :: :ok

Set edit mode for the application.

 set_fonz_mode(fonz_mode)

 @spec set_fonz_mode(boolean()) :: :ok

Set fonz mode for application.

 set_project(project_name)

 @spec set_project(atom() | binary()) :: :ok

Set the project name for the --project option.

 set_project(settings, data)

 @spec set_project(t(), map()) :: map()

 set_project_data(settings, project_name, data)

 @spec set_project_data(t(), binary(), map()) :: t()

Set project data in the settings using the new nested format.

 set_project_root_override(path)

 @spec set_project_root_override(binary() | nil) :: :ok

Set or clear a temporary project root override path. Pass a directory path to
override or nil to clear the override.

 set_quiet(quiet)

 @spec set_quiet(boolean()) :: :ok

Set the quiet mode for UI output.

 set_workers(workers)

 @spec set_workers(pos_integer()) :: :ok

Set the number of workers for concurrent operations.

 set_yes_count(count)

 @spec set_yes_count(non_neg_integer()) :: :ok

Set yes count in settings.

 settings_file()

 @spec settings_file() :: binary()

Get the path to the settings file. If the file does not exist, it will be
created.

 update(settings, key, updater, default \\ %{})

 @spec update(t(), binary(), (any() -> any() | :delete), any()) :: t() | no_return()

Atomically update a top-level key in the settings file using a cross-process
lock and a read-merge-write cycle.
The updater receives the current value for key (or default when missing)
and must return the new value. If the updater returns :delete, the key will
be removed from the settings.

 write_atomic!(path, content)

Settings.Approvals

 Summary

 Types

 kind()

 prefix()

 scope()

 settings()

 subject()

 Functions

 approve(settings, atom, kind, prefix)

 approved?(settings, kind, subject)

 approved?(settings, atom, kind, subject)

 get_approvals(settings, atom)

 get_approvals(settings, atom, kind)

 prefix_approved?(settings, kind, subject)

 prefix_approved?(settings, atom, kind, subject)

 Types

 kind()

 @type kind() :: binary()

 prefix()

 @type prefix() :: binary()

 scope()

 @type scope() :: :project | :global

 settings()

 @type settings() :: Settings.t()

 subject()

 @type subject() :: binary()

 Functions

 approve(settings, atom, kind, prefix)

 @spec approve(settings(), scope(), kind(), prefix()) :: settings()

 approved?(settings, kind, subject)

 @spec approved?(settings(), kind(), subject()) :: boolean()

 approved?(settings, atom, kind, subject)

 get_approvals(settings, atom)

 @spec get_approvals(settings(), scope()) :: map()

 get_approvals(settings, atom, kind)

 @spec get_approvals(settings(), scope(), kind()) :: [prefix()]

 prefix_approved?(settings, kind, subject)

 @spec prefix_approved?(settings(), kind(), subject()) :: boolean()

 prefix_approved?(settings, atom, kind, subject)

Settings.Approvals.RegexMatcher

Provides functions to compile and match regular expression patterns for approvals.

 Summary

 Functions

 matches?(pattern, subject)

 Tests whether a single pattern string matches the given subject.

 Functions

 matches?(pattern, subject)

 @spec matches?(String.t(), String.t()) :: boolean()

Tests whether a single pattern string matches the given subject.
Returns false if either argument is not a binary.

Settings.Frobs

Manage frob enablement in settings.json using approvals-style arrays.
Schema:
	Global: ["frobs"] :: [string]
	Per-project: ["projects", pn, "frobs"] :: [string]

Effective enablement is the union of global and current project's frobs.
All mutations are performed via Settings APIs that provide cross-process locking
and atomic writes.

 Summary

 Types

 scope()

 Functions

 disable(scope, name)

 Disable a frob in the given scope. Idempotent.

 effective_enabled()

 Return the effective set of enabled frobs for the current project context
(union of global and project lists).

 enable(scope, name)

 Enable a frob in the given scope. Idempotent.

 enabled?(name)

 Is the given frob enabled (effective union)?

 list(arg1)

 List enabled frobs for the given scope.

 prune_missing!(present_names)

 Prune missing frobs from settings based on the given list of present frob names.

 Types

 scope()

 @type scope() :: :global | :project | {:project, String.t()}

 Functions

 disable(scope, name)

 @spec disable(scope(), String.t()) :: :ok

Disable a frob in the given scope. Idempotent.

 effective_enabled()

 @spec effective_enabled() :: MapSet.t(String.t())

Return the effective set of enabled frobs for the current project context
(union of global and project lists).

 enable(scope, name)

 @spec enable(scope(), String.t()) :: :ok

Enable a frob in the given scope. Idempotent.

 enabled?(name)

 @spec enabled?(String.t()) :: boolean()

Is the given frob enabled (effective union)?

 list(arg1)

 @spec list(scope()) :: [String.t()]

List enabled frobs for the given scope.

 prune_missing!(present_names)

 @spec prune_missing!([String.t()]) :: [String.t()]

Prune missing frobs from settings based on the given list of present frob names.
This removes any frob names that are not found in present_names from:
	the global frobs array, and
	the currently selected project's frobs array (if a project is selected)

Returns the list of names that were retained.

Settings.MCP

Manage Hermes MCP server configuration under the "mcp_servers" key in settings.
MCP configuration can be stored at both global and project scopes without
being automatically written unless the user performs a configuration action.
Configuration format:
"mcp_servers": %{server_name => server_config}
server_config fields:
	"transport": "stdio" | "http" | "websocket"

	"timeout_ms": integer (optional)
	stdio-specific:	"command": string
	"args": [string]
	"env": %{string => string}

	http/ws-specific:	"base_url": string
	"headers": %{string => string}

 Summary

 Types

 config()

 Full MCP configuration - map of server names to configs

 scope()

 Scope of MCP configuration: global or project

 server_config()

 Configuration for an individual MCP server

 settings()

 Underlying Settings struct

 Functions

 add_server(settings, scope, name, raw_cfg)

 Add a new MCP server configuration

 effective_config(settings)

 Merge global and project MCP configurations, applying project overrides

 get_config(settings, atom)

