

 funx

 v0.8.0

 Table of contents

 	Changelog

 	LICENSE

 	Resources

 	Learning resources

 	Guides

 	README

 	Formatter Rules

 	DSL

 	Overview

 	Either

 	Maybe

 	Ord

 	Eq

 	Predicate

 	Validate

 	
 Modules

 	Funx.Appendable

 	Funx.Config

 	Funx.Eq

 	Funx.Eq.Dsl.Behaviour

 	Funx.Eq.Protocol

 	Funx.Filterable

 	Funx.Foldable

 	Funx.List

 	Funx.Macros

 	Funx.Math

 	Funx.Monad

 	Funx.Monad.Behaviour.Ap

 	Funx.Monad.Behaviour.Bind

 	Funx.Monad.Behaviour.Map

 	Funx.Monad.Behaviour.Predicate

 	Funx.Monad.Effect

 	Funx.Monad.Effect.Context

 	Funx.Monad.Effect.Left

 	Funx.Monad.Effect.Right

 	Funx.Monad.Either

 	Funx.Monad.Either.Dsl

 	Funx.Monad.Either.Left

 	Funx.Monad.Either.Right

 	Funx.Monad.Identity

 	Funx.Monad.Maybe

 	Funx.Monad.Maybe.Dsl

 	Funx.Monad.Maybe.Just

 	Funx.Monad.Maybe.Nothing

 	Funx.Monad.Reader

 	Funx.Monad.Writer

 	Funx.Monad.Writer.Result

 	Funx.Monoid

 	Funx.Monoid.Eq.All

 	Funx.Monoid.Eq.Any

 	Funx.Monoid.ListConcat

 	Funx.Monoid.Max

 	Funx.Monoid.Min

 	Funx.Monoid.Optics.IsoCompose

 	Funx.Monoid.Optics.LensCompose

 	Funx.Monoid.Optics.PrismCompose

 	Funx.Monoid.Optics.TraversalCombine

 	Funx.Monoid.Ord

 	Funx.Monoid.Predicate.All

 	Funx.Monoid.Predicate.Any

 	Funx.Monoid.Product

 	Funx.Monoid.StringConcat

 	Funx.Monoid.Sum

 	Funx.Monoid.Utils

 	Funx.Optics.Iso

 	Funx.Optics.Lens

 	Funx.Optics.Prism

 	Funx.Optics.Traversal

 	Funx.Ord

 	Funx.Ord.Any

 	Funx.Ord.Dsl.Behaviour

 	Funx.Ord.Protocol

 	Funx.Predicate

 	Funx.Predicate.Dsl.Behaviour

 	Funx.Summarizable

 	Funx.Tappable

 	Funx.Utils

 	Funx.Validate

 	Funx.Validate.Behaviour

 	Funx.Validator

 	Funx.Validator.AllEqual

 	Funx.Validator.Any

 	Funx.Validator.Confirmation

 	Funx.Validator.Each

 	Funx.Validator.Email

 	Funx.Validator.Equal

 	Funx.Validator.GreaterThan

 	Funx.Validator.GreaterThanOrEqual

 	Funx.Validator.In

 	Funx.Validator.Integer

 	Funx.Validator.LessThan

 	Funx.Validator.LessThanOrEqual

 	Funx.Validator.LiftPredicate

 	Funx.Validator.MaxLength

 	Funx.Validator.MinLength

 	Funx.Validator.Negative

 	Funx.Validator.Not

 	Funx.Validator.NotEqual

 	Funx.Validator.NotIn

 	Funx.Validator.Pattern

 	Funx.Validator.Positive

 	Funx.Validator.Range

 	Funx.Validator.Required

 	Exceptions

 	Funx.Errors.EffectError

 	Funx.Errors.ValidationError

 Changelog

[0.8.0] - Unreleased
Added
	Can now use DSL Eq and Ord in the Macro eq_for and ord_for

Breaking Changes
	Ord DSL no longer adds default protocol tiebreaker. Instead, add it explicitly with Ord.Protocol:

ord do
 desc :name
 asc Ord.Protocol
end
This makes the DSL more composable.
[0.7.1] - Unreleased
Added
	Exported .formatter to hex

[0.7.0] - Unreleased
Added
	Funx.Validate – A declarative DSL for building composable validators with optics-based field projection, applicative error accumulation, and identity preservation. Supports sequential and parallel modes, environment passing, and composable nested validators.
	Funx.Validator – Built-in validators for common validation patterns:	Required – Presence validation (handles Nothing from Prism)
	Email – Email format validation
	MinLength / MaxLength – String length constraints
	Pattern – Regex pattern matching
	Positive / Negative – Numeric sign validation
	Integer – Integer type validation
	GreaterThan / LessThan / GreaterThanOrEq / LessThanOrEq – Numeric comparisons
	In / NotIn – Set membership validation
	Range – Numeric range validation
	Each – Collection item validation
	Confirmation – Field matching validation
	Not – Validator negation

Breaking Changes
	Removed the import Either and import Maybe from the DSLs.
	Changed behavior for Either and Maybe to use Monad behaviours (not run/3 and run_maybe/3)

[0.6.1] - Unreleased
Added
	Funx.Predicate.DSL – A declarative DSL for building boolean predicates with support for logical operators (all/any/negate), projections via optics or functions (check), and reusable validation modules.

[0.6.0] - Unreleased
Breaking Changes
Module reorganization for cleaner separation of protocols and utilities:
Eq Module Changes
	Funx.Eq (protocol) → Funx.Eq.Protocol
	The equality protocol is now Funx.Eq.Protocol
	Protocol implementations must use defimpl Funx.Eq.Protocol, for: YourType

	Funx.Eq.Utils → Funx.Eq
	Utility functions moved from Funx.Eq.Utils to Funx.Eq
	DSL merged into Funx.Eq (no more separate Funx.Eq.Dsl)
	use Funx.Eq imports the eq DSL macro
	alias Funx.Eq for utility functions (optional, or use fully qualified)

Ord Module Changes
	Funx.Ord (protocol) → Funx.Ord.Protocol
	The ordering protocol is now Funx.Ord.Protocol
	Protocol implementations must use defimpl Funx.Ord.Protocol, for: YourType

	Funx.Ord.Utils → Funx.Ord
	Utility functions moved from Funx.Ord.Utils to Funx.Ord
	DSL merged into Funx.Ord (no more separate Funx.Ord.Dsl)
	use Funx.Ord imports the ord DSL macro
	alias Funx.Ord for utility functions (optional, or use fully qualified)

Migration Guide
Eq changes:
Before
alias Funx.Eq.Utils
use Funx.Eq.Dsl
Utils.contramap(&(&1.age))

defimpl Funx.Eq, for: MyStruct do
 def eq?(a, b), do: a.id == b.id
end

After
use Funx.Eq # Imports eq DSL macro
alias Funx.Eq # For utility functions

Eq.contramap(&(&1.age))

defimpl Funx.Eq.Protocol, for: MyStruct do
 def eq?(a, b), do: a.id == b.id
end
Ord changes:
Before
alias Funx.Ord.Utils
use Funx.Ord.Dsl
Utils.contramap(&(&1.score))

defimpl Funx.Ord, for: MyStruct do
 def lt?(a, b), do: a.score < b.score
end

After
use Funx.Ord # Imports ord DSL macro
alias Funx.Ord # For utility functions

Ord.contramap(&(&1.score))

defimpl Funx.Ord.Protocol, for: MyStruct do
 def lt?(a, b), do: a.score < b.score
end
Default parameter changes:
	Functions with ord \\ Ord now use ord \\ Funx.Ord.Protocol
	DSL parser defaults to Funx.Ord.Protocol for comparison checks

Rationale
This reorganization provides:
	Clear separation: Protocols (*.Protocol) vs utilities (Funx.Eq, Funx.Ord)
	Minimal imports: use imports only the DSL macro, not all functions
	Better discoverability: Main modules contain the utilities users interact with
	User control: Users decide whether to alias or use fully qualified names

[0.5.0] - Unreleased
Added
	Funx.Optics.Traversal – A composable optic for accessing multiple foci simultaneously. Supports filtering, combining multiple optics, and working with collections.
	Funx.Ord.Dsl – A declarative DSL for building custom ordering comparators with support for multiple projections, ascending/descending order, and automatic identity tiebreakers.
	Funx.Eq.Dsl – A declarative DSL for building equality comparators with support for projections, boolean logic (all/any blocks), and negation (diff_on).

Breaking
	Funx.List.maybe_head renamed to Funx.List.head/1 for consistency with head!/1. The function still returns Maybe.t() for safe head access.

[0.4.2] - Unreleased
Added
	Funx.Optics.Iso – A lawful isomorphism optic for reversible, lossless transformations between equivalent representations.
	Funx.Maybe.Dsl – A structured DSL for sequencing Maybe computations with explicit boundaries, validation, and side effects.

[0.4.0] - Unreleased
Added
Introduced Optics for composable, lawful data access and transformation:
	Funx.Optics.Lens - Total optic for required fields. Raises KeyError if focus is missing. Use for fields that should always exist.
	Funx.Optics.Prism - Partial optic for optional fields. Returns Maybe. Use for fields that may be absent or for selecting struct types.
	Funx.Monoid.Optics.LensCompose - Monoid wrapper for sequential lens composition
	Funx.Monoid.Optics.PrismCompose - Monoid wrapper for sequential prism composition

[0.3.0] - Unreleased
Added
Introduced a Funx.Tap protocol and migrated all monads to use protocol-based tap.
Changed
tap implementations for Identity, Maybe, Either, Reader, and Effect now delegate through the Funx.Tap protocol.
Breaking
Existing direct tap/2 implementations have been removed. Code relying on the previous module-specific tap implementations require updates.
[0.2.3] - Unreleased
Updated
	Refactored the Either DSL implementation to make it safer and easier to maintain.

[0.2.2] - Unreleased
Added
	Add tap behavior across Identity, Maybe, Either, Reader, and Effect Monads
	Add tap behavior to Either DSL

[0.2.0] - Unreleased
Added
	Either DSL for writing declarative error-handling pipelines with support for bind, map, ap, validate, and Either functions (filter_or_else, or_else, map_left, flip)

Beta Status (v0.1.x)
⚠️ Funx is in active development. APIs may change until version 1.0.
We're currently in beta, focusing on:
	Core functionality implementation and stabilization
	Comprehensive usage rules and documentation for humans and LLMs
	Real-world testing and feedback incorporation
	API refinement based on practical usage patterns

Current Status: Feature-complete beta with comprehensive documentation. Ready for experimentation and feedback, but expect potential API changes before 1.0.
Feedback Welcome
	🐛 Issues: Report bugs and suggest improvements
	📖 Documentation: Help us improve usage rules and examples
	🧪 Real-world usage: Share your experience using Funx in projects
	💬 Discussion: Join conversations about functional programming patterns in Elixir

Detailed changelog will begin with version 1.0. Until then, see GitHub releases for version-specific changes.

 LICENSE

MIT License

Copyright (c) 2024 Joseph Koski

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Learning resources

LiveBooks
Interactive notebooks you can run in your browser:
	Funx examples: hands-on examples of Funx features
	Book examples: material from Advanced Functional Programming with Elixir

Tutor
	Use your LLM as a tutor: learn Funx with AI-powered assistance

Blog posts
	Funx posts from my blog: articles and tutorials about using Funx, including deep dives into the Either DSL

Book
	Advanced Functional Programming with Elixir: advanced functional programming techniques and patterns in Elixir

 README

 [image: Funx Banner]
Funx - Functional Programming Patterns for Elixir
[image: Continuous Integration]
[image: Hex.pm]
⚠️ Beta: Funx is in active development. APIs may change until version 1.0. Feedback and contributions are welcome.
Official website: https://www.funxlib.com
Code and API documentation: https://hex.pm/packages/funx
Breaking Changes in 0.6.0
If you're upgrading from 0.6.0 or earlier, be aware of the module reorganization:
Eq changes
Change protocol implementations
defimpl Funx.Eq, for: MyStruct # Old
defimpl Funx.Eq.Protocol, for: MyStruct # New

Change imports and aliases
alias Funx.Eq.Utils # Old
use Funx.Eq.Dsl # Old

use Funx.Eq # New (imports eq DSL macro)
alias Funx.Eq # New (for utility functions)

Example usage
Eq.contramap(&(&1.age))
Ord changes
Change protocol implementations
defimpl Funx.Ord, for: MyStruct # Old
defimpl Funx.Ord.Protocol, for: MyStruct # New

Change imports and aliases
alias Funx.Ord.Utils # Old
use Funx.Ord.Dsl # Old

use Funx.Ord # New (imports ord DSL macro)
alias Funx.Ord # New (for utility functions)

Example usage
Ord.contramap(&(&1.score))
See the CHANGELOG for more details.
Installation
To use Funx, add it to the list of dependencies in mix.exs:
def deps do
 [
 {:funx, "~> 0.8"}
]
end
Then, run the following command to fetch the dependencies:
mix deps.get

Usage Rules
Funx includes embedded usage rules in addition to API documentation.
They are written for development workflows assisted by LLMs.
Equality
The Eq protocol defines how two values are compared, making equality explicit and adaptable to your domain.
	Define what “equal” means—compare by ID, name, or any derived attribute.
	Compose multiple comparisons—require all to match or just one.
	Implement for structs, built-in types, or custom comparators.

Ordering
The Ord protocol defines ordering relationships in a structured way, without relying on Elixir's built-in comparison operators.
	Define comparisons based on properties like size, age, or priority.
	Chain orderings to create fallback tiebreakers.
	Implement for any type, including custom structs.

Ord DSL
The Ord module includes a DSL for building custom ordering comparators declaratively:
use Funx.Ord

user_ord = ord do
 desc :priority
 asc :name
 desc :created_at
end

Enum.sort(users, Funx.Ord.comparator(user_ord))
Features:
	Multiple projections with asc and desc directions
	Support for optics (Lens, Prism), functions, and modules
	Ord variables for composing and reversing orderings

Eq DSL
The Eq module includes a DSL for building equality comparators with boolean logic:
use Funx.Eq

contact_eq = eq do
 on :name
 any do
 on :email
 on :username
 end
end

Funx.Eq.eq?(user1, user2, contact_eq)
Features:
	on - Field must be equal
	diff_on - Field must differ (non-equivalence constraint)
	all blocks - All checks must pass (AND logic)
	any blocks - At least one check must pass (OR logic)
	Support for optics, functions, and custom comparators

Monads
Monads encapsulate computations, allowing operations to be chained while handling concerns like optional values, failures, dependencies, or deferred effects.
	Identity: Wraps a value with no additional behavior—useful for organizing transformations.
	Maybe: Represents optional data using Just for presence and Nothing for absence.
	Either: Models computations with two possibilities—Left and Right.
	Effect: Encapsulates deferred execution with error handling, similar to Task.
	Reader: Passes an immutable environment through a computation for dependency injection or configuration.
	Writer: Threads a log alongside a result using any monoid—useful for tracing, reporting, or accumulating metadata during computation.

Either DSL
The Either monad includes a DSL for writing declarative pipelines that handle errors gracefully:
use Funx.Monad.Either

either user_id do
 bind fetch_user()
 bind validate_active()
 map transform_to_dto()
end
Supported operations:
	bind - for operations that return Either or result tuples
	map - for transformations that return plain values
	ap - for applying a function in an Either to a value in an Either
	validate - for accumulating multiple validation errors
	Either functions: filter_or_else, or_else, map_left, flip, tap

Formatter Configuration: Funx exports formatter rules for clean DSL formatting. Add :funx to import_deps in your .formatter.exs:
[
 import_deps: [:funx],
 inputs: ["{mix,.formatter}.exs", "{config,lib,test}/**/*.{ex,exs}"]
]
See FORMATTER_EXPORT.md for details.
Optics
Optics provide composable, lawful abstractions for focusing on and transforming parts of data structures.
	Lens: Total optic for required fields—raises if focus is missing. Use for fields that should always exist.
	Prism: Partial optic for optional fields—returns Maybe. Use for fields that may be absent or for selecting struct types.
	Traversal: Optic for accessing multiple foci simultaneously. Use for filtering collections, combining multiple optics, or working with list-like structures.
	Iso: Total optic for reversible representation changes. Use when two shapes carry the same information and you need guaranteed round trip conversion (view then review).

Monoids
Monoids combine values using an associative operation and an identity element. They are useful for accumulation, selection, and combining logic.
	Sum: Adds numbers (0 is the identity).
	Product: Multiplies numbers (1 is the identity).
	Eq.All: Values are equal only if all comparators agree.
	Eq.Any: Values are equal if any comparator agrees.
	Predicate.All: All predicates must hold.
	Predicate.Any: At least one predicate must hold.
	Ord: Defines ordering compositionally.
	Max and Min: Select the largest or smallest value by custom ordering.
	ListConcat: Concatenates lists ([] is the identity).
	StringConcat: Concatenates strings ("" is the identity).

Predicates
Predicates are functions that return true or false. Funx provides combinators for composing them cleanly.
	p_and: Returns true if both predicates pass.
	p_or: Returns true if either predicate passes.
	p_not: Negates a predicate.
	p_all: Returns true if all predicates in a list pass.
	p_any: Returns true if any predicate in a list passes.
	p_none: Returns true if none pass.

Pred DSL
The Predicate module includes a DSL for building boolean predicates declaratively:
use Funx.Predicate

check_eligible = pred do
 check :age, fn age -> age >= 18 end
 check :verified, fn v -> v == true end
 any do
 check :role, fn r -> r == :admin end
 check :role, fn r -> r == :moderator end
 end
end

Enum.filter(users, check_eligible)
Features:
	check - Project into a field and test with a predicate
	negate - Invert a predicate (logical NOT)
	all blocks - All predicates must pass (AND logic)
	any blocks - At least one must pass (OR logic)
	Support for optics (Lens, Prism), functions, and behaviour modules

Validation
The Validate module provides declarative data validation with applicative error accumulation—all validators run and all errors are collected.
Validate DSL
use Funx.Validate
alias Funx.Monad.Either
alias Funx.Validator.{Required, Email, MinLength, Positive}

user_validation =
 validate do
 at :name, [Required, {MinLength, min: 3}]
 at :email, [Required, Email]
 at :age, Positive
 end

Either.validate(%{name: "Alice", email: "alice@example.com", age: 30}, user_validation)
=> %Right{right: %{name: "Alice", email: "alice@example.com", age: 30}}

Either.validate(%{name: "", email: "bad", age: -5}, user_validation)
=> %Left{left: %ValidationError{errors: ["is required", "must be at least 3 characters", ...]}}
Features:
	at :field, Validator - Field validation using Prism (optional by default)
	at [:a, :b], Validator - Nested path validation
	at Lens.key(:field), Validator - Required field (raises if missing)
	Multiple validators: [Required, Email] or {MinLength, min: 3}
	Root validators for whole-structure validation
	Environment passing for context-dependent validation
	Composable validators that can be nested and reused

Built-in validators: Required, Email, MinLength, MaxLength, Pattern, Positive, Negative, Integer, GreaterThan, LessThan, In, NotIn, Range, Each, Confirmation, Not
Folding
The Foldable protocol defines how to reduce a structure to a single result.
	fold_l: Reduces from the left, applying functions in order.
	fold_r: Reduces from the right, applying functions in reverse.

Useful for accumulating values, transforming collections, or extracting data.
Filtering
The Filterable protocol defines how to conditionally retain values within a context.
	guard: Keeps a value if a condition is met; otherwise returns an empty context.
	filter: Retains values that satisfy a predicate.
	filter_map: Applies a transformation and keeps results only when the transformed value is present.

Sequencing
Sequencing runs a series of monadic operations in order, combining the results.
	concat/1: Removes empty values and unwraps the present results from a list.
	concat_map/2: Applies a function to each element and collects only the present results.
	sequence/1: Converts a list of monadic values into a single monadic value containing a list. Short-circuits on the first failure or absence.
	traverse/2: Applies a function to each element and sequences the resulting monadic values.
	sequence_a/1: Applicative version of sequence—combines all and collects results.
	traverse_a/2: Applicative version of traverse—applies a function to each element and collects results.

Lifting
Lifting functions promote ordinary logic into a monadic or contextual form.
	lift_predicate/3: Wraps a value in a monad if a condition holds; returns an empty or failed context otherwise.
	lift_eq/1: Adapts an Eq comparator to work within a monadic context.
	lift_ord/1: Adapts an Ord comparator to work within a monadic context.

Interop
Funx integrates with common Elixir patterns like {:ok, value} and {:error, reason}.
	from_result/1: Converts a result tuple into a monadic context that distinguishes success from failure.
	to_result/1: Converts a monadic value back into a result tuple.
	from_try/1: Wraps a function call in a monad, capturing exceptions as failures.
	to_try!/1: Extracts the value from a monad or raises if it represents a failure.

Documentation
The authoritative API documentation is published on HexDocs.
Learning Resources
	Funx Blog Posts - Articles and tutorials about using Funx, including deep dives into the Either DSL and functional programming patterns in Elixir

Contributing
	Fork the repository.
	Create a new branch for the feature or bugfix (git checkout -b feature-branch).
	Commit changes (git commit -am 'Add new feature').
	Push the branch (git push origin feature-branch).
	Create a pull request.

License
This project is licensed under the MIT License.

 Formatter Rules

The Funx library exports formatter rules for its DSLs, allowing projects that depend on Funx to automatically format DSL code without extra parentheses.
Exported Rules
Either DSL
The following Either DSL functions are configured to format without parentheses:
	either/2 - DSL entry point
	bind/1 - Chain operations that return Either or result tuples
	map/1 - Transform values with plain functions
	ap/1 - Apply function in Either to value in Either
	validate/1 - Collect all errors from validators
	filter_or_else/2 - Filter with predicate, fallback if fails
	or_else/1 - Provide fallback on error
	map_left/1 - Transform error values
	tap - Run a side-effecting function inside the chain without changing the data

Note that flip/0 - Swap Left and Right still requires parentheses.
Maybe DSL
The following Maybe DSL functions are configured to format without parentheses:
	maybe/2 - DSL entry point
	bind/1 - Chain operations that return Maybe, Either, result tuples, or nil (shared with Either DSL)
	map/1 - Transform values with plain functions (shared with Either DSL)
	ap/1 - Apply function in Maybe to value in Maybe (shared with Either DSL)
	or_else/1 - Provide fallback on Nothing (shared with Either DSL)
	tap/1 - Run a side-effecting function inside the chain without changing the data (shared with Either DSL)
	filter/1 - Filter with a predicate, returns Nothing if predicate fails
	filter_map/2 - Filter and transform in one step
	guard/1 - Guard with a boolean condition

Ord DSL
The following Ord DSL functions are configured to format without parentheses:
	asc/1 - Ascending order for a projection
	asc/2 - Ascending order with options (e.g., default:)
	desc/1 - Descending order for a projection
	desc/2 - Descending order with options (e.g., default:)

Eq DSL
The following Eq DSL functions are configured to format without parentheses:
	on/1 - Compare on a projection
	on/2 - Compare on a projection with options
	not_on/1 - Exclude a projection from comparison
	not_on/2 - Exclude a projection from comparison with options
	any/1 - Match any of the given comparisons (shared with Predicate DSL)
	all/1 - Match all of the given comparisons (shared with Predicate DSL)

Predicate DSL
The following Predicate DSL functions are configured to format without parentheses:
	pred/1 - DSL entry point for defining predicates
	check/2 - Project and test a value (e.g., check :field, predicate)
	negate/1 - Negate a predicate or block
	negate_all/1 - Negate an AND block (applies De Morgan's Laws)
	negate_any/1 - Negate an OR block (applies De Morgan's Laws)
	any/1 - OR logic - at least one predicate must pass (shared with Eq DSL)
	all/1 - AND logic - all predicates must pass (shared with Eq DSL)

Usage in Dependent Projects
Step 1: Add to Dependencies
Make sure your mix.exs includes Funx as a dependency:
def deps do
 [
 {:funx, "~> 0.2"}
]
end
Step 2: Update .formatter.exs
In your project's .formatter.exs, add :funx to import_deps:
[
 import_deps: [:funx],
 inputs: ["{mix,.formatter}.exs", "{config,lib,test}/**/*.{ex,exs}"]
]
Examples
Either DSL
With this configuration, your DSL code will format cleanly:
either user_input do
 bind ParseUser
 map ValidateEmail
 validate [CheckLength, CheckFormat]
 bind SaveToDatabase
 or_else default_user()
end
Instead of:
either(user_input) do
 bind(ParseUser)
 map(ValidateEmail)
 validate([CheckLength, CheckFormat])
 bind(SaveToDatabase)
 or_else(default_user())
end
Maybe DSL
Your Maybe pipelines will format cleanly:
maybe user_input do
 bind ParseInt
 filter PositiveNumber
 map Double
 or_else default_value()
end
Instead of:
maybe(user_input) do
 bind(ParseInt)
 filter(PositiveNumber)
 map(Double)
 or_else(default_value())
end
Ord DSL
Your ordering definitions will format cleanly:
ord do
 asc :name
 desc :age
 asc :score, default: 0
end
Instead of:
ord do
 asc(:name)
 desc(:age)
 asc(:score, default: 0)
end
Predicate DSL
Your predicate definitions will format cleanly:
pred do
 check :age, fn age -> age >= 18 end
 negate check :banned, fn b -> b == true end
 any do
 check :role, fn r -> r == :admin end
 check :verified, fn v -> v == true end
 end
 negate_all do
 check :suspended, fn s -> s == true end
 check :deleted, fn d -> d == true end
 end
end
Instead of:
pred do
 check(:age, fn age -> age >= 18 end)
 negate(check(:banned, fn b -> b == true end))
 any do
 check(:role, fn r -> r == :admin end)
 check(:verified, fn v -> v == true end)
 end
 negate_all do
 check(:suspended, fn s -> s == true end)
 check(:deleted, fn d -> d == true end)
 end
end
Verification
To verify the formatter rules are being imported correctly, you can run:
mix format --check-formatted

Your DSL code should format without adding parentheses.

 Overview

Funx provides two distinct categories of DSLs with different purposes and semantics.
DSL Categories
Builder DSLs
Builder DSLs construct data structures (comparators, orderings, predicates, validators) for later use.
Examples: eq, ord, pred, validate
Characteristics:
	No input parameter — builds a reusable function or comparator
	Returns a data structure — built via monoidal composition (Eq.All, Ord monoid, predicate function)
	Used with utility functions — Eq.eq?/3, Ord.compare/3, Enum.filter/2
	May support nesting — any/all blocks for boolean composition (Eq, Pred only)

Example:
Build a comparator
user_eq = eq do
 on :name
 on :email
end

Use it later
Eq.eq?(user1, user2, user_eq)
Pipeline DSLs
Pipeline DSLs execute a sequence of operations on an input value.
Examples: maybe, either
Characteristics:
	Takes input parameter — transforms/validates the input
	Returns a result — Maybe.t() or Either.t() with the transformed value
	Sequential execution — steps run in order, short-circuit on failure
	Supports transformers — compile-time pipeline optimization

Example:
Execute pipeline on input
maybe user_id do
 bind GetUser
 bind ValidateActive
 map FormatResponse
end
Returns Maybe.t()
Key Differences
	Aspect	Builder DSLs	Pipeline DSLs
	Signature	dsl do ... end	dsl input do ... end
	Purpose	Build reusable structures	Transform input values
	Execution	Deferred (used later)	Immediate (on input)
	Return Type	Monoid/Function	Monad (Maybe/Either)
	Nesting	Supports any/all blocks	Linear (sequential steps)

Structure
A Funx DSL block compiles at macro-expansion time. The compiler parses the block syntax, applies transformations, and produces executable code. The compiled representation varies by DSL but typically involves structured data describing the operations to perform.
Compilation
 ├── DSL Block (AST)
 ├── Parser
 │ └── Builds internal representation
 ├── Transformers
 │ └── Optional rewrites
 ├── Compiled Form
 └── Executor
 └── Produces result
Operations
Each DSL defines its own internal representation of operations. For pipeline DSLs, these are typically step structs describing transformations. For builder DSLs, operations describe composition rules. The executor interprets these representations to produce the final result.
Parsed Operations
 ├── Operation
 ├── Operation
 ├── Operation
 └── Operation
Parser
Each DSL provides its own parser. The parser converts the DSL block into an internal representation, applies lifting and alias-expansion rules, and raises compile-time errors for invalid or unsupported forms.
Transformers
Transformers run during compilation and may rewrite the parsed operations before code generation. They can insert, remove, or modify operations. A transformer must return a valid representation for that DSL and introduces a compile-time dependency. Currently supported by pipeline DSLs (Maybe, Either).
Execution
Each DSL has a dedicated executor. The executor interprets the compiled representation and produces the final result. It does not inspect source code; it operates only on the compiled form.
Behaviours
Each DSL defines a behaviour for modules that participate in the DSL. Modules implementing this behaviour supply the callback the executor invokes. The DSL determines how the callback's return value is interpreted.
Architectural Choices
Why Ord Doesn't Support Nesting
The ord DSL does not support any/all blocks like eq and pred do. This is intentional.
Total orderings compose linearly. When you combine orderings with Ord.concat/1, you get a lexicographic ordering where the first comparison that returns :lt or :gt determines the result. This is fundamentally different from the boolean logic of equality or predicates.
Ord: Linear composition (lexicographic)
ord do
 asc :last_name # First comparison
 asc :first_name # Tiebreaker if last names equal
 desc :age # Further tiebreaker
end

Eq: Can express OR logic
eq do
 any do
 on :email
 on :username
 end
end
There's no meaningful "OR" for orderings - you can't say "order by name OR age". The order is always determined by a sequence of tiebreakers.
Why Pipeline DSLs Don't Support Nesting
Pipeline DSLs (maybe, either) execute sequentially and short-circuit on failure. They don't support any/all blocks because monadic composition is inherently sequential — each operation depends on the result of the previous one. There's no boolean combination to express; operations either succeed (Right/Just) or fail (Left/Nothing), and failure stops the pipeline.
For conditional logic in pipelines, use the monad's native operations:
	filter - conditionally keep/drop values
	guard - assert a condition
	Pattern matching in behaviour callbacks

 Either

The Either DSL is a pipeline DSL that executes a sequence of operations on an input value. See the DSL Overview for the distinction between builder and pipeline DSLs.
Structure
An either block compiles to a struct containing the pipeline input, ordered steps, return mode (:either, :tuple, or :raise), and user-supplied options. This struct is the complete representation of the DSL expression and is what the executor receives at runtime.
Steps
The Either DSL uses a small set of step types, each represented by its own struct:
	Step.Bind
	Step.Map
	Step.Ap
	Step.EitherFunction
	Step.BindableFunction (used by validate)

Each step describes a single operation. The executor pattern-matches on these structs to determine how the pipeline proceeds.
Pipeline
 ├── Step.Bind
 ├── Step.Map
 ├── Step.EitherFunction
 └── Step.Ap
Parser
The parser converts the DSL block into a step list. It applies the Either DSL’s lifting rules (turning call forms into unary functions), expands module aliases, validates operations, and raises compile-time errors for unsupported syntax. The parser produces the final step list that appears in the compiled struct.
Transformers
Transformers run during compilation and may rewrite the step list before it is finalized. They can add, remove, or rearrange steps. A transformer must return a valid list of Either step structs and introduces a compile-time dependency for modules that use it.
Execution
The executor evaluates steps in order:
	Step.Bind unpacks the current Either value, calls the operation, and normalizes its return into Either.
	Step.Map applies a pure function to the inner value.
	Step.Ap applies an applicative function contained in an Either.
	Step.EitherFunction calls a built-in Either operation such as filter_or_else, or_else, map_left, flip, or tap.
	Step.BindableFunction wraps functions like validate, which accumulate errors instead of short-circuiting.

Except for validation, a Left value stops the pipeline immediately. The return mode controls how the final result is wrapped.
Behaviours
Modules participating in the Either DSL implement specific monad behaviors based on their purpose:
	Funx.Validate.Behaviour - validators (called with validate/3)
	Funx.Monad.Behaviour.Bind - operations that can fail (called with bind/3)
	Funx.Monad.Behaviour.Map - pure transformations (called with map/3)
	Funx.Monad.Behaviour.Predicate - boolean tests (called with predicate/3)

The executor calls the appropriate behavior method based on the DSL operation. Each behavior has specific semantics for how the result is interpreted and processed in the pipeline.

 Maybe

The Maybe DSL is a pipeline DSL that executes a sequence of operations on an input value. See the DSL Overview for the distinction between builder and pipeline DSLs.
Structure
A maybe block compiles to a struct containing the pipeline input, ordered steps, return mode (:maybe, :nil, or :raise), and user-supplied options. This struct is the complete representation of the DSL expression and is what the executor receives at runtime.
Steps
The Maybe DSL uses a small set of step types, each represented by its own struct:
	Step.Bind
	Step.Map
	Step.Ap
	Step.MaybeFunction
	Step.ProtocolFunction

Each step describes a single operation. The executor pattern-matches on these structs to determine how the pipeline proceeds.
Pipeline
 ├── Step.Bind
 ├── Step.Map
 ├── Step.Ap
 ├── Step.MaybeFunction
 └── Step.ProtocolFunction
Parser
The parser converts the DSL block into a step list. It applies the Maybe DSL's lifting rules (turning call forms into unary functions), expands module aliases, validates operations, and raises compile-time errors for unsupported syntax. The parser produces the final step list that appears in the compiled struct.
Transformers
Transformers run during compilation and may rewrite the step list before it is finalized. They can add, remove, or rearrange steps. A transformer must return a valid list of Maybe step structs and introduces a compile-time dependency for modules that use it.
Execution
The executor evaluates steps in order:
	Step.Bind unpacks the current Maybe value, calls the operation, and normalizes its return into Maybe (accepting Maybe, Either, result tuples, or nil).
	Step.Map applies a pure function to the inner value.
	Step.Ap applies an applicative function contained in a Maybe.
	Step.MaybeFunction calls a built-in Maybe operation such as or_else.
	Step.ProtocolFunction calls a protocol operation such as tap (Funx.Tappable), filter, filter_map, or guard (Funx.Filterable).

A Nothing value stops the pipeline immediately. The return mode controls how the final result is wrapped (:maybe returns the Maybe struct, :nil unwraps to the value or nil, :raise unwraps or raises an error).
Behaviours
Modules participating in the Maybe DSL implement specific monad behaviors based on their purpose:
	Funx.Monad.Behaviour.Bind - operations that can fail (called with bind/3, tap/3, filter_map/3)
	Funx.Monad.Behaviour.Map - pure transformations (called with map/3)
	Funx.Monad.Behaviour.Predicate - boolean tests (called with predicate/3 for filter and guard)
	Funx.Monad.Behaviour.Ap - applicative functors (called with ap/3)

The executor calls the appropriate behavior method based on the DSL operation. Each behavior has specific semantics for how the result is interpreted and processed in the pipeline.

 Ord

The Ord DSL is a builder DSL that constructs ordering comparators for later use. See the DSL Overview for the distinction between builder and pipeline DSLs.
Structure
An ord block compiles entirely at compile time to quoted AST that builds an %Funx.Monoid.Ord{} struct. Unlike pipeline DSLs (Maybe, Either), there is no runtime executor—the DSL produces static composition of contramap, reverse, and concat calls that execute directly.
Internal Representation
The Ord DSL uses a single structure type represented by Step:
	Step - Contains direction (:asc or :desc), projection AST, ord module, and metadata

Each Step describes a single ordering projection. The compiler pattern-matches on these structs to generate the final quoted AST.
Compilation
 ├── Step (asc :name)
 ├── Step (desc :age)
 └── Step (asc :score, or_else: 0)
Parser
The parser converts the DSL block into a list of structures. It normalizes all projection syntax into one of four canonical types that contramap/2 accepts:
	Lens.t() - Bare lens struct
	Prism.t() - Bare prism struct (uses Maybe.lift_ord)
	{Prism.t(), or_else} - Prism with or_else value
	(a -> b) - Projection function

Plus special types for modules and runtime values:
	Module with lt?/2 - Converted via to_ord_map
	Behaviour module - Calls ord/1 at runtime
	0-arity helper - Runtime type detection
	Ord variable - Runtime validation of ord map

All syntax sugar resolves to these types:
	:atom → Prism.key(:atom)
	[:a, :b] → Prism.path([:a, :b]) (supports nested keys and structs)
	:atom, or_else: x → {Prism.key(:atom), x}
	[:a, :b], or_else: x → {Prism.path([:a, :b]), x}
	Lens.key(...) → Lens.key(...) (pass through)
	Prism.key(...) → Prism.key(...) (pass through)
	{Prism, x} → {Prism, x} (pass through)
	fn -> ... end → fn -> ... end (pass through)
	Behaviour → fn v -> Behaviour.project(v, []) end
	StructModule → fn v -> match?(%StructModule{}, v) end (type filtering)
	ord_variable → runtime validation, use directly if valid ord map

The parser validates projections and raises compile-time errors for unsupported syntax, producing the final list of structures that the executor will compile.
Transformers
The Ord DSL does not currently support transformers. All compilation is handled by the parser and executor without intermediate rewriting stages.
Execution
The executor runs at compile time and generates quoted AST. It follows a single, non-branching path:
	Take normalized structures from the parser
	Wrap each in Ord.contramap(projection, ord)
	Optionally wrap in Ord.reverse(...) for :desc direction
	Combine all with Ord.concat([...]) (or return single ord for one step)

Execution Model
Each operation compiles based on its type:
Regular projections:
	:asc → contramap(projection, ord)
	:desc → reverse(contramap(projection, ord))

Ord variables:
	:asc → runtime validation, then use ord directly
	:desc → runtime validation, then reverse(ord)

Multiple operations are combined with concat([...]) (monoid composition).
No Implicit Tiebreaker
The DSL does NOT add an implicit tiebreaker. If two values are equal on all specified fields, they compare as :eq.
This means:
	You have explicit control over what matters for ordering
	DSL results can be composed without hidden tiebreakers in the middle
	DSL results can be used with ord_for macro without recursion issues

To add a tiebreaker, explicitly include Funx.Ord.Protocol as the last projection:
ord do
 asc :name
 asc Funx.Ord.Protocol # Falls back to struct's Ord implementation
end
Compilation Example
ord do
 asc :name
 desc :age
end
Compiles to:
Ord.concat([
 Ord.contramap(Prism.key(:name), Funx.Ord.Protocol),
 Ord.reverse(Ord.contramap(Prism.key(:age), Funx.Ord.Protocol))
])
List Paths (Nested Field Access)
List paths provide convenient syntax for accessing nested fields without manually composing optics:
Instead of:
ord do
 asc Prism.path([:user, :profile, :age])
end

You can write:
ord do
 asc [:user, :profile, :age]
end
List paths support both atom keys and struct modules:
defmodule Company, do: defstruct [:name, :address]
defmodule Address, do: defstruct [:city, :state]

Sort companies by nested city
ord_by_city = ord do
 asc [Company, :address, Address, :city]
end

companies = [
 %Company{name: "ACME", address: %Address{city: "Seattle", state: "WA"}},
 %Company{name: "Corp", address: %Address{city: "Austin", state: "TX"}},
 %Company{name: "Inc", address: %Address{city: "Boston", state: "MA"}}
]

Enum.sort(companies, &Ord.lt?(&1, &2, ord_by_city))
=> [Austin, Boston, Seattle]
List paths work with or_else for handling missing values:
ord do
 asc [:user, :profile, :score], or_else: 0
end
List paths work with desc for descending order:
ord do
 desc [:user, :profile, :created_at]
end
Ord Variables
Ord variables allow you to compose and reuse existing ord maps within the DSL. A variable holding an ord map can be used directly as a projection:
base_ord = ord do
 asc :name
 desc :age
end

combined_ord = ord do
 asc :priority
 asc base_ord # Use the ord variable
end

reversed_ord = ord do
 desc base_ord # Reverse the ord variable
end
How It Works
When the parser encounters a variable reference (not a module alias or literal), it marks it as :ord_variable type. The executor generates runtime validation code:
asc base_ord compiles to:
case base_ord do
 %{lt?: lt_fun, le?: le_fun, gt?: gt_fun, ge?: ge_fun}
 when is_function(lt_fun, 2) and is_function(le_fun, 2) and
 is_function(gt_fun, 2) and is_function(ge_fun, 2) ->
 base_ord # Valid ord map, use it directly

 _ ->
 raise RuntimeError, "Expected an Ord map, got: #{inspect(base_ord)}"
end
This validation happens when the containing ord is created (not when it's used for comparison).
What Works as an Ord Variable
Any value that is a valid ord map:
	ord do ... end - Ord maps from the DSL
	Ord.contramap(...) - Contramap projections
	Ord.reverse(...) - Reversed orderings
	Ord.concat([...]) - Combined orderings
	Ord.to_ord_map(module) - Module-based orderings

Composition Semantics
When you use an ord variable with asc or desc:
	asc ord_var - Uses the ord variable as-is
	desc ord_var - Reverses the ord variable

Ord variables preserve their complete ordering semantics when composed.
Common Patterns
Reversing complex orderings:
payment_ord = ord do
 asc Prism.key(:credit_card_payment)
 asc Prism.key(:credit_card_refund)
 asc Prism.key(:check_payment)
end

payment_desc = ord do
 desc payment_ord
end
Building on base orderings:
name_age_ord = ord do
 asc :name
 desc :age
end

full_ord = ord do
 asc :priority
 asc name_age_ord
 asc :created_at
end
Composing multiple ord variables:
primary_ord = ord do asc :group end
secondary_ord = ord do desc :score end
tertiary_ord = ord do asc :name end

complete_ord = ord do
 asc primary_ord
 asc secondary_ord
 asc tertiary_ord
end
Behaviours
Modules participating in the Ord DSL implement Funx.Ord.Dsl.Behaviour. The parser converts behaviour module references into projection functions that call project/2 on these modules. The behaviour's return value must be a comparable type (any type implementing the Funx.Ord protocol).
The project/2 callback receives:
	value - The input value being projected
	opts - Keyword list of options passed in the DSL (e.g., asc MyBehaviour, weight: 2.0)

Example:
defmodule WeightedScore do
 @behaviour Funx.Ord.Dsl.Behaviour

 @impl true
 def project(item, opts) do
 weight = Keyword.get(opts, :weight, 1.0)
 (item.score || 0) * weight
 end
end

ord do
 desc WeightedScore, weight: 2.0
end
The parser compiles this to fn v -> WeightedScore.project(v, [weight: 2.0]) end.

 Eq

The Eq DSL is a builder DSL that constructs equality comparators for later use. See the DSL Overview for the distinction between builder and pipeline DSLs.
Structure
An eq block compiles entirely at compile time to quoted AST that builds an %Funx.Monoid.Eq.All{} struct. Unlike pipeline DSLs (Maybe, Either), there is no runtime executor—the DSL produces static composition of contramap, concat_all, and concat_any calls that execute directly.
Internal Representation
The Eq DSL uses two structure types to represent the equality composition:
	Step - Contains projection AST, eq module, negate flag, type, and metadata
	Block - Contains strategy (:all or :any), children, and metadata

Each Step describes a single equality check (on a field or projection). Each Block groups multiple checks with AND/OR logic. The compiler pattern-matches on these structs to generate the final quoted AST.
Compilation
 ├── Block (all - implicit at top level)
 │ ├── Step (on :name)
 │ ├── Step (on :age)
 │ └── Block (any)
 │ ├── Step (on :email)
 │ └── Step (on :username)
Parser
The parser converts the DSL block into a tree of Step and Block structures. It normalizes all projection syntax into one of four canonical types that contramap/2 accepts:
	Lens.t() - Bare lens struct
	Prism.t() - Bare prism struct (Nothing == Nothing)
	{Prism.t(), or_else} - Prism with or_else value
	(a -> b) - Projection function

All syntax sugar resolves to these types:
	:atom → Prism.key(:atom)
	[:a, :b] → Prism.path([:a, :b]) (supports nested keys and structs)
	:atom, or_else: x → {Prism.key(:atom), x}
	[:a, :b], or_else: x → {Prism.path([:a, :b]), x}
	Lens.key(...) → Lens.key(...) (pass through)
	Prism.key(...) → Prism.key(...) (pass through)
	{Prism, x} → {Prism, x} (pass through)
	fn -> ... end → fn -> ... end (pass through)
	Behaviour → Behaviour.eq([]) (returns Eq map)
	StructModule → Utils.to_eq_map(StructModule) (uses protocol)

Additionally, the parser tracks a type field for each Step to enable compile-time optimization:
	:projection - Optics or functions → wrap in contramap
	:module_eq - Module with eq?/2 → convert via to_eq_map
	:eq_map - Behaviour returning Eq map → use directly
	:dynamic - Unknown (0-arity helper) → runtime detection

The parser validates projections and raises compile-time errors for unsupported syntax, producing the final structure tree that the executor will compile.
Transformers
The Eq DSL does not currently support transformers. All compilation is handled by the parser and executor without intermediate rewriting stages.
Execution
The executor runs at compile time and generates quoted AST. It recursively walks the structure tree:
	Take normalized structures from the parser
	For each Step:	If negate: false → Utils.contramap(projection, eq)
	If negate: true → Utils.contramap(projection, negated_eq)

	For each Block:	If strategy: :all → Utils.concat_all([children...])
	If strategy: :any → Utils.concat_any([children...])

	Top-level operations are implicitly combined with concat_all (AND logic)

Execution Model
An empty eq block compiles to an identity Eq that considers all values equal. Similarly, an empty ord block compiles to an identity Ord where all values compare as :eq.
Each directive compiles to:
	on → contramap(projection, eq)
	diff_on → contramap(projection, negated_eq)
	all → concat_all([children...])
	any → concat_any([children...])

