

 fss

 v0.1.1

 Table of contents

 	Modules

 	FSS

 	FSS.HTTP

 	FSS.HTTP.Config

 	FSS.HTTP.Entry

 	FSS.Local

 	FSS.Local.Entry

 	FSS.S3

 	FSS.S3.Config

 	FSS.S3.Entry

FSS

A small abstraction to describe how to access files.
It works with different file systems, for local files
and remote ones.
It's a library to parse and validate URIs, with the necessary
attributes.
See the supported specifications for more details:
	FSS.Local
	FSS.HTTP
	FSS.S3

 Summary

 Types

 entry()

 Can be used to refer to any entry that FSS supports.

Types

 Link to this type

 entry()

 View Source

 @type entry() :: FSS.Local.Entry.t() | FSS.S3.Entry.t() | FSS.HTTP.Entry.t()

Can be used to refer to any entry that FSS supports.

FSS.HTTP

Specification for accessing HTTP(s) resources.

 Summary

 Functions

 parse(url, opts \\ [])

 Parses an HTTP or HTTPs url.

Functions

 Link to this function

 parse(url, opts \\ [])

 View Source

 @spec parse(String.t(), Keyword.t()) ::
 {:ok, FSS.HTTP.Entry.t()} | {:error, Exception.t()}

Parses an HTTP or HTTPs url.

 Options

	:config - A Config.t(). This is optional and by default it's nil.

FSS.HTTP.Config

Represents the configuration for an HTTP resource.

 Summary

 Types

 t()

 Only :headers are configurable now.

Types

 Link to this type

 t()

 View Source

 @type t() :: %FSS.HTTP.Config{headers: [{String.t(), String.t()}]}

Only :headers are configurable now.
They are a list of {String.t(), String.t()}

FSS.HTTP.Entry

Represents the actual HTTP resource.

 Summary

 Types

 t()

 The entry type of an HTTP resource.

Types

 Link to this type

 t()

 View Source

 @type t() :: %FSS.HTTP.Entry{config: FSS.HTTP.Config.t(), url: String.t()}

The entry type of an HTTP resource.
The :url is expected to be a valid HTTP or HTTPS URL,
and :config is expected to be a Config.t().

FSS.Local

Specification for local files.
The FSS.Local.Entry represents a local file with its path.

 Summary

 Functions

 from_path(path)

 Builds a FSS.Local.Entry struct from a path.

Functions

 Link to this function

 from_path(path)

 View Source

 @spec from_path(String.t()) :: FSS.Local.Entry.t()

Builds a FSS.Local.Entry struct from a path.

 Examples

iex> FSS.Local.from_path("/home/joe/file.txt")
%FSS.Local.Entry{path: "/home/joe/file.txt"}

iex> FSS.Local.from_path("C:/joe/file.txt")
%FSS.Local.Entry{path: "C:/joe/file.txt"}

FSS.Local.Entry

Represents a local file.

 Summary

 Types

 t()

 The only attribute is the :path to a local file.

Types

 Link to this type

 t()

 View Source

 @type t() :: %FSS.Local.Entry{path: String.t()}

The only attribute is the :path to a local file.

FSS.S3

Specification for accessing AWS S3 resources.

 Summary

 Functions

 config_from_system_env()

 Builds a Config.t() reading from the system env.

 parse(url, opts \\ [])

 Parses a URL in the format s3://bucket/resource-key.

Functions

 Link to this function

 config_from_system_env()

 View Source

 @spec config_from_system_env() :: FSS.S3.Config.t()

Builds a Config.t() reading from the system env.

 Link to this function

 parse(url, opts \\ [])

 View Source

 @spec parse(String.t(), Keyword.t()) ::
 {:ok, FSS.S3.Entry.t()} | {:error, Exception.t()}

Parses a URL in the format s3://bucket/resource-key.

 Options

	:config - It expects a Config.t() or a Keyword.t() with the keys
representing the attributes of the Config.t(). By default it is nil,
which means that we are going to try to fetch the credentials and configuration
from the system's environment variables.
The following env vars are read:
	AWS_ACCESS_KEY_ID
	AWS_SECRET_ACCESS_KEY
	AWS_REGION or AWS_DEFAULT_REGION
	AWS_SESSION_TOKEN

In case the endpoint is not provided, we compute a valid one for the AWS S3 API,
That is going to follow the path style. The endpoint is not going to include the
:bucket in it, being necessary to do that when using this FSS entry.
See https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-bucket-intro.html
for more details.

FSS.S3.Config

Represents the configuration needed for accessing an S3 resource.

 Summary

 Types

 t()

 The configuration struct for S3.

Types

 Link to this type

 t()

 View Source

 @type t() :: %FSS.S3.Config{
 access_key_id: String.t(),
 bucket: String.t() | nil,
 endpoint: String.t(),
 region: String.t() | nil,
 secret_access_key: String.t(),
 token: String.t() | nil
}

The configuration struct for S3.
The attributes are:
	:access_key_id - This attribute is required.

	:secret_access_key - This attribute is required.

	:bucket - A valid bucket name. This attribute is optional,
but if is not provided, then the :endpoint must include the bucket name
either in the host, as a virtual host, or in the path. In other words:
if the bucket is not given, then :endpoint must be configured.
This attribute is going to be set to nil if the endpoint was
not provided, unless the bucket name contain dots in it.

	:region - This attribute is optional. It's normally required when working
with the official AWS S3 API.

	:endpoint - If specified, then :region is ignored.
This attribute is required to be configured if you are using a service that
is compatible with the AWS S3 API.
In case only a "bucket URL" - without discrimination of the bucket name - is provided
then the :bucket attribute can be nil just like the :region.
In case the endpoint is not provided, we compute a valid one for the AWS S3 API.
This endpoint is going to follow the virtual-host style most of the time, with
the only exception being when the bucket name has dots. In that case we build
the AWS S3 endpoint without the bucket name in it.

	:token - This attribute is optional.

FSS.S3.Entry

Represents the S3 resource itself.

 Summary

 Types

 t()

 The entry struct for S3.

Types

 Link to this type

 t()

 View Source

 @type t() :: %FSS.S3.Entry{config: FSS.S3.Config.t(), key: String.t()}

The entry struct for S3.
The attributes are:
	:key - A valid key for the resource. This attribute is required.
	:config - A valid S3 config from the type Config.t(). This attribute is required.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