 Retrieve MCP server configurations for the given scope

 list_servers(settings, scope)

 List configured MCP servers by name for the given scope

 remove_server(settings, scope, name)

 Remove an existing MCP server configuration

 set_config(settings, arg2, cfg)

 Set MCP configuration for the given scope

 update_server(settings, scope, name, raw_cfg)

 Update an existing MCP server configuration

 Types

 config()

 @type config() :: map()

Full MCP configuration - map of server names to configs

 scope()

 @type scope() :: :global | :project

Scope of MCP configuration: global or project

 server_config()

 @type server_config() :: map()

Configuration for an individual MCP server

 settings()

 @type settings() :: Settings.t()

Underlying Settings struct

 Functions

 add_server(settings, scope, name, raw_cfg)

 @spec add_server(settings(), scope(), String.t(), map()) ::
 {:ok, settings()} | {:error, any()}

Add a new MCP server configuration

 effective_config(settings)

 @spec effective_config(settings()) :: config()

Merge global and project MCP configurations, applying project overrides

 get_config(settings, atom)

 @spec get_config(settings(), scope()) :: config()

Retrieve MCP server configurations for the given scope

 list_servers(settings, scope)

 @spec list_servers(settings(), scope()) :: map()

List configured MCP servers by name for the given scope

 remove_server(settings, scope, name)

 @spec remove_server(settings(), scope(), String.t()) ::
 {:ok, settings()} | {:error, any()}

Remove an existing MCP server configuration

 set_config(settings, arg2, cfg)

 @spec set_config(settings(), scope(), map()) :: settings()

Set MCP configuration for the given scope

 update_server(settings, scope, name, raw_cfg)

 @spec update_server(settings(), scope(), String.t(), map()) ::
 {:ok, settings()} | {:error, any()}

Update an existing MCP server configuration

Settings.Migrate

 Summary

 Functions

 cleanup_default_project_dir()

 maybe_migrate_settings(path)

 Functions

 cleanup_default_project_dir()

 maybe_migrate_settings(path)

Spinner

 Summary

 Functions

 run(fun, label)

 Functions

 run(fun, label)

 @spec run(fun :: (-> {String.t() | nil, any()}), label :: iodata()) :: any()

Store

 Summary

 Functions

 get_project()

 Retrieves the currently selected project (specified with --project or via
cwd) as a Store.Project.t. If unset, returns {:error, :project_not_set}.

 get_project(project)

 Returns an ok tuple with a Store.Project.t, identified either by name or by
simply passing through a Store.Project.t instance. If passed nil, it
attempts to use the currently selected project (specified with --project or
via cwd).

 store_home()

 Functions

 get_project()

 @spec get_project() ::
 {:ok, Store.Project.t()}
 | {:error, :project_not_found}
 | {:error, :project_not_set}

Retrieves the currently selected project (specified with --project or via
cwd) as a Store.Project.t. If unset, returns {:error, :project_not_set}.

 get_project(project)

 @spec get_project(nil | binary() | Store.Project.t()) ::
 {:ok, Store.Project.t()}
 | {:error, :project_not_found}
 | {:error, :project_not_set}

Returns an ok tuple with a Store.Project.t, identified either by name or by
simply passing through a Store.Project.t instance. If passed nil, it
attempts to use the currently selected project (specified with --project or
via cwd).

 store_home()

 @spec store_home() :: binary()

Store.APIUsage

Module for recording and checking API usage data. Cross OS process
coordination is handled with regard to file reads/writes. It is up to the
caller to ensure that requests are internally ordered for consistency.

 Summary

 Types

 http_result()

 model_usage()

 ok_result()

 status()

 usage()

 Functions

 check(model)

 Checks if a request can be made for the given model based on the last
recorded usage data for the model. If a request can be made, returns :ok.
Otherwise, returns {:wait, milliseconds} indicating how long to wait before
attempting another request.

 record_for_model(model, http_result)

 Records API usage for a provided model. If model is nil, returns http_result
unchanged. For 2xx {:ok, %{headers: headers, status: code}} results and a
binary model, records usage data and updates the store. Other responses or
errors are returned unchanged.

 store_path()

 Returns the path to the usage store file.

 Types

 http_result()

 @type http_result() ::
 ok_result()
 | {:http_error, {status(), String.t()}}
 | {:transport_error, any()}

 model_usage()

 @type model_usage() :: %{
 updated_at: non_neg_integer(),
 requests_max: non_neg_integer(),
 requests_left: non_neg_integer(),
 requests_reset: non_neg_integer(),
 tokens_max: non_neg_integer(),
 tokens_left: non_neg_integer(),
 tokens_reset: non_neg_integer()
}

 ok_result()

 @type ok_result() :: {:ok, %{body: map(), headers: list(), status: status()}}

 status()

 @type status() :: non_neg_integer()

 usage()

 @type usage() :: %{optional(binary()) => model_usage()}

 Functions

 check(model)

 @spec check(binary()) :: :ok | {:wait, non_neg_integer()} | {:error, term()}

Checks if a request can be made for the given model based on the last
recorded usage data for the model. If a request can be made, returns :ok.
Otherwise, returns {:wait, milliseconds} indicating how long to wait before
attempting another request.

 record_for_model(model, http_result)

 @spec record_for_model(binary() | nil, http_result()) :: http_result()

Records API usage for a provided model. If model is nil, returns http_result
unchanged. For 2xx {:ok, %{headers: headers, status: code}} results and a
binary model, records usage data and updates the store. Other responses or
errors are returned unchanged.

 store_path()

 @spec store_path() :: binary()

Returns the path to the usage store file.