Type-Specific Code Generation
The executor uses the type field from Steps to generate specific code paths, eliminating runtime branching and compiler warnings:
	:projection - Direct contramap with projection
	:module_eq - Convert module via to_eq_map then use
	:eq_map - Use Eq map directly (from Behaviour)
	:dynamic - Runtime case statement to detect type

Negation (diff_on)
The diff_on directive swaps the eq?/not_eq? functions to check for inequality. This is implemented by creating a negated Eq map:
negated_eq = %{
 eq?: original.not_eq?,
 not_eq?: original.eq?
}
Important: Using diff_on breaks transitivity and creates an Extended Eq that is not an equivalence relation. Do not use with grouping operations like Funx.List.uniq/2 or MapSet.
Compilation Example
eq do
 on :name
 on :age
 any do
 on :email
 on :username
 end
end
Compiles to:
Utils.concat_all([
 Utils.contramap(Prism.key(:name), Funx.Eq),
 Utils.contramap(Prism.key(:age), Funx.Eq),
 Utils.concat_any([
 Utils.contramap(Prism.key(:email), Funx.Eq),
 Utils.contramap(Prism.key(:username), Funx.Eq)
])
])
List Paths (Nested Field Access)
List paths provide convenient syntax for accessing nested fields without manually composing optics:
Instead of:
eq do
 on Prism.path([:user, :profile, :name])
end

You can write:
eq do
 on [:user, :profile, :name]
end
List paths support both atom keys and struct modules:
defmodule Company, do: defstruct [:name, :address]
defmodule Address, do: defstruct [:city, :state]

Compare companies by nested city
eq_by_city = eq do
 on [Company, :address, Address, :city]
end

company1 = %Company{name: "ACME", address: %Address{city: "NYC", state: "NY"}}
company2 = %Company{name: "Corp", address: %Address{city: "NYC", state: "NY"}}

Funx.Eq.eq?(company1, company2, eq_by_city) # true
List paths work with or_else for handling missing values:
eq do
 on [:user, :profile, :age], or_else: 0
end
Behaviours
Modules participating in the Eq DSL implement Funx.Eq.Dsl.Behaviour. The parser detects behaviour modules and calls their eq/1 callback, which must return an Eq map (not a projection).
The eq/1 callback receives:
	opts - Keyword list of options passed in the DSL (e.g., on MyBehaviour, threshold: 0.5)

Example:
defmodule FuzzyStringEq do
 @behaviour Funx.Eq.Dsl.Behaviour

 @impl true
 def eq(opts) do
 threshold = Keyword.get(opts, :threshold, 0.8)

 %{
 eq?: fn a, b -> string_similarity(a, b) >= threshold end,
 not_eq?: fn a, b -> string_similarity(a, b) < threshold end
 }
 end

 defp string_similarity(a, b) do
 # Implementation here
 end
end

eq do
 on FuzzyStringEq, threshold: 0.9
end
The executor uses the returned Eq map directly (type :eq_map), avoiding the need to wrap it in contramap.
Equivalence Relations and diff_on
The Eq DSL supports two modes:
Core Eq (Equivalence Relations)
Using only on, all, and any creates a Core Eq that forms an equivalence relation:
	Reflexive: eq?(a, a) is always true
	Symmetric: If eq?(a, b) then eq?(b, a)
	Transitive: If eq?(a, b) and eq?(b, c) then eq?(a, c)

Core Eq safely partitions values into equivalence classes, making it suitable for:
	Funx.List.uniq/2 - Remove duplicates
	MapSet - Set membership
	Enum.group_by/2 - Grouping operations

Extended Eq (Boolean Predicates)
Using diff_on creates an Extended Eq that expresses boolean equality predicates but does not guarantee transitivity.
Example transitivity violation:
defmodule Person, do: defstruct [:name, :id]

eq_diff_id = eq do
 on :name
 diff_on :id
end

a = %Person{name: "Alice", id: 1}
b = %Person{name: "Alice", id: 2}
c = %Person{name: "Alice", id: 1}

eq?(a, b) # true (same name, different ids)
eq?(b, c) # true (same name, different ids)
eq?(a, c) # false (same name, SAME id - violates diff_on)
Even though a == b and b == c, we have a != c, violating transitivity.
Rule: If you need equivalence classes, do not use diff_on. Use it only for boolean predicates where transitivity is not required.

 Predicate

The Predicate DSL is a builder DSL that constructs boolean predicates for later use. See the DSL Overview for the distinction between builder and pipeline DSLs.
Structure
A pred block compiles entirely at compile time to quoted AST that builds a predicate function. Unlike pipeline DSLs (Maybe, Either), there is no runtime executor—the DSL produces static composition of boolean logic that executes directly.
Internal Representation
The Predicate DSL uses two structure types to represent the predicate composition:
	Step - Contains predicate AST, projection AST (optional), negate flag, type, and metadata
	Block - Contains strategy (:all or :any), children, and metadata

Each Step describes a single predicate check (bare predicate or projection with predicate). Each Block groups multiple checks with AND/OR logic. The compiler pattern-matches on these structs to generate the final quoted AST.
Compilation
 ├── Block (all - implicit at top level)
 │ ├── Step (bare predicate)
 │ ├── Step (check :field, predicate)
 │ └── Block (any)
 │ ├── Step (predicate1)
 │ └── Step (predicate2)
Parser
The parser converts the DSL block into a tree of Step and Block structures. It normalizes all syntax into canonical types:
Bare Predicates
	(a -> boolean) - Function predicate
	Variable reference - Resolved at runtime
	Module implementing Behaviour - Calls pred/1 at runtime
	{Module, opts} - Behaviour with options
	0-arity helper - Runtime predicate resolution

Projection-Based Predicates (check directive)
The check directive composes a projection with a predicate. All projection syntax normalizes to one of:
	Lens.t() - Bare lens struct
	Prism.t() - Bare prism struct (Nothing fails the predicate)
	(a -> b) - Projection function

Syntax sugar for projections:
	:atom → Prism.key(:atom)
	[:a, :b] → Prism.path([:a, :b]) (supports nested keys and structs)
	Lens.key(...) → Lens.key(...) (pass through)
	Prism.key(...) → Prism.key(...) (pass through)
	fn -> ... end → fn -> ... end (pass through)
	Traversal.t() → Converted to projection function

The parser validates predicates and projections, raising compile-time errors for unsupported syntax.
Transformers
The Predicate DSL does not currently support transformers. All compilation is handled by the parser and executor without intermediate rewriting stages.
Execution
The executor runs at compile time and generates quoted AST. It recursively walks the structure tree:
	Take normalized structures from the parser
	For each Step:	If bare predicate → generate predicate call
	If check projection, pred → compose projection with predicate
	If negate: true → wrap in boolean negation

	For each Block:	If strategy: :all → combine children with AND logic
	If strategy: :any → combine children with OR logic

	Top-level operations are implicitly combined with AND logic

Execution Model
An empty pred block compiles to a predicate that always returns true.
Each directive compiles to:
	Bare predicate → predicate.(value)
	check projection, pred → compose_projection(projection, pred).(value)
	negate predicate → not predicate.(value)
	negate check proj, pred → not compose_projection(projection, pred).(value)
	all do ... end → pred1.(value) and pred2.(value) and ...
	any do ... end → pred1.(value) or pred2.(value) or ...
	negate_all do ... end → not pred1.(value) or not pred2.(value) or ... (De Morgan)
	negate_any do ... end → not pred1.(value) and not pred2.(value) and ... (De Morgan)

Projection Composition
The check directive composes projections with predicates:
With Lens:
check Lens.key(:age), fn age -> age >= 18 end
Compiles to a function that gets the value, then tests it.
With Prism:
check Prism.key(:email), fn email -> String.contains?(email, "@") end
Compiles to a function that returns false if the prism returns Nothing, otherwise tests the focused value.
With atom (sugar for Prism.key):
check :name, fn name -> String.length(name) > 5 end
Equivalent to check Prism.key(:name), fn name -> String.length(name) > 5 end.
With list path (nested fields):
check [:user, :profile, :age], fn age -> age >= 18 end
Equivalent to check Prism.path([:user, :profile, :age]), fn age -> age >= 18 end. The list path supports both atom keys and struct modules:
defmodule User, do: defstruct [:name, :profile]
defmodule Profile, do: defstruct [:age, :verified]

check_adult = pred do
 check [User, :profile, Profile, :age], fn age -> age >= 18 end
end

user = %User{name: "Alice", profile: %Profile{age: 25, verified: true}}
check_adult.(user) # true
Compilation Example
pred do
 check :active, fn active -> active end
 any do
 check :role, fn role -> role == :admin end
 check :verified, fn verified -> verified end
 end
end
Compiles to a function equivalent to:
fn value ->
 (case Prism.preview(value, Prism.key(:active)) do
 {:ok, active} -> active
 :error -> false
 end) and
 (case Prism.preview(value, Prism.key(:role)) do
 {:ok, role} -> role == :admin
 :error -> false
 end or
 case Prism.preview(value, Prism.key(:verified)) do
 {:ok, verified} -> verified
 :error -> false
 end)
end
Behaviours
Modules participating in the Predicate DSL implement Funx.Predicate.Dsl.Behaviour. The parser detects behaviour modules and calls their pred/1 callback, which must return a predicate function.
The pred/1 callback receives:
	opts - Keyword list of options passed in the DSL (e.g., {HasMinimumAge, minimum: 21})

Example:
defmodule HasMinimumAge do
 @behaviour Funx.Predicate.Dsl.Behaviour

 @impl true
 def pred(opts) do
 minimum = Keyword.get(opts, :minimum, 18)
 fn user -> user.age >= minimum end
 end
end

pred do
 {HasMinimumAge, minimum: 21}
end
The parser compiles this to a call to HasMinimumAge.pred([minimum: 21]) which returns the predicate function.
Boolean Logic
The Predicate DSL supports two composition strategies:
All (AND Logic)
Using bare predicates or explicit all blocks creates AND composition where all predicates must pass:
pred do
 is_active
 is_verified
 is_adult
end
Equivalent to:
pred do
 all do
 is_active
 is_verified
 is_adult
 end
end
Any (OR Logic)
Using any blocks creates OR composition where at least one predicate must pass:
pred do
 any do
 is_admin
 is_moderator
 end
end
Nesting
Blocks can be nested arbitrarily deep for complex logic:
pred do
 is_active
 any do
 is_admin
 all do
 is_verified
 is_adult
 end
 end
end
This reads as: "active AND (admin OR (verified AND adult))"
Negation
The Predicate DSL supports negation at multiple levels using the negate, negate_all, and negate_any directives.
Simple Negation
Use negate to invert any bare predicate:
pred do
 negate is_banned
end
Compiles to: not is_banned.(value)
Negating Projections
Use negate check to test that a projected value does NOT match a condition:
pred do
 negate check :age, fn age -> age < 18 end
end
This is equivalent to checking that age >= 18, but handles missing fields safely (returns true if field is missing).
Negating Blocks (De Morgan's Laws)
The negate_all and negate_any directives apply De Morgan's Laws to negate entire blocks:
negate_all - NOT (A AND B) = (NOT A) OR (NOT B)
pred do
 negate_all do
 is_adult
 is_verified
 end
end
Compiles to: not is_adult.(value) or not is_verified.(value)
Returns true if at least one condition fails.
negate_any - NOT (A OR B) = (NOT A) AND (NOT B)
pred do
 negate_any do
 is_vip
 is_admin
 end
end
Compiles to: not is_vip.(value) and not is_admin.(value)
Returns true only if all conditions fail (regular user, not special).
Parser Transformation
The parser applies De Morgan's Laws at compile time:
	negate_all do ... end → Block{strategy: :any, children: [negated...]}
	negate_any do ... end → Block{strategy: :all, children: [negated...]}

This means negated blocks transform into their logical equivalent without requiring runtime negation of the entire block result.
Execution Model (Updated)
Each directive compiles to:
	Bare predicate → predicate.(value)
	check projection, pred → compose_projection(projection, pred).(value)
	negate predicate → not predicate.(value)
	negate check proj, pred → not compose_projection(projection, pred).(value)
	all do ... end → pred1.(value) and pred2.(value) and ...
	any do ... end → pred1.(value) or pred2.(value) or ...
	negate_all do ... end → not pred1.(value) or not pred2.(value) or ...
	negate_any do ... end → not pred1.(value) and not pred2.(value) and ...

Integration with Enum
Predicates built with the DSL work seamlessly with Elixir's Enum module:
check_eligible = pred do
 check :age, fn age -> age >= 18 end
 check :verified, fn verified -> verified end
end

Filter
Enum.filter(users, check_eligible)

Find
Enum.find(users, check_eligible)

Count
Enum.count(users, check_eligible)

Any/All
Enum.any?(users, check_eligible)
Enum.all?(users, check_eligible)

Partition
Enum.split_with(users, check_eligible)

 Validate

The Validate DSL is a builder DSL that constructs validators for later use. See the DSL Overview for the distinction between builder and pipeline DSLs.
Structure
A validate block compiles at compile time to quoted AST that builds a validator function. The validator takes a value and options, projects into fields using optics, runs validators, and accumulates all errors applicatively.
Internal Representation
The Validate DSL uses a single structure type to represent validation steps:
	Step - Contains optic AST (optional), validators list, and metadata

Each Step describes a single validation target: either a root validator (no optic) or a field validator (with optic projection). The compiler pattern-matches on these structs to generate the final quoted AST.
Compilation
 ├── Step (root validator - no optic)
 ├── Step (at :name, [Required, MinLength])
 ├── Step (at [:user, :email], [Required, Email])
 └── Step (at Traversal.combine([...]), DateRange)
Parser
The parser converts the DSL block into a list of Step structures. It normalizes all syntax into canonical forms:
Root Validators
	Module implementing Funx.Validate.Behaviour - Validates entire structure
	{Module, opts} - Behaviour with options
	Function (arity-2 or arity-3) - Custom validator function
	Previously defined validator - Composable validator

Field Validators (at directive)
The at directive composes an optic projection with validators. All projection syntax normalizes to one of:
	Prism.t() - Optional field projection (default for atoms)
	Lens.t() - Required field projection (raises on missing)
	Traversal.t() - Multiple foci projection
	(a -> b) - Projection function

Syntax sugar for projections:
	:atom → Prism.key(:atom)
	[:a, :b] → Prism.path([:a, :b]) (supports nested keys and structs)
	Lens.key(...) → Lens.key(...) (pass through)
	Prism.key(...) → Prism.key(...) (pass through)
	Traversal.combine(...) → Traversal.combine(...) (pass through)
	fn -> ... end → fn -> ... end (pass through)

Validator Forms
	Module alias → Module
	Tuple with options → {Module, opts}
	List of validators → [V1, V2, V3]
	Function (arity-2) → fn value, opts -> ... end
	Function (arity-3) → fn value, opts, env -> ... end
	Composable validator → Previously defined validator function

The parser validates projections and validators, raising compile-time errors for unsupported syntax (literals, empty lists, nested lists).
Transformers
The Validate DSL does not currently support transformers. All compilation is handled by the parser and executor without intermediate rewriting stages.
Execution
The executor runs at compile time and generates quoted AST. It processes the list of steps:
	Take normalized steps from the parser
	For each Step:	If root validator (no optic) → generate validator call on entire structure
	If field validator (with optic) → project with optic, run validators on projected value

	Combine all validators using applicative composition
	Return Either.t(ValidationError.t(), value)

Execution Modes
The DSL supports two execution modes:
Sequential (default):
validate do
 at :name, Required
 at :email, Email
end
Uses Either.traverse_a for monadic composition. All validators still run and accumulate errors.
Parallel:
validate mode: :parallel do
 at :name, Required
 at :email, Email
end
Uses Effect.traverse_a for explicit applicative composition. Semantically equivalent but makes the applicative nature explicit.
Execution Model
An empty validate block compiles to a validator that always returns Right(value) (identity element).
Each directive compiles to:
	Root validator → validator.validate(value, opts, env)
	at optic, validators → Project value, run validators on projected result, accumulate errors
	Multiple validators → All run, all errors accumulated via Appendable

Optic Projection
The at directive projects into the structure before validation:
With Prism (default for atoms):
at :email, Email
Projects using Prism.preview/2. Missing keys result in Nothing, which most validators skip. Only Required validates on Nothing.
With Lens:
at Lens.key(:name), Required
Projects using Lens.view/2. Missing keys raise KeyError. Use when field must structurally exist.
With list path:
at [:user, :profile, :name], Required
Converts to Prism.path([:user, :profile, :name]). Supports nested keys and struct modules.
With Traversal:
at Traversal.combine([Lens.key(:start_date), Lens.key(:end_date)]), DateRange
Collects multiple foci into a list for relationship validation.
Compilation Example
validate do
 HasContactMethod
 at :name, [Required, {MinLength, min: 3}]
 at :email, [Required, Email]
end
Compiles to a function equivalent to:
fn value, opts ->
 env = Keyword.get(opts, :env, %{})

 validators = [
 fn v -> HasContactMethod.validate(v, [], env) end,
 fn v ->
 projected = Prism.preview(v, Prism.key(:name))
 run_validators(projected, [Required, {MinLength, min: 3}], env)
 end,
 fn v ->
 projected = Prism.preview(v, Prism.key(:email))
 run_validators(projected, [Required, Email], env)
 end
]

 validators
 |> Enum.map(& &1.(value))
 |> accumulate_results(value)
end
Where accumulate_results combines all Either results applicatively, returning Right(original_value) on success or Left(accumulated_errors) on failure.
Behaviours
Modules participating in the Validate DSL implement Funx.Validate.Behaviour. The callback receives the value, options, and environment.
The validate/3 callback receives:
	value - The value to validate (may be Nothing from Prism projection)
	opts - Keyword list of options passed in the DSL
	env - Environment map passed via Either.validate(data, validator, env: env)

Example:
defmodule Positive do
 @behaviour Funx.Validate.Behaviour
 alias Funx.Monad.Maybe.Nothing
 alias Funx.Errors.ValidationError
 alias Funx.Monad.Either

 def validate(value, opts) when is_list(opts), do: validate(value, opts, %{})

 @impl true
 def validate(%Nothing{} = value, _opts, _env), do: Either.right(value)

 def validate(value, _opts, _env) when is_number(value) and value > 0,
 do: Either.right(value)

 def validate(_, _opts, _env),
 do: Either.left(ValidationError.new("must be positive"))
end
Return Value Normalization
The DSL normalizes various return formats:
	Either.t() → Used directly
	:ok → Converted to Right(value)
	{:ok, value} → Converted to Right(value)
	{:error, ValidationError.t()} → Converted to Left(error)

Error Accumulation
The Validate DSL uses applicative composition for error accumulation:
Applicative Semantics
All validators run regardless of earlier failures. Errors are accumulated via Appendable:
validate do
 at :name, Required # Fails: "is required"
 at :email, Email # Fails: "must be a valid email"
 at :age, Positive # Fails: "must be positive"
end
Result: Left(%ValidationError{errors: ["is required", "must be a valid email", "must be positive"]})
ValidationError Accumulation
ValidationError implements Appendable, allowing errors to be concatenated:
ValidationError.append(
 ValidationError.new("error 1"),
 ValidationError.new("error 2")
)
=> %ValidationError{errors: ["error 1", "error 2"]}
Identity Preservation
The Validate DSL preserves the original structure on success:
validation =
 validate do
 at :name, Required
 end

input = %{name: "Alice", extra: "field", nested: %{data: 123}}
Either.validate(input, validation)
=> %Right{right: %{name: "Alice", extra: "field", nested: %{data: 123}}}
The original structure is returned unchanged. Validators check data; they do not transform it.
Compile-Time Validation
The parser validates at compile time, rejecting invalid forms:
Rejected:
	Literal numbers: at :name, 123
	Literal strings: at :name, "string"
	Literal atoms: at :name, :atom
	Empty lists: at :name, []
	Nested lists: at :name, [Required, [Email]]

Accepted:
	Module aliases: Required, Email
	Tuples with options: {MinLength, min: 3}
	Lists of validators: [Required, Email]
	Function captures: &my_validator/2
	Anonymous functions: fn x, opts -> ... end
	Variables: my_validator
	Function calls: my_validator(), Module.validator()

Composable Validators
Validators created with validate can be used inside other validators:
item_validation =
 validate do
 at :name, Required
 at :price, Positive
 end

order_validation =
 validate do
 at :item, item_validation # Nested validator
 at :quantity, Positive
 end
The nested validator runs on the projected value and its errors are accumulated with the parent's errors.
Environment Passing
Validators can receive context via the environment:
validation =
 validate do
 at :email, UniqueEmail # Uses env[:existing_emails]
 end

Either.validate(data, validation, env: %{existing_emails: ["taken@example.com"]})
The environment is passed to all validators via the third argument of the validate/3 callback.
Integration with Either
Validators are executed via Either.validate/3:
Either.validate(data, validator)
Either.validate(data, validator, env: %{key: value})
The result is Either.t(ValidationError.t(), value):
	%Right{right: value} - Validation passed, original value returned
	%Left{left: %ValidationError{errors: [...]}} - Validation failed, all errors accumulated

Funx.Appendable protocol

[image: Run in Livebook]
A protocol for combining values in a generic, extensible way.
The Appendable protocol defines how two values of the same type can be combined. It is
used throughout Funx in functions like traverse_a/2 and wither_a/2 to accumulate
intermediate results without coupling logic to a specific type.
This protocol enables functions to remain flexible and composable when reducing,
aggregating, or accumulating values across a wide variety of domains.
Required functions
	coerce/1 – Normalizes an input value into a form suitable for aggregation.
	append/2 – Combines two values of the same type into one.

Default – Flat list aggregation
A fallback implementation is provided for all types that do not define a specific
Appendable instance. This default uses list concatenation as a universal aggregation
strategy: all inputs are coerced into lists (if not already), and combined using ++.
When using the default aggregation strategy, values are collected in a plain list:
validate_positive = fn x ->
 Funx.Monad.Either.lift_predicate(x, &(&1 > 0), fn v -> "Value must be positive: " <> to_string(v) end)
end

validate_even = fn x ->
 Funx.Monad.Either.lift_predicate(x, &(rem(&1, 2) == 0), fn v -> "Value must be even: " <> to_string(v) end)
end

Funx.Monad.Either.validate(4, [validate_positive, validate_even])
#=> %Funx.Monad.Either.Right{right: 4}

Funx.Monad.Either.validate(3, [validate_positive, validate_even])
#=> %Funx.Monad.Either.Left{left: ["Value must be even: 3"]}

Funx.Monad.Either.validate(-3, [validate_positive, validate_even])
#=> %Funx.Monad.Either.Left{left: ["Value must be positive: -3", "Value must be even: -3"]}
Structured aggregation with ValidationError
You can also use a custom struct to hold errors. This example uses ValidationError:
alias Funx.Errors.ValidationError

validate_positive = fn x ->
 Funx.Monad.Either.lift_predicate(x, &(&1 > 0), fn v -> "Value must be positive: " <> to_string(v) end)
 |> Funx.Monad.Either.map_left(&ValidationError.new/1)
end

validate_even = fn x ->
 Funx.Monad.Either.lift_predicate(x, &(rem(&1, 2) == 0), fn v -> "Value must be even: " <> to_string(v) end)
 |> Funx.Monad.Either.map_left(&ValidationError.new/1)
end

Funx.Monad.Either.validate(-3, [validate_positive, validate_even])
#=> %Funx.Monad.Either.Left{
left: %ValidationError{
errors: ["Value must be positive: -3", "Value must be even: -3"]
}
}

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 append(accumulator, coerced)

 Combines two values into a single result.

 coerce(term)

 Normalizes a single input value into a form suitable for accumulation.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 append(accumulator, coerced)

Combines two values into a single result.
Implementations must ensure the operation is associative within their type. For types
that require disambiguation or structural control, define a custom implementation.

 coerce(term)

Normalizes a single input value into a form suitable for accumulation.

Funx.Config

[image: Run in Livebook]
Internal access to :funx application configuration.
These functions read from Application.get_env/3 with sane defaults.
Used by effect modules for settings like timeouts, telemetry, and summarization.
Supported config keys
	:timeout — default timeout for running effects (default: 5_000 ms)
	:telemetry_prefix — base prefix for telemetry events (default: [:funx])
	:telemetry_enabled — whether telemetry spans are emitted (default: true)
	:summarizer — function used to summarize effect results for telemetry
	:default_span_name — fallback span name for telemetry traces

 Summary

 Functions

 default_span_name()

 summarizer()

 telemetry_enabled?()

 telemetry_prefix()

 timeout()

 Functions

 default_span_name()

 summarizer()

 telemetry_enabled?()

 telemetry_prefix()

 timeout()

Funx.Eq

[image: Run in Livebook]
Utilities and DSL for working with the Funx.Eq.Protocol.
This module provides two main capabilities:
	Utility functions for working with equality comparisons:
	contramap/2 - Transform equality checks via projections
	eq?/3, not_eq?/3 - Direct equality checks
	append_all/2, append_any/2 - Combine comparators
	concat_all/1, concat_any/1 - Combine lists of comparators
	to_predicate/2 - Convert to single-argument predicates

	Declarative DSL for building complex equality comparators:
	eq do ... end - Build comparators with clean syntax
	Supports on, diff_on, any, and all directives
	Compiles at compile-time for efficiency

These functions assume that types passed in either support Elixir's equality operator
or implement the Funx.Eq.Protocol protocol.
DSL Usage
use Funx.Eq

eq do
 on :name
 on :age
end
Utility Usage
Funx.Eq.contramap(&(&1.age))
Funx.Eq.eq?(value1, value2)
For detailed DSL documentation, see the eq/1 macro below.

 Summary

 Types

 eq_map()

 eq_t()

 Functions

 append_all(a, b)

 Combines two equality comparators using the Eq.All monoid.

 append_any(a, b)

 Combines two equality comparators using the Eq.Any monoid.

 concat_all(eq_list)

 Concatenates a list of equality comparators using the Eq.All monoid.

 concat_any(eq_list)

 Concatenates a list of equality comparators using the Eq.Any monoid.

 contramap(projection, eq \\ Funx.Eq.Protocol)

 Transforms an equality check by applying a projection before comparison.

 eq(list)

 Creates an equality comparator from a block of projection specifications.

 eq?(a, b, eq \\ Funx.Eq.Protocol)

 Returns true if two values are equal, using a specified or default Eq.

 eq_by?(projection, a, b, eq \\ Funx.Eq.Protocol)

 Checks equality of two values by applying a projection before comparison.

 not_eq?(a, b, eq \\ Funx.Eq.Protocol)

 Returns false if two values are not equal, using a specified or default Eq.

 to_eq_map(eq_map)

 to_eq_map_or_contramap(map, eq)

 Converts an Eq DSL result or projection to an eq_map.

 to_predicate(target, eq \\ Funx.Eq.Protocol)

 Converts an Eq comparator into a single-argument predicate function for use in Enum functions.

 Types

 eq_map()

 @type eq_map() :: %{
 eq?: (any(), any() -> boolean()),
 not_eq?: (any(), any() -> boolean())
}

 eq_t()

 @type eq_t() :: Funx.Eq.Protocol.t() | eq_map()

 Functions

 append_all(a, b)

 @spec append_all(eq_t(), eq_t()) :: eq_t()

Combines two equality comparators using the Eq.All monoid.
This function merges two equality comparisons, requiring both to return true
for the final result to be considered equal. This enforces a strict equality rule,
where all comparators must agree.
Examples
iex> eq1 = Funx.Eq.contramap(& &1.name)
iex> eq2 = Funx.Eq.contramap(& &1.age)
iex> combined = Funx.Eq.append_all(eq1, eq2)
iex> Funx.Eq.eq?(%{name: "Alice", age: 30}, %{name: "Alice", age: 30}, combined)
true
iex> Funx.Eq.eq?(%{name: "Alice", age: 30}, %{name: "Alice", age: 25}, combined)
false

 append_any(a, b)

 @spec append_any(eq_t(), eq_t()) :: eq_t()

Combines two equality comparators using the Eq.Any monoid.
This function merges two equality comparisons, where at least one
must return true for the final result to be considered equal.
Examples
iex> eq1 = Funx.Eq.contramap(& &1.name)
iex> eq2 = Funx.Eq.contramap(& &1.age)
iex> combined = Funx.Eq.append_any(eq1, eq2)
iex> Funx.Eq.eq?(%{name: "Alice", age: 30}, %{name: "Alice", age: 25}, combined)
true
iex> Funx.Eq.eq?(%{name: "Alice", age: 30}, %{name: "Bob", age: 25}, combined)
false

 concat_all(eq_list)

 @spec concat_all([eq_t()]) :: eq_t()

Concatenates a list of equality comparators using the Eq.All monoid.
The resulting comparator requires all comparators in the list to agree
that two values are equal.
Examples
iex> eq1 = Funx.Eq.contramap(& &1.name)
iex> eq2 = Funx.Eq.contramap(& &1.age)
iex> combined = Funx.Eq.concat_all([eq1, eq2])
iex> Funx.Eq.eq?(%{name: "Alice", age: 30}, %{name: "Alice", age: 30}, combined)
true
iex> Funx.Eq.eq?(%{name: "Alice", age: 30}, %{name: "Alice", age: 25}, combined)
false

 concat_any(eq_list)

 @spec concat_any([eq_t()]) :: eq_t()

Concatenates a list of equality comparators using the Eq.Any monoid.
The resulting comparator allows any comparator in the list to determine
equality, making it more permissive.
Examples
iex> eq1 = Funx.Eq.contramap(& &1.name)
iex> eq2 = Funx.Eq.contramap(& &1.age)
iex> combined = Funx.Eq.concat_any([eq1, eq2])
iex> Funx.Eq.eq?(%{name: "Alice", age: 30}, %{name: "Alice", age: 25}, combined)
true
iex> Funx.Eq.eq?(%{name: "Alice", age: 30}, %{name: "Bob", age: 25}, combined)
false

 contramap(projection, eq \\ Funx.Eq.Protocol)

 @spec contramap(
 (a -> b)
 | Funx.Optics.Lens.t()
 | Funx.Optics.Prism.t()
 | {Funx.Optics.Prism.t(), b}
 | Funx.Optics.Traversal.t(),
 eq_t()
) :: eq_map()
when a: any(), b: any()

Transforms an equality check by applying a projection before comparison.
The projection must be one of:
	a function (a -> b) - Applied directly to extract the comparison value
	a Lens - Uses view!/2 to extract the focused value (raises on missing)
	a Prism - Uses preview/2 (Nothing == Nothing)
	a tuple {Prism, default} - Uses preview/2, falling back to default on Nothing
	a Traversal - Uses to_list_maybe/2, compares all foci element-by-element (both must have all foci)

The eq parameter may be an Eq module or a custom comparator map
with :eq? and :not_eq? functions. The projection is applied to both
inputs before invoking the underlying comparator.
Examples
Using a projection function:
iex> eq = Funx.Eq.contramap(& &1.age)
iex> eq.eq?.(%{age: 30}, %{age: 30})
true
iex> eq.eq?.(%{age: 30}, %{age: 25})
false
Using a lens for single key access:
iex> eq = Funx.Eq.contramap(Funx.Optics.Lens.key(:age))
iex> eq.eq?.(%{age: 40}, %{age: 40})
true
Using a prism with a default value:
iex> prism = Funx.Optics.Prism.key(:score)
iex> eq = Funx.Eq.contramap({prism, 0})
iex> eq.eq?.(%{score: 10}, %{score: 10})
true
iex> eq.eq?.(%{}, %{score: 0})
true

 eq(list)

 (macro)

Creates an equality comparator from a block of projection specifications.
Returns a %Funx.Monoid.Eq.All{} struct that can be used with Funx.Eq
functions like eq?/3, not_eq?/3, or to_predicate/2.
Directives
	on - Field/projection must be equal
	diff_on - Field/projection must be different
	any - At least one nested check must pass (OR logic)
	all - All nested checks must pass (AND logic, implicit at top level)

Projection Types
The DSL supports the same projection forms as Ord DSL:
	Atom - Field access via Prism.key(atom)
	Atom with or_else - Optional field via {Prism.key(atom), or_else}
	Function - Direct projection fn x -> ... end or &fun/1
	Lens - Explicit lens for nested access (raises on missing)
	Prism - Explicit prism for optional fields
	Prism with or_else - {Prism.t(), or_else} for optional with fallback
	Behaviour - Custom equality via Funx.Eq.Dsl.Behaviour.eq/1

Equivalence Relations and diff_on
Core Eq (using only on, all, any) forms an equivalence relation with three properties:
	Reflexive: eq?(a, a) is always true
	Symmetric: If eq?(a, b) then eq?(b, a)
	Transitive: If eq?(a, b) and eq?(b, c) then eq?(a, c)

These properties guarantee that Core Eq partitions values into equivalence classes, making it
safe for use with Enum.uniq/2, MapSet, and grouping operations.
Extended Eq (using diff_on) expresses boolean equality predicates and does not guarantee transitivity.
Important: If you need equivalence classes (grouping, uniq, set membership), do not use diff_on.
Examples
Basic multi-field equality:
use Funx.Eq

eq_person = eq do
 on :name
 on :age
end
Using diff_on to check difference:
eq_same_person = eq do
 on :name
 on :email
 diff_on :id
end
Nested any blocks (OR logic):
eq_contact = eq do
 any do
 on :email
 on :username
 end
end
Mixed composition:
eq_mixed = eq do
 on :department
 any do
 on :email
 on :username
 end
end
With nested field paths:
eq_nested = eq do
 on [:user, :profile, :name]
 on [:user, :profile, :age]
end

 eq?(a, b, eq \\ Funx.Eq.Protocol)

 @spec eq?(a, a, eq_t()) :: boolean() when a: any()

Returns true if two values are equal, using a specified or default Eq.
This function compares the values directly, without applying any projection.
For comparisons that require projecting or focusing on part of a structure,
use Funx.Eq.eq_by?/4 or Funx.Eq.contramap/2.
Examples
iex> Funx.Eq.eq?(42, 42)
true
iex> Funx.Eq.eq?("foo", "bar")
false

 eq_by?(projection, a, b, eq \\ Funx.Eq.Protocol)

 @spec eq_by?(
 (a -> b) | Funx.Optics.Lens.t() | {Funx.Optics.Prism.t(), b},
 a,
 a,
 eq_t()
) :: boolean()
when a: any(), b: any()

Checks equality of two values by applying a projection before comparison.
The projection must be one of:
	a function (a -> b) - Applied directly to extract the comparison value
	a Lens - Uses view!/2 to extract the focused value (raises on missing)
	a tuple {Prism, default} - Uses preview/2, falling back to default on Nothing

The eq parameter may be an Eq module or a custom comparator map.
The projection is applied to both arguments before invoking the comparator.
Examples
Using a projection function:
iex> Funx.Eq.eq_by?(& &1.age, %{age: 30}, %{age: 30})
true
iex> Funx.Eq.eq_by?(& &1.age, %{age: 30}, %{age: 25})
false
Using a lens for single key access:
iex> Funx.Eq.eq_by?(Funx.Optics.Lens.key(:age), %{age: 40}, %{age: 40})
true
Using a prism with a default value:
iex> prism = Funx.Optics.Prism.key(:score)
iex> Funx.Eq.eq_by?({prism, 0}, %{score: 10}, %{score: 10})
true
iex> Funx.Eq.eq_by?({prism, 0}, %{}, %{score: 0})
true

 not_eq?(a, b, eq \\ Funx.Eq.Protocol)

 @spec not_eq?(a, a, eq_t()) :: boolean() when a: any()

Returns false if two values are not equal, using a specified or default Eq.
This function compares the values directly, without applying any projection.
For comparisons based on a projection, lens, key, or path,
use Funx.Eq.eq_by?/4 or a comparator produced by Funx.Eq.contramap/2.
Examples
iex> Funx.Eq.not_eq?(42, 99)
true
iex> Funx.Eq.not_eq?("foo", "foo")
false

 to_eq_map(eq_map)

 to_eq_map_or_contramap(map, eq)

 @spec to_eq_map_or_contramap(any(), eq_t()) :: eq_map()

Converts an Eq DSL result or projection to an eq_map.
If passed a plain map with eq?/2 and not_eq?/2 functions (the result
of eq do ... end), returns it directly. Otherwise, delegates to contramap/2.
Used internally by Funx.Macros.eq_for/3 to support both projection-based
and DSL-based equality definitions.

 to_predicate(target, eq \\ Funx.Eq.Protocol)

 @spec to_predicate(a, eq_t()) :: (a -> boolean()) when a: any()

Converts an Eq comparator into a single-argument predicate function for use in Enum functions.
The resulting predicate takes a single element and returns true if it matches the target
based on the specified Eq. If no custom Eq is provided, it defaults to Funx.Eq.Protocol.
Examples
iex> eq = Funx.Eq.contramap(& &1.name)
iex> predicate = Funx.Eq.to_predicate(%{name: "Alice"}, eq)
iex> Funx.Filterable.filter([%{name: "Alice"}, %{name: "Bob"}], predicate)
[%{name: "Alice"}]

Funx.Eq.Dsl.Behaviour behaviour

Behaviour for custom equality logic in the Eq DSL.
Implement this behaviour to define reusable Eq comparators that can be
used with on directives in the DSL without implementing the Eq protocol.
This is useful for teams that want to avoid teaching developers about protocols,
or want struct-specific equality without global protocol implementations.
Basic Example
defmodule UserById do
 @behaviour Funx.Eq.Dsl.Behaviour

 @impl true
 def eq(_opts) do
 Funx.Eq.contramap(&(&1.id))
 end
end

In DSL
use Funx.Eq

eq do
 on UserById # Compares by id
end
With Options
defmodule UserByName do
 @behaviour Funx.Eq.Dsl.Behaviour

 @impl true
 def eq(opts) do
 case_sensitive = Keyword.get(opts, :case_sensitive, true)

 if case_sensitive do
 Funx.Eq.contramap(&(&1.name))
 else
 Funx.Eq.contramap(fn u -> String.downcase(u.name) end)
 end
 end
end

In DSL
eq do
 on UserByName, case_sensitive: false
end
Why Use This Instead of Protocols?
	Simpler: Just one function returning an Eq map
	No protocol knowledge required: Easier for team onboarding
	Module-specific: Override struct equality without global protocol
	Options support: Built-in support for configuration

The returned Eq map typically uses Funx.Eq.contramap/2 to build
projection-based equality, but can implement any custom comparison logic.

 Summary

 Callbacks

 eq(opts)

 Returns an Eq map for comparison.

 Callbacks

 eq(opts)

 @callback eq(opts :: keyword()) :: Funx.Eq.eq_map()

Returns an Eq map for comparison.
Takes options and returns an Eq map (with :eq? and :not_eq? functions).
Arguments
	opts - Keyword list of options passed from the DSL

Return Value
An Eq map with the structure:
%{
 eq?: (any(), any() -> boolean()),
 not_eq?: (any(), any() -> boolean())
}
Examples
Simple projection-based equality
def eq(_opts) do
 Funx.Eq.contramap(&(&1.id))
end

With options
def eq(opts) do
 field = Keyword.get(opts, :field, :id)
 Funx.Eq.contramap(&Map.get(&1, field))
end

Custom comparison logic
def eq(_opts) do
 %{
 eq?: fn a, b -> normalize(a) == normalize(b) end,
 not_eq?: fn a, b -> normalize(a) != normalize(b) end
 }
end
Most implementations use Funx.Eq.contramap/2 for projection-based
equality, which handles the Eq map creation automatically.

Funx.Eq.Protocol protocol

The Funx.Eq.Protocol protocol defines an equality function, eq?/2, for comparing two values,
and its complement, not_eq?/2, for checking inequality.
Types that implement this protocol can define custom equality logic, allowing for
domain-specific comparisons.
Fallback
The protocol uses @fallback_to_any true, meaning that if a specific type does not
implement Funx.Eq.Protocol, it falls back to the default implementation for Any, which
uses Elixir's built-in equality operator (==).
Examples
With a custom implementation for a Funx.Monad.Maybe type:
iex> Funx.Eq.Protocol.eq?(Funx.Monad.Maybe.just(3), Funx.Monad.Maybe.just(3))
true

iex> Funx.Eq.Protocol.eq?(Funx.Monad.Maybe.just(3), Funx.Monad.Maybe.just(5))
false

iex> Funx.Eq.Protocol.eq?(Funx.Monad.Maybe.nothing(), Funx.Monad.Maybe.nothing())
true

iex> Funx.Eq.Protocol.eq?(Funx.Monad.Maybe.nothing(), Funx.Monad.Maybe.just(5))
false
Checking inequality with not_eq?/2:
iex> Funx.Eq.Protocol.not_eq?(Funx.Monad.Maybe.just(3), Funx.Monad.Maybe.just(3))
false

iex> Funx.Eq.Protocol.not_eq?(Funx.Monad.Maybe.just(3), Funx.Monad.Maybe.just(5))
true

iex> Funx.Eq.Protocol.not_eq?(Funx.Monad.Maybe.nothing(), Funx.Monad.Maybe.nothing())
false

iex> Funx.Eq.Protocol.not_eq?(Funx.Monad.Maybe.nothing(), Funx.Monad.Maybe.just(5))
true

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 eq?(a, b)

 Returns true if a is equal to b, otherwise returns false.

 not_eq?(a, b)

 Returns true if a is not equal to b, otherwise returns false.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 eq?(a, b)

Returns true if a is equal to b, otherwise returns false.
Examples
iex> Funx.Eq.Protocol.eq?(1, 1)
true

iex> Funx.Eq.Protocol.eq?(1, 2)
false

 not_eq?(a, b)

Returns true if a is not equal to b, otherwise returns false.
Examples
iex> Funx.Eq.Protocol.not_eq?(1, 1)
false

iex> Funx.Eq.Protocol.not_eq?(1, 2)
true

Funx.Filterable protocol

[image: Run in Livebook]
The Funx.Filterable protocol defines functions for conditionally retaining or discarding
values within a context. It generalizes the concepts of filter, filter_map, and guard
across different data structures like Maybe, List, and others.
These functions enable conditional value retention, transformation, and short-circuiting based
on boolean conditions or predicate functions.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 filter(structure, predicate)

 Retains values that satisfy the given predicate.

 filter_map(structure, func)

 Applies a function that returns a Maybe value, combining filtering and mapping in a single pass.

 guard(structure, bool)

 Conditionally retains a value within the context. If the boolean is true, returns the existing value;
otherwise, returns an empty value for the context.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 filter(structure, predicate)

Retains values that satisfy the given predicate.
The filter/2 function applies a predicate to the value(s) inside the context. If the predicate returns true,
the value is retained; otherwise, it is discarded. For collections, it filters all elements based on the predicate.
Parameters:
	structure: The context-wrapped value or collection.
	predicate: A function (a -> boolean) determining whether to retain each value.

Examples
iex> Funx.Filterable.filter(Funx.Monad.Maybe.just(5), &(&1 > 3))
%Funx.Monad.Maybe.Just{value: 5}

iex> Funx.Filterable.filter(Funx.Monad.Maybe.just(2), &(&1 > 3))
%Funx.Monad.Maybe.Nothing{}

 filter_map(structure, func)

Applies a function that returns a Maybe value, combining filtering and mapping in a single pass.
filter_map/2 applies the provided function to the value(s) within the context. If the function returns Just,
the transformed value is retained; if it returns Nothing, the value is discarded. This avoids multiple traversals
when both mapping and filtering are required.
Parameters:
	structure: The context-wrapped value or collection.
	func: A function (a -> Maybe b) that both transforms and conditionally retains values.

Examples
iex> Funx.Filterable.filter_map(Funx.Monad.Maybe.just(5), fn x -> if x > 3, do: Funx.Monad.Maybe.just(x * 2), else: Funx.Monad.Maybe.nothing() end)
%Funx.Monad.Maybe.Just{value: 10}

iex> Funx.Filterable.filter_map(Funx.Monad.Maybe.just(2), fn x -> if x > 3, do: Funx.Monad.Maybe.just(x * 2), else: Funx.Monad.Maybe.nothing() end)
%Funx.Monad.Maybe.Nothing{}

 guard(structure, bool)

Conditionally retains a value within the context. If the boolean is true, returns the existing value;
otherwise, returns an empty value for the context.
Parameters:
	structure: The context-wrapped value (e.g., Just, list, etc.).
	bool: A boolean indicating whether to retain the value.

Examples
iex> Funx.Filterable.guard(Funx.Monad.Maybe.just(42), true)
%Funx.Monad.Maybe.Just{value: 42}

iex> Funx.Filterable.guard(Funx.Monad.Maybe.just(42), false)
%Funx.Monad.Maybe.Nothing{}

iex> Funx.Filterable.guard(Funx.Monad.Maybe.nothing(), true)
%Funx.Monad.Maybe.Nothing{}

Funx.Foldable protocol

[image: Run in Livebook]
The Funx.Foldable protocol defines two core folding operations: fold_l/3 (fold left) and fold_r/3 (fold right).
These functions allow structures to be collapsed into a single value by applying functions in a specific order.
Depending on the structure, folding can be done from the left (fold_l/3) or from the right (fold_r/3).

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 fold_l(structure, func_a, func_b)

 Folds the structure from the left, applying func_a if a condition is met, otherwise applying func_b.

 fold_r(structure, func_a, func_b)

 Folds the structure from the right, applying func_a if a condition is met, otherwise applying func_b.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 fold_l(structure, func_a, func_b)

Folds the structure from the left, applying func_a if a condition is met, otherwise applying func_b.
This function collapses a structure by recursively applying the provided functions from the leftmost element to the rightmost.
Parameters:
	structure: The structure to fold.
	func_a: The function to apply in case of a matching condition.
	func_b: The function to apply if the condition is not met.

Examples
iex> Funx.Foldable.fold_l(Funx.Monad.Maybe.just(5), fn x -> x + 1 end, fn -> 0 end)
6

iex> Funx.Foldable.fold_l(Funx.Monad.Maybe.nothing(), fn _ -> 1 end, fn -> 0 end)
0

 fold_r(structure, func_a, func_b)

Folds the structure from the right, applying func_a if a condition is met, otherwise applying func_b.
This function collapses a structure by recursively applying the provided functions from the rightmost element to the leftmost.
Parameters:
	structure: The structure to fold.
	func_a: The function to apply in case of a matching condition.
	func_b: The function to apply if the condition is not met.

Examples
iex> Funx.Foldable.fold_r(Funx.Monad.Maybe.just(5), fn x -> x + 1 end, fn -> 0 end)
6

iex> Funx.Foldable.fold_r(Funx.Monad.Maybe.nothing(), fn _ -> 1 end, fn -> 0 end)
0

Funx.List

[image: Run in Livebook]
The Funx.List module provides utility functions for working with lists while respecting Eq and Ord instances. This allows for set-like operations, uniqueness constraints, and sorted collections that align with functional programming principles.
Features
	Equality-based Operations: Use Eq instances to compare elements for uniqueness, intersection, and difference.
	Ordering Functions: Leverage Ord instances to sort and enforce uniqueness in sorted collections.
	Set Operations: Perform union, intersection, difference, and symmetric difference while preserving custom equality logic.
	Subset & Superset Checks: Verify relationships between lists in terms of inclusion.
	Functional Constructs: Implements Monad and Foldable protocols for lists, supporting mapping, binding, and folding.

Usage Overview
	Deduplicate: Use uniq/1 to remove duplicates based on Eq.
	Combine: Use union/2 to merge lists without duplicates.
	Filter: Use intersection/2 or difference/2 for set operations.
	Sort: Use sort/2 or strict_sort/2 with Ord instances.
	Check Membership: Use subset?/2 or superset?/2 to verify inclusion relationships.
	Find Extremes: Use min/2, max/2 for safe min/max, or min!/2, max!/2 to raise on empty.

Equality-Based Operations
	uniq/1: Removes duplicates using Eq.
	union/2: Merges lists while preserving uniqueness.
	intersection/2: Returns elements common to both lists.
	difference/2: Returns elements from the first list not in the second.
	symmetric_difference/2: Returns elements unique to each list.

Ordering Functions
	sort/2: Sorts a list using Ord.
	strict_sort/2: Sorts while ensuring uniqueness.

Set Operations
	subset?/2: Checks if one list is a subset of another.
	superset?/2: Checks if one list is a superset of another.

Min/Max Operations
	min/2: Returns the minimum element wrapped in Maybe.
	min!/2: Returns the minimum element, raises on empty list.
	max/2: Returns the maximum element wrapped in Maybe.
	max!/2: Returns the maximum element, raises on empty list.

Monad Implementation
	map/2: Transforms list elements.
	bind/2: Applies a function returning lists and flattens the result.
	ap/2: Applies functions in a list to elements in another list.

Foldable Implementation
	fold_l/3: Performs left-associative folding.
	fold_r/3: Performs right-associative folding.

 Summary

 Functions

 concat(list)

 Concatenates a list of lists from left to right.

 difference(list1, list2, eq \\ Funx.Eq.Protocol)

 Returns the difference of two lists.

 elem?(list, value, eq \\ Funx.Eq.Protocol)

 Returns true if the given value is an element of the list under the provided Eq.

 head(list)

 Returns the head of a list wrapped in Maybe.Just, or Maybe.Nothing if empty.

 head!(list)

 Returns the head of a list.

 intersection(list1, list2, eq \\ Funx.Eq.Protocol)

 Returns the intersection of two lists.

 max(list, ord \\ Funx.Ord.Protocol)

 Returns the maximum element in a list according to the given ordering.

 max!(list, ord \\ Funx.Ord.Protocol)

 Returns the maximum element in a list according to the given ordering.

 min(list, ord \\ Funx.Ord.Protocol)

 Returns the minimum element in a list according to the given ordering.

 min!(list, ord \\ Funx.Ord.Protocol)

 Returns the minimum element in a list according to the given ordering.

 sort(list, ord \\ Funx.Ord.Protocol)

 Sorts a list using the given ordering module.

 strict_sort(list, ord \\ Funx.Ord.Protocol)

 Sorts a list while ensuring uniqueness.

 subset?(small, large, eq \\ Funx.Eq.Protocol)

 Checks if the first list is a subset of the second.

 superset?(large, small, eq \\ Funx.Eq.Protocol)

 Checks if the first list is a superset of the second.

 symmetric_difference(list1, list2, eq \\ Funx.Eq.Protocol)

 Returns the symmetric difference of two lists.

 tail(list)

 Returns the tail of a list.

 union(list1, list2, eq \\ Funx.Eq.Protocol)

 Returns the union of two lists, removing duplicates.

 uniq(list, eq \\ Funx.Eq.Protocol)

 Removes duplicate elements from a list based on the given equality module.

