

 fun_with_flags

 v1.13.0

 Table of contents

 	FunWithFlags

 	Changelog

 	
 Modules

 	FunWithFlags

 	FunWithFlags.Actor

 	FunWithFlags.Flag

 	FunWithFlags.Gate

 	FunWithFlags.Group

 	FunWithFlags.Store.Cache

 	FunWithFlags.Store.Persistent

 	FunWithFlags.Supervisor

 	FunWithFlags.Telemetry

 	PlainUser

 	Exceptions

 	FunWithFlags.Gate.InvalidGroupNameError

 	FunWithFlags.Gate.InvalidTargetError

FunWithFlags

[image: Mix Tests]
[image: Code Quality]
[image: Hex.pm]
[image: hexdocs.pm]
[image: Hex.pm Downloads]
[image: License]
[image: ElixirWeekly]
[image: ElixirCasts]
FunWithFlags, the Elixir feature flag library.
If you're reading this on the GitHub repo, keep in mind that this readme refers to the master branch. For the latest version released on Hex, please check the readme published with the docs.

FunWithFlags is an OTP application that provides a 2-level storage to save and retrieve feature flags, an Elixir API to toggle and query them, and a web dashboard as control panel.
It stores flag information in Redis or a relational DB (PostgreSQL, MySQL, or SQLite - with Ecto) for persistence and synchronization across different nodes, but it also maintains a local cache in an ETS table for fast lookups. When flags are added or toggled on a node, the other nodes are notified via PubSub and reload their local ETS caches.

 Content

	What's a Feature Flag
	Usage	Gate Priority and Interactions
	Boolean Gate
	Actor Gate
	Group Gate
	Percentage of Time Gate
	Percentage of Actors Gate
	Clearing a Feature Flag's Rules

	Web Dashboard
	Origin
	So, caching, huh?
	To Do
	Installation
	Configuration	Persistence Adapters	Ecto Multi-tenancy
	Ecto Custom Primary Key Types

	PubSub Adapters

	Extensibility	Custom Persistence Adapters

	Telemetry
	Application Start Behaviour
	Testing
	Development	Working with PubSub Locally
	Benchmarks

 What's a Feature Flag?

Feature flags, or feature toggles, are boolean values associated to a name. They should be used to control whether some application feature is enabled or disabled, and they are meant to be modified at runtime while an application is running. This is usually done by the people who control the application.
In their simplest form, flags can be toggled on and off globally. More advanced rules or "gates" allow a fine grained control over their status. For example, it's possible to toggle a flag on and off for specific entities or for groups.
The goal is to have more granular and precise control over what is made available to which users, and when.
A common use case, in web applications, is to enable a functionality without the need to deploy or restart the server, or to enable it only for internal users to test it before rolling it out to everyone. Another scenario is the ability to quickly disable a functionality if it's causing problems.
They can also be used to implement a simple authorization system, for example to an admin area.

 Usage

FunWithFlags has a simple API to query and toggle feature flags. Most of the time, you'll call FunWithFlags.enabled?/2 with the name of the flag and optional arguments.
Different kinds of toggle gates are supported:
	Boolean: globally on and off.
	Actors: on or off for specific structs or data. The FunWithFlags.Actor protocol can be implemented for types and structs that should have specific rules. For example, in web applications it's common to use a %User{} struct or equivalent as an actor, or perhaps the current country of the request.
	Groups: on or off for structs or data that belong to a category or satisfy a condition. The FunWithFlags.Group protocol can be implemented for types and structs that belong to groups for which a feature flag can be enabled or disabled. For example, one could implement the protocol for a %User{} struct to identify administrators.
	%-of-Time: globally on for a percentage of the time. It ignores actors and groups. Mutually exclusive with the %-of-actors gate.
	%-of-Actors: globally on for a percentage of the actors. It only applies when the flag is checked with a specific actor and is ignored when the flag is checked without actor arguments. Mutually exclusive with the %-of-time gate.

Boolean, Actor and Group gates can express either an enabled or disabled state. The percentage gates can only express an enabled state, as disabling something for a percentage of time or actors is logically equivalent to enabling it for the complementary percentage.

 Gate Priority and Interactions

The priority order is from most to least specific: Actors > Groups > Boolean > Percentage, and it applies to both enabled and disabled gates.
For example, a disabled group gate takes precedence over an enabled boolean (global) gate for the entities in the group, and a further enabled actor gate overrides the disabled group gate for a specific entity. When an entity belongs to multiple groups with conflicting toggle status, the disabled group gates have precedence over the enabled ones. The percentage gates are checked last, if present, and they're only checked if no other gate is enabled.
As another example, a flag can have a disabled boolean gate and a 50% enabled %-of-actors gate. When the flag is checked with an actor, it has a (deterministic, consistent and repeatable) 50% chance to be enabled, but when checked without an actor argument it will always be disabled. If we add to the flag a disabled actor gate and an enabled group gate, the flag will be always disabled for the actor, always enabled for any other actor matching the group, have a 50% change to be enabled for any other actor, and always be disabled when checked without actor arguments. If, then, we replace the 50%-of-actors gate with a 50%-of-time gate, the flag will be always disabled for the actor, always enabled for any other actor matching the group, and have a 50% chance to be enabled for any other actor or when checked without an actor argument.

 Boolean Gate

The boolean gate is the simplest one. It's either enabled or disabled, globally. It's also the gate with the second lowest priority (it can mask the percentage gates). If a flag is undefined, it defaults to be globally disabled.
FunWithFlags.enabled?(:cool_new_feature)
false

{:ok, true} = FunWithFlags.enable(:cool_new_feature)

FunWithFlags.enabled?(:cool_new_feature)
true

{:ok, false} = FunWithFlags.disable(:cool_new_feature)

FunWithFlags.enabled?(:cool_new_feature)
false

 Actor Gate

This allows you to enable or disable a flag for one or more entities. For example, in web applications it's common to use a %User{} struct or equivalent as an actor, or perhaps the data used to represent the current country for an HTTP request. This can be useful to showcase a work-in-progress feature to someone, to gradually rollout a functionality by country, or to dynamically disable some features in some contexts.
Actor gates take precedence over the others, both when they're enabled and when they're disabled. They can be considered as toggle overrides.
In order to be used as an actor, an entity must implement the FunWithFlags.Actor protocol. This can be implemented for custom structs or literally any other type.
defmodule MyApp.User do
 defstruct [:id, :name]
end

defimpl FunWithFlags.Actor, for: MyApp.User do
 def id(%{id: id}) do
 "user:#{id}"
 end
end

bruce = %MyApp.User{id: 1, name: "Bruce"}
alfred = %MyApp.User{id: 2, name: "Alfred"}

FunWithFlags.Actor.id(bruce)
"user:1"
FunWithFlags.Actor.id(alfred)
"user:2"

defimpl FunWithFlags.Actor, for: Map do
 def id(%{actor_id: actor_id}) do
 "map:#{actor_id}"
 end

 def id(map) do
 map
 |> inspect()
 |> (&:crypto.hash(:md5, &1)).()
 |> Base.encode16
 |> (&"map:#{&1}").()
 end
end

FunWithFlags.Actor.id(%{actor_id: "bar"})
"map:bar"
FunWithFlags.Actor.id(%{foo: "bar"})
"map:E0BB5BA6873E3AC34B0B6928190C1F2B"
With the protocol implemented, actors can be used with the library functions:
{:ok, true} = FunWithFlags.enable(:restful_nights)
{:ok, false} = FunWithFlags.disable(:restful_nights, for_actor: bruce)
{:ok, true} = FunWithFlags.enable(:batmobile, for_actor: bruce)

FunWithFlags.enabled?(:restful_nights)
true
FunWithFlags.enabled?(:batmobile)
false

FunWithFlags.enabled?(:restful_nights, for: alfred)
true
FunWithFlags.enabled?(:batmobile, for: alfred)
false

FunWithFlags.enabled?(:restful_nights, for: bruce)
false
FunWithFlags.enabled?(:batmobile, for: bruce)
true
Actor identifiers must be globally unique binaries. Since supporting multiple kinds of actors is a common requirement, all the examples use the common technique of namespacing the IDs:
defimpl FunWithFlags.Actor, for: MyApp.User do
 def id(user) do
 "user:#{user.id}"
 end
end

defimpl FunWithFlags.Actor, for: MyApp.Country do
 def id(country) do
 "country:#{country.iso3166}"
 end
end

 Group Gate

Group gates are similar to actor gates, but they apply to a category of entities rather than specific ones. They can be toggled on or off for the name of the group instead of a specific term.
Group gates take precedence over boolean gates but are overridden by actor gates.
Group names can be binaries or atoms. Atoms are supported for retro-compatibility with versions <= 0.9 and binaries are therefore preferred. In fact, atoms are internally converted to binaries and are then stored and later retrieved as binaries.
The semantics to determine which entities belong to which groups are application specific.
Entities could have an explicit list of groups they belong to, or the groups could be abstract and inferred from some other attribute. For example, an :employee group could comprise all %User{} structs with an email address matching the company domain, or an :admin group could be made of all users with %User{admin: true}.
In order to be affected by a group gate, an entity should implement the FunWithFlags.Group protocol. The protocol automatically falls back to a default Any implementation, which states that any entity belongs to no group at all. This makes it possible to safely use "normal" actors when querying group gates, and to implement the protocol only for structs and types for which it matters.
The protocol can be implemented for custom structs or literally any other type.
defmodule MyApp.User do
 defstruct [:email, admin: false, groups: []]
end

defimpl FunWithFlags.Group, for: MyApp.User do
 def in?(%{email: email}, "employee"), do: Regex.match?(~r/@mycompany.com$/, email)
 def in?(%{admin: is_admin}, "admin"), do: !!is_admin
 def in?(%{groups: list}, group_name), do: group_name in list
end

elisabeth = %MyApp.User{email: "elisabeth@mycompany.com", admin: true, groups: ["engineering", "product"]}
FunWithFlags.Group.in?(elisabeth, "employee")
true
FunWithFlags.Group.in?(elisabeth, "admin")
true
FunWithFlags.Group.in?(elisabeth, "engineering")
true
FunWithFlags.Group.in?(elisabeth, "marketing")
false

defimpl FunWithFlags.Group, for: Map do
 def in?(%{group: group_name}, group_name), do: true
 def in?(_, _), do: false
end

