

 GeminiEx

 v0.9.0

 [image: Logo]

 Table of contents

 	Getting Started

 	README

 	Core Features

 	Live API Guide

 	Gemini Streaming Architecture

 	Function Calling Guide

 	Structured Outputs Guide

 	System Instructions Guide

 	Interactions API

 	Content Generation

 	Image Generation Guide

 	Video Generation Guide

 	Gemini Embeddings Examples

 	Async Batch Embeddings - Production Guide

 	File & Data Management

 	Files API Guide

 	File Search Stores Guide

 	Batches API Guide

 	Operations API Guide

 	Authentication & Configuration

 	AUTHENTICATION_SYSTEM

 	Application Default Credentials (ADC) Guide

 	Advanced Topics

 	Rate Limiting Guide

 	Model Fine-Tuning Guide

 	Automatic Tool Execution Implementation

 	Architecture & Internals

 	Gemini Unified Client Architecture

 	Gemini Elixir Streaming Architecture

 	Gemini Telemetry Implementation - Complete

 	Integration

 	The Story of Gemini_Ex and ALTAR: A Path to Production

 	About

 	Changelog

 	LICENSE

 	
 Modules

 	Gemini.APIs.Batches

 	Gemini.APIs.ContextCache

 	Gemini.APIs.Documents

 	Gemini.APIs.FileSearchStores

 	Gemini.APIs.Files

 	Gemini.APIs.Images

 	Gemini.APIs.Interactions

 	Gemini.APIs.Models

 	Gemini.APIs.Operations

 	Gemini.APIs.RagStores

 	Gemini.APIs.Tokens

 	Gemini.APIs.Tunings

 	Gemini.APIs.Videos

 	Gemini.Auth.ADC

 	Gemini.Auth.JWT

 	Gemini.Auth.MetadataServer

 	Gemini.Auth.Strategy

 	Gemini.Auth.TokenCache

 	Gemini.Chat

 	Gemini.Live.Models

 	Gemini.RateLimiter

 	Gemini.RateLimiter.ConcurrencyGate

 	Gemini.RateLimiter.Config

 	Gemini.RateLimiter.Manager

 	Gemini.RateLimiter.RetryManager

 	Gemini.RateLimiter.State

 	Gemini.Streaming.ToolOrchestrator

 	Gemini.Supervisor

 	Gemini.TaskSupervisor

 	Gemini.Tools

 	Gemini.Tools.AutomaticFunctionCalling

 	Gemini.Tools.AutomaticFunctionCalling.Config

 	Gemini.Tools.Executor

 	Gemini.Types.BatchJob

 	Gemini.Types.Blob

 	Gemini.Types.CachedContentUsageMetadata

 	Gemini.Types.CreateBatchJobConfig

 	Gemini.Types.CreateFileSearchStoreConfig

 	Gemini.Types.DeleteFileResponse

 	Gemini.Types.Document

 	Gemini.Types.Enums

 	Gemini.Types.Enums.AspectRatio

 	Gemini.Types.Enums.BlockedReason

 	Gemini.Types.Enums.CodeExecutionOutcome

 	Gemini.Types.Enums.DynamicRetrievalMode

 	Gemini.Types.Enums.ExecutableCodeLanguage

 	Gemini.Types.Enums.FinishReason

 	Gemini.Types.Enums.FunctionCallingMode

 	Gemini.Types.Enums.GroundingAttributionConfidence

 	Gemini.Types.Enums.HarmBlockThreshold

 	Gemini.Types.Enums.HarmCategory

 	Gemini.Types.Enums.HarmProbability

 	Gemini.Types.Enums.ImageSize

 	Gemini.Types.Enums.TaskType

 	Gemini.Types.Enums.ThinkingLevel

 	Gemini.Types.Enums.VoiceName

 	Gemini.Types.File

 	Gemini.Types.FileData

 	Gemini.Types.FileSearchDocument

 	Gemini.Types.FileSearchStore

 	Gemini.Types.FunctionResponse

 	Gemini.Types.Generation.Image

 	Gemini.Types.Generation.Image.EditImageConfig

 	Gemini.Types.Generation.Image.GeneratedImage

 	Gemini.Types.Generation.Image.ImageGenerationConfig

 	Gemini.Types.Generation.Image.UpscaleImageConfig

 	Gemini.Types.Generation.Video

 	Gemini.Types.Generation.Video.GeneratedVideo

 	Gemini.Types.Generation.Video.VideoGenerationConfig

 	Gemini.Types.Generation.Video.VideoGenerationReferenceImage

 	Gemini.Types.Generation.Video.VideoOperation

 	Gemini.Types.GenerationConfig

 	Gemini.Types.GenerationConfig.ImageConfig

 	Gemini.Types.GenerationConfig.ThinkingConfig

 	Gemini.Types.Interactions.AgentConfig

 	Gemini.Types.Interactions.AllowedTools

 	Gemini.Types.Interactions.Annotation

 	Gemini.Types.Interactions.AudioContent

 	Gemini.Types.Interactions.AudioMimeType

 	Gemini.Types.Interactions.CachedTokensByModality

 	Gemini.Types.Interactions.CodeExecution

 	Gemini.Types.Interactions.CodeExecutionCallArguments

 	Gemini.Types.Interactions.CodeExecutionCallContent

 	Gemini.Types.Interactions.CodeExecutionResultContent

 	Gemini.Types.Interactions.ComputerUse

 	Gemini.Types.Interactions.Content

 	Gemini.Types.Interactions.DeepResearchAgentConfig

 	Gemini.Types.Interactions.Delta

 	Gemini.Types.Interactions.DeltaAudioDelta

 	Gemini.Types.Interactions.DeltaCodeExecutionCallDelta

 	Gemini.Types.Interactions.DeltaCodeExecutionResultDelta

 	Gemini.Types.Interactions.DeltaDocumentDelta

 	Gemini.Types.Interactions.DeltaFileSearchResultDelta

 	Gemini.Types.Interactions.DeltaFileSearchResultDeltaResult

 	Gemini.Types.Interactions.DeltaFunctionCallDelta

 	Gemini.Types.Interactions.DeltaFunctionResultDelta

 	Gemini.Types.Interactions.DeltaFunctionResultDeltaResult

 	Gemini.Types.Interactions.DeltaFunctionResultDeltaResultItems

 	Gemini.Types.Interactions.DeltaFunctionResultDeltaResultItemsItem

 	Gemini.Types.Interactions.DeltaGoogleSearchCallDelta

 	Gemini.Types.Interactions.DeltaGoogleSearchResultDelta

 	Gemini.Types.Interactions.DeltaImageDelta

 	Gemini.Types.Interactions.DeltaMCPServerToolCallDelta

 	Gemini.Types.Interactions.DeltaMCPServerToolResultDelta

 	Gemini.Types.Interactions.DeltaMCPServerToolResultDeltaResult

 	Gemini.Types.Interactions.DeltaMCPServerToolResultDeltaResultItems

 	Gemini.Types.Interactions.DeltaMCPServerToolResultDeltaResultItemsItem

 	Gemini.Types.Interactions.DeltaTextDelta

 	Gemini.Types.Interactions.DeltaThoughtSignatureDelta

 	Gemini.Types.Interactions.DeltaThoughtSummaryDelta

 	Gemini.Types.Interactions.DeltaThoughtSummaryDeltaContent

 	Gemini.Types.Interactions.DeltaURLContextCallDelta

 	Gemini.Types.Interactions.DeltaURLContextResultDelta

 	Gemini.Types.Interactions.DeltaVideoDelta

 	Gemini.Types.Interactions.DocumentContent

 	Gemini.Types.Interactions.DynamicAgentConfig

 	Gemini.Types.Interactions.Events

 	Gemini.Types.Interactions.Events.ContentDelta

 	Gemini.Types.Interactions.Events.ContentStart

 	Gemini.Types.Interactions.Events.ContentStop

 	Gemini.Types.Interactions.Events.Error

 	Gemini.Types.Interactions.Events.ErrorEvent

 	Gemini.Types.Interactions.Events.InteractionEvent

 	Gemini.Types.Interactions.Events.InteractionSSEEvent

 	Gemini.Types.Interactions.Events.InteractionStatusUpdate

 	Gemini.Types.Interactions.FileSearch

 	Gemini.Types.Interactions.FileSearchCallContent

 	Gemini.Types.Interactions.FileSearchResult

 	Gemini.Types.Interactions.FileSearchResultContent

 	Gemini.Types.Interactions.Function

 	Gemini.Types.Interactions.FunctionCallContent

 	Gemini.Types.Interactions.FunctionResultContent

 	Gemini.Types.Interactions.GenerationConfig

 	Gemini.Types.Interactions.GoogleSearch

 	Gemini.Types.Interactions.GoogleSearchCallArguments

 	Gemini.Types.Interactions.GoogleSearchCallContent

 	Gemini.Types.Interactions.GoogleSearchResult

 	Gemini.Types.Interactions.GoogleSearchResultContent

 	Gemini.Types.Interactions.ImageConfig

 	Gemini.Types.Interactions.ImageContent

 	Gemini.Types.Interactions.ImageMimeType

 	Gemini.Types.Interactions.Input

 	Gemini.Types.Interactions.InputTokensByModality

 	Gemini.Types.Interactions.Interaction

 	Gemini.Types.Interactions.MCPServer

 	Gemini.Types.Interactions.MCPServerToolCallContent

 	Gemini.Types.Interactions.MCPServerToolResultContent

 	Gemini.Types.Interactions.OutputTokensByModality

 	Gemini.Types.Interactions.SpeechConfig

 	Gemini.Types.Interactions.TextContent

 	Gemini.Types.Interactions.ThinkingLevel

 	Gemini.Types.Interactions.ThoughtContent

 	Gemini.Types.Interactions.Tool

 	Gemini.Types.Interactions.ToolChoice

 	Gemini.Types.Interactions.ToolChoiceConfig

 	Gemini.Types.Interactions.ToolChoiceType

 	Gemini.Types.Interactions.ToolUseTokensByModality

 	Gemini.Types.Interactions.Turn

 	Gemini.Types.Interactions.URLContext

 	Gemini.Types.Interactions.URLContextCallArguments

 	Gemini.Types.Interactions.URLContextCallContent

 	Gemini.Types.Interactions.URLContextResult

 	Gemini.Types.Interactions.URLContextResultContent

 	Gemini.Types.Interactions.Usage

 	Gemini.Types.Interactions.VideoContent

 	Gemini.Types.Interactions.VideoMimeType

 	Gemini.Types.ListBatchJobsResponse

 	Gemini.Types.ListDocumentsResponse

 	Gemini.Types.ListFileSearchStoresResponse

 	Gemini.Types.ListFilesResponse

 	Gemini.Types.ListOperationsResponse

 	Gemini.Types.ListRagStoresResponse

 	Gemini.Types.MediaResolution

 	Gemini.Types.Modality

 	Gemini.Types.Operation

 	Gemini.Types.Part

 	Gemini.Types.Part.MediaResolution

 	Gemini.Types.PrebuiltVoiceConfig

 	Gemini.Types.RagStore

 	Gemini.Types.Request.BatchEmbedContentsRequest

 	Gemini.Types.Request.CountTokensRequest

 	Gemini.Types.Request.EmbedContentBatch

 	Gemini.Types.Request.EmbedContentRequest

 	Gemini.Types.Request.GenerateContentRequest

 	Gemini.Types.Request.GetModelRequest

 	Gemini.Types.Request.InlinedEmbedContentRequest

 	Gemini.Types.Request.InlinedEmbedContentRequests

 	Gemini.Types.Request.InputEmbedContentConfig

 	Gemini.Types.Request.ListModelsRequest

 	Gemini.Types.Response.BatchEmbedContentsResponse

 	Gemini.Types.Response.BatchState

 	Gemini.Types.Response.Candidate

 	Gemini.Types.Response.CitationMetadata

 	Gemini.Types.Response.CitationSource

 	Gemini.Types.Response.ContentEmbedding

 	Gemini.Types.Response.CountTokensResponse

 	Gemini.Types.Response.EmbedContentBatch

 	Gemini.Types.Response.EmbedContentBatchOutput

 	Gemini.Types.Response.EmbedContentBatchStats

 	Gemini.Types.Response.EmbedContentResponse

 	Gemini.Types.Response.GenerateContentResponse

 	Gemini.Types.Response.GroundingAttribution

 	Gemini.Types.Response.GroundingAttributionSourceId

 	Gemini.Types.Response.GroundingPassageId

 	Gemini.Types.Response.InlinedEmbedContentResponse

 	Gemini.Types.Response.InlinedEmbedContentResponses

 	Gemini.Types.Response.ListModelsResponse

 	Gemini.Types.Response.ModalityTokenCount

 	Gemini.Types.Response.Model

 	Gemini.Types.Response.PromptFeedback

 	Gemini.Types.Response.SafetyRating

 	Gemini.Types.Response.SemanticRetrieverChunk

 	Gemini.Types.Response.TrafficType

 	Gemini.Types.Response.UsageMetadata

 	Gemini.Types.SafetySetting

 	Gemini.Types.Schema

 	Gemini.Types.SpeechConfig

 	Gemini.Types.ToolSerialization

 	Gemini.Types.Tuning

 	Gemini.Types.Tuning.CreateTuningJobConfig

 	Gemini.Types.Tuning.HyperParameters

 	Gemini.Types.Tuning.ListTuningJobsResponse

 	Gemini.Types.Tuning.SupervisedTuningSpec

 	Gemini.Types.Tuning.TuningJob

 	Gemini.Types.Tuning.TuningJobError

 	Gemini.Types.UploadFileConfig

 	Gemini.Types.VoiceConfig

 	Gemini.Utils.MapHelpers

 	Gemini.Utils.PollingHelpers

 	Gemini.Utils.ResourceNames

 	Gemini.Validation.ThinkingConfig

 	Core API

 	Gemini

 	Gemini.APIs.Coordinator

 	Authentication

 	Gemini.Auth

 	Gemini.Auth.GeminiStrategy

 	Gemini.Auth.MultiAuthCoordinator

 	Gemini.Auth.VertexStrategy

 	Live API

 	Gemini.Live.Audio

 	Gemini.Live.EphemeralToken

 	Gemini.Live.Session

 	Streaming

 	Gemini.SSE.Parser

 	Gemini.Streaming.UnifiedManager

 	HTTP Client

 	Gemini.Client

 	Gemini.Client.HTTP

 	Gemini.Client.HTTPStreaming

 	Gemini.Client.WebSocket

 	Types - Live

 	Gemini.Types.Live.AudioTranscriptionConfig

 	Gemini.Types.Live.AutomaticActivityDetection

 	Gemini.Types.Live.ClientContent

 	Gemini.Types.Live.ContextWindowCompression

 	Gemini.Types.Live.Enums

 	Gemini.Types.Live.Enums.ActivityHandling

 	Gemini.Types.Live.Enums.EndSensitivity

 	Gemini.Types.Live.Enums.StartSensitivity

 	Gemini.Types.Live.Enums.TurnCoverage

 	Gemini.Types.Live.Enums.VadSignalType

 	Gemini.Types.Live.GoAway

 	Gemini.Types.Live.GroundingMetadata

 	Gemini.Types.Live.ProactivityConfig

 	Gemini.Types.Live.RealtimeInput

 	Gemini.Types.Live.RealtimeInputConfig

 	Gemini.Types.Live.ServerContent

 	Gemini.Types.Live.ServerMessage

 	Gemini.Types.Live.SessionResumptionConfig

 	Gemini.Types.Live.SessionResumptionUpdate

 	Gemini.Types.Live.Setup

 	Gemini.Types.Live.SetupComplete

 	Gemini.Types.Live.SlidingWindow

 	Gemini.Types.Live.ToolCall

 	Gemini.Types.Live.ToolCallCancellation

 	Gemini.Types.Live.ToolResponse

 	Gemini.Types.Live.Transcription

 	Gemini.Types.Live.UsageMetadata

 	Gemini.Types.Live.VoiceActivity

 	Types & Schemas

 	Gemini.Types.Content

 	Gemini.Types.ModelArmorConfig

 	Gemini.Types.RegisterFilesConfig

 	Gemini.Types.RegisterFilesResponse

 	Gemini.Types.Response

 	Configuration

 	Gemini.Config

 	Error Handling

 	Gemini.Error

 	Utilities

 	Gemini.Telemetry

Gemini.APIs.Batches

Batches API for batch processing of content generation and embedding requests.
Batch processing allows you to submit large numbers of requests at once,
with 50% cost savings compared to interactive API calls.
Use Cases
	Processing large document collections for embeddings
	Bulk content generation for content pipelines
	Overnight processing of accumulated requests
	Cost optimization for high-volume workloads