Store.Project

 Summary

 Types

 index_status()

 t()

 Functions

 conversations(project)

 create(project)

 delete(project)

 delete_missing_files(project)

 exists_in_store?(project)

 expand_path(path, project)

 files_root(project)

 find_entry(project, path)

 find_file(project, path)

 Resolves path within the project's source root. Returns {:ok, path} if
the file exists, or {:error, :enoent} if it does not.

 find_path_in_source_root(project, path)

 has_index?(project)

 index_status(project)

 Returns the status of the index for the given project.

 make_default_for_session(project)

 new(project_name, store_path)

 project_prompt(project)

 Reads the project prompt from FNORD.md and FNORD.local.md in the source
root.

 relative_path(path, project)

 save_settings(project, source_root \\ nil, exclude \\ nil)

 source_files(project)

 Returns no source files when source_root is nil to avoid crashing.

 stored_files(project)

 torch(project)

 Types

 index_status()

 @type index_status() :: %{
 new: [Store.Project.Entry.t()],
 stale: [Store.Project.Entry.t()],
 deleted: [Store.Project.Entry.t()]
}

 t()

 @type t() :: %Store.Project{
 conversation_dir: term(),
 exclude: term(),
 exclude_cache: term(),
 name: term(),
 source_root: term(),
 store_path: term()
}

 Functions

 conversations(project)

 @spec conversations(t()) :: [Store.Project.Conversation.t()]

 create(project)

 @spec create(t()) :: t()

 delete(project)

 @spec delete(t()) :: :ok

 delete_missing_files(project)

 @spec delete_missing_files(t()) :: {t(), Enumerable.t()}

 exists_in_store?(project)

 @spec exists_in_store?(t()) :: boolean()

 expand_path(path, project)

 @spec expand_path(String.t(), t()) :: String.t()

 files_root(project)

 @spec files_root(t()) :: String.t()

 find_entry(project, path)

 @spec find_entry(t(), String.t()) ::
 {:ok, Store.Project.Entry.t()} | {:error, :enoent}

 find_file(project, path)

 @spec find_file(t(), binary()) ::
 {:ok, binary()} | {:error, :enoent} | {:error, File.posix()}

Resolves path within the project's source root. Returns {:ok, path} if
the file exists, or {:error, :enoent} if it does not.

 find_path_in_source_root(project, path)

 @spec find_path_in_source_root(t(), String.t()) ::
 {:ok, :dir | :file | :enoent, String.t()}

 has_index?(project)

 @spec has_index?(t()) :: boolean()

 index_status(project)

 @spec index_status(t()) :: index_status()

Returns the status of the index for the given project.
It classifies entries into:
	:deleted - entries that were indexed but the source files have been removed
	:stale - entries whose indexed metadata is stale compared to the source file
	:new - entries for unindexed files that exist in the source

 make_default_for_session(project)

 @spec make_default_for_session(t()) :: t()

 new(project_name, store_path)

 @spec new(String.t(), String.t()) :: t()

 project_prompt(project)

 @spec project_prompt(t()) :: {:ok, binary()} | {:error, :not_found}

Reads the project prompt from FNORD.md and FNORD.local.md in the source
root.
Returns:
	{:ok, prompt} (at least one file has content)
	{:error, :not_found}

When both files have content, the resulting prompt will include instructions
from both files, along with a short note indicating priority.

 relative_path(path, project)

 @spec relative_path(String.t(), t()) :: String.t()

 save_settings(project, source_root \\ nil, exclude \\ nil)

 @spec save_settings(t(), String.t() | nil, String.t() | nil) :: t()

 source_files(project)

 @spec source_files(t()) :: {t(), Enumerable.t()}

Returns no source files when source_root is nil to avoid crashing.

 stored_files(project)

 @spec stored_files(t()) :: Enumerable.t()

 torch(project)

 @spec torch(t()) :: :ok

Store.Project.Conversation

Conversations are stored per project in the project's store dir, under
converations/. Each file is mostly JSON, but with a timestamp prepended
to the JSON data, separated by a colon. This allows for easy sorting, without
having to parse dozens or hundreds of messages for each file.
The JSON object currently has the following keys:
	messages: a list of messages in the conversation
	metadata: a map of metadata for the conversation
	memory: a list of memory objects associated with the conversation

Existing conversations are retrieved by their UUID identifier.

 Summary

 Types

 data()

 t()

 Functions

 delete(conversation)

 Deletes the conversation from the store. If the conversation does not exist,
returns an error tuple.

 exists?(conversation)

 Returns true if the conversation exists on disk, false otherwise.

 fork(conversation)

 Forks the given conversation, returning a new conversation with a new UUID
and identical messages. Saves the forked conversation to disk with the
current timestamp.

 list(project_home)

 Lists all conversations in the given project in ascending order by timestamp.

 new()

 Create a new conversation with a new UUID identifier and the globally
selected project.

 new(id)

 Create a new conversation from an existing UUID identifier and the globally
selected project.

 new(id, project_home)

 Create a new conversation from an existing UUID identifier and an explicitly
specified project.

 num_messages(conversation)

 Returns the number of messages in the conversation. If the conversation does
not exist, returns 0.

 question(conversation)

 Returns the user's prompting message in the conversation. This is considered
to be the first "user" role message in the conversation.

 read(conversation)

 Reads the conversation from the store. Returns a map with the timestamp,
messages, metadata, and memory in the conversation.

 timestamp(conversation)

 Returns the timestamp of the conversation. If the conversation has not yet
been saved to the store, returns 0.

 write(conversation, data \\ %{})

 Saves the conversation in the store.

 Types

 data()

 @type data() :: %{
 timestamp: DateTime.t(),
 messages: AI.Util.msg_list(),
 metadata: map(),
 memory: list(),
 tasks: %{required(Services.Task.list_id()) => Services.Task.task_list()}
}

 t()

 @type t() :: %Store.Project.Conversation{
 id: term(),
 project_home: term(),
 store_path: term()
}

 Functions

 delete(conversation)

 @spec delete(t()) :: :ok | {:error, :not_found}

Deletes the conversation from the store. If the conversation does not exist,
returns an error tuple.

 exists?(conversation)

 @spec exists?(t()) :: boolean()

Returns true if the conversation exists on disk, false otherwise.

 fork(conversation)

 @spec fork(t()) :: {:ok, t()} | {:error, any()}

Forks the given conversation, returning a new conversation with a new UUID
and identical messages. Saves the forked conversation to disk with the
current timestamp.

 list(project_home)

 @spec list(Store.Project.t()) :: [t()]

 @spec list(binary()) :: [t()]

Lists all conversations in the given project in ascending order by timestamp.