FunWithFlags.Group.in?(%{group: "dumb_tests"}, "dumb_tests")
true
With the protocol implemented, actors can be used with the library functions:
FunWithFlags.disable(:database_access)
FunWithFlags.enable(:database_access, for_group: "engineering")

FunWithFlags.enabled?(:database_access)
false
FunWithFlags.enabled?(:database_access, for: elisabeth)
true

 Percentage of Time Gate

%-of-time gates are similar to boolean gates, but they allow to enable a flag for a percentage of the time. In practical terms, this means that a percentage of the enabled?() calls for a flag will return true, regardless of the presence of an actor argument.
When a %-of-time gate is checked a pseudo-random number is generated and compared with the percentage value of the gate. If the result of the random roll is lower than the gate's percentage value, the gate is considered enabled. So, at the risk of stating the obvious and for the sake of clarity, a 90% gate is enabled more often than a 10% gate.
%-of-time gates are useful to gradually introduce alternative code paths that either have the same effects of the old ones, or don't have effects visible to the users. This last point is important, because with a %-of-time gate the application will behave differently on a pseudo-random basis.
A good use case for %-of-time gates is to safely test the correctness or performance and load characteristics of an alternative implementation of a functionality.
For example:
FunWithFlags.clear(:alternative_implementation)
FunWithFlags.enable(:alternative_implementation, for_percentage_of: {:time, 0.05})

def foo(bar) do
 if FunWithFlags.enabled?(:alternative_implementation) do
 new_foo(bar)
 else
 old_foo(bar)
 end
end
The %-of-time gate is incompatible and mutually exclusive with the %-of-actors gate, and it replaces it when it gets set. While there are ways to make them work together, it would needlessly overcomplicate the priority rules.

 Percentage of Actors Gate

%-of-actors gates are similar to the %-of-time gates, but instead of using a pseudo-random chance they calculate the actor scores using a deterministic, consistent and repeatable function that factors in the flag name. At a high level:
actor
|> FunWithFlags.Actor.id()
|> sha256_hash(flag_name)
|> hash_to_percentage()
Since the scores depend on both the actor ID and the flag name, they're guaranteed to always be the same for each actor-flag combination. At the same time, the same actor will have different scores for different flags, and each flag will have a uniform distribution of scores for all the actors.
Just like for the %-of-time gates, an actor's score is compared with the gate's percentage value and, if lower, the gate will result enabled.
A practical example, based on the FunWithFlags.Actor protocol set up from the previous sections:
defmodule MyApp.User do
 defstruct [:id, :name]
end

defimpl FunWithFlags.Actor, for: MyApp.User do
 def id(%{id: id}) do
 "user:#{id}"
 end
end

frodo = %MyApp.User{id: 1, name: "Frodo Baggins"}
sam = %MyApp.User{id: 2, name: "Samwise Gamgee"}
pippin = %MyApp.User{id: 3, name: "Peregrin Took"}
merry = %MyApp.User{id: 4, name: "Meriadoc Brandybuck"}

FunWithFlags.Actor.Percentage.score(frodo, :pipeweed)
0.8658294677734375
FunWithFlags.Actor.Percentage.score(sam, :pipeweed)
0.68426513671875
FunWithFlags.Actor.Percentage.score(pippin, :pipeweed)
0.510528564453125
FunWithFlags.Actor.Percentage.score(merry, :pipeweed)
0.2617645263671875

{:ok, true} = FunWithFlags.enable(:pipeweed, for_percentage_of: {:actors, 0.60})

FunWithFlags.enabled?(:pipeweed, for: frodo)
false
FunWithFlags.enabled?(:pipeweed, for: sam)
false
FunWithFlags.enabled?(:pipeweed, for: pippin)
true
FunWithFlags.enabled?(:pipeweed, for: merry)
true

{:ok, true} = FunWithFlags.enable(:pipeweed, for_percentage_of: {:actors, 0.685})

FunWithFlags.enabled?(:pipeweed, for: sam)
true

FunWithFlags.Actor.Percentage.score(pippin, :pipeweed)
0.510528564453125
FunWithFlags.Actor.Percentage.score(pippin, :mushrooms)
0.6050872802734375
FunWithFlags.Actor.Percentage.score(pippin, :palantir)
0.144073486328125
Once a %-of-actors gate has been defined for a flag, the same actor will always see the same result (unless its actor or group gates are set, or the flag gets globally enabled). Also, this means that as long the percentage value of the gate will increase and never decrease, actors for which the gate has been enabled will always see it enabled.
This is ideal to gradually roll out new functionality to users.
For example, in a Phoenix application:
FunWithFlags.clear(:new_design)
FunWithFlags.enable(:new_design, for_percentage_of: {:actors, 0.2})
FunWithFlags.enable(:new_design, for_group: "beta_testers")

defmodule MyPhoenixApp.MyView do
 use MyPhoenixApp, :view

 def render("my_template.html", assigns) do
 if FunWithFlags.enabled?(:new_design, for: assigns.user) do
 render("new_template.html", assigns)
 else
 render("old_template.html", assigns)
 end
 end
end
The %-of-actors gate is incompatible and mutually exclusive with the %-of-time gate, and it replaces it when it gets set. While there are ways to make them work together, it would needlessly overcomplicate the priority rules.

 Clearing a Feature Flag's Rules

Sometimes enabling or disabling a gate is not what you want, and removing that gate's rules would be more correct. For example, if you don't need anymore to explicitly enable or disable a flag for an actor or for a group, and the default state should be used instead, clearing the gate is the right choice.
More examples:
alias FunWithFlags.TestUser, as: User
harry = %User{id: 1, name: "Harry Potter", groups: ["wizards", "gryffindor"]}
hagrid = %User{id: 2, name: "Rubeus Hagrid", groups: ["wizards", "gamekeeper"]}
dudley = %User{id: 3, name: "Dudley Dursley", groups: ["muggles"]}
FunWithFlags.disable(:wands)
FunWithFlags.enable(:wands, for_group: "wizards")
FunWithFlags.disable(:wands, for_actor: hagrid)

FunWithFlags.enabled?(:wands)
false
FunWithFlags.enabled?(:wands, for: harry)
true
FunWithFlags.enabled?(:wands, for: hagrid)
false
FunWithFlags.enabled?(:wands, for: dudley)
false

FunWithFlags.clear(:wands, for_actor: hagrid)

FunWithFlags.enabled?(:wands, for: hagrid)
true

FunWithFlags.clear(:wands, for_group: "wizards")

FunWithFlags.enabled?(:wands, for: hagrid)
false
FunWithFlags.enabled?(:wands, for: harry)
false

FunWithFlags.enable(:magic_powers, for_percentage_of: {:time, 0.0001})
FunWithFlags.clear(:magic_powers, for_percentage: true)
For completeness, clearing the boolean gate is also supported.
FunWithFlags.enable(:wands)

FunWithFlags.enabled?(:wands)
true
FunWithFlags.enabled?(:wands, for: harry)
true
FunWithFlags.enabled?(:wands, for: hagrid)
false
FunWithFlags.enabled?(:wands, for: dudley)
true

FunWithFlags.clear(:wands, boolean: true)

FunWithFlags.enabled?(:wands)
false
FunWithFlags.enabled?(:wands, for: harry)
true
FunWithFlags.enabled?(:wands, for: hagrid)
false
FunWithFlags.enabled?(:wands, for: dudley)
false
It's also possible to clear an entire flag.
FunWithFlags.clear(:wands)

FunWithFlags.enabled?(:wands)
false
FunWithFlags.enabled?(:wands, for: harry)
false
FunWithFlags.enabled?(:wands, for: hagrid)
false
FunWithFlags.enabled?(:wands, for: dudley)
false

 Web Dashboard

An optional extension of this library is FunWithFlags.UI, a web graphical control panel. It's a Plug, so it can be embedded in a host Phoenix or Plug application or served standalone.

 Origin

This library is heavily inspired by the flipper Ruby gem.
Having used Flipper in production at scale, this project aims to improve in two main areas:
	Minimize the load on the persistence layer: feature flags are not toggled that often, and there is no need to query Redis or the DB for each check.
	Be more reliable: it should keep working with the latest cached values even if Redis becomes unavailable, although with the risk of nodes getting out of sync. (if the DB becomes unavailable, feature flags are probably the last of your problems)

Just as Elixir and Phoenix are meant to scale better than Ruby on Rails with high levels of traffic and concurrency, FunWithFlags should aim to be more scalable and reliable than Flipper.

 So, caching, huh?

There are only two hard things in Computer Science: cache invalidation and naming things.
-- Phil Karlton

The reason to add an ETS cache is that, most of the time, feature flags can be considered static values. Doing a round-trip to the DB (Redis, PostgreSQL or MySQL) is expensive in terms of time and in terms of resources, especially if multiple flags must be checked during a single web request. In the worst cases, the load on the DB can become a cause of concern, a performance bottleneck or the source of a system failure.
Often the solution is to memoize the flag values in the context of the web request, but the approach can be extended to the scope of the entire server. This is what FunWithFlags does, as each application node/instance caches the flags in an ETS table.
Of course, caching adds a different kind of complexity and there are some pros and cons. When a flag is created or updated the ETS cache on the local node is updated immediately, and the main problem is synchronizing the flag data across the other application nodes that should share the same view of the world.
For example, if we have two or more nodes running the application, and on one of them an admin user updates a flag that the others have already cached, or creates a flag that the others have already looked up (and cached as "disabled"), then the other nodes must be notified of the changes.
FunWithFlags uses three mechanisms to deal with the problem:
	Use PubSub to emit change notifications. All nodes subscribe to the same channel and reload flags in the ETS cache when required.
	If that fails, the cache has a configurable TTL. Reading from the DB every few minutes is still better than doing so 30k times per second.
	If that doesn't work, it's possible to disable the cache and just read from the DB all the time. That's what Flipper does.