Batch Sources
Gemini API:
	file_name - Reference to an uploaded file (JSONL format)
	inlined_requests - Direct inline requests (limited size)

Vertex AI:
	gcs_uri - Google Cloud Storage URIs (JSONL files)
	bigquery_uri - BigQuery table URI

Batch Destinations
Gemini API:
	Results returned in inlined_responses
	Or written to a file

Vertex AI:
	gcs_uri - GCS output prefix
	bigquery_uri - BigQuery output table

Example Workflow
1. Prepare input file (JSONL format)
Each line: {"contents": [{"parts": [{"text": "..."}]}]}

2. Upload the input file
{:ok, input_file} = Gemini.APIs.Files.upload("input.jsonl")

3. Create batch job
{:ok, batch} = Gemini.APIs.Batches.create("gemini-2.5-flash",
 file_name: input_file.name,
 display_name: "My Batch Job"
)

4. Wait for completion
{:ok, completed} = Gemini.APIs.Batches.wait(batch.name,
 poll_interval: 30_000,
 timeout: 3_600_000 # 1 hour
)

5. Process results
if BatchJob.succeeded?(completed) do
 IO.puts("Completed #{completed.completion_stats.success_count} requests")
end

 Summary

 Types

 batch_opts()

 create_opts()

 list_opts()

 wait_opts()

 Functions

 cancel(name, opts \\ [])

 Cancel a running batch job.

 create(model, opts \\ [])

 Create a new batch generation job.

 create_embeddings(model, opts \\ [])

 Create a new batch embedding job.

 delete(name, opts \\ [])

 Delete a batch job.

 get(name, opts \\ [])

 Get the status of a batch job.

 get_responses(batch)

 Get inlined responses from a completed batch job.

 list(opts \\ [])

 List batch jobs.

 list_all(opts \\ [])

 List all batch jobs across all pages.

 wait(name, opts \\ [])

 Wait for a batch job to complete.

 Types

 batch_opts()

 @type batch_opts() :: [{:auth, :gemini | :vertex_ai}]

 create_opts()

 @type create_opts() :: [
 display_name: String.t(),
 file_name: String.t(),
 inlined_requests: [map()],
 gcs_uri: [String.t()],
 bigquery_uri: String.t(),
 generation_config: map(),
 system_instruction: map(),
 auth: :gemini | :vertex_ai
]

 list_opts()

 @type list_opts() :: [
 page_size: pos_integer(),
 page_token: String.t(),
 filter: String.t(),
 auth: :gemini | :vertex_ai
]

 wait_opts()

 @type wait_opts() :: [
 poll_interval: pos_integer(),
 timeout: pos_integer(),
 on_progress: (Gemini.Types.BatchJob.t() -> any()),
 auth: :gemini | :vertex_ai
]

 Functions

 cancel(name, opts \\ [])

 @spec cancel(String.t(), batch_opts()) :: :ok | {:error, term()}

Cancel a running batch job.
Can only cancel jobs that are in queued or running state.
Parameters
	name - Batch job name
	opts - Options

Examples
:ok = Gemini.APIs.Batches.cancel("batches/abc123")

 create(model, opts \\ [])

 @spec create(String.t(), create_opts()) ::
 {:ok, Gemini.Types.BatchJob.t()} | {:error, term()}

Create a new batch generation job.
Parameters
	model - Model to use for generation (e.g., "gemini-2.5-flash")
	opts - Batch creation options

Options
	:display_name - Human-readable name for the batch
	:file_name - Input file name (for Gemini API)
	:inlined_requests - Inline requests (for small batches)
	:gcs_uri - GCS input URIs (for Vertex AI)
	:bigquery_uri - BigQuery input URI (for Vertex AI)
	:generation_config - Generation configuration for all requests
	:system_instruction - System instruction for all requests
	:auth - Authentication strategy

Input File Format (JSONL)
For file-based input, each line should be a JSON object:
{"contents": [{"parts": [{"text": "First request"}]}]}
{"contents": [{"parts": [{"text": "Second request"}]}]}
Examples
Using uploaded file
{:ok, batch} = Gemini.APIs.Batches.create("gemini-2.5-flash",
 file_name: "files/abc123",
 display_name: "My Batch"
)

Using inline requests (small batches only)
{:ok, batch} = Gemini.APIs.Batches.create("gemini-2.5-flash",
 inlined_requests: [
 %{contents: [%{parts: [%{text: "Request 1"}]}]},
 %{contents: [%{parts: [%{text: "Request 2"}]}]}
],
 display_name: "Small Batch"
)

With generation config
{:ok, batch} = Gemini.APIs.Batches.create("gemini-2.5-flash",
 file_name: "files/abc123",
 generation_config: %{
 temperature: 0.7,
 maxOutputTokens: 1000
 }
)

 create_embeddings(model, opts \\ [])

 @spec create_embeddings(String.t(), create_opts()) ::
 {:ok, Gemini.Types.BatchJob.t()} | {:error, term()}

Create a new batch embedding job.
Similar to create/2 but for embedding requests.
Parameters
	model - Embedding model to use
	opts - Batch creation options

Input File Format (JSONL)
For embeddings, each line should contain text to embed:
{"content": {"parts": [{"text": "Text to embed"}]}}
{"content": {"parts": [{"text": "Another text"}]}}
Examples
{:ok, batch} = Gemini.APIs.Batches.create_embeddings("text-embedding-004",
 file_name: "files/embeddings-input",
 display_name: "Embedding Batch"
)

 delete(name, opts \\ [])

 @spec delete(String.t(), batch_opts()) :: :ok | {:error, term()}

Delete a batch job.
Typically used to clean up completed jobs.
Parameters
	name - Batch job name
	opts - Options

Examples
:ok = Gemini.APIs.Batches.delete("batches/abc123")

 get(name, opts \\ [])

 @spec get(String.t(), batch_opts()) ::
 {:ok, Gemini.Types.BatchJob.t()} | {:error, term()}

Get the status of a batch job.
Parameters
	name - Batch job name (e.g., "batches/abc123")
	opts - Options

Examples
{:ok, batch} = Gemini.APIs.Batches.get("batches/abc123")
IO.puts("State: #{batch.state}")

if batch.completion_stats do
 IO.puts("Progress: #{batch.completion_stats.success_count}/#{batch.completion_stats.total_count}")
end

 get_responses(batch)

 @spec get_responses(Gemini.Types.BatchJob.t()) :: {:ok, [map()]} | {:error, term()}

Get inlined responses from a completed batch job.
Only works for batches with inline response output.
Parameters
	batch - Completed BatchJob with inlined responses
	opts - Options

Examples
{:ok, batch} = Gemini.APIs.Batches.get("batches/abc123")
if BatchJob.succeeded?(batch) do
 {:ok, responses} = Gemini.APIs.Batches.get_responses(batch)
 Enum.each(responses, &process_response/1)
end

 list(opts \\ [])

 @spec list(list_opts()) ::
 {:ok, Gemini.Types.ListBatchJobsResponse.t()} | {:error, term()}

List batch jobs.
Parameters
	opts - List options

Options
	:page_size - Number of jobs per page (default: 100)
	:page_token - Token from previous response for pagination
	:filter - Filter string
	:auth - Authentication strategy

Examples
{:ok, response} = Gemini.APIs.Batches.list()

Enum.each(response.batch_jobs, fn job ->
 IO.puts("#{job.name}: #{job.state}")
end)

With pagination
{:ok, response} = Gemini.APIs.Batches.list(page_size: 10)
if ListBatchJobsResponse.has_more_pages?(response) do
 {:ok, page2} = Gemini.APIs.Batches.list(page_token: response.next_page_token)
end

 list_all(opts \\ [])

 @spec list_all(list_opts()) :: {:ok, [Gemini.Types.BatchJob.t()]} | {:error, term()}

List all batch jobs across all pages.
Automatically handles pagination.
Examples
{:ok, all_jobs} = Gemini.APIs.Batches.list_all()
running = Enum.filter(all_jobs, &BatchJob.running?/1)

 wait(name, opts \\ [])

 @spec wait(String.t(), wait_opts()) ::
 {:ok, Gemini.Types.BatchJob.t()} | {:error, term()}

Wait for a batch job to complete.
Polls the batch status until it reaches a terminal state (succeeded, failed, etc.)
or the timeout is reached.
Parameters
	name - Batch job name
	opts - Wait options

Options
	:poll_interval - Milliseconds between status checks (default: 30000)
	:timeout - Maximum wait time in milliseconds (default: 3600000 = 1 hour)
	:on_progress - Callback for status updates fn(BatchJob.t()) -> any()

Examples
{:ok, completed} = Gemini.APIs.Batches.wait("batches/abc123",
 poll_interval: 60_000, # Check every minute
 timeout: 7_200_000, # Wait up to 2 hours
 on_progress: fn batch ->
 if progress = BatchJob.get_progress(batch) do
 IO.puts("Progress: #{Float.round(progress, 1)}%")
 end
 end
)

cond do
 BatchJob.succeeded?(completed) ->
 IO.puts("Success!")
 BatchJob.failed?(completed) ->
 IO.puts("Failed: #{completed.error.message}")
end

Gemini.APIs.ContextCache

Context caching API for improved performance with long context.
Context caching allows you to cache large amounts of content (code, documents)
for reuse across multiple requests, reducing latency and cost.
Usage
Create a cached context
{:ok, cache} = Gemini.APIs.ContextCache.create(
 [%Gemini.Types.Content{role: "user", parts: [%{text: large_content}]}],
 display_name: "My Codebase",
 model: "gemini-2.5-flash"
)

Use cached context in requests
{:ok, response} = Gemini.generate("Analyze this code",
 cached_content: cache.name
)

Delete when done
:ok = Gemini.APIs.ContextCache.delete(cache.name)
API Endpoints
	POST /cachedContents - Create cached content
	GET /cachedContents - List cached contents
	GET /cachedContents/{name} - Get specific cache
	PATCH /cachedContents/{name} - Update cache TTL
	DELETE /cachedContents/{name} - Delete cache

 Summary

 Types

 cache_opts()

 cached_content()

 Functions

 create(contents, opts \\ [])

 Create a new cached content.

 delete(name, opts \\ [])

 Delete a cached content.

 get(name, opts \\ [])

 Get a specific cached content by name.

 list(opts \\ [])

 List all cached contents.

 update(name, opts \\ [])

 Update cache TTL.

 Types

 cache_opts()

 @type cache_opts() :: [
 display_name: String.t(),
 model: String.t(),
 ttl: non_neg_integer(),
 expire_time: DateTime.t(),
 system_instruction: String.t() | Gemini.Types.Content.t(),
 tools: [Altar.ADM.FunctionDeclaration.t()],
 tool_config: Altar.ADM.ToolConfig.t(),
 kms_key_name: String.t(),
 auth: :gemini | :vertex_ai,
 project_id: String.t(),
 location: String.t()
]

 cached_content()

 @type cached_content() :: %{
 name: String.t(),
 display_name: String.t() | nil,
 model: String.t(),
 create_time: String.t() | nil,
 update_time: String.t() | nil,
 expire_time: String.t() | nil,
 usage_metadata: Gemini.Types.CachedContentUsageMetadata.t() | nil
}

 Functions

 create(contents, opts \\ [])

 @spec create([Gemini.Types.Content.t()] | [map()] | String.t(), cache_opts()) ::
 {:ok, cached_content()} | {:error, term()}

Create a new cached content.
Parameters
	contents: List of Content structs to cache
	opts: Options including:	:display_name - Human-readable name (required)
	:model - Model to use (default: default model)
	:ttl - Time to live in seconds (default: 3600)
	:expire_time - Specific expiration DateTime

Returns
	{:ok, cached_content} - Created cache metadata
	{:error, reason} - Failed to create cache

Examples
{:ok, cache} = ContextCache.create(
 [Content.text("Large document content...")],
 display_name: "My Document",
 model: "gemini-2.5-flash",
 ttl: 7200
)

 delete(name, opts \\ [])

 @spec delete(
 String.t(),
 keyword()
) :: :ok | {:error, term()}

Delete a cached content.
Parameters
	name: Cache name to delete
	opts: Request options

Returns
	:ok - Successfully deleted
	{:error, reason} - Failed to delete

 get(name, opts \\ [])

 @spec get(
 String.t(),
 keyword()
) :: {:ok, cached_content()} | {:error, term()}

Get a specific cached content by name.
Parameters
	name: Cache name (format: "cachedContents/{id}")
	opts: Request options

Returns
	{:ok, cached_content} - Cache metadata
	{:error, reason} - Failed to get cache

 list(opts \\ [])

 @spec list(keyword()) :: {:ok, map()} | {:error, term()}

List all cached contents.
Parameters
	opts: Options including:	:page_size - Number of results per page
	:page_token - Pagination token

Returns
	{:ok, %{cached_contents: [cached_content()], next_page_token: String.t() | nil}}

	{:error, reason}

 update(name, opts \\ [])

 @spec update(
 String.t(),
 keyword()
) :: {:ok, cached_content()} | {:error, term()}

Update cache TTL.
Parameters
	name: Cache name
	opts: Options including:	:ttl - New TTL in seconds
	:expire_time - New expiration DateTime

Returns
	{:ok, cached_content} - Updated cache metadata
	{:error, reason} - Failed to update

Gemini.APIs.Documents

Documents API for RAG (Retrieval-Augmented Generation) document management.
Documents are stored in RAG stores and used for semantic search and
context augmentation in generation requests.
Overview
The Documents API allows you to:
	List documents in a RAG store
	Get document metadata
	Delete documents

Example Workflow
List documents in a store
{:ok, response} = Gemini.APIs.Documents.list("ragStores/my-store")

Enum.each(response.documents, fn doc ->
 IO.puts("#{doc.name}: #{doc.state}")
end)

Get specific document
{:ok, doc} = Gemini.APIs.Documents.get("ragStores/my-store/documents/doc123")

if Document.active?(doc) do
 IO.puts("Document ready: #{doc.chunk_count} chunks")
end

Delete document
:ok = Gemini.APIs.Documents.delete("ragStores/my-store/documents/doc123")
RAG Store Integration
Documents are typically created by uploading files to a RAG store
via the FileSearchStores API. This API focuses on document management
after creation.