 new()

Create a new conversation with a new UUID identifier and the globally
selected project.

 new(id)

Create a new conversation from an existing UUID identifier and the globally
selected project.

 new(id, project_home)

Create a new conversation from an existing UUID identifier and an explicitly
specified project.

 num_messages(conversation)

 @spec num_messages(t()) :: non_neg_integer()

Returns the number of messages in the conversation. If the conversation does
not exist, returns 0.

 question(conversation)

 @spec question(t()) :: {:ok, binary()} | {:error, :no_question}

Returns the user's prompting message in the conversation. This is considered
to be the first "user" role message in the conversation.

 read(conversation)

 @spec read(t()) :: {:ok, data()} | {:error, any()}

Reads the conversation from the store. Returns a map with the timestamp,
messages, metadata, and memory in the conversation.

 timestamp(conversation)

 @spec timestamp(t()) :: DateTime.t() | 0

Returns the timestamp of the conversation. If the conversation has not yet
been saved to the store, returns 0.

 write(conversation, data \\ %{})

 @spec write(t(), map()) :: {:ok, t()} | {:error, any()}

Saves the conversation in the store.
For new conversations, generates a fresh timestamp.
For existing conversations, only updates the on-disk timestamp if the conversation's messages have changed;
otherwise reuses the existing timestamp. Incoming data is merged with existing conversation data so
that missing keys fallback to the existing values.

Store.Project.ConversationIndex

Manages semantic index data for conversations within a project.
Index data is stored under the project's store path in a parallel
directory tree to conversations themselves:
<store_path>/conversations/index/<conversation-id>/
 embeddings.json
 metadata.json
This module is responsible for tracking which conversations are indexed,
determining which ones are new or stale, and reading/writing embeddings
and associated metadata.

 Summary

 Types

 metadata()

 status()

 Functions

 all_embeddings(project)

 Enumerates all indexed conversations, yielding {id, embedding_vector, metadata}.

 delete(project, conversation_id)

 Deletes the index entry for the given conversation id.

 index_status(project)

 Returns the status of the conversation index for the given project.

 path_for(project, conversation_id)

 read_embeddings(project, conversation_id)

 Reads embeddings and metadata for a conversation.

 read_metadata(project, conversation_id)

 Reads only the metadata for a conversation index entry.

 root(project)

 write_embeddings(project, conversation_id, embeddings, metadata)

 Writes embeddings and metadata for a conversation.

 Types

 metadata()

 @type metadata() :: %{optional(String.t()) => any()}

 status()

 @type status() :: %{
 new: [Store.Project.Conversation.t()],
 stale: [Store.Project.Conversation.t()],
 deleted: [String.t()]
}

 Functions

 all_embeddings(project)

 @spec all_embeddings(Store.Project.t()) :: Enumerable.t()

Enumerates all indexed conversations, yielding {id, embedding_vector, metadata}.

 delete(project, conversation_id)

 @spec delete(Store.Project.t(), String.t()) :: :ok

Deletes the index entry for the given conversation id.

 index_status(project)

 @spec index_status(Store.Project.t()) :: status()

Returns the status of the conversation index for the given project.
It classifies conversations into:
	:deleted - indexed conversations whose source conversation no longer exists
	:stale - conversations whose index metadata is stale compared to the on-disk conversation timestamp or embedding model

	:new - conversations that exist but have no index entry

 path_for(project, conversation_id)

 @spec path_for(Store.Project.t(), String.t()) :: String.t()

 read_embeddings(project, conversation_id)

 @spec read_embeddings(Store.Project.t(), String.t()) ::
 {:ok, %{embeddings: any(), metadata: metadata()}} | {:error, term()}

Reads embeddings and metadata for a conversation.
Returns {:ok, %{embeddings: embeddings, metadata: metadata}} on success
or an error tuple if either file cannot be read/decoded.

 read_metadata(project, conversation_id)

 @spec read_metadata(Store.Project.t(), String.t()) ::
 {:ok, metadata()} | {:error, term()}

Reads only the metadata for a conversation index entry.

 root(project)

 @spec root(Store.Project.t()) :: String.t()

 write_embeddings(project, conversation_id, embeddings, metadata)

 @spec write_embeddings(Store.Project.t(), String.t(), any(), metadata()) ::
 :ok | {:error, term()}

Writes embeddings and metadata for a conversation.
The embeddings are stored in embeddings.json and the metadata in
metadata.json under the conversation's index directory.

Store.Project.Entry

 Summary

 Types

 t()

 Functions

 create(entry)

 delete(entry)

 embeddings_file_paths(entry)

 exists_in_store?(entry)

 has_embeddings?(entry)

 has_metadata?(entry)

 has_outline?(entry)

 has_summary?(entry)

 hash_is_current?(entry)

 id_for_rel_path(rel_path)

 is_incomplete?(entry)

 is_stale?(entry)

 metadata_file_path(entry)

 new_from_entry_path(project, entry_path)

 new_from_file_path(project, file)

 outline_file_path(entry)

 read(entry)

 read_embeddings(entry)

 read_metadata(entry)

 read_outline(entry)

 read_source_file(entry)

 read_summary(entry)

 rel_path_from_id(id)

 save(entry, summary, outline, embeddings)

 save_embeddings(entry, embeddings)

 save_metadata(entry)

 save_outline(entry, data)

 save_summary(entry, data)

 summary_file_path(entry)

 Types

 t()

 @type t() :: %Store.Project.Entry{
 embeddings: term(),
 file: term(),
 key: term(),
 metadata: term(),
 outline: term(),
 project: term(),
 rel_path: term(),
 store_path: term(),
 summary: term()
}

 Functions

 create(entry)

 @spec create(t()) :: :ok

 delete(entry)

 @spec delete(t()) :: [binary()]

 embeddings_file_paths(entry)

 exists_in_store?(entry)

 @spec exists_in_store?(t()) :: boolean()

 has_embeddings?(entry)

 has_metadata?(entry)

 has_outline?(entry)

 has_summary?(entry)

 hash_is_current?(entry)

 @spec hash_is_current?(t()) :: boolean()

 id_for_rel_path(rel_path)