In terms of performance, very synthetic benchmarks (where the DBs run on the same machine as the Beam code, so with no network hop but sharing the CPU) show that the ETS cache makes querying the FunWithFlags interface between 10 and 20 times faster than going directly to Redis, and between 20 and 40 times faster than going directly to Postgres. The variance depends on the complexity of the flag data to be retrieved.

 To Do

	Add some optional randomness to the TTL, so that Redis or the DB don't get hammered at constant intervals after a server restart.

 Installation

The package can be installed by adding fun_with_flags to your list of dependencies in mix.exs.
In order to have a small installation footprint, the dependencies for the different adapters are all optional. You must explicitly require the ones you wish to use.
def deps do
 [
 {:fun_with_flags, "~> 1.13.0"},

 # either:
 {:redix, "~> 0.9"},
 # or:
 {:ecto_sql, "~> 3.0"},

 # optionally, if you don't want to use Redis' builtin pubsub
 {:phoenix_pubsub, "~> 2.0"},
]
end
Using ecto_sql for persisting the flags also requires an ecto adapter, e.g. postgrex, mariaex or myxql. Please refer to the Ecto documentation for the details.
Since FunWithFlags depends on an Elixir more recent than 1.4, there is no need to explicitly declare the application.
If you need to customize how the :fun_with_flags application is loaded and started, refer to the Application Start Behaviour section, below in this document.

 Configuration

The library can be configured in host applications through Mix and the config.exs file. This example shows some default values:
config :fun_with_flags, :cache,
 enabled: true,
 ttl: 900 # in seconds

the Redis persistence adapter is the default, no need to set this.
config :fun_with_flags, :persistence,
 [adapter: FunWithFlags.Store.Persistent.Redis]

this can be disabled if you are running on a single node and don't need to
sync different ETS caches. It won't have any effect if the cache is disabled.
The Redis PuSub adapter is the default, no need to set this.
config :fun_with_flags, :cache_bust_notifications,
 [enabled: true, adapter: FunWithFlags.Notifications.Redis]

Notifications can also be disabled, which will also remove the Redis/Redix dependency
config :fun_with_flags, :cache_bust_notifications, [enabled: false]
When using Redis for persistence and/or cache-busting PubSub it is necessary to configure the connection to the Redis instance. These options can be omitted if Redis is not being used. For example, the defaults:
the Redis options will be forwarded to Redix.
config :fun_with_flags, :redis,
 host: "localhost",
 port: 6379,
 database: 0

a URL string can be used instead
config :fun_with_flags, :redis, "redis://localhost:6379/0"

or a {URL, [opts]} tuple
config :fun_with_flags, :redis, {"redis://localhost:6379/0", socket_opts: [:inet6]}

a {:system, name} tuple can be used to read from the environment
config :fun_with_flags, :redis, {:system, "REDIS_URL"}
Redis Sentinel is also supported. See the Redix docs for more details.
config :fun_with_flags, :redis,
 sentinel: [
 sentinels: ["redis:://locahost:1234/1"],
 group: "primary",
],
 database: 5

 Persistence Adapters

The library comes with two persistence adapters for the Redix and Ecto libraries, that allow to persist feature flag data in Redis, PostgreSQL, MySQL, or SQLite. In order to use any of them, you must declare the correct optional dependency in the Mixfile (see the installation instructions, above).
The Redis adapter is the default and there is no need to explicitly declare it. All it needs is the Redis connection configuration.
In order to use the Ecto adapter, an Ecto repo must be provided in the configuration. FunWithFlags expects the Ecto repo to be initialized by the host application, which also needs to start and supervise any required processes. If using Phoenix this is managed automatically by the framework, and it's fine to use the same repo used by the rest of the application.
Only PostgreSQL (via postgrex), MySQL (via mariaex or myxql), and SQLite (via ecto_sqlite3) are supported at the moment. Support for other RDBMSs might come in the future.
To configure the Ecto adapter:
Normal Phoenix and Ecto configuration.
The repo can either use the Postgres or MySQL adapter.
config :my_app, ecto_repos: [MyApp.Repo]
config :my_app, MyApp.Repo,
 username: "my_db_user",
 password: "my secret db password",
 database: "my_app_dev",
 hostname: "localhost",
 pool_size: 10

FunWithFlags configuration.
config :fun_with_flags, :persistence,
 adapter: FunWithFlags.Store.Persistent.Ecto,
 repo: MyApp.Repo,
 ecto_table_name: "your_table_name", # optional, defaults to "fun_with_flags_toggles"
 ecto_primary_key_type: :binary_id # optional, defaults to :id
 # For the primary key type, see also: https://hexdocs.pm/ecto/3.10.3/Ecto.Schema.html#module-schema-attributes
It's also necessary to create the DB table that will hold the feature flag data. To do that, create a new migration in your project and copy the contents of the provided migration file. Then run the migration.
When using the Ecto persistence adapter, FunWithFlags will annotate all queries using the Ecto Repo Query API with a custom option: [fun_with_flags: true]. This is done to make it easier to identify FunWithFlags queries when working with Ecto customization hooks, e.g. the Ecto.Repo.prepare_query/3 callback. Since this sort of annotations via custom query options are only useful with the Ecto Query API (context), other repo functions are not annotated with the custom option.
Ecto Multi-tenancy
If you followed the Ecto guide on setting up multi-tenancy with foreign keys, you must add an exception for queries originating from FunWithFlags. As mentioned in the section above, these queries have a custom query option named :fun_with_flags set to true:
Sample code, only relevant if you followed the Ecto guide on multi tenancy with foreign keys.
defmodule MyApp.Repo do
 use Ecto.Repo, otp_app: :my_app

 require Ecto.Query

 @impl true
 def prepare_query(_operation, query, opts) do
 cond do
 # add the check for opts[:fun_with_flags] here:
 opts[:skip_org_id] || opts[:schema_migration] || opts[:fun_with_flags] ->
 {query, opts}

 org_id = opts[:org_id] ->
 {Ecto.Query.where(query, org_id: ^org_id), opts}

 true ->
 raise "expected org_id or skip_org_id to be set"
 end
 end
end
Ecto Custom Primary Key Types
The library defaults to using an integer (bigserial) as the type of the id primary key column. If, for any reason, you need the ID to be a UUID, you can configure it to be of type :binary_id. To do that, you need to:
	Set the :ecto_primary_key_type configuration option to :binary_id.
	Use :binary_id as the type of the :id column in the provided migration file.

 PubSub Adapters

The library comes with two PubSub adapters for the Redix and Phoenix.PubSub libraries. In order to use any of them, you must declare the correct optional dependency in the Mixfile. (see the installation instructions, below)
The Redis PubSub adapter is the default and doesn't need to be explicitly configured. It can only be used in conjunction with the Redis persistence adapter however, and is not available when using Ecto for persistence. When used, it connects directly to the Redis instance used for persisting the flag data.
The Phoenix PubSub adapter uses the high level API of Phoenix.PubSub, which means that under the hood it could use either its PG2 or Redis adapters, and this library doesn't need to know. It's provided as a convenient way to leverage distributed Erlang when using FunWithFlags in a Phoenix application, although it can be used independently (without the rest of the Phoenix framework) to add PubSub to Elixir apps running on Erlang clusters.
FunWithFlags expects the Phoenix.PubSub process to be started by the host application, and in order to use this adapter the client (name or PID) must be provided in the configuration.
For example, in Phoenix (>= 1.5.0) it would be:
normal Phoenix configuration
config :my_app, MyApp.Web.Endpoint,
 pubsub_server: MyApp.PubSub

FunWithFlags configuration
config :fun_with_flags, :cache_bust_notifications,
 enabled: true,
 adapter: FunWithFlags.Notifications.PhoenixPubSub,
 client: MyApp.PubSub
Or, without Phoenix:
possibly in the application's supervision tree
children = [
 {Phoenix.PubSub, [name: :my_pubsub_process_name, adapter: Phoenix.PubSub.PG2]}
]
opts = [strategy: :one_for_one, name: MyApp.Supervisor]
{:ok, _pid} = Supervisor.start_link(children, opts)

config/config.exs
config :fun_with_flags, :cache_bust_notifications,
 enabled: true,
 adapter: FunWithFlags.Notifications.PhoenixPubSub,
 client: :my_pubsub_process_name

 Extensibility

 Custom Persistence Adapters

This library aims to be extensible and allows users to provide their own persistence layer.
This is supported through FunWithFlags.Store.Persistent, a generic persistence behaviour that is adopted by the builtin Redis and Ecto adapters.
Custom persistence adapters can adopt the behaviour and then be configured as the persistence module in the Mix config of the user applications.
For example, an application can define this module:
defmodule MyApp.MyAlternativeFlagStore do
 @behaviour FunWithFlags.Store.Persistent
 # implement all the behaviour's callback
end
And then configure the library to use it:
config :fun_with_flags, :persistence, adapter: MyApp.MyAlternativeFlagStore

 Telemetry

FunWithFlags is instrumented with Telemetry and emits events at runtime. Please refer to the Telemetry docs for detailed instructions on how to consume the emitted events.
The full list of events emitted by FunWithFlags are documented in the FunWithFlags.Telemetry module.