 Summary

 Types

 document_opts()

 list_opts()

 wait_opts()

 Functions

 delete(name, opts \\ [])

 Delete a document from a RAG store.

 get(name, opts \\ [])

 Get a document by name.

 list(store_name, opts \\ [])

 List documents in a RAG store.

 list_all(store_name, opts \\ [])

 List all documents across all pages.

 wait_for_processing(name, opts \\ [])

 Wait for a document to finish processing.

 Types

 document_opts()

 @type document_opts() :: [{:auth, :gemini | :vertex_ai}]

 list_opts()

 @type list_opts() :: [
 page_size: pos_integer(),
 page_token: String.t(),
 filter: String.t(),
 auth: :gemini | :vertex_ai
]

 wait_opts()

 @type wait_opts() :: [
 poll_interval: pos_integer(),
 timeout: pos_integer(),
 on_status: (Gemini.Types.Document.t() -> any()),
 auth: :gemini | :vertex_ai
]

 Functions

 delete(name, opts \\ [])

 @spec delete(String.t(), document_opts()) :: :ok | {:error, term()}

Delete a document from a RAG store.
Parameters
	name - Document resource name
	opts - Options

Examples
:ok = Gemini.APIs.Documents.delete("ragStores/my-store/documents/doc123")

 get(name, opts \\ [])

 @spec get(String.t(), document_opts()) ::
 {:ok, Gemini.Types.Document.t()} | {:error, term()}

Get a document by name.
Parameters
	name - Document resource name (e.g., "ragStores/abc/documents/xyz")
	opts - Options

Examples
{:ok, doc} = Gemini.APIs.Documents.get("ragStores/my-store/documents/doc123")
IO.puts("State: #{doc.state}")
IO.puts("Size: #{doc.size_bytes} bytes")
IO.puts("Chunks: #{doc.chunk_count}")

 list(store_name, opts \\ [])

 @spec list(String.t(), list_opts()) ::
 {:ok, Gemini.Types.ListDocumentsResponse.t()} | {:error, term()}

List documents in a RAG store.
Parameters
	store_name - RAG store resource name (e.g., "ragStores/abc")
	opts - List options

Options
	:page_size - Number of documents per page (default: 100)
	:page_token - Token from previous response for pagination
	:filter - Filter expression
	:auth - Authentication strategy

Examples
List all documents
{:ok, response} = Gemini.APIs.Documents.list("ragStores/my-store")

Enum.each(response.documents, fn doc ->
 IO.puts("#{doc.display_name}: #{doc.state}")
end)

With pagination
{:ok, page1} = Gemini.APIs.Documents.list("ragStores/my-store", page_size: 10)
if ListDocumentsResponse.has_more_pages?(page1) do
 {:ok, page2} = Gemini.APIs.Documents.list("ragStores/my-store",
 page_token: page1.next_page_token
)
end

 list_all(store_name, opts \\ [])

 @spec list_all(String.t(), list_opts()) ::
 {:ok, [Gemini.Types.Document.t()]} | {:error, term()}

List all documents across all pages.
Automatically handles pagination to retrieve all documents.
Parameters
	store_name - RAG store resource name
	opts - Options

Examples
{:ok, all_docs} = Gemini.APIs.Documents.list_all("ragStores/my-store")
active = Enum.filter(all_docs, &Document.active?/1)
IO.puts("Active documents: #{length(active)}")

 wait_for_processing(name, opts \\ [])

 @spec wait_for_processing(String.t(), wait_opts()) ::
 {:ok, Gemini.Types.Document.t()} | {:error, term()}

Wait for a document to finish processing.
Polls the document status until it reaches :active or :failed state.
Parameters
	name - Document resource name
	opts - Wait options

Options
	:poll_interval - Milliseconds between status checks (default: 2000)
	:timeout - Maximum wait time in milliseconds (default: 300000 = 5 min)
	:on_status - Callback for status updates fn(Document.t()) -> any()

Examples
{:ok, doc} = Gemini.APIs.Documents.wait_for_processing(
 "ragStores/my-store/documents/doc123",
 poll_interval: 5000,
 on_status: fn d -> IO.puts("State: #{d.state}") end
)

if Document.active?(doc) do
 IO.puts("Document ready with #{doc.chunk_count} chunks")
end

Gemini.APIs.FileSearchStores

File Search Stores API for semantic search and RAG (Retrieval-Augmented Generation).
File Search Stores enable semantic search over documents using vector embeddings.
They are part of the Vertex AI RAG system and provide powerful document search
capabilities for grounding generation responses.
Note: This API is only available through Vertex AI authentication.
Overview
The File Search Stores API allows you to:
	Create stores for organizing searchable documents
	Import files into stores for indexing
	Upload files directly to stores
	List and manage stores
	Delete stores when no longer needed

Workflow
	Create a Store: Set up a semantic search store
	Import Files: Add documents to the store
	Wait for Processing: Documents are indexed asynchronously
	Use in Generation: Reference the store for grounded responses

Example: Basic Store Creation
alias Gemini.APIs.FileSearchStores
alias Gemini.Types.CreateFileSearchStoreConfig

Create a store
config = %CreateFileSearchStoreConfig{
 display_name: "Product Documentation",
 description: "Technical documentation for all products"
}

{:ok, store} = FileSearchStores.create(config, auth: :vertex_ai)
IO.puts("Created: #{store.name}")

Wait for store to be active
{:ok, ready_store} = FileSearchStores.wait_for_active(store.name)

Import a file that was already uploaded
{:ok, doc} = FileSearchStores.import_file(
 store.name,
 "files/abc123"
)
Example: Upload and Import
Upload a file directly to the store
{:ok, doc} = FileSearchStores.upload_to_store(
 store.name,
 "/path/to/document.pdf",
 display_name: "Product Manual"
)

Wait for document to be processed
{:ok, ready_doc} = FileSearchStores.wait_for_document(doc.name)
Example: List and Cleanup
List all stores
{:ok, response} = FileSearchStores.list()

Enum.each(response.file_search_stores, fn store ->
 IO.puts("#{store.display_name}: #{store.document_count} docs")
end)

Delete a store (requires force: true if it has documents)
:ok = FileSearchStores.delete("fileSearchStores/abc123", force: true)
Grounding with File Search
Once documents are indexed, use the store for grounding in generation:
{:ok, response} = Gemini.generate_content(
 "What are the safety features?",
 tools: [
 %{file_search_stores: ["fileSearchStores/abc123"]}
]
)
Best Practices
	Descriptive Names: Use clear display names for stores
	Wait for Processing: Always wait for documents to reach :active state
	Batch Imports: Import multiple files before using the store
	Monitor Size: Check document_count and total_size_bytes
	Clean Up: Delete stores when no longer needed to avoid costs

 Summary

 Types

 create_opts()

 delete_opts()

 import_opts()

 list_opts()

 store_opts()

 upload_opts()

 wait_doc_opts()

 wait_opts()

 Functions

 create(config, opts \\ [])

 Create a new file search store.

 delete(name, opts \\ [])

 Delete a file search store.

 get(name, opts \\ [])

 Get a file search store by name.

 get_document(document_name, opts \\ [])

 Get a document from a file search store.

 import_file(store_name, file_name, opts \\ [])

 Import an already uploaded file into the store.

 list(opts \\ [])

 List file search stores.

 list_all(opts \\ [])

 List all file search stores across all pages.

 upload_to_store(store_name, file_path, opts \\ [])

 Upload a file directly to the store.

 wait_for_active(name, opts \\ [])

 Wait for a store to become active.

 wait_for_document(document_name, opts \\ [])

 Wait for a document to finish processing.

 Types

 create_opts()

 @type create_opts() :: [{:auth, :gemini | :vertex_ai}]

 delete_opts()

 @type delete_opts() :: [force: boolean(), auth: :gemini | :vertex_ai]

 import_opts()

 @type import_opts() :: [{:auth, :gemini | :vertex_ai}]

 list_opts()

 @type list_opts() :: [
 page_size: pos_integer(),
 page_token: String.t(),
 auth: :gemini | :vertex_ai
]

 store_opts()

 @type store_opts() :: [{:auth, :gemini | :vertex_ai}]

 upload_opts()

 @type upload_opts() :: [
 display_name: String.t(),
 mime_type: String.t(),
 auth: :gemini | :vertex_ai
]

 wait_doc_opts()

 @type wait_doc_opts() :: [
 poll_interval: pos_integer(),
 timeout: pos_integer(),
 on_status: (Gemini.Types.FileSearchDocument.t() -> any()),
 auth: :gemini | :vertex_ai
]

 wait_opts()

 @type wait_opts() :: [
 poll_interval: pos_integer(),
 timeout: pos_integer(),
 on_status: (Gemini.Types.FileSearchStore.t() -> any()),
 auth: :gemini | :vertex_ai
]

 Functions

 create(config, opts \\ [])

 @spec create(Gemini.Types.CreateFileSearchStoreConfig.t(), create_opts()) ::
 {:ok, Gemini.Types.FileSearchStore.t()} | {:error, term()}

Create a new file search store.
Creates a semantic search store for organizing and searching documents.
The store will be in :creating state initially and will transition to
:active once ready.
Parameters
	config - CreateFileSearchStoreConfig struct with store configuration
	opts - Options (must include auth: :vertex_ai)

Examples
config = %CreateFileSearchStoreConfig{
 display_name: "Product Docs",
 description: "All product documentation"
}

{:ok, store} = FileSearchStores.create(config, auth: :vertex_ai)

Wait for it to be active
{:ok, active_store} = FileSearchStores.wait_for_active(store.name)

 delete(name, opts \\ [])

 @spec delete(String.t(), delete_opts()) :: :ok | {:error, term()}

Delete a file search store.
By default, stores with documents cannot be deleted. Use force: true to
delete a store and all its documents.
Parameters
	name - Store resource name
	opts - Delete options

Options
	:force - Delete even if store contains documents (default: false)
	:auth - Authentication strategy

Examples
Delete empty store
:ok = FileSearchStores.delete("fileSearchStores/abc123")

Force delete store with documents
:ok = FileSearchStores.delete(
 "fileSearchStores/abc123",
 force: true
)

 get(name, opts \\ [])

 @spec get(String.t(), store_opts()) ::
 {:ok, Gemini.Types.FileSearchStore.t()} | {:error, term()}

Get a file search store by name.
Parameters
	name - Store resource name (e.g., "fileSearchStores/abc123")
	opts - Options

Examples
{:ok, store} = FileSearchStores.get("fileSearchStores/abc123")
IO.puts("State: #{store.state}")
IO.puts("Documents: #{store.document_count}")
IO.puts("Size: #{store.total_size_bytes} bytes")

 get_document(document_name, opts \\ [])

 @spec get_document(String.t(), store_opts()) ::
 {:ok, Gemini.Types.FileSearchDocument.t()} | {:error, term()}

Get a document from a file search store.
Parameters
	document_name - Document resource name
	opts - Options

Examples
{:ok, doc} = FileSearchStores.get_document(
 "fileSearchStores/abc/documents/xyz"
)
IO.puts("State: #{doc.state}")

 import_file(store_name, file_name, opts \\ [])

 @spec import_file(String.t(), String.t(), import_opts()) ::
 {:ok, Gemini.Types.FileSearchDocument.t()} | {:error, term()}

Import an already uploaded file into the store.
The file must have been previously uploaded using the Files API.
This creates a document in the store that will be indexed for search.
Parameters
	store_name - Store resource name
	file_name - File resource name (e.g., "files/abc123")
	opts - Options

Examples
Upload a file first
{:ok, file} = Gemini.upload_file("/path/to/doc.pdf")

Import it into the store
{:ok, doc} = FileSearchStores.import_file(
 "fileSearchStores/abc123",
 file.name
)

Wait for processing
{:ok, ready_doc} = FileSearchStores.wait_for_document(doc.name)

 list(opts \\ [])

 @spec list(list_opts()) ::
 {:ok, Gemini.Types.ListFileSearchStoresResponse.t()} | {:error, term()}

List file search stores.
Parameters
	opts - List options

Options
	:page_size - Number of stores per page (default: 100)
	:page_token - Token from previous response for pagination
	:auth - Authentication strategy

Examples
List all stores
{:ok, response} = FileSearchStores.list()

Enum.each(response.file_search_stores, fn store ->
 IO.puts("#{store.display_name}: #{store.state}")
end)

With pagination
{:ok, page1} = FileSearchStores.list(page_size: 10)
if ListFileSearchStoresResponse.has_more_pages?(page1) do
 {:ok, page2} = FileSearchStores.list(
 page_token: page1.next_page_token
)
end

 list_all(opts \\ [])

 @spec list_all(list_opts()) ::
 {:ok, [Gemini.Types.FileSearchStore.t()]} | {:error, term()}

List all file search stores across all pages.
Automatically handles pagination to retrieve all stores.
Parameters
	opts - Options

Examples
{:ok, all_stores} = FileSearchStores.list_all()
active = Enum.filter(all_stores, &FileSearchStore.active?/1)
IO.puts("Active stores: #{length(active)}")

 upload_to_store(store_name, file_path, opts \\ [])

 @spec upload_to_store(String.t(), String.t(), upload_opts()) ::
 {:ok, Gemini.Types.FileSearchDocument.t()} | {:error, term()}

Upload a file directly to the store.
This is a convenience method that uploads a file and imports it into the
store in a single operation.
Parameters
	store_name - Store resource name
	file_path - Path to local file
	opts - Upload options

Options
	:display_name - Human-readable name for the document
	:mime_type - MIME type (auto-detected if not provided)
	:auth - Authentication strategy

Examples
{:ok, doc} = FileSearchStores.upload_to_store(
 "fileSearchStores/abc123",
 "/path/to/document.pdf",
 display_name: "Product Manual v2.0"
)

IO.puts("Uploaded: #{doc.name}")

 wait_for_active(name, opts \\ [])

 @spec wait_for_active(String.t(), wait_opts()) ::
 {:ok, Gemini.Types.FileSearchStore.t()} | {:error, term()}

Wait for a store to become active.
Polls the store status until it reaches :active or :failed state.
Parameters
	name - Store resource name
	opts - Wait options

Options
	:poll_interval - Milliseconds between status checks (default: 2000)
	:timeout - Maximum wait time in milliseconds (default: 300000 = 5 min)
	:on_status - Callback for status updates fn(FileSearchStore.t()) -> any()
	:auth - Authentication strategy

Examples
{:ok, store} = FileSearchStores.wait_for_active(
 "fileSearchStores/abc123",
 poll_interval: 5000,
 on_status: fn s -> IO.puts("State: #{s.state}") end
)

if FileSearchStore.active?(store) do
 IO.puts("Store ready!")
end

 wait_for_document(document_name, opts \\ [])

 @spec wait_for_document(String.t(), wait_doc_opts()) ::
 {:ok, Gemini.Types.FileSearchDocument.t()} | {:error, term()}

Wait for a document to finish processing.
Polls the document status until it reaches :active or :failed state.
Parameters
	document_name - Document resource name
	opts - Wait options

Options
	:poll_interval - Milliseconds between status checks (default: 2000)
	:timeout - Maximum wait time in milliseconds (default: 300000 = 5 min)
	:on_status - Callback for status updates
	:auth - Authentication strategy

Examples
{:ok, doc} = FileSearchStores.wait_for_document(
 "fileSearchStores/abc/documents/xyz",
 on_status: fn d -> IO.puts("Chunks: #{d.chunk_count}") end
)

Gemini.APIs.Files

Files API for uploading, managing, and using files with Gemini models.
The Files API allows you to upload files (images, videos, audio, documents)
that can be referenced in content generation requests. This is useful for
multimodal interactions where you want to include media files.
Important Notes
	Gemini API Only: File operations are only supported with the Gemini Developer API,
not Vertex AI. Using file operations with Vertex AI will return an error.
	File Expiration: Uploaded files expire after 48 hours
	Size Limits: Maximum file size is 2GB for most file types
	Processing Time: Large files (especially video) may take time to process

Quick Start
Upload an image
{:ok, file} = Gemini.APIs.Files.upload("path/to/image.png")

Wait for processing (for video files)
{:ok, ready_file} = Gemini.APIs.Files.wait_for_processing(file.name)

Use in content generation
{:ok, response} = Gemini.generate([
 "What's in this image?",
 %{file_uri: ready_file.uri, mime_type: ready_file.mime_type}
])

Clean up when done
:ok = Gemini.APIs.Files.delete(file.name)
Resumable Uploads
For large files (>10MB), the API uses resumable uploads automatically:
Large file upload with progress tracking
{:ok, file} = Gemini.APIs.Files.upload("path/to/video.mp4",
 on_progress: fn uploaded, total ->
 percent = Float.round(uploaded / total * 100, 1)
 IO.puts("Uploaded: #{percent}%")
 end
)
Supported MIME Types
	Images: image/png, image/jpeg, image/gif, image/webp
	Videos: video/mp4, video/mpeg, video/mov, video/avi, video/webm
	Audio: audio/wav, audio/mp3, audio/aiff, audio/aac, audio/ogg, audio/flac
	Documents: application/pdf, text/plain, text/html, text/css, text/javascript

 Summary

 Types

 file_opts()

 list_opts()

 register_files_opts()

 upload_opts()

 Functions

 delete(name, opts \\ [])

 Delete a file.

 download(file_or_name, opts \\ [])

 Download a generated file's content.

 get(name, opts \\ [])

 Get file metadata by name.

 list(opts \\ [])

 List all uploaded files.

 list_all(opts \\ [])

 List all files across all pages.

 register_files(uris, opts \\ [])

 Registers GCS files with the Gemini file service.

 upload(file_path, opts \\ [])

 Upload a file to be used with Gemini models.

 upload_data(data, opts)

 Upload a file from binary data.

 wait_for_processing(name, opts \\ [])

 Wait for a file to finish processing.