 @spec id_for_rel_path(String.t()) :: String.t()

 is_incomplete?(entry)

 @spec is_incomplete?(t()) :: boolean()

 is_stale?(entry)

 @spec is_stale?(t()) :: boolean()

 metadata_file_path(entry)

 new_from_entry_path(project, entry_path)

 @spec new_from_entry_path(Store.Project.t(), String.t()) :: t()

 new_from_file_path(project, file)

 @spec new_from_file_path(Store.Project.t(), String.t()) :: t()

 outline_file_path(entry)

 read(entry)

 @spec read(t()) :: {:ok, map()} | {:error, any()}

 read_embeddings(entry)

 read_metadata(entry)

 read_outline(entry)

 read_source_file(entry)

 @spec read_source_file(t()) :: {:ok, String.t()} | {:error, any()}

 read_summary(entry)

 rel_path_from_id(id)

 @spec rel_path_from_id(String.t()) :: {:ok, String.t()} | {:error, :not_reversible}

 save(entry, summary, outline, embeddings)

 @spec save(t(), String.t(), String.t(), [float()]) :: :ok | {:error, any()}

 save_embeddings(entry, embeddings)

 save_metadata(entry)

 save_outline(entry, data)

 save_summary(entry, data)

 summary_file_path(entry)

Store.Project.Entry.Embeddings

Store.Project.Entry.ID

 Summary

 Functions

 from_key(key)

 to_key(rel_path)

 Functions

 from_key(key)

 @spec from_key(String.t()) :: {:ok, String.t()} | :error

 to_key(rel_path)

 @spec to_key(String.t()) :: String.t()

Store.Project.Entry.Metadata

Store.Project.Entry.MigrateAbsToRelPathKeys

Handles migration of project store entries from absolute-path-based IDs to relative-path-based IDs.
This module provides functionality to:
	Detect when migration is needed for entry ID scheme changes
	Coordinate cross-process migration with lockfiles
	Migrate entry directories and metadata files from absolute-path keys to relative-path keys
	Ensure entries use relative paths for portability across machines

 Summary

 Functions

 ensure_relative_entry_ids(project)

 Ensures that all entries in the project use relative-path based IDs.

 Functions

 ensure_relative_entry_ids(project)

 @spec ensure_relative_entry_ids(Store.Project.t()) :: :ok

Ensures that all entries in the project use relative-path based IDs.
This function is idempotent and safe to call multiple times. It uses a lockfile
to prevent concurrent migrations and will raise if another process is already
performing the migration.

Store.Project.Entry.Outline

Store.Project.Entry.Storage

Façade over entry persistence using direct File operations and Entry submodules.

Store.Project.Entry.StorageBehaviour behaviour

Behaviour definition for persisting project entries in the store.
Implementations of this behaviour manage the physical storage and retrieval
of entries, abstracting over the underlying persistence mechanism.

 Summary

 Callbacks

 create(t)

 delete(t)

 exists?(t)

 is_incomplete?(t)

 is_stale?(t)

 read(t)

 save(t, t, t, list)

 Callbacks

 create(t)

 @callback create(Store.Project.Entry.t()) :: :ok

 delete(t)

 @callback delete(Store.Project.Entry.t()) :: {:ok, [binary()]} | no_return()

 exists?(t)

 @callback exists?(Store.Project.Entry.t()) :: boolean()

 is_incomplete?(t)

 @callback is_incomplete?(Store.Project.Entry.t()) :: boolean()

 is_stale?(t)

 @callback is_stale?(Store.Project.Entry.t()) :: boolean()

 read(t)

 @callback read(Store.Project.Entry.t()) :: {:ok, map()} | {:error, any()}

 save(t, t, t, list)

 @callback save(Store.Project.Entry.t(), String.t(), String.t(), [float()]) ::
 :ok | {:error, any()}

Store.Project.Entry.Summary

Store.Project.EntryFile behaviour

 Summary

 Callbacks

 exists?(struct)

 new(entry_file_path, source_file_path)

 read(struct)

 store_path(struct)

 write(struct, any)

 Callbacks

 exists?(struct)

 @callback exists?(struct()) :: boolean()

 new(entry_file_path, source_file_path)

 @callback new(entry_file_path :: String.t(), source_file_path :: String.t()) :: struct()

 read(struct)

 @callback read(struct()) :: {:ok, any()} | {:error, any()}

 store_path(struct)

 @callback store_path(struct()) :: String.t()

 write(struct, any)

 @callback write(
 struct(),
 any()
) :: :ok | {:error, any()}

Store.Project.FilesDirMigration

Migrates legacy entry directories into the new files/ layout.
Moves or merges each entry directory under the project store path into
an entry-specific directory under files_root. Preserves existing files in
target directories, merges missing files, and removes legacy directories.
Ignores root-level "files" and "conversations" directories.

 Summary

 Functions

 ensure_files_dir_layout(project)

 migrate(store_path, files_root)

 Functions

 ensure_files_dir_layout(project)

 @spec ensure_files_dir_layout(Store.Project.t()) :: :ok

 migrate(store_path, files_root)

Store.Project.Notes

 Summary

 Functions

 file_path()

 read()

 reset()

 write(content)

 Functions

 file_path()

 read()

 reset()

 write(content)

Timed

 Summary

 Functions

 timed(name, fun)

 Functions

 timed(name, fun)

UI

User interface functions for output, logging, and user interaction.
Context Warnings for Interactive UI
Interactive UI functions (confirm/1, choose/2, prompt/1) can cause deadlocks
when called from certain contexts and must be wrapped appropriately.
GenServer Callbacks
Use UI.Queue.run_from_genserver/1 to prevent deadlocks:
def handle_call(:delete_item, _from, state) do
 confirmed = UI.Queue.run_from_genserver(fn ->
 UI.confirm("Delete this item?")
 end)
 # ...
end
Services.Globals.Spawn.async and Spawned Processes
Use UI.Queue.run_from_task/1 when tasks need to participate in an existing UI interaction:
task = Services.Globals.Spawn.async(fn ->
 UI.Queue.run_from_task(fn ->
 UI.confirm("Process this item?")
 end)
end)
Creating UI Components
Use UI.interact/1 to group multiple UI operations into a single atomic component:
def confirm_with_details(item) do
 UI.interact(fn ->
 UI.info("Item details: #{item.name}")
 UI.puts("Size: #{item.size}, Modified: #{item.date}")
 UI.confirm("Delete this item?")
 end)
end
Non-interactive functions (info/2, warn/2, error/2, puts/1, say/1) are safe
to call directly from any context.
Interactive vs Non-Interactive Functions
Interactive (require context wrappers in GenServer/Task contexts):
	confirm/1 - waits for yes/no input
	choose/2 - waits for selection
	prompt/1 - waits for text input