 Functions

 concat(list)

 @spec concat([[term()]]) :: [term()]

Concatenates a list of lists from left to right.
This uses the ListConcat monoid, preserving the original order of elements.
Examples
iex> Funx.List.concat([[1], [2, 3], [4]])
[1, 2, 3, 4]

 difference(list1, list2, eq \\ Funx.Eq.Protocol)

 @spec difference([term()], [term()], Funx.Eq.eq_t()) :: [term()]

Returns the difference of two lists.
Examples
iex> Funx.List.difference([1, 2, 3, 4], [3, 4, 5])
[1, 2]

 elem?(list, value, eq \\ Funx.Eq.Protocol)

 @spec elem?(term(), [term()], Funx.Eq.eq_t()) :: boolean()

Returns true if the given value is an element of the list under the provided Eq.
This is the Eq-based equivalent of Haskell's elem.
Examples
iex> Funx.List.elem?([1, 2, 3], 1)
true

iex> Funx.List.elem?([1, 3], 2)
false

 head(list)

 @spec head([a]) :: Funx.Monad.Maybe.t(a) when a: term()

Returns the head of a list wrapped in Maybe.Just, or Maybe.Nothing if empty.
This is a safe version of hd/1 that returns Maybe instead of raising.
Examples
iex> Funx.List.head([1, 2, 3])
%Funx.Monad.Maybe.Just{value: 1}

iex> Funx.List.head([])
%Funx.Monad.Maybe.Nothing{}

iex> Funx.List.head("not a list")
%Funx.Monad.Maybe.Nothing{}

 head!(list)

 @spec head!([a]) :: a when a: term()

Returns the head of a list.
Raises ArgumentError if the list is empty or not a list.
Examples
iex> Funx.List.head!([1, 2, 3])
1

iex> Funx.List.head!([42])
42

 intersection(list1, list2, eq \\ Funx.Eq.Protocol)

 @spec intersection([term()], [term()], Funx.Eq.eq_t()) :: [term()]

Returns the intersection of two lists.
Examples
iex> Funx.List.intersection([1, 2, 3, 4], [3, 4, 5])
[3, 4]

 max(list, ord \\ Funx.Ord.Protocol)

 @spec max([a], Funx.Ord.ord_t()) :: Funx.Monad.Maybe.t(a) when a: term()

Returns the maximum element in a list according to the given ordering.
Returns Just(element) for non-empty lists, Nothing for empty lists.
This is a safe version that returns Maybe instead of raising.
Use max!/2 if you want to raise on empty lists.
Examples
iex> Funx.List.max([3, 1, 4, 1, 5])
%Funx.Monad.Maybe.Just{value: 5}

iex> Funx.List.max([])
%Funx.Monad.Maybe.Nothing{}

iex> ord = Funx.Ord.contramap(&String.length/1)
iex> Funx.List.max(["cat", "elephant", "ox"], ord)
%Funx.Monad.Maybe.Just{value: "elephant"}

 max!(list, ord \\ Funx.Ord.Protocol)

 @spec max!([a], Funx.Ord.ord_t()) :: a when a: term()

Returns the maximum element in a list according to the given ordering.
Raises Enum.EmptyError if the list is empty.
Examples
iex> Funx.List.max!([3, 1, 4, 1, 5])
5

iex> ord = Funx.Ord.contramap(&String.length/1)
iex> Funx.List.max!(["cat", "elephant", "ox"], ord)
"elephant"

 min(list, ord \\ Funx.Ord.Protocol)

 @spec min([a], Funx.Ord.ord_t()) :: Funx.Monad.Maybe.t(a) when a: term()

Returns the minimum element in a list according to the given ordering.
Returns Just(element) for non-empty lists, Nothing for empty lists.
This is a safe version that returns Maybe instead of raising.
Use min!/2 if you want to raise on empty lists.
Examples
iex> Funx.List.min([3, 1, 4, 1, 5])
%Funx.Monad.Maybe.Just{value: 1}

iex> Funx.List.min([])
%Funx.Monad.Maybe.Nothing{}

iex> ord = Funx.Ord.contramap(&String.length/1)
iex> Funx.List.min(["cat", "elephant", "ox"], ord)
%Funx.Monad.Maybe.Just{value: "ox"}

 min!(list, ord \\ Funx.Ord.Protocol)

 @spec min!([a], Funx.Ord.ord_t()) :: a when a: term()

Returns the minimum element in a list according to the given ordering.
Raises Enum.EmptyError if the list is empty.
Examples
iex> Funx.List.min!([3, 1, 4, 1, 5])
1

iex> ord = Funx.Ord.contramap(&String.length/1)
iex> Funx.List.min!(["cat", "elephant", "ox"], ord)
"ox"

 sort(list, ord \\ Funx.Ord.Protocol)

 @spec sort([term()], Funx.Ord.ord_t()) :: [term()]

Sorts a list using the given ordering module.
Examples
iex> Funx.List.sort([3, 1, 4, 1, 5])
[1, 1, 3, 4, 5]

 strict_sort(list, ord \\ Funx.Ord.Protocol)

 @spec strict_sort([term()], Funx.Ord.ord_t()) :: [term()]

Sorts a list while ensuring uniqueness.
Examples
iex> Funx.List.strict_sort([3, 1, 4, 1, 5])
[1, 3, 4, 5]

 subset?(small, large, eq \\ Funx.Eq.Protocol)

 @spec subset?([term()], [term()], Funx.Eq.eq_t()) :: boolean()

Checks if the first list is a subset of the second.
Examples
iex> Funx.List.subset?([1, 2], [1, 2, 3, 4])
true

iex> Funx.List.subset?([1, 5], [1, 2, 3, 4])
false

 superset?(large, small, eq \\ Funx.Eq.Protocol)

 @spec superset?([term()], [term()], Funx.Eq.eq_t()) :: boolean()

Checks if the first list is a superset of the second.
Examples
iex> Funx.List.superset?([1, 2, 3, 4], [1, 2])
true

iex> Funx.List.superset?([1, 2, 3, 4], [1, 5])
false

 symmetric_difference(list1, list2, eq \\ Funx.Eq.Protocol)

 @spec symmetric_difference([term()], [term()], Funx.Eq.eq_t()) :: [term()]

Returns the symmetric difference of two lists.
Examples
iex> Funx.List.symmetric_difference([1, 2, 3], [3, 4, 5])
[1, 2, 4, 5]

 tail(list)

 @spec tail([a]) :: [a] when a: term()

Returns the tail of a list.
The tail of an empty list is an empty list.
Examples
iex> Funx.List.tail([1, 2, 3])
[2, 3]

iex> Funx.List.tail([1])
[]

iex> Funx.List.tail([])
[]

 union(list1, list2, eq \\ Funx.Eq.Protocol)

 @spec union([term()], [term()], Funx.Eq.eq_t()) :: [term()]

Returns the union of two lists, removing duplicates.
Examples
iex> Funx.List.union([1, 2, 3], [3, 4, 5])
[1, 2, 3, 4, 5]

 uniq(list, eq \\ Funx.Eq.Protocol)

 @spec uniq([term()], Funx.Eq.eq_t()) :: [term()]

Removes duplicate elements from a list based on the given equality module.
Examples
iex> Funx.List.uniq([1, 2, 2, 3, 1, 4, 5])
[1, 2, 3, 4, 5]

Funx.Macros

[image: Run in Livebook]
Provides macros for automatically implementing Funx.Eq and Funx.Ord protocols
for structs based on field projections.
The Funx.Macros module generates protocol implementations at compile time,
eliminating boilerplate while providing flexible projection options for both
equality and ordering comparisons. The macros support simple field access,
nested structures, optional fields, and custom projections through a unified interface.
This module is useful for:
	Implementing Funx.Eq protocol for structs with projection-based equality
	Implementing Funx.Ord protocol with various projection strategies
	Handling optional fields with safe defaults via or_else
	Accessing nested structures through Lens and Prism optics
	Custom comparison logic via projection functions

Macros
	eq_for/2 - Generate Funx.Eq protocol implementation (basic)
	eq_for/3 - Generate Funx.Eq protocol with options (e.g., or_else, eq)
	ord_for/2 - Generate Funx.Ord protocol implementation (basic)
	ord_for/3 - Generate Funx.Ord protocol with options (e.g., or_else)

Projection Types
Both eq_for and ord_for macros support multiple projection types, all normalized at compile time:
	Atom - Converted to Prism.key(atom). Safe for nil values with Nothing < Just semantics.
	Atom with or_else - ord_for(Struct, :field, or_else: default) → {Prism.key(:field), default}.
	Lens - Total access via Lens.key/1 or Lens.path/1. Raises KeyError on missing keys.
	Prism - Partial access via Prism.key/1 or Prism.path/1. Returns Maybe with Nothing < Just semantics.
	Prism with or_else - ord_for(Struct, Prism.key(:field), or_else: default) → {prism, default}.
	{Prism, default} - Tuple syntax for partial access with explicit fallback value.
	Traversal - Multiple foci via Traversal.combine/1. All foci must match for equality.
	Function - Custom projection fn x -> ... end or &fun/1. Must return a comparable value.
	Eq DSL - A pre-built equality comparator from eq do ... end. Used directly by eq_for.
	Ord DSL - A pre-built ordering from ord do ... end. Used directly by ord_for.

Note: Atoms use Prism by default for safety. Use explicit Lens.key(:field) when you need
total access that raises on missing keys or nil intermediate values.

or_else Option
The or_else option provides fallback values for optional fields:
	Valid with: Atoms, Prisms, and helper functions returning Prisms
	Invalid with: Lens (always returns a value), Traversal (focuses on multiple elements),
functions (must handle own defaults), struct literals, or {Prism, default} tuples (redundant)

When or_else is used with an incompatible projection type, a clear compile-time
error is raised with actionable guidance.
Examples
Simple equality by field:
iex> defmodule Person do
...> defstruct [:name, :age]
...>
...> require Funx.Macros
...> Funx.Macros.eq_for(Person, :age)
...> end
iex> alias Funx.Eq
iex> Eq.eq?(%Person{name: "Alice", age: 30}, %Person{name: "Bob", age: 30})
true
Equality with optional field:
iex> defmodule Item do
...> defstruct [:name, :score]
...>
...> require Funx.Macros
...> Funx.Macros.eq_for(Item, :score, or_else: 0)
...> end
iex> alias Funx.Eq
iex> i1 = %Item{name: "A", score: nil}
iex> i2 = %Item{name: "B", score: 0}
iex> Eq.eq?(i1, i2) # nil becomes 0, so equal
true
Ordering by field with Prism (safe for nil):
iex> defmodule Product do
...> defstruct [:name, :rating]
...>
...> require Funx.Macros
...> Funx.Macros.ord_for(Product, :rating)
...> end
iex> alias Funx.Ord
iex> p1 = %Product{name: "Widget", rating: 4}
iex> p2 = %Product{name: "Gadget", rating: 5}
iex> Ord.lt?(p1, p2)
true
Optional field with or_else:
iex> defmodule Item do
...> defstruct [:name, :score]
...>
...> require Funx.Macros
...> Funx.Macros.ord_for(Item, :score, or_else: 0)
...> end
iex> alias Funx.Ord
iex> i1 = %Item{name: "A", score: nil}
iex> i2 = %Item{name: "B", score: 10}
iex> Ord.lt?(i1, i2) # nil becomes 0, so 0 < 10
true
Nested structure access with Lens:
iex> defmodule Address, do: defstruct [:city, :state]
iex> defmodule Customer do
...> defstruct [:name, :address]
...>
...> require Funx.Macros
...> alias Funx.Optics.Lens
...> Funx.Macros.ord_for(Customer, Lens.path([:address, :city]))
...> end
iex> alias Funx.Ord
iex> c1 = %Customer{name: "Alice", address: %Address{city: "Austin", state: "TX"}}
iex> c2 = %Customer{name: "Bob", address: %Address{city: "Boston", state: "MA"}}
iex> Ord.lt?(c1, c2) # "Austin" < "Boston"
true
Function projection:
iex> defmodule Article do
...> defstruct [:title, :content]
...>
...> require Funx.Macros
...> Funx.Macros.ord_for(Article, &String.length(&1.title))
...> end
iex> alias Funx.Ord
iex> a1 = %Article{title: "Short", content: "..."}
iex> a2 = %Article{title: "Very Long Title", content: "..."}
iex> Ord.lt?(a1, a2) # length("Short") < length("Very Long Title")
true
Protocol Dispatch
The generated Ord implementations leverage the Funx.Ord protocol for projected values.
Any type implementing Ord can be used as a projection target:
defmodule Priority do
 defstruct [:level]
end

defimpl Funx.Ord, for: Priority do
 def lt?(a, b), do: a.level < b.level
 def le?(a, b), do: a.level <= b.level
 def gt?(a, b), do: a.level > b.level
 def ge?(a, b), do: a.level >= b.level
end

defmodule Task do
 defstruct [:title, :priority]

 require Funx.Macros
 Funx.Macros.ord_for(Task, :priority) # Uses Funx.Ord.Priority
end
Compile-Time Behavior
All macros expand at compile time into direct protocol implementations with zero
runtime overhead. The ord_for macro normalizes all projection types into one of
four canonical forms that Funx.Ord.contramap/2 accepts:
	Lens.t() - Bare Lens struct
	Prism.t() - Bare Prism struct (uses Maybe.lift_ord)
	{Prism.t(), or_else} - Prism with fallback value
	(a -> b) - Projection function

Example expansion:
Funx.Macros.ord_for(Product, :rating, or_else: 0)
Compiles to:
defimpl Funx.Ord, for: Product do
 defp __ord_map__ do
 Funx.Ord.contramap({Prism.key(:rating), 0})
 end

 def lt?(a, b) when is_struct(a, Product) and is_struct(b, Product) do
 __ord_map__().lt?.(a, b)
 end
 # ... other comparison functions
end
Error Handling
The macros provide clear compile-time errors for invalid configurations:
	Using or_else with Lens (total access doesn't need fallback)
	Using or_else with functions (functions must handle own defaults)
	Using or_else with {Prism, default} tuple (redundant)
	Using or_else with struct literals (ambiguous semantics)

All error messages include actionable guidance and examples of correct usage.

 Summary

 Functions

 eq_for(for_struct, projection, opts \\ [])

 Generates an implementation of the Funx.Eq protocol for the given struct,
using the specified projection as the basis for equality comparison.

 ord_for(for_struct, projection, opts \\ [])

 Generates an implementation of the Funx.Ord protocol for the given struct,
using the specified projection as the basis for ordering comparisons.

 Functions

 eq_for(for_struct, projection, opts \\ [])

 (macro)

Generates an implementation of the Funx.Eq protocol for the given struct,
using the specified projection as the basis for equality comparison.
Projection Types
The macro supports the same projection types as ord_for:
	Atom - Converted to Prism.key(atom). Safe for nil values.
	Atom with or_else - eq_for(Struct, :field, or_else: default) → {Prism.key(:field), default}.
	Lens - Total access via Lens.key/1 or Lens.path/1. Raises on missing values.
	Prism - Partial access via Prism.key/1 or Prism.path/1.
	Prism with or_else - eq_for(Struct, Prism.key(:field), or_else: default) → {prism, default}.
	{Prism, default} - Partial access with fallback value.
	Traversal - Multiple foci via Traversal.combine/1. All foci must match.
	Function - Custom projection function (struct -> value).
	Eq DSL - A pre-built equality comparator from eq do ... end. Used directly without contramap.

Options
	:or_else - Fallback value for optional fields. Only valid with atoms and Prisms.
	:eq - Custom Eq module or map for comparison. Defaults to Funx.Eq.Protocol.

Examples
Atom (backward compatible)
defmodule Person do
 defstruct [:name, :age]
end
Funx.Macros.eq_for(Person, :age)

Atom with or_else
Funx.Macros.eq_for(Person, :score, or_else: 0)

Lens - total access
Funx.Macros.eq_for(Customer, Lens.path([:address, :city]))

Prism - partial access
Funx.Macros.eq_for(Item, Prism.key(:rating))

Traversal - multiple foci
Funx.Macros.eq_for(Person, Traversal.combine([Lens.key(:name), Lens.key(:age)]))

Function projection
Funx.Macros.eq_for(Article, &String.length(&1.title))

Custom Eq module
Funx.Macros.eq_for(Person, :name, eq: CaseInsensitiveEq)

Eq DSL - complex equality with multiple fields
use Funx.Eq
Funx.Macros.eq_for(Person, eq do
 on :name
 on :age
end)

 ord_for(for_struct, projection, opts \\ [])

 (macro)

Generates an implementation of the Funx.Ord protocol for the given struct,
using the specified projection as the basis for ordering comparisons.
Projection Types
The macro supports multiple projection types:
	Atom - Converted to Prism.key(atom). Safe for nil values (Nothing < Just).
	Atom with or_else - ord_for(Struct, :field, or_else: default) → {Prism.key(:field), default}.
	Lens - Total access via Lens.key/1 or Lens.path/1. Raises on missing values.
	Prism - Partial access via Prism.key/1 or Prism.path/1. Nothing < Just semantics.
	Prism with or_else - ord_for(Struct, Prism.key(:field), or_else: default) → {prism, default}.
	{Prism, default} - Partial access with fallback value for Nothing.
	Function - Custom projection function (struct -> comparable).
	Ord DSL - A pre-built ordering from ord do ... end. Used directly without contramap.

Options
	:or_else - Fallback value for optional fields. Only valid with atoms and Prisms.
	:ord - Custom Ord module or map for comparison. Defaults to Funx.Ord.Protocol.

Examples
Atom - uses Prism.key (safe for nil)
defmodule Product do
 defstruct [:name, :rating]
end
Funx.Macros.ord_for(Product, :rating)

Atom with or_else - provides default for nil values
Funx.Macros.ord_for(Product, :rating, or_else: 0)

Lens - total access (raises on nil)
defmodule Customer do
 defstruct [:name, :address]
end
Funx.Macros.ord_for(Customer, Lens.path([:address, :city]))

Prism - partial access
Funx.Macros.ord_for(Item, Prism.key(:score))

Prism with or_else
Funx.Macros.ord_for(Item, Prism.key(:score), or_else: 0)

Prism with default tuple (alternative to or_else)
Funx.Macros.ord_for(Task, {Prism.key(:priority), 0})

Function projection
Funx.Macros.ord_for(Article, &String.length(&1.title))

Ord DSL - complex ordering with multiple fields
use Funx.Ord
Funx.Macros.ord_for(Person, ord do
 asc :name
 desc :age
end)

Funx.Math

[image: Run in Livebook]
Provides mathematical operations using Monoids.
This module uses the Sum and Product monoids to perform operations
such as addition and multiplication over values or lists of values.

 Summary

 Functions

 deviation(list)

 Computes the deviations from the mean for a list of numbers.

 max(list)

 Finds the maximum value in a list using the Max monoid.

 max(a, b)

 Returns the maximum of two numbers using the Max monoid.

 mean(list)

 Computes the arithmetic mean of a list of numbers.

 min(list)

 Finds the minimum value in a list using the Min monoid.

 min(a, b)

 Returns the minimum of two numbers using the Min monoid.

 product(list)

 Multiplies a list of numbers using the Product monoid.

 product(a, b)

 Multiplies two numbers using the Product monoid.

 range(list)

 Computes the range (difference between max and min) of a list.

 square(list)

 Computes the square of a number.

 std_dev(list)

 Computes the standard deviation of a list of numbers.

 sum(list)

 Sums a list of numbers using the Sum monoid.

 sum(a, b)

 Sums two numbers using the Sum monoid.

 sum_of_squares(list)

 Computes the sum of squares of a list of numbers.

 variance(list)

 Computes the variance of a list of numbers.

 Functions

 deviation(list)

 @spec deviation([number()]) :: Funx.Monad.Maybe.t([number()])

Computes the deviations from the mean for a list of numbers.
Returns Nothing if the list is empty.
Examples
iex> Funx.Math.deviation([1, 2, 3, 4])
Funx.Monad.Maybe.pure([-1.5, -0.5, 0.5, 1.5])

iex> Funx.Math.deviation([5, 5, 5])
Funx.Monad.Maybe.pure([0.0, 0.0, 0.0])

iex> Funx.Math.deviation([])
Funx.Monad.Maybe.nothing()

 max(list)

 @spec max([number()]) :: number()

Finds the maximum value in a list using the Max monoid.
Returns Float.min_finite() if the list is empty.
Examples
iex> Funx.Math.max([3, 7, 2])
7

iex> Funx.Math.max([])
Float.min_finite()

 max(a, b)

 @spec max(number(), number()) :: number()

Returns the maximum of two numbers using the Max monoid.
Examples
iex> Funx.Math.max(3, 7)
7

iex> Funx.Math.max(-1, -5)
-1

 mean(list)

 @spec mean([number()]) :: Funx.Monad.Maybe.t(number())

Computes the arithmetic mean of a list of numbers.
Returns Nothing if the list is empty.
Examples
iex> Funx.Math.mean([1, 2, 3, 4])
Funx.Monad.Maybe.pure(2.5)

iex> Funx.Math.mean([])
Funx.Monad.Maybe.nothing()

 min(list)

 @spec min([number()]) :: number()

Finds the minimum value in a list using the Min monoid.
Returns Float.max_finite() if the list is empty.
Examples
iex> Funx.Math.min([3, 7, 2])
2

iex> Funx.Math.min([])
Float.max_finite()

 min(a, b)

 @spec min(number(), number()) :: number()

Returns the minimum of two numbers using the Min monoid.
Examples
iex> Funx.Math.min(3, 7)
3

iex> Funx.Math.min(-1, -5)
-5

 product(list)

 @spec product([number()]) :: number()

Multiplies a list of numbers using the Product monoid.
Examples
iex> Funx.Math.product([2, 3, 4])
24

iex> Funx.Math.product([])
1

 product(a, b)

 @spec product(number(), number()) :: number()

Multiplies two numbers using the Product monoid.
Examples
iex> Funx.Math.product(3, 4)
12

 range(list)

 @spec range([number()]) :: Funx.Monad.Maybe.t(number())

Computes the range (difference between max and min) of a list.
Returns nothing() if the list is empty.
Examples
iex> Funx.Math.range([3, 7, 2])
Funx.Monad.Maybe.pure(5)

iex> Funx.Math.range([])
Funx.Monad.Maybe.nothing()

 square(list)

 @spec square(number()) :: number()

 @spec square([number()]) :: [number()]

Computes the square of a number.
Examples
iex> Funx.Math.square(3)
9

iex> Funx.Math.square(-4)
16

 std_dev(list)

 @spec std_dev([number()]) :: Funx.Monad.Maybe.t(number())

Computes the standard deviation of a list of numbers.
Returns Nothing if the list is empty.
Examples
iex> Funx.Math.std_dev([1, 2, 3, 4])
Funx.Monad.Maybe.pure(1.118033988749895)

iex> Funx.Math.std_dev([5, 5, 5])
Funx.Monad.Maybe.pure(0.0)

iex> Funx.Math.std_dev([])
Funx.Monad.Maybe.nothing()

 sum(list)

 @spec sum([number()]) :: number()

Sums a list of numbers using the Sum monoid.
Examples
iex> Funx.Math.sum([1, 2, 3])
6

iex> Funx.Math.sum([])
0

 sum(a, b)

 @spec sum(number(), number()) :: number()

Sums two numbers using the Sum monoid.
Examples
iex> Funx.Math.sum(1, 2)
3

 sum_of_squares(list)

 @spec sum_of_squares([number()]) :: number()

Computes the sum of squares of a list of numbers.
Returns 0 if the list is empty.
Examples
iex> Funx.Math.sum_of_squares([1, 2, 3])
14

iex> Funx.Math.sum_of_squares([-2, 5])
29

iex> Funx.Math.sum_of_squares([])
0

 variance(list)

 @spec variance([number()]) :: Funx.Monad.Maybe.t(number())

Computes the variance of a list of numbers.
Returns Nothing if the list is empty.
Examples
iex> Funx.Math.variance([1, 2, 3, 4])
Funx.Monad.Maybe.pure(1.25)

iex> Funx.Math.variance([5, 5, 5])
Funx.Monad.Maybe.pure(0.0)

iex> Funx.Math.variance([])
Funx.Monad.Maybe.nothing()

Funx.Monad protocol

[image: Run in Livebook]
The Funx.Monad protocol defines the core monadic operations: ap/2, bind/2, and map/2.
A monad is an abstraction that represents computations as a series of steps.
This protocol is designed to be implemented by types that wrap a value and allow chaining of operations while preserving the wrapped context.
Functions
	map/2: Applies a function to the value within the monad.
	bind/2: Chains operations by passing the unwrapped value into a function that returns another monad.
	ap/2: Applies a monadic function to another monadic value.

 Summary

 Types

 t()

 Functions

 ap(monadic_func, monad_value)

 Applies a monadic function to another monadic value.

 bind(monad_value, func_returning_monad)

 Chains a monadic operation.

 map(monad_value, func)

 Maps a function over the value inside the monad.

 Types

 t()

 @type t() :: term()

 Functions

 ap(monadic_func, monad_value)

 @spec ap(t(), t()) :: t()

Applies a monadic function to another monadic value.
The function func is expected to be wrapped in a monadic context and is applied to the value m within its own monadic context.
The result is wrapped in the same context as the original monad.
Examples
iex> Funx.Monad.ap(Funx.Monad.Maybe.just(fn x -> x * 2 end), Funx.Monad.Maybe.just(3))
%Funx.Monad.Maybe.Just{value: 6}
In the case of Nothing:
iex> Funx.Monad.ap(Funx.Monad.Maybe.nothing(), Funx.Monad.Maybe.just(3))
%Funx.Monad.Maybe.Nothing{}

 bind(monad_value, func_returning_monad)

 @spec bind(t(), (term() -> t())) :: t()

Chains a monadic operation.
The bind/2 function takes a monad m and a function func. The function func is applied to the unwrapped value of m,
and must return another monad. The result is the new monad produced by func.
This is the core operation that allows chaining of computations, with the value being passed from one function to the next in a sequence.
Examples
iex> Funx.Monad.bind(Funx.Monad.Maybe.just(5), fn x -> Funx.Monad.Maybe.just(x * 2) end)
%Funx.Monad.Maybe.Just{value: 10}
In the case of Nothing:
iex> Funx.Monad.bind(Funx.Monad.Maybe.nothing(), fn _ -> Funx.Monad.Maybe.just(5) end)
%Funx.Monad.Maybe.Nothing{}

 map(monad_value, func)

 @spec map(t(), (term() -> term())) :: t()

Maps a function over the value inside the monad.
The map/2 function takes a monad m and a function func, applies the function to the value inside m, and returns a new monad
containing the result. The original monadic context is preserved.
Examples
iex> Funx.Monad.map(Funx.Monad.Maybe.just(2), fn x -> x + 3 end)
%Funx.Monad.Maybe.Just{value: 5}
In the case of Nothing:
iex> Funx.Monad.map(Funx.Monad.Maybe.nothing(), fn x -> x + 3 end)
%Funx.Monad.Maybe.Nothing{}

Funx.Monad.Behaviour.Ap behaviour

Behaviour for applicative operations across monad DSLs.
Ap (apply) is the applicative functor operation that produces a wrapped function
to be applied to wrapped values. This allows for function application within
a computational context.
Contract
@callback ap(value :: any(), opts :: keyword(), env :: keyword()) ::
 {:ok, (any() -> any())}
 | {:error, any()}
 | Either.t((any() -> any()), any())
 | Maybe.t((any() -> any()))
Arguments
	value - The value to use for producing the function
	opts - Keyword list of options (module-specific configuration)
	env - Environment/context from DSL (for Reader-like dependency injection)

Return Values
Monad types (preferred):
	Either.right(fn) - Success with a function
	Either.left(error) - Failure with error
	Maybe.just(fn) - Success with a function
	Maybe.nothing() - Failure (no function)

Tagged tuples (supported):
	{:ok, fn} - Operation succeeded with a function
	{:error, reason} - Operation failed with error

The DSL will normalize all these return values into the appropriate monad type.
Cross-Monad Normalization
When an ap module returns a monad type different from the current DSL context,
the result is automatically normalized:
Maybe → Either:
	Just(fn) → Right(fn)
	Nothing → Left(:nothing) (uses :nothing atom as error)

Either → Maybe:
	Right(fn) → Just(fn)
	Left(_error) → Nothing (error information is discarded)

Semantic Rules
	Arguments strictly ordered: value, opts, env
	May use env for Reader-like dependency injection (only way to access env - functions cannot)
	Produces a function - returns a wrapped function, not a wrapped value
	Can fail - use this for operations that might not produce a function

Examples
Basic Applicative
defmodule Multiplier do
 @behaviour Funx.Monad.Behaviour.Ap
 import Funx.Monad.Either

 @impl true
 def ap(factor, _opts, _env) when is_number(factor) do
 right(fn x -> x * factor end)
 end

 def ap(_value, _opts, _env), do: left("Expected number for factor")
end

Usage in Either DSL
use Funx.Monad.Either

either 5 do
 ap Multiplier
end
First evaluates Multiplier.ap(5, []) -> Right(fn x -> x * 5 end)
Then applies: fn x -> x * 5 end to 5 -> 25
#=> %Right{right: 25}
With Options
defmodule ConditionalOperator do
 @behaviour Funx.Monad.Behaviour.Ap
 import Funx.Monad.Either

 @impl true
 def ap(value, opts, _env) do
 op = Keyword.get(opts, :operation, :add)

 case op do
 :add -> right(fn x -> x + value end)
 :multiply -> right(fn x -> x * value end)
 :subtract -> right(fn x -> x - value end)
 _ -> left("Unknown operation: #{op}")
 end
 end
end

Usage
either 10 do
 ap {ConditionalOperator, operation: :multiply}
end
#=> %Right{right: 100}
Failure Cases
defmodule ValidatedOperator do
 @behaviour Funx.Monad.Behaviour.Ap
 import Funx.Monad.Either

 @impl true
 def ap(value, _opts, _env) when is_number(value) and value > 0 do
 right(fn x -> x + value end)
 end

 def ap(value, _opts, _env) when is_number(value) do
 left("Factor must be positive, got: #{value}")
 end

 def ap(_value, _opts, _env), do: left("Expected number")
end

Success
either 5 do
 ap ValidatedOperator
end
#=> %Right{right: 10}

Failure
either -3 do
 ap ValidatedOperator
end
#=> %Left{left: "Factor must be positive, got: -3"}

 Summary

 Callbacks

 ap(value, opts, env)

 Produces a wrapped function based on the input value.

 Callbacks

 ap(value, opts, env)

 @callback ap(value :: any(), opts :: keyword(), env :: keyword()) ::
 {:ok, (any() -> any())}
 | {:error, any()}
 | Funx.Monad.Either.t((any() -> any()), any())
 | Funx.Monad.Maybe.t((any() -> any()))

Produces a wrapped function based on the input value.
Arguments:
	value - The current value in the pipeline
	opts - Module-specific options passed in the DSL
	env - Environment/context from the DSL (for dependency injection)

Returns a wrapped function that will be applied to the value.
Examples:
Using Either
import Funx.Monad.Either

def ap(multiplier, _opts, _env) when is_number(multiplier) do
 right(fn x -> x * multiplier end)
end

Using tagged tuples
def ap(multiplier, _opts, _env) when is_number(multiplier) do
 {:ok, fn x -> x * multiplier end}
end

With failure case
def ap(value, _opts, _env) do
 if valid?(value) do
 right(fn x -> transform(x, value) end)
 else
 left("validation failed")
 end
end

With options
def ap(value, opts, _env) do
 operation = Keyword.get(opts, :operation, :default)
 right(create_function(operation, value))
end

Using env for dependency injection
def ap(value, _opts, env) do
 transformer = Keyword.get(env, :transformer)
 right(fn x -> transformer.transform(x, value) end)
end

Funx.Monad.Behaviour.Bind behaviour

Behaviour for bind operations across monad DSLs.
This behaviour defines a generic interface for operations that can fail,
usable with the bind operation in any monad DSL (Either, Maybe, etc.).
Contract
@callback bind(value :: any(), opts :: keyword(), env :: keyword()) ::
 {:ok, any()}
 | {:error, any()}
 | Either.t()
 | Maybe.t()
The DSL will normalize all these return formats.
Note: Plain values can also be returned and will be treated as success,
but using the explicit formats above is preferred for clarity.
Arguments
	value - The value to operate on
	opts - Keyword list of options (module-specific configuration)
	env - Environment/context from DSL (for Reader-like dependency injection)

Return Values
Monad types (preferred):
	Either.right(value) - Success with value
	Either.left(error) - Failure with error
	Maybe.just(value) - Success with value
	Maybe.nothing() - Failure (no value)

Tagged tuples (supported):
	{:ok, value} - Operation succeeded with new value
	{:error, reason} - Operation failed with error

The DSL will normalize all these return values into the appropriate monad type.
Cross-Monad Normalization
When a bind module returns a monad type different from the current DSL context,
the result is automatically normalized:
Maybe → Either:
	Just(value) → Right(value)
	Nothing → Left(:nothing) (uses :nothing atom as error)

Either → Maybe:
	Right(value) → Just(value)
	Left(_error) → Nothing (error information is discarded)

This allows Bind modules to be reused across different monad DSLs while
maintaining predictable behavior. Note that error information is lost when
converting Left to Nothing, as Maybe does not carry error details.
Semantic Rules
	Arguments strictly ordered: value, opts, env
	May use env for Reader-like dependency injection (only way to access env - functions cannot)
	Can fail - use this for operations that might not succeed
	Returns result in tagged tuple or monad type

Examples
Using Either (Preferred)
defmodule ParseInt do
 @behaviour Funx.Monad.Behaviour.Bind
 import Funx.Monad.Either

 @impl true
 def bind(value, _opts, _env) when is_binary(value) do
 case Integer.parse(value) do
 {int, ""} -> right(int)
 _ -> left("Invalid integer")
 end
 end

 def bind(_value, _opts, _env), do: left("Expected string")
end

Usage in Either DSL
use Funx.Monad.Either

either "42" do
 bind ParseInt
end
#=> %Right{right: 42}

either "not a number" do
 bind ParseInt
end
#=> %Left{left: "Invalid integer"}
Using Tagged Tuples (Supported)
defmodule ParseIntTuple do
 @behaviour Funx.Monad.Behaviour.Bind

 @impl true
 def bind(value, _opts, _env) when is_binary(value) do
 case Integer.parse(value) do
 {int, ""} -> {:ok, int}
 _ -> {:error, "Invalid integer"}
 end
 end

 def bind(_value, _opts, _env), do: {:error, "Expected string"}
end

Also works in Either DSL (tuples are normalized)
either "42" do
 bind ParseIntTuple
end
#=> %Right{right: 42}
Using Either Types (Preferred)
defmodule ParseIntEither do
 @behaviour Funx.Monad.Behaviour.Bind
 import Funx.Monad.Either

 @impl true
 def bind(value, _opts, _env) when is_binary(value) do
 case Integer.parse(value) do
 {int, ""} -> right(int)
 _ -> left("Invalid integer")
 end
 end

 def bind(_value, _opts, _env), do: left("Expected string")
end
Using Maybe Types (Preferred)
defmodule ParseIntMaybe do
 @behaviour Funx.Monad.Behaviour.Bind
 import Funx.Monad.Maybe

 @impl true
 def bind(value, _opts, _env) when is_binary(value) do
 case Integer.parse(value) do
 {int, ""} -> just(int)
 _ -> nothing()
 end
 end

 def bind(_value, _opts, _env), do: nothing()
end

Can be used in Either DSL - Nothing becomes Left(:nothing)
use Funx.Monad.Either

either "42" do
 bind ParseIntMaybe
end
#=> %Right{right: 42}

either "invalid" do
 bind ParseIntMaybe
end
#=> %Left{left: :nothing}
With Options
defmodule ParseIntWithBase do
 @behaviour Funx.Monad.Behaviour.Bind

 @impl true
 def bind(value, opts, _env) when is_binary(value) do
 base = Keyword.get(opts, :base, 10)

 case Integer.parse(value, base) do
 {int, ""} -> {:ok, int}
 _ -> {:error, "Invalid integer for base #{base}"}
 end
 end

 def bind(_value, _opts, _env), do: {:error, "Expected string"}
end

Usage
either "FF" do
 bind {ParseIntWithBase, base: 16}
end
#=> %Right{right: 255}

 Summary

 Callbacks

 bind(value, opts, env)

 Performs an operation that can fail.

 Callbacks

 bind(value, opts, env)

 @callback bind(value :: any(), opts :: keyword(), env :: keyword()) ::
 {:ok, any()}
 | {:error, any()}
 | Funx.Monad.Either.t(any(), any())
 | Funx.Monad.Maybe.t(any())

Performs an operation that can fail.
Arguments:
	value - The current value in the pipeline
	opts - Module-specific options passed in the DSL
	env - Environment/context from the DSL (for dependency injection)

Returns a result indicating success or failure.
Examples:
Using tagged tuples (generic)
def bind(value, _opts, _env) when is_binary(value) do
 case Integer.parse(value) do
 {int, ""} -> {:ok, int}
 _ -> {:error, "invalid"}
 end
end

Using Either (monad-specific)
import Funx.Monad.Either

def bind(value, _opts, _env) do
 if valid?(value) do
 right(transform(value))
 else
 left("validation failed")
 end
end

With options
def bind(value, opts, _env) do
 threshold = Keyword.get(opts, :min, 0)
 if value > threshold do
 {:ok, value}
 else
 {:error, "below threshold"}
 end
end

Using env for dependency injection
def bind(user_id, _opts, env) do
 database = Keyword.get(env, :database)
 database.fetch_user(user_id)
end

Funx.Monad.Behaviour.Map behaviour

Behaviour for map operations across monad DSLs.
Map is a universal functor operation that works identically across all monads.
Unlike bind, which handles failure, map simply transforms values when they exist.
The same map module can be used in Either DSL, Maybe DSL, List, IO, or any
other monad - the transformation logic is completely generic.
Contract
@callback map(value :: any(), opts :: keyword(), env :: keyword()) :: any()
Arguments
	value - The value to transform
	opts - Keyword list of options (module-specific configuration)
	env - Environment/context from DSL (for Reader-like dependency injection)

Return Values
Map should return the transformed value directly as a plain value.
The DSL handles wrapping the result in the appropriate monad type.
Important: Unlike Bind, map does not return Either, Maybe, or result tuples.
It returns plain values because map is about transformation, not control flow.
Semantic Rules
	Arguments strictly ordered: value, opts, env
	May use env for Reader-like dependency injection (only way to access env - functions cannot)
	Pure transformation - should not fail (use Behaviour.Bind for operations that can fail)
	Returns plain value - not wrapped in monad (DSL handles wrapping)
	Monad-agnostic - same transformation works across all monad DSLs

Monad Universality
The beauty of map is that it works the same way in every monad:
	Either: Right(value) → apply map → Right(transformed); Left is skipped
	Maybe: Just(value) → apply map → Just(transformed); Nothing is skipped
	List: [a, b, c] → apply map → [f(a), f(b), f(c)]

The same map module behaves consistently across all these contexts.
Examples
Basic Transformation
defmodule Double do
 @behaviour Funx.Monad.Behaviour.Map

 @impl true
 def map(value, _opts, _env) when is_number(value) do
 value * 2
 end
end

Works identically in Either DSL
use Funx.Monad.Either

either 21 do
 map Double
end
#=> %Right{right: 42}

Works identically in Maybe DSL
use Funx.Monad.Maybe

maybe 21 do
 map Double
end
#=> %Just{value: 42}

Same transformation, different monad contexts
With Options
defmodule Multiplier do
 @behaviour Funx.Monad.Behaviour.Map

 @impl true
 def map(value, opts, _env) when is_number(value) do
 factor = Keyword.get(opts, :factor, 1)
 value * factor
 end
end

In Either DSL
either 10 do
 map {Multiplier, factor: 5}
end
#=> %Right{right: 50}

In Maybe DSL
maybe 10 do
 map {Multiplier, factor: 5}
end
#=> %Just{value: 50}
Composable Transformations
defmodule ToUpperCase do
 @behaviour Funx.Monad.Behaviour.Map

 @impl true
 def map(value, _opts, _env) when is_binary(value) do
 String.upcase(value)
 end
end

defmodule AddPrefix do
 @behaviour Funx.Monad.Behaviour.Map

 @impl true
 def map(value, opts, _env) when is_binary(value) do
 prefix = Keyword.get(opts, :prefix, "")
 prefix <> value
 end
end

Compose maps in Either
either "hello" do
 map ToUpperCase
 map {AddPrefix, prefix: ">> "}
end
#=> %Right{right: ">> HELLO"}

Same composition works in Maybe
maybe "hello" do
 map ToUpperCase
 map {AddPrefix, prefix: ">> "}
end
#=> %Just{value: ">> HELLO"}

 Summary

 Callbacks

 map(value, opts, env)

 Transforms a value.

 Callbacks

 map(value, opts, env)

 @callback map(value :: any(), opts :: keyword(), env :: keyword()) :: any()

Transforms a value.
Arguments:
	value - The current value in the pipeline
	opts - Module-specific options passed in the DSL
	env - Environment/context from the DSL (for dependency injection)

Returns the transformed value directly (not wrapped in a monad).
Examples:
Simple transformation
def map(value, _opts, _env) do
 value * 2
end

With options
def map(value, opts, _env) do
 multiplier = Keyword.get(opts, :multiplier, 1)
 value * multiplier
end

Using env for dependency injection
def map(value, _opts, env) do
 formatter = Keyword.get(env, :formatter)
 formatter.format(value)
end

Funx.Monad.Behaviour.Predicate behaviour

Behaviour for predicate operations across monad DSLs.
Predicate is a universal filtering operation that works identically across all monads.
It evaluates a condition and returns a boolean to determine if a value should pass through.
The same predicate module can be used in Either DSL (filter_or_else), Maybe DSL (filter),
or any other monad - the logic is completely generic.
Contract
@callback predicate(value :: any(), opts :: keyword(), env :: map()) :: boolean()
Arguments
	value - The value to test
	opts - Keyword list of options (module-specific configuration)
	env - Environment/context from DSL (for Reader-like dependency injection)

Return Values
Predicate should return a boolean indicating whether the value passes the test.
The DSL handles the filtering logic based on the boolean result.
Semantic Rules
	Arguments strictly ordered: value, opts, env
	May use env for Reader-like dependency injection (same as other behaviors)
	Returns boolean - true to keep the value, false to filter it out
	Monad-agnostic - same predicate works across all monad DSLs

Monad Universality
The beauty of predicate is that it works the same way in every monad:
	Either: filter_or_else uses predicate to keep Right or convert to Left
	Maybe: filter uses predicate to keep Just or convert to Nothing
	List: filter uses predicate to keep or remove elements

The same predicate module behaves consistently across all these contexts.
Examples
Basic Predicate
defmodule IsPositive do
 @behaviour Funx.Monad.Behaviour.Predicate

 @impl true
 def predicate(value, _opts, _env) when is_number(value) do
 value > 0
 end

 def predicate(_value, _opts, _env), do: false
end

Works in Either DSL
use Funx.Monad.Either

either 10 do
 filter_or_else IsPositive, fn -> "not positive" end
end
#=> %Right{right: 10}

either -5 do
 filter_or_else IsPositive, fn -> "not positive" end
end
#=> %Left{left: "not positive"}

Works in Maybe DSL
use Funx.Monad.Maybe

maybe 10 do
 filter IsPositive
end
#=> %Just{value: 10}

maybe -5 do
 filter IsPositive
end
#=> %Nothing{}
With Options
defmodule InRange do
 @behaviour Funx.Monad.Behaviour.Predicate

 @impl true
 def predicate(value, opts, _env) when is_number(value) do
 min = Keyword.get(opts, :min, 0)
 max = Keyword.get(opts, :max, 100)
 value >= min and value <= max
 end

 def predicate(_value, _opts, _env), do: false
end

In Either DSL
either 50 do
 filter_or_else {InRange, min: 0, max: 100}, fn -> "out of range" end
end
#=> %Right{right: 50}

In Maybe DSL
maybe 50 do
 filter {InRange, min: 0, max: 100}
end
#=> %Just{value: 50}
Composable Predicates
defmodule IsEven do
 @behaviour Funx.Monad.Behaviour.Predicate

 @impl true
 def predicate(value, _opts, _env) when is_integer(value) do
 rem(value, 2) == 0
 end

 def predicate(_value, _opts, _env), do: false
end

defmodule IsPositive do
 @behaviour Funx.Monad.Behaviour.Predicate

 @impl true
 def predicate(value, _opts, _env) when is_number(value) do
 value > 0
 end

 def predicate(_value, _opts, _env), do: false
end

Compose predicates in Either
either 10 do
 filter_or_else IsPositive, fn -> "not positive" end
 filter_or_else IsEven, fn -> "not even" end
end
#=> %Right{right: 10}

either 11 do
 filter_or_else IsPositive, fn -> "not positive" end
 filter_or_else IsEven, fn -> "not even" end
end
#=> %Left{left: "not even"}

Same composition works in Maybe
maybe 10 do
 filter IsPositive
 filter IsEven
end
#=> %Just{value: 10}
Environment Support
Predicates support the env parameter for Reader-like dependency injection, maintaining
consistency with other monad behaviors. While most predicates are pure boolean tests that
only need the value and options, the env parameter allows for stateful or context-dependent
predicates when needed (e.g., checking against a dynamic threshold from a database).

 Summary

 Callbacks

 predicate(value, opts, env)

 Tests whether a value satisfies a condition.

 Callbacks

 predicate(value, opts, env)

 @callback predicate(value :: any(), opts :: keyword(), env :: map()) :: boolean()

Tests whether a value satisfies a condition.
Arguments:
	value - The current value in the pipeline
	opts - Module-specific options passed in the DSL
	env - Environment/context from the DSL (for Reader-like dependency injection)

Returns a boolean indicating whether the value passes the test.
Examples:
Simple predicate
def predicate(value, _opts, _env) do
 value > 0
end

With options
def predicate(value, opts, _env) do
 threshold = Keyword.get(opts, :threshold, 0)
 value > threshold
end

Using env for context-dependent predicates
def predicate(value, _opts, env) do
 max_allowed = Map.get(env, :max_threshold, 100)
 value <= max_allowed
end

Type-specific predicates
def predicate(value, _opts, _env) when is_number(value) do
 value > 0
end

def predicate(_value, _opts, _env), do: false

Funx.Monad.Effect

[image: Run in Livebook]
The Funx.Monad.Effect module provides an implementation of the Effect monad, which represents deferred asynchronous computations that may succeed or fail.
An Effect represents one of two possibilities:
	Right(value): a successful asynchronous computation
	Left(error): a failed asynchronous computation

Effects are lazy—execution is deferred until run/2 is explicitly called. This makes Effect ideal for structuring asynchronous workflows with built-in observability via telemetry and tracing.
All effects carry an Effect.Context, which propagates trace IDs and span names through the computation graph, enabling distributed tracing and performance monitoring in concurrent Elixir systems.
Constructors
	right/2: Wraps a value in a successful Right effect with optional context.
	left/2: Wraps an error in a failing Left effect with optional context.
	pure/2: Alias for right/2.