 Types

 file_opts()

 @type file_opts() :: [{:auth, :gemini | :vertex_ai}]

 list_opts()

 @type list_opts() :: [
 page_size: pos_integer(),
 page_token: String.t(),
 auth: :gemini | :vertex_ai
]

 register_files_opts()

 @type register_files_opts() :: [credentials: map(), config: map()]

 upload_opts()

 @type upload_opts() :: [
 name: String.t(),
 display_name: String.t(),
 mime_type: String.t(),
 on_progress: (integer(), integer() -> any()),
 auth: :gemini | :vertex_ai
]

 Functions

 delete(name, opts \\ [])

 @spec delete(String.t(), file_opts()) :: :ok | {:error, term()}

Delete a file.
Parameters
	name - File resource name (e.g., "files/abc123")
	opts - Options

Examples
:ok = Gemini.APIs.Files.delete("files/abc123")

 download(file_or_name, opts \\ [])

 @spec download(Gemini.Types.File.t() | String.t(), file_opts()) ::
 {:ok, binary()} | {:error, term()}

Download a generated file's content.
Only works for files with source: :generated (e.g., from video generation).
Uploaded files cannot be downloaded - you already have the source.
Parameters
	file - File struct or file name
	opts - Options

Examples
{:ok, file} = Gemini.APIs.Files.get("files/generated-video-123")
{:ok, video_data} = Gemini.APIs.Files.download(file)
File.write!("output.mp4", video_data)

 get(name, opts \\ [])

 @spec get(String.t(), file_opts()) :: {:ok, Gemini.Types.File.t()} | {:error, term()}

Get file metadata by name.
Parameters
	name - File resource name (e.g., "files/abc123")
	opts - Options

Examples
{:ok, file} = Gemini.APIs.Files.get("files/abc123")
IO.puts("State: #{file.state}")
IO.puts("MIME type: #{file.mime_type}")

 list(opts \\ [])

 @spec list(list_opts()) ::
 {:ok, Gemini.Types.ListFilesResponse.t()} | {:error, term()}

List all uploaded files.
Parameters
	opts - List options

Options
	:page_size - Number of files per page (default: 100, max: 1000)
	:page_token - Token from previous response for pagination
	:auth - Authentication strategy

Examples
List first page
{:ok, response} = Gemini.APIs.Files.list()
Enum.each(response.files, fn file ->
 IO.puts("#{file.name}: #{file.mime_type}")
end)

Paginate through all files
{:ok, all_files} = Gemini.APIs.Files.list_all()

 list_all(opts \\ [])

 @spec list_all(list_opts()) :: {:ok, [Gemini.Types.File.t()]} | {:error, term()}

List all files across all pages.
Automatically handles pagination to retrieve all files.
Parameters
	opts - List options (:page_size can be set, default 100)

Examples
{:ok, all_files} = Gemini.APIs.Files.list_all()
IO.puts("Total files: #{length(all_files)}")

 register_files(uris, opts \\ [])

 @spec register_files([String.t()], register_files_opts()) ::
 {:ok, Gemini.Types.RegisterFilesResponse.t()} | {:error, term()}

Registers GCS files with the Gemini file service.
This allows using Google Cloud Storage files directly with Gemini models
without uploading them first.
Note: This method is only supported in the Gemini Developer API,
not Vertex AI.
Parameters
	uris - List of GCS URIs (e.g., ["gs://bucket/object"])
	opts - Options:	:credentials - Google Cloud credentials (required). Can be:	A map with :token key containing the access token
	A Goth token struct

	:config - Optional RegisterFilesConfig

Returns
	{:ok, RegisterFilesResponse.t()} - Successfully registered files
	{:error, term()} - Registration failed

Example
Get credentials (using Goth or similar)
{:ok, token} = Goth.fetch(MyApp.Goth)

{:ok, response} = Gemini.APIs.Files.register_files(
 ["gs://my-bucket/file1.txt", "gs://my-bucket/file2.pdf"],
 credentials: %{token: token.token}
)

Use the registered files
file_uri = hd(response.files).uri
Gemini.generate([
 %{text: "Summarize this document"},
 %{file_data: %{file_uri: file_uri}}
])
GCS URI Format
URIs must be in the format gs://bucket/object, for example:
	gs://my-bucket/documents/report.pdf
	gs://my-bucket/images/photo.jpg

The credentials must have read access to the GCS bucket.

 upload(file_path, opts \\ [])

 @spec upload(Path.t() | String.t(), upload_opts()) ::
 {:ok, Gemini.Types.File.t()} | {:error, term()}

Upload a file to be used with Gemini models.
Parameters
	file_path - Path to the file to upload (string or Path)
	opts - Upload options

Options
	:name - Custom file resource name (auto-generated if not provided)
	:display_name - Human-readable display name (max 512 characters)
	:mime_type - MIME type (auto-detected from extension if not provided)
	:on_progress - Callback function fn(uploaded_bytes, total_bytes) -> any() for progress updates
	:auth - Authentication strategy (must be :gemini)

Returns
	{:ok, File.t()} - Successfully uploaded file with metadata
	{:error, reason} - Upload failed

Examples
Simple upload
{:ok, file} = Gemini.APIs.Files.upload("path/to/image.png")
IO.puts("Uploaded: #{file.uri}")

With display name
{:ok, file} = Gemini.APIs.Files.upload("document.pdf",
 display_name: "Important Document"
)

With progress tracking
{:ok, file} = Gemini.APIs.Files.upload("large_video.mp4",
 on_progress: fn uploaded, total ->
 IO.puts("Progress: #{div(uploaded * 100, total)}%")
 end
)

 upload_data(data, opts)

 @spec upload_data(binary(), upload_opts()) ::
 {:ok, Gemini.Types.File.t()} | {:error, term()}

Upload a file from binary data.
Parameters
	data - Binary data to upload
	opts - Upload options (:mime_type is required)

Examples
image_data = File.read!("image.png")
{:ok, file} = Gemini.APIs.Files.upload_data(image_data,
 mime_type: "image/png",
 display_name: "My Image"
)

 wait_for_processing(name, opts \\ [])

 @spec wait_for_processing(
 String.t(),
 keyword()
) :: {:ok, Gemini.Types.File.t()} | {:error, term()}

Wait for a file to finish processing.
Polls the file status until it reaches :active or :failed state.
Parameters
	name - File resource name
	opts - Options

Options
	:poll_interval - Milliseconds between status checks (default: 2000)
	:timeout - Maximum wait time in milliseconds (default: 300000 = 5 min)
	:on_status - Callback for status updates fn(File.t()) -> any()

Examples
{:ok, file} = Gemini.APIs.Files.upload("video.mp4")

{:ok, ready_file} = Gemini.APIs.Files.wait_for_processing(file.name,
 poll_interval: 5000,
 on_status: fn f -> IO.puts("Status: #{f.state}") end
)

Gemini.APIs.Images

API for image generation using Google's Imagen models.
Imagen is Google's family of text-to-image models that can generate, edit, and
upscale high-quality images from text descriptions. This module provides a unified
interface for all image generation operations.
Note: Image generation is currently only available through Vertex AI, not the
Gemini API. You must configure Vertex AI credentials to use these functions.
Supported Models
	imagegeneration@006 - Latest stable Imagen model (recommended)
	imagen-3.0-generate-001 - Imagen 3.0 generation model

Capabilities
	Text-to-Image: Generate images from text descriptions
	Image Editing: Modify existing images with inpainting/outpainting
	Image Upscaling: Enhance image resolution (2x or 4x)

Examples
Generate an image
{:ok, images} = Gemini.APIs.Images.generate(
 "A serene mountain landscape at sunset",
 %ImageGenerationConfig{
 number_of_images: 2,
 aspect_ratio: "16:9"
 }
)

Edit an image
{:ok, edited} = Gemini.APIs.Images.edit(
 "Replace the sky with a starry night",
 image_base64,
 mask_base64,
 %EditImageConfig{edit_mode: :inpainting}
)

Upscale an image
{:ok, upscaled} = Gemini.APIs.Images.upscale(
 image_base64,
 %UpscaleImageConfig{upscale_factor: :x2}
)
Configuration Options
See Gemini.Types.Generation.Image for all available configuration options.
Safety and Responsible AI
All generated images are subject to Google's safety filters and Responsible AI
policies. You can configure the safety filter level, but some content will always
be blocked regardless of settings.

 Summary

 Types

 api_result(t)

 generation_opts()

 Functions

 edit(prompt, image_data, mask_data \\ nil, config \\ %EditImageConfig{}, opts \\ [])

 Edit an existing image using text prompts.

 generate(prompt, config \\ %ImageGenerationConfig{}, opts \\ [])

 Generate images from a text prompt.

 upscale(image_data, config \\ %UpscaleImageConfig{}, opts \\ [])

 Upscale an image to higher resolution.

 Types

 api_result(t)

 @type api_result(t) :: {:ok, t} | {:error, term()}

 generation_opts()

 @type generation_opts() :: [
 model: String.t(),
 project_id: String.t(),
 location: String.t()
]

 Functions

 edit(prompt, image_data, mask_data \\ nil, config \\ %EditImageConfig{}, opts \\ [])

 @spec edit(
 String.t(),
 String.t(),
 String.t() | nil,
 Gemini.Types.Generation.Image.EditImageConfig.t(),
 generation_opts()
) :: api_result([Gemini.Types.Generation.Image.GeneratedImage.t()])

Edit an existing image using text prompts.
Supports inpainting (editing specific regions) and outpainting (extending the image).
Parameters
	prompt - Text description of the desired edits
	image_data - Base64-encoded source image
	mask_data - Base64-encoded mask image (nil for auto-masking)
	config - EditImageConfig struct (default: %EditImageConfig{})
	opts - Additional options (same as generate/3)

Returns
	{:ok, [GeneratedImage.t()]} - List of edited images
	{:error, term()} - Error if editing fails

Examples
Inpainting - edit specific region
{:ok, edited} = Gemini.APIs.Images.edit(
 "Replace the background with a beach scene",
 image_base64,
 mask_base64,
 %EditImageConfig{edit_mode: :inpainting}
)

Outpainting - extend image
{:ok, extended} = Gemini.APIs.Images.edit(
 "Continue the landscape to the right",
 image_base64,
 mask_base64,
 %EditImageConfig{edit_mode: :outpainting}
)

 generate(prompt, config \\ %ImageGenerationConfig{}, opts \\ [])

 @spec generate(
 String.t(),
 Gemini.Types.Generation.Image.ImageGenerationConfig.t(),
 generation_opts()
) ::
 api_result([Gemini.Types.Generation.Image.GeneratedImage.t()])

Generate images from a text prompt.
Parameters
	prompt - Text description of the image to generate
	config - ImageGenerationConfig struct with generation parameters (default: %ImageGenerationConfig{})
	opts - Additional options:	:model - Model to use (default: "imagegeneration@006")
	:project_id - Vertex AI project ID (default: from config)
	:location - Vertex AI location (default: "us-central1")

Returns
	{:ok, [GeneratedImage.t()]} - List of generated images
	{:error, term()} - Error if generation fails

Examples
Simple generation
{:ok, images} = Gemini.APIs.Images.generate(
 "A cat playing piano"
)

With configuration
config = %ImageGenerationConfig{
 number_of_images: 4,
 aspect_ratio: "1:1",
 safety_filter_level: :block_some,
 person_generation: :allow_adult
}
{:ok, images} = Gemini.APIs.Images.generate(
 "Professional headshot photo",
 config
)

Custom model and location
{:ok, images} = Gemini.APIs.Images.generate(
 "Futuristic cityscape",
 config,
 model: "imagen-3.0-generate-001",
 location: "europe-west4"
)

 upscale(image_data, config \\ %UpscaleImageConfig{}, opts \\ [])

 @spec upscale(
 String.t(),
 Gemini.Types.Generation.Image.UpscaleImageConfig.t(),
 generation_opts()
) ::
 api_result([Gemini.Types.Generation.Image.GeneratedImage.t()])

Upscale an image to higher resolution.
Parameters
	image_data - Base64-encoded source image
	config - UpscaleImageConfig struct (default: %UpscaleImageConfig{})
	opts - Additional options (same as generate/3)

Returns
	{:ok, [GeneratedImage.t()]} - List containing upscaled image
	{:error, term()} - Error if upscaling fails

Examples
2x upscale
{:ok, [upscaled]} = Gemini.APIs.Images.upscale(
 image_base64,
 %UpscaleImageConfig{upscale_factor: :x2}
)

4x upscale with JPEG output
{:ok, [upscaled]} = Gemini.APIs.Images.upscale(
 image_base64,
 %UpscaleImageConfig{
 upscale_factor: :x4,
 output_mime_type: "image/jpeg",
 output_compression_quality: 90
 }
)

Gemini.APIs.Interactions

Interactions API (experimental).
Interactions are stateful, server-managed conversations that support:
	CRUD lifecycle (create/get/cancel/delete)
	background execution (background: true)
	SSE streaming with resumable event_id tokens (last_event_id on get)

Streaming is enabled via stream: true (POST body on create, query param on get) and must
not rely on ?alt=sse.

 Summary

 Types

 auth_strategy()

 result(t)

 Functions

 cancel(id, opts \\ [])

 Cancel a background interaction by id.

 create(input, opts \\ [])

 Create a new interaction.

 delete(id, opts \\ [])

 Delete an interaction by id.

 get(id, opts \\ [])

 Get an interaction by id.

 wait_for_completion(id, opts \\ [])

 Poll an interaction until it reaches a terminal state.