Non-interactive (safe to call directly from any context):
	info/2, warn/2, error/2, debug/2 - just output
	puts/1, say/1 - just output
	interact/1 - groups operations but doesn't itself interact

 Summary

 Functions

 async_stream(enumerable, fun, label \\ "Working", options \\ [])

 begin_step(msg)

 begin_step(msg, detail)

 bold(text)

 box(contents, opts)

 choose(label, options)

 choose(label, options, timeout_ms, default)

 clean_detail(detail)

 colorize?()

 confirm(msg)

 confirm(msg, default)

 debug(msg)

 debug(msg, detail)

 end_step(msg)

 end_step(msg, detail)

 end_step_background(msg)

 end_step_background(msg, detail)

 error(msg)

 error(msg, detail)

 fatal(msg)

 fatal(msg, detail)

 feedback(atom, name, msg)

 flush()

 info(msg)

 info(msg, detail)

 interact(fun)

 Execute a function as a single interaction unit. All UI calls within the function
(puts, log, choose, prompt, etc.) will be treated as part of this interaction
and execute immediately without queuing.

 iodata?(term)

 is_tty?()

 italicize(text)

 log_usage(model, usage)

 newline()

 printf_debug(item)

 progress_bar_start(name, label, total)

 progress_bar_update(name)

 prompt(prompt, owl_opts \\ [])

 puts(msg)

 quiet?()

 report_from(name, msg)

 report_from(name, msg, detail)

 report_step(msg)

 report_step(msg, detail)

 say(msg)

 spin(processing, func)

 warn(msg)

 warn(msg, detail)

 warning_banner(msg)

 Functions

 async_stream(enumerable, fun, label \\ "Working", options \\ [])

 begin_step(msg)

 begin_step(msg, detail)

 bold(text)

 @spec bold(binary()) :: iodata()

 box(contents, opts)

 choose(label, options)

 choose(label, options, timeout_ms, default)

 clean_detail(detail)

 colorize?()

 confirm(msg)

 @spec confirm(binary()) :: boolean()

 confirm(msg, default)

 @spec confirm(binary(), boolean()) :: boolean()

 debug(msg)

 debug(msg, detail)

 end_step(msg)

 end_step(msg, detail)

 end_step_background(msg)

 end_step_background(msg, detail)

 error(msg)

 error(msg, detail)

 fatal(msg)

 @spec fatal(binary()) :: no_return()

 fatal(msg, detail)

 @spec fatal(binary(), binary()) :: no_return()

 feedback(atom, name, msg)

 flush()

 info(msg)

 info(msg, detail)

 interact(fun)

Execute a function as a single interaction unit. All UI calls within the function
(puts, log, choose, prompt, etc.) will be treated as part of this interaction
and execute immediately without queuing.
This is useful for composite TUI components that combine multiple UI elements.

 iodata?(term)

 is_tty?()

 italicize(text)

 @spec italicize(binary()) :: iodata()

 log_usage(model, usage)

 @spec log_usage(AI.Model.t(), non_neg_integer() | map()) :: :ok

 newline()

 printf_debug(item)

 progress_bar_start(name, label, total)

 progress_bar_update(name)

 prompt(prompt, owl_opts \\ [])

 puts(msg)

 quiet?()

 report_from(name, msg)

 report_from(name, msg, detail)

 report_step(msg)

 report_step(msg, detail)

 say(msg)

 spin(processing, func)

 warn(msg)

 warn(msg, detail)

 warning_banner(msg)

 @spec warning_banner(binary()) :: :ok

UI.Formatter

Formats output strings using an external command specified by the
FNORD_FORMATTER environment variable. If unset or empty, returns the
original string. On command failure or non-zero exit code, logs a warning and
returns the original string.
Note: We invoke the formatter via shell -c, which may be subject to shell
injection if FNORD_FORMATTER contains malicious content. This CLI is
intended for trusted environments, so this risk is accepted.

 Summary

 Functions

 format_output(input)

 Functions

 format_output(input)

 @spec format_output(binary()) :: binary()

UI.Output behaviour

Behaviour for UI output operations.
This abstraction allows different implementations for production (UI.Queue/Owl.IO)
and testing (simple IO that can be captured).

 Summary

 Callbacks

 box(iodata, keyword)

 choose(t, list)

 choose(t, list, non_neg_integer, any)

 confirm(t)

 confirm(t, boolean)

 flush()

 interact(function)

 log(atom, iodata)

 newline()

 prompt(t)

 prompt(t, keyword)

 puts(iodata)

 Callbacks

 box(iodata, keyword)

 @callback box(
 iodata(),
 keyword()
) :: :ok

 choose(t, list)

 @callback choose(String.t(), list()) :: any()

 choose(t, list, non_neg_integer, any)

 @callback choose(String.t(), list(), non_neg_integer(), any()) :: any()

 confirm(t)

 @callback confirm(String.t()) :: boolean()

 confirm(t, boolean)

 @callback confirm(String.t(), boolean()) :: boolean()

 flush()

 @callback flush() :: :ok

 interact(function)

 @callback interact((-> any())) :: any()

 log(atom, iodata)

 @callback log(atom(), iodata()) :: :ok

 newline()

 @callback newline() :: :ok

 prompt(t)

 @callback prompt(String.t()) :: String.t() | {:error, atom()}

 prompt(t, keyword)

 @callback prompt(
 String.t(),
 keyword()
) :: String.t() | {:error, atom()}

 puts(iodata)

 @callback puts(iodata()) :: :ok

UI.Output.Production

Production implementation of UI.Output that uses UI.Queue and Owl.IO.