 Application Start Behaviour

As explained in the Installation section, above in this document, the :fun_with_flags application will start automatically when you add the package as a dependency in your Mixfile. The :fun_with_flags application starts its own supervision tree which manages all required processes and is provided by the FunWithFlags.Supervisor module.
Sometimes, this can cause issues and race conditions if FunWithFlags is configured to rely on Erlang processes that are owned by another application. For example, if you have configured the Phoenix.PubSub cache-busting notification adapter, one of FunWithFlag's processes will immediately try to subscribe to its notifications channel using the provided PubSub process identifier. If that process is not available, FunWithFlags will retry a few times and then give up and raise an exception. This will become a problem if you're using FunWithFlags in a large application (e.g. a Phoenix app) and the :fun_with_flags application starts much faster than the Phoenix supervision tree.
In these cases, it's better to directly control how FunWithFlags starts its processes.
The first step is to add the FunWithFlags.Supervisor module directly to the supervision tree of the host application. For example, in a Phoenix app it would look like this:
defmodule MyPhoenixApp.Application do
 @moduledoc false
 use Application

 def start(_type, _args) do
 children = [
 MyPhoenixApp.Repo,
 MyPhoenixAppWeb.Telemetry,
 {Phoenix.PubSub, name: MyPhoenixApp.PubSub},
 MyPhoenixAppWeb.Endpoint,
+ FunWithFlags.Supervisor,
]

 opts = [strategy: :one_for_one, name: MyPhoenixApp.Supervisor]
 Supervisor.start_link(children, opts)
 end

 # ...
Then it's necessary to configure the Mix project to not start the :fun_with_flags application automatically. This can be accomplished in the Mixfile in a number of ways, for example: (Note: These are alternative solutions, you don't need to do both. You must decide which is more appropriate for your setup.)
	Option A: Declare the :fun_with_flags dependency with either the runtime: false or app: false options. (docs)

- {:fun_with_flags, "~> 1.6"},
+ {:fun_with_flags, "~> 1.6", runtime: false},
If you use releases then you'll also need to modify the releases section in mix.exs so that it loads the fun_with_flags application explicitly (since runtime: false / app: false will exclude it from the assembled release).
def project do
 [
 app: :my_phoenix_app,
+ releases: [
+ my_phoenix_app: [
+ applications: [
+ fun_with_flags: :load
+]
+]
]
end
	Option B: Declare that the :fun_with_flags application is managed directly by your host application (docs).

 def application do
 [
 mod: {MyPhoenixApp.Application, []},
+ included_applications: [:fun_with_flags],
 extra_applications: [:logger, :runtime_tools]
]
 end
The result of those changes is that the :fun_with_flags application won't be loaded and started automatically, and therefore the FunWithFlags supervision tree won't risk to be started before the other processes in the host Phoenix application. Rather, the supervision tree will start alongside the other core Phoenix processes.
One final note on this topic is that if you're also using FunWithFlags.UI (refer to the Web Dashboard section, above in this document), then that will need to be configured as well. The reason is that :fun_with_flags is a dependency of :fun_with_flags_ui, so including the latter as a dependency will cause the former to be auto-started despite the configuration described above. To avoid this, the same configuration should be used for the :fun_with_flags_ui dependency, regardless of the approach used (Option A: runtime: false, app: false; or Option B: included_applications).

 Testing

This library depends on Redis, PostgreSQL and MySQL, and you'll need them installed and running on your system in order to run the complete test suite. The tests will use the Redis db number 5 and then clean after themselves, but it's safer to start Redis in a directory where there is no dump.rdb file you care about to avoid issues. The Ecto tests will use the SQL sandbox and all transactions will be automatically rolled back.
To setup the test DB for the Ecto persistence tests, run:
MIX_ENV=test PERSISTENCE=ecto mix do ecto.create, ecto.migrate # for postgres
rm -rf _build/test/lib/fun_with_flags/
MIX_ENV=test PERSISTENCE=ecto RDBMS=mysql mix do ecto.create, ecto.migrate # for mysql
rm -rf _build/test/lib/fun_with_flags/
MIX_ENV=test PERSISTENCE=ecto RDBMS=sqlite mix do ecto.create, ecto.migrate # for sqlite

Then, to run all the tests:
$ mix test.all

The test.all task will run the test suite multiple times with different configurations to exercise a matrix of options and adapters.
The Mixfile defines a few other helper tasks that allow to run the test suite with some more specific configurations.

 Development

Like for testing, developing FunWithFlags requires local installations of Redis, PostgreSQL and MySQL. For work that doesn't touch the persistence adapters too closely, it's possibly simpler to just run FunWithFlags with Redis and then let CI run the tests with the other adapters.
A common workflow is to run the tests and interact with the package API in iex.
With the default configuration, iex -S mix will compile and load FunWithFlags with Redis persistence and Redis PubSub. To compile and run the package in iex with Ecto and Phoenix PubSub support instead, use these commands:
bin/console_ecto postgres
bin/console_ecto mysql

This package uses the credo and dialyxir (dialyzer) packages to help with local development. Their mix tasks can be executed in the root directory of the project:
mix credo
mix dialyzer

 Working with PubSub Locally

It's possible to test the PubSub functionality locally, in iex.
When using Redis, it's enough to start two iex -S mix sessions in two terminals, and they'll talk with one another via Redis.
When using Phoenix.PubSub (which is typically the case with Ecto), then the process is similar but you must establish a connection between the two Erlang nodes running in the two terminals. There are a number of ways to do this, and the simplest is to do it manually within iex.
Steps:
	Run bin/console_pubsub foo in one terminal.
	Run bin/console_pubsub bar in another terminal.
	In either terminal, grab the current name with Node.self(). (The name will also be shown in the iex prompts).
	In the other terminal, run Node.connect(:"THE_OTHER_NODE_NAME"). Keep in mind that the names are atoms.
	In either terminal, run Node.list() to check that there is a connection.

Done that, modifying any flag data in either terminal will notify the other one via PubSub.

 Benchmarks

The package comes with a suite of synthetic benchmark scripts. Their use is recommended when working on the internals of the package.

Changelog

 v1.13.0

	Add support for Elixir 1.18. Drop support for Elixir 1.15. Elixir >= 1.16 is now required. Dropping support for older versions of Elixir simply means that this package is no longer tested with them in CI, and that compatibility issues are not considered bugs.
	Drop support for Erlang/OTP 24, and Erlang/OTP >= 25 is now required. Dropping support for older versions of Erlang/OTP simply means that this package is not tested with them in CI, and that no compatibility issues are considered bugs.
	Instrument the package with Telemetry: FunWithFlags now emits Telemetry events for persistence operations. (pull/197, and thanks Kasse-Dembele for suggesting the feature and sharing his work in pull/176)
	Improve how the change-notification Phoenix.PubSub adapter manages its connection and readiness status. (pull/191)
	Add a suite of synthetic benchmark scripts for the package. (pull/193)

 v1.12.0

	Add support for Elixir 1.17 and 1.16. Drop support for Elixir 1.13 and 1.14. Elixir >= 1.15 is now required. Dropping support for older versions of Elixir simply means that this package is no longer tested with them in CI, and that compatibility issues are not considered bugs.	Note: The FunWithFlags package has usually increased its supported Elixir version one at a time, usually supporting the last three minor versions. With this version v1.12.0 it fast-forwards to Elixir 1.17 from 1.15, and drops support for Elixir versions 1.13 and 1.14 at the same time. That's because a new version of the package wasn't released to support Elixir 1.16 specifically, when it came out, and now there are two new Elixir versions out there. The good news is that this is just a formality to be clear on which Elixir and OTP versions are officially supported, and the FunWithFlags package actually has been working pretty well with new Elixir versions, and even with older Elixir versions that are formally unsupported.

	Fix incorrect return value in FunWithFlags.disable/2 typespec. (Thanks mbuffa, pull/170)
	Improved the performance of checking a flag with many actor or group gates. (Thanks up2jj, pull/172)

 v1.11.0

	Add support for Elixir 1.15. Drop support for Elixir 1.12. Elixir >= 1.13 is now required. Dropping support for older versions of Elixir simply means that this package is no longer tested with them in CI, and that compatibility issues are not considered bugs.
	Drop support for Erlang/OTP 23, and Erlang/OTP >= 24 is now required. Dropping support for older versions of Erlang/OTP simply means that this package is not tested with them in CI, and that no compatibility issues are considered bugs.
	Remove from the repo the DB migration added in v1.1.0 (November 2018), as an upgrade step. After almost 5 years, chances are that users of the library are already using the correct schema, and that extra "upgrade" migration is incompatible with RDBMS other than Postgres and MySQL.
	Add support for SQLite with the ecto_sqlite3 adapter. (Thanks tylerbarker, pull/151)
	Add support for text (binary) primary key columns with the Ecto adapter. (Thanks whatyouhide and vinniefranco, pull/156 and pull/129)

 v1.10.1

	Redis notifications adapter: minor internal changes to what data is passed to the supervisor in the child spec. (pull/148)
	Redis notifications adapter: fix an issue that would arise when configuring both a Redis URL string and key-word options (this config API was introduced in v1.10.0): the config would work for the Redis persistence adapter, but not for the Redis notifications adapter. (Thanks iamvery, pull/149)

 v1.10.0

	Add support for Elixir 1.14. Drop support for Elixir 1.11. Elixir >= 1.12 is now required. Dropping support for older versions of Elixir simply means that this package is no longer tested with them in CI, and that compatibility issues are not considered bugs.
	Drop support for Erlang/OTP 22, and Erlang/OTP >= 23 is now required. Dropping support for older versions of Erlang/OTP simply means that this package is not tested with them in CI, and that no compatibility issues are considered bugs.
	Ecto persistence adapter: FunWithFlags will now pass a custom option when using the Ecto Repo Query API: [fun_with_flags: true]. This is done to make it easier to identify FunWithFlags queries when working with Ecto customization hooks, e.g. the Ecto.Repo.prepare_query/3 callback. (Thanks SteffenDE, pull/143)
	Redis persistence adapter: added support to configure Redis with a {"redis URL", [...kw opts]} tuple, as is supported in Redix itself. (Thanks iamvery, pull/145)

 v1.9.0

	Drop support for Elixir 1.10. Elixir >= 1.11 is now required. Dropping support for older versions of Elixir simply means that this package is no longer tested with them in CI, and that compatibility issues are not considered bugs.
	Relax supported versions of postgrex to allow ~> 0.16.
	Use Application.compile_env/3 to read the persistence config at compile time, which is used to configure the DB table name when using the Ecto persistence adapter (among other things). This fixes another instance of the issue where users of the package would change the config after compilation and observe unexpected inconsistencies and errors. (pull/130)
	Redis adapters: add support to configure Redis Sentinel. Please see the Redix docs for more details. (Thanks parkdoyeon, pull/107.)
	More precise conditional checks when deciding whether Ecto files should be compiled. (pull/140)
	Improved documentation for running the package in a custom supervision tree, when using releases. (Thanks zaid, pull/139)

 v1.8.1

	Lock postgrex dependency to < 0.16. Version 0.16 requires Elixir 1.11 (changelog) and it doesn't compile with Elixit 1.10, which FunWithFlags still supports.