 Types

 auth_strategy()

 @type auth_strategy() :: :gemini | :vertex_ai

 result(t)

 @type result(t) :: {:ok, t} | {:error, Gemini.Error.t() | term()}

 Functions

 cancel(id, opts \\ [])

 @spec cancel(
 String.t(),
 keyword()
) :: result(Gemini.Types.Interactions.Interaction.t())

Cancel a background interaction by id.

 create(input, opts \\ [])

 @spec create(
 Gemini.Types.Interactions.Input.t(),
 keyword()
) :: result(Gemini.Types.Interactions.Interaction.t() | Enumerable.t())

Create a new interaction.
Required options
Provide either:
	model: "..." (model-based), or
	agent: "..." (agent-based)

Streaming
	stream: true returns {:ok, stream} where stream yields InteractionSSEEvent variants.
	Stream ends when the server sends [DONE] (independent of interaction.complete).

 delete(id, opts \\ [])

 @spec delete(
 String.t(),
 keyword()
) :: :ok | {:error, Gemini.Error.t() | term()}

Delete an interaction by id.

 get(id, opts \\ [])

 @spec get(
 String.t(),
 keyword()
) :: result(Gemini.Types.Interactions.Interaction.t() | Enumerable.t())

Get an interaction by id.
If stream: true, returns an SSE stream. Resumption uses last_event_id.

 wait_for_completion(id, opts \\ [])

 @spec wait_for_completion(
 String.t(),
 keyword()
) :: result(Gemini.Types.Interactions.Interaction.t())

Poll an interaction until it reaches a terminal state.
Options:
	:poll_interval_ms (default: 2000)
	:timeout_ms (default: 300000)
	:on_status optional callback fn(Interaction.t()) -> any()
	plus all get/2 options (auth, api_version, timeout, etc.)

Gemini.APIs.Models

Complete Models API implementation following the unified architecture.
Provides comprehensive access to Gemini model information including:
	Listing available models with pagination
	Getting detailed model information
	Querying model capabilities and features
	Statistical analysis and filtering

Examples
List all available models
{:ok, response} = Models.list()
models = response.models

Get specific model information
{:ok, model} = Models.get("gemini-3-pro-preview")

Check if model exists
{:ok, true} = Models.exists?("gemini-flash-lite-latest")

Filter models by capabilities
{:ok, streaming_models} = Models.supporting_method("streamGenerateContent")

 Summary

 Functions

 exists?(model_name)

 Check if a specific model exists and is available.

 filter(filter_opts \\ [])

 Get models filtered by capabilities or parameters.

 get(model_name)

 Get detailed information about a specific model.

 get_stats()

 Get comprehensive model statistics and summary.

 list(opts \\ [])

 List available Gemini models with optional pagination.

 list_names()

 List all available model names as simple strings.

 supporting_method(method)

 Get models that support a specific generation method.

 Functions

 exists?(model_name)

 @spec exists?(String.t()) :: {:ok, boolean()} | {:error, Gemini.Error.t()}

Check if a specific model exists and is available.
Parameters
	model_name - The model identifier to check

Returns
	{:ok, true} - Model exists and is available
	{:ok, false} - Model does not exist
	{:error, Error.t()} - Network or other API error

Examples
{:ok, true} = Models.exists?("gemini-flash-lite-latest")
{:ok, false} = Models.exists?("nonexistent-model")

Use in conditional logic
case Models.exists?("gemini-flash-lite-latest") do
 {:ok, true} -> generate_with_model("gemini-flash-lite-latest")
 {:ok, false} -> use_fallback_model()
 {:error, _} -> handle_api_error()
end

 filter(filter_opts \\ [])

 @spec filter(keyword()) ::
 {:ok, [Gemini.Types.Response.Model.t()]} | {:error, Gemini.Error.t()}

Get models filtered by capabilities or parameters.
Parameters
	filter_opts - Keyword list of filter criteria:	:min_input_tokens - Minimum input token limit
	:min_output_tokens - Minimum output token limit
	:supports_methods - List of required methods
	:has_temperature - Boolean, requires temperature parameter
	:has_top_k - Boolean, requires top_k parameter
	:has_top_p - Boolean, requires top_p parameter
	:production_ready - Boolean, filter for production-ready models
	:model_family - String, filter by model family (e.g., "gemini")

Returns
	{:ok, [Model.t()]} - Filtered list of models
	{:error, Error.t()} - API error

Examples
High-capacity models
{:ok, large_models} = Models.filter(min_input_tokens: 100_000)

Models with advanced parameters
{:ok, tunable_models} = Models.filter(has_temperature: true, has_top_k: true)

Multi-method support
{:ok, versatile_models} = Models.filter(
 supports_methods: ["generateContent", "streamGenerateContent"]
)

Production-ready models only
{:ok, production_models} = Models.filter(production_ready: true)

 get(model_name)

 @spec get(String.t()) ::
 {:ok, Gemini.Types.Response.Model.t()} | {:error, Gemini.Error.t()}

Get detailed information about a specific model.
Parameters
	model_name - The model identifier, with or without "models/" prefix
Examples: "gemini-flash-lite-latest", "models/gemini-3-pro-preview"

Returns
	{:ok, Model.t()} - Success with model details
	{:error, Error.t()} - Model not found, validation error, or API error

Examples
Get model by base ID
{:ok, model} = Models.get("gemini-flash-lite-latest")

Get model by full resource name
{:ok, model} = Models.get("models/gemini-2.5-pro")

Handle not found cases properly in your application code
API Reference
Corresponds to: GET https://generativelanguage.googleapis.com/v1beta/{name=models/*}

 get_stats()

 @spec get_stats() :: {:ok, map()} | {:error, Gemini.Error.t()}

Get comprehensive model statistics and summary.
Returns
	{:ok, map()} - Statistics about available models
	{:error, Error.t()} - API error

Example Response
{:ok, stats} = Models.get_stats()
=>
%{
total_models: 5,
by_version: %{"1.5" => 3, "2.0" => 2},
by_method: %{
"generateContent" => 5,
"streamGenerateContent" => 4,
"countTokens" => 5
},
token_limits: %{
max_input: 2_000_000,
max_output: 8192,
avg_input: 800_000,
avg_output: 4096
},
capabilities: %{
with_temperature: 5,
with_top_k: 3,
with_top_p: 5,
production_ready: 4
},
by_family: %{"gemini" => 4, "text" => 1}
}

 list(opts \\ [])

 @spec list(keyword()) ::
 {:ok, Gemini.Types.Response.ListModelsResponse.t()}
 | {:error, Gemini.Error.t()}

List available Gemini models with optional pagination.
Parameters
	opts - Keyword list of options:	:page_size - Maximum number of models per page (1-1000, default: 50)
	:page_token - Token for retrieving the next page of results

Returns
	{:ok, ListModelsResponse.t()} - Success with models and pagination info
	{:error, Error.t()} - Validation error, API error, or network failure

Examples
List first 50 models (default)
{:ok, response} = Models.list()
models = response.models
next_token = response.next_page_token

Custom page size
{:ok, response} = Models.list(page_size: 10)

Pagination
{:ok, page1} = Models.list(page_size: 10)
{:ok, page2} = Models.list(page_size: 10, page_token: page1.next_page_token)
API Reference
Corresponds to: GET https://generativelanguage.googleapis.com/v1beta/models

 list_names()

 @spec list_names() :: {:ok, [String.t()]} | {:error, Gemini.Error.t()}

List all available model names as simple strings.
This is a convenience function that extracts just the base model IDs
from the full models list response.
Returns
	{:ok, [String.t()]} - List of base model IDs
	{:error, Error.t()} - API error

Examples
{:ok, names} = Models.list_names()
=> ["gemini-flash-lite-latest", "gemini-2.5-pro", "gemini-2.5-flash"]

Use with enum functions
{:ok, names} = Models.list_names()
flash_models = Enum.filter(names, &String.contains?(&1, "flash"))

 supporting_method(method)

 @spec supporting_method(String.t()) ::
 {:ok, [Gemini.Types.Response.Model.t()]} | {:error, Gemini.Error.t()}

Get models that support a specific generation method.
Parameters
	method - The generation method to filter by
Examples: "generateContent", "streamGenerateContent", "countTokens"

Returns
	{:ok, [Model.t()]} - List of models supporting the method
	{:error, Error.t()} - API error

Examples
Find streaming-capable models
{:ok, streaming_models} = Models.supporting_method("streamGenerateContent")

Find models that support content generation
{:ok, generation_models} = Models.supporting_method("generateContent")

Check capabilities
{:ok, models} = Models.supporting_method("countTokens")
token_counting_available = length(models) > 0

Gemini.APIs.Operations

Operations API for managing long-running operations.
Long-running operations are returned by asynchronous API calls that may take
significant time to complete, such as:
	Video generation
	File imports
	Model tuning
	Large batch processing

Polling Pattern
The typical pattern for handling long-running operations:
Start a long-running operation
{:ok, operation} = some_async_api_call()

Wait for completion with polling
{:ok, completed} = Gemini.APIs.Operations.wait(operation.name,
 poll_interval: 5000, # Check every 5 seconds
 timeout: 600_000, # Wait up to 10 minutes
 on_progress: fn op ->
 if progress = Gemini.Types.Operation.get_progress(op) do
 IO.puts("Progress: #{progress}%")
 end
 end
)

Handle result
if Gemini.Types.Operation.succeeded?(completed) do
 result = completed.response
 # Process successful result
else
 error = completed.error
 # Handle error
end
Manual Polling
For more control, you can poll manually:
{:ok, op} = Gemini.APIs.Operations.get(operation_name)

cond do
 Operation.succeeded?(op) -> handle_success(op.response)
 Operation.failed?(op) -> handle_failure(op.error)
 Operation.running?(op) -> poll_again_later()
end
Cancellation
Some operations can be cancelled while in progress:
:ok = Gemini.APIs.Operations.cancel(operation_name)

 Summary

 Types

 list_opts()

 operation_opts()

 wait_opts()

 Functions

 cancel(name, opts \\ [])

 Cancel a running operation.

 delete(name, opts \\ [])

 Delete an operation.

 get(name, opts \\ [])

 Get the current status of an operation.

 list(opts \\ [])

 List operations, optionally filtered.

 list_all(opts \\ [])

 List all operations across all pages.

 wait(name, opts \\ [])

 Wait for an operation to complete.

 wait_with_backoff(name, opts \\ [])

 Wait for an operation with exponential backoff.

 Types

 list_opts()

 @type list_opts() :: [
 page_size: pos_integer(),
 page_token: String.t(),
 filter: String.t(),
 auth: :gemini | :vertex_ai
]

 operation_opts()

 @type operation_opts() :: [{:auth, :gemini | :vertex_ai}]

 wait_opts()

 @type wait_opts() :: [
 poll_interval: pos_integer(),
 timeout: pos_integer(),
 on_progress: (Gemini.Types.Operation.t() -> any()),
 auth: :gemini | :vertex_ai
]

 Functions

 cancel(name, opts \\ [])

 @spec cancel(String.t(), operation_opts()) :: :ok | {:error, term()}

Cancel a running operation.
Not all operations support cancellation. If the operation doesn't support
cancellation or is already complete, this may return an error.
Parameters
	name - Operation name
	opts - Options

Examples
:ok = Gemini.APIs.Operations.cancel("operations/abc123")

 delete(name, opts \\ [])

 @spec delete(String.t(), operation_opts()) :: :ok | {:error, term()}

Delete an operation.
Typically used to clean up completed operations.
Parameters
	name - Operation name
	opts - Options

Examples
:ok = Gemini.APIs.Operations.delete("operations/abc123")

 get(name, opts \\ [])

 @spec get(String.t(), operation_opts()) ::
 {:ok, Gemini.Types.Operation.t()} | {:error, term()}

Get the current status of an operation.
Parameters
	name - Operation name (e.g., "operations/abc123")
	opts - Options

Examples
{:ok, op} = Gemini.APIs.Operations.get("operations/abc123")

if op.done do
 IO.puts("Operation completed")
else
 IO.puts("Still running...")
end

 list(opts \\ [])

 @spec list(list_opts()) ::
 {:ok, Gemini.Types.ListOperationsResponse.t()} | {:error, term()}

List operations, optionally filtered.
Parameters
	opts - List options

Options
	:page_size - Number of operations per page (default: 100)
	:page_token - Token from previous response for pagination
	:filter - Filter string (e.g., "done=true")
	:auth - Authentication strategy

Examples
List all operations
{:ok, response} = Gemini.APIs.Operations.list()

List only completed operations
{:ok, response} = Gemini.APIs.Operations.list(filter: "done=true")

With pagination
{:ok, response} = Gemini.APIs.Operations.list(page_size: 10)

 list_all(opts \\ [])

 @spec list_all(list_opts()) :: {:ok, [Gemini.Types.Operation.t()]} | {:error, term()}

List all operations across all pages.
Automatically handles pagination to retrieve all operations.
Parameters
	opts - List options

Examples
{:ok, all_ops} = Gemini.APIs.Operations.list_all()
completed = Enum.filter(all_ops, &Operation.complete?/1)

 wait(name, opts \\ [])

 @spec wait(String.t(), wait_opts()) ::
 {:ok, Gemini.Types.Operation.t()} | {:error, term()}

Wait for an operation to complete.
Polls the operation status until it reaches a terminal state (done = true),
or the timeout is reached.
Parameters
	name - Operation name
	opts - Wait options

Options
	:poll_interval - Milliseconds between status checks (default: 5000)
	:timeout - Maximum wait time in milliseconds (default: 600000 = 10 min)
	:on_progress - Callback for status updates fn(Operation.t()) -> any()

Returns
	{:ok, Operation.t()} - Completed operation (check done, error, response)
	{:error, :timeout} - Timed out waiting for completion
	{:error, reason} - Failed to poll status

Examples
Simple wait
{:ok, completed} = Gemini.APIs.Operations.wait("operations/abc123")

With progress tracking
{:ok, completed} = Gemini.APIs.Operations.wait("operations/abc123",
 poll_interval: 2000,
 timeout: 300_000,
 on_progress: fn op ->
 if progress = Operation.get_progress(op) do
 IO.puts("Progress: #{progress}%")
 end
 end
)

Handle result
cond do
 Operation.succeeded?(completed) ->
 IO.puts("Success: #{inspect(completed.response)}")
 Operation.failed?(completed) ->
 IO.puts("Failed: #{completed.error.message}")
end

 wait_with_backoff(name, opts \\ [])

 @spec wait_with_backoff(
 String.t(),
 keyword()
) :: {:ok, Gemini.Types.Operation.t()} | {:error, term()}

Wait for an operation with exponential backoff.
Similar to wait/2 but uses exponential backoff for polling intervals,
which is more efficient for operations that may take a long time.
Parameters
	name - Operation name
	opts - Wait options

Options
Same as wait/2 plus:
	:initial_delay - Initial delay in milliseconds (default: 1000)
	:max_delay - Maximum delay in milliseconds (default: 30000)
	:multiplier - Backoff multiplier (default: 2)

Examples
{:ok, completed} = Gemini.APIs.Operations.wait_with_backoff("operations/abc123",
 initial_delay: 1000,
 max_delay: 30_000,
 timeout: 600_000
)

Gemini.APIs.RagStores

RAG Stores API for managing file search stores.
RAG (Retrieval-Augmented Generation) stores contain documents that
can be searched semantically and used for context augmentation.
Overview
The RAG Stores API allows you to:
	Create and manage RAG stores
	List stores
	Delete stores

Example Workflow
List stores
{:ok, response} = Gemini.APIs.RagStores.list()

Enum.each(response.rag_stores, fn store ->
 IO.puts("#{store.display_name}: #{store.document_count} documents")
end)

Get specific store
{:ok, store} = Gemini.APIs.RagStores.get("ragStores/my-store")

Delete store
:ok = Gemini.APIs.RagStores.delete("ragStores/my-store")

 Summary

 Types

 create_opts()

 list_opts()

 store_opts()

 Functions

 create(opts)

 Create a new RAG store.

 delete(name, opts \\ [])

 Delete a RAG store.

 get(name, opts \\ [])

 Get a RAG store by name.

 list(opts \\ [])

 List all RAG stores.

 list_all(opts \\ [])

 List all RAG stores across all pages.