UI.Queue

Priority queue for UI operations to ensure proper serialization of output and user interactions.
What is a UI Context?
A UI context is a logical grouping of related UI operations that should execute together
without interruption from other UI operations. For example, a confirmation dialog that
shows information, asks a question, and displays the result should all execute as one
atomic unit.
Each UI context has a unique token that allows UI operations to either:
	Execute immediately (if called from within the same context)
	Queue for later execution (if called from outside any context)

Context Wrappers for Interactive UI
Use these wrapper functions when calling interactive UI functions from contexts that
could cause deadlocks:
	run_from_genserver/1 - For GenServer callbacks (starts fresh UI context)
	run_from_task/1 - For Services.Globals.Spawn.async (preserves parent UI context)

Interactive UI functions that require wrapping:
	UI.confirm/1
	UI.choose/2
	UI.prompt/1

GenServer example:
def handle_call(:confirm_delete, _from, state) do
 result = UI.Queue.run_from_genserver(fn ->
 UI.confirm("Delete this item?")
 end)
 {:reply, result, state}
end
Services.Globals.Spawn.async example:
task = Services.Globals.Spawn.async(fn ->
 UI.Queue.run_from_task(fn ->
 UI.confirm("Process this item?")
 end)
end)
result = Task.await(task)
Non-interactive UI functions (UI.info/2, UI.error/2, etc.) can be called directly.

 Summary

 Functions

 bind(server \\ __MODULE__, token, fun)

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 interact(server \\ __MODULE__, fun, timeout \\ :infinity)

 interaction_token(server \\ __MODULE__)

 log(server \\ __MODULE__, level, chardata, md \\ [], timeout \\ :infinity)

 puts(server \\ __MODULE__, io_device \\ :stdio, data, timeout \\ :infinity)

 run_from_genserver(server \\ __MODULE__, fun)

 Wrapper for running interactive UI calls from GenServer callbacks.

 run_from_task(server \\ __MODULE__, fun)

 Wrapper for running interactive UI calls from async tasks (Services.Globals.Spawn.async).

 spawn_bound(server \\ __MODULE__, fun)

 start_link(opts \\ [])

 Functions

 bind(server \\ __MODULE__, token, fun)

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 interact(server \\ __MODULE__, fun, timeout \\ :infinity)

 interaction_token(server \\ __MODULE__)

 log(server \\ __MODULE__, level, chardata, md \\ [], timeout \\ :infinity)

 puts(server \\ __MODULE__, io_device \\ :stdio, data, timeout \\ :infinity)

 run_from_genserver(server \\ __MODULE__, fun)

Wrapper for running interactive UI calls from GenServer callbacks.
This starts a fresh UI interaction context, which prevents deadlocks when
GenServer callbacks need to make interactive UI calls that could send messages
back to the same GenServer.
Use this for interactive functions like UI.confirm/1, UI.choose/2, and UI.prompt/1
when called from handle_call/3, handle_cast/2, or handle_info/2.
Example
def handle_call(:confirm_delete, _from, state) do
 result = UI.Queue.run_from_genserver(fn ->
 UI.confirm("Delete this item?")
 end)
 {:reply, result, state}
end

 run_from_task(server \\ __MODULE__, fun)

Wrapper for running interactive UI calls from async tasks (Services.Globals.Spawn.async).
This preserves the parent process's UI interaction context, allowing async
tasks to participate in the same UI interaction as their parent. This is essential
when tasks need to make interactive UI calls as part of an ongoing user interaction.
Use this when spawning tasks that might make interactive UI calls and you want
them to be part of the current user interaction session.
Example
In a function that's already in a UI interaction context
task = Services.Globals.Spawn.async(fn ->
 UI.Queue.run_from_task(fn ->
 # This UI call will be part of the parent's interaction
 UI.confirm("Process this item?")
 end)
end)

result = Task.await(task)

 spawn_bound(server \\ __MODULE__, fun)

 start_link(opts \\ [])

Util

 Summary

 Types

 async_cb()

 async_item()

 Functions

 async_filter(enumerable, fun)

 Filters an enumerable asynchronously using the provided function. The
function should return true for items to keep and false for items to
discard. The result is a stream of items that passed the filter.

 async_stream(enumerable, fun, options \\ [])

 Convenience wrapper for Services.Globals.Spawn.async_stream/3 with the default options for
concurrency and timeout set to Services.Globals.get_env(:fnord, :workers) and
:infinity, respectively.

 diff_files(a, b)

 Compares two files using the diff command and returns the output.
If the files are identical, it returns {:ok, "No changes detected."}.
If there are differences, it returns {:ok, output} with the diff output.
If an error occurs, it returns {:error, output} with the error message.

 expand_path(path, root \\ nil)

 Expands a given path to its absolute form, expanding . and ... If a root
directory is provided, it will expand the path relative to that root. If no
root is provided, it will expand the path relative to the current working
directory. The root directory is expanded first, if provided (see
Path.expand/2).

 find_file(path)

 Shortcut for find_file_within_root(path, <cwd>). Returns {:error, :enoent} if the current working directory cannot be determined.

 find_file_within_root(path, root)

 Finds a file within the specified root directory. It resolves symlinks for
both the file path and the root directory. If the resolved file path is
within the root directory, it returns {:ok, resolved_path}, otherwise
{:error, :enoent}.

 format_number(int)

 get_latest_version()

 get_running_version()

 int_damnit(value)

 Converts a value to an integer, raising an ArgumentError if the value
cannot be parsed as an integer. Accepts both binary strings and integers.

 numbered_lines(text, separator \\ "|", start_index \\ 1)

 Adds line numbers to each line of the input text, separated by a specified
separator (default is "|"). The numbering starts from 1, or start_index, if
set.

 parse_int(val)

 Parses a binary string into an integer, returning {:ok, int} if successful,
or {:error, :invalid_integer} if the string cannot be parsed as an integer.
Accepts both binary strings and integers.

 path_within_root?(path, root)