 v1.8.0

	Add support for Elixir 1.13. Drop support for Elixir 1.9. Elixir >= 1.10 is now required. Dropping support for older versions of Elixir simply means that this package is no longer tested with them in CI, and that compatibility issues are not considered bugs.
	Removed all uses of defdelegate/2. They caused some references to configured modules (that can change according to the config) to be reified at compile time, which lead to unexpected behaviour. They've been replaced with plain old function definitions that do the same job. (Thanks connorlay, pull/111.)
	Local dev: Update the config for the library to use Config instead of the deprecated Mix.Config. For the avoidance of doubt: this has no effect when using the package in your projects, because the config/*.exs files are not present in the bundles downloaded from Hex.pm.
	Use Application.compile_env/3 to read the cache configuration at compile-time, which is used to define a module attribute (therefore, set at compile-time). That part of the config is compiled into a module attribute for performance reasons, and it has been a long standing issue because users of the package would get confused by their config changes not being reflected in an already compiled application (link to relevant section in previous version of the readme). Now, if the relevant configuration changes, users will get a clear error.
	Improve error handling in different layers of the package. From the persistence adapters all the way to the public functions of the top-level module. In practice, this means that some situations that would have caused a MatchError now instead will bubble up an error tuple. Most importantly, this does not affect the signature or behaviour of the FunWithFlags.enabled?/2 function, which continues to return a simple boolean. (pull/120)
	Typespec improvements. These include new typespecs for previously unspecced functions, amended typespecs for the new error tuples that are now bubbled up (see previous point) and fixed typespec that incorrectly ignored a returned error tuple. (pull/120)
	The typespecs for the FunWithFlags.Store.Persistence Elixir behaviour have been updated (see previous point). Users of the package who implemented their own custom persistence adapters are encouraged to double-check that these respect the typespecs. (pull/120)

 v1.7.0

	Add support for Elixir 1.12. Drop support for Elixir 1.8. Elixir >= 1.9 is now required. Dropping support for older versions of Elixir simply means that this package is no longer tested with them in CI, and that compatibility issues are not considered bugs.
	Drop support for Erlang/OTP 21, and Erlang/OTP >= 22 is now required. Dropping support for older versions of Erlang/OTP simply means that this package is not tested with them in CI, and that no compatibility issues are considered bugs.
	Added support for the Erlang dialyzer (via the dialyxir package).
	Addressed all dialyzer warnings. Fixed some incorrect typespecs and simplified the implementation of some functions.
	Miscellaneous documentation fixes and improvements. (Thanks kianmeng, pull/89, pull/90 and pull/112.)
	Documented the FunWithFlags.Store.Cache module, and its Cache.flush/0 and Cache.dump/0 functions. They're now part of the public API of the package.
	Introduced a new FunWithFlags.Supervisor module to manage the supervision tree for the package. The supervision strategy and configuration are unchanged, and host applications don't need to do anything to upgrade. However, this module is part of the public API of the package and can be used to better control the start behaviour of FunWithFlags. This has also been documented in a new section of the readme.
	Internal changes to stop using an undocumented feature of Elixir that will go away in future versions. This affects how the function to calculate Actor scores for the %-of-actors gate is invoked, but that's an internal change, so it won't affect users of the package unless they're using undocumented features. (Thanks kelvinst, pull/105.)

 v1.6.0

	Add support for Elixir 1.11. Drop support for Elixir 1.7. Elixir >= 1.8 is now required. Dropping support for older versions of Elixir simply means that this package is no longer tested with them in CI, and that compatibility issues are not considered bugs.
	More internal changes to not compile in the package configuration. Removed compile-time references to the Ecto repo and the Ecto table name. See the release notes for v1.5.1 (below) for more details on this type of changes.
	Ecto and Postgres persistence: when updating percentage gates, use a flag-scoped advisory lock rather than locking the entire table. With the old system the entire table was locked when setting or changing any percentage gate, across all flags. With this change, the lock is scoped to one flag and the table is never fully locked.
	Dev and test fixes to support Phoenix.PubSub on OTP 23 and Elixir >= 1.10.3. This was only an issue when working locally, and there should be no problems when using the previous version of the package in a host application.
	Update Redix to 1.0. As its changelog says this doesn't introduce breaking changes, but it's a major version bump that should be documented here, as it will require changes in the host applications mix files.

 v1.5.1

	Internal changes to not compile in the persistence adapter config. This has no effect on the functionality of the package, but now the Ecto or Redis adapter configuration is not memoized anymore, and it can be changed with no need to recompile the package.

 v1.5.0

	Drop support for Elixir 1.6. Elixir >= 1.7 is now required.
	Drop support for Erlang/OTP 20, and Erlang/OTP >= 21 is now required. An older Erlang/OTP might still work with older versions of Elixir, but Elixir 1.10 requires Erlang/OTP >= 21. Dropping support for older versions of Erlang/OTP simply means that this package is not tested with them in CI, and that no compatibility issues are considered bugs.
	Upgrade Phoenix.PubSub dependency to 2.0. This provides compatibility with Phoenix 1.5.
	Typespec improvements. (Thanks skylerparr, pull/57)
	Internal changes to how flag data is cached in the ETS table. This has no effect on the functionality of the package, with two exceptions. First, the cache: [ttl: seconds] config value is not memoized anymore and it can be changed without recompiling. Second, since the TTL is now stored with the ETS entries, old and new ETS data is not compatible; this is not an issue if you restart/rotate your application nodes/instances when deploying, but it will be an issue if you perform hot code upgrades. In that case, you have to first empty the ETS table, for example with FunWithFlags.Store.Cache.flush/0.
	New config option to set a custom name for the DB table when using the Ecto persistence adapter. (Thanks BobbyMcWho, pull/64 and pull/77)

 v1.4.1

	Typespec improvements. (Thanks LostKobrakai, pull/49)
	Improve Redis error handling for connection and command errors. (Thanks chubarovNick, pull/54)

 v1.4.0

This release focuses on making it easier to extend the package, for example with custom persistence adapters.
	Define a behaviour in the FunWithFlags.Store.Persistence module that can be implemented by custom persistence adapters. The builtin Redis and Ecto adapters now formally implement this new behaviour.
	Refactor how cache-busting change notifications are published: move the logic out of the two builtin persistence adapters and into the level above them. While this is just an internal change, it narrows the responsibilities of the persistence adapters and simplifies implementing custom ones.
	Update the supervision tree to use Elixir v1.5 style child specs.
	Print a helpful error if a project is configured to use a persistence adapter without including its dependency packages. This mirrors what happens when the dependencies for a notifications adapter are missing.
	Document the Flag and Gate types, previously private.
	Redis persistence: relax Redix version lock to ~> 0.9, which allows to use Redix 0.10. It was previously locked to ~> 0.9.1 because of breaking changes in the last few Redix minor version releases, but going forward if it happens again it can be handled with a patch level release on FunWithFlags.

 v1.3.0

	Ecto persistence: added support for MySQL, via either mariaex or myxql. While both are working today, the test suite uses myxql because ecto_sql is going to deprecate the mariaex adapter in the future. (Thanks stewart for starting this work with pull/41 and for helping out on pull/42).

 v1.2.1

	Fix invalid typespec that was causing compiler warnings on Elixir 1.8. (Thanks asummers, pull/34)

 v1.2.0

	Redis persistence: upgrade to Redix 0.9, which deprecates Redix.PubSub. The pubsub capabilities are now part of the base Redix package. This means that FunWithFlags also needs to drop the dependency on Redix.PubSub.
	Compatibility updates in the tests for Elixir 1.8.

There is no other change in this release, but this is a minor version bump because upgrading Redix and dropping Redix.PubSub will require applications to also update their dependencies.

 v1.1.0

	Drop support for Elixir 1.5. Elixir >= 1.6 is now required.
	Drop support for OTP 19. OTP >= 20 is now required.
	Update to Ecto 3 with the ecto_sql package.
	Update to Redix 0.8 and Redix.PubSub 0.5.
	Ecto persistence: add NOT NULL constraints to the table definition in the Ecto migration. This is not a breaking change: the constraints have been added because those values are never null anyway. If users of the library want to add them, they can do so by adding this migration to their projects.
	Redis persistence: allow to configure the Redis URL with a system tuple to read it from an environment variable. (Thanks seangeo, pull/29)

 v1.0.0

This release introduces the last two gates that were initially planned and marks a milestone for the project. The API is now stable, and the project can graduate to 1.0.0.
This release doesn't introduce any breaking change, however, and users of the library should be able to upgrade without problems. If you're also using FunWithFlags.UI then make sure to also upgrade that to version 0.4.0, which adds GUI support for the new features.
New Gates:
	Percentage of time gate
	Percentage of actors gate

 v0.11.0

	Add ability to clear the boolean gate only (useful for debugging).
	Added FunWithFlags.get_flag/1, to retrieve a flag struct. Useful for debugging.
	Internal improvements.

 v0.10.1

Improvements:
	Ecto persistence: explicitly set the table primary key as an integer type. This improves the compatibility with Ecto repos where primary keys default to a binary type, e.g. UUID. (Thanks coryodaniel, pull/23)

 v0.10.0

Possibly Breaking Changes:
	Allow binaries and atoms as group gate names. Binaries are now preferred (atom group names are internally converted, stored and retrieved as binaries) and atoms are still allowed for retro-compatibility.
While calling FunWithFlags.enable(:foo, for_group: :bar) is still allowed and continues to work as before, this change will impact implementations of the FunWithFlags.Group protocol that assume
that the group name is passed as an atom.
To safely upgrade, these implementations should be changed to work with the group names passed as a binary instead. See the update to the protocol implementation used in the tests for an example.