Execution
	run/2: Executes the deferred effect and returns an Either result.

You may pass :task_supervisor in the options to run the effect under a specific Task.Supervisor. This supervises only the top-level task; any internal tasks spawned within the effect function are not supervised.
Error Handling
	map_left/2: Transforms a Left using a function, leaving Right values unchanged.
	flip_either/1: Inverts the success and failure branches of an Effect.

List Operations
	sequence/1: Runs a list of effects, stopping at the first Left.
	traverse/2: Applies a function returning an Effect to each element in a list and sequences the results.
	sequence_a/1: Like sequence/1, but accumulates all errors from Left values.
	traverse_a/2: Like traverse/2, but accumulates all Left values instead of short-circuiting.

Validation
	validate/2: Validates a value using one or more effectful validators, collecting all errors.

Lifting
	lift_func/2: Lifts a thunk into an Effect, capturing exceptions as Left(EffectError).
	lift_either/2: Lifts a thunk returning an Either into an Effect, deferring evaluation.
	lift_maybe/3: Converts a Maybe to an Effect using a fallback error for Nothing.
	lift_predicate/3: Turns a predicate into an Effect, returning Right on true and Left on false.

Reader Operations
	ask/0: Returns the environment passed to run/2 as a Right.
	asks/1: Applies a function to the environment passed to run/2, wrapping the result in Right.
	fail/0: Returns the environment passed to run/2 as a Left.
	fails/1: Applies a function to the environment passed to run/2, wrapping the result in Left.

Elixir Interoperability
	from_result/2: Converts {:ok, val} or {:error, err} into an Effect.
	to_result/1: Converts an Effect into a result tuple.
	from_try/2: Runs a function and returns Right on success or Left(EffectError) on exception.
	to_try!/1: Unwraps a Right, or raises an error from a Left.

Protocols
The Left and Right structs implement the following protocols, making the Effect abstraction composable and extensible:
	Funx.Monad: Provides map/2, ap/2, and bind/2 for monadic composition.
	Funx.Tappable: Executes side effects on Right values via Funx.Tappable.tap/2, leaving Left values unchanged.

Although these implementations are defined on each constructor (Left and Right), the behavior is consistent across the Effect abstraction.
This module enables structured concurrency, error handling, and observability in asynchronous workflows.
Telemetry
The run/2 function emits telemetry using :telemetry.span/3.
Events
	[:funx, :effect, :run, :start]
	[:funx, :effect, :run, :stop]

Measurements
	:monotonic_time – included in both :start and :stop events.
	:system_time – included only in the :start event.
	:duration – included only in the :stop event.

Metadata
	:timeout – the timeout in milliseconds passed to run/2.
	:result – a summarized version of the result using Funx.Summarizable.
	:effect_type – :right or :left, depending on the effect being run.
	:status – :ok if the result is a Right, or :error if it's a Left.
	:trace_id – optional value used to correlate traces across boundaries.
	:span_name – optional name for the span (defaults to "funx.effect.run").
	:telemetry_span_context – reference to correlate :start and :stop events.

Example
:telemetry.attach(
 "effect-run-handler",
 [:funx, :effect, :run, :stop],
 fn event, measurements, metadata, _config ->
 IO.inspect({event, measurements, metadata}, label: "Effect telemetry")
 end,
 nil
)

 Summary

 Types

 t(left, right)

 Represents a deferred computation in the Effect monad that may either succeed (Right) or fail (Left).

 Functions

 ask()

 Returns a Funx.Monad.Effect.Right that yields the environment passed to Funx.Monad.Effect.run/2.

 asks(f)

 Returns a Funx.Monad.Effect.Right that applies the given function to the environment passed to Funx.Monad.Effect.run/2.

 await(task, timeout \\ 5000)

 fail()

 Returns a Funx.Monad.Effect.Left that fails with the entire environment passed to Funx.Monad.Effect.run/2.

 fails(f)

 Returns a Funx.Monad.Effect.Left that applies the given function to the environment passed to Funx.Monad.Effect.run/2.

 flip_either(right)

 Inverts the success and failure branches of an Effect.

 from_result(result, opts \\ [])

 Converts an Elixir {:ok, value} or {:error, reason} tuple into an Effect.

 from_try(func, opts_or_context \\ [])

 Lifts a potentially exception-raising function into a Kleisli function for the Effect monad.

 left(value, opts_or_context \\ [])

 Wraps a value in the Left variant of the Effect monad, representing a failed asynchronous computation.

 lift_either(thunk, opts \\ [])

 Lifts a thunk that returns an Either into the Effect monad.

 lift_func(thunk, opts \\ [])

 Lifts a thunk into the Effect monad, wrapping its result in a Right.

 lift_maybe(maybe, on_none, opts \\ [])

 Converts a Maybe value into the Effect monad.
If the Maybe is Just, the value is wrapped in Right.
If it is Nothing, the result of on_none is wrapped in Left.

 lift_predicate(value, predicate, on_false, opts \\ [])

 Lifts a value into the Effect monad based on a predicate.
If the predicate returns true, the value is wrapped in Right.
Otherwise, the result of calling on_false with the value is wrapped in Left.

 map_left(right, func)

 Transforms the Left branch of an Effect.

 pure(value, opts_or_context \\ [])

 Alias for right/2.

 right(value, opts_or_context \\ [])

 Wraps a value in the Right variant of the Effect monad, representing a successful asynchronous computation.

 run(effect)

 Runs the Effect and returns the result, awaiting the task if necessary.

 run(effect, env)

 run(effect, env, opts \\ [])

 sequence(list, opts \\ [])

 Sequences a list of Effect computations, running each in order.

 sequence_a(list, opts \\ [])

 Sequences a list of Effect computations, collecting all Right results
or accumulating all Left errors if present.

 to_result(effect, opts \\ [])

 Converts an Effect into an Elixir {:ok, _} or {:error, _} tuple by running the effect.

 to_try!(effect, opts \\ [])

 Executes an Effect and returns the result if it is a Right. If the result is a Left,
this function raises the contained error.

 traverse(list, func)

 Traverses a list with a function that returns Effect computations,
running each in sequence and collecting the Right results.

 traverse(list, func, opts)

 traverse_a(list, func)

 Traverses a list with a function that returns Effect values, combining results
into a single Effect. Unlike traverse/2, this version accumulates all errors
rather than stopping at the first Left.

 traverse_a(list, func, opts)

 validate(value, validator, opts \\ [])

 Validates a value using one or more validator functions, each returning an Effect.

 Types

 t(left, right)

 @type t(left, right) ::
 Funx.Monad.Effect.Left.t(left) | Funx.Monad.Effect.Right.t(right)

Represents a deferred computation in the Effect monad that may either succeed (Right) or fail (Left).
This type unifies Effect.Right.t/1 and Effect.Left.t/1 under a common interface, allowing code to
operate over asynchronous effects regardless of success or failure outcome.
Each variant carries a context for telemetry and a deferred effect function that takes an environment.

 Functions

 ask()

 @spec ask() :: Funx.Monad.Effect.Right.t()

Returns a Funx.Monad.Effect.Right that yields the environment passed to Funx.Monad.Effect.run/2.
This is the Reader-style ask, used to access the full environment inside an effectful computation.
Example
iex> Funx.Monad.Effect.ask()
...> |> Funx.Monad.map(& &1[:region])
...> |> Funx.Monad.Effect.run(%{region: "us-west"})
%Funx.Monad.Either.Right{right: "us-west"}

 asks(f)

 @spec asks((term() -> term())) :: Funx.Monad.Effect.Right.t()

Returns a Funx.Monad.Effect.Right that applies the given function to the environment passed to Funx.Monad.Effect.run/2.
This allows extracting a value from the environment and using it in an effectful computation,
following the Reader pattern.
Example
iex> Funx.Monad.Effect.asks(fn env -> env[:user] end)
...> |> Funx.Monad.bind(fn user -> Funx.Monad.Effect.right(user) end)
...> |> Funx.Monad.Effect.run(%{user: "alice"})
%Funx.Monad.Either.Right{right: "alice"}

 await(task, timeout \\ 5000)

 @spec await(Task.t(), timeout()) :: Funx.Monad.Either.t(any(), any())

 fail()

 @spec fail() :: Funx.Monad.Effect.Left.t()

Returns a Funx.Monad.Effect.Left that fails with the entire environment passed to Funx.Monad.Effect.run/2.
This is the Reader-style equivalent of ask/0, but marks the environment as a failure.
Useful when the presence of certain runtime data should short-circuit execution.
Example
iex> Funx.Monad.Effect.fail()
...> |> Funx.Monad.Effect.run(%{error: :invalid_token})
%Funx.Monad.Either.Left{left: %{error: :invalid_token}}

 fails(f)

 @spec fails((term() -> term())) :: Funx.Monad.Effect.Left.t()

Returns a Funx.Monad.Effect.Left that applies the given function to the environment passed to Funx.Monad.Effect.run/2.
This is the failure-side equivalent of asks/1, used to produce an error effect based on runtime context.
Example
iex> Funx.Monad.Effect.fails(fn env -> {:missing_key, env} end)
...> |> Funx.Monad.Effect.run(%{input: nil})
%Funx.Monad.Either.Left{left: {:missing_key, %{input: nil}}}

 flip_either(right)

 @spec flip_either(t(error, value)) :: t(value, error)
when error: term(), value: term()

Inverts the success and failure branches of an Effect.
For a Right, this reverses the result: a successful value becomes a failure, and
a failure becomes a success. For a Left, only failure is expected; if the Left
produces a success, it is ignored.
This is useful when you want to reverse the semantics of a computation—treating
an expected error as success, or vice versa.
Examples
iex> effect = Funx.Monad.Effect.pure(42)
iex> flipped = Funx.Monad.Effect.flip_either(effect)
iex> Funx.Monad.Effect.run(flipped)
%Funx.Monad.Either.Left{left: 42}
iex> effect = Funx.Monad.Effect.left("fail")
iex> flipped = Funx.Monad.Effect.flip_either(effect)
iex> Funx.Monad.Effect.run(flipped)
%Funx.Monad.Either.Right{right: "fail"}

 from_result(result, opts \\ [])

 @spec from_result(
 {:ok, right} | {:error, left},
 Funx.Monad.Effect.Context.opts_or_context()
) ::
 t(left, right)
when left: term(), right: term()

Converts an Elixir {:ok, value} or {:error, reason} tuple into an Effect.
Accepts an optional context context which includes telemetry tracking.
Examples
iex> result = Funx.Monad.Effect.from_result({:ok, 42})
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Right{right: 42}

iex> result = Funx.Monad.Effect.from_result({:error, "error"})
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Left{left: "error"}

 from_try(func, opts_or_context \\ [])

 @spec from_try((input -> right), Funx.Monad.Effect.Context.opts_or_context()) ::
 (input ->
 t(
 Exception.t(),
 right
))
when input: term(), right: term()

Lifts a potentially exception-raising function into a Kleisli function for the Effect monad.
This returns a function of type (input -> Effect) that applies the given function to a value.
If the function raises, the error is captured and returned in a Left. You can optionally
provide a context (or opts) for tracing and telemetry.
Examples
iex> safe_div = Funx.Monad.Effect.from_try(fn x -> 10 / x end)
iex> effect = Funx.Monad.Effect.pure(2) |> Funx.Monad.bind(safe_div)
iex> Funx.Monad.Effect.run(effect)
%Funx.Monad.Either.Right{right: 5.0}
iex> bad_div = Funx.Monad.Effect.pure(0) |> Funx.Monad.bind(safe_div)
iex> Funx.Monad.Effect.run(bad_div)
%Funx.Monad.Either.Left{left: %ArithmeticError{}}

 left(value, opts_or_context \\ [])

 @spec left(left, Funx.Monad.Effect.Context.opts_or_context()) :: t(left, term())
when left: term()

Wraps a value in the Left variant of the Effect monad, representing a failed asynchronous computation.
Accepts either a keyword list of context options or a Effect.Context struct.
Examples
iex> result = Funx.Monad.Effect.left("error")
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Left{left: "error"}

iex> context = Funx.Monad.Effect.Context.new(trace_id: "err-id", span_name: "failure")
iex> result = Funx.Monad.Effect.left("error", context)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Left{left: "error"}

 lift_either(thunk, opts \\ [])

 @spec lift_either(
 (-> Funx.Monad.Either.t(left, right)),
 Funx.Monad.Effect.Context.opts_or_context()
) ::
 t(left, right)
when left: term(), right: term()

Lifts a thunk that returns an Either into the Effect monad.
Instead of passing an Either value directly, you provide a zero-arity function (thunk) that returns one.
This defers execution until the effect is run, allowing integration with tracing and composable pipelines.
You may also pass a context or options (opts) to configure telemetry or span metadata.
If the thunk raises an exception, it is caught and returned as a Left containing an EffectError tagged with :lift.
Examples
iex> result = Funx.Monad.Effect.lift_either(fn -> %Funx.Monad.Either.Right{right: 42} end)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Right{right: 42}

iex> result = Funx.Monad.Effect.lift_either(fn -> %Funx.Monad.Either.Left{left: "error"} end)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Left{left: "error"}

 lift_func(thunk, opts \\ [])

 @spec lift_func((-> right), Funx.Monad.Effect.Context.opts_or_context()) ::
 t(left, right)
when left: term(), right: term()

Lifts a thunk into the Effect monad, wrapping its result in a Right.
This function defers execution of the given zero-arity function (thunk) until the effect is run.
The result is automatically wrapped as Either.Right.
You may also pass a context or options (opts) to configure telemetry or span metadata.
If the thunk raises an exception, it is caught and returned as a Left containing an EffectError tagged with :lift.
Examples
iex> result = Funx.Monad.Effect.lift_func(fn -> 42 end)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Right{right: 42}

iex> result = Funx.Monad.Effect.lift_func(fn -> raise "boom" end)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Left{
 left: %Funx.Errors.EffectError{stage: :lift_func, reason: %RuntimeError{message: "boom"}}
}

 lift_maybe(maybe, on_none, opts \\ [])

 @spec lift_maybe(
 Funx.Monad.Maybe.t(right),
 (-> left),
 Funx.Monad.Effect.Context.opts_or_context()
) ::
 t(left, right)
when left: term(), right: term()

Converts a Maybe value into the Effect monad.
If the Maybe is Just, the value is wrapped in Right.
If it is Nothing, the result of on_none is wrapped in Left.
You can optionally provide context metadata via opts.
Examples
iex> maybe = Funx.Monad.Maybe.just(42)
iex> result = Funx.Monad.Effect.lift_maybe(maybe, fn -> "No value" end)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Right{right: 42}

iex> maybe = Funx.Monad.Maybe.nothing()
iex> result = Funx.Monad.Effect.lift_maybe(maybe, fn -> "No value" end)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Left{left: "No value"}

 lift_predicate(value, predicate, on_false, opts \\ [])

 @spec lift_predicate(
 term(),
 (term() -> boolean()),
 (term() -> left),
 Funx.Monad.Effect.Context.opts_or_context()
) :: t(left, term())
when left: term()

Lifts a value into the Effect monad based on a predicate.
If the predicate returns true, the value is wrapped in Right.
Otherwise, the result of calling on_false with the value is wrapped in Left.
Optional context metadata (e.g. :span_name, :trace_id) can be passed via opts.
Examples
iex> result = Funx.Monad.Effect.lift_predicate(10, &(&1 > 5), fn x -> "#{x} is too small" end)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Right{right: 10}

iex> result = Funx.Monad.Effect.lift_predicate(3, &(&1 > 5), fn x -> "#{x} is too small" end)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Left{left: "3 is too small"}

 map_left(right, func)

 @spec map_left(t(error, value), (error -> new_error)) :: t(new_error, value)
when error: term(), new_error: term(), value: term()

Transforms the Left branch of an Effect.
If the Effect resolves to a Left, the provided function is applied to the error.
If the Effect resolves to a Right, the value is returned unchanged.
This function is useful when you want to rewrite or wrap errors without affecting successful computations.
Examples
iex> effect = Funx.Monad.Effect.left("error")
iex> transformed = Funx.Monad.Effect.map_left(effect, fn e -> "wrapped: " <> e end)
iex> Funx.Monad.Effect.run(transformed)
%Funx.Monad.Either.Left{left: "wrapped: error"}

iex> effect = Funx.Monad.Effect.pure(42)
iex> transformed = Funx.Monad.Effect.map_left(effect, fn _ -> "should not be called" end)
iex> Funx.Monad.Effect.run(transformed)
%Funx.Monad.Either.Right{right: 42}

 pure(value, opts_or_context \\ [])

 @spec pure(right, Funx.Monad.Effect.Context.opts_or_context()) :: t(term(), right)
when right: term()

Alias for right/2.
Wraps a value in the Right variant of the Effect monad, representing a successful asynchronous computation.
Accepts either a keyword list of context options or a Effect.Context struct.
Examples
iex> result = Funx.Monad.Effect.pure(42)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Right{right: 42}

iex> context = Funx.Monad.Effect.Context.new(trace_id: "custom-id", span_name: "pure example")
iex> result = Funx.Monad.Effect.pure(42, context)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Right{right: 42}

 right(value, opts_or_context \\ [])

 @spec right(right, Funx.Monad.Effect.Context.opts_or_context()) :: t(term(), right)
when right: term()

Wraps a value in the Right variant of the Effect monad, representing a successful asynchronous computation.
This is an alias for pure/2. You may optionally provide execution context, either as a keyword list or
a %Funx.Monad.Effect.Context{} struct. The context is attached to the effect and propagated during execution.
Examples
iex> result = Funx.Monad.Effect.right(42)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Right{right: 42}

iex> context = Funx.Monad.Effect.Context.new(trace_id: "custom-id", span_name: "from right")
iex> result = Funx.Monad.Effect.right(42, context)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Right{right: 42}

 run(effect)

 @spec run(t(left, right)) :: Funx.Monad.Either.t(left, right)
when left: term(), right: term()

Runs the Effect and returns the result, awaiting the task if necessary.
You may provide optional telemetry metadata using opts, such as :span_name
to promote the current context with a new label.
Options
	:span_name – (optional) promotes the trace to a new span with the given name.

Examples
iex> result = Funx.Monad.Effect.right(42)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Right{right: 42}

iex> result = Funx.Monad.Effect.right(42, span_name: "initial")
iex> Funx.Monad.Effect.run(result, span_name: "promoted")
%Funx.Monad.Either.Right{right: 42}

 run(effect, env)

 @spec run(t(left, right), map()) :: Funx.Monad.Either.t(left, right)
when left: term(), right: term()

 @spec run(
 t(left, right),
 keyword()
) :: Funx.Monad.Either.t(left, right)
when left: term(), right: term()

 run(effect, env, opts \\ [])

 @spec run(t(left, right), map(), keyword()) :: Funx.Monad.Either.t(left, right)
when left: term(), right: term()

 sequence(list, opts \\ [])

 @spec sequence([t(left, right)], Funx.Monad.Effect.Context.opts_or_context()) ::
 t(left, [right])
when left: term(), right: term()

Sequences a list of Effect computations, running each in order.
If all effects resolve to Right, the result is a Right containing a list of values.
If any effect resolves to Left, the sequencing stops early and that Left is returned.
Each effect is executed with its own context context, and telemetry spans are emitted for observability.
Examples
iex> effects = [Funx.Monad.Effect.right(1), Funx.Monad.Effect.right(2)]
iex> result = Funx.Monad.Effect.sequence(effects)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Right{right: [1, 2]}

iex> effects = [Funx.Monad.Effect.right(1), Funx.Monad.Effect.left("error")]
iex> result = Funx.Monad.Effect.sequence(effects)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Left{left: "error"}

 sequence_a(list, opts \\ [])

 @spec sequence_a([t(error, value)], Funx.Monad.Effect.Context.opts_or_context()) ::
 t([error], [value])
when error: term(), value: term()

Sequences a list of Effect computations, collecting all Right results
or accumulating all Left errors if present.
Unlike sequence/1, which stops at the first Left, this version continues processing
all effects, returning a list of errors if any failures occur.
Each effect emits its own telemetry span, and error contexts are preserved through tracing.
Examples
iex> effects = [
...> Funx.Monad.Effect.right(1),
...> Funx.Monad.Effect.left("Error 1"),
...> Funx.Monad.Effect.left("Error 2")
...>]
iex> result = Funx.Monad.Effect.sequence_a(effects)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Left{left: ["Error 1", "Error 2"]}

 to_result(effect, opts \\ [])

 @spec to_result(
 t(left, right),
 keyword()
) :: {:ok, right} | {:error, left}
when left: term(), right: term()

Converts an Effect into an Elixir {:ok, _} or {:error, _} tuple by running the effect.
If the effect completes successfully (Right), the result is wrapped in {:ok, value}.
If the effect fails (Left), the error is returned as {:error, reason}.
This function also emits telemetry via run/2 and supports optional context metadata through keyword options.
Options
	:span_name – sets a custom span name for tracing and telemetry.

Examples
iex> effect = Funx.Monad.Effect.right(42, span_name: "convert-ok")
iex> Funx.Monad.Effect.to_result(effect, span_name: "to_result")
{:ok, 42}

iex> error = Funx.Monad.Effect.left("fail", span_name: "convert-error")
iex> Funx.Monad.Effect.to_result(error, span_name: "to_result")
{:error, "fail"}
Telemetry will include the promoted span name ("to_result -> convert-ok") and context metadata.

 to_try!(effect, opts \\ [])

 @spec to_try!(
 t(left, right),
 keyword()
) :: right | no_return()
when left: term(), right: term()

Executes an Effect and returns the result if it is a Right. If the result is a Left,
this function raises the contained error.
This is useful when you want to interoperate with code that expects regular exceptions,
such as within test assertions or imperative pipelines.
Runs the effect with full telemetry tracing.
Examples
iex> effect = Funx.Monad.Effect.right(42, span_name: "return")
iex> Funx.Monad.Effect.to_try!(effect)
42

iex> error = Funx.Monad.Effect.left(%RuntimeError{message: "failure"}, span_name: "error")
iex> Funx.Monad.Effect.to_try!(error)
** (RuntimeError) failure
Telemetry will emit a :stop event with :status set to :ok or :error, depending on the outcome.

 traverse(list, func)

Traverses a list with a function that returns Effect computations,
running each in sequence and collecting the Right results.
If all effects resolve to Right, returns a single Effect with a list of results.
If any effect resolves to Left, the traversal stops early and returns that Left.
Each step preserves context context and emits telemetry spans, including nested spans when bound.
Examples
iex> is_positive = fn num ->
...> Funx.Monad.Effect.lift_predicate(num, fn x -> x > 0 end, fn x -> Integer.to_string(x) <> " is not positive" end)
...> end
iex> result = Funx.Monad.Effect.traverse([1, 2, 3], fn num -> is_positive.(num) end)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Right{right: [1, 2, 3]}
iex> result = Funx.Monad.Effect.traverse([1, -2, 3], fn num -> is_positive.(num) end)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Left{left: "-2 is not positive"}

 traverse(list, func, opts)

 @spec traverse(
 [input],
 (input -> t(left, right)),
 Funx.Monad.Effect.Context.opts_or_context()
) ::
 t(left, [right])
when input: term(), left: term(), right: term()

 traverse_a(list, func)

Traverses a list with a function that returns Effect values, combining results
into a single Effect. Unlike traverse/2, this version accumulates all errors
rather than stopping at the first Left.
Each successful computation contributes to the final list of results.
If any computations fail, all errors are collected and returned as a single Left.
This function also manages telemetry trace context across all nested effects,
ensuring that span relationships and trace IDs are preserved through the traversal.
Examples
iex> validate = fn n ->
...> Funx.Monad.Effect.lift_predicate(n, fn x -> x > 0 end, fn x -> Integer.to_string(x) <> " is not positive" end)
...> end
iex> result = Funx.Monad.Effect.traverse_a([1, -2, 3], validate)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Left{left: ["-2 is not positive"]}
iex> result = Funx.Monad.Effect.traverse_a([1, 2, 3], validate)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Right{right: [1, 2, 3]}

 traverse_a(list, func, opts)

 @spec traverse_a(
 [input],
 (input -> t(error, value)),
 Funx.Monad.Effect.Context.opts_or_context()
) ::
 t([error], [value])
when input: term(), error: term(), value: term()

 validate(value, validator, opts \\ [])

 @spec validate(
 value,
 (value -> t(error, any())) | [(value -> t(error, any()))],
 Funx.Monad.Effect.Context.opts_or_context()
) :: t([error], value)
when error: term(), value: term()

Validates a value using one or more validator functions, each returning an Effect.
If all validators succeed (Right), the original value is returned in a Right.
If any validator fails (Left), all errors are accumulated and returned as a single Left.
This function also manages telemetry trace context across all nested validations,
ensuring that span relationships and trace IDs are preserved throughout.
Supports optional opts for span metadata (e.g. :span_name).
Examples
iex> validate_positive = fn x ->
...> Funx.Monad.Effect.lift_predicate(x, fn n -> n > 0 end, fn n -> "Value " <> Integer.to_string(n) <> " must be positive" end)
...> end
iex> validate_even = fn x ->
...> Funx.Monad.Effect.lift_predicate(x, fn n -> rem(n, 2) == 0 end, fn n -> "Value " <> Integer.to_string(n) <> " must be even" end)
...> end
iex> validators = [validate_positive, validate_even]
iex> result = Funx.Monad.Effect.validate(4, validators)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Right{right: 4}
iex> result = Funx.Monad.Effect.validate(3, validators)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Left{left: ["Value 3 must be even"]}
iex> result = Funx.Monad.Effect.validate(-3, validators)
iex> Funx.Monad.Effect.run(result)
%Funx.Monad.Either.Left{left: ["Value -3 must be positive", "Value -3 must be even"]}

Funx.Monad.Effect.Context

[image: Run in Livebook]
Represents the execution context attached to an effect.
This struct carries contextual information such as trace_id, span_name,
timeouts, and arbitrary metadata (baggage and metadata). It supports
telemetry integration, span linking, and timeout control, and is propagated
automatically across composed effects.
Developers can set fields like timeout, trace_id, or span_name when
constructing Left and Right effects. The context is merged or promoted
as needed when chaining effects to preserve trace continuity and execution scope.
This context is not injected at runtime via run/2—it is bound to the effect
when created.

 Summary

 Types

 opts_or_context()

 Represents input for constructing an Effect.Context.

 t()

 Represents the contextual metadata associated with an Effect.

 Functions

 default_span_name?(context)

 default_span_name_if_empty(context, default_name)

 empty_or_default_span_name?(context)

 generate_trace_id()

 Generates a random lowercase hexadecimal trace ID.

 merge(context1, context2)

 Merges two %Funx.Monad.Effect.Context{} structs into one, preferring non-nil values from the first context.

 new()

 Creates a new Funx.Monad.Effect.Context struct for use with effectful computations.

 new(trace)

 override(context, opts)

 Returns a new %Funx.Monad.Effect.Context{} with fields overridden by values from the given keyword list.

 promote_trace(context, label)

 Promotes the current context into a child trace by generating a new trace_id and linking to the original.

 span_name?(context)

 Types

 opts_or_context()

 @type opts_or_context() :: keyword() | t()

Represents input for constructing an Effect.Context.
Accepts either a keyword list of options (trace_id, span_name, etc.) or an existing Context struct.
Used throughout the Effect system for flexible context propagation.

 t()

 @type t() :: %Funx.Monad.Effect.Context{
 baggage: map() | nil,
 metadata: map() | nil,
 parent_trace_id: String.t() | nil,
 span_name: String.t() | nil,
 timeout: non_neg_integer() | nil,
 trace_id: String.t()
}

Represents the contextual metadata associated with an Effect.
The context carries telemetry and tracing information such as trace_id, span_name, and timeout,
as well as arbitrary metadata and user-defined baggage. It is passed through all effectful computations
and can be promoted to represent nested spans.

 Functions

 default_span_name?(context)

 default_span_name_if_empty(context, default_name)

 empty_or_default_span_name?(context)

 generate_trace_id()

 @spec generate_trace_id() :: String.t()

Generates a random lowercase hexadecimal trace ID.
This function is used internally to ensure each trace is uniquely identifiable.
Examples
iex> id = Funx.Monad.Effect.Context.generate_trace_id()
iex> String.length(id)
32
iex> id =~ ~r/^[a-f0-9]+$/
true

 merge(context1, context2)

 @spec merge(t(), t()) :: t()

Merges two %Funx.Monad.Effect.Context{} structs into one, preferring non-nil values from the first context.
This is used to preserve trace continuity and propagate context across composed effects.
	Non-nil fields from the first context take precedence.
	baggage and metadata maps are deeply merged.
	This operation is idempotent and safe for reuse across nested effect chains.

Examples
iex> c1 = Funx.Monad.Effect.Context.new(trace_id: "a", baggage: %{user: 1})
iex> c2 = Funx.Monad.Effect.Context.new(trace_id: "b", baggage: %{region: "us-west"})
iex> Funx.Monad.Effect.Context.merge(c1, c2).baggage
%{user: 1, region: "us-west"}

 new()

Creates a new Funx.Monad.Effect.Context struct for use with effectful computations.
If no :trace_id is provided, a unique one is generated automatically.
You may also set optional fields such as :span_name, :timeout, :baggage, and :metadata.
The returned context is intended to be passed into Left and Right effects,
where it will be propagated and updated across chained computations.
Examples
iex> ctx = Funx.Monad.Effect.Context.new(span_name: "load-data", timeout: 2000)
iex> ctx.span_name
"load-data"

iex> ctx = Funx.Monad.Effect.Context.new(trace_id: "abc123")
iex> ctx.trace_id
"abc123"

 new(trace)

 @spec new(keyword() | t()) :: t()

 override(context, opts)

 @spec override(
 t(),
 keyword()
) :: t()

Returns a new %Funx.Monad.Effect.Context{} with fields overridden by values from the given keyword list.
	Direct fields like :trace_id, :parent_trace_id, :span_name, and :timeout are replaced if present.
	Nested maps :baggage and :metadata are deeply merged, with the keyword list taking precedence.

This is useful for refining or extending an existing context in a specific part of an effect chain.
Examples
iex> ctx = Funx.Monad.Effect.Context.new(trace_id: "abc", baggage: %{x: 1}, metadata: %{debug: false})
iex> updated = Funx.Monad.Effect.Context.override(ctx, span_name: "child", baggage: %{x: 2}, metadata: %{debug: true})
iex> updated.span_name
"child"
iex> updated.baggage
%{x: 2}
iex> updated.metadata
%{debug: true}

 promote_trace(context, label)

 @spec promote_trace(t(), String.t()) :: t()

Promotes the current context into a child trace by generating a new trace_id and linking to the original.
	The current trace_id is moved to parent_trace_id.
	A new trace_id is generated for the child context.
	The given label is prepended to the existing span_name as "label -> span".

This is typically used to represent a nested span or sub-operation within a larger effect chain,
preserving trace lineage across composed effects.
Examples
iex> parent = Funx.Monad.Effect.Context.new(trace_id: "abc123", span_name: "load")
iex> child = Funx.Monad.Effect.Context.promote_trace(parent, "decode")
iex> child.parent_trace_id
"abc123"
iex> child.trace_id != "abc123"
true
iex> child.span_name
"decode -> load"

 span_name?(context)

Funx.Monad.Effect.Left

[image: Run in Livebook]
Represents the Left variant of the Effect monad, used to model a failure or error in an asynchronous context.
This module implements the following protocols:
	Funx.Monad: Implements bind/2, map/2, and ap/2 for monadic sequencing in a lazy, effectful context.
	String.Chars: Provides a string representation of the effect for debugging and inspection.

A Left effect propagates its failure value without invoking further computations, preserving short-circuit behavior.
Reader Operations
	ask/1 – Returns the environment passed to run/2 as a Left.
	asks/2 – Applies a function to the environment passed to run/2, wrapping the result in a Left.

 Summary

 Types

 t()

 t(left)

 Represents an asynchronous computation that produces a Left value.

 Functions

 ask(opts_or_context \\ [])

 Returns a Funx.Monad.Effect.Left that yields the environment passed to Funx.Monad.Effect.run/2.

 asks(f, opts_or_context \\ [])

 Returns a Funx.Monad.Effect.Left that applies the given function to the environment passed to Funx.Monad.Effect.run/2.

 pure(value, opts_or_context \\ [])

 Creates a new Left effect.

 Types

 t()

 @type t() :: t(term())

 t(left)

 @type t(left) :: %Funx.Monad.Effect.Left{
 context: Funx.Monad.Effect.Context.t(),
 effect: (term() -> Task.t()) | (term() -> Funx.Monad.Either.Left.t(left))
}

Represents an asynchronous computation that produces a Left value.
The effect function is typically a deferred task that takes an environment and returns a Task.
Since Elixir does not support parameterized Task.t() types, the return type is written as a union:
either a Task.t() or a plain Either.Left.t(left) to support testing and internal optimizations.
The context carries telemetry, trace metadata, and environment configuration for error flows.

 Functions

 ask(opts_or_context \\ [])

 @spec ask(Funx.Monad.Effect.Context.opts_or_context()) :: t(env) when env: term()

Returns a Funx.Monad.Effect.Left that yields the environment passed to Funx.Monad.Effect.run/2.
This is the Reader-style ask, used to construct a failure from the full injected environment.
It can be useful for debugging, instrumentation, or propagating request-scoped failure information.
Example
iex> Funx.Monad.Effect.Left.ask()
...> |> Funx.Monad.Effect.run(%{error: :unauthorized})
%Funx.Monad.Either.Left{left: %{error: :unauthorized}}

 asks(f, opts_or_context \\ [])

 @spec asks((env -> left), Funx.Monad.Effect.Context.opts_or_context()) :: t(left)
when env: term(), left: term()

Returns a Funx.Monad.Effect.Left that applies the given function to the environment passed to Funx.Monad.Effect.run/2.
This allows constructing a failure (Left) based on runtime input. It complements Right.asks/2,
but marks the result as a failure rather than a success.
Example
iex> Funx.Monad.Effect.Left.asks(fn env -> {:error, env[:reason]} end)
...> |> Funx.Monad.Effect.run(%{reason: :invalid})
%Funx.Monad.Either.Left{left: {:error, :invalid}}

 pure(value, opts_or_context \\ [])

 @spec pure(left, Funx.Monad.Effect.Context.opts_or_context()) :: t(left)
when left: term()

Creates a new Left effect.
Wraps a failure value in an asynchronous effect. You may provide context either as a keyword list or
an Effect.Context struct.
Examples
iex> effect = Funx.Monad.Effect.Left.pure("error")
iex> Funx.Monad.Effect.run(effect)
%Funx.Monad.Either.Left{left: "error"}

Funx.Monad.Effect.Right

[image: Run in Livebook]
Represents the Right variant of the Effect monad, used to model a successful computation in an asynchronous context.
This module implements the following protocols:
	Funx.Monad: Implements the bind/2, map/2, and ap/2 functions to handle monadic operations within an effectful, lazy execution context.
	String.Chars: Provides a to_string/1 function to represent Right values as strings.

The Right effect allows the computation to proceed with successful values, supporting lazy, asynchronous tasks
and capturing execution context through the Effect.Context struct.
Reader Operations
	ask/1 – Returns the environment passed to run/2 as a Right.
	asks/2 – Applies a function to the environment passed to run/2, wrapping the result in a Right.

 Summary

 Types

 t()

 t(right)

 Represents an asynchronous computation that produces a Right value.

 Functions

 ask(opts_or_context \\ [])

 Returns a Funx.Monad.Effect.Right that yields the environment passed to Funx.Monad.Effect.run/2.

 asks(f, opts_or_context \\ [])

 Returns a Funx.Monad.Effect.Right that applies the given function to the environment passed to Funx.Monad.Effect.run/2.

 pure(value, opts_or_context \\ [])

 Creates a new Right effect.

 Types

 t()

 @type t() :: t(term())

 t(right)

 @type t(right) :: %Funx.Monad.Effect.Right{
 context: Funx.Monad.Effect.Context.t(),
 effect: (term() -> Task.t()) | (term() -> Funx.Monad.Either.Right.t(right))
}

Represents an asynchronous computation that produces a Right value.
The effect function is typically a deferred task that takes an environment and returns a Task.
Since Elixir does not support parameterized Task.t() types, the return type is described as a union:
either a Task.t() or a plain Either.Right.t(right) for testability and flexibility.
The context carries telemetry and trace information used during execution.

 Functions

 ask(opts_or_context \\ [])

 @spec ask(Funx.Monad.Effect.Context.opts_or_context()) :: t(env) when env: term()

Returns a Funx.Monad.Effect.Right that yields the environment passed to Funx.Monad.Effect.run/2.
This is the Reader monad's equivalent of ask, giving access to the entire injected environment
for further computation.
Example
iex> Funx.Monad.Effect.Right.ask()
...> |> Funx.Monad.map(& &1[:user])
...> |> Funx.Monad.Effect.run(%{user: "alice"})
%Funx.Monad.Either.Right{right: "alice"}

 asks(f, opts_or_context \\ [])

 @spec asks(
 (Funx.Monad.Effect.Context.t() -> result),
 Funx.Monad.Effect.Context.opts_or_context()
) ::
 t(result)
when result: term()

Returns a Funx.Monad.Effect.Right that applies the given function to the environment passed to Funx.Monad.Effect.run/2.
This allows extracting a value from the environment and using it in an effectful computation,
following the Reader pattern.
Example
iex> Funx.Monad.Effect.Right.asks(fn env -> env[:user] end)
...> |> Funx.Monad.bind(fn user -> Funx.Monad.Effect.right(user) end)
...> |> Funx.Monad.Effect.run(%{user: "alice"})
%Funx.Monad.Either.Right{right: "alice"}

 pure(value, opts_or_context \\ [])

 @spec pure(right, Funx.Monad.Effect.Context.opts_or_context()) :: t(right)
when right: term()

Creates a new Right effect.
The pure/2 function wraps a value in the Right effect monad, representing an asynchronous success.
Examples
iex> effect = Funx.Monad.Effect.Right.pure("success")
iex> Funx.Monad.Effect.run(effect)
%Funx.Monad.Either.Right{right: "success"}

Funx.Monad.Either

[image: Run in Livebook]
The Funx.Monad.Either module provides an implementation of the Either monad, a functional abstraction used to model computations that may fail.
An Either represents one of two possibilities:
	Right(value): a successful result
	Left(error): a failure or error

This pattern is commonly used in place of exceptions to handle errors explicitly and safely in functional pipelines.
Constructors
	right/1: Wraps a value in the Right branch.
	left/1: Wraps a value in the Left branch.
	pure/1: Alias for right/1.

Refinement
	right?/1: Returns true if the value is a Right.
	left?/1: Returns true if the value is a Left.

Fallback and Extraction
	get_or_else/2: Returns the value from a Right, or a default if Left.
	or_else/2: Returns the original Right, or invokes a fallback function if Left.
	map_left/2: Transforms a Left using a function, leaving Right values unchanged.
	flip_iso/0: Returns the isomorphism that swaps Left and Right branches.
	flip/1: Swaps Left and Right, turning errors into successes and vice versa (via flip_iso).
	filter_or_else/3: Applies a predicate to the Right value; if false, returns a fallback Left.

List Operations
	concat/1: Removes all Left values and unwraps the Right values from a list.
	concat_map/2: Applies a function and collects only Right results.
	sequence/1: Converts a list of Either values into a single Either of list.
	traverse/2: Applies a function to each element in a list and sequences the results.
	sequence_a/1: Like sequence/1, but accumulates all errors from Left values.
	traverse_a/2: Like traverse/2, but accumulates all Left values instead of short-circuiting.
	wither_a/2: Like traverse_a/2, but filters out Nothing results and collects only Just values.

Validation
	validate/2: Applies multiple validators to a single input, collecting all errors.

Lifting
	lift_predicate/3: Turns a predicate into an Either, returning Right on true and Left on false.
	lift_maybe/2: Converts a Maybe to an Either using a fallback value.
	lift_eq/1: Lifts an equality function into the Either context.
	lift_ord/1: Lifts an ordering function into the Either context.

 ## Transformation
	map_left/2 – Transforms the error inside a Left, leaving Right values untouched.

Elixir Interoperability
	result_iso/0: Returns the isomorphism between Either and result tuples.
	from_result/1: Converts {:ok, val} or {:error, err} into an Either (via result_iso).
	to_result/1: Converts an Either into a result tuple (via result_iso).
	from_try/1: Runs a function and returns Right on success or Left on exception.
	to_try!/1: Unwraps a Right, or raises an error from a Left.

Protocols
The Left and Right structs implement the following protocols, making the Either abstraction composable and extensible:
	Funx.Eq: Enables equality comparisons between Either values.
	Funx.Foldable: Implements fold_l/3 and fold_r/3 for reducing over contained values.
	Funx.Monad: Provides map/2, ap/2, and bind/2 for monadic composition.
	Funx.Ord: Defines ordering behavior for comparing Left and Right values.
	Funx.Tappable: Executes side effects on Right values via Funx.Tappable.tap/2, leaving Left values unchanged.

Although these implementations are defined on each constructor (Left and Right), the behavior is consistent across the Either abstraction.
This module helps you model failure explicitly, compose error-aware logic, and integrate cleanly with Elixir's functional idioms.
DSL Usage
You can use the Either DSL for clean Kleisli composition:
use Funx.Monad.Either

either input do
 ParseInt
 bind PositiveNumber
 Double
end

 Summary

 Types

 t(left, right)

 Functions

 concat(list)

 Removes Left values from a list of Either and returns a list of unwrapped Right values.

 concat_map(list, func)

 Applies the given function to each element in the list and collects the Right results, discarding any Left.

 filter_or_else(either, predicate, left_func)

 Filters the value inside a Right using the given predicate. If the predicate returns false,
a Left is returned using the left_func.

 flip(either)

 Swaps the Left and Right branches of the Either.

 flip_iso()

 Returns the isomorphism that swaps Left and Right branches.

 from_result(result)

 Converts a result ({:ok, _} or {:error, _}) to an Either.

 from_try(func)

 Wraps a value in an Either, catching any exceptions. If an exception occurs, a Left is returned with the exception.

 get_or_else(either, default)

 Retrieves the value from a Right, returning the default value if Left.

 left(value)

 Wraps a value in the Left monad.

 left?(arg1)

 Returns true if the Either is a Left value.

 lift_eq(custom_eq)

 Lifts an equality function to compare Either values

 lift_maybe(maybe, on_none)

 Converts a Maybe value to an Either. If the Maybe is Nothing, a Left is returned using on_none.

 lift_ord(custom_ord)

 Creates a custom ordering function for Either values using the provided custom_ord.

 lift_predicate(value, predicate, on_false)

 Lifts a value into an Either based on the result of a predicate.

 map_left(right, func)

 Transforms the Left value using the given function if the Either is a Left.
If the value is Right, it is returned unchanged.

 or_else(right, fallback_fun)

 Returns the current Right value or invokes the fallback_fun if Left.

 pure(value)

 Alias for right/1.

 result_iso()

 Returns the isomorphism between Either and Elixir result tuples.

 right(value)

 Wraps a value in the Right monad.

 right?(arg1)

 Returns true if the Either is a Right value.

 sequence(list)

 Sequences a list of Either values into an Either of a list.

 sequence_a(list)

 Sequences a list of Either values, collecting all errors from Left values, rather than short-circuiting.

 to_result(either)

 Converts an Either to a result ({:ok, value} or {:error, reason}).

 to_try!(arg1)

 Converts an Either to its inner value, raising an exception if it is Left.

 traverse(list, func)

 Traverses a list, applying the given function to each element and collecting the results in a single Right, or short-circuiting with the first Left.

 traverse_a(list, func)

 Traverses a list, applying the given function to each element and collecting the results in a single Right.

 validate(value, validators)

 Validates a value using a list of validator functions. Each validator returns an Either.Right if
the check passes, or an Either.Left with an error message if it fails. If any validation fails,
all errors are aggregated and returned in a single Left.

 validate(value, validators, opts)

 Validates a value using validators that accept options and environment.

 wither_a(list, func)

 Traverses a list, applying the given function to each element, and collects the successful Just results into a single Right.

 Types

 t(left, right)

 @type t(left, right) ::
 Funx.Monad.Either.Left.t(left) | Funx.Monad.Either.Right.t(right)

 Functions

 concat(list)

 @spec concat([t(error, value)]) :: [value] when error: term(), value: any()

Removes Left values from a list of Either and returns a list of unwrapped Right values.
Useful for discarding failed computations while keeping successful results.
Examples
iex> Funx.Monad.Either.concat([Funx.Monad.Either.right(1), Funx.Monad.Either.left(:error), Funx.Monad.Either.right(2)])
[1, 2]

iex> Funx.Monad.Either.concat([Funx.Monad.Either.left(:a), Funx.Monad.Either.left(:b)])
[]

iex> Funx.Monad.Either.concat([Funx.Monad.Either.right("a"), Funx.Monad.Either.right("b"), Funx.Monad.Either.right("c")])
["a", "b", "c"]

 concat_map(list, func)

 @spec concat_map([input], (input -> t(error, output))) :: [output]
when input: any(), output: any(), error: any()

Applies the given function to each element in the list and collects the Right results, discarding any Left.
This is useful when mapping a function that may fail and you only want the successful results.
Examples
iex> Funx.Monad.Either.concat_map([1, 2, 3], fn x -> if rem(x, 2) == 1, do: Funx.Monad.Either.right(x), else: Funx.Monad.Either.left(:even) end)
[1, 3]

iex> Funx.Monad.Either.concat_map([2, 4], fn x -> if x > 3, do: Funx.Monad.Either.right(x), else: Funx.Monad.Either.left(:too_small) end)
[4]

iex> Funx.Monad.Either.concat_map([], fn _ -> Funx.Monad.Either.left(:none) end)
[]

 filter_or_else(either, predicate, left_func)

 @spec filter_or_else(t(any(), any()), (any() -> boolean()), (-> any())) ::
 t(any(), any())

Filters the value inside a Right using the given predicate. If the predicate returns false,
a Left is returned using the left_func.
Examples
iex> Funx.Monad.Either.filter_or_else(Funx.Monad.Either.right(5), fn x -> x > 3 end, fn -> "error" end)
%Funx.Monad.Either.Right{right: 5}

iex> Funx.Monad.Either.filter_or_else(Funx.Monad.Either.right(2), fn x -> x > 3 end, fn -> "error" end)
%Funx.Monad.Either.Left{left: "error"}

 flip(either)

 @spec flip(t(left, right)) :: t(right, left) when left: term(), right: term()

Swaps the Left and Right branches of the Either.
Turns a Left into a Right and vice versa, preserving the contained term.
Implemented via the flip_iso involution.
Examples
iex> Funx.Monad.Either.flip(Funx.Monad.Either.left(:error))
%Funx.Monad.Either.Right{right: :error}

iex> Funx.Monad.Either.flip(Funx.Monad.Either.right(42))
%Funx.Monad.Either.Left{left: 42}

 flip_iso()

 @spec flip_iso() :: Funx.Optics.Iso.t()

Returns the isomorphism that swaps Left and Right branches.
This is an involution - applying it twice returns the original value.
Both directions of the iso perform the same swap operation.
Examples
iex> iso = Funx.Monad.Either.flip_iso()
iex> Funx.Optics.Iso.view(%Funx.Monad.Either.Left{left: :error}, iso)
%Funx.Monad.Either.Right{right: :error}
iex> Funx.Optics.Iso.review(%Funx.Monad.Either.Right{right: 42}, iso)
%Funx.Monad.Either.Left{left: 42}

 from_result(result)

 @spec from_result({:ok, right} | {:error, left}) :: t(left, right)
when left: term(), right: term()

Converts a result ({:ok, _} or {:error, _}) to an Either.
Implemented via the Either <-> result tuple isomorphism.
Examples
iex> Funx.Monad.Either.from_result({:ok, 5})
%Funx.Monad.Either.Right{right: 5}

iex> Funx.Monad.Either.from_result({:error, "error"})
%Funx.Monad.Either.Left{left: "error"}

 from_try(func)

 @spec from_try((-> right)) :: t(Exception.t(), right) when right: term()

Wraps a value in an Either, catching any exceptions. If an exception occurs, a Left is returned with the exception.
Examples
iex> Funx.Monad.Either.from_try(fn -> 5 end)
%Funx.Monad.Either.Right{right: 5}

iex> Funx.Monad.Either.from_try(fn -> raise "error" end)
%Funx.Monad.Either.Left{left: %RuntimeError{message: "error"}}

 get_or_else(either, default)

 @spec get_or_else(t(any(), any()), any()) :: any()

Retrieves the value from a Right, returning the default value if Left.
Examples
iex> Funx.Monad.Either.get_or_else(Funx.Monad.Either.right(5), 0)
5

iex> Funx.Monad.Either.get_or_else(Funx.Monad.Either.left("error"), 0)
0

 left(value)

 @spec left(any()) :: Funx.Monad.Either.Left.t(any())

Wraps a value in the Left monad.
Examples
iex> Funx.Monad.Either.left("error")
%Funx.Monad.Either.Left{left: "error"}

 left?(arg1)

 @spec left?(t(any(), any())) :: boolean()

Returns true if the Either is a Left value.
Examples
iex> Funx.Monad.Either.left?(Funx.Monad.Either.left("error"))
true

iex> Funx.Monad.Either.left?(Funx.Monad.Either.right(5))
false

 lift_eq(custom_eq)

 @spec lift_eq(Funx.Eq.eq_t()) :: Funx.Eq.eq_map()

Lifts an equality function to compare Either values:
	Right vs Right: Uses the custom equality function.
	Left vs Left: Uses the custom equality function.
	Left vs Right or vice versa: Always false.