 Types

 create_opts()

 @type create_opts() :: [
 display_name: String.t(),
 description: String.t(),
 vector_config: map(),
 auth: :gemini | :vertex_ai
]

 list_opts()

 @type list_opts() :: [
 page_size: pos_integer(),
 page_token: String.t(),
 auth: :gemini | :vertex_ai
]

 store_opts()

 @type store_opts() :: [{:auth, :gemini | :vertex_ai}]

 Functions

 create(opts)

 @spec create(create_opts()) :: {:ok, Gemini.Types.RagStore.t()} | {:error, term()}

Create a new RAG store.
Parameters
	opts - Creation options

Options
	:display_name - Human-readable name (required)
	:description - Store description
	:vector_config - Vector embedding configuration
	:auth - Authentication strategy

Examples
{:ok, store} = Gemini.APIs.RagStores.create(
 display_name: "My Knowledge Base",
 description: "Documents for customer support"
)

 delete(name, opts \\ [])

 @spec delete(String.t(), store_opts()) :: :ok | {:error, term()}

Delete a RAG store.
Parameters
	name - Store resource name
	opts - Options

Examples
:ok = Gemini.APIs.RagStores.delete("ragStores/my-store")

 get(name, opts \\ [])

 @spec get(String.t(), store_opts()) ::
 {:ok, Gemini.Types.RagStore.t()} | {:error, term()}

Get a RAG store by name.
Parameters
	name - Store resource name (e.g., "ragStores/abc123")
	opts - Options

Examples
{:ok, store} = Gemini.APIs.RagStores.get("ragStores/my-store")
IO.puts("Documents: #{store.document_count}")
IO.puts("Size: #{store.total_size_bytes} bytes")

 list(opts \\ [])

 @spec list(list_opts()) ::
 {:ok, Gemini.Types.ListRagStoresResponse.t()} | {:error, term()}

List all RAG stores.
Parameters
	opts - List options

Options
	:page_size - Number of stores per page (default: 100)
	:page_token - Token from previous response for pagination
	:auth - Authentication strategy

Examples
{:ok, response} = Gemini.APIs.RagStores.list()

Enum.each(response.rag_stores, fn store ->
 IO.puts("#{store.display_name}: #{store.state}")
end)

 list_all(opts \\ [])

 @spec list_all(list_opts()) :: {:ok, [Gemini.Types.RagStore.t()]} | {:error, term()}

List all RAG stores across all pages.
Examples
{:ok, all_stores} = Gemini.APIs.RagStores.list_all()
active = Enum.filter(all_stores, &RagStore.active?/1)

Gemini.APIs.Tokens

Token counting functionality for Gemini API.
Provides comprehensive token counting capabilities including:
	Counting tokens for simple text content
	Counting tokens for multimodal content (text + images)
	Counting tokens for complete GenerateContentRequest structures
	Batch token counting operations

Token counting helps with:
	Request planning and validation
	Cost estimation and budgeting
	Content chunking and splitting
	Model selection based on token limits

Examples
Simple text counting
{:ok, response} = Tokens.count("Hello, world!")
total_tokens = response.total_tokens

Multimodal content counting
contents = [
 Content.text("What's in this image?"),
 Content.image("path/to/image.jpg")
]
{:ok, response} = Tokens.count(contents)

Count tokens for a complete generation request
{:ok, gen_request} = GenerateContentRequest.new("Hello", generation_config: config)
{:ok, response} = Tokens.count_for_request(gen_request)

Batch counting for multiple inputs
inputs = ["Text 1", "Text 2", "Text 3"]
{:ok, results} = Tokens.count_batch(inputs)

 Summary

 Functions

 check_fit(content, model_name \\ nil, opts \\ [])

 Check if content fits within a model's token limit.

 count(contents, opts \\ [])

 Count tokens in the given content.

 count_batch(inputs, opts \\ [])

 Count tokens for multiple inputs in batch.

 count_for_request(generate_request, opts \\ [])

 Count tokens for a GenerateContentRequest.

 estimate(content, opts \\ [])

 Estimate tokens for content without making an API call.

 Functions

 check_fit(content, model_name \\ nil, opts \\ [])

 @spec check_fit(String.t() | [Gemini.Types.Content.t()], String.t() | nil, keyword()) ::
 {:ok, map()} | {:error, Gemini.Error.t()}

Check if content fits within a model's token limit.
Parameters
	content - Content to check
	model_name - Model to check against (optional, uses default if not provided)
	opts - Options including:	:buffer - Safety buffer to subtract from limit (default: 100)
	:include_output - Reserve space for output tokens (default: 1000)

Returns
	{:ok, %{fits: boolean(), tokens: integer(), limit: integer()}} - Fit analysis
	{:error, Error.t()} - Error details

Examples
{:ok, analysis} = Tokens.check_fit("Hello world", "gemini-flash-lite-latest")
=> {:ok, %{fits: true, tokens: 3, limit: 1000000, remaining: 999997}}

With output buffer
{:ok, analysis} = Tokens.check_fit(long_text, include_output: 2000)

 count(contents, opts \\ [])

 @spec count(
 String.t()
 | [Gemini.Types.Content.t()]
 | Gemini.Types.Request.GenerateContentRequest.t(),
 keyword()
) ::
 {:ok, Gemini.Types.Response.CountTokensResponse.t()}
 | {:error, Gemini.Error.t()}

Count tokens in the given content.
Parameters
	contents - Content to count (string, list of Content structs, or GenerateContentRequest)
	opts - Options:	:model - Model name (default: from config)
	:generate_content_request - Use full GenerateContentRequest for counting

Returns
	{:ok, CountTokensResponse.t()} - Success with token count
	{:error, Error.t()} - Validation error, API error, or network failure

Examples
Simple text
{:ok, response} = Tokens.count("Hello, world!")
=> %CountTokensResponse{total_tokens: 3}

Multiple contents
contents = [
 Content.text("Hello"),
 Content.text("World")
]
{:ok, response} = Tokens.count(contents)

With specific model
{:ok, response} = Tokens.count("Hello", model: "gemini-2.5-pro")

Using GenerateContentRequest
{:ok, gen_request} = GenerateContentRequest.new("Hello", generation_config: config)
{:ok, response} = Tokens.count(gen_request)

 count_batch(inputs, opts \\ [])

 @spec count_batch(
 [String.t() | [Gemini.Types.Content.t()]],
 keyword()
) ::
 {:ok, [Gemini.Types.Response.CountTokensResponse.t()]}
 | {:error, Gemini.Error.t()}

Count tokens for multiple inputs in batch.
Efficiently counts tokens for multiple separate inputs, returning
results in the same order as the inputs.
Parameters
	inputs - List of content inputs (strings or Content lists)
	opts - Options applied to all requests

Returns
	{:ok, [CountTokensResponse.t()]} - List of token counts
	{:error, Error.t()} - Error details

Examples
inputs = [
 "Hello world",
 "How are you?",
 "Tell me a story about dragons"
]

{:ok, results} = Tokens.count_batch(inputs)

Process results in your application code

With options
{:ok, results} = Tokens.count_batch(inputs, model: "gemini-2.5-pro")

 count_for_request(generate_request, opts \\ [])

 @spec count_for_request(
 Gemini.Types.Request.GenerateContentRequest.t(),
 keyword()
) ::
 {:ok, Gemini.Types.Response.CountTokensResponse.t()}
 | {:error, Gemini.Error.t()}

Count tokens for a GenerateContentRequest.
This is useful when you want to know the token count for a complete
generation request including all parameters, system instructions, etc.
Parameters
	generate_request - A GenerateContentRequest struct
	opts - Options (model, etc.)

Returns
	{:ok, CountTokensResponse.t()} - Token count for the complete request
	{:error, Error.t()} - Error details

Examples
Create a generation request
{:ok, gen_request} = GenerateContentRequest.new(
 "Explain quantum physics",
 generation_config: GenerationConfig.creative(),
 system_instruction: "You are a physics professor"
)

Count tokens and use in your application code

 estimate(content, opts \\ [])

 @spec estimate(
 String.t() | [Gemini.Types.Content.t()] | map(),
 keyword()
) :: {:ok, integer()} | {:error, Gemini.Error.t()}

Estimate tokens for content without making an API call.
Provides a rough estimate of token count using heuristics.
Useful for quick validation and pre-filtering before actual counting.
Parameters
	content - Content to estimate (string, Content list, or API map with :contents key)
	opts - Options (currently unused, for future expansion)

Returns
	{:ok, integer()} - Estimated token count
	{:error, Error.t()} - Error if content is invalid

Examples
{:ok, estimate} = Tokens.estimate("Hello, world!")
=> {:ok, 3}

For longer text
text = "This is a longer piece of text that we want to estimate..."
{:ok, estimate} = Tokens.estimate(text)

Also handles API maps (ADR-0001)
{:ok, estimate} = Tokens.estimate(%{contents: [%{parts: [%{text: "Hello"}]}]})
Note
This is a heuristic estimate and may not match the actual token count
from the API. Use count/2 for accurate token counting.

Gemini.APIs.Tunings

API module for model tuning (fine-tuning) operations.
The Tunings API allows you to create, manage, and monitor fine-tuning jobs
for Gemini models. This is a Vertex AI only feature.
Prerequisites
	Vertex AI authentication configured
	Project with Vertex AI API enabled
	Training data in JSONL format uploaded to GCS

Example
Create a tuning job
config = %Gemini.Types.Tuning.CreateTuningJobConfig{
 base_model: "gemini-2.5-flash-001",
 tuned_model_display_name: "my-tuned-model",
 training_dataset_uri: "gs://bucket/training.jsonl"
}

{:ok, job} = Gemini.APIs.Tunings.tune(config, auth: :vertex_ai)

Wait for completion
{:ok, completed} = Gemini.APIs.Tunings.wait_for_completion(job.name)
Training Data Format
Training data should be in JSONL format with the following structure:
{"contents": [{"role": "user", "parts": [{"text": "..."}]}, {"role": "model", "parts": [{"text": "..."}]}]}

 Summary

 Functions

 cancel(name, opts \\ [])

 Cancels a running tuning job.

 get(name, opts \\ [])

 Gets details of a tuning job.

 list(opts \\ [])

 Lists tuning jobs with pagination.

 list_all(opts \\ [])

 Lists all tuning jobs, automatically handling pagination.

 tune(config, opts \\ [])

 Creates a new model tuning job.

 wait_for_completion(name, opts \\ [])

 Waits for a tuning job to complete.

 Functions

 cancel(name, opts \\ [])

 @spec cancel(
 String.t(),
 keyword()
) :: {:ok, Gemini.Types.Tuning.TuningJob.t()} | {:error, term()}

Cancels a running tuning job.
Parameters
	name - Full resource name of the tuning job
	opts - Keyword list of options

Example
:ok = Gemini.APIs.Tunings.cancel(
 "projects/123/locations/us-central1/tuningJobs/456",
 auth: :vertex_ai
)

 get(name, opts \\ [])

 @spec get(
 String.t(),
 keyword()
) :: {:ok, Gemini.Types.Tuning.TuningJob.t()} | {:error, term()}

Gets details of a tuning job.
Parameters
	name - Full resource name of the tuning job
	opts - Keyword list of options:	:auth - Authentication strategy

Example
{:ok, job} = Gemini.APIs.Tunings.get(
 "projects/123/locations/us-central1/tuningJobs/456",
 auth: :vertex_ai
)

 list(opts \\ [])

 @spec list(keyword()) ::
 {:ok, Gemini.Types.Tuning.ListTuningJobsResponse.t()} | {:error, term()}

Lists tuning jobs with pagination.
Parameters
	opts - Keyword list of options:	:auth - Authentication strategy
	:project_id - GCP project ID
	:location - GCP location
	:page_size - Number of results per page
	:page_token - Token for next page
	:filter - Filter expression

Example
{:ok, response} = Gemini.APIs.Tunings.list(
 auth: :vertex_ai,
 page_size: 10
)

 list_all(opts \\ [])

 @spec list_all(keyword()) ::
 {:ok, [Gemini.Types.Tuning.TuningJob.t()]} | {:error, term()}

Lists all tuning jobs, automatically handling pagination.
Parameters
	opts - Same as list/1

Example
{:ok, all_jobs} = Gemini.APIs.Tunings.list_all(auth: :vertex_ai)

 tune(config, opts \\ [])

 @spec tune(
 Gemini.Types.Tuning.CreateTuningJobConfig.t() | map(),
 keyword()
) :: {:ok, Gemini.Types.Tuning.TuningJob.t()} | {:error, term()}

Creates a new model tuning job.
Parameters
	config - CreateTuningJobConfig struct with tuning configuration
	opts - Keyword list of options:	:auth - Authentication strategy (:vertex_ai required)
	:project_id - GCP project ID (optional, uses config default)
	:location - GCP location (optional, defaults to "us-central1")

Example
config = %CreateTuningJobConfig{
 base_model: "gemini-2.5-flash-001",
 tuned_model_display_name: "custom-model",
 training_dataset_uri: "gs://bucket/data.jsonl",
 epoch_count: 10
}

{:ok, job} = Gemini.APIs.Tunings.tune(config, auth: :vertex_ai)

 wait_for_completion(name, opts \\ [])

 @spec wait_for_completion(
 String.t(),
 keyword()
) :: {:ok, Gemini.Types.Tuning.TuningJob.t()} | {:error, term()}

Waits for a tuning job to complete.
Polls the job status at regular intervals until it reaches a terminal state
(succeeded, failed, cancelled, or expired).
Parameters
	name - Full resource name of the tuning job
	opts - Keyword list of options:	:poll_interval - Milliseconds between polls (default: 5000)
	:timeout - Maximum wait time in milliseconds (default: 3600000 = 1 hour)
	:on_progress - Callback function called with job on each poll

Example
{:ok, completed} = Gemini.APIs.Tunings.wait_for_completion(
 "projects/123/locations/us-central1/tuningJobs/456",
 auth: :vertex_ai,
 poll_interval: 10_000,
 on_progress: fn job -> IO.puts("State: #{job.state}") end
)

Gemini.APIs.Videos

API for video generation using Google's Veo models.
Veo is Google's advanced text-to-video generation model that creates high-quality
videos from text descriptions. Video generation is a long-running operation that
can take several minutes to complete.
Video generation is available through both Vertex AI and the Gemini API
(for supported Veo models).
Supported Models
	veo-2.0-generate-001 - Veo 2.0 video generation model (recommended)
	veo-3.1-generate-preview - Veo 3.1 preview
	veo-3.1-fast-generate-preview - Veo 3.1 Fast preview
	veo-3.0-generate-001 - Veo 3.0 stable
	veo-3.0-fast-generate-001 - Veo 3.0 Fast stable

Video Generation Workflow
Video generation is asynchronous and follows a long-running operation pattern:
	Initiate: Start video generation with generate/3
	Poll: Check operation status with get_operation/2
	Wait: Use wait_for_completion/2 for automatic polling
	Download: Retrieve generated videos from GCS URIs

Examples
Start video generation
{:ok, operation} = Gemini.APIs.Videos.generate(
 "A cat playing piano in a cozy living room",
 %VideoGenerationConfig{
 duration_seconds: 8,
 aspect_ratio: "16:9"
 }
)

Wait for completion (automatic polling)
{:ok, completed_op} = Gemini.APIs.Videos.wait_for_completion(
 operation.name,
 poll_interval: 10_000, # Check every 10 seconds
 timeout: 300_000 # Wait up to 5 minutes
)

Extract video URIs
{:ok, videos} = Gemini.Types.Generation.Video.extract_videos(completed_op)
video_uri = hd(videos).video_uri

Manual polling
{:ok, op} = Gemini.APIs.Videos.get_operation(operation.name)
if op.done do
 {:ok, videos} = Gemini.Types.Generation.Video.extract_videos(op)
end
Performance Considerations
	Video generation typically takes 2-5 minutes per video
	Longer videos (8s) take more time than shorter videos (4s)
	Higher resolution/FPS increases generation time
	Use webhook callbacks for production systems instead of polling

Configuration Options
See Gemini.Types.Generation.Video for all available configuration options.