Other changes:
	Compatibility updates for Ecto 2.2 (dev env, was fine in prod)

 v0.9.2

Bug Fixes:
	Fixed another issue with modules referencing Ecto.

 v0.9.1

Bug Fixes:
	Fixed an issue with module referencing Ecto that was not wrapped in a Code.ensure_loaded? block, which prevented the library from being used in projects that did not include Ecto.

 v0.9.0

	Ecto persistence adapter. It's now possible to store flag data with Ecto instead of Redis; if used in conjunction with the Phoenix.PubSub adapter, it's possible to use this library in Phoenix without Redis.
	The redix dependency is now optional.
	Added optional ecto dependency.

 v0.8.1

	Mark the redix_pubsub dependency as optional.
	Clearer error reporting for missing adapter dependencies.

 v0.8.0

New Features:
	Added support for Phoenix.PubSub as an alternative transport for the cache busting notifications.
	Added ability to enable the ETS cache but disable the cache-busting notifications, as it can be useful when running on a single node.

Other changes:
	Upgraded redix and redix_pubsub dependencies.
	Internal project and supervision changes to better support different adapters.
	Updated the Mix configuration options.
	More rational test setup.

 v0.7.1

Bug fixes:
	Resolved an issue with the PubSub connection process that would crash the entire supervision tree in case of abrupt disconnection from Redis. Ops!

 v0.7.0

New Features:
	FunWithFlags.all_flags/0 is now public and documented.
	Added FunWithFlags.all_flag_names/0, public and documented.
	Added proper log statements via the Elixir Logger. Setting the log level to debug will print cache busting info, for example.

Internal changes:
	Updated the redix and redix_pubsub dependencies.
	Extracted the private persistence and notifications modules into a redis-specific namespace. Added a config option to customize the adapters on startup, and an internal API that allows to develop other adapters to use alternative persistence and notification layers. The persistence adapters are responsible for declaring their own notifications module (if any). The provided default ones keep using Redis, and they work in tandem. At the moment, no official support for other adapters is planned, redix stays as a dependency.

 v0.6.0

New features:
	Added FunWithFlags.clear/2 to delete a specific gate or an entire flag. This is useful if you don't need an actor or group override and want to use the default boolean rule instead. Clearing a flag or a gate uses the same PubSub cache busting functionality used when updating a flag.
	Added FunWithFlags.all_flags/0, to return a list of all the flags stored in Redis. Undocumented because it's meant to build a GUI.

 v0.5.0

Added the Group protocol and group gates. It's now possible to enable or disable a flag for a group name and implement Group for types and structs that should belong to groups.

 v0.4.0

Added the Actor protocol and actor gates. It's now possible to implement Actor for some type or struct and then enable or disable a flag for some specific values.

 v0.3.0

Always raise exceptions if Redis becomes unavailable and there is no cached value (expired or not). This means that both with or without cache, failures to load a flag's data will never be silently converted to the flag being disabled.

 v0.2.0

Significant internal rewrite: use structures instead of raw booleans. Given the scope of the changes and the fact that this is still a 0.x release, bump the version number.

 v0.1.1

	Enhancements	Treat cache misses and expired cached values differently. If Redis becomes unavailable, and an expired value is available in the cache, use the expired value even though normally it would be discarded.

 v0.1.0

First usable release with the a stable initial feature set.
	Simple boolean flags
	Elixir API to enable, disable and query the flags
	Supervision tree, embeddable in host applications
	Persistence in Redis
	ETS cache	Cache busting with TTLs
	Cache busting with Redis PubSub

	Resistant to Redis connection issues if the values are cached
	Option to disable the ETS cache (Redis-only mode)

 v0.0.x

Unstable releases.

FunWithFlags

FunWithFlags, the Elixir feature flag library.
This module provides the public interface to the library and its API is
made of three simple methods to enable, disable and query feature flags.
In their simplest form, flags can be toggled on and off globally.
More advanced rules or "gates" are available, and they can be set and queried
for any term that implements these protocols:
	The FunWithFlags.Actor protocol can be
implemented for types and structs that should have specific rules. For
example, in web applications it's common to use a %User{} struct or
equivalent as an actor, or perhaps the current country of the request.

	The FunWithFlags.Group protocol can be
implemented for types and structs that should belong to groups for which
one wants to enable and disable some flags. For example, one could implement
the protocol for a %User{} struct to identify administrators.

See the Usage notes for a more detailed
explanation.

 Summary

 Types

 options()

 Functions

 all_flag_names()

 Returns a list of all flag names currently configured, as atoms.

 all_flags()

 Returns a list of all the flags currently configured, as data structures.

 clear(flag_name, options \\ [])

 Clears the data of a feature flag.

 disable(flag_name, options \\ [])

 Disables a feature flag.

 enable(flag_name, options \\ [])

 Enables a feature flag.

 enabled?(flag_name, options \\ [])

 Checks if a flag is enabled.

 get_flag(name)

 Returns a FunWithFlags.Flag struct for the given name, or nil if
no flag is found.

 Types

 options()

 @type options() :: Keyword.t()

 Functions

 all_flag_names()

 @spec all_flag_names() :: {:ok, [atom()]} | {:error, any()}

Returns a list of all flag names currently configured, as atoms.
This can be useful for debugging or for display purposes,
but it's not meant to be used at runtime. Undefined flags,
for example, will be considered disabled.

 all_flags()

 @spec all_flags() :: {:ok, [FunWithFlags.Flag.t()]} | {:error, any()}

Returns a list of all the flags currently configured, as data structures.
This function is provided for debugging and to build more complex
functionality (e.g. it's used in the web GUI), but it is not meant to be
used at runtime to check if a flag is enabled.
To query the value of a flag, please use the enabled?2 function instead.

 clear(flag_name, options \\ [])

 @spec clear(atom(), options()) :: :ok | {:error, any()}

Clears the data of a feature flag.
Clears the data for an entire feature flag or for a specific
Actor or Group gate. Clearing a boolean gate is not supported
because a missing boolean gate is equivalent to a disabled boolean
gate.
Sometimes enabling or disabling a gate is not what you want, and you
need to remove that gate's rules instead. For example, if you don't need
anymore to explicitly enable or disable a flag for an actor, and the
default state should be used instead, you'll want to clear the gate.
It's also possible to clear the entire flag, by not passing any option.

 Options

	for_actor: an_actor - used to clear the flag for a specific term only.
The value can be any term that implements the Actor protocol.
	for_group: a_group_name - used to clear the flag for a specific group only.
The value should be a binary or an atom (It's internally converted
to a binary and it's stored and retrieved as a binary. Atoms are
supported for retro-compatibility with versions <= 0.9)
	boolean: true - used to clear the boolean gate.
	for_percentage: true - used to clear any percentage gate.

 Examples

iex> alias FunWithFlags.TestUser, as: User
iex> harry = %User{id: 1, name: "Harry Potter", groups: ["wizards", "gryffindor"]}
iex> hagrid = %User{id: 2, name: "Rubeus Hagrid", groups: ["wizards", "gamekeeper"]}
iex> dudley = %User{id: 3, name: "Dudley Dursley", groups: ["muggles"]}
iex> FunWithFlags.disable(:wands)
iex> FunWithFlags.enable(:wands, for_group: "wizards")
iex> FunWithFlags.disable(:wands, for_actor: hagrid)
iex>
iex> FunWithFlags.enabled?(:wands)
false
iex> FunWithFlags.enabled?(:wands, for: harry)
true
iex> FunWithFlags.enabled?(:wands, for: hagrid)
false
iex> FunWithFlags.enabled?(:wands, for: dudley)
false
iex>
iex> FunWithFlags.clear(:wands, for_actor: hagrid)
:ok
iex> FunWithFlags.enabled?(:wands, for: hagrid)
true
iex>
iex> FunWithFlags.clear(:wands)
:ok
iex> FunWithFlags.enabled?(:wands)
false
iex> FunWithFlags.enabled?(:wands, for: harry)
false
iex> FunWithFlags.enabled?(:wands, for: hagrid)
false
iex> FunWithFlags.enabled?(:wands, for: dudley)
false

 disable(flag_name, options \\ [])

 @spec disable(atom(), options()) :: {:ok, boolean()} | {:error, any()}

Disables a feature flag.

 Options

	:for_actor - used to disable the flag for a specific term only.
The value can be any term that implements the Actor protocol.
	:for_group - used to disable the flag for a specific group only.
The value should be a binary or an atom (It's internally converted
to a binary and it's stored and retrieved as a binary. Atoms are
supported for retro-compatibility with versions <= 0.9)
	:for_percentage_of - used to disable the flag for a percentage
of time or actors, expressed as {:time, float} or {:actors, float},
where float is in the range 0.0 < x < 1.0.