Examples
iex> eq = Funx.Monad.Either.lift_eq(%{
...> eq?: fn x, y -> x == y end,
...> not_eq?: fn x, y -> x != y end
...> })
iex> eq.eq?.(Funx.Monad.Either.right(5), Funx.Monad.Either.right(5))
true
iex> eq.eq?.(Funx.Monad.Either.right(5), Funx.Monad.Either.right(10))
false
iex> eq.eq?.(Funx.Monad.Either.left(:a), Funx.Monad.Either.left(:a))
true
iex> eq.eq?.(Funx.Monad.Either.left(:a), Funx.Monad.Either.left(:b))
false
iex> eq.eq?.(Funx.Monad.Either.right(5), Funx.Monad.Either.left(:a))
false

 lift_maybe(maybe, on_none)

 @spec lift_maybe(Funx.Monad.Maybe.t(any()), (-> any())) :: t(any(), any())

Converts a Maybe value to an Either. If the Maybe is Nothing, a Left is returned using on_none.
Examples
iex> Funx.Monad.Either.lift_maybe(Funx.Monad.Maybe.just(5), fn -> "error" end)
%Funx.Monad.Either.Right{right: 5}

iex> Funx.Monad.Either.lift_maybe(Funx.Monad.Maybe.nothing(), fn -> "error" end)
%Funx.Monad.Either.Left{left: "error"}

 lift_ord(custom_ord)

 @spec lift_ord(Funx.Ord.ord_t()) :: Funx.Ord.ord_map()

Creates a custom ordering function for Either values using the provided custom_ord.
The custom_ord must be a map with :lt?, :le?, :gt?, and :ge? functions. These are used to compare the internal left or right values.
Examples
iex> ord = Funx.Monad.Either.lift_ord(%{
...> lt?: fn x, y -> x < y end,
...> le?: fn x, y -> x <= y end,
...> gt?: fn x, y -> x > y end,
...> ge?: fn x, y -> x >= y end
...> })
iex> ord.lt?.(Funx.Monad.Either.right(3), Funx.Monad.Either.right(5))
true
iex> ord.lt?.(Funx.Monad.Either.left(3), Funx.Monad.Either.right(5))
true
iex> ord.lt?.(Funx.Monad.Either.right(3), Funx.Monad.Either.left(5))
false
iex> ord.lt?.(Funx.Monad.Either.left(3), Funx.Monad.Either.left(5))
true

 lift_predicate(value, predicate, on_false)

 @spec lift_predicate(value, (value -> boolean()), (value -> error)) :: t(error, value)
when value: term(), error: term()

Lifts a value into an Either based on the result of a predicate.
Returns Right(value) if the predicate returns true, or Left(on_false.(value)) if it returns false.
This allows you to wrap a conditional check in a functional context with a custom error message.
Examples
iex> Funx.Monad.Either.lift_predicate(5, fn x -> x > 3 end, fn x -> "#{x} is too small" end)
%Funx.Monad.Either.Right{right: 5}

iex> Funx.Monad.Either.lift_predicate(2, fn x -> x > 3 end, fn x -> "#{x} is too small" end)
%Funx.Monad.Either.Left{left: "2 is too small"}

 map_left(right, func)

 @spec map_left(t(error, value), (error -> new_error)) :: t(new_error, value)
when error: term(), new_error: term(), value: term()

Transforms the Left value using the given function if the Either is a Left.
If the value is Right, it is returned unchanged.
Examples
iex> Funx.Monad.Either.map_left(Funx.Monad.Either.left("error"), fn e -> "wrapped: " <> e end)
%Funx.Monad.Either.Left{left: "wrapped: error"}

iex> Funx.Monad.Either.map_left(Funx.Monad.Either.right(42), fn _ -> "ignored" end)
%Funx.Monad.Either.Right{right: 42}

 or_else(right, fallback_fun)

 @spec or_else(t(error, value), (-> t(error, value))) :: t(error, value)
when error: term(), value: term()

Returns the current Right value or invokes the fallback_fun if Left.
Useful for recovering from a failure by providing an alternate computation.
Examples
iex> Funx.Monad.Either.or_else(Funx.Monad.Either.left("error"), fn -> Funx.Monad.Either.right(42) end)
%Funx.Monad.Either.Right{right: 42}

iex> Funx.Monad.Either.or_else(Funx.Monad.Either.right(10), fn -> Funx.Monad.Either.right(42) end)
%Funx.Monad.Either.Right{right: 10}

 pure(value)

 @spec pure(any()) :: Funx.Monad.Either.Right.t(any())

Alias for right/1.
Examples
iex> Funx.Monad.Either.pure(2)
%Funx.Monad.Either.Right{right: 2}

 result_iso()

 @spec result_iso() :: Funx.Optics.Iso.t()

Returns the isomorphism between Either and Elixir result tuples.
This iso witnesses that Either and {:ok, _} | {:error, _} are equivalent representations.
Examples
iex> iso = Funx.Monad.Either.result_iso()
iex> Funx.Optics.Iso.view({:ok, 42}, iso)
%Funx.Monad.Either.Right{right: 42}
iex> Funx.Optics.Iso.review(%Funx.Monad.Either.Left{left: "err"}, iso)
{:error, "err"}

 right(value)

 @spec right(any()) :: Funx.Monad.Either.Right.t(any())

Wraps a value in the Right monad.
Examples
iex> Funx.Monad.Either.right(5)
%Funx.Monad.Either.Right{right: 5}

 right?(arg1)

 @spec right?(t(any(), any())) :: boolean()

Returns true if the Either is a Right value.
Examples
iex> Funx.Monad.Either.right?(Funx.Monad.Either.right(5))
true

iex> Funx.Monad.Either.right?(Funx.Monad.Either.left("error"))
false

 sequence(list)

 @spec sequence([t(error, value)]) :: t(error, [value])
when error: term(), value: term()

Sequences a list of Either values into an Either of a list.
Examples
iex> Funx.Monad.Either.sequence([Funx.Monad.Either.right(1), Funx.Monad.Either.right(2)])
%Funx.Monad.Either.Right{right: [1, 2]}

iex> Funx.Monad.Either.sequence([Funx.Monad.Either.right(1), Funx.Monad.Either.left("error")])
%Funx.Monad.Either.Left{left: "error"}

 sequence_a(list)

 @spec sequence_a([t(error, value)]) :: t([error], [value])
when error: term(), value: term()

Sequences a list of Either values, collecting all errors from Left values, rather than short-circuiting.
Examples
iex> Funx.Monad.Either.sequence_a([Funx.Monad.Either.right(1), Funx.Monad.Either.left("error"), Funx.Monad.Either.left("another error")])
%Funx.Monad.Either.Left{left: ["error", "another error"]}

 to_result(either)

 @spec to_result(t(left, right)) :: {:ok, right} | {:error, left}
when left: term(), right: term()

Converts an Either to a result ({:ok, value} or {:error, reason}).
Implemented via the Either <-> result tuple isomorphism.
Examples
iex> Funx.Monad.Either.to_result(Funx.Monad.Either.right(5))
{:ok, 5}

iex> Funx.Monad.Either.to_result(Funx.Monad.Either.left("error"))
{:error, "error"}

 to_try!(arg1)

 @spec to_try!(t(left, right)) :: right | no_return() when left: term(), right: term()

Converts an Either to its inner value, raising an exception if it is Left.
If the Left holds an exception struct, it is raised directly. If it holds a string or list of errors, they are converted into a RuntimeError. Unexpected types are inspected and raised as a RuntimeError.
Examples
iex> Funx.Monad.Either.to_try!(Funx.Monad.Either.right(5))
5

iex> Funx.Monad.Either.to_try!(Funx.Monad.Either.left("error"))
** (RuntimeError) error

iex> Funx.Monad.Either.to_try!(Funx.Monad.Either.left(["error 1", "error 2"]))
** (RuntimeError) error 1, error 2

iex> Funx.Monad.Either.to_try!(Funx.Monad.Either.left(%ArgumentError{message: "bad argument"}))
** (ArgumentError) bad argument

 traverse(list, func)

 @spec traverse([a], (a -> t(error, b))) :: t(error, [b])
when a: term(), b: term(), error: term()

Traverses a list, applying the given function to each element and collecting the results in a single Right, or short-circuiting with the first Left.
This is useful for validating or transforming a list of values where each step may fail.
Examples
iex> Funx.Monad.Either.traverse([1, 2, 3], &Funx.Monad.Either.right/1)
%Funx.Monad.Either.Right{right: [1, 2, 3]}

iex> Funx.Monad.Either.traverse([1, -2, 3], fn x -> if x > 0, do: Funx.Monad.Either.right(x), else: Funx.Monad.Either.left("error") end)
%Funx.Monad.Either.Left{left: "error"}

 traverse_a(list, func)

 @spec traverse_a([a], (a -> t([e], b))) :: t([e], [b])
when a: term(), b: term(), e: term()

Traverses a list, applying the given function to each element and collecting the results in a single Right.
Unlike traverse/2, this version accumulates all Left values rather than stopping at the first failure.
It is useful for validations where you want to gather all errors at once.
Examples
iex> validate = fn x -> Funx.Monad.Either.lift_predicate(x, &(&1 > 0), fn v -> "must be positive: #{v}" end) end
iex> Funx.Monad.Either.traverse_a([1, 2, 3], validate)
%Funx.Monad.Either.Right{right: [1, 2, 3]}
iex> Funx.Monad.Either.traverse_a([1, -2, -3], validate)
%Funx.Monad.Either.Left{left: ["must be positive: -2", "must be positive: -3"]}

 validate(value, validators)

 @spec validate(
 value,
 validator | [validator]
) :: t([error], value)
when error: term(),
 value: term(),
 validator:
 (value -> t(error, any()))
 | (value, keyword() -> t(error, any()))
 | (value, keyword(), map() -> t(error, any()))

Validates a value using a list of validator functions. Each validator returns an Either.Right if
the check passes, or an Either.Left with an error message if it fails. If any validation fails,
all errors are aggregated and returned in a single Left.
Flat list aggregation
When using the default aggregation strategy, errors are collected in a plain list:
validate_positive = fn x ->
 Funx.Monad.Either.lift_predicate(x, &(&1 > 0), fn v -> "Value must be positive: " <> to_string(v) end)
end

validate_even = fn x ->
 Funx.Monad.Either.lift_predicate(x, &(rem(&1, 2) == 0), fn v -> "Value must be even: " <> to_string(v) end)
end

Funx.Monad.Either.validate(4, [validate_positive, validate_even])
#=> %Funx.Monad.Either.Right{right: 4}

Funx.Monad.Either.validate(3, [validate_positive, validate_even])
#=> %Funx.Monad.Either.Left{left: ["Value must be even: 3"]}

Funx.Monad.Either.validate(-3, [validate_positive, validate_even])
#=> %Funx.Monad.Either.Left{left: ["Value must be positive: -3", "Value must be even: -3"]}
Structured aggregation with ValidationError
You can also use a custom struct to hold errors. This example uses ValidationError and a corresponding
Funx.Semigroup implementation to accumulate errors into a single structure:
alias Funx.Errors.ValidationError

validate_positive = fn x ->
 Funx.Monad.Either.lift_predicate(x, &(&1 > 0), fn v -> "Value must be positive: " <> to_string(v) end)
 |> Funx.Monad.Either.map_left(&ValidationError.new/1)
end

validate_even = fn x ->
 Funx.Monad.Either.lift_predicate(x, &(rem(&1, 2) == 0), fn v -> "Value must be even: " <> to_string(v) end)
 |> Funx.Monad.Either.map_left(&ValidationError.new/1)
end

Funx.Monad.Either.validate(-3, [validate_positive, validate_even])
#=> %Funx.Monad.Either.Left{
left: %ValidationError{
errors: ["Value must be positive: -3", "Value must be even: -3"]
}
}

 validate(value, validators, opts)

 @spec validate(value, validator | [validator], keyword()) :: t([error], value)
when error: term(),
 value: term(),
 validator:
 (value -> t(error, any()))
 | (value, keyword() -> t(error, any()))
 | (value, keyword(), map() -> t(error, any()))

Validates a value using validators that accept options and environment.
Supports validators with arity 3: (value, opts, env) -> Either.t().
Also supports arity 1 and 2 for backwards compatibility.
Examples
Either.validate(%{name: "Alice"}, validator, env: %{db: conn})

 wither_a(list, func)

 @spec wither_a([a], (a -> t([e], Funx.Monad.Maybe.t(b)))) :: t([e], [b])
when a: term(), b: term(), e: term()

Traverses a list, applying the given function to each element, and collects the successful Just results into a single Right.
The given function must return an Either of Maybe. Right(Just x) values are kept; Right(Nothing) values are filtered out.
If any application returns Left, all Left values are accumulated.
This is useful for effectful filtering, where you want to validate or transform elements and conditionally keep them, while still reporting all errors.
Examples
iex> filter_positive = fn x ->
...> Funx.Monad.Either.lift_predicate(x, &is_integer/1, fn v -> "not an integer: #{inspect(v)}" end)
...> |> Funx.Monad.map(fn x -> if x > 0, do: Funx.Monad.Maybe.just(x), else: Funx.Monad.Maybe.nothing() end)
...> end
iex> Funx.Monad.Either.wither_a([1, -2, 3], filter_positive)
%Funx.Monad.Either.Right{right: [1, 3]}
iex> Funx.Monad.Either.wither_a(["oops", -2], filter_positive)
%Funx.Monad.Either.Left{left: ["not an integer: \"oops\""]}

Funx.Monad.Either.Dsl

Provides the either/2 macro for writing declarative pipelines in the Either context.
The DSL lets you express a sequence of operations that may fail without manually
threading values through bind, map, or map_left. Input is lifted into Either
automatically, each step runs in order, and the pipeline stops on the first error.
Supported Operations
	bind - for operations that return Either or result tuples
	map - for transformations that return plain values
	ap - for applying a function in an Either to a value in an Either
	Either functions: filter_or_else, or_else, map_left, flip
	Protocol functions: tap (via Funx.Tappable)
	Validation: validate for accumulating multiple errors

The result format is controlled by the :as option (:either, :tuple, or :raise).
Error Handling Strategy
Short-Circuit Behavior: The DSL uses fail-fast semantics. When any step returns
a Left value or {:error, reason} tuple, the pipeline stops immediately and
returns that error. Subsequent steps are never executed.
Example:
iex> defmodule GetUser do
...> use Funx.Monad.Either
...> alias Funx.Monad.Either
...> @behaviour Funx.Monad.Behaviour.Bind
...> def bind(_value, _opts, _env), do: Either.left("not found")
...> end
iex> defmodule CheckPermissions do
...> use Funx.Monad.Either
...> alias Funx.Monad.Either
...> @behaviour Funx.Monad.Behaviour.Bind
...> def bind(value, _opts, _env), do: Either.right(value)
...> end
iex> defmodule FormatUser do
...> @behaviour Funx.Monad.Behaviour.Map
...> def map(value, _opts, _env), do: "formatted: #{value}"
...> end
iex> use Funx.Monad.Either
iex> either 123 do
...> bind GetUser # Returns Left("not found")
...> bind CheckPermissions # Never runs
...> map FormatUser # Never runs
...> end
%Funx.Monad.Either.Left{left: "not found"}
Exception: The validate operation uses applicative semantics and accumulates
all validation errors before returning:
Example:
iex> use Funx.Monad.Either
iex> positive? = fn x -> if x > 0, do: Funx.Monad.Either.right(x), else: Funx.Monad.Either.left("not positive") end
iex> even? = fn x -> if rem(x, 2) == 0, do: Funx.Monad.Either.right(x), else: Funx.Monad.Either.left("not even") end
iex> less_than_100? = fn x -> if x < 100, do: Funx.Monad.Either.right(x), else: Funx.Monad.Either.left("too large") end
iex> either -5 do
...> validate [positive?, even?, less_than_100?]
...> end
%Funx.Monad.Either.Left{left: ["not positive", "not even"]}
Performance
The DSL compiles to direct function calls at compile time. There is no runtime
overhead for the DSL itself - it expands into the same code you would write manually
with bind, map, etc.
Example showing compile-time expansion:
iex> defmodule ParseInt do
...> use Funx.Monad.Either
...> alias Funx.Monad.Either
...> @behaviour Funx.Monad.Behaviour.Bind
...> def bind(value, _opts, _env) when is_binary(value) do
...> case Integer.parse(value) do
...> {int, ""} -> Either.right(int)
...> _ -> Either.left("invalid integer")
...> end
...> end
...> end
iex> defmodule Double do
...> @behaviour Funx.Monad.Behaviour.Map
...> def map(value, _opts, _env), do: value * 2
...> end
iex> use Funx.Monad.Either
iex> either "42" do
...> bind ParseInt
...> map Double
...> end
%Funx.Monad.Either.Right{right: 84}
Auto-lifting creates anonymous functions, but these are created at compile time,
not runtime. For performance-critical hot paths, you may prefer direct combinator
calls, but the difference is typically negligible.
Transformers
Transformers allow post-parse optimization and validation of pipelines:
either user_id, transformers: [MyCustomTransformer] do
 bind GetUser
 map Transform
end
Transformers run at compile time and create compile-time dependencies.
Example
either user_id, as: :tuple do
 bind Accounts.get_user()
 bind Policies.ensure_active()
 map fn user -> %{user: user} end
end
Auto-Lifting of Function Calls
The DSL automatically lifts certain function call patterns for convenience:
	Module.fun() becomes &Module.fun/1 (zero-arity qualified calls)
	Module.fun(arg) becomes fn x -> Module.fun(x, arg) end (partial application)

This is particularly useful in validator lists:
validate [Validator.positive?(), Validator.even?()]
Becomes: validate [&Validator.positive?/1, &Validator.even?/1]
This module defines the public DSL entry point. The macro expansion details and
internal rewrite rules are not part of the public API.

 Summary

 Functions

 either(input, list)

 either(input, opts, list)

 Functions

 either(input, list)

 (macro)

 either(input, opts, list)

 (macro)

Funx.Monad.Either.Left

[image: Run in Livebook]
Represents the Left variant of the Either monad, used to model an error or failure.
This module implements the following protocols:
	Funx.Eq: Defines equality checks between Left and other Either values.
	Funx.Foldable: Provides fold_l/3 and fold_r/3 to handle folding for Left values.
	Funx.Monad: Implements the bind/2, map/2, and ap/2 functions for monadic operations.
	Funx.Ord: Defines ordering logic for Left and Right values.

The Left monad propagates the wrapped error through operations without executing the success logic.

 Summary

 Types

 t(value)

 Functions

 pure(value)

 Creates a new Left value.

 Types

 t(value)

 @type t(value) :: %Funx.Monad.Either.Left{left: value}

 Functions

 pure(value)

 @spec pure(value) :: t(value) when value: term()

Creates a new Left value.
The pure/1 function wraps a value in the Left monad, representing an error or failure.
Examples
iex> Funx.Monad.Either.Left.pure("error")
%Funx.Monad.Either.Left{left: "error"}

Funx.Monad.Either.Right

[image: Run in Livebook]
Represents the Right variant of the Either monad, used to model a success or valid result.
This module implements the following protocols:
	Funx.Eq: Defines equality checks between Right and other Either values.
	Funx.Foldable: Provides fold_l/3 and fold_r/3 to handle folding for Right values.
	Funx.Monad: Implements the bind/2, map/2, and ap/2 functions for monadic operations.
	Funx.Ord: Defines ordering logic for Right and Left values.
	Funx.Tappable: Executes side effects on the contained value without modifying it.

The Right monad represents a valid result, and the contained value is propagated through operations.

 Summary

 Types

 t(value)

 Functions

 pure(value)

 Creates a new Right value.

 Types

 t(value)

 @type t(value) :: %Funx.Monad.Either.Right{right: value}

 Functions

 pure(value)

 @spec pure(value) :: t(value) when value: term()

Creates a new Right value.
The pure/1 function wraps a value in the Right monad, representing a valid result.
Examples
iex> Funx.Monad.Either.Right.pure(5)
%Funx.Monad.Either.Right{right: 5}

Funx.Monad.Identity

[image: Run in Livebook]
The Funx.Monad.Identity module represents the identity monad, where values are simply wrapped in a structure
and operations are applied directly to those values.
Functions
	pure/1: Wraps a value in the Identity monad.
	extract/1: Extracts the wrapped value from an Identity.

Protocols
This module implements the following protocols:
	Funx.Monad: Implements the bind/2, map/2, and ap/2 functions for monadic operations.
	Funx.Eq: Defines equality checks for Identity values.
	Funx.Ord: Defines ordering logic for Identity values.
	Funx.Tappable: Executes side effects on the wrapped value via Funx.Tappable.tap/2.
	String.Chars: Converts an Identity value into a string representation.

 Summary

 Types

 t(value)

 Functions

 extract(identity)

 Extracts the value from an Identity.

 lift_eq(custom_eq)

 lift_ord(custom_ord)

 pure(value)

 Creates a new Identity value by wrapping a given value.

 Types

 t(value)

 @type t(value) :: %Funx.Monad.Identity{value: value}

 Functions

 extract(identity)

 @spec extract(t(value)) :: value when value: term()

Extracts the value from an Identity.
Examples
iex> Funx.Monad.Identity.extract(Funx.Monad.Identity.pure(5))
5

 lift_eq(custom_eq)

 @spec lift_eq(Funx.Eq.eq_map()) :: Funx.Eq.eq_map()

 lift_ord(custom_ord)

 @spec lift_ord(Funx.Ord.ord_t()) :: Funx.Ord.ord_map()

 pure(value)

 @spec pure(value) :: t(value) when value: term()

Creates a new Identity value by wrapping a given value.
Examples
iex> Funx.Monad.Identity.pure(5)
%Funx.Monad.Identity{value: 5}

Funx.Monad.Maybe

[image: Run in Livebook]
The Funx.Monad.Maybe module provides an implementation of the Maybe monad, a functional abstraction used to represent optional values in Elixir.
A Maybe represents one of two possibilities:
	Just(value): the presence of a value
	Nothing: the absence of a value

This pattern is useful for eliminating nil checks and handling missing data explicitly and safely in functional pipelines.
Constructors
	just/1: Wraps a value in the Just variant.
	nothing/0: Returns a Nothing value.
	pure/1: Alias for just/1.

Refinement
	just?/1: Returns true if the value is a Just.
	nothing?/1: Returns true if the value is a Nothing.

Fallback and Extraction
	get_or_else/2: Returns the value from a Just, or a default if Nothing.
	or_else/2: Returns the original Just, or invokes a fallback function if Nothing.

List Operations
	concat/1: Removes all Nothing values and unwraps the Just values from a list.
	concat_map/2: Applies a function and collects only Just results.
	sequence/1: Converts a list of Maybe values into a single Maybe of list.
	traverse/2: Applies a function to each element in a list and sequences the results.

Lifting
	lift_predicate/2: Converts a value to Just if it meets a predicate, otherwise Nothing.
	lift_identity/1: Converts an Identity to a Maybe.
	lift_either/1: Converts an Either to a Maybe.
	lift_eq/1: Lifts an equality function for use in the Maybe context.
	lift_ord/1: Lifts an ordering function for use in the Maybe context.

Elixir Interoperability
	nil_iso/0: Returns the isomorphism between Maybe and nil values.
	from_nil/1: Converts nil to Nothing, otherwise wraps the value in Just (via nil_iso).
	to_nil/1: Returns the underlying value or nil (via nil_iso).
	result_iso/0: Returns the isomorphism between Maybe and result tuples.
	from_result/1: Converts {:ok, val} or {:error, _} into a Maybe (via result_iso).
	to_result/1: Converts a Maybe to a result tuple (via result_iso).
	from_try/1: Runs a function and returns Just on success, or Nothing if an exception is raised.
	to_try!/2: Unwraps a Just, or raises an error if Nothing.

Protocols
The Just and Nothing structs implement the following protocols, making the Maybe abstraction composable and extensible:
	Funx.Eq: Enables equality comparisons between Maybe values.
	Funx.Foldable: Implements fold_l/3 and fold_r/3 for reducing over the value or fallback.
	Funx.Filterable: Supports conditional retention with filter/2, guard/2, and filter_map/2.
	Funx.Monad: Provides map/2, ap/2, and bind/2 for monadic composition.
	Funx.Ord: Defines ordering behavior between Just and Nothing values.
	Funx.Tappable: Executes side effects on Just values via Funx.Tappable.tap/2, leaving Nothing unchanged.

Although these implementations are defined per constructor (Just and Nothing), the behavior is consistent across the Maybe abstraction.
This module helps you represent optional data explicitly, structure conditional logic safely, and eliminate reliance on nil in functional pipelines.
DSL Usage
You can use the Maybe DSL for clean monadic composition:
use Funx.Monad.Maybe

maybe input do
 bind ParseInt
 bind PositiveNumber
 map Double
end

 Summary

 Types

 t(value)

 Functions

 concat(list)

 Removes Nothing values from a list of Maybe and returns a list of unwrapped Just values.

 concat_map(list, func)

 Maps a function over a list, collecting unwrapped Just values and ignoring Nothing in a single pass.

 from_nil(value)

 Converts nil to Nothing; any other value becomes Just.

 from_result(result)

 Converts a result tuple to a Maybe. {:ok, value} becomes Just(value), while {:error, _} becomes Nothing.

 from_try(func)

 Executes a function within a Maybe context, returning Nothing if an exception occurs.

 get_or_else(maybe, default)

 Retrieves the value from a Maybe, returning default if Nothing.

 just(value)

 Wraps a value in Just.

 just?(arg1)

 Returns true if the Maybe is Just, otherwise false.

 lift_either(either)

 Converts an Either to a Maybe. Right becomes Just, and Left becomes Nothing.

 lift_eq(custom_eq)

 Lifts an equality function to compare Maybe values

 lift_identity(identity)

 Converts an Identity value into a Maybe. If the value is nil, returns Nothing; otherwise Just.

 lift_ord(custom_ord)

 Adapts an ordering function to compare Maybe values

 lift_predicate(value, predicate)

 Lifts a value into Maybe based on a predicate. If predicate.(value) is true, returns Just(value); otherwise Nothing.

 nil_iso()

 Returns the isomorphism between Maybe and nil values.

 nothing()

 Returns a Nothing value.

 nothing?(arg1)

 Returns true if the Maybe is Nothing, otherwise false.

 or_else(just, fallback_fun)

 Returns the current Just value or invokes the fallback_fun if Nothing.

 pure(value)

 Alias for just/1.

 result_iso()

 Returns the isomorphism between Maybe and Elixir result tuples.

 sequence(list)

 Converts a list of Maybe values into a Maybe containing a list. If any element is Nothing, the entire result is Nothing.

 to_nil(maybe)

 Converts a Maybe to its wrapped value or nil.

 to_predicate(maybe)

 Returns true if the given Maybe is a Just, or false if it is Nothing.

 to_result(maybe)

 Converts a Maybe to a result tuple. Just(value) becomes {:ok, value}, while Nothing becomes {:error, :nothing}.

 to_try!(maybe, error_or_message \\ "Nothing value encountered")

 Extracts a value from a Maybe, raising an exception if Nothing.

 traverse(list, func)

 Applies a function to each element of a list, collecting results into a single Maybe. If any call returns Nothing, the operation halts and returns Nothing.

 Types

 t(value)

 @type t(value) :: Funx.Monad.Maybe.Just.t(value) | Funx.Monad.Maybe.Nothing.t()

 Functions

 concat(list)

 @spec concat([t(output)]) :: [output] when output: any()

Removes Nothing values from a list of Maybe and returns a list of unwrapped Just values.
Examples
iex> Funx.Monad.Maybe.concat([Funx.Monad.Maybe.pure(1), Funx.Monad.Maybe.nothing(), Funx.Monad.Maybe.pure(2)])
[1, 2]

iex> Funx.Monad.Maybe.concat([Funx.Monad.Maybe.nothing(), Funx.Monad.Maybe.nothing()])
[]

iex> Funx.Monad.Maybe.concat([Funx.Monad.Maybe.pure("a"), Funx.Monad.Maybe.pure("b"), Funx.Monad.Maybe.pure("c")])
["a", "b", "c"]

 concat_map(list, func)

 @spec concat_map([input], (input -> t(output))) :: [output]
when input: any(), output: any()

Maps a function over a list, collecting unwrapped Just values and ignoring Nothing in a single pass.
Examples
iex> Funx.Monad.Maybe.concat_map([1, 2, 3, 4], fn x ->
...> if rem(x, 2) == 0, do: Funx.Monad.Maybe.pure(x), else: Funx.Monad.Maybe.nothing()
...> end)
[2, 4]

iex> Funx.Monad.Maybe.concat_map([1, nil, 3], fn
...> nil -> Funx.Monad.Maybe.nothing()
...> x -> Funx.Monad.Maybe.pure(x * 2)
...> end)
[2, 6]

iex> Funx.Monad.Maybe.concat_map([1, 2, 3], fn x -> Funx.Monad.Maybe.pure(x + 1) end)
[2, 3, 4]

iex> Funx.Monad.Maybe.concat_map([], fn x -> Funx.Monad.Maybe.pure(x) end)
[]

 from_nil(value)

 @spec from_nil(nil | value) :: t(value) when value: term()

Converts nil to Nothing; any other value becomes Just.
Implemented via the Maybe <-> nil isomorphism.
Examples
iex> Funx.Monad.Maybe.from_nil(nil)
%Funx.Monad.Maybe.Nothing{}

iex> Funx.Monad.Maybe.from_nil(5)
%Funx.Monad.Maybe.Just{value: 5}

 from_result(result)

 @spec from_result({:ok, right} | {:error, term()}) :: t(right) when right: term()

Converts a result tuple to a Maybe. {:ok, value} becomes Just(value), while {:error, _} becomes Nothing.
Implemented via the Maybe <-> result tuple isomorphism.
Examples
iex> Funx.Monad.Maybe.from_result({:ok, 5})
%Funx.Monad.Maybe.Just{value: 5}

iex> Funx.Monad.Maybe.from_result({:error, :something})
%Funx.Monad.Maybe.Nothing{}

 from_try(func)

 @spec from_try((-> right)) :: t(right) when right: term()

Executes a function within a Maybe context, returning Nothing if an exception occurs.
Examples
iex> Funx.Monad.Maybe.from_try(fn -> 5 end)
%Funx.Monad.Maybe.Just{value: 5}

iex> Funx.Monad.Maybe.from_try(fn -> raise "error" end)
%Funx.Monad.Maybe.Nothing{}

 get_or_else(maybe, default)

 @spec get_or_else(t(value), value) :: value when value: var

Retrieves the value from a Maybe, returning default if Nothing.
Examples
iex> Funx.Monad.Maybe.get_or_else(Funx.Monad.Maybe.just(5), 0)
5

iex> Funx.Monad.Maybe.get_or_else(Funx.Monad.Maybe.nothing(), 0)
0

 just(value)

 @spec just(any()) :: Funx.Monad.Maybe.Just.t(any())

Wraps a value in Just.
Examples
iex> Funx.Monad.Maybe.just(2)
%Funx.Monad.Maybe.Just{value: 2}

 just?(arg1)

 @spec just?(t(any())) :: boolean()

Returns true if the Maybe is Just, otherwise false.
Examples
iex> Funx.Monad.Maybe.just?(Funx.Monad.Maybe.just(5))
true

iex> Funx.Monad.Maybe.just?(Funx.Monad.Maybe.nothing())
false

 lift_either(either)

Converts an Either to a Maybe. Right becomes Just, and Left becomes Nothing.
Examples
iex> Funx.Monad.Maybe.lift_either(Funx.Monad.Either.right(5))
%Funx.Monad.Maybe.Just{value: 5}

iex> Funx.Monad.Maybe.lift_either(Funx.Monad.Either.left("Error"))
%Funx.Monad.Maybe.Nothing{}

 lift_eq(custom_eq)

 @spec lift_eq(Funx.Eq.eq_t()) :: Funx.Eq.eq_map()

Lifts an equality function to compare Maybe values:
	Just vs Just: Uses the custom equality function.
	Nothing vs Nothing: Always true.
	Just vs Nothing or vice versa: Always false.

Examples
iex> eq = Funx.Monad.Maybe.lift_eq(%{
...> eq?: fn x, y -> x == y end,
...> not_eq?: fn x, y -> x != y end
...> })
iex> eq.eq?.(Funx.Monad.Maybe.just(5), Funx.Monad.Maybe.just(5))
true
iex> eq.eq?.(Funx.Monad.Maybe.just(5), Funx.Monad.Maybe.just(10))
false
iex> eq.eq?.(Funx.Monad.Maybe.nothing(), Funx.Monad.Maybe.nothing())
true
iex> eq.eq?.(Funx.Monad.Maybe.just(5), Funx.Monad.Maybe.nothing())
false

 lift_identity(identity)

Converts an Identity value into a Maybe. If the value is nil, returns Nothing; otherwise Just.
Examples
iex> Funx.Monad.Maybe.lift_identity(Funx.Monad.Identity.pure(5))
%Funx.Monad.Maybe.Just{value: 5}

iex> Funx.Monad.Maybe.lift_identity(Funx.Monad.Identity.pure(nil))
%Funx.Monad.Maybe.Nothing{}

 lift_ord(custom_ord)

 @spec lift_ord(Funx.Ord.ord_t()) :: Funx.Ord.ord_map()

Adapts an ordering function to compare Maybe values:
	Nothing is considered less than any Just.
	Two Just values are compared by the provided function.

Examples
iex> ord = Funx.Monad.Maybe.lift_ord(%{
...> lt?: &</2,
...> le?: &<=/2,
...> gt?: &>/2,
...> ge?: &>=/2
...> })
iex> ord.lt?.(Funx.Monad.Maybe.just(3), Funx.Monad.Maybe.just(5))
true
iex> ord.lt?.(Funx.Monad.Maybe.nothing(), Funx.Monad.Maybe.just(5))
true

 lift_predicate(value, predicate)

 @spec lift_predicate(term(), (term() -> boolean())) :: t(term())

Lifts a value into Maybe based on a predicate. If predicate.(value) is true, returns Just(value); otherwise Nothing.
Examples
iex> Funx.Monad.Maybe.lift_predicate(5, fn x -> x > 3 end)
%Funx.Monad.Maybe.Just{value: 5}

iex> Funx.Monad.Maybe.lift_predicate(2, fn x -> x > 3 end)
%Funx.Monad.Maybe.Nothing{}

 nil_iso()

 @spec nil_iso() :: Funx.Optics.Iso.t()

Returns the isomorphism between Maybe and nil values.
This iso witnesses that Maybe and nil | value are equivalent representations.
Examples
iex> iso = Funx.Monad.Maybe.nil_iso()
iex> Funx.Optics.Iso.view(nil, iso)
%Funx.Monad.Maybe.Nothing{}
iex> Funx.Optics.Iso.view(42, iso)
%Funx.Monad.Maybe.Just{value: 42}
iex> Funx.Optics.Iso.review(%Funx.Monad.Maybe.Just{value: 42}, iso)
42
iex> Funx.Optics.Iso.review(%Funx.Monad.Maybe.Nothing{}, iso)
nil

 nothing()

 @spec nothing() :: Funx.Monad.Maybe.Nothing.t()

Returns a Nothing value.
Examples
iex> Funx.Monad.Maybe.nothing()
%Funx.Monad.Maybe.Nothing{}

 nothing?(arg1)

 @spec nothing?(t(any())) :: boolean()

Returns true if the Maybe is Nothing, otherwise false.
Examples
iex> Funx.Monad.Maybe.nothing?(Funx.Monad.Maybe.nothing())
true

iex> Funx.Monad.Maybe.nothing?(Funx.Monad.Maybe.just(5))
false

 or_else(just, fallback_fun)

 @spec or_else(t(value), (-> t(value))) :: t(value)

Returns the current Just value or invokes the fallback_fun if Nothing.
Examples
iex> Funx.Monad.Maybe.or_else(Funx.Monad.Maybe.nothing(), fn -> Funx.Monad.Maybe.just(42) end)
%Funx.Monad.Maybe.Just{value: 42}

iex> Funx.Monad.Maybe.or_else(Funx.Monad.Maybe.just(10), fn -> Funx.Monad.Maybe.just(42) end)
%Funx.Monad.Maybe.Just{value: 10}

 pure(value)

 @spec pure(any()) :: Funx.Monad.Maybe.Just.t(any())

Alias for just/1.
Examples
iex> Funx.Monad.Maybe.pure(5)
%Funx.Monad.Maybe.Just{value: 5}

 result_iso()

 @spec result_iso() :: Funx.Optics.Iso.t()

Returns the isomorphism between Maybe and Elixir result tuples.
This iso witnesses that Maybe and {:ok, _} | {:error, :nothing} are equivalent representations.
Examples
iex> iso = Funx.Monad.Maybe.result_iso()
iex> Funx.Optics.Iso.view({:ok, 42}, iso)
%Funx.Monad.Maybe.Just{value: 42}
iex> Funx.Optics.Iso.view({:error, :nothing}, iso)
%Funx.Monad.Maybe.Nothing{}
iex> Funx.Optics.Iso.review(%Funx.Monad.Maybe.Just{value: 42}, iso)
{:ok, 42}
iex> Funx.Optics.Iso.review(%Funx.Monad.Maybe.Nothing{}, iso)
{:error, :nothing}

 sequence(list)

 @spec sequence([t(value)]) :: t([value]) when value: any()

Converts a list of Maybe values into a Maybe containing a list. If any element is Nothing, the entire result is Nothing.
Examples
iex> Funx.Monad.Maybe.sequence([Funx.Monad.Maybe.just(1), Funx.Monad.Maybe.just(2)])
%Funx.Monad.Maybe.Just{value: [1, 2]}

iex> Funx.Monad.Maybe.sequence([Funx.Monad.Maybe.just(1), Funx.Monad.Maybe.nothing()])
%Funx.Monad.Maybe.Nothing{}

 to_nil(maybe)

 @spec to_nil(t(value)) :: nil | value when value: term()

Converts a Maybe to its wrapped value or nil.
Implemented via the Maybe <-> nil isomorphism.
Examples
iex> Funx.Monad.Maybe.to_nil(Funx.Monad.Maybe.just(5))
5

iex> Funx.Monad.Maybe.to_nil(Funx.Monad.Maybe.nothing())
nil

 to_predicate(maybe)

 @spec to_predicate(t(any())) :: boolean()

Returns true if the given Maybe is a Just, or false if it is Nothing.
This provides a simple way to treat a Maybe as a boolean condition, useful when filtering or making branching decisions based on presence.
Examples
iex> Funx.Monad.Maybe.to_predicate(Funx.Monad.Maybe.just(42))
true

iex> Funx.Monad.Maybe.to_predicate(Funx.Monad.Maybe.nothing())
false
Raises an error if the input is not a Just or Nothing.

 to_result(maybe)

 @spec to_result(t(right)) :: {:ok, right} | {:error, :nothing} when right: term()

Converts a Maybe to a result tuple. Just(value) becomes {:ok, value}, while Nothing becomes {:error, :nothing}.
Implemented via the Maybe <-> result tuple isomorphism.
Examples
iex> Funx.Monad.Maybe.to_result(Funx.Monad.Maybe.just(5))
{:ok, 5}

iex> Funx.Monad.Maybe.to_result(Funx.Monad.Maybe.nothing())
{:error, :nothing}

 to_try!(maybe, error_or_message \\ "Nothing value encountered")

 @spec to_try!(t(right), String.t() | atom() | Exception.t()) :: right | no_return()
when right: term()

Extracts a value from a Maybe, raising an exception if Nothing.
The second parameter can be:
	A string message (raises RuntimeError)
	An exception module (e.g., Enum.EmptyError)
	An exception struct (e.g., %ArgumentError{message: "custom"})

Examples
iex> Funx.Monad.Maybe.to_try!(Funx.Monad.Maybe.just(5))
5

iex> Funx.Monad.Maybe.to_try!(Funx.Monad.Maybe.nothing(), "No value found")
** (RuntimeError) No value found

iex> Funx.Monad.Maybe.to_try!(Funx.Monad.Maybe.nothing(), Enum.EmptyError)
** (Enum.EmptyError) empty error

iex> Funx.Monad.Maybe.to_try!(Funx.Monad.Maybe.nothing(), %ArgumentError{message: "missing value"})
** (ArgumentError) missing value

 traverse(list, func)

 @spec traverse([input], (input -> t(output))) :: t([output])
when input: any(), output: any()

Applies a function to each element of a list, collecting results into a single Maybe. If any call returns Nothing, the operation halts and returns Nothing.
Examples
iex> Funx.Monad.Maybe.traverse([1, 2], fn x -> Funx.Monad.Maybe.just(x * 2) end)
%Funx.Monad.Maybe.Just{value: [2, 4]}

iex> Funx.Monad.Maybe.traverse([1, nil, 3], fn
...> nil -> Funx.Monad.Maybe.nothing()
...> x -> Funx.Monad.Maybe.just(x * 2)
...> end)
%Funx.Monad.Maybe.Nothing{}

Funx.Monad.Maybe.Dsl

Provides the maybe/2 macro for writing declarative pipelines in the Maybe context.
The DSL lets you express a sequence of operations that may return nothing without manually
threading values through bind, map, or filter. Input is lifted into Maybe
automatically, each step runs in order, and the pipeline stops on the first Nothing.
Supported Operations
	bind - for operations that return Maybe, Either, result tuples, or nil
	map - for transformations that return plain values
	ap - for applying a function in a Maybe to a value in a Maybe
	Maybe functions: or_else
	Protocol functions: tap (via Funx.Tappable), filter, filter_map, guard (via Funx.Filterable)

The result format is controlled by the :as option (:maybe, :raise, or :nil).
Short-Circuit Behavior
The DSL uses fail-fast semantics. When any step returns a Nothing value, Either.Left, {:error, _} tuple, or nil,
the pipeline stops immediately and returns Nothing. Subsequent steps are never executed.
Example:
iex> defmodule GetUser do
...> use Funx.Monad.Maybe
...> @behaviour Funx.Monad.Behaviour.Bind
...> def bind(_value, _opts, _env), do: nothing()
...> end
iex> defmodule CheckPermissions do
...> use Funx.Monad.Maybe
...> @behaviour Funx.Monad.Behaviour.Bind
...> def bind(value, _opts, _env), do: just(value)
...> end
iex> defmodule FormatUser do
...> @behaviour Funx.Monad.Behaviour.Map
...> def map(value, _opts, _env), do: "formatted: #{value}"
...> end
iex> use Funx.Monad.Maybe
iex> maybe 123 do
...> bind GetUser # Returns Nothing
...> bind CheckPermissions # Never runs
...> map FormatUser # Never runs
...> end
%Funx.Monad.Maybe.Nothing{}
Performance
The DSL compiles to direct function calls at compile time. There is no runtime
overhead for the DSL itself - it expands into the same code you would write manually
with bind, map, etc.
Example showing compile-time expansion:
iex> defmodule ParseInt do
...> use Funx.Monad.Maybe
...> @behaviour Funx.Monad.Behaviour.Bind
...> def bind(value, _opts, _env) when is_binary(value) do
...> case Integer.parse(value) do
...> {int, ""} -> just(int)
...> _ -> nothing()
...> end
...> end
...> end
iex> defmodule Double do
...> @behaviour Funx.Monad.Behaviour.Map
...> def map(value, _opts, _env), do: value * 2
...> end
iex> use Funx.Monad.Maybe
iex> maybe "42" do
...> bind ParseInt
...> map Double
...> end
%Funx.Monad.Maybe.Just{value: 84}
Auto-lifting creates anonymous functions, but these are created at compile time,
not runtime. For performance-critical hot paths, you may prefer direct combinator
calls, but the difference is typically negligible.
Transformers
Transformers allow post-parse optimization and validation of pipelines:
maybe user_id, transformers: [MyCustomTransformer] do
 bind GetUser
 map Transform
end
Transformers run at compile time and create compile-time dependencies.
Example
maybe user_id, as: :nil do
 bind Accounts.get_user()
 bind Policies.ensure_active()
 map fn user -> %{user: user} end
end
Auto-Lifting of Function Calls
The DSL automatically lifts certain function call patterns for convenience:
	Module.fun() becomes &Module.fun/1 (zero-arity qualified calls)
	Module.fun(arg) becomes fn x -> Module.fun(x, arg) end (partial application)

This is particularly useful in filter operations:
filter &Validator.positive?/1
This module defines the public DSL entry point. The macro expansion details and
internal rewrite rules are not part of the public API.

 Summary

 Functions

 maybe(input, list)

 maybe(input, opts, list)

 Functions

 maybe(input, list)

 (macro)

 maybe(input, opts, list)

 (macro)

Funx.Monad.Maybe.Just

[image: Run in Livebook]
Represents the Just variant of the Maybe monad, used to model the presence of a value.
A Just wraps a single value and participates in functional composition by propagating the contained value through monadic operations.
This module implements the following protocols:
	Funx.Monad: Implements bind/2, map/2, and ap/2 for monadic composition.
	Funx.Foldable: Provides fold_l/3 and fold_r/3 to fold over the wrapped value.
	Funx.Filterable: Supports filtering with filter/2, filter_map/2, and guard/2.
	Funx.Eq: Enables equality checks between Just and other Maybe values.
	Funx.Ord: Defines ordering behavior between Just and Nothing.
	Funx.Tappable: Executes side effects on the wrapped value via Funx.Tappable.tap/2.

These protocol implementations allow Just to participate in structured computation, validation, filtering, and comparison within the Maybe context.