 Summary

 Types

 api_result(t)

 generation_opts()

 wait_opts()

 Functions

 cancel(operation_name, opts \\ [])

 Cancel a running video generation operation.

 generate(prompt, config \\ %VideoGenerationConfig{}, opts \\ [])

 Generate a video from a text prompt.

 get_operation(operation_name, opts \\ [])

 Get the current status of a video generation operation.

 list_operations(opts \\ [])

 List video generation operations.

 wait_for_completion(operation_name, opts \\ [])

 Wait for a video generation operation to complete with automatic polling.

 wrap_operation(operation)

 Wrap an operation with video-specific metadata.

 Types

 api_result(t)

 @type api_result(t) :: {:ok, t} | {:error, term()}

 generation_opts()

 @type generation_opts() :: [
 model: String.t(),
 project_id: String.t(),
 location: String.t()
]

 wait_opts()

 @type wait_opts() :: [
 poll_interval: pos_integer(),
 timeout: pos_integer(),
 on_progress: (Gemini.Types.Operation.t() -> any())
]

 Functions

 cancel(operation_name, opts \\ [])

 @spec cancel(
 String.t(),
 keyword()
) :: :ok | {:error, term()}

Cancel a running video generation operation.
Parameters
	operation_name - Operation name to cancel
	opts - Additional options

Returns
	:ok - Operation cancelled successfully
	{:error, term()} - Error if cancellation fails

Examples
{:ok, operation} = Gemini.APIs.Videos.generate("A cat playing piano")

Cancel if taking too long
:ok = Gemini.APIs.Videos.cancel(operation.name)

 generate(prompt, config \\ %VideoGenerationConfig{}, opts \\ [])

 @spec generate(
 String.t(),
 Gemini.Types.Generation.Video.VideoGenerationConfig.t(),
 generation_opts()
) ::
 api_result(Gemini.Types.Operation.t())

Generate a video from a text prompt.
This starts a long-running operation. Use get_operation/2 or wait_for_completion/2
to check the status and retrieve the generated video.
Parameters
	prompt - Text description of the video to generate
	config - VideoGenerationConfig struct (default: %VideoGenerationConfig{})
	opts - Additional options:	:model - Model to use (default: "veo-2.0-generate-001")
	:project_id - Vertex AI project ID (default: from config)
	:location - Vertex AI location (default: "us-central1")

Returns
	{:ok, Operation.t()} - Long-running operation
	{:error, term()} - Error if generation fails to start

Examples
Simple generation
{:ok, operation} = Gemini.APIs.Videos.generate(
 "A cat playing piano"
)

With configuration
config = %VideoGenerationConfig{
 number_of_videos: 2,
 duration_seconds: 8,
 aspect_ratio: "16:9",
 fps: 30
}
{:ok, operation} = Gemini.APIs.Videos.generate(
 "Cinematic shot of a futuristic city",
 config
)

Custom location
{:ok, operation} = Gemini.APIs.Videos.generate(
 "Aerial view of mountains",
 config,
 location: "europe-west4"
)

 get_operation(operation_name, opts \\ [])

 @spec get_operation(
 String.t(),
 keyword()
) :: api_result(Gemini.Types.Operation.t())

Get the current status of a video generation operation.
Parameters
	operation_name - Operation name from generate/3 response
	opts - Additional options

Returns
	{:ok, Operation.t()} - Current operation status
	{:error, term()} - Error if operation cannot be retrieved

Examples
{:ok, operation} = Gemini.APIs.Videos.generate("A cat playing piano")

Later, check status
{:ok, current_op} = Gemini.APIs.Videos.get_operation(operation.name)

cond do
 current_op.done and is_nil(current_op.error) ->
 {:ok, videos} = Video.extract_videos(current_op)
 IO.puts("Video ready: #{hd(videos).video_uri}")

 current_op.done ->
 IO.puts("Failed: #{current_op.error.message}")

 true ->
 IO.puts("Still generating...")
end

 list_operations(opts \\ [])

 @spec list_operations(keyword()) ::
 api_result(Gemini.Types.ListOperationsResponse.t())

List video generation operations.
Parameters
	opts - List options:	:page_size - Number of operations per page
	:page_token - Token for pagination
	:filter - Filter string (e.g., "done=true")

Returns
	{:ok, ListOperationsResponse.t()} - List of operations
	{:error, term()} - Error if listing fails

Examples
List all video operations
{:ok, response} = Gemini.APIs.Videos.list_operations()

List only completed operations
{:ok, response} = Gemini.APIs.Videos.list_operations(filter: "done=true")

 wait_for_completion(operation_name, opts \\ [])

 @spec wait_for_completion(String.t(), wait_opts()) ::
 api_result(Gemini.Types.Operation.t())

Wait for a video generation operation to complete with automatic polling.
This function polls the operation status at regular intervals until it completes
or times out. Useful for synchronous workflows.
Parameters
	operation_name - Operation name from generate/3 response
	opts - Wait options:	:poll_interval - Milliseconds between polls (default: 10,000)
	:timeout - Maximum time to wait in milliseconds (default: 300,000)
	:on_progress - Callback function called on each poll with Operation.t()

Returns
	{:ok, Operation.t()} - Completed operation
	{:error, :timeout} - Operation did not complete within timeout
	{:error, term()} - Other errors

Examples
{:ok, operation} = Gemini.APIs.Videos.generate("A cat playing piano")

Wait with defaults (5 minutes)
{:ok, completed} = Gemini.APIs.Videos.wait_for_completion(operation.name)

Custom polling and timeout
{:ok, completed} = Gemini.APIs.Videos.wait_for_completion(
 operation.name,
 poll_interval: 5_000, # Poll every 5 seconds
 timeout: 600_000, # Wait up to 10 minutes
 on_progress: fn op ->
 if progress = Gemini.Types.Operation.get_progress(op) do
 IO.puts("Progress: #{progress}%")
 end
 end
)

Extract videos
{:ok, videos} = Video.extract_videos(completed)

 wrap_operation(operation)

 @spec wrap_operation(Gemini.Types.Operation.t()) ::
 Gemini.Types.Generation.Video.VideoOperation.t()

Wrap an operation with video-specific metadata.
Adds video generation progress tracking and estimation.
Examples
{:ok, op} = Gemini.APIs.Videos.get_operation(operation_name)
video_op = Gemini.APIs.Videos.wrap_operation(op)

IO.puts("Progress: #{video_op.progress_percent}%")
IO.puts("ETA: #{video_op.estimated_completion_time}")

Gemini.Auth.ADC

Application Default Credentials (ADC) for Google Cloud authentication.
This module implements Google's Application Default Credentials (ADC) strategy,
which provides a standardized way to obtain credentials for Google Cloud APIs
without hardcoding authentication details in your application.
ADC Credential Search Order
ADC searches for credentials in the following order:
	Environment Variable: GOOGLE_APPLICATION_CREDENTIALS pointing to a
service account JSON file
	User Credentials: ~/.config/gcloud/application_default_credentials.json
(created via gcloud auth application-default login)
	GCP Metadata Server: Automatic credentials for code running on GCP
infrastructure (Compute Engine, GKE, Cloud Run, Cloud Functions, App Engine)

Features
	Automatic credential discovery following Google's ADC standard
	Token caching with automatic refresh
	Support for service account and user credentials
	Metadata server authentication for GCP workloads
	Thread-safe token management

Usage
Load credentials using ADC
case ADC.load_credentials() do
 {:ok, credentials} ->
 # Get an access token
 case ADC.get_access_token(credentials) do
 {:ok, token} ->
 # Use token for API calls
 make_api_call(token)

 {:error, reason} ->
 Logger.error("Failed to get token: #{reason}")
 end

 {:error, reason} ->
 Logger.error("No credentials found: #{reason}")
end
Setting Up ADC
Option 1: Service Account Key (Development)
export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account-key.json"
Option 2: User Credentials (Development)
gcloud auth application-default login
Option 3: Metadata Server (Production on GCP)
No setup required - automatically works on GCP infrastructure
Token Caching
Access tokens are automatically cached with a 5-minute refresh buffer.
This means a token with a 1-hour TTL will be refreshed after 55 minutes,
ensuring your application never uses an expired token.

 Summary

 Types

 access_token()

 credentials()

 error_reason()

 metadata_server_credentials()

 service_account_credentials()

 user_credentials()

 Functions

 available?()

 Check if ADC credentials are available.

 get_access_token(credentials, opts \\ [])

 Get an access token from loaded credentials.

 get_project_id(arg1)

 Get project ID from credentials if available.

 load_credentials()

 Load credentials following the ADC chain.

 refresh_token(credentials)

 Refresh an access token.

 Types

 access_token()

 @type access_token() :: String.t()

 credentials()

 @type credentials() ::
 {:service_account, service_account_credentials()}
 | {:user, user_credentials()}
 | {:metadata_server, metadata_server_credentials()}

 error_reason()

 @type error_reason() :: String.t()

 metadata_server_credentials()

 @type metadata_server_credentials() :: %{
 source: :metadata_server,
 project_id: String.t() | nil
}

 service_account_credentials()

 @type service_account_credentials() :: %{
 type: String.t(),
 project_id: String.t(),
 private_key_id: String.t(),
 private_key: String.t(),
 client_email: String.t(),
 client_id: String.t(),
 auth_uri: String.t(),
 token_uri: String.t(),
 auth_provider_x509_cert_url: String.t(),
 client_x509_cert_url: String.t()
}

 user_credentials()

 @type user_credentials() :: %{
 type: String.t(),
 client_id: String.t(),
 client_secret: String.t(),
 refresh_token: String.t(),
 quota_project_id: String.t() | nil
}

 Functions

 available?()

 @spec available?() :: boolean()

Check if ADC credentials are available.
Performs a quick check to see if any credentials can be found via ADC,
without actually loading them.
Returns
	true - Credentials are available
	false - No credentials found

Examples
if ADC.available?() do
 Logger.info("ADC credentials available")
else
 Logger.warning("No ADC credentials found")
end

 get_access_token(credentials, opts \\ [])

 @spec get_access_token(
 credentials(),
 keyword()
) :: {:ok, access_token()} | {:error, error_reason()}

Get an access token from loaded credentials.
Attempts to retrieve a cached token first. If no cached token exists
or the cached token is expired, generates a new token and caches it.
Parameters
	credentials: Credentials tuple from load_credentials/0
	opts: Optional keyword list	:force_refresh - Skip cache and force token refresh (default: false)
	:cache_key - Custom cache key (default: auto-generated)

Returns
	{:ok, access_token} - Access token retrieved successfully
	{:error, reason} - Failed to get access token

Examples
{:ok, creds} = ADC.load_credentials()

Get token (uses cache if available)
{:ok, token} = ADC.get_access_token(creds)

Force refresh
{:ok, fresh_token} = ADC.get_access_token(creds, force_refresh: true)

 get_project_id(arg1)

 @spec get_project_id(credentials()) :: {:ok, String.t()} | {:error, error_reason()}

Get project ID from credentials if available.
Extracts the project ID from the loaded credentials. Useful for
configuring Vertex AI which requires a project ID.
Parameters
	credentials: Credentials tuple from load_credentials/0

Returns
	{:ok, project_id} - Project ID extracted successfully
	{:error, reason} - No project ID available in credentials

Examples
{:ok, creds} = ADC.load_credentials()

case ADC.get_project_id(creds) do
 {:ok, project_id} ->
 # Use for Vertex AI
 %{project_id: project_id, location: "us-central1"}

 {:error, _} ->
 # Prompt user or use environment variable
 System.get_env("VERTEX_PROJECT_ID")
end

 load_credentials()

 @spec load_credentials() :: {:ok, credentials()} | {:error, error_reason()}

Load credentials following the ADC chain.
Searches for credentials in the standard ADC order:
	GOOGLE_APPLICATION_CREDENTIALS environment variable
	User credentials file (~/.config/gcloud/application_default_credentials.json)
	GCP metadata server

Returns
	{:ok, credentials} - Credentials found and loaded
	{:error, reason} - No credentials found or loading failed

Examples
case ADC.load_credentials() do
 {:ok, {:service_account, creds}} ->
 Logger.info("Using service account: #{creds.client_email}")

 {:ok, {:user, creds}} ->
 Logger.info("Using user credentials")

 {:ok, {:metadata_server, creds}} ->
 Logger.info("Using metadata server")

 {:error, reason} ->
 Logger.error("No credentials found: #{reason}")
end

 refresh_token(credentials)

 @spec refresh_token(credentials()) :: {:ok, access_token()} | {:error, error_reason()}

Refresh an access token.
Forces a token refresh regardless of whether a cached token exists.
This is equivalent to calling get_access_token/2 with force_refresh: true.
Parameters
	credentials: Credentials tuple from load_credentials/0

Returns
	{:ok, access_token} - New access token generated successfully
	{:error, reason} - Failed to refresh token

Examples
{:ok, creds} = ADC.load_credentials()
{:ok, fresh_token} = ADC.refresh_token(creds)

Gemini.Auth.JWT

JWT token generation and management for Google Cloud service accounts.
This module handles JWT creation and signing for Vertex AI authentication
based on the documentation in v1.md. It supports both service account key files
and the Google Cloud IAM signJwt API.

 Summary

 Types

 jwt_payload()

 service_account_key()

 Functions

 create_payload(service_account_email, audience, opts \\ [])

 Create a JWT payload for Vertex AI authentication.

 create_signed_token(service_account_email, audience, opts \\ [])

 Create a signed JWT token using the most appropriate method.

 get_service_account_email(map)

 Extract service account email from a service account key.

 load_service_account_key(file_path)

 Load and parse a service account key file.

 sign_with_iam_api(payload, service_account_email, access_token)

 Sign a JWT payload using Google Cloud IAM signJwt API.

 sign_with_key(payload, map)

 Sign a JWT payload using a service account private key.

 validate_payload(arg1)

 Validate a JWT payload has all required fields.