 Examples

 Disable globally

iex> FunWithFlags.enable(:random_koala_gifs)
iex> FunWithFlags.enabled?(:random_koala_gifs)
true
iex> FunWithFlags.disable(:random_koala_gifs)
{:ok, false}
iex> FunWithFlags.enabled?(:random_koala_gifs)
false

 Disable for an actor

iex> FunWithFlags.enable(:spider_sense)
{:ok, true}
iex> villain = %{name: "Venom"}
iex> FunWithFlags.disable(:spider_sense, for_actor: villain)
{:ok, false}
iex> FunWithFlags.enabled?(:spider_sense)
true
iex> FunWithFlags.enabled?(:spider_sense, for: villain)
false

 Disable for a group

This example relies on the reference implementation
used in the tests.
iex> alias FunWithFlags.TestUser, as: User
iex> harry = %User{name: "Harry Potter", groups: ["wizards", "gryffindor"]}
iex> dudley = %User{name: "Dudley Dursley", groups: ["muggles"]}
iex> FunWithFlags.enable(:hogwarts)
{:ok, true}
iex> FunWithFlags.disable(:hogwarts, for_group: "muggles")
{:ok, false}
iex> FunWithFlags.enabled?(:hogwarts)
true
iex> FunWithFlags.enabled?(:hogwarts, for: harry)
true
iex> FunWithFlags.enabled?(:hogwarts, for: dudley)
false

 Disable for a percentage of the time

iex> FunWithFlags.clear(:random_glitch)
:ok
iex> FunWithFlags.disable(:random_glitch, for_percentage_of: {:time, 0.999999999})
{:ok, false}
iex> FunWithFlags.enabled?(:random_glitch)
false
iex> FunWithFlags.disable(:random_glitch, for_percentage_of: {:time, 0.000000001})
{:ok, false}
iex> FunWithFlags.enabled?(:random_glitch)
true

 Disable for a percentage of the actors

iex> FunWithFlags.disable(:new_ui, for_percentage_of: {:actors, 0.3})
{:ok, false}

 enable(flag_name, options \\ [])

 @spec enable(atom(), options()) :: {:ok, true} | {:error, any()}

Enables a feature flag.

 Options

	:for_actor - used to enable the flag for a specific term only.
The value can be any term that implements the Actor protocol.
	:for_group - used to enable the flag for a specific group only.
The value should be a binary or an atom (It's internally converted
to a binary and it's stored and retrieved as a binary. Atoms are
supported for retro-compatibility with versions <= 0.9)
	:for_percentage_of - used to enable the flag for a percentage
of time or actors, expressed as {:time, float} or {:actors, float},
where float is in the range 0.0 < x < 1.0.

 Examples

 Enable globally

iex> FunWithFlags.enabled?(:super_shrink_ray)
false
iex> FunWithFlags.enable(:super_shrink_ray)
{:ok, true}
iex> FunWithFlags.enabled?(:super_shrink_ray)
true

 Enable for an actor

iex> FunWithFlags.disable(:warp_drive)
{:ok, false}
iex> FunWithFlags.enable(:warp_drive, for_actor: "Scotty")
{:ok, true}
iex> FunWithFlags.enabled?(:warp_drive)
false
iex> FunWithFlags.enabled?(:warp_drive, for: "Scotty")
true

 Enable for a group

This example relies on the reference implementation
used in the tests.
iex> alias FunWithFlags.TestUser, as: User
iex> marty = %User{name: "Marty McFly", groups: ["students", "time_travelers"]}
iex> doc = %User{name: "Emmet Brown", groups: ["scientists", "time_travelers"]}
iex> buford = %User{name: "Buford Tannen", groups: ["gunmen", "bandits"]}
iex> FunWithFlags.enable(:delorean, for_group: "time_travelers")
{:ok, true}
iex> FunWithFlags.enabled?(:delorean)
false
iex> FunWithFlags.enabled?(:delorean, for: buford)
false
iex> FunWithFlags.enabled?(:delorean, for: marty)
true
iex> FunWithFlags.enabled?(:delorean, for: doc)
true

 Enable for a percentage of the time

iex> FunWithFlags.disable(:random_glitch)
iex> FunWithFlags.enable(:random_glitch, for_percentage_of: {:time, 0.999999999})
iex> FunWithFlags.enabled?(:random_glitch)
true
iex> FunWithFlags.enable(:random_glitch, for_percentage_of: {:time, 0.000000001})
iex> FunWithFlags.enabled?(:random_glitch)
false

 Enable for a percentage of the actors

This example is based on the fact that the actor score for the actor-flag pair
marty + :new_ui is lower than 50%, and for the buford + :new_ui is higher.
iex> FunWithFlags.disable(:new_ui)
iex> FunWithFlags.enable(:new_ui, for_percentage_of: {:actors, 0.5})
iex> FunWithFlags.enabled?(:new_ui)
false
iex> alias FunWithFlags.TestUser, as: User
iex> marty = %User{id: 42, name: "Marty McFly"}
iex> buford = %User{id: 2, name: "Buford Tannen"}
iex> FunWithFlags.enabled?(:new_ui, for: marty)
true
iex> FunWithFlags.enabled?(:new_ui, for: buford)
false

 enabled?(flag_name, options \\ [])

 @spec enabled?(atom(), options()) :: boolean()

Checks if a flag is enabled.
It can be invoked with just the flag name, as an atom,
to check the general status of a flag (i.e. the boolean gate).

 Options

	:for - used to provide a term for which the flag could
have a specific value. The passed term should implement the
Actor or Group protocol, or both.

 Examples

This example relies on the reference implementation
used in the tests.
iex> alias FunWithFlags.TestUser, as: User
iex> harry = %User{id: 1, name: "Harry Potter", groups: ["wizards", "gryffindor"]}
iex> FunWithFlags.disable(:elder_wand)
iex> FunWithFlags.enable(:elder_wand, for_actor: harry)
iex> FunWithFlags.enabled?(:elder_wand)
false
iex> FunWithFlags.enabled?(:elder_wand, for: harry)
true
iex> voldemort = %User{id: 7, name: "Tom Riddle", groups: ["wizards", "slytherin"]}
iex> FunWithFlags.enabled?(:elder_wand, for: voldemort)
false
iex> filch = %User{id: 88, name: "Argus Filch", groups: ["staff"]}
iex> FunWithFlags.enable(:magic_wands, for_group: "wizards")
iex> FunWithFlags.enabled?(:magic_wands, for: harry)
true
iex> FunWithFlags.enabled?(:magic_wands, for: voldemort)
true
iex> FunWithFlags.enabled?(:magic_wands, for: filch)
false

 get_flag(name)

 @spec get_flag(atom()) :: FunWithFlags.Flag.t() | nil | {:error, any()}

Returns a FunWithFlags.Flag struct for the given name, or nil if
no flag is found.
Useful for debugging.

FunWithFlags.Actor protocol

Implement this protocol to provide actors.
Actor gates allows you to enable or disable a flag for one or more entities.
For example, in web applications it's common to use a %User{} struct or
equivalent as an actor, or perhaps the data used to represent the current
country for an HTTP request.
This can be useful to showcase a work-in-progress feature to someone, to
gradually rollout a functionality by country, or to dynamically disable some
features in some contexts (e.g. a deploy introduces a critical error that
only happens in one specific country).
Actor gates take precedence over the others, both when they're enabled and
when they're disabled. They can be considered as toggle overrides.
In order to be used as an actor, an entity must implement
the FunWithFlags.Actor protocol. This can be implemented for custom structs
or literally any other type.

 Examples

This protocol is typically implemented for some application structure.
defmodule MyApp.User do
 defstruct [:id, :name]
end

defimpl FunWithFlags.Actor, for: MyApp.User do
 def id(%{id: id}) do
 "user:#{id}"
 end
end

bruce = %User{id: 1, name: "Bruce"}
alfred = %User{id: 2, name: "Alfred"}

FunWithFlags.Actor.id(bruce)
"user:1"
FunWithFlags.Actor.id(alfred)
"user:2"

FunWithFlags.enable(:batmobile, for_actor: bruce)
but it can also be implemented for the builtin types:
defimpl FunWithFlags.Actor, for: Map do
 def id(%{actor_id: actor_id}) do
 "map:#{actor_id}"
 end

 def id(map) do
 map
 |> inspect()
 |> (&:crypto.hash(:md5, &1)).()
 |> Base.encode16
 |> (&"map:#{&1}").()
 end
end

defimpl FunWithFlags.Actor, for: BitString do
 def id(str) do
 "string:#{str}"
 end
end

FunWithFlags.Actor.id(%{actor_id: "bar"})
"map:bar"
FunWithFlags.Actor.id(%{foo: "bar"})
"map:E0BB5BA6873E3AC34B0B6928190C1F2B"
FunWithFlags.Actor.id("foobar")
"string:foobar"

FunWithFlags.disable(:foobar, for_actor: %{actor_id: "just a map"})
FunWithFlags.enable(:foobar, for_actor: "just a string")
Actor identifiers must be globally unique binaries. Since supporting multiple
kinds of actors is a common requirement, all the examples use the common
technique of namespacing the IDs:
defimpl FunWithFlags.Actor, for: MyApp.User do
 def id(user) do
 "user:#{user.id}"
 end
end

defimpl FunWithFlags.Actor, for: MyApp.Country do
 def id(country) do
 "country:#{country.iso3166}"
 end
end

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 id(actor)

 Should return a globally unique binary.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 id(actor)

 @spec id(term()) :: binary()

Should return a globally unique binary.