 Summary

 Types

 t(value)

 Functions

 pure(value)

 Creates a new Just value.

 Types

 t(value)

 @type t(value) :: %Funx.Monad.Maybe.Just{value: value}

 Functions

 pure(value)

 @spec pure(value) :: t(value) when value: term()

Creates a new Just value.
The pure/1 function wraps a value in the Just monad, representing the presence of the value.
Examples
iex> Funx.Monad.Maybe.Just.pure(5)
%Funx.Monad.Maybe.Just{value: 5}
Raises
	ArgumentError if nil is provided.
 iex> Funx.Monad.Maybe.Just.pure(nil)
 ** (ArgumentError) Cannot wrap nil in a Just

Funx.Monad.Maybe.Nothing

[image: Run in Livebook]
Represents the Nothing variant of the Maybe monad, used to model the absence of a value.
A Nothing indicates that no value is present. All operations in the monad context simply propagate the absence, making Nothing an identity for failure or emptiness.
This module implements the following protocols:
	Funx.Monad: Implements bind/2, map/2, and ap/2, all of which return Nothing.
	Funx.Foldable: Provides fold_l/3 and fold_r/3, invoking the fallback function when folding.
	Funx.Filterable: Supports filtering operations, which always return Nothing.
	Funx.Eq: Enables equality checks between Nothing and other Maybe values.
	Funx.Ord: Defines ordering behavior between Nothing and Just.
	Funx.Tappable: Returns Nothing unchanged without executing the tap function.

These implementations ensure that Nothing behaves consistently in functional composition, filtering, and comparison, treating absence as a stable and composable case.

 Summary

 Types

 t()

 Functions

 pure()

 Creates a new Nothing value.

 Types

 t()

 @type t() :: %Funx.Monad.Maybe.Nothing{}

 Functions

 pure()

 @spec pure() :: t()

Creates a new Nothing value.
Examples
iex> Funx.Monad.Maybe.Nothing.pure()
%Funx.Monad.Maybe.Nothing{}

Funx.Monad.Reader

[image: Run in Livebook]
The Funx.Monad.Reader module represents the Reader monad, which allows computations to access
shared, read-only environment values.
This module defines core Reader functions:
	pure/1 – Lifts a value into the Reader context.
	run/2 – Executes the Reader with a given environment.
	asks/1 – Extracts and transforms a value from the environment.
	ask/0 – Extracts the full environment.

This module implements the following protocols:
	Funx.Monad: Implements bind/2, map/2, and ap/2 for monadic composition.
	Funx.Tappable: Executes side effects on the computed value via Funx.Tappable.tap/2.

Note: The Reader monad does not implement Eq or Ord, since Readers are lazy— they do not actually contain a value until they are run. We only can compare the results of a Reader, not the Reader itself.

 Summary

 Types

 t(env, value)

 Functions

 ask()

 Extracts the value contained in the environment, making it available within the Reader context.

 asks(func)

 Extracts and transforms the value contained in the environment, making it available within the Reader context.

 pure(value)

 Lifts a value into the Reader context.

 run(reader, env)

 Runs the Reader with the provided environment, returning the computed value.

 Types

 t(env, value)

 @type t(env, value) :: %Funx.Monad.Reader{run: (env -> value)}

 Functions

 ask()

 @spec ask() :: t(Env, Env)

Extracts the value contained in the environment, making it available within the Reader context.
Examples
iex> reader = Funx.Monad.Reader.ask()
iex> Funx.Monad.Reader.run(reader, %{foo: "bar"})
%{foo: "bar"}

 asks(func)

 @spec asks(func :: (Env -> A)) :: t(Env, A)

Extracts and transforms the value contained in the environment, making it available within the Reader context.
Examples
iex> reader = Funx.Monad.Reader.asks(fn env -> Map.get(env, :foo) end)
iex> Funx.Monad.Reader.run(reader, %{foo: "bar"})
"bar"

 pure(value)

 @spec pure(value :: A) :: t(any(), A)

Lifts a value into the Reader context.
Examples
iex> reader = Funx.Monad.Reader.pure(42)
iex> Funx.Monad.Reader.run(reader, %{})
42

 run(reader, env)

 @spec run(t(Env, A), Env) :: A

Runs the Reader with the provided environment, returning the computed value.
Examples
iex> reader = Funx.Monad.Reader.pure(42)
iex> Funx.Monad.Reader.run(reader, %{})
42

Funx.Monad.Writer

[image: Run in Livebook]
The Funx.Monad.Writer module defines the Writer monad, which threads a log alongside a computed result.
Logs are accumulated using a Monoid implementation, injected lazily at runtime. This makes the Writer monad flexible and monoid-polymorphic—supporting lists, strings, or any user-defined monoid.
Core functions
	pure/1 – Wraps a result with an empty log.
	writer/1 – Wraps a result and an explicit log.
	tell/1 – Emits a log with no result.
	listen/1 – Returns both result and log as a pair.
	censor/2 – Applies a function to transform the final log.
	pass/1 – Uses a log-transforming function returned from within the computation.
	run/2 – Executes the Writer and returns a %Writer.Result{} with result and log.
	eval/2 – Executes and returns only the result.
	exec/2 – Executes and returns only the log.

By default, the ListConcat monoid is used unless a different monoid is passed to run, eval, or exec.
This module implements the following protocols:
	Funx.Monad: Implements bind/2, map/2, and ap/2 for monadic composition.
	Funx.Tappable: Executes side effects on the computed value via Funx.Tappable.tap/2.

 Summary

 Types

 t(a)

 Represents a computation that produces a result along with a log,
accumulated using a monoid.

 Functions

 censor(writer, f)

 Transforms the final log by applying a function to it.

 eval(writer, monoid \\ %ListConcat{})

 Executes the Writer and returns only the final result value.

 exec(writer, monoid \\ %ListConcat{})

 Executes the Writer and returns only the final accumulated log.

 listen(writer)

 Captures the current log and returns it alongside the result.

 pass(writer)

 Applies a log-transforming function that is returned from within the computation.

 pure(value)

 Wraps a value with no log.

 run(writer, monoid \\ %ListConcat{})

 Executes the Writer and returns both the result and the final accumulated log.

 tell(raw_log)

 Appends a log value using the monoid, returning :ok as the result.

 writer(arg)

 Wraps both a value and a raw log into the Writer context.

 Types

 t(a)

 @type t(a) :: %Funx.Monad.Writer{writer: (term() -> {a, term()})}

Represents a computation that produces a result along with a log,
accumulated using a monoid.
The internal writer function takes an initial monoid and returns
a {value, monoid} tuple, where the monoid contains the accumulated log.

 Functions

 censor(writer, f)

 @spec censor(t(a), (term() -> term())) :: t(a) when a: term()

Transforms the final log by applying a function to it.
The result remains unchanged—only the log is modified.
Example
iex> writer = Funx.Monad.Writer.writer({"ok", [:a, :b]})
iex> censored = Funx.Monad.Writer.censor(writer, fn log -> Enum.reverse(log) end)
iex> result = Funx.Monad.Writer.run(censored)
iex> result.value
"ok"
iex> result.log
[:b, :a]

 eval(writer, monoid \\ %ListConcat{})

 @spec eval(t(a), monoid) :: a when a: term(), monoid: term()

Executes the Writer and returns only the final result value.
Uses ListConcat by default.
Example
iex> writer =
...> Funx.Monad.Writer.writer({10, [:init]})
...> |> Funx.Monad.bind(fn x ->
...> Funx.Monad.Writer.tell([:logged])
...> |> Funx.Monad.bind(fn _ -> Funx.Monad.Writer.pure(x * 2) end)
...> end)
iex> Funx.Monad.Writer.eval(writer)
20

 exec(writer, monoid \\ %ListConcat{})

 @spec exec(t(a), monoid) :: log when a: term(), monoid: term(), log: term()

Executes the Writer and returns only the final accumulated log.
Uses ListConcat by default.
Example
iex> writer =
...> Funx.Monad.Writer.writer({:ok, [:step1]})
...> |> Funx.Monad.bind(fn _ -> Funx.Monad.Writer.tell([:step2]) end)
iex> Funx.Monad.Writer.exec(writer)
[:step1, :step2]

 listen(writer)

 @spec listen(t(a)) :: t({a, log}) when a: term(), log: term()

Captures the current log and returns it alongside the result.
The log remains unchanged—only the result is modified to include it.
Example
iex> writer = Funx.Monad.Writer.writer({"done", [:start, :finish]})
iex> listened = Funx.Monad.Writer.listen(writer)
iex> result = Funx.Monad.Writer.run(listened)
iex> result.value
{"done", [:start, :finish]}
iex> result.log
[:start, :finish]

 pass(writer)

 @spec pass(t({a, (log -> log)})) :: t(a) when a: term(), log: term()

Applies a log-transforming function that is returned from within the computation.
This allows the result of a computation to include not only a value, but also
a function that modifies the final accumulated log.
The input to pass/1 must be a Writer containing a tuple {result, f}, where
f is a function from log to log. This function will be applied to the final log
just before it's returned.
Example
iex> result =
...> Funx.Monad.Writer.pure({"done", fn log -> log ++ [:transformed] end})
...> |> Funx.Monad.Writer.pass()
...> |> Funx.Monad.Writer.run()
iex> result.value
"done"
iex> result.log
[:transformed]

 pure(value)

 @spec pure(a) :: t(a) when a: term()

Wraps a value with no log.
Example
iex> writer = Funx.Monad.Writer.pure(42)
iex> result = Funx.Monad.Writer.run(writer)
iex> result.value
42
iex> result.log
[]

 run(writer, monoid \\ %ListConcat{})

 @spec run(t(a), monoid) :: Funx.Monad.Writer.Result.t(a, log)
when a: term(), log: term(), monoid: term()

Executes the Writer and returns both the result and the final accumulated log.
By default, it uses ListConcat unless a monoid is explicitly passed.
Example
iex> writer = Funx.Monad.Writer.writer({"ok", [:a, :b]})
iex> result = Funx.Monad.Writer.run(writer)
iex> result.value
"ok"
iex> result.log
[:a, :b]

 tell(raw_log)

 @spec tell(log) :: t(:ok) when log: term()

Appends a log value using the monoid, returning :ok as the result.
Example
iex> writer = Funx.Monad.Writer.tell([:event])
iex> result = Funx.Monad.Writer.run(writer)
iex> result.value
:ok
iex> result.log
[:event]

 writer(arg)

 @spec writer({a, term()}) :: t(a) when a: term()

Wraps both a value and a raw log into the Writer context.
Example
iex> writer = Funx.Monad.Writer.writer({:ok, [:step1, :step2]})
iex> result = Funx.Monad.Writer.run(writer)
iex> result.value
:ok
iex> result.log
[:step1, :step2]

Funx.Monad.Writer.Result

[image: Run in Livebook]
Represents the result of running a Writer computation:
the final value and the accumulated monoid.

 Summary

 Types

 t(a, l)

 Types

 t(a, l)

 @type t(a, l) :: %Funx.Monad.Writer.Result{log: l, value: a}

Funx.Monoid protocol

[image: Run in Livebook]
A protocol defining the Monoid algebraic structure, which consists of
an identity element and an associative binary operation for combining values.
This protocol provides four key functions:
	empty/1: Returns the identity element for the given monoid.
	append/2: Combines two monoid structs.
	wrap/2: Wraps a value into the monoid struct.
	unwrap/1: Extracts the underlying value from the monoid struct.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 append(monoid_struct_a, monoid_struct_b)

 Combines two monoid structs.

 empty(monoid_struct)

 Returns the identity element for the given monoid struct.

 unwrap(monoid_struct)

 Extracts the underlying value from the monoid struct.

 wrap(monoid_struct, value)

 Wraps a value into the given monoid struct.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 append(monoid_struct_a, monoid_struct_b)

 @spec append(t(), t()) :: t()

Combines two monoid structs.
The operation must satisfy associativity:
append(append(a, b), c) == append(a, append(b, c))
Examples
iex> Funx.Monoid.append(%Funx.Monoid.Sum{value: 1}, %Funx.Monoid.Sum{value: 2})
%Funx.Monoid.Sum{value: 3}

 empty(monoid_struct)

 @spec empty(t()) :: t()

Returns the identity element for the given monoid struct.
The identity element is a special value that satisfies the property:
append(empty(monoid_struct), x) == x
append(x, empty(monoid_struct)) == x
Examples
iex> Funx.Monoid.empty(%Funx.Monoid.Sum{})
%Funx.Monoid.Sum{value: 0}

 unwrap(monoid_struct)

 @spec unwrap(t()) :: any()

Extracts the underlying value from the monoid struct.
Examples
iex> Funx.Monoid.unwrap(%Funx.Monoid.Sum{value: 10})
10

 wrap(monoid_struct, value)

 @spec wrap(t(), any()) :: t()

Wraps a value into the given monoid struct.
Examples
iex> Funx.Monoid.wrap(%Funx.Monoid.Sum{}, 10)
%Funx.Monoid.Sum{value: 10}

Funx.Monoid.Eq.All

[image: Run in Livebook]
A Monoid implementation for equality checks for All.

 Summary

 Types

 t()

 Functions

 default_eq?(_, _)

 default_not_eq?(_, _)

 Types

 t()

 @type t() :: %Funx.Monoid.Eq.All{
 eq?: (any(), any() -> boolean()),
 not_eq?: (any(), any() -> boolean())
}

 Functions

 default_eq?(_, _)

 default_not_eq?(_, _)

Funx.Monoid.Eq.Any

[image: Run in Livebook]
A Monoid implementation for equality checks for Any.

 Summary

 Types

 t()

 Functions

 default_eq?(_, _)

 default_not_eq?(_, _)

 Types

 t()

 @type t() :: %Funx.Monoid.Eq.Any{
 eq?: (any(), any() -> boolean()),
 not_eq?: (any(), any() -> boolean())
}

 Functions

 default_eq?(_, _)

 default_not_eq?(_, _)

Funx.Monoid.ListConcat

[image: Run in Livebook]
A Monoid implementation for concatenating lists.
This monoid uses list concatenation as its associative operation
and [] as the identity element.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Funx.Monoid.ListConcat{value: list()}

Funx.Monoid.Max

[image: Run in Livebook]
A Monoid implementation for maximum values.

Funx.Monoid.Min

[image: Run in Livebook]
A Monoid implementation for minimum values.

Funx.Monoid.Optics.IsoCompose

The Funx.Monoid.Optics.IsoCompose module provides a monoid wrapper for sequential iso composition.
This wrapper allows isos to be used with generic monoid operations like m_concat/2 and m_append/3,
enabling functional composition of multiple isos into a single bidirectional transformation.
Wrapping and Unwrapping
	new/1: Wraps an iso in an IsoCompose monoid.
	unwrap/1: Extracts the iso from an IsoCompose wrapper.

Monoid Operations (via protocol)
	empty/1: Returns the identity iso (both directions are identity).
	append/2: Composes two isos sequentially.
	wrap/2: Wraps an iso value into the monoid.

Examples
iex> alias Funx.Monoid.Optics.IsoCompose
iex> alias Funx.Optics.Iso
iex> isos = [
...> Iso.make(
...> fn s -> String.to_integer(s) end,
...> fn i -> Integer.to_string(i) end
...>),
...> Iso.make(
...> fn i -> i * 2 end,
...> fn i -> div(i, 2) end
...>)
...>]
iex> composed = Funx.Monoid.Utils.m_concat(%IsoCompose{}, isos)
iex> Iso.view("21", composed)
42

 Summary

 Types

 t()

 Functions

 new(iso)

 Wraps an iso in an IsoCompose monoid.

 unwrap(iso_compose)

 Extracts the iso from an IsoCompose wrapper.

 Types

 t()

 @type t() :: %Funx.Monoid.Optics.IsoCompose{iso: Funx.Optics.Iso.t()}

 Functions

 new(iso)

 @spec new(Funx.Optics.Iso.t()) :: t()

Wraps an iso in an IsoCompose monoid.

 unwrap(iso_compose)

 @spec unwrap(t()) :: Funx.Optics.Iso.t()

Extracts the iso from an IsoCompose wrapper.

Funx.Monoid.Optics.LensCompose

The Funx.Monoid.Optics.LensCompose module provides a monoid wrapper for sequential lens composition.
This wrapper allows lenses to be used with generic monoid operations like m_concat/2 and m_append/3,
enabling functional composition of multiple lenses into a single focusing operation.
Wrapping and Unwrapping
	new/1: Wraps a lens in a LensCompose monoid.
	unwrap/1: Extracts the lens from a LensCompose wrapper.

Monoid Operations (via protocol)
	empty/1: Returns the identity lens (leaves structure unchanged).
	append/2: Composes two lenses sequentially (outer then inner).
	wrap/2: Wraps a lens value into the monoid.

Examples
iex> alias Funx.Monoid.Optics.LensCompose
iex> alias Funx.Optics.Lens
iex> lenses = [
...> Lens.key(:profile),
...> Lens.key(:score)
...>]
iex> wrapped = Enum.map(lenses, &LensCompose.new/1)
iex> composed = Funx.Monoid.Utils.m_concat(%LensCompose{}, lenses)
iex> %{profile: %{score: 42}} |> Lens.view!(composed)
42

 Summary

 Types

 t()

 Functions

 new(lens)

 Wraps a lens in a LensCompose monoid.

 unwrap(lens_compose)

 Extracts the lens from a LensCompose wrapper.

 Types

 t()

 @type t() :: %Funx.Monoid.Optics.LensCompose{lens: Funx.Optics.Lens.t()}

 Functions

 new(lens)

 @spec new(Funx.Optics.Lens.t()) :: t()

Wraps a lens in a LensCompose monoid.

 unwrap(lens_compose)

 @spec unwrap(t()) :: Funx.Optics.Lens.t()

Extracts the lens from a LensCompose wrapper.

Funx.Monoid.Optics.PrismCompose

The Funx.Monoid.Optics.PrismCompose module provides a monoid wrapper for sequential prism composition.
This wrapper allows prisms to be used with generic monoid operations like m_concat/2 and m_append/3,
enabling functional composition of multiple prisms into a single partial focusing operation.
Wrapping and Unwrapping
	new/1: Wraps a prism in a PrismCompose monoid.
	unwrap/1: Extracts the prism from a PrismCompose wrapper.

Monoid Operations (via protocol)
	empty/1: Returns the identity prism (accepts all values).
	append/2: Composes two prisms sequentially (outer then inner).
	wrap/2: Wraps a prism value into the monoid.

Examples
iex> alias Funx.Monoid.Optics.PrismCompose
iex> alias Funx.Optics.Prism
iex> prisms = [
...> Prism.key(:account),
...> Prism.key(:name)
...>]
iex> wrapped = Enum.map(prisms, &PrismCompose.new/1)
iex> composed = Funx.Monoid.Utils.m_concat(%PrismCompose{}, prisms)
iex> Prism.preview(%{account: %{name: "Alice"}}, composed)
%Funx.Monad.Maybe.Just{value: "Alice"}

 Summary

 Types

 t()

 Functions

 new(prism)

 Wraps a prism in a PrismCompose monoid.

 unwrap(prism_compose)

 Extracts the prism from a PrismCompose wrapper.

 Types

 t()

 @type t() :: %Funx.Monoid.Optics.PrismCompose{prism: Funx.Optics.Prism.t()}

 Functions

 new(prism)

 @spec new(Funx.Optics.Prism.t()) :: t()

Wraps a prism in a PrismCompose monoid.

 unwrap(prism_compose)

 @spec unwrap(t()) :: Funx.Optics.Prism.t()

Extracts the prism from a PrismCompose wrapper.

Funx.Monoid.Optics.TraversalCombine

The Funx.Monoid.Optics.TraversalCombine module provides a monoid wrapper for parallel traversal combination.
This wrapper allows traversals to be used with generic monoid operations like m_concat/2,
enabling functional aggregation of multiple optics into a single multi-focus traversal.
Wrapping and Unwrapping
	new/1: Wraps a traversal in a TraversalCombine monoid.
	unwrap/1: Extracts the traversal from a TraversalCombine wrapper.

Monoid Operations (via protocol)
	empty/1: Returns the identity traversal (no foci).
	append/2: Combines two traversals by concatenating their foci.
	wrap/2: Wraps an optic into a single-focus traversal.

Examples
iex> alias Funx.Monoid.Optics.TraversalCombine
iex> alias Funx.Optics.{Lens, Traversal}
iex> optics = [Lens.key(:name), Lens.key(:age)]
iex> t = Funx.Monoid.Utils.m_concat(%TraversalCombine{}, optics)
iex> Traversal.to_list(%{name: "Alice", age: 30}, t)
["Alice", 30]

 Summary

 Types

 t()

 Functions

 new(traversal)

 Wraps a traversal in a TraversalCombine monoid.

 unwrap(traversal_combine)

 Extracts the traversal from a TraversalCombine wrapper.

 Types

 t()

 @type t() :: %Funx.Monoid.Optics.TraversalCombine{
 traversal: Funx.Optics.Traversal.t()
}

 Functions

 new(traversal)

 @spec new(Funx.Optics.Traversal.t()) :: t()

Wraps a traversal in a TraversalCombine monoid.

 unwrap(traversal_combine)

 @spec unwrap(t()) :: Funx.Optics.Traversal.t()

Extracts the traversal from a TraversalCombine wrapper.

Funx.Monoid.Ord

[image: Run in Livebook]
A monoid implementation for ordering logic (Ord).
Provides default comparison functions and supports combining multiple
Ord comparators into a single composite comparator.

 Summary

 Types

 t()

 Functions

 default?(_, _)

 Types

 t()

 @type t() :: %Funx.Monoid.Ord{
 ge?: (any(), any() -> boolean()),
 gt?: (any(), any() -> boolean()),
 le?: (any(), any() -> boolean()),
 lt?: (any(), any() -> boolean())
}

 Functions

 default?(_, _)

Funx.Monoid.Predicate.All

[image: Run in Livebook]
A Monoid implementation for combining predicates using logical AND.

 Summary

 Functions

 default_pred?(_)

 Functions

 default_pred?(_)

Funx.Monoid.Predicate.Any

[image: Run in Livebook]
A Monoid implementation for combining predicates using logical OR.

 Summary

 Functions

 default_pred?(_)

 Functions

 default_pred?(_)

Funx.Monoid.Product

[image: Run in Livebook]
A Monoid implementation for products.
This monoid uses multiplication as its associative operation
and 1 as the identity element.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Funx.Monoid.Product{value: number()}

Funx.Monoid.StringConcat

[image: Run in Livebook]
A Monoid implementation for concatenating strings.
This monoid uses binary string concatenation (<>) as its associative operation
and "" (empty string) as the identity element.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Funx.Monoid.StringConcat{value: String.t()}

Funx.Monoid.Sum

[image: Run in Livebook]
A Monoid implementation for sums.
This monoid uses addition as its associative operation
and 0 as the identity element.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Funx.Monoid.Sum{value: number()}

Funx.Monoid.Utils

[image: Run in Livebook]
Utility functions for working with Monoids.
This module provides functions to combine monoidal values using
m_append/3 and m_concat/2.

 Summary

 Functions

 m_append(monoid, a, b)

 Appends two values within a given monoid.

 m_concat(monoid, values)

 Concatenates a list of values using the given monoid.

 Functions

 m_append(monoid, a, b)

 @spec m_append(struct(), any(), any()) :: any()

Appends two values within a given monoid.
This function wraps the input values using the provided monoid, applies
the append/2 operation, and then unwraps the result.
Parameters
	monoid – A monoid struct defining how values should be combined.
	a – The first raw value.
	b – The second raw value.

Examples
iex> alias Funx.Monoid.Sum
iex> Funx.Monoid.Utils.m_append(%Sum{}, 3, 5)
8

 m_concat(monoid, values)

 @spec m_concat(
 struct(),
 list()
) :: any()

Concatenates a list of values using the given monoid.
This function wraps each value using the provided monoid, folds the list
using the monoid's identity and append operation, and then unwraps the result.
Parameters
	monoid – A monoid struct defining how values should be combined.
	values – A list of raw values.

Examples
iex> alias Funx.Monoid.Sum
iex> Funx.Monoid.Utils.m_concat(%Sum{}, [1, 2, 3])
6

Funx.Optics.Iso

[image: Run in Livebook]
The Funx.Optics.Iso module provides a lawful isomorphism optic for bidirectional, lossless transformations.
An isomorphism (iso) represents a reversible transformation between two types. It consists of
two inverse functions that satisfy the round-trip laws:
	review(view(s, iso), iso) == s - Round-trip forward then back returns the original
	view(review(a, iso), iso) == a - Round-trip back then forward returns the original

Isos are total optics with no partiality. If the transformation can fail, you do not have an iso.
Contract violations crash immediately - there are no bang variants or safe alternatives.
Constructors
	make/2: Creates a custom iso from two inverse functions.
	identity/0: The identity iso (both directions are identity).

Core Operations
	view/2: Apply the forward transformation (s -> a).
	review/2: Apply the backward transformation (a -> s).
	over/3: Modify the viewed side (view, apply function, review).
	under/3: Modify the reviewed side (review, apply function, view).

Direction
	from/1: Reverse the iso's direction.

Composition
	compose/2: Composes two isos sequentially (outer then inner).
	compose/1: Composes a list of isos into a single iso.

Interoperability
	as_lens/1: Converts an iso to a lens.
	as_prism/1: Converts an iso to a prism.

An iso is more powerful than both lens and prism. Every iso can be used as a lens
(viewing and setting always succeed) or as a prism (preview always returns Just).
Isos compose naturally. Composing two isos yields a new iso where:
	Forward (view) applies the outer iso first, then the inner iso
	Backward (review) applies the inner iso first, then the outer iso

Monoid Structure
Isos form a monoid under composition.
The monoid structure is provided via Funx.Monoid.Optics.IsoCompose, which wraps isos
for use with generic monoid operations:
	Identity: identity/0 - the identity iso
	Operation: compose/2 - sequential composition

Composing an empty list returns the identity iso.
Examples
Simple encoding/decoding:
iex> alias Funx.Optics.Iso
iex> # Iso between string and integer (string representation)
iex> string_int = Iso.make(
...> fn s -> String.to_integer(s) end,
...> fn i -> Integer.to_string(i) end
...>)
iex> Iso.view("42", string_int)
42
iex> Iso.review(42, string_int)
"42"
Composing isos:
iex> alias Funx.Optics.Iso
iex> # Iso: string <-> integer
iex> string_int = Iso.make(
...> fn s -> String.to_integer(s) end,
...> fn i -> Integer.to_string(i) end
...>)
iex> # Iso: integer <-> doubled integer
iex> double = Iso.make(
...> fn i -> i * 2 end,
...> fn i -> div(i, 2) end
...>)
iex> # Composed: string <-> doubled integer
iex> composed = Iso.compose(string_int, double)
iex> Iso.view("21", composed)
42
iex> Iso.review(42, composed)
"21"
Using over and under:
iex> alias Funx.Optics.Iso
iex> string_int = Iso.make(
...> fn s -> String.to_integer(s) end,
...> fn i -> Integer.to_string(i) end
...>)
iex> Iso.over("10", string_int, fn i -> i * 5 end)
"50"
iex> Iso.under(100, string_int, fn s -> s <> "0" end)
1000

 Summary

 Types

 backward(a, s)

 forward(s, a)

 t()

 t(s, a)

 Functions

 as_lens(iso)

 Converts an iso to a lens.

 as_prism(iso)

 Converts an iso to a prism.

 compose(isos)

 compose(outer, inner)

 Composes isos into a single iso using sequential composition.

 from(iso)

 Reverses the direction of an iso.

 identity()

 The identity iso that leaves values unchanged in both directions.

 make(viewer, reviewer)

 Creates a custom iso from two inverse functions.

 over(s, iso, f)

 Modify the viewed side of the iso.

 review(a, iso)

 Apply the backward transformation of the iso.

 under(a, iso, f)

 Modify the reviewed side of the iso.

 view(s, iso)

 Apply the forward transformation of the iso.

 Types

 backward(a, s)

 @type backward(a, s) :: (a -> s)

 forward(s, a)

 @type forward(s, a) :: (s -> a)

 t()

 @type t() :: t(any(), any())

 t(s, a)

 @type t(s, a) :: %Funx.Optics.Iso{review: backward(a, s), view: forward(s, a)}

 Functions

 as_lens(iso)

 @spec as_lens(t(s, a)) :: Funx.Optics.Lens.t(s, a) when s: term(), a: term()

Converts an iso to a lens.
An iso is more powerful than a lens: it provides bidirectional transformation,
while a lens only provides viewing and updating. Every iso can be used as a lens.
The resulting lens:
	view uses the iso's forward transformation
	update ignores the old value and uses the iso's backward transformation

This is safe because an iso is total - the transformation always succeeds.
Examples
iex> alias Funx.Optics.{Iso, Lens}
iex> string_int = Iso.make(
...> fn s -> String.to_integer(s) end,
...> fn i -> Integer.to_string(i) end
...>)
iex> lens = Iso.as_lens(string_int)
iex> Lens.view!("42", lens)
42
iex> Lens.set!("10", lens, 99)
"99"

 as_prism(iso)

 @spec as_prism(t(s, a)) :: Funx.Optics.Prism.t(s, a) when s: term(), a: term()

Converts an iso to a prism.
An iso is more powerful than a prism: it never fails to extract a value,
while a prism models optional extraction. Every iso can be used as a prism.
The resulting prism:
	preview always succeeds (returns Just), using the iso's forward transformation
	review uses the iso's backward transformation

This is safe because an iso is total - the transformation always succeeds.
Examples
iex> alias Funx.Optics.{Iso, Prism}
iex> alias Funx.Monad.Maybe.Just
iex> string_int = Iso.make(
...> fn s -> String.to_integer(s) end,
...> fn i -> Integer.to_string(i) end
...>)
iex> prism = Iso.as_prism(string_int)
iex> Prism.preview("42", prism)
%Just{value: 42}
iex> Prism.review(42, prism)
"42"

 compose(isos)

 @spec compose([t()]) :: t()

 compose(outer, inner)

 @spec compose(t(s, i), t(i, a)) :: t(s, a) when s: term(), i: term(), a: term()

Composes isos into a single iso using sequential composition.
This delegates to the monoid append operation, which contains the
canonical composition logic.
Binary composition
Composes two isos. The outer iso transforms first, then the inner iso
transforms the result.
This is left-to-right composition: the first parameter is applied first.
This differs from mathematical function composition (f ∘ g applies g first).
Sequential semantics:
	On view: Applies outer's forward transformation first, then inner's forward transformation
	On review: Applies inner's backward transformation first, then outer's backward transformation

This is sequential transformation through composed isos.
iex> alias Funx.Optics.Iso
iex> # string <-> int
iex> string_int = Iso.make(
...> fn s -> String.to_integer(s) end,
...> fn i -> Integer.to_string(i) end
...>)
iex> # int <-> doubled int
iex> double = Iso.make(
...> fn i -> i * 2 end,
...> fn i -> div(i, 2) end
...>)
iex> composed = Iso.compose(string_int, double)
iex> Iso.view("21", composed)
42
iex> Iso.review(42, composed)
"21"
List composition
Composes a list of isos into a single iso using sequential composition.
Sequential semantics:
	On view: Applies transformations in list order (left-to-right)
	On review: Applies transformations in reverse list order (right-to-left)

This is sequential transformation through composed isos.
iex> isos = [
...> Funx.Optics.Iso.make(
...> fn s -> String.to_integer(s) end,
...> fn i -> Integer.to_string(i) end
...>),
...> Funx.Optics.Iso.make(
...> fn i -> i * 2 end,
...> fn i -> div(i, 2) end
...>)
...>]
iex> composed = Funx.Optics.Iso.compose(isos)
iex> Funx.Optics.Iso.view("21", composed)
42

 from(iso)

 @spec from(t(s, a)) :: t(a, s) when s: term(), a: term()

Reverses the direction of an iso.
Swaps the view and review functions.
This is the established optic operation for reversing direction, following Haskell's
Control.Lens.Iso.from.
Examples
iex> string_int = Funx.Optics.Iso.make(
...> fn s -> String.to_integer(s) end,
...> fn i -> Integer.to_string(i) end
...>)
iex> int_string = Funx.Optics.Iso.from(string_int)
iex> Funx.Optics.Iso.view(42, int_string)
"42"
iex> Funx.Optics.Iso.review("42", int_string)
42

 identity()

 @spec identity() :: t()

The identity iso that leaves values unchanged in both directions.
Examples
iex> iso = Funx.Optics.Iso.identity()
iex> Funx.Optics.Iso.view(42, iso)
42
iex> Funx.Optics.Iso.review(42, iso)
42

 make(viewer, reviewer)

 @spec make(forward(s, a), backward(a, s)) :: t(s, a) when s: term(), a: term()

Creates a custom iso from two inverse functions.
The viewer function transforms from the source type to the target type.
The reviewer function transforms from the target type back to the source type.
Both functions must be inverses for the iso to be lawful:
	review(view(s, iso), iso) == s
	view(review(a, iso), iso) == a

If these functions are not true inverses, the iso contract is violated and
the program is incorrect. There are no runtime checks - the contract is enforced
by design.
Examples
iex> # Celsius <-> Fahrenheit
iex> temp_iso = Funx.Optics.Iso.make(
...> fn c -> c * 9 / 5 + 32 end,
...> fn f -> (f - 32) * 5 / 9 end
...>)
iex> Funx.Optics.Iso.view(0, temp_iso)
32.0
iex> Funx.Optics.Iso.review(32, temp_iso)
0.0

 over(s, iso, f)

 @spec over(s, t(s, a), (a -> a)) :: s when s: term(), a: term()

Modify the viewed side of the iso.
Applies a function through the iso: view, apply function, review.
This is the standard optic modifier, consistent with Lens and Prism.
Examples
iex> string_int = Funx.Optics.Iso.make(
...> fn s -> String.to_integer(s) end,
...> fn i -> Integer.to_string(i) end
...>)
iex> Funx.Optics.Iso.over("10", string_int, fn i -> i * 5 end)
"50"

 review(a, iso)

 @spec review(a, t(s, a)) :: s when s: term(), a: term()

Apply the backward transformation of the iso.
Transforms from the target type back to the source type.
This operation is total. If it crashes, the iso contract is violated.
Examples
iex> string_int = Funx.Optics.Iso.make(
...> fn s -> String.to_integer(s) end,
...> fn i -> Integer.to_string(i) end
...>)
iex> Funx.Optics.Iso.review(42, string_int)
"42"

 under(a, iso, f)

 @spec under(a, t(s, a), (s -> s)) :: a when s: term(), a: term()

Modify the reviewed side of the iso.
Applies a function in reverse through the iso: review, apply function, view.
This operation is unique to Iso due to its bidirectional symmetry.
Lens and Prism cannot offer this.
Examples
iex> string_int = Funx.Optics.Iso.make(
...> fn s -> String.to_integer(s) end,
...> fn i -> Integer.to_string(i) end
...>)
iex> Funx.Optics.Iso.under(100, string_int, fn s -> s <> "0" end)
1000

 view(s, iso)

 @spec view(s, t(s, a)) :: a when s: term(), a: term()

Apply the forward transformation of the iso.
Transforms from the source type to the target type.
This operation is total. If it crashes, the iso contract is violated.
Examples
iex> string_int = Funx.Optics.Iso.make(
...> fn s -> String.to_integer(s) end,
...> fn i -> Integer.to_string(i) end
...>)
iex> Funx.Optics.Iso.view("42", string_int)
42

Funx.Optics.Lens

[image: Run in Livebook]
The Funx.Optics.Lens module provides a lawful total optic for focusing on a part of a data structure.
A lens is total: it assumes the focus always exists within the valid domain. This is a contract
enforced at runtime by raising KeyError when violated. If the focus might not exist, use a prism instead.
Both view! and set! enforce totality symmetrically for all data types (maps, structs, etc.). If either
operation can succeed when the focus is missing, you no longer have a lens.
Constructors
	key/1: Focuses on a single key in a map or struct.
	path/1: Focuses on nested keys by composing key/1 lenses.
	make/2: Creates a custom lens from viewer and updater functions.

Core Operations
	view!/2: Extracts the focused part (raises KeyError if missing).
	set!/3: Updates the focused part (raises KeyError if missing).
	over!/3: Applies a function to the focused part (raises KeyError if missing).

Safe Operations
	view/3: Safe version of view!/2 (returns Either or tuple).
	set/4: Safe version of set!/3 (returns Either or tuple).
	over/4: Safe version of over!/3 (returns Either or tuple).

Error handling modes:
Safe operations accept an optional :as parameter:
	:either (default): Returns Right(value) or Left(exception).
	:tuple: Returns {:ok, value} or {:error, exception}.
	:raise: Behaves like the ! version, raising exceptions directly.

Safe operations use Either.from_try/1 internally, which catches all exceptions,
not just KeyError.
Composition
	compose/2: Composes two lenses sequentially (outer then inner).
	compose/1: Composes a list of lenses into a single lens.

Lenses compose naturally. Composing two lenses yields a new lens that focuses through
both layers sequentially.
Monoid Structure
Lenses form a monoid under composition for a fixed outer type s.
The monoid structure is provided via Funx.Monoid.Optics.LensCompose, which wraps lenses
for use with generic monoid operations:
	Identity: make(fn s -> s end, fn _s, a -> a end) - the identity lens
	Operation: compose/2 - sequential composition

You can use compose/1 to compose multiple lenses sequentially, or work directly
with Funx.Monoid.Optics.LensCompose for more control.
Examples
iex> alias Funx.Optics.Lens
iex> lens = Lens.key(:age)
iex> %{age: 40} |> Lens.view!(lens)
40
iex> %{age: 40} |> Lens.set!(lens, 50)
%{age: 50}
Composing lenses for nested access:
iex> alias Funx.Optics.Lens
iex> outer = Lens.key(:profile)
iex> inner = Lens.key(:score)
iex> lens = Lens.compose(outer, inner)
iex> %{profile: %{score: 12}} |> Lens.view!(lens)
12
iex> %{profile: %{score: 12}} |> Lens.set!(lens, 99)
%{profile: %{score: 99}}
Deeply nested composition with compose/1:
iex> alias Funx.Optics.Lens
iex> lens = Lens.compose([Lens.key(:stats), Lens.key(:wins)])
iex> %{stats: %{wins: 7}} |> Lens.view!(lens)
7
iex> %{stats: %{wins: 7}} |> Lens.set!(lens, 8)
%{stats: %{wins: 8}}

 Summary

 Types

 t()

 t(s, a)

 updater(s, a)

 viewer(s, a)

 Functions

 compose(lenses)

 compose(outer, inner)

 Composes lenses into a single lens using sequential composition.

 key(k)

 Builds a lawful lens focusing on a single key in a map or struct.

 make(viewer, updater)

 Creates a custom lens from viewer and updater functions.

 over(s, lens, f, opts \\ [])

 Safe version of over!/3 that returns an Either or tuple instead of raising.

 over!(s, lens, f)

 Updates the focused part of a structure by applying a function to it.

 path(keys)

 Builds a lawful lens for nested map access by composing key/1 lenses.

 set(s, lens, a, opts \\ [])

 Safe version of set!/3 that returns an Either or tuple instead of raising.

 set!(s, lens, a)

 Updates the focused part of a structure by setting it to a new value.

 view(s, lens, opts \\ [])

 Safe version of view!/2 that returns an Either or tuple instead of raising.

 view!(s, lens)

 Extracts the focused part of a structure using a lens.

 Types

 t()

 @type t() :: t(any(), any())

 t(s, a)

 @type t(s, a) :: %Funx.Optics.Lens{update: updater(s, a), view: viewer(s, a)}

 updater(s, a)

 @type updater(s, a) :: (s, a -> s)

 viewer(s, a)

 @type viewer(s, a) :: (s -> a)

 Functions

 compose(lenses)

 @spec compose([t()]) :: t()

 compose(outer, inner)

 @spec compose(t(s, i), t(i, a)) :: t(s, a) when s: term(), i: term(), a: term()

Composes lenses into a single lens using sequential composition.
This delegates to the monoid append operation, which contains the
canonical composition logic.
Binary composition
Composes two lenses. The outer lens focuses first, then the inner lens
focuses within the result.
This is left-to-right composition: the first parameter is applied first.
This differs from mathematical function composition (f ∘ g applies g first).
Sequential semantics:
	On view!: Applies outer's viewer first, then inner's viewer
	On set!: Updates through both lenses, maintaining nested structure

This is sequential focusing through nested structures.
iex> alias Funx.Optics.Lens
iex> outer = Lens.key(:profile)
iex> inner = Lens.key(:age)
iex> lens = Lens.compose(outer, inner)
iex> %{profile: %{age: 30}} |> Lens.view!(lens)
30
List composition
Composes a list of lenses into a single lens using sequential composition.
Sequential semantics:
	On view!: Applies viewers in list order (left-to-right)
	On set!: Updates through each lens in reverse order to maintain structure

This is sequential focusing through nested structures.
iex> lenses = [
...> Funx.Optics.Lens.key(:user),
...> Funx.Optics.Lens.key(:profile),
...> Funx.Optics.Lens.key(:age)
...>]
iex> lens = Funx.Optics.Lens.compose(lenses)
iex> %{user: %{profile: %{age: 25}}} |> Funx.Optics.Lens.view!(lens)
25

 key(k)

 @spec key(term()) :: t(map(), term())

Builds a lawful lens focusing on a single key in a map or struct.
Contract
The key must exist in the structure. When used with view! and set!,
this lens uses Map.fetch!/2 and Map.replace!/3, raising KeyError if
the key is missing. This symmetric enforcement ensures all three lens laws hold.
If the key might not exist, use a prism instead.
Type Note
The return type t(map(), term()) uses Elixir's map() type, which includes
both plain maps and structs (since structs are maps with a __struct__ key).
Examples
iex> lens = Funx.Optics.Lens.key(:name)
iex> %{name: "Alice"} |> Funx.Optics.Lens.view!(lens)
"Alice"
iex> %{name: "Alice"} |> Funx.Optics.Lens.set!(lens, "Bob")
%{name: "Bob"}
Works with string keys:
iex> lens = Funx.Optics.Lens.key("count")
iex> %{"count" => 5} |> Funx.Optics.Lens.view!(lens)
5
With structs (preserves type):
defmodule User, do: defstruct [:name, :age]
lens = Funx.Optics.Lens.key(:name)
user = %User{name: "Alice", age: 30}
Funx.Optics.Lens.view!(user, lens) #=> "Alice"
Funx.Optics.Lens.set!(user, lens, "Bob") #=> %User{name: "Bob", age: 30}

 make(viewer, updater)

 @spec make(viewer(s, a), updater(s, a)) :: t(s, a) when s: term(), a: term()

Creates a custom lens from viewer and updater functions.
The viewer extracts the focused part from the structure. The updater
takes the structure and a new value, returning an updated structure.
Both functions must maintain the lens laws for the result to be lawful.
Examples
iex> # A lens that views and updates the length of a string
iex> lens = Funx.Optics.Lens.make(
...> fn s -> String.length(s) end,
...> fn s, len -> String.duplicate(s, div(len, String.length(s))) end
...>)
iex> Funx.Optics.Lens.view!("hello", lens)
5

 over(s, lens, f, opts \\ [])

 @spec over(s, t(s, a), (a -> a), keyword()) ::
 Funx.Monad.Either.t(any(), s) | {:ok, s} | {:error, any()} | s
when s: term(), a: term()

Safe version of over!/3 that returns an Either or tuple instead of raising.
See the "Safe Operations" section in the module documentation for details
about error handling modes and what exceptions are caught.
Examples
iex> lens = Funx.Optics.Lens.key(:age)
iex> Funx.Optics.Lens.over(%{age: 30}, lens, fn a -> a + 1 end)
%Funx.Monad.Either.Right{right: %{age: 31}}

iex> lens = Funx.Optics.Lens.key(:age)
iex> Funx.Optics.Lens.over(%{}, lens, fn a -> a + 1 end)
%Funx.Monad.Either.Left{left: %KeyError{key: :age, term: %{}}}

iex> lens = Funx.Optics.Lens.key(:score)
iex> Funx.Optics.Lens.over(%{score: 10}, lens, fn s -> s * 2 end, as: :tuple)
{:ok, %{score: 20}}

iex> lens = Funx.Optics.Lens.key(:value)
iex> Funx.Optics.Lens.over(%{value: 5}, lens, fn v -> v + 1 end, as: :raise)
%{value: 6}

 over!(s, lens, f)

 @spec over!(s, t(s, a), (a -> a)) :: s when s: term(), a: term()

Updates the focused part of a structure by applying a function to it.
This is the derived transformation operation for a lens. It is implemented
as:
	view!/2 to extract the focused part
	Application of the given function
	set!/3 to write the result back

Because lenses are total, over!/3 is also total. If the focus does not
exist, a KeyError is raised by view!/2 or set!/3.
Only the focused part is changed. All other structure and data is preserved.
Examples
iex> lens = Funx.Optics.Lens.key(:age)
iex> data = %{age: 40}
iex> Funx.Optics.Lens.over!(data, lens, fn a -> a + 1 end)
%{age: 41}
Works through composed lenses:
iex> outer = Funx.Optics.Lens.key(:profile)
iex> inner = Funx.Optics.Lens.key(:score)
iex> lens = Funx.Optics.Lens.compose(outer, inner)
iex> data = %{profile: %{score: 10}}
iex> Funx.Optics.Lens.over!(data, lens, fn s -> s * 2 end)
%{profile: %{score: 20}}
Works through path/1:
iex> lens = Funx.Optics.Lens.path([:stats, :wins])
iex> data = %{stats: %{wins: 3}}
iex> Funx.Optics.Lens.over!(data, lens, fn n -> n + 5 end)
%{stats: %{wins: 8}}

 path(keys)

 @spec path([term()]) :: t(map(), term())

Builds a lawful lens for nested map access by composing key/1 lenses.
This is equivalent to compose(Enum.map(keys, &key/1)) and enforces totality
at every level - raising KeyError when used with view! or set! if any
intermediate key is missing.
Type Note
The return type t(map(), term()) uses Elixir's map() type, which includes
both plain maps and structs (since structs are maps with a __struct__ key).
Examples
iex> lens = Funx.Optics.Lens.path([:user, :profile, :name])
iex> data = %{user: %{profile: %{name: "Alice"}}}
iex> Funx.Optics.Lens.view!(data, lens)
"Alice"
iex> Funx.Optics.Lens.set!(data, lens, "Bob")
%{user: %{profile: %{name: "Bob"}}}
Raises on missing keys when accessed:
iex> lens = Funx.Optics.Lens.path([:user, :name])
iex> Funx.Optics.Lens.view!(%{}, lens)
** (KeyError) key :user not found in: %{}

 set(s, lens, a, opts \\ [])

 @spec set(s, t(s, a), a, keyword()) ::
 Funx.Monad.Either.t(any(), s) | {:ok, s} | {:error, any()} | s
when s: term(), a: term()

Safe version of set!/3 that returns an Either or tuple instead of raising.
See the "Safe Operations" section in the module documentation for details
about error handling modes and what exceptions are caught.
Examples
iex> lens = Funx.Optics.Lens.key(:age)
iex> Funx.Optics.Lens.set(%{age: 30}, lens, 31)
%Funx.Monad.Either.Right{right: %{age: 31}}

iex> lens = Funx.Optics.Lens.key(:age)
iex> Funx.Optics.Lens.set(%{}, lens, 31)
%Funx.Monad.Either.Left{left: %KeyError{key: :age, term: %{}}}

iex> lens = Funx.Optics.Lens.key(:count)
iex> Funx.Optics.Lens.set(%{count: 5}, lens, 10, as: :tuple)
{:ok, %{count: 10}}

iex> lens = Funx.Optics.Lens.key(:name)
iex> Funx.Optics.Lens.set(%{name: "Alice"}, lens, "Bob", as: :raise)
%{name: "Bob"}

 set!(s, lens, a)

 @spec set!(s, t(s, a), a) :: s when s: term(), a: term()

Updates the focused part of a structure by setting it to a new value.
Raises KeyError if the focus does not exist. The entire structure is
returned with only the focused part changed. All other fields and nested
structures are preserved. Struct types are maintained.
For non-raising behavior, use set/4 instead.
Examples
iex> lens = Funx.Optics.Lens.key(:age)
iex> Funx.Optics.Lens.set!(%{age: 30, name: "Alice"}, lens, 31)
%{age: 31, name: "Alice"}

iex> lens = Funx.Optics.Lens.key(:age)
iex> Funx.Optics.Lens.set!(%{name: "Alice"}, lens, 31)
** (KeyError) key :age not found in: %{name: "Alice"}

 view(s, lens, opts \\ [])

 @spec view(s, t(s, a), keyword()) ::
 Funx.Monad.Either.t(any(), a) | {:ok, a} | {:error, any()} | a
when s: term(), a: term()

Safe version of view!/2 that returns an Either or tuple instead of raising.
See the "Safe Operations" section in the module documentation for details
about error handling modes and what exceptions are caught.
Examples
iex> lens = Funx.Optics.Lens.key(:name)
iex> Funx.Optics.Lens.view(%{name: "Alice"}, lens)
%Funx.Monad.Either.Right{right: "Alice"}

iex> lens = Funx.Optics.Lens.key(:name)
iex> Funx.Optics.Lens.view(%{}, lens)
%Funx.Monad.Either.Left{left: %KeyError{key: :name, term: %{}}}

iex> lens = Funx.Optics.Lens.key(:age)
iex> Funx.Optics.Lens.view(%{age: 30}, lens, as: :tuple)
{:ok, 30}

iex> lens = Funx.Optics.Lens.key(:age)
iex> Funx.Optics.Lens.view(%{age: 30}, lens, as: :raise)
30

 view!(s, lens)

 @spec view!(s, t(s, a)) :: a when s: term(), a: term()

Extracts the focused part of a structure using a lens.
Raises KeyError if the focus does not exist (e.g., missing map key).
For non-raising behavior, use view/3 instead.
Examples
iex> lens = Funx.Optics.Lens.key(:name)
iex> Funx.Optics.Lens.view!(%{name: "Alice"}, lens)
"Alice"

iex> lens = Funx.Optics.Lens.key(:name)
iex> Funx.Optics.Lens.view!(%{}, lens)
** (KeyError) key :name not found in: %{}

Funx.Optics.Prism

[image: Run in Livebook]
The Funx.Optics.Prism module provides a lawful partial optic for focusing on a branch of a data structure.
A prism is partial: the focus may or may not be present. This makes prisms ideal for working with
optional values, variants, and sum types. Unlike lenses, prisms never raise—they return Maybe instead.
When to use prisms vs lenses:
	Prisms (partial): Use for optional values, variants, sum types, missing map keys.
	Lenses (total): Use for record fields, map keys that always exist.