 Returns true if the given path is within the specified root directory,
false otherwise. Expands both the path and the root to their absolute
forms, resolving symlinks, before performing the check.

 resolve_symlink(path, root \\ nil)

 Resolves a symlink to its final target. If the path is relative, it will
first be expanded relative to the given root. If root is not provided, it
will expand relative to the current working directory. If a circular symlink
is detected, it returns {:error, :circular_symlink}. Otherwise, it returns
the absolute, resolved path or the error tuple originating from
File.lstat/1.

 string_keys_to_atoms(list)

 Converts all string keys in a map to atoms, recursively.

 truncate(input, max_lines)

 Truncates the input string to a maximum number of lines. If the input has
more lines than max_lines, it keeps the first max_lines lines and appends
a message indicating how many additional lines were omitted. If the input has
max_lines or fewer lines, it returns the input unchanged.

 truncate_chars(input)

 truncate_chars(input, max_chars)

 Truncates the input string to a maximum number of characters. If the input
exceeds max_chars, it truncates the string and appends an ellipsis ("...").
If the input is within the limit, it returns the input unchanged.

 ucfirst(input)

 Capitalizes the first letter of each word in the input string.

 Types

 async_cb()

 @type async_cb() :: (async_item() -> any())

 async_item()

 @type async_item() :: {:ok, any()} | {:error, any()} | {:error, {any(), any()}}

 Functions

 async_filter(enumerable, fun)

Filters an enumerable asynchronously using the provided function. The
function should return true for items to keep and false for items to
discard. The result is a stream of items that passed the filter.

 async_stream(enumerable, fun, options \\ [])

 @spec async_stream(Enumerable.t(), async_cb(), Keyword.t()) :: Enumerable.t()

Convenience wrapper for Services.Globals.Spawn.async_stream/3 with the default options for
concurrency and timeout set to Services.Globals.get_env(:fnord, :workers) and
:infinity, respectively.

 diff_files(a, b)

 @spec diff_files(binary(), binary()) :: {:ok, binary()} | {:error, binary()}

Compares two files using the diff command and returns the output.
If the files are identical, it returns {:ok, "No changes detected."}.
If there are differences, it returns {:ok, output} with the diff output.
If an error occurs, it returns {:error, output} with the error message.

 expand_path(path, root \\ nil)

Expands a given path to its absolute form, expanding . and ... If a root
directory is provided, it will expand the path relative to that root. If no
root is provided, it will expand the path relative to the current working
directory. The root directory is expanded first, if provided (see
Path.expand/2).

 find_file(path)

 @spec find_file(binary()) :: {:ok, binary()} | {:error, :enoent}

Shortcut for find_file_within_root(path, <cwd>). Returns {:error, :enoent} if the current working directory cannot be determined.

 find_file_within_root(path, root)

 @spec find_file_within_root(binary(), binary()) :: {:ok, binary()} | {:error, :enoent}

Finds a file within the specified root directory. It resolves symlinks for
both the file path and the root directory. If the resolved file path is
within the root directory, it returns {:ok, resolved_path}, otherwise
{:error, :enoent}.

 format_number(int)

 get_latest_version()

 get_running_version()

 int_damnit(value)

 @spec int_damnit(binary() | integer()) :: integer()

Converts a value to an integer, raising an ArgumentError if the value
cannot be parsed as an integer. Accepts both binary strings and integers.

 numbered_lines(text, separator \\ "|", start_index \\ 1)

 @spec numbered_lines(binary(), binary(), integer()) :: binary()

Adds line numbers to each line of the input text, separated by a specified
separator (default is "|"). The numbering starts from 1, or start_index, if
set.

 parse_int(val)

 @spec parse_int(binary() | integer()) :: {:ok, integer()} | {:error, :invalid_integer}

Parses a binary string into an integer, returning {:ok, int} if successful,
or {:error, :invalid_integer} if the string cannot be parsed as an integer.
Accepts both binary strings and integers.

 path_within_root?(path, root)

 @spec path_within_root?(binary(), binary()) :: boolean()

Returns true if the given path is within the specified root directory,
false otherwise. Expands both the path and the root to their absolute
forms, resolving symlinks, before performing the check.

 resolve_symlink(path, root \\ nil)

 @spec resolve_symlink(binary(), binary() | nil) ::
 {:ok, binary()} | {:error, :circular_symlink} | {:error, File.posix()}

Resolves a symlink to its final target. If the path is relative, it will
first be expanded relative to the given root. If root is not provided, it
will expand relative to the current working directory. If a circular symlink
is detected, it returns {:error, :circular_symlink}. Otherwise, it returns
the absolute, resolved path or the error tuple originating from
File.lstat/1.

 string_keys_to_atoms(list)

Converts all string keys in a map to atoms, recursively.

 truncate(input, max_lines)

 @spec truncate(binary(), non_neg_integer()) :: binary()

Truncates the input string to a maximum number of lines. If the input has
more lines than max_lines, it keeps the first max_lines lines and appends
a message indicating how many additional lines were omitted. If the input has
max_lines or fewer lines, it returns the input unchanged.

 truncate_chars(input)

 truncate_chars(input, max_chars)

 @spec truncate_chars(binary(), non_neg_integer()) :: binary()

Truncates the input string to a maximum number of characters. If the input
exceeds max_chars, it truncates the string and appends an ellipsis ("...").
If the input is within the limit, it returns the input unchanged.

 ucfirst(input)

Capitalizes the first letter of each word in the input string.

Util.Duration

Human-friendly duration formatting utilities.
Modes:
	:natural (default): "H hours, M minutes, S seconds" with proper pluralization.
	:compact : "H:MM:SS" / "M:SS" / "Ss" (reserved for future use).

 Summary

 Types

 mode()

 Functions

 format(seconds, mode \\ :natural)

 Types

 mode()

 @type mode() :: :natural | :compact

 Functions

 format(seconds, mode \\ :natural)

 @spec format(non_neg_integer(), mode()) :: String.t()

Util.Temp

 Summary

 Functions

 with_tmp(contents, fun)

 Functions

 with_tmp(contents, fun)

 @spec with_tmp(binary(), (binary() -> any())) :: any()

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