 Example

iex> FunWithFlags.Actor.id(%FunWithFlags.TestUser{id: 313})
"user:313"

FunWithFlags.Flag

Represents a feature flag.
This module is not meant to be used directly.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %FunWithFlags.Flag{gates: [FunWithFlags.Gate.t()], name: atom()}

FunWithFlags.Gate

Represents a feature flag gate, that is one of several conditions
attached to a feature flag.
This module is not meant to be used directly.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %FunWithFlags.Gate{
 enabled: boolean(),
 for: nil | String.t(),
 type: atom()
}

FunWithFlags.Group protocol

Implement this protocol to provide groups.
Group gates are similar to actor gates, but they apply to a category of entities rather than specific ones. They can be toggled on or off for the name of the group (as an atom) instead of a specific term.
Group gates take precedence over boolean gates but are overridden by actor gates.
The semantics to determine which entities belong to which groups are application specific.
Entities could have an explicit list of groups they belong to, or the groups could be abstract and inferred from some other attribute. For example, an :employee group could comprise all %User{} structs with an email address matching the company domain, or an :admin group could be made of all users with %User{admin: true}.
In order to be affected by a group gate, an entity should implement the FunWithFlags.Group protocol. The protocol automatically falls back to a default Any implementation, which states that any entity belongs to no group at all. This makes it possible to safely use "normal" actors when querying group gates, and to implement the protocol only for structs and types for which it matters.
The protocol can be implemented for custom structs or literally any other type.
defmodule MyApp.User do
 defstruct [:email, admin: false, groups: []]
end

defimpl FunWithFlags.Group, for: MyApp.User do
 def in?(%{email: email}, :employee), do: Regex.match?(~r/@mycompany.com$/, email)
 def in?(%{admin: is_admin}, :admin), do: !!is_admin
 def in?(%{groups: list}, group_name), do: group_name in list
end

elisabeth = %User{email: "elisabeth@mycompany.com", admin: true, groups: [:engineering, :product]}
FunWithFlags.Group.in?(elisabeth, :employee)
true
FunWithFlags.Group.in?(elisabeth, :admin)
true
FunWithFlags.Group.in?(elisabeth, :engineering)
true
FunWithFlags.Group.in?(elisabeth, :marketing)
false

defimpl FunWithFlags.Group, for: Map do
 def in?(%{group: group_name}, group_name), do: true
 def in?(_, _), do: false
end

FunWithFlags.Group.in?(%{group: :dumb_tests}, :dumb_tests)
true
With the protocol implemented, actors can be used with the library functions:
FunWithFlags.disable(:database_access)
FunWithFlags.enable(:database_access, for_group: :engineering)

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 in?(item, group)

 Should return a boolean.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 in?(item, group)

 @spec in?(term(), String.t() | atom()) :: boolean()

Should return a boolean.
The default implementation will always return false for
any argument.

 Example

iex> user = %{name: "bolo", group: "staff"}
iex> FunWithFlags.Group.in?(data, "staff")
true
iex> FunWithFlags.Group.in?(data, "superusers")
false

FunWithFlags.Store.Cache

The in-memory cache for the feature flag, backed by an ETS table.
This module is not meant to be used directly, but some of its functions can be
useful to debug flag state.

 Summary

 Types

 cached_at()

 ttl()

 Functions

 dump()

 Returns the contents of the cache ETS table, for inspection.

 flush()

 Clears the cache. It will be rebuilt gradually as the public interface of the
package is queried.

 Types

 cached_at()

 @type cached_at() :: integer()

 ttl()

 @type ttl() :: integer()

 Functions

 dump()

 @spec dump() :: [{atom(), {FunWithFlags.Flag.t(), cached_at(), ttl()}}]

Returns the contents of the cache ETS table, for inspection.

 flush()

 @spec flush() :: true

Clears the cache. It will be rebuilt gradually as the public interface of the
package is queried.

FunWithFlags.Store.Persistent behaviour

A behaviour module for implementing persistence adapters.
The package ships with persistence adapters for Redis and Ecto, but you
can provide your own adapters by adopting this behaviour.

 Summary

 Callbacks

 all_flag_names()

 Retrieves all the names of the persisted flags.

 all_flags()

 Retrieves all the persisted flags.

 delete(flag_name)

 Deletes an entire flag, identified by name.

 delete(flag_name, gate)

 Deletes a gate from a flag, identified by name.

 get(flag_name)

 Retrieves a flag by name.

 put(flag_name, gate)

 Persists a gate for a flag, identified by name.

 worker_spec()

 A persistent adapter should return either
a child specification
if it needs any process to be started and supervised, or nil if it does not.

 Callbacks

 all_flag_names()

 @callback all_flag_names() :: {:ok, [atom()]} | {:error, any()}

Retrieves all the names of the persisted flags.

 all_flags()

 @callback all_flags() :: {:ok, [FunWithFlags.Flag.t()]} | {:error, any()}

Retrieves all the persisted flags.

 delete(flag_name)

 @callback delete(flag_name :: atom()) :: {:ok, FunWithFlags.Flag.t()} | {:error, any()}

Deletes an entire flag, identified by name.

 delete(flag_name, gate)

 @callback delete(flag_name :: atom(), gate :: FunWithFlags.Gate.t()) ::
 {:ok, FunWithFlags.Flag.t()} | {:error, any()}

Deletes a gate from a flag, identified by name.

 get(flag_name)

 @callback get(flag_name :: atom()) :: {:ok, FunWithFlags.Flag.t()} | {:error, any()}

Retrieves a flag by name.

 put(flag_name, gate)

 @callback put(flag_name :: atom(), gate :: FunWithFlags.Gate.t()) ::
 {:ok, FunWithFlags.Flag.t()} | {:error, any()}

Persists a gate for a flag, identified by name.

 worker_spec()

 @callback worker_spec() :: Supervisor.child_spec() | nil

A persistent adapter should return either
a child specification
if it needs any process to be started and supervised, or nil if it does not.
For example, the builtin Redis persistence adapter implements this function by delegating to
Redix.child_spec/1 because it needs the Redix processes to work. On the other hand, the
builtin Ecto adapter implements this function by returning nil, because the Ecto repo is
provided to this package by the host application, and it's assumed that the Ecto process tree
is started and supervised somewhere else.
This custom worker_spec/0 function is used instead of the typical child_spec/1 function
because this function can return nil if the adapter doesn't need to be supervised, whereas
child_spec/1 must return a valid child spec map.

FunWithFlags.Supervisor

A Module-based supervisor.
It implements Supervisor.child_spec/1 to describe the supervision tree for the
:fun_with_flags application.
This module is used internally by the package when the :fun_with_flags OTP
application starts its own supervision tree, which is the default behavior.
If that is disabled, the user's host application should use this module to start
the supervision tree directly.
The main purpose of this API is allow the user's host application to control
when FunWithFlag's supervision tree is started. This is helpful when the
package is configured to depend on some of the host application's modules, e.g.
the Phoenix.PubSub process (as documented).
More detailed instructions on how to configure this in an application are
available in the readme.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(init_arg)

 How to start this supervisor and its tree.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(init_arg)

How to start this supervisor and its tree.
This function is referenced by the child_spec/1 definition for this supervisor module.

FunWithFlags.Telemetry

Telemetry events for FunWithFlags.
This module centralizes the emission of all Telemetry
events for the package.

 Events

The common prefix for all events is :fun_with_flags, followed by a logical
scope (e.g. :persistence) and the event name.
Events are simple "point in time" events rather than span events (that is,
there is no distinct :start and :stop events with a duration measurement).

 Persistence

Events for CRUD operations on the persistent datastore.
All events contain the same measurement:
	system_time (integer), which is the current system time in the
:native time unit. See :erlang.system_time/0.

Events:
	[:fun_with_flags, :persistence, :read], emitted when a flag is read from
the DB. Crucially, this event is not emitted when the cache is enabled and
there is a cache hit, and it's emitted only when retrieving a flag reads
from the persistent datastore. Therefore, when the cache is disabled, this
event is always emitted every time a flag is queried.
Metadata:
	flag_name (atom), the name of the flag being read.

	[:fun_with_flags, :persistence, :read_all_flags], emitted when all flags
are read from the DB. No extra metadata.

	[:fun_with_flags, :persistence, :read_all_flag_names], emitted when all
flags names are read from the DB. No extra metadata.

	[:fun_with_flags, :persistence, :write], emitted when writing a flag to
the DB. In practive, what is written is one of the gates of the flag, which
is always upserted.
Metadata:
	flag_name (atom), the name of the flag being written.
	gate (FunWithFlags.Gate), the gate being upserted.

	[:fun_with_flags, :persistence, :delete_flag], emitted when an entire flag
is deleted from the DB.
Metadata:
	flag_name (atom), the name of the flag being deleted.

	[:fun_with_flags, :persistence, :delete_gate], emitted when one of the flag's
gates is deleted from the DB.
Metadata:
	flag_name (atom), the name of the flag whose gate is being deleted.
	gate (FunWithFlags.Gate), the gate being deleted.

	[:fun_with_flags, :persistence, :reload], emitted when a flag is reloaded
from the DB. This typically happens when the node has received a change
notification for a flag, which results in the cache being invalidated and
the flag being reloaded from the DB.
Metadata:
	flag_name (atom), the name of the flag being reloaded.

	[:fun_with_flags, :persistence, :error], emitted for erorrs in any of the
above operations.
Metadata:
	error (any), the error that occurred. This is typically a string or any
appropriate error term returned by the underlying persistence adapters.
	original_event (atom), the name of the original event that failed, e.g.
:read, :write, :delete_gate, etc.
	flag_name (atom), the name of the flag being operated on, if supported
by the original event.
	gate (FunWithFlags.Gate), the gate being operated on, if supported by
the original event.

 Summary

 Functions

 attach_debug_handler()

 Attach a debug handler to FunWithFlags telemetry events.

 Functions

 attach_debug_handler()

 @spec attach_debug_handler() :: :ok | {:error, :already_exists}

Attach a debug handler to FunWithFlags telemetry events.
Attach a Telemetry handler that logs all events at the :alert level.
It uses the :alert level rather than :debug or :info simply to make it
more convenient to eyeball these logs and to print them while running the tests.

PlainUser

FunWithFlags.Gate.InvalidGroupNameError exception

FunWithFlags.Gate.InvalidTargetError exception

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