Constructors
	key/1: Focuses on an optional key in a map.
	struct/1: Focuses on a specific struct type (for sum types).
	path/1: Focuses on nested paths through maps and structs.
	make/2: Creates a custom prism from preview and review functions.

Core Operations
	preview/2: Attempts to extract the focus, returning Just(value) or Nothing.
	review/2: Reconstructs the whole structure from the focused value.

Important: review constructs a fresh structure from the focused value alone—it does not merge
or preserve other fields. This is lawful prism behavior. If you need to update while preserving other
fields, use a lens instead.
Composition
	compose/2: Composes two prisms sequentially (outer then inner).
	compose/1: Composes a list of prisms into a single prism.

Prisms compose naturally. Composing two prisms yields a new prism that attempts both matches in sequence,
stopping at the first Nothing.
Monoid Structure
Prisms form a monoid under composition for a fixed outer type s.
The monoid structure is provided via Funx.Monoid.Optics.PrismCompose, which wraps prisms
for use with generic monoid operations:
	Identity: make(fn x -> Maybe.from_nil(x) end, fn x -> x end) - the identity prism
	Operation: compose/2 - sequential composition

You can use compose/1 to compose multiple prisms sequentially, or work directly
with Funx.Monoid.Optics.PrismCompose for more control.
Examples
Working with optional map keys:
iex> name_prism = Funx.Optics.Prism.key(:name)
iex> Funx.Optics.Prism.preview(%{name: "Alice"}, name_prism)
%Funx.Monad.Maybe.Just{value: "Alice"}
iex> Funx.Optics.Prism.preview(%{age: 30}, name_prism)
%Funx.Monad.Maybe.Nothing{}
Composing prisms for nested access:
iex> outer = Funx.Optics.Prism.key(:person)
iex> inner = Funx.Optics.Prism.key(:name)
iex> composed = Funx.Optics.Prism.compose(outer, inner)
iex> Funx.Optics.Prism.preview(%{person: %{name: "Alice"}}, composed)
%Funx.Monad.Maybe.Just{value: "Alice"}
iex> Funx.Optics.Prism.preview(%{person: %{age: 30}}, composed)
%Funx.Monad.Maybe.Nothing{}
Using path/1 for convenient nested access:
iex> person_name = Funx.Optics.Prism.path([:person, :name])
iex> Funx.Optics.Prism.preview(%{person: %{name: "Alice"}}, person_name)
%Funx.Monad.Maybe.Just{value: "Alice"}

 Summary

 Types

 previewer(s, a)

 reviewer(s, a)

 t()

 t(s, a)

 Functions

 compose(prisms)

 compose(outer, inner)

 Composes prisms into a single prism using sequential composition.

 key(k)

 Builds a prism that focuses on a single key inside a map.

 make(preview, review)

 Creates a custom prism from previewer and reviewer functions.

 path(path)

 Builds a prism that focuses on a nested path through maps and structs.

 preview(s, prism)

 Attempts to extract the focus from a structure using the prism.

 review(a, prism)

 Reconstructs the whole structure from the focused part.

 struct(mod)

 Builds a prism that focuses on a specific struct constructor.

 Types

 previewer(s, a)

 @type previewer(s, a) :: (s -> Funx.Monad.Maybe.t(a))

 reviewer(s, a)

 @type reviewer(s, a) :: (a -> s)

 t()

 @type t() :: t(any(), any())

 t(s, a)

 @type t(s, a) :: %Funx.Optics.Prism{preview: previewer(s, a), review: reviewer(s, a)}

 Functions

 compose(prisms)

 @spec compose([t()]) :: t()

 compose(outer, inner)

 @spec compose(t(s, i), t(i, a)) :: t(s, a) when s: term(), i: term(), a: term()

Composes prisms into a single prism using sequential composition.
This delegates to the monoid append operation, which contains the
canonical composition logic.
Binary composition
Composes two prisms. The outer prism runs first; if it succeeds,
the inner prism runs next.
This is left-to-right composition: the first parameter is applied first.
This differs from mathematical function composition (f ∘ g applies g first).
Sequential semantics:
	On preview: Applies outer's matcher first, then inner's matcher (short-circuits on Nothing)
	On review: Applies inner's builder first, then outer's builder

This is sequential matching through nested structures.
iex> outer = Funx.Optics.Prism.key(:account)
iex> inner = Funx.Optics.Prism.key(:name)
iex> p = Funx.Optics.Prism.compose(outer, inner)
iex> Funx.Optics.Prism.preview(%{account: %{name: "Alice"}}, p)
%Funx.Monad.Maybe.Just{value: "Alice"}
List composition
Composes a list of prisms into a single prism using sequential composition.
Sequential semantics:
	On preview: Applies matchers in list order (left-to-right), stopping at first Nothing
	On review: Applies builders in reverse list order (right-to-left)

This is not a union or choice operator. It does not "try all branches."
It is strict sequential matching and construction.
iex> prisms = [
...> Funx.Optics.Prism.key(:account),
...> Funx.Optics.Prism.key(:name)
...>]
iex> p = Funx.Optics.Prism.compose(prisms)
iex> Funx.Optics.Prism.preview(%{account: %{name: "Alice"}}, p)
%Funx.Monad.Maybe.Just{value: "Alice"}
iex> Funx.Optics.Prism.preview(%{other: %{name: "Bob"}}, p)
%Funx.Monad.Maybe.Nothing{}

 key(k)

 @spec key(atom()) :: t(map(), any())

Builds a prism that focuses on a single key inside a map.
Examples
iex> p = Funx.Optics.Prism.key(:name)
iex> Funx.Optics.Prism.preview(%{name: "Alice"}, p)
%Funx.Monad.Maybe.Just{value: "Alice"}
iex> Funx.Optics.Prism.preview(%{age: 30}, p)
%Funx.Monad.Maybe.Nothing{}

 make(preview, review)

 @spec make(previewer(s, a), reviewer(s, a)) :: t(s, a) when s: term(), a: term()

Creates a custom prism from previewer and reviewer functions.
The previewer attempts to extract the focused part, returning a Maybe.
The reviewer reconstructs the whole structure from the focused part.
Both functions must maintain the prism laws for the result to be lawful.
Examples
iex> p =
...> Funx.Optics.Prism.make(
...> fn x -> Funx.Monad.Maybe.just(x) end,
...> fn x -> x end
...>)
iex> Funx.Optics.Prism.preview(5, p)
%Funx.Monad.Maybe.Just{value: 5}

 path(path)

 @spec path([atom() | {module(), atom()}]) :: t(map(), any())

Builds a prism that focuses on a nested path through maps and structs.
Each element in the path can be:
	:atom - A plain key access (works with maps and structs)
	Module - A naked struct verification (checks type, no key access)
	{Module, :atom} - A struct-typed key access (verifies struct type and accesses key)

The syntax expands as follows:
	:key → key(:key) - plain key access
	Module → struct(Module) - struct type verification
	{Module, :key} → compose(struct(Module), key(:key)) - typed field access

Modules are distinguished from plain keys using function_exported?(atom, :__struct__, 0).
Examples
Plain map path
p1 = Prism.path([:person, :bio, :age])
Prism.review(30, p1)
#=> %{person: %{bio: %{age: 30}}}

Given struct modules:
defmodule Bio do
 defstruct [:age, :location]
end

defmodule Person do
 defstruct [:name, :bio]
end

Struct-typed path using {Module, :key} syntax
p2 = Prism.path([{Person, :bio}, {Bio, :age}])
Prism.review(30, p2)
#=> %Person{bio: %Bio{age: 30, location: nil}, name: nil}

Naked struct at end verifies final type
p3 = Prism.path([:profile, Bio])
Prism.preview(%{profile: %Bio{age: 30}}, p3)
#=> Just(%Bio{age: 30, location: nil})

Naked struct at beginning verifies root type
p4 = Prism.path([Person, :name])
Prism.review("Alice", p4)
#=> %Person{name: "Alice", bio: nil}

Mix naked structs with typed field syntax
p5 = Prism.path([{Person, :bio}, Bio, :age])
Prism.review(25, p5)
#=> %Person{bio: %Bio{age: 25, location: nil}, name: nil}

Naked struct only (just type verification)
p6 = Prism.path([Person])
Prism.preview(%Person{name: "Bob"}, p6)
#=> Just(%Person{name: "Bob", bio: nil})
Implementation
The path/1 function composes prisms using compose/1:
	:key → [key(:key)]
	Module → [struct(Module)]
	{Mod, :key} → [struct(Mod), key(:key)]

This means path is just syntactic sugar for prism composition.
Important
	When using {Module, :field}, ensure :field exists in Module
	Using non-existent fields may violate prism laws (Kernel.struct/2 silently drops invalid keys)
	The tuple form {Module, :key} requires Module to be a struct module (raises otherwise)
	Plain lowercase atoms like :user are always treated as keys, not struct modules

 preview(s, prism)

 @spec preview(s, t(s, a)) :: Funx.Monad.Maybe.t(a) when s: term(), a: term()

Attempts to extract the focus from a structure using the prism.
Returns a Funx.Monad.Maybe.Just on success or Funx.Monad.Maybe.Nothing
if the branch does not match.
Examples
iex> p = Funx.Optics.Prism.key(:name)
iex> Funx.Optics.Prism.preview(%{name: "Alice"}, p)
%Funx.Monad.Maybe.Just{value: "Alice"}
iex> Funx.Optics.Prism.preview(%{age: 30}, p)
%Funx.Monad.Maybe.Nothing{}

 review(a, prism)

 @spec review(a, t(s, a)) :: s when s: term(), a: term()

Reconstructs the whole structure from the focused part.
Review reverses the prism, injecting the focused value back into the outer
structure. Important: review constructs a fresh structure from the
focused value alone - it does not merge with or patch an existing structure.
This is the lawful behaviour of prisms.
If you need to update a field while preserving other fields, you need a lens,
not a prism.
Note: Cannot review with nil as it would violate prism laws (since
Just(nil) is invalid).
Examples
iex> p = Funx.Optics.Prism.key(:name)
iex> Funx.Optics.Prism.review("Alice", p)
%{name: "Alice"}

 struct(mod)

 @spec struct(module()) :: t(struct(), struct())

Builds a prism that focuses on a specific struct constructor.
This prism succeeds only when the input value is a struct of the given module.
It models a sum-type constructor: selecting one structural variant from a
set of possible variants.
On review, this prism can promote a plain map to the specified struct type,
filling in defaults for missing fields.
Examples
Given a struct module:
defmodule Account do
 defstruct [:name, :email]
end

Create a prism for that struct type
p = Prism.struct(Account)

Preview succeeds for matching struct
Prism.preview(%Account{name: "Alice"}, p)
#=> %Just{value: %Account{name: "Alice", email: nil}}

Preview fails for non-matching types
Prism.preview(%{name: "Bob"}, p)
#=> %Nothing{}

Review promotes a map to the struct type
Prism.review(%{name: "Charlie"}, p)
#=> %Account{name: "Charlie", email: nil}
Composition
The struct/1 prism is commonly composed with key/1 to focus on struct fields:
user_name = Prism.compose(Prism.struct(Account), Prism.key(:name))
Prism.review("Alice", user_name)
#=> %Account{name: "Alice", email: nil}

Funx.Optics.Traversal

[image: Run in Livebook]
The Funx.Optics.Traversal module provides a multi-focus optic for targeting multiple locations in a data structure.
A traversal is built using combine, which takes multiple optics (Lens or Prism) and creates a single
optic that can focus on all of them as a single optic.
Building Traversals
	combine/1: Takes a list of optics and creates a multi-focus traversal.

Read Operations
	to_list/2: Extracts values from lens foci and any prism foci that match.
	to_list_maybe/2: Extracts values from all foci (all-or-nothing).
	preview/2: Returns the first matching focus.
	has/2: Returns true if at least one focus matches.

Key Properties
	Order preservation: Foci are traversed in the order they were combined.
	Lens behavior: Lens foci require presence and raise on violation.
	Prism behavior: Prism foci contribute if they match, otherwise are skipped.
	combine is a monoid: Declares multiplicity, not iteration.

Examples
iex> alias Funx.Optics.{Lens, Prism, Traversal}
iex> t = Traversal.combine([Lens.key(:name), Lens.key(:age)])
iex> Traversal.to_list(%{name: "Alice", age: 30}, t)
["Alice", 30]
With Prisms (optional foci):
iex> alias Funx.Optics.{Lens, Prism, Traversal}
iex> t = Traversal.combine([Lens.key(:name), Prism.key(:email)])
iex> Traversal.to_list(%{name: "Alice"}, t)
["Alice"]
iex> Traversal.to_list(%{name: "Alice", email: "alice@example.com"}, t)
["Alice", "alice@example.com"]

 Summary

 Types

 t()

 Functions

 combine(optics)

 Combines multiple optics into a single multi-focus traversal.

 has(structure, traversal)

 Returns true if at least one focus matches.

 preview(structure, traversal)

 Returns the first successful focus from a traversal.

 to_list(structure, traversal)

 Extracts values from all foci into a list.

 to_list_maybe(structure, traversal)

 Extracts values from all foci into a Maybe list (all-or-nothing).

 Types

 t()

 @type t() :: %Funx.Optics.Traversal{
 foci: [Funx.Optics.Lens.t() | Funx.Optics.Prism.t()]
}

 Functions

 combine(optics)

 @spec combine([Funx.Optics.Lens.t() | Funx.Optics.Prism.t()]) :: t()

Combines multiple optics into a single multi-focus traversal.
This is parallel composition. It widens the focus to include all provided optics.
The resulting traversal targets all foci simultaneously.
Examples
iex> alias Funx.Optics.{Lens, Traversal}
iex> t = Traversal.combine([Lens.key(:name), Lens.key(:age)])
iex> Traversal.to_list(%{name: "Alice", age: 30}, t)
["Alice", 30]
With composed paths:
iex> alias Funx.Optics.{Lens, Traversal}
iex> path = Lens.compose([Lens.key(:user), Lens.key(:name)])
iex> t = Traversal.combine([path, Lens.key(:score)])
iex> Traversal.to_list(%{user: %{name: "Bob"}, score: 100}, t)
["Bob", 100]
Empty traversal (identity):
iex> alias Funx.Optics.Traversal
iex> t = Traversal.combine([])
iex> Traversal.to_list(%{name: "Alice"}, t)
[]

 has(structure, traversal)

 @spec has(s, t()) :: boolean() when s: term()

Returns true if at least one focus matches.
This is a boolean query derived from preview/2:
	Returns true if any focus matches
	Returns false if all foci fail (Nothing)
	Lens throws on contract violation

Examples
iex> alias Funx.Optics.{Prism, Traversal}
iex> t = Traversal.combine([Prism.key(:name)])
iex> Traversal.has(%{name: "Alice"}, t)
true
No match:
iex> alias Funx.Optics.{Prism, Traversal}
iex> t = Traversal.combine([Prism.key(:email)])
iex> Traversal.has(%{name: "Alice"}, t)
false
Empty traversal:
iex> alias Funx.Optics.Traversal
iex> t = Traversal.combine([])
iex> Traversal.has(%{name: "Alice"}, t)
false

 preview(structure, traversal)

 @spec preview(s, t()) :: Funx.Monad.Maybe.t(a) when s: term(), a: term()

Returns the first successful focus from a traversal.
Collapses multiple foci to at most one value using first-success semantics:
	Returns the first Just and ignores later matches
	Prism Nothing is skipped
	Lens throws on contract violation
	Traversal order determines priority

Examples
iex> alias Funx.Optics.{Lens, Prism, Traversal}
iex> alias Funx.Monad.Maybe
iex> t = Traversal.combine([Prism.key(:email), Prism.key(:name)])
iex> Traversal.preview(%{name: "Alice"}, t)
%Maybe.Just{value: "Alice"}
First success wins:
iex> alias Funx.Optics.{Prism, Traversal}
iex> alias Funx.Monad.Maybe
iex> t = Traversal.combine([Prism.key(:name), Prism.key(:email)])
iex> Traversal.preview(%{name: "Alice", email: "alice@example.com"}, t)
%Maybe.Just{value: "Alice"}
Nothing when no foci match:
iex> alias Funx.Optics.{Prism, Traversal}
iex> alias Funx.Monad.Maybe
iex> t = Traversal.combine([Prism.key(:email), Prism.key(:phone)])
iex> Traversal.preview(%{name: "Alice"}, t)
%Maybe.Nothing{}
Lens throws on violation:
iex> alias Funx.Optics.{Lens, Traversal}
iex> t = Traversal.combine([Lens.key(:email)])
iex> Traversal.preview(%{name: "Alice"}, t)
** (KeyError) key :email not found in: %{name: "Alice"}

 to_list(structure, traversal)

 @spec to_list(s, t()) :: [a] when s: term(), a: term()

Extracts values from all foci into a list.
For each focus in the traversal:
	Lens: Uses view!, contributes one value or throws on contract violation
	Prism: Uses preview, contributes one value if matches, otherwise skips (Nothing)

The order of values matches the combine order.
Examples
iex> alias Funx.Optics.{Lens, Traversal}
iex> t = Traversal.combine([Lens.key(:name), Lens.key(:age)])
iex> Traversal.to_list(%{name: "Alice", age: 30}, t)
["Alice", 30]
With Prisms (skips Nothing):
iex> alias Funx.Optics.{Prism, Traversal}
iex> t = Traversal.combine([Prism.key(:name), Prism.key(:email)])
iex> Traversal.to_list(%{name: "Alice"}, t)
["Alice"]
Order is preserved:
iex> alias Funx.Optics.{Lens, Traversal}
iex> t = Traversal.combine([Lens.key(:age), Lens.key(:name)])
iex> Traversal.to_list(%{name: "Alice", age: 30}, t)
[30, "Alice"]
Lens contract violation throws:
iex> alias Funx.Optics.{Lens, Traversal}
iex> t = Traversal.combine([Lens.key(:name)])
iex> Traversal.to_list(%{age: 30}, t)
** (KeyError) key :name not found in: %{age: 30}

 to_list_maybe(structure, traversal)

 @spec to_list_maybe(s, t()) :: Funx.Monad.Maybe.t([a]) when s: term(), a: term()

Extracts values from all foci into a Maybe list (all-or-nothing).
This is the all-or-nothing version of to_list/2. Unlike to_list/2 which skips
prism foci that don't match, this operation returns Nothing if any prism focus doesn't match.
For each focus in the traversal:
	Lens: Uses view!, contributes one value or throws on contract violation
	Prism: Uses preview, contributes one value if matches, otherwise returns Nothing for the entire operation

Returns Just(list) only when every focus succeeds.
This is useful for enforcing co-presence: "this structure exists in ALL these contexts."
Examples
iex> alias Funx.Optics.{Lens, Prism, Traversal}
iex> alias Funx.Monad.Maybe
iex> t = Traversal.combine([Prism.key(:name), Prism.key(:email)])
iex> Traversal.to_list_maybe(%{name: "Alice", email: "alice@example.com"}, t)
%Maybe.Just{value: ["Alice", "alice@example.com"]}
Returns Nothing if any Prism doesn't match:
iex> alias Funx.Optics.{Prism, Traversal}
iex> alias Funx.Monad.Maybe
iex> t = Traversal.combine([Prism.key(:name), Prism.key(:email)])
iex> Traversal.to_list_maybe(%{name: "Alice"}, t)
%Maybe.Nothing{}
Lens contract violation throws:
iex> alias Funx.Optics.{Lens, Traversal}
iex> t = Traversal.combine([Lens.key(:name)])
iex> Traversal.to_list_maybe(%{age: 30}, t)
** (KeyError) key :name not found in: %{age: 30}

Funx.Ord

[image: Run in Livebook]
Provides utilities and DSL for working with the Funx.Ord.Protocol.
This module combines:
	Utility functions for ordering and comparison
	A declarative DSL for building complex orderings

Utility Functions
These functions work with types that support Elixir's comparison operators
or implement the Funx.Ord.Protocol:
	contramap/2 - Transform ordering by applying a projection
	compare/3 - Compare two values, returns :lt, :eq, or :gt
	max/3, min/3 - Find maximum or minimum of two values
	clamp/4, between/4 - Range operations
	reverse/1 - Reverse ordering logic
	comparator/1 - Convert to Elixir comparator for Enum.sort/2
	to_eq/1 - Convert to equality comparator
	append/2, concat/1 - Combine multiple orderings

DSL
The DSL provides a declarative syntax for building total orderings over complex data structures.
Use use Funx.Ord to import both utilities and DSL:
use Funx.Ord

ord do
 asc :name
 desc :age
end
The DSL compiles at compile time into efficient compositions using contramap, reverse, and concat,
eliminating the need to manually compose ordering functions.
Directions
	:asc - Ascending order (smallest to largest)
	:desc - Descending order (largest to smallest)

Projection Types
	Atom - Field access via Prism.key(atom). Safe for nil values.
	Atom with or_else - Optional field with fallback value
	Function - Direct projection fn x -> ... end or &fun/1
	Lens - Explicit lens for nested access
	Prism - Explicit prism for optional fields
	Prism with or_else - Optional with fallback
	Behaviour - Custom ordering via Funx.Ord.Dsl.Behaviour
	Ord variable - Existing ord map to compose

See Funx.Ord.Dsl.Behaviour for implementing custom ordering logic.

 Summary

 Types

 ord_map()

 ord_t()

 Functions

 append(a, b)

 Appends two Ord instances, combining their comparison logic.

 between(value, min, max, ord \\ Funx.Ord.Protocol)

 Checks if value is between min and max, inclusive, with an optional custom Ord.

 clamp(value, min, max, ord \\ Funx.Ord.Protocol)

 Clamps a value between min and max, with an optional custom Ord.

 comparator(ord_module)

 Creates a comparator function from the given Ord module, returning true
if a is less than or equal to b according to the module's ordering.

 compare(a, b, ord \\ Funx.Ord.Protocol)

 Compares two values and returns :lt, :eq, or :gt, with an optional custom Ord.

 concat(ord_list)

 Concatenates a list of Ord instances into a single composite comparator.

 contramap(projection, ord \\ Funx.Ord.Protocol)

 Transforms an ordering by applying a projection before comparison.

 max(a, b, ord \\ Funx.Ord.Protocol)

 Returns the maximum of two values, with an optional custom Ord.

 min(a, b, ord \\ Funx.Ord.Protocol)

 Returns the minimum of two values, with an optional custom Ord.

 ord(list)

 Creates an ordering from a block of projection specifications.

 reverse(ord \\ Funx.Ord.Protocol)

 Reverses the ordering logic.

 to_eq(ord \\ Funx.Ord.Protocol)

 Converts an Ord instance into an equality comparator.

 to_ord_map(ord_map)

 to_ord_map_or_contramap(map, ord)

 Converts an Ord DSL result or projection to an ord_map.

 Types

 ord_map()

 @type ord_map() :: %{
 lt?: (any(), any() -> boolean()),
 le?: (any(), any() -> boolean()),
 gt?: (any(), any() -> boolean()),
 ge?: (any(), any() -> boolean())
}

 ord_t()

 @type ord_t() :: Funx.Ord.Protocol.t() | ord_map()

 Functions

 append(a, b)

 @spec append(ord_t(), ord_t()) :: ord_t()

Appends two Ord instances, combining their comparison logic.
If the first Ord comparator determines an order, that result is used.
If not, the second comparator is used as a fallback.
Examples
iex> ord1 = Funx.Ord.contramap(& &1.age, Funx.Ord.Protocol.Any)
iex> ord2 = Funx.Ord.contramap(& &1.name, Funx.Ord.Protocol.Any)
iex> combined = Funx.Ord.append(ord1, ord2)
iex> combined.lt?.(%{age: 30, name: "Alice"}, %{age: 30, name: "Bob"})
true

 between(value, min, max, ord \\ Funx.Ord.Protocol)

 @spec between(a, a, a, ord_t()) :: boolean() when a: any()

Checks if value is between min and max, inclusive, with an optional custom Ord.
Examples
iex> Funx.Ord.between(5, 1, 10)
true

iex> Funx.Ord.between(0, 1, 10)
false

iex> Funx.Ord.between(11, 1, 10)
false

 clamp(value, min, max, ord \\ Funx.Ord.Protocol)

 @spec clamp(a, a, a, ord_t()) :: a when a: any()

Clamps a value between min and max, with an optional custom Ord.
Examples
iex> Funx.Ord.clamp(5, 1, 10)
5

iex> Funx.Ord.clamp(0, 1, 10)
1

iex> Funx.Ord.clamp(15, 1, 10)
10

 comparator(ord_module)

 @spec comparator(ord_t()) :: (any(), any() -> boolean())

Creates a comparator function from the given Ord module, returning true
if a is less than or equal to b according to the module's ordering.
Useful for sorting with Enum.sort/2 or similar functions.
Examples
iex> comparator = Funx.Ord.comparator(Funx.Ord.Protocol.Any)
iex> Enum.sort([3, 1, 2], comparator)
[1, 2, 3]

 compare(a, b, ord \\ Funx.Ord.Protocol)

 @spec compare(a, a, ord_t()) :: :lt | :eq | :gt when a: any()

Compares two values and returns :lt, :eq, or :gt, with an optional custom Ord.
Examples
iex> Funx.Ord.compare(3, 5)
:lt

iex> Funx.Ord.compare(7, 7)
:eq

iex> Funx.Ord.compare(9, 4)
:gt

 concat(ord_list)

 @spec concat([ord_t()]) :: ord_t()

Concatenates a list of Ord instances into a single composite comparator.
This function reduces a list of Ord comparators into a single Ord,
applying them in sequence until an order is determined.
Examples
iex> ord_list = [
...> Funx.Ord.contramap(& &1.age, Funx.Ord.Protocol.Any),
...> Funx.Ord.contramap(& &1.name, Funx.Ord.Protocol.Any)
...>]
iex> combined = Funx.Ord.concat(ord_list)
iex> combined.gt?.(%{age: 25, name: "Charlie"}, %{age: 25, name: "Bob"})
true

 contramap(projection, ord \\ Funx.Ord.Protocol)

 @spec contramap(
 (a -> b)
 | Funx.Optics.Lens.t()
 | Funx.Optics.Prism.t()
 | {Funx.Optics.Prism.t(), b},
 ord_t()
) :: ord_map()
when a: any(), b: any()

Transforms an ordering by applying a projection before comparison.
Canonical Normalization Layer
This function defines the single normalization point for all projections
in the Ord DSL. Every projection type resolves to one of these four forms:
	Lens.t() - Uses view!/2 to extract the focused value (raises on missing)
	Prism.t() - Uses preview/2, returns Maybe, with Nothing < Just(_) ordering
	{Prism.t(), or_else} - Uses preview/2, falling back to or_else on Nothing
	(a -> b) - Projection function applied directly

All DSL syntax sugar (atoms, helpers, etc.) normalizes to these types in the parser.
This function is the only place that converts optics to executable functions.
The ord parameter may be an Ord module or a custom comparator map
with :lt?, :le?, :gt?, and :ge? functions. The projection is applied
to both inputs before invoking the underlying comparator.
Examples
Using a projection function:
iex> ord = Funx.Ord.contramap(&String.length/1)
iex> ord.lt?.("cat", "zebra")
true
iex> ord.gt?.("zebra", "cat")
true
Using a lens for single key access:
iex> ord = Funx.Ord.contramap(Funx.Optics.Lens.key(:age))
iex> ord.gt?.(%{age: 40}, %{age: 30})
true
iex> ord.lt?.(%{age: 30}, %{age: 40})
true
Using a bare prism (Nothing < Just):
iex> prism = Funx.Optics.Prism.key(:score)
iex> ord = Funx.Ord.contramap(prism)
iex> ord.lt?.(%{}, %{score: 20})
true
iex> ord.gt?.(%{score: 30}, %{})
true
Using a prism with an or_else value:
iex> prism = Funx.Optics.Prism.key(:score)
iex> ord = Funx.Ord.contramap({prism, 0})
iex> ord.lt?.(%{score: 10}, %{score: 20})
true
iex> ord.lt?.(%{}, %{score: 20})
true
iex> ord.gt?.(%{score: 30}, %{})
true

 max(a, b, ord \\ Funx.Ord.Protocol)

 @spec max(a, a, ord_t()) :: a when a: any()

Returns the maximum of two values, with an optional custom Ord.
Examples
iex> Funx.Ord.max(3, 5)
5

iex> ord = Funx.Ord.contramap(&String.length/1, Funx.Ord.Protocol.Any)
iex> Funx.Ord.max("cat", "zebra", ord)
"zebra"

 min(a, b, ord \\ Funx.Ord.Protocol)

 @spec min(a, a, ord_t()) :: a when a: any()

Returns the minimum of two values, with an optional custom Ord.
Examples
iex> Funx.Ord.min(10, 7)
7

iex> ord = Funx.Ord.contramap(&String.length/1, Funx.Ord.Protocol.Any)
iex> Funx.Ord.min("apple", "kiwi", ord)
"kiwi"

 ord(list)

 (macro)

Creates an ordering from a block of projection specifications.
Returns a %Funx.Monoid.Ord{} struct that can be used with Funx.Ord
functions like compare/3, max/3, min/3, or comparator/1.
Examples
ord do
 asc :name
 desc :age
end

ord do
 asc :score, or_else: 0
 desc &String.length(&1.bio)
end

With nested field paths
ord do
 asc [:user, :profile, :created_at]
 desc [:user, :stats, :score]
end

 reverse(ord \\ Funx.Ord.Protocol)

 @spec reverse(ord_t()) :: ord_map()

Reverses the ordering logic.
Examples
iex> ord = Funx.Ord.reverse(Funx.Ord.Protocol.Any)
iex> ord.lt?.(10, 5)
true

 to_eq(ord \\ Funx.Ord.Protocol)

 @spec to_eq(ord_t()) :: Funx.Eq.eq_map()

Converts an Ord instance into an equality comparator.
This function creates a map containing two functions:
	eq?/2: Returns true if a and b are considered equal by the given Ord.
	not_eq?/2: Returns true if a and b are not considered equal by the given Ord.

Examples
iex> eq = Funx.Ord.to_eq(Funx.Ord.Protocol.Any)
iex> eq.eq?.(5, 5)
true

 to_ord_map(ord_map)

 to_ord_map_or_contramap(map, ord)

 @spec to_ord_map_or_contramap(any(), ord_t()) :: ord_map()

Converts an Ord DSL result or projection to an ord_map.
If passed a plain map with lt?/2, le?/2, gt?/2, and ge?/2 functions
(the result of ord do ... end), returns it directly. Otherwise, delegates
to contramap/2.
Used internally by Funx.Macros.ord_for/3 to support both projection-based
and DSL-based ordering definitions.

Funx.Ord.Any

Provides default ordering functions using the Funx.Ord.Protocol.
This module delegates to the protocol implementation for the given type,
falling back to Elixir's built-in comparison operators when no protocol
implementation exists.

 Summary

 Functions

 ge?(a, b)

 Returns true if a is greater than or equal to b.

 gt?(a, b)

 Returns true if a is greater than b.

 le?(a, b)

 Returns true if a is less than or equal to b.

 lt?(a, b)

 Returns true if a is less than b according to their Ord.Protocol implementation.

 Functions

 ge?(a, b)

 @spec ge?(any(), any()) :: boolean()

Returns true if a is greater than or equal to b.
Examples
iex> Funx.Ord.Any.ge?(2, 1)
true

iex> Funx.Ord.Any.ge?(2, 2)
true

 gt?(a, b)

 @spec gt?(any(), any()) :: boolean()

Returns true if a is greater than b.
Examples
iex> Funx.Ord.Any.gt?(2, 1)
true

iex> Funx.Ord.Any.gt?(1, 2)
false

 le?(a, b)

 @spec le?(any(), any()) :: boolean()

Returns true if a is less than or equal to b.
Examples
iex> Funx.Ord.Any.le?(1, 2)
true

iex> Funx.Ord.Any.le?(2, 2)
true

 lt?(a, b)

 @spec lt?(any(), any()) :: boolean()

Returns true if a is less than b according to their Ord.Protocol implementation.
Examples
iex> Funx.Ord.Any.lt?(1, 2)
true

iex> Funx.Ord.Any.lt?(2, 1)
false

Funx.Ord.Dsl.Behaviour behaviour

Behaviour for custom ordering logic in the Ord DSL.
Implement this behaviour to define reusable Ord comparators that can be
used with asc and desc directives in the DSL without implementing the Ord protocol.
This is useful for teams that want to avoid teaching developers about protocols,
or want struct-specific ordering without global protocol implementations.
Basic Example
defmodule UserById do
 @behaviour Funx.Ord.Dsl.Behaviour

 @impl true
 def ord(_opts) do
 Funx.Ord.contramap(&(&1.id))
 end
end

In DSL
use Funx.Ord.Dsl

ord do
 asc: UserById # Orders by id ascending
end
With Options
defmodule UserByField do
 @behaviour Funx.Ord.Dsl.Behaviour

 @impl true
 def ord(opts) do
 field = Keyword.get(opts, :field, :id)
 Funx.Ord.contramap(&Map.get(&1, field))
 end
end

In DSL
ord do
 asc: UserByField, field: :name
end
Why Use This Instead of Protocols?
	Simpler: Just one function returning an Ord map
	No protocol knowledge required: Easier for team onboarding
	Module-specific: Override struct ordering without global protocol
	Options support: Built-in support for configuration

The returned Ord map typically uses Funx.Ord.contramap/2 to build
projection-based ordering, but can implement any custom comparison logic.

 Summary

 Callbacks

 ord(opts)

 Returns an Ord map for comparison.

 Callbacks

 ord(opts)

 @callback ord(opts :: keyword()) :: Funx.Ord.ord_map()

Returns an Ord map for comparison.
Takes options and returns an Ord map (with :compare function).
Arguments
	opts - Keyword list of options passed from the DSL

Return Value
An Ord map with the structure:
%{
 compare: (any(), any() -> :lt | :eq | :gt)
}
Examples
Simple projection-based ordering
def ord(_opts) do
 Funx.Ord.contramap(&(&1.id))
end

With options
def ord(opts) do
 field = Keyword.get(opts, :field, :id)
 Funx.Ord.contramap(&Map.get(&1, field))
end

Custom comparison logic
def ord(_opts) do
 %{
 compare: fn a, b ->
 cond do
 normalize(a) < normalize(b) -> :lt
 normalize(a) > normalize(b) -> :gt
 true -> :eq
 end
 end
 }
end
Most implementations use Funx.Ord.contramap/2 for projection-based
ordering, which handles the Ord map creation automatically.

Funx.Ord.Protocol protocol

The Funx.Ord.Protocol defines a set of comparison functions: lt?/2, le?/2, gt?/2, and ge?/2.
This protocol is intended for types that can be ordered, allowing values to be compared for their relative positions in a total order.
By implementing this protocol, you can provide custom logic for how values of a certain type are compared.
Fallback
The protocol uses @fallback_to_any true, which means if a specific type does not implement Funx.Ord.Protocol,
the default implementation for Any will be used, which relies on Elixir's built-in comparison operators.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 ge?(a, b)

 Returns true if a is greater than or equal to b, otherwise returns false.

 gt?(a, b)

 Returns true if a is greater than b, otherwise returns false.

 le?(a, b)

 Returns true if a is less than or equal to b, otherwise returns false.

 lt?(a, b)

 Returns true if a is less than b, otherwise returns false.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 ge?(a, b)

Returns true if a is greater than or equal to b, otherwise returns false.
Examples
iex> Funx.Ord.Protocol.ge?(Funx.Monad.Maybe.just(5), Funx.Monad.Maybe.just(3))
true

iex> Funx.Ord.Protocol.ge?(Funx.Monad.Maybe.just(5), Funx.Monad.Maybe.just(5))
true

iex> Funx.Ord.Protocol.ge?(Funx.Monad.Maybe.just(3), Funx.Monad.Maybe.just(5))
false

 gt?(a, b)

Returns true if a is greater than b, otherwise returns false.
Examples
iex> Funx.Ord.Protocol.gt?(Funx.Monad.Maybe.just(5), Funx.Monad.Maybe.just(3))
true

iex> Funx.Ord.Protocol.gt?(Funx.Monad.Maybe.just(3), Funx.Monad.Maybe.just(5))
false

iex> Funx.Ord.Protocol.gt?(Funx.Monad.Maybe.just(3), Funx.Monad.Maybe.nothing())
true

 le?(a, b)

Returns true if a is less than or equal to b, otherwise returns false.
Examples
iex> Funx.Ord.Protocol.le?(Funx.Monad.Maybe.just(3), Funx.Monad.Maybe.just(5))
true

iex> Funx.Ord.Protocol.le?(Funx.Monad.Maybe.just(5), Funx.Monad.Maybe.just(5))
true

iex> Funx.Ord.Protocol.le?(Funx.Monad.Maybe.just(5), Funx.Monad.Maybe.just(3))
false

 lt?(a, b)

Returns true if a is less than b, otherwise returns false.
Examples
iex> Funx.Ord.Protocol.lt?(Funx.Monad.Maybe.just(3), Funx.Monad.Maybe.just(5))
true

iex> Funx.Ord.Protocol.lt?(Funx.Monad.Maybe.just(5), Funx.Monad.Maybe.just(3))
false

iex> Funx.Ord.Protocol.lt?(Funx.Monad.Maybe.nothing(), Funx.Monad.Maybe.just(3))
true

Funx.Predicate

[image: Run in Livebook]
Provides utility functions for working with predicates—functions that return true or false.
This module enables combining predicates in a declarative way using logical operations.
Combinator Hierarchy
The predicate algebra is built on three primitives:
	p_all/1: Combines predicates with AND logic (structural primitive)
	p_any/1: Combines predicates with OR logic (structural primitive)
	p_not/1: Negates a predicate

Binary convenience functions are thin wrappers over the primitives:
	p_and/2: Binary AND, equivalent to p_all([pred1, pred2])
	p_or/2: Binary OR, equivalent to p_any([pred1, pred2])
	p_none/1: Negated OR, equivalent to p_not(p_any(predicates))

The Predicate DSL compiles exclusively to p_all, p_any, and p_not, treating them
as the canonical forms.
Empty List Semantics
The algebra allows empty lists and returns logical identity values:
	p_all([]) returns a predicate that always returns true (AND identity)
	p_any([]) returns a predicate that always returns false (OR identity)
	p_none([]) returns a predicate that always returns true (negated OR identity)

The Predicate DSL also supports empty blocks, returning the same identity values:
	all do end returns fn _ -> true end (AND identity)
	any do end returns fn _ -> false end (OR identity)
	negate_all do end returns fn _ -> false end (NOT true)
	negate_any do end returns fn _ -> true end (NOT false)

Examples
Combining predicates with p_and/2:
iex> is_adult = fn person -> person.age >= 18 end
iex> has_ticket = fn person -> person.tickets > 0 end
iex> can_enter = Funx.Predicate.p_and(is_adult, has_ticket)
iex> can_enter.(%{age: 20, tickets: 1})
true
iex> can_enter.(%{age: 16, tickets: 1})
false
Using p_or/2 for alternative conditions:
iex> is_vip = fn person -> person.vip end
iex> is_sponsor = fn person -> person.sponsor end
iex> can_access_vip_area = Funx.Predicate.p_or(is_vip, is_sponsor)
iex> can_access_vip_area.(%{vip: true, sponsor: false})
true
iex> can_access_vip_area.(%{vip: false, sponsor: false})
false
Negating predicates with p_not/1:
iex> is_minor = fn person -> person.age < 18 end
iex> is_adult = Funx.Predicate.p_not(is_minor)
iex> is_adult.(%{age: 20})
true
iex> is_adult.(%{age: 16})
false
Using p_all/1 and p_any/1 for predicate lists:
iex> is_adult = fn person -> person.age >= 18 end
iex> has_ticket = fn person -> person.tickets > 0 end
iex> conditions = [is_adult, has_ticket]
iex> must_meet_all = Funx.Predicate.p_all(conditions)
iex> must_meet_any = Funx.Predicate.p_any(conditions)
iex> must_meet_all.(%{age: 20, tickets: 1})
true
iex> must_meet_all.(%{age: 20, tickets: 0})
false
iex> must_meet_any.(%{age: 20, tickets: 0})
true
iex> must_meet_any.(%{age: 16, tickets: 0})
false
Using p_none/1 to reject multiple conditions:
iex> is_adult = fn person -> person.age >= 18 end
iex> is_vip = fn person -> person.vip end
iex> cannot_enter = Funx.Predicate.p_none([is_adult, is_vip])
iex> cannot_enter.(%{age: 20, vip: true})
false
iex> cannot_enter.(%{age: 16, vip: false})
true

 Summary

 Types

 t()

 Functions

 compose_projection(projection, predicate)

 Composes a projection (optic or function) with a predicate.

 p_all(p_list)

 Combines a list of predicates (p_list) using logical AND.
Returns true only if all predicates return true. An empty list returns true.

 p_and(pred1, pred2)

 Combines two predicates (pred1 and pred2) using logical AND.
Returns a predicate that evaluates to true only if both pred1 and pred2 return true.

 p_any(p_list)

 Combines a list of predicates (p_list) using logical OR.
Returns true if at least one predicate returns true. An empty list returns false.

 p_none(p_list)

 Combines a list of predicates (p_list) using logical NOR (negated OR).
Returns true only if none of the predicates return true. An empty list returns true.

 p_not(pred)

 Negates a predicate (pred).
Returns a predicate that evaluates to true when pred returns false, and vice versa.

 p_or(pred1, pred2)

 Combines two predicates (pred1 and pred2) using logical OR.
Returns a predicate that evaluates to true if either pred1 or pred2 return true.

 pred(list)

 Creates a predicate from a block of predicate compositions.

 Types

 t()

 @type t() :: (term() -> boolean())

 Functions

 compose_projection(projection, predicate)

 @spec compose_projection(term(), t()) :: t()

Composes a projection (optic or function) with a predicate.
This allows checking predicates on projected values (focused parts of data).
Projection Types and Semantics
Lens (Total Projection)
	Semantics: Always focuses on a single value
	Success: Applies predicate to the focused value
	Failure: Raises if field is missing (total projection contract)
	Note: The raising behavior is enforced by the Lens implementation (lens.view/1),
not by this composition function. This function delegates to the Lens contract.

Prism (Partial Projection)
	Semantics: May focus on a value (returns Maybe monad)
	Success: When focus succeeds (Just), applies predicate to unwrapped value
	Failure: When focus fails (Nothing), returns false without applying predicate
	Contract: Missing or nil values return false, not an error

Traversal (Multi-Focus Projection)
	Semantics: Focuses on zero or more values (returns list of foci)
	Success: Returns true if at least one focused value passes the predicate (existential)
	Failure: Returns false if all focused values fail or if no foci exist
	Contract: Uses existential quantification (∃), not universal (∀)

Function (Custom Projection)
	Semantics: Projects value using the provided function
	Success: Applies predicate to the function result
	Failure: No built-in failure mode; function must handle edge cases

Projection Failure Behavior
When a projection fails to focus on a value:
	Prism: Returns false (graceful degradation)
	Traversal (empty foci): Returns false
	Lens: Raises error (total projection contract violation)
	Function: Depends on function implementation

Examples
iex> alias Funx.Optics.Prism
iex> is_adult = fn age -> age >= 18 end
iex> check = Funx.Predicate.compose_projection(Prism.key(:age), is_adult)
iex> check.(%{age: 20})
true
iex> check.(%{age: 16})
false
iex> check.(%{}) # Missing key returns false
false

iex> alias Funx.Optics.Lens
iex> is_long = fn s -> String.length(s) > 5 end
iex> check = Funx.Predicate.compose_projection(Lens.key(:name), is_long)
iex> check.(%{name: "Alexander"})
true
iex> check.(%{name: "Joe"})
false

iex> alias Funx.Optics.Traversal
iex> # Traversal: predicate receives list of foci to relate them
iex> has_high_score = fn scores -> Enum.any?(scores, fn score -> score > 90 end) end
iex> check = Funx.Predicate.compose_projection(
...> Traversal.combine([Lens.key(:score1), Lens.key(:score2)]),
...> has_high_score
...>)
iex> check.(%{score1: 95, score2: 80}) # At least one score > 90
true
iex> check.(%{score1: 80, score2: 85}) # No scores > 90
false

 p_all(p_list)

 @spec p_all([t()]) :: t()

Combines a list of predicates (p_list) using logical AND.
Returns true only if all predicates return true. An empty list returns true.
Examples
iex> is_adult = fn person -> person.age >= 18 end
iex> has_ticket = fn person -> person.tickets > 0 end
iex> can_enter = Funx.Predicate.p_all([is_adult, has_ticket])
iex> can_enter.(%{age: 20, tickets: 1})
true
iex> can_enter.(%{age: 16, tickets: 1})
false

 p_and(pred1, pred2)

 @spec p_and(t(), t()) :: t()

Combines two predicates (pred1 and pred2) using logical AND.
Returns a predicate that evaluates to true only if both pred1 and pred2 return true.
Examples
iex> is_adult = fn person -> person.age >= 18 end
iex> has_ticket = fn person -> person.tickets > 0 end
iex> can_enter = Funx.Predicate.p_and(is_adult, has_ticket)
iex> can_enter.(%{age: 20, tickets: 1})
true
iex> can_enter.(%{age: 16, tickets: 1})
false

 p_any(p_list)

 @spec p_any([t()]) :: t()

Combines a list of predicates (p_list) using logical OR.
Returns true if at least one predicate returns true. An empty list returns false.
Examples
iex> is_vip = fn person -> person.vip end
iex> is_sponsor = fn person -> person.sponsor end
iex> can_access_vip_area = Funx.Predicate.p_any([is_vip, is_sponsor])
iex> can_access_vip_area.(%{vip: true, sponsor: false})
true
iex> can_access_vip_area.(%{vip: false, sponsor: false})
false

 p_none(p_list)

 @spec p_none([t()]) :: t()

Combines a list of predicates (p_list) using logical NOR (negated OR).
Returns true only if none of the predicates return true. An empty list returns true.
Examples
iex> is_adult = fn person -> person.age >= 18 end
iex> is_vip = fn person -> person.vip end
iex> cannot_enter = Funx.Predicate.p_none([is_adult, is_vip])
iex> cannot_enter.(%{age: 20, vip: true})
false
iex> cannot_enter.(%{age: 16, vip: false})
true

 p_not(pred)

 @spec p_not(t()) :: t()

Negates a predicate (pred).
Returns a predicate that evaluates to true when pred returns false, and vice versa.
Examples
iex> is_minor = fn person -> person.age < 18 end
iex> is_adult = Funx.Predicate.p_not(is_minor)
iex> is_adult.(%{age: 20})
true
iex> is_adult.(%{age: 16})
false

 p_or(pred1, pred2)

 @spec p_or(t(), t()) :: t()

Combines two predicates (pred1 and pred2) using logical OR.
Returns a predicate that evaluates to true if either pred1 or pred2 return true.
Examples
iex> is_vip = fn person -> person.vip end
iex> is_sponsor = fn person -> person.sponsor end
iex> can_access_vip_area = Funx.Predicate.p_or(is_vip, is_sponsor)
iex> can_access_vip_area.(%{vip: true, sponsor: false})
true
iex> can_access_vip_area.(%{vip: false, sponsor: false})
false

 pred(list)

 (macro)

Creates a predicate from a block of predicate compositions.
Returns a function (any() -> boolean()) that can be used with Enum.filter,
Enum.find, and other functions that accept predicates.
Directives
	Bare predicate - Include predicate in composition
	negate - Negate the predicate
	check - Compose projection with predicate (check projected value)
	any - At least one nested predicate must pass (OR logic)
	all - All nested predicates must pass (AND logic, implicit at top level)

Predicate Forms
The DSL accepts predicates in multiple forms:
Variables (no parentheses needed)
When a predicate is bound to a variable, reference it directly:
is_adult = fn user -> user.age >= 18 end

pred do
 is_adult # Variable reference - no () needed
end
Helper Functions (parentheses required)
When using 0-arity functions that return predicates, call them with ():
defmodule Helpers do
 def adult?, do: fn user -> user.age >= 18 end
end

pred do
 Helpers.adult?() # Must call with () to get the predicate
end
Why () is required: The DSL cannot distinguish at compile time between
a function reference and a function call. Using () makes the intent explicit
and ensures the predicate function is retrieved.
Anonymous Functions (inline)
Define predicates inline using fn:
pred do
 fn user -> user.age >= 18 end
end
Captured Functions
Use the capture operator & for named functions:
pred do
 &adult?/1
end
Behaviour Modules
For reusable validation logic, implement Funx.Predicate.Dsl.Behaviour:
defmodule IsActive do
 @behaviour Funx.Predicate.Dsl.Behaviour

 def pred(_opts), do: fn user -> user.active end
end

pred do
 IsActive # Bare module reference
 {HasMinimumAge, minimum: 21} # With options
end
Examples
use Funx.Predicate

Simple composition (implicit AND)
pred do
 is_adult
 has_ticket
end

With any block (OR logic)
pred do
 is_admin

 any do
 is_vip
 is_sponsor
 end
end

With negation
pred do
 is_verified
 negate is_banned
end

With projection (check directive)
pred do
 is_adult
 check :email, fn email -> String.contains?(email, "@") end
end

With nested field projection (list paths)
pred do
 check [:user, :profile, :age], fn age -> age >= 18 end
 check [:user, :settings, :notifications], fn n -> n == true end
end

With negated projection
pred do
 is_adult
 negate check :banned, fn b -> b == true end
end

Complex nesting
pred do
 any do
 all do
 is_admin
 is_verified
 end

 all do
 is_moderator
 has_permission
 end
 end

 negate is_suspended
end

Funx.Predicate.Dsl.Behaviour behaviour

Behaviour for custom predicate logic in the Predicate DSL.
Implement this behaviour to define reusable predicates that can be
used with on directives in the DSL.
This is useful for teams that want to create reusable, configurable
predicates without repeating logic across the codebase.
Basic Example
defmodule IsActive do
 @behaviour Funx.Predicate.Dsl.Behaviour

 @impl true
 def pred(_opts) do
 fn user -> user.active end
 end
end

In DSL
use Funx.Predicate

pred do
 on IsActive # Checks if active
end
With Options
defmodule HasMinimumAge do
 @behaviour Funx.Predicate.Dsl.Behaviour

 @impl true
 def pred(opts) do
 minimum_age = Keyword.get(opts, :minimum, 18)

 fn user -> user.age >= minimum_age end
 end
end

In DSL
pred do
 on HasMinimumAge, minimum: 21
end
Why Use This?
	Reusable: Define predicates once, use everywhere
	Configurable: Built-in support for options
	Testable: Predicates can be unit tested independently
	Discoverable: All predicates in one module namespace

The returned predicate is a function (any() -> boolean()) that will be
composed with other predicates using the DSL's combinator logic.

 Summary

 Callbacks

 pred(opts)

 Returns a predicate function.

 Callbacks

 pred(opts)

 @callback pred(opts :: keyword()) :: Funx.Predicate.t()

Returns a predicate function.
Takes options and returns a predicate function (any() -> boolean()).
Arguments
	opts - Keyword list of options passed from the DSL

Return Value
A predicate function with the signature:
(any() -> boolean())
Examples
Simple predicate
def pred(_opts) do
 fn user -> user.active end
end

With options
def pred(opts) do
 field = Keyword.get(opts, :field, :active)
 fn item -> Map.get(item, field) end
end

Complex logic
def pred(opts) do
 min_age = Keyword.get(opts, :min_age, 18)
 max_age = Keyword.get(opts, :max_age, 65)

 fn user ->
 user.age >= min_age and user.age <= max_age
 end
end
Most implementations return simple predicate functions that check
specific conditions on the input value.

Funx.Summarizable protocol

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 summarize(value)

 Summarizes a value in a telemetry-safe, compact format.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 summarize(value)

 @spec summarize(t()) :: term()

Summarizes a value in a telemetry-safe, compact format.

Funx.Tappable protocol

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 tap(data, fun)

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 tap(data, fun)

Funx.Utils

[image: Run in Livebook]
A collection of higher-order functions for functional programming in Elixir.
This module provides utilities for working with functions in a functional
programming style. It includes:
	curry/1: Transforms a multi-argument function into a curried version.
	curry_r/1: Transforms a multi-argument function into a curried version, but from right to left.
	flip/1: Reverses the argument order of a two-argument function.

 Summary

 Functions

 curry(fun)

 Transforms a function of arity n into a curried version,
allowing it to be applied one argument at a time.

 curry_l(fun)

 Alias for curry/1, explicitly denoting left-to-right argument application.

 curry_r(fun)

 Transforms a function of arity n into a right-curried version,
applying arguments from right to left.

 flip(fun)

 Reverses the argument order of a two-argument function.

 summarize_string(value, max_len \\ 50)

 Functions

 curry(fun)

 @spec curry((... -> any())) :: any()

Transforms a function of arity n into a curried version,
allowing it to be applied one argument at a time.
Example
iex> add = fn a, b -> a + b end
iex> curried_add = FunPark.Utils.curry(add)
iex> add_three = curried_add.(3)
iex> add_three.(2)
5

 curry_l(fun)

 @spec curry_l((... -> any())) :: any()

Alias for curry/1, explicitly denoting left-to-right argument application.
Example
iex> subtract = fn a, b -> a - b end
iex> curried_subtract = FunPark.Utils.curry_l(subtract)
iex> subtract_five = curried_subtract.(5)
iex> subtract_five.(3)
2

 curry_r(fun)

 @spec curry_r((... -> any())) :: any()

Transforms a function of arity n into a right-curried version,
applying arguments from right to left.
Example
iex> divide = fn a, b -> a / b end
iex> curried_divide = FunPark.Utils.curry_r(divide)
iex> divide_by_two = curried_divide.(2)
iex> divide_by_two.(10)
5.0

 flip(fun)

 @spec flip((a, b -> c)) :: (b, a -> c) when a: any(), b: any(), c: any()

Reverses the argument order of a two-argument function.
The flip/1 function takes a function of arity 2 and returns a new function
where the first and second arguments are swapped.
Examples
iex> divide = fn a, b -> a / b end
iex> flipped_divide = Utils.flip(divide)
iex> flipped_divide.(2, 10)
5.0

 summarize_string(value, max_len \\ 50)

Funx.Validate

Declarative validation DSL using optics and applicative error accumulation.
Overview
The Validation DSL provides:
	Declarative syntax for validating nested structures
	Projection to fields using optics (Lens, Prism, Traversal)
	Applicative error accumulation (all validators run, all errors collected)
	Structure preservation (returns original value on success)

Usage
use Funx.Validate

user_validation =
 validate do
 at :name, [Required, {MinLength, min: 3}]
 at :email, [Required, Email]
 end

Either.validate(%{name: "Alice", email: "alice@example.com"}, user_validation)
#=> %Right{right: %{name: "Alice", email: "alice@example.com"}}
Laws
	Identity: validate do end returns Right(value)
	Structure Preservation: Successful validation returns original structure
	Applicative: All validators run; all errors accumulate

Architecture
The DSL compiles in two phases:
	Parser - Converts DSL syntax into Step nodes
	Executor - Converts Step nodes into executable validator function

 Summary

 Types

 t()

 Functions

 validate(opts \\ [], list)

 Defines a validation using the DSL.

 Types

 t()

 @type t() :: (term(), keyword() ->
 Funx.Monad.Either.t(Funx.Errors.ValidationError.t(), term()))

 Functions

 validate(opts \\ [], list)

 (macro)

Defines a validation using the DSL.
Returns a validator function compatible with Either.validate/2,3.
Syntax
Root Validators
validate do
 HasContactMethod
 ValidTimezone
end
Field Validation with at
validate do
 at :name, Required
 at :email, Email
end
By default, at :key uses Prism.key(:key) (optional field).
Nested Field Validation (List Paths)
validate do
 at [:user, :profile, :name], Required
 at [:user, :profile, :age], Positive
end
List paths support struct modules for type-safe nested access:
validate do
 at [User, :profile, Profile, :age], Positive
end
Explicit Optics
validate do
 # Prism: optional field
 at Prism.key(:email), Email

 # Lens: required field (raises KeyError if missing)
 at Lens.key(:name), Required
end
Validator Options
validate do
 at :name, {MinLength, min: 3}
end
Multiple Validators per Field
validate do
 at :name, [Required, {MinLength, min: 3}]
end
Validators run sequentially left-to-right.
Validation Modes
Sequential mode (default): fail-fast, short-circuits on first error
validate mode: :sequential do
 at :name, Required
 at :email, Email
end

Parallel mode: runs all validations, accumulates all errors
validate mode: :parallel do
 at :name, Required
 at :email, Email
end
Examples
validate do
 at :name, Required
 at :email, [Required, Email]
 at :age, Positive
end

Funx.Validate.Behaviour behaviour

Behaviour for validation functions.
All validators follow a consistent arity-3 signature, matching other DSL behaviours in Funx.
Contract
@callback validate(value :: any(), opts :: keyword(), env :: map()) ::
 Funx.Monad.Either.t(any(), Funx.Errors.ValidationError.t())
 | :ok
 | {:ok, any()}
 | {:error, Funx.Errors.ValidationError.t()}
Arguments
	value - The value to validate (may be transformed by previous validators)
	opts - Keyword list of options (validator-specific configuration)
	env - Environment map (runtime context like database connections, session data)

Return Values
Canonical (preferred):
	Either.right(value) - Validation passed, return original or transformed value
	Either.left(ValidationError.t()) - Validation failed with error

Legacy (supported via normalization):
	:ok - Validation passed, return original value
	{:ok, value} - Validation passed with transformation
	{:error, ValidationError.t()} - Validation failed

Semantic Rules
	Arguments strictly ordered: value, opts, env
	Either is canonical (tagged tuples normalized by DSL)
	Value transformation allowed (sequential within focus)
	Never raise for validation failure (use Left/error tuple)
	Return ValidationError for errors (not raw strings)
	Concurrency-safe by contract

Message Option
All validators should support a :message option for custom error messages:
	String: [message: "custom error"]
	Function: [message: fn value -> "got #{inspect(value)}" end]

When a function is provided, it receives the current value being validated.
Example
defmodule MyValidator do
 @behaviour Funx.Validate.Behaviour
 alias Funx.Monad.Either
 alias Funx.Errors.ValidationError

 @impl true
 def validate(value, opts, _env) do
 if valid?(value) do
 Either.right(value)
 else
 message = get_message(opts, value, "default error message")
 Either.left(ValidationError.new(message))
 end
 end

 defp get_message(opts, value, default) do
 case Keyword.get(opts, :message) do
 nil -> default
 msg when is_binary(msg) -> msg
 msg_fn when is_function(msg_fn, 1) -> msg_fn.(value)
 end
 end
end

 Summary

 Callbacks

 validate(value, opts, env)

 Callbacks

 validate(value, opts, env)

 @callback validate(value :: any(), opts :: keyword(), env :: map()) ::
 Funx.Monad.Either.t(any(), Funx.Errors.ValidationError.t())
 | :ok
 | {:ok, any()}
 | {:error, Funx.Errors.ValidationError.t()}

Funx.Validator behaviour

Macro for building custom validators with minimal boilerplate.
Users creating custom validators (e.g., database checks, API validations) can use
this macro to avoid reimplementing the standard validator pattern. The macro
generates all the boilerplate including arity overloads, Maybe handling, message
building, and Either wrapping.
Two Behaviours
This module defines two separate behaviours:
	Funx.Validate.Behaviour - The public contract for all validators.
Defines validate/3 which returns Either.t(value, ValidationError.t()).
This is what the validation DSL and consumers interact with.

	Funx.Validator - The callback contract for users of this macro.
Defines validate_value/3 (returns boolean) and default_message/1 (returns string).
This is the simplified API for implementing custom validation logic.

The macro generates the Funx.Validate.Behaviour implementation from your
Funx.Validator callbacks.
User API
Users implement one required callback (and optionally a second):
	valid?/3 - Predicate function that returns true or false (required)
	default_message/2 - Returns a plain string error message (optional)

If default_message/2 is not implemented, a generic "is invalid" message is used.
No need to know about Either, ValidationError, or Maybe - the macro
handles all functional programming complexity.
Examples
Minimal - just implement valid?/3
defmodule MyApp.Validators.UniqueEmail do
 use Funx.Validator

 @impl Funx.Validator
 def valid?(email, _opts, _env) do
 not MyApp.Repo.exists?(User, email: email)
 end
 # Uses default "is invalid" message
end

With custom message
defmodule MyApp.Validators.UniqueEmailWithMessage do
 use Funx.Validator

 @impl Funx.Validator
 def valid?(email, _opts, _env) do
 not MyApp.Repo.exists?(User, email: email)
 end

 @impl Funx.Validator
 def default_message(_value, _opts) do
 "email is already taken"
 end
end

With custom type checking (if needed)
defmodule MyApp.Validators.CustomNumber do
 use Funx.Validator

 @impl Funx.Validator
 def valid?(num, _opts, _env) when is_number(num) do
 custom_number_check(num)
 end

 def valid?(_non_number, _opts, _env), do: false

 @impl Funx.Validator
 def default_message(_value), do: "must be a valid number"
end
Generated Code
The macro generates:
	@behaviour Funx.Validate.Behaviour implementation
	Convenience helpers validate/1, validate/2 (delegate to validate/3)
	Maybe handling at the validation boundary (see Maybe Semantics below)
	Message handling via build_message/3 (supports :message option)
	Either wrapping using Either.lift_predicate

Maybe Semantics
Critical design rule: Nothing always passes through unchanged.
	Nothing → Either.right(Nothing) (validation skipped)
	Just(value) → unwraps to value, calls your validate_value/3, re-wraps result
	Raw value → calls your validate_value/3 directly

Why Nothing passes: In Funx's validation model, absence is handled by Prism
optics. Nothing represents "value not present" (e.g., optional field missing).
Only Funx.Validator.Required fails on absence - all other validators assume presence.
What you validate: Your validate_value/3 callback receives the unwrapped value,
never Nothing or Just. The macro handles the Maybe boundary for you.
Message Customization
All generated validators support the :message option to override the default error:
MyValidator.validate(value, message: fn v -> "custom error for #{v}" end)
The :message option accepts a function (value -> String.t()) that receives
the invalid value and returns an error message string. The macro wraps this in
ValidationError.new/1 automatically.
Note: Only function callbacks are supported (not raw strings), consistent with
all built-in Funx validators.
Custom Message Override
Users of your validator can override the default message using the :message option:
MyApp.Validators.UniqueEmail.validate(
 "test@example.com",
 message: fn email -> "#{email} is already registered" end
)
Built-in Validators
Funx provides built-in validators for common scenarios:
Presence and Structure
	Funx.Validator.Required – Validates presence (not nil, not empty, not Nothing)
	Funx.Validator.Confirmation – Validates that a value matches another field using Eq

String Validators
	Funx.Validator.Email – Validates basic email format
	Funx.Validator.MinLength – Validates minimum string length
	Funx.Validator.MaxLength – Validates maximum string length
	Funx.Validator.Pattern – Validates against a regular expression

Numeric Validators
	Funx.Validator.Integer – Validates that the value is an integer
	Funx.Validator.Negative – Validates number < 0
	Funx.Validator.Positive – Validates number > 0
	Funx.Validator.Range – Validates number within inclusive bounds

Equality (Eq based)
	Funx.Validator.Equal – Validates that a value equals an expected value using Eq
	Funx.Validator.NotEqual – Validates that a value does not equal an expected value using Eq
	Funx.Validator.AllEqual – Validates that all elements in a collection are equal using Eq

Ordering (Ord based)
	Funx.Validator.GreaterThan – Validates value > threshold
	Funx.Validator.GreaterThanOrEqual – Validates value ≥ threshold
	Funx.Validator.LessThan – Validates value < threshold
	Funx.Validator.LessThanOrEqual – Validates value ≤ threshold

Membership (Eq based)
	Funx.Validator.In – Validates membership in a set of allowed values using Eq
	Funx.Validator.NotIn – Validates non-membership in a set of disallowed values using Eq

Combinators
	Funx.Validator.Any – Validates that at least one of several validators succeeds (OR logic)
	Funx.Validator.Not – Negates the result of another validator

Predicate Lifting
	Funx.Validator.LiftPredicate – Lifts a predicate function into a validator

Validator Contract
When implementing a validator with this macro, you must follow this contract:
Input Handling
	Your valid?/3 receives the unwrapped value (never Nothing or Just)
	Nothing is handled by the macro (always passes through)
	You only validate present values
	You can pattern match on type, structure, etc. in valid?/3 clauses

Return Values
	Return true if validation passes
	Return false if validation fails (triggers default_message/1)
	The macro wraps your boolean in Either and ValidationError automatically

Options and Environment
	opts - Configuration for your validator (e.g., [threshold: 100])
	env - Runtime context (database, session, etc.) - currently unused by convention
	If you need opts or env, pattern match them; otherwise use _opts, _env

Error Messages
	Implement default_message/1 to return a plain string
	You can pattern match on value to customize the message
	Users can override with :message option (function callback)

 Summary

 Types

 t()

 Callbacks

 default_message(value, opts)

 Callback for default error message.

 valid?(value, opts, env)

 Callback for custom validation predicate.

 Functions

 build_message(opts, value, default)

 Helper function to build error messages with :message option support.

 validation_error(opts, value, default)

 Helper function to build a ValidationError with message option support.

 Types

 t()

 @type t() :: module()

 Callbacks

 default_message(value, opts)

 (optional)

 @callback default_message(value :: any(), opts :: keyword()) :: String.t()

Callback for default error message.
Returns a plain string that will be wrapped in ValidationError.new/1.
This callback is optional. If not implemented, a generic "is invalid" message is used.
Arguments
	value - The value that failed validation
	opts - Keyword list of options (for accessing configuration in error messages)

Returns
A plain string error message (will be wrapped in ValidationError.new/1)
Example
@impl Funx.Validator
def default_message(value, opts) when is_binary(value) do
 min = Keyword.get(opts, :min, 0)
 "must be at least #{min} characters"
end

def default_message(_value, _opts) do
 "must be a string"
end

 valid?(value, opts, env)

 @callback valid?(value :: any(), opts :: keyword(), env :: map()) :: boolean()

Callback for custom validation predicate.
Your implementation receives the unwrapped value (never Nothing or Just).
Arguments
	value - The value to validate (unwrapped from Just if applicable)
	opts - Keyword list of options passed to the validator
	env - Environment map (runtime context like database connections, session data)

Returns
	true - Validation passed
	false - Validation failed (will use default_message/1)

Example
@impl Funx.Validator
def valid?(num, opts, _env) when is_number(num) do
 threshold = Keyword.get(opts, :min, 0)
 num >= threshold
end

def valid?(_non_number, _opts, _env), do: false

 Functions

 build_message(opts, value, default)

Helper function to build error messages with :message option support.
This can be used by validators that don't use the macro but want consistent
message handling.
Arguments
	opts - Keyword list that may contain a :message callback
	value - The value that failed validation
	default - The default message to use if no :message option provided

Returns
A string message - either from the :message callback or the default
Example
defp validate_something(value, opts) do
 if valid?(value) do
 Either.right(value)
 else
 message = Funx.Validator.build_message(opts, value, "default error")
 Either.left(ValidationError.new(message))
 end
end

 validation_error(opts, value, default)

Helper function to build a ValidationError with message option support.
Combines build_message/3 and ValidationError.new/1 into a single call.
This is the most common pattern for validators.
Arguments
	opts - Keyword list that may contain a :message callback
	value - The value that failed validation
	default - The default message to use if no :message option provided

Returns
A ValidationError struct
Example
defp validate_something(value, opts) do
 if valid?(value) do
 Either.right(value)
 else
 error = Funx.Validator.validation_error(opts, value, "default error")
 Either.left(error)
 end
end

Funx.Validator.AllEqual

Validates that all elements in a list are equal to each other.
Maybe Support
This validator supports Maybe types from Prism projections:
	Nothing - Passes validation (optional fields without values)
	Just(list) - Validates the list inside the Just

This makes the validator compatible with optional fields in the validation DSL.
Optional Options
	:message - Custom error message callback (value -> String.t())
	:eq - Custom equality comparator (defaults to Funx.Eq.Protocol)

Examples
iex> Funx.Validator.AllEqual.validate([1, 1, 1], [])
%Funx.Monad.Either.Right{right: [1, 1, 1]}

iex> Funx.Validator.AllEqual.validate([1, 2, 3], [])
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["must be all matching"]}}

iex> Funx.Validator.AllEqual.validate("not a list", [])
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["must be a list"]}}

iex> Funx.Validator.AllEqual.validate([1, 2], [message: fn _ -> "all items must match" end])
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["all items must match"]}}
Using Custom Equality
You can provide a custom equality comparator via the :eq option:
iex> case_insensitive = %{
...> eq?: fn a, b -> String.downcase(a) == String.downcase(b) end,
...> not_eq?: fn a, b -> String.downcase(a) != String.downcase(b) end
...> }
iex> Funx.Validator.AllEqual.validate(["HELLO", "hello", "HeLLo"], [eq: case_insensitive])
%Funx.Monad.Either.Right{right: ["HELLO", "hello", "HeLLo"]}
Maybe Examples
iex> Funx.Validator.AllEqual.validate(%Funx.Monad.Maybe.Nothing{}, [])
%Funx.Monad.Either.Right{right: %Funx.Monad.Maybe.Nothing{}}

iex> Funx.Validator.AllEqual.validate(%Funx.Monad.Maybe.Just{value: [1, 1, 1]}, [])
%Funx.Monad.Either.Right{right: [1, 1, 1]}

iex> Funx.Validator.AllEqual.validate(%Funx.Monad.Maybe.Just{value: [1, 2]}, [])
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["must be all matching"]}}

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.Any

Validates that at least one of several alternative validators succeeds.
Any provides disjunctive validation semantics. Unlike the default validation
pipeline, which is conjunctive (all validators must succeed), Any succeeds
as soon as a single validator passes. If all validators fail, validation fails
with a single aggregated ValidationError.
This validator is useful for expressing alternatives such as:
"value must satisfy rule A or rule B".
Options
	:validators (required)
A non-empty list of validators. Each entry may be:
	a validator module implementing Funx.Validate.Behaviour
	a {Validator, opts} tuple for optioned validators
	a validator function with arity 1, 2, or 3 (e.g., result of validate do...end)
	a {validator_function, opts} tuple for optioned function validators

	:message (optional)
A zero-arity callback (() -> String.t()) used to override the default error
message when all alternatives fail.

Semantics
	Validators are evaluated left-to-right.
	Evaluation short-circuits on the first successful validation.
	If any validator returns Right, the value is returned unchanged.
	If all validators return Left, a single ValidationError is returned.
	Nothing values succeed if any validator accepts them.
	Just values are unwrapped before validation.

Examples
iex> Funx.Validator.Any.validate(10,
...> validators: [Funx.Validator.Positive, Funx.Validator.Negative]
...>)
%Funx.Monad.Either.Right{right: 10}

iex> Funx.Validator.Any.validate(0,
...> validators: [Funx.Validator.Positive, Funx.Validator.Negative]
...>)
%Funx.Monad.Either.Left{
 left: %Funx.Errors.ValidationError{
 errors: ["value must satisfy at least one alternative"]
 }
}

iex> Funx.Validator.Any.validate(0,
...> validators: [Funx.Validator.Positive, Funx.Validator.Negative],
...> message: fn -> "must be positive or negative" end
...>)
%Funx.Monad.Either.Left{
 left: %Funx.Errors.ValidationError{
 errors: ["must be positive or negative"]
 }
}

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.Confirmation

Validates that a value matches another field in the data structure.
Useful for password confirmation, email confirmation, etc.
Required Options
	:field – The field name to compare against (atom)
	:data – The full data structure containing both fields

Optional Options
	:eq – An equality comparator. Defaults to Funx.Eq.Protocol.
	:message – Custom error message callback (value -> String.t())

Examples
iex> data = %{password: "secret", password_confirmation: "secret"}
iex> Funx.Validator.Confirmation.validate("secret", field: :password, data: data)
%Funx.Monad.Either.Right{right: "secret"}

iex> data = %{password: "secret", password_confirmation: "wrong"}
iex> Funx.Validator.Confirmation.validate("wrong", field: :password, data: data)
%Funx.Monad.Either.Left{
 left: %Funx.Errors.ValidationError{errors: ["does not match password"]}
}

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.Each

Validates that every element in a list passes a given validator (or validators).
Each provides universal quantification over list elements. It applies one or more
validators to each element and collects all errors using applicative semantics.
Options
Exactly one of the following must be provided:
	:validator - A single validator to apply to each element
	:validators - A list of validators; each element must pass all of them

Each validator may be:
	A validator module implementing Funx.Validate.Behaviour
	A {Validator, opts} tuple for optioned validators
	A validator function with arity 1, 2, or 3

Semantics
	Uses traverse_a for applicative error collection (all failures reported)
	Empty lists pass validation (vacuous truth)
	Nothing passes through unchanged
	Just(list) unwraps and validates the list

Examples
iex> Funx.Validator.Each.validate([1, 2, 3], validator: Funx.Validator.Positive)
%Funx.Monad.Either.Right{right: [1, 2, 3]}

iex> Funx.Validator.Each.validate([1, 2, 3], validators: [Funx.Validator.Positive, Funx.Validator.Integer])
%Funx.Monad.Either.Right{right: [1, 2, 3]}

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.Email

Validates that a string is a valid email format.
Basic Check
This is a simple email validator that checks for the presence of an @ symbol.
For more robust email validation, use a dedicated library or custom validator.
Optional Options
	:message - Custom error message callback (value -> String.t())

Examples
iex> Funx.Validator.Email.validate("user@example.com")
%Funx.Monad.Either.Right{right: "user@example.com"}

iex> Funx.Validator.Email.validate("not-an-email")
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["must be a valid email"]}}

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.Equal

Validates that a value is equal to a given expected value using an Eq
comparator.
Equal enforces an equality constraint of the form:
"value must equal X".
Equality is defined by an Eq instance, not by structural equality.
Options
	:value (required)
The expected value to compare against.

	:eq (optional)
An equality comparator. Defaults to Funx.Eq.Protocol.

	:message (optional)
A custom error message callback (value -> String.t()) used to override the
default error message on failure.

Semantics
	If the value equals the expected value under the given Eq, validation
succeeds.
	If the expected value is a module and the value is a struct, validation
succeeds when value.__struct__ == expected.
	If the value does not equal the expected value, validation fails.
	Nothing values are preserved and treated as not applicable.
	Just values are unwrapped before comparison.

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.GreaterThan

Validates that a value is strictly greater than a given reference value
using an Ord comparator.
GreaterThan enforces an ordering constraint of the form:
"value must be greater than X".
Ordering is defined by an Ord instance, not by numeric comparison or
structural operators.
Options
	:value (required)
The reference value to compare against.

	:ord (optional)
An ordering comparator. Defaults to Funx.Ord.Protocol.

	:message (optional)
A custom error message callback (value -> String.t()) used to override the
default error message on failure.

Semantics
	If the value compares as :gt relative to the reference value under
the given Ord, validation succeeds.
	If the value compares as :lt or :eq, validation fails.
	Nothing values are preserved and treated as not applicable.
	Just values are unwrapped before comparison.

Examples
iex> Funx.Validator.GreaterThan.validate(7, value: 5)
%Funx.Monad.Either.Right{right: 7}

iex> Funx.Validator.GreaterThan.validate("b", value: "a")
%Funx.Monad.Either.Right{right: "b"}

iex> Funx.Validator.GreaterThan.validate("a", value: "a")
%Funx.Monad.Either.Left{
 left: %Funx.Errors.ValidationError{
 errors: ["must be greater than \"a\""]
 }
}

iex> Funx.Validator.GreaterThan.validate(%Funx.Monad.Maybe.Nothing{}, value: 5)
%Funx.Monad.Either.Right{right: %Funx.Monad.Maybe.Nothing{}}

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.GreaterThanOrEqual

Validates that a value is greater than or equal to a given reference value
using an Ord comparator.
Options
	:value (required) - The reference value to compare against
	:ord (optional) - An ordering comparator. Defaults to Funx.Ord.Protocol
	:message (optional) - Custom error message callback (value -> String.t())

Semantics
	If the value compares as :gt or :eq relative to the reference, validation succeeds.
	If the value compares as :lt, validation fails.
	Nothing values pass unchanged.
	Just values are unwrapped before comparison.

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.In

Validates that a value is a member of a given collection using an Eq
comparator.
In enforces a membership constraint of the form:
"value must be one of these".
Membership is defined by an Eq instance, not by structural equality or
Elixir's in operator.
Options
	:values (required)
The list of allowed values to compare against.

	:eq (optional)
An equality comparator. Defaults to Funx.Eq.Protocol.

	:message (optional)
A custom error message callback (value -> String.t()).

Semantics
	Succeeds if the value equals any element in :values under Eq,
or if the value is a struct whose module is listed in :values.
	Fails otherwise.
	Nothing passes through.
	Just is unwrapped before comparison.

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.Integer

Validates that a value is an integer.
Optional Options
	:message - Custom error message callback (value -> String.t())

Examples
iex> Funx.Validator.Integer.validate(5)
%Funx.Monad.Either.Right{right: 5}

iex> Funx.Validator.Integer.validate(5.5)
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["must be an integer"]}}

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.LessThan

Validates that a value is strictly less than a given reference value
using an Ord comparator.
Options
	:value (required) - The reference value to compare against
	:ord (optional) - An ordering comparator. Defaults to Funx.Ord.Protocol
	:message (optional) - Custom error message callback (value -> String.t())

Semantics
	If the value compares as :lt relative to the reference, validation succeeds.
	If the value compares as :eq or :gt, validation fails.
	Nothing values pass unchanged.
	Just values are unwrapped before comparison.

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.LessThanOrEqual

Validates that a value is less than or equal to a given reference value
using an Ord comparator.
Options
	:value (required) - The reference value to compare against
	:ord (optional) - An ordering comparator. Defaults to Funx.Ord.Protocol
	:message (optional) - Custom error message callback (value -> String.t())

Semantics
	If the value compares as :lt or :eq relative to the reference, validation succeeds.
	If the value compares as :gt, validation fails.
	Nothing values pass unchanged.
	Just values are unwrapped before comparison.

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.LiftPredicate

Lifts a predicate into the validation context.
LiftPredicate adapts a predicate function into a validator that conforms to
Funx.Validate.Behaviour. It allows predicate-style logic to participate in
the validation pipeline, producing Either results and ValidationErrors
instead of booleans.
This module is intended as an escape hatch for ad-hoc or externally-defined
predicates. For reusable domain rules, prefer defining a dedicated validator
module or using the Predicate DSL directly.
Options
	:pred (required)
A predicate function (value -> boolean) that determines whether validation
succeeds.

	:message (optional)
A callback (value -> String.t()) used to override the default error message
when the predicate fails.

Semantics
	If the predicate returns true, validation succeeds and the value is returned.

	If the predicate returns false, validation fails with a ValidationError.

	Nothing values succeed without invoking the predicate.

	Just values are unwrapped before validation.
.
Examples
 iex> Funx.Validator.LiftPredicate.validate(150, pred: fn v -> v > 100 end)
 %Funx.Monad.Either.Right{right: 150}
 iex> Funx.Validator.LiftPredicate.validate(50, pred: fn v -> v > 100 end)
 %Funx.Monad.Either.Left{
left: %Funx.Errors.ValidationError{errors: ["invalid value"]}
 }
 iex> Funx.Validator.LiftPredicate.validate(
 ...> 50,
 ...> pred: fn v -> v > 100 end,
 ...> message: fn _ -> "must be greater than 100" end
 ...>)
 %Funx.Monad.Either.Left{
left: %Funx.Errors.ValidationError{errors: ["must be greater than 100"]}
 }

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.MaxLength

Validates that a string does not exceed a maximum length.
Required Options
	:max - Maximum length (integer)

Optional Options
	:message - Custom error message callback (value -> String.t())

Examples
iex> Funx.Validator.MaxLength.validate("hi", [max: 5])
%Funx.Monad.Either.Right{right: "hi"}

iex> Funx.Validator.MaxLength.validate("hello world", [max: 5])
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["must be at most 5 characters"]}}

iex> Funx.Validator.MaxLength.validate("hello world", [max: 5, message: fn val -> "'#{val}' is too long" end])
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["'hello world' is too long"]}}

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.MinLength

Validates that a string meets a minimum length requirement.
Required Options
	:min - Minimum length (integer)

Optional Options
	:message - Custom error message callback (value -> String.t())

Examples
iex> Funx.Validator.MinLength.validate("hello", min: 3)
%Funx.Monad.Either.Right{right: "hello"}

iex> Funx.Validator.MinLength.validate("hi", min: 5)
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["must be at least 5 characters"]}}

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.Negative

Validates that a number is strictly negative (< 0).
Optional Options
	:message - Custom error message callback (value -> String.t())

Examples
iex> Funx.Validator.Negative.validate(-5)
%Funx.Monad.Either.Right{right: -5}

iex> Funx.Validator.Negative.validate(0)
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["must be negative"]}}

iex> Funx.Validator.Negative.validate(5)
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["must be negative"]}}

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.Not

Validates that a given validator does not succeed.
Not provides logical negation for validation. It inverts the success and failure
of a single validator while preserving inapplicability semantics for optional
(Prism) foci.
This validator is useful for expressing constraints such as:
"value must not satisfy rule A".
Options
	:validator (required)
A single validator to negate. This may be:
	a validator module implementing Funx.Validate.Behaviour
	a {Validator, opts} tuple for optioned validators

	:message (optional)
Note: Not uses a zero-arity callback (() -> String.t()) used to override the default error
message when the negated validator succeeds.

Semantics
	The inner validator is evaluated first.
	If the inner validator returns Left, Not succeeds and returns the original value.
	If the inner validator returns Right, Not fails with a ValidationError.
	Nothing values are preserved and never cause failure.
	Just values are validated by the inner validator, but the original input is
returned unchanged on success.

Examples
iex> Funx.Validator.Not.validate(0,
...> validator: Funx.Validator.Positive
...>)
%Funx.Monad.Either.Right{right: 0}

iex> Funx.Validator.Not.validate(10,
...> validator: Funx.Validator.Positive
...>)
%Funx.Monad.Either.Left{
 left: %Funx.Errors.ValidationError{
 errors: ["must not satisfy condition"]
 }
}

iex> Funx.Validator.Not.validate(%Funx.Monad.Maybe.Nothing{},
...> validator: Funx.Validator.Positive
...>)
%Funx.Monad.Either.Right{right: %Funx.Monad.Maybe.Nothing{}}

iex> Funx.Validator.Not.validate(10,
...> validator: Funx.Validator.Positive,
...> message: fn -> "must not be positive" end
...>)
%Funx.Monad.Either.Left{
 left: %Funx.Errors.ValidationError{
 errors: ["must not be positive"]
 }
}

 Summary

 Functions

 validate(value, opts)

 Functions

 validate(value, opts)

Funx.Validator.NotEqual

Validates that a value is not equal to a given reference value using an Eq
comparator.
NotEqual enforces an inequality constraint of the form:
"value must not equal X".
Equality is defined by an Eq instance, not by structural equality.
Options
	:value (required)
The reference value to compare against.

	:eq (optional)
An equality comparator. Defaults to Funx.Eq.Protocol.

	:message (optional)
A custom error message callback (value -> String.t()) used to override the
default error message on failure.

Semantics
	If the value does not equal the reference value under the given Eq,
validation succeeds.
	If the value equals the reference value, validation fails.
	Nothing values are preserved and treated as not applicable.
	Just values are unwrapped before comparison.

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.NotIn

Validates that a value is not a member of a given collection using an Eq
comparator.
NotIn enforces an exclusion constraint of the form:
“value must not be one of these”.
Membership is defined by an Eq instance, not by structural equality or
Elixir’s in operator.
Options
	:values (required)
The list of disallowed values.

	:eq (optional)
An equality comparator. Defaults to Funx.Eq.Protocol.

	:message (optional)
A custom error message callback (value -> String.t()) used to override the
default error message on failure.

Semantics
	If the value matches any element in :values under Eq, validation fails.
	If the value does not match any element, validation succeeds.
	Nothing values are preserved and treated as not applicable.
	Just values are unwrapped before comparison.

Examples
 iex> Funx.Validator.NotIn.validate("deleted", values: ["active", "inactive"])
 %Funx.Monad.Either.Right{right: "deleted"}
 iex> Funx.Validator.NotIn.validate("active", values: ["active", "inactive"])
 %Funx.Monad.Either.Left{
left: %Funx.Errors.ValidationError{
 errors: ["must not be one of: [\"active\", \"inactive\"]"]
}
 }
 iex> Funx.Validator.NotIn.validate(%Funx.Monad.Maybe.Nothing{}, values: ["a", "b"])
 %Funx.Monad.Either.Right{right: %Funx.Monad.Maybe.Nothing{}}

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.Pattern

Validates that a string matches a regular expression pattern.
Required Options
	:regex - Regular expression pattern (Regex.t())

Optional Options
	:message - Custom error message callback (value -> String.t())

Examples
iex> Funx.Validator.Pattern.validate("ABC123", regex: ~r/^[A-Z0-9]+$/)
%Funx.Monad.Either.Right{right: "ABC123"}

iex> Funx.Validator.Pattern.validate("abc", regex: ~r/^[A-Z0-9]+$/)
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["has invalid format"]}}

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.Positive

Validates that a number is strictly positive (> 0).
Optional Options
	:message - Custom error message callback (value -> String.t())

Examples
iex> Funx.Validator.Positive.validate(5)
%Funx.Monad.Either.Right{right: 5}

iex> Funx.Validator.Positive.validate(0)
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["must be positive"]}}

iex> Funx.Validator.Positive.validate(-5)
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["must be positive"]}}

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.Range

Validates that a number falls within an inclusive range.
Optional Options
	:min - Minimum value (inclusive)
	:max - Maximum value (inclusive)
	:message - Custom error message callback (value -> String.t())

At least one of :min or :max must be provided.
Examples
iex> Funx.Validator.Range.validate(5, min: 1, max: 10)
%Funx.Monad.Either.Right{right: 5}

iex> Funx.Validator.Range.validate(15, min: 1, max: 10)
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["must be between 1 and 10"]}}

iex> Funx.Validator.Range.validate(5, min: 10)
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["must be at least 10"]}}

iex> Funx.Validator.Range.validate(15, max: 10)
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["must be at most 10"]}}

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Validator.Required

Validates that a value is present (not nil, not empty string, not Nothing).
Special Semantics
Required is the ONLY validator that runs on Maybe.Nothing.
All other validators skip Nothing values (from Prism projections).
This makes fields optional-by-default with explicit presence checks.
Failure Conditions
	nil
	"" (empty string)
	%Maybe.Nothing{} (from Prism projections)

Success Conditions
All other values, including:
	0, false, [] (falsy but present values)

Options
	:message - Custom error message callback (value -> String.t())

Examples
iex> Funx.Validator.Required.validate("hello")
%Funx.Monad.Either.Right{right: "hello"}

iex> Funx.Validator.Required.validate(nil)
%Funx.Monad.Either.Left{left: %Funx.Errors.ValidationError{errors: ["is required"]}}

iex> Funx.Validator.Required.validate(0)
%Funx.Monad.Either.Right{right: 0}

 Summary

 Functions

 validate(value)

 validate(value, opts)

 Functions

 validate(value)

 validate(value, opts)

Funx.Errors.EffectError exception

[image: Run in Livebook]
Represents a system-level failure in an effectful computation.
EffectError is raised or returned when a failure occurs during the execution
of an Effect stage, such as map, bind, or ap. It is not meant for user-facing
validation, but rather for internal tracing, telemetry, and diagnostics.
Fields
	stage – the name of the effect stage where the error occurred (:map, :bind, :ap, etc.)
	reason – the term (often an exception) that caused the failure

This error implements the Exception, String.Chars, and Funx.Summarizable behaviours.

 Summary

 Types

 t()

 Functions

 new(stage, reason)

 Creates a new EffectError from the given stage and reason.

 Types

 t()

 @type t() :: %Funx.Errors.EffectError{
 __exception__: true,
 reason: any(),
 stage: atom()
}

 Functions

 new(stage, reason)

 @spec new(atom(), any()) :: t()

Creates a new EffectError from the given stage and reason.
Examples
iex> Funx.Errors.EffectError.new(:bind, %RuntimeError{message: "boom"})
%Funx.Errors.EffectError{stage: :bind, reason: %RuntimeError{message: "boom"}}

Funx.Errors.ValidationError exception

[image: Run in Livebook]
Represents a validation error in the Funx library.
A ValidationError wraps one or more domain-level validation messages. It is typically used with Either.Left to indicate that a value failed validation and should not proceed in a computation. It can also be raised directly, as it implements the Exception behaviour.
This module provides functions to construct, merge, and convert validation errors, enabling structured, composable error handling across pipelines and validation chains.
Functions
	new/1 – Creates a ValidationError from a single error string or a list of error strings.
	empty/0 – Returns an empty ValidationError.
	merge/2 – Combines two ValidationError structs into one.
	from_tagged/1 – Converts a tagged error tuple ({:error, errors}) into a ValidationError.

This module also implements the Exception, String.Chars, and Funx.Summarizable protocols, supporting both human-readable output and structured reporting.
Usage in validation
You can validate a value using a list of validator functions. Each validator returns an Either.Right if
the check passes, or an Either.Left with an error message if it fails. If any validation fails,
all errors are aggregated and returned in a single Left.
In contexts where an error must halt execution, ValidationError can be raised directly using raise/1.
Examples
You can also use a ValidationError to hold errors:
alias Funx.Errors.ValidationError

validate_positive = fn x ->
 Funx.Monad.Either.lift_predicate(x, &(&1 > 0), fn v -> "Value must be positive: " <> to_string(v) end)
 |> Funx.Monad.Either.map_left(&ValidationError.new/1)
end

validate_even = fn x ->
 Funx.Monad.Either.lift_predicate(x, &(rem(&1, 2) == 0), fn v -> "Value must be even: " <> to_string(v) end)
 |> Funx.Monad.Either.map_left(&ValidationError.new/1)
end

Funx.Monad.Either.validate(-3, [validate_positive, validate_even])
#=> %Funx.Monad.Either.Left{
left: %ValidationError{
errors: ["Value must be positive: -3", "Value must be even: -3"]
}
}

 Summary

 Types

 t()

 Functions

 empty()

 Returns an empty ValidationError.

 from_tagged(arg)

 Converts a tagged error tuple into a ValidationError.

 merge(validation_error1, validation_error2)

 Merges two ValidationError structs into one by concatenating their error lists.

 new(errors)

 Creates a ValidationError from a single string or list of strings.

 Types

 t()

 @type t() :: %Funx.Errors.ValidationError{__exception__: true, errors: [String.t()]}

 Functions

 empty()

 @spec empty() :: t()

Returns an empty ValidationError.
Examples
iex> Funx.Errors.ValidationError.empty()
%Funx.Errors.ValidationError{errors: []}

 from_tagged(arg)

 @spec from_tagged({:error, [String.t()]}) :: t()

Converts a tagged error tuple into a ValidationError.
Examples
iex> Funx.Errors.ValidationError.from_tagged({:error, ["must be positive"]})
%Funx.Errors.ValidationError{errors: ["must be positive"]}

 merge(validation_error1, validation_error2)

 @spec merge(t(), t()) :: t()

Merges two ValidationError structs into one by concatenating their error lists.
Examples
iex> e1 = Funx.Errors.ValidationError.new("must be positive")
iex> e2 = Funx.Errors.ValidationError.new("must be even")
iex> Funx.Errors.ValidationError.merge(e1, e2)
%Funx.Errors.ValidationError{errors: ["must be positive", "must be even"]}

 new(errors)

 @spec new([String.t()]) :: t()

 @spec new(String.t()) :: t()

Creates a ValidationError from a single string or list of strings.
Examples
iex> Funx.Errors.ValidationError.new("must be positive")
%Funx.Errors.ValidationError{errors: ["must be positive"]}

iex> Funx.Errors.ValidationError.new(["must be positive", "must be even"])
%Funx.Errors.ValidationError{errors: ["must be positive", "must be even"]}

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