 Types

 jwt_payload()

 @type jwt_payload() :: %{
 :iss => String.t(),
 :aud => String.t(),
 :sub => String.t(),
 :iat => integer(),
 :exp => integer(),
 optional(:scope) => String.t(),
 optional(atom()) => any()
}

 service_account_key()

 @type service_account_key() :: %{
 type: String.t(),
 project_id: String.t(),
 private_key_id: String.t(),
 private_key: String.t(),
 client_email: String.t(),
 client_id: String.t(),
 auth_uri: String.t(),
 token_uri: String.t(),
 auth_provider_x509_cert_url: String.t(),
 client_x509_cert_url: String.t()
}

 Functions

 create_payload(service_account_email, audience, opts \\ [])

 @spec create_payload(String.t(), String.t(), keyword()) :: jwt_payload()

Create a JWT payload for Vertex AI authentication.
Parameters
	service_account_email: The email of the service account (issuer)
	audience: The audience for the JWT (must match deployment config)
	opts: Optional parameters	:lifetime - Token lifetime in seconds (default: 3600)
	:issued_at - Custom issued at time (default: current time)

Examples
iex> payload = Gemini.Auth.JWT.create_payload(
...> "my-service@project.iam.gserviceaccount.com",
...> "my-app-audience"
...>)
iex> payload.iss
"my-service@project.iam.gserviceaccount.com"

 create_signed_token(service_account_email, audience, opts \\ [])

 @spec create_signed_token(String.t(), String.t(), keyword()) ::
 {:ok, String.t()} | {:error, term()}

Create a signed JWT token using the most appropriate method.
This function automatically chooses between local signing (if private key is available)
or IAM API signing (if access token is provided).
Examples
Using service account key file
iex> {:ok, token} = Gemini.Auth.JWT.create_signed_token(
...> "my-service@project.iam.gserviceaccount.com",
...> "my-app-audience",
...> service_account_key: "/path/to/key.json"
...>)

Using IAM API
iex> {:ok, token} = Gemini.Auth.JWT.create_signed_token(
...> "my-service@project.iam.gserviceaccount.com",
...> "my-app-audience",
...> access_token: "ya29.access-token"
...>)

 get_service_account_email(map)

 @spec get_service_account_email(service_account_key()) :: String.t()

Extract service account email from a service account key.
Examples
iex> key = %{client_email: "my-service@project.iam.gserviceaccount.com"}
iex> Gemini.Auth.JWT.get_service_account_email(key)
"my-service@project.iam.gserviceaccount.com"

 load_service_account_key(file_path)

 @spec load_service_account_key(String.t()) ::
 {:ok, service_account_key()} | {:error, term()}

Load and parse a service account key file.
Examples
iex> {:ok, key} = Gemini.Auth.JWT.load_service_account_key("/path/to/key.json")
iex> key.client_email
"my-service@project.iam.gserviceaccount.com"

 sign_with_iam_api(payload, service_account_email, access_token)

 @spec sign_with_iam_api(jwt_payload(), String.t(), String.t()) ::
 {:ok, String.t()} | {:error, term()}

Sign a JWT payload using Google Cloud IAM signJwt API.
This method uses the Google Cloud IAM service to sign the JWT, which requires
the caller to have the roles/iam.serviceAccountTokenCreator role.
Parameters
	payload: The JWT payload to sign
	service_account_email: The service account email
	access_token: A valid access token for authentication

Examples
iex> payload = %{iss: "...", aud: "...", sub: "...", iat: 123, exp: 456}
iex> {:ok, token} = Gemini.Auth.JWT.sign_with_iam_api(
...> payload,
...> "my-service@project.iam.gserviceaccount.com",
...> "ya29.access-token"
...>)

 sign_with_key(payload, map)

 @spec sign_with_key(jwt_payload(), service_account_key()) ::
 {:ok, String.t()} | {:error, term()}

Sign a JWT payload using a service account private key.
This method signs the JWT locally using the private key from the service account JSON file.
Examples
iex> key = %{private_key: "-----BEGIN PRIVATE KEY-----...", client_email: "..."}
iex> payload = %{iss: "...", aud: "...", sub: "...", iat: 123, exp: 456}
iex> {:ok, token} = Gemini.Auth.JWT.sign_with_key(payload, key)

 validate_payload(arg1)

 @spec validate_payload(jwt_payload()) :: :ok | {:error, String.t()}

Validate a JWT payload has all required fields.
Examples
iex> payload = %{iss: "test", aud: "test", sub: "test", iat: 123, exp: 456}
iex> Gemini.Auth.JWT.validate_payload(payload)
:ok

Gemini.Auth.MetadataServer

Authentication via GCP metadata server for workloads running on Google Cloud Platform.
This module provides authentication for workloads running on:
	Google Compute Engine
	Google Kubernetes Engine (GKE)
	Cloud Run
	Cloud Functions
	App Engine

The metadata server provides automatic authentication without requiring
explicit credentials files, making it ideal for production deployments
on GCP infrastructure.
Metadata Server Endpoint
The metadata server is available at http://metadata.google.internal/computeMetadata/v1/
and requires the Metadata-Flavor: Google header on all requests.
Features
	Automatic token retrieval from GCP metadata server
	Project ID detection
	Availability checking (determines if running on GCP)
	Service account information retrieval

Usage
Check if running on GCP
if MetadataServer.available?() do
 # Get access token
 {:ok, token} = MetadataServer.get_access_token()

 # Get project ID
 {:ok, project_id} = MetadataServer.get_project_id()
end
Timeout Configuration
Metadata server checks use a short timeout (1 second) to quickly determine
if the code is running on GCP. If the metadata server is not available,
the check will fail fast.

 Summary

 Types

 error_reason()

 Functions

 available?()

 Check if the GCP metadata server is available.

 get_access_token()

 Get an access token from the GCP metadata server.

 get_instance_metadata()

 Get all metadata for the instance.

 get_project_id()

 Get the GCP project ID from the metadata server.

 get_service_account_email()

 Get the service account email from the metadata server.

 Types

 error_reason()

 @type error_reason() :: String.t()

 Functions

 available?()

 @spec available?() :: boolean()

Check if the GCP metadata server is available.
This function performs a quick check to determine if the code is running
on Google Cloud Platform infrastructure with access to the metadata server.
Uses a 1-second timeout for fast failure in non-GCP environments.
Returns
	true - Running on GCP with metadata server access
	false - Not running on GCP or metadata server unavailable

Examples
if MetadataServer.available?() do
 # Running on GCP, can use metadata server
 {:ok, token} = MetadataServer.get_access_token()
else
 # Not on GCP, use other authentication method
 use_service_account_file()
end

 get_access_token()

 @spec get_access_token() ::
 {:ok, %{token: String.t(), expires_in: pos_integer()}}
 | {:error, error_reason()}

Get an access token from the GCP metadata server.
Retrieves a fresh access token for the default service account
associated with the GCP resource (VM, Cloud Run instance, etc.).
The token will have the scopes assigned to the service account,
which typically includes https://www.googleapis.com/auth/cloud-platform.
Returns
	{:ok, %{token: token, expires_in: seconds}} - Successfully retrieved token
	{:error, reason} - Failed to retrieve token

Examples
case MetadataServer.get_access_token() do
 {:ok, %{token: token, expires_in: ttl}} ->
 # Use token for API calls
 # Cache with TTL
 TokenCache.put("metadata_server", token, ttl)

 {:error, reason} ->
 Logger.error("Failed to get token: #{reason}")
end

 get_instance_metadata()

 @spec get_instance_metadata() :: {:ok, map()} | {:error, error_reason()}

Get all metadata for the instance.
Retrieves comprehensive metadata about the GCP instance, including
service account information, project details, and instance attributes.
Returns
	{:ok, metadata} - Map containing instance metadata
	{:error, reason} - Failed to retrieve metadata

Examples
case MetadataServer.get_instance_metadata() do
 {:ok, metadata} ->
 IO.inspect(metadata, label: "Instance Metadata")

 {:error, reason} ->
 Logger.error("Failed to get metadata: #{reason}")
end

 get_project_id()

 @spec get_project_id() :: {:ok, String.t()} | {:error, error_reason()}

Get the GCP project ID from the metadata server.
Retrieves the project ID for the GCP project in which the code is running.
This is useful when you need the project ID for Vertex AI or other
GCP services but don't want to hardcode it.
Returns
	{:ok, project_id} - Successfully retrieved project ID
	{:error, reason} - Failed to retrieve project ID

Examples
case MetadataServer.get_project_id() do
 {:ok, project_id} ->
 # Use project_id for Vertex AI configuration
 %{project_id: project_id, location: "us-central1"}

 {:error, reason} ->
 Logger.error("Failed to get project ID: #{reason}")
end

 get_service_account_email()

 @spec get_service_account_email() :: {:ok, String.t()} | {:error, error_reason()}

Get the service account email from the metadata server.
Retrieves the email address of the default service account
associated with the GCP resource.
Returns
	{:ok, email} - Successfully retrieved service account email
	{:error, reason} - Failed to retrieve email

Examples
case MetadataServer.get_service_account_email() do
 {:ok, email} ->
 Logger.info("Running as service account: #{email}")

 {:error, reason} ->
 Logger.error("Failed to get service account: #{reason}")
end

Gemini.Auth.Strategy behaviour

Behavior for authentication strategies.

 Summary

 Callbacks

 base_url(credentials)

 build_path(model, endpoint, credentials)

 headers(credentials)

 refresh_credentials(credentials)

 Callbacks

 base_url(credentials)

 @callback base_url(credentials :: map()) :: String.t()

 build_path(model, endpoint, credentials)

 @callback build_path(model :: String.t(), endpoint :: String.t(), credentials :: map()) ::
 String.t()

 headers(credentials)

 @callback headers(credentials :: map()) ::
 {:ok, [{String.t(), String.t()}]} | {:error, term()}

 refresh_credentials(credentials)

 @callback refresh_credentials(credentials :: map()) :: {:ok, map()} | {:error, term()}

Gemini.Auth.TokenCache

ETS-based token caching with automatic expiration handling.
Provides thread-safe token caching to reduce API calls for token refresh.
Tokens are automatically considered expired based on their TTL, with a
configurable refresh buffer to ensure tokens are refreshed before expiration.
Features
	Thread-safe ETS-based storage
	Automatic expiration handling
	Refresh buffer (default 5 minutes before expiry)
	Multiple cache key support for different credentials

Usage
Initialize the cache (called automatically on application start)
TokenCache.init()

Cache a token with 3600 second TTL
TokenCache.put("my_key", "access_token_here", 3600)

Retrieve cached token (returns nil if expired)
case TokenCache.get("my_key") do
 {:ok, token} -> {:ok, token}
 :error -> # Token expired or not found, refresh needed
end

Invalidate a cached token
TokenCache.invalidate("my_key")

 Summary

 Types

 cache_entry()

 cache_key()

 token()

 ttl()

 Functions

 clear()

 Clear all cached tokens.

 get(key)

 Retrieve a cached token if it exists and has not expired.

 init()

 Initialize the token cache table.

 invalidate(key)

 Invalidate (remove) a cached token.

 put(key, token, ttl, opts \\ [])

 Cache a token with the specified time-to-live (TTL).

 stats()

 Get statistics about the token cache.

 Types

 cache_entry()

 @type cache_entry() :: {cache_key(), token(), expiry_time :: integer()}

 cache_key()

 @type cache_key() :: String.t() | atom()

 token()

 @type token() :: String.t()

 ttl()

 @type ttl() :: pos_integer()

 Functions

 clear()

 @spec clear() :: :ok

Clear all cached tokens.
Removes all entries from the cache. Useful for testing or when
you need to force refresh all tokens.
Examples
TokenCache.clear()

 get(key)

 @spec get(cache_key()) :: {:ok, token()} | :error

Retrieve a cached token if it exists and has not expired.
Returns {:ok, token} if the token is cached and still valid,
or :error if the token is expired or not found.
Parameters
	key: The cache key used when storing the token

Returns
	{:ok, token} - Token is cached and still valid
	:error - Token is expired, not found, or cache not initialized

Examples
case TokenCache.get("my_key") do
 {:ok, token} ->
 # Use the cached token
 {:ok, token}

 :error ->
 # Token expired or not found, need to refresh
 refresh_token()
end

 init()

 @spec init() :: :ok

Initialize the token cache table.
Creates an ETS table for storing tokens. This is called automatically
when the application starts, but can be called manually if needed.
Safe to call multiple times - if the table already exists, it will
not create a new one.
Examples
iex> Gemini.Auth.TokenCache.init()
:ok

 invalidate(key)

 @spec invalidate(cache_key()) :: :ok

Invalidate (remove) a cached token.
Useful when you know a token is no longer valid and want to force
a refresh on the next request.
Parameters
	key: The cache key to invalidate

Examples
TokenCache.invalidate("my_key")

 put(key, token, ttl, opts \\ [])

 @spec put(cache_key(), token(), ttl(), keyword()) :: :ok

Cache a token with the specified time-to-live (TTL).
The token will be considered expired after ttl seconds, minus the
refresh buffer (default 5 minutes). This ensures tokens are refreshed
before they actually expire.
Parameters
	key: Unique identifier for this token (string or atom)
	token: The access token to cache
	ttl: Time-to-live in seconds

Options
	:refresh_buffer - Seconds before expiry to consider token expired
(default: 300 seconds / 5 minutes)

Examples
Cache token for 1 hour
TokenCache.put("vertex_ai_token", "ya29.abc123", 3600)

Cache with custom refresh buffer (refresh 10 minutes early)
TokenCache.put("my_token", "token123", 3600, refresh_buffer: 600)

 stats()

 @spec stats() :: %{size: non_neg_integer(), keys: [cache_key()]}

Get statistics about the token cache.
Returns information about the cache including number of entries
and which tokens are cached.
Returns
Map with cache statistics:
	:size - Number of cached tokens
	:keys - List of cache keys

Examples
TokenCache.stats()
#=> %{size: 2, keys: ["vertex_ai_token", "another_token"]}

Gemini.Chat

Formalized chat session management with immutable history updates.
This module provides a robust, immutable approach to managing multi-turn
conversations with the Gemini API, including proper handling of tool-calling
turns with function calls and responses.
Usage
Create a new chat session
chat = Gemini.Chat.new(model: "gemini-flash-lite-latest", temperature: 0.7)

Add turns to the conversation
chat = chat
|> Gemini.Chat.add_turn("user", "What's the weather like?")
|> Gemini.Chat.add_turn("model", [%Altar.ADM.FunctionCall{...}])
|> Gemini.Chat.add_turn("user", [%Altar.ADM.ToolResult{...}])
|> Gemini.Chat.add_turn("model", "Based on the weather data...")

Generate content with the chat history
{:ok, response} = Gemini.generate_content(chat.history, chat.opts)

 Summary

 Types

 t()

 A chat session containing conversation history and configuration options.

 Functions

 add_model_response(chat, response)

 Add a model response to the chat history, extracting any thought signatures.

 add_turn(chat, role, message)

 Add a turn to the chat history.

 new(opts \\ [])

 Create a new chat session with optional configuration.

 Types

 t()

 @type t() :: %Gemini.Chat{
 history: [Gemini.Types.Content.t()],
 last_signatures: [String.t()],
 opts: keyword()
}

A chat session containing conversation history and configuration options.

 Functions

 add_model_response(chat, response)

 @spec add_model_response(t(), Gemini.Types.Response.GenerateContentResponse.t()) ::
 t()

Add a model response to the chat history, extracting any thought signatures.
This function automatically extracts thought signatures from the response
and stores them for echoing in the next user message.
Parameters
	chat: Current chat session
	response: GenerateContentResponse from the API

Returns
Updated chat with the model's response added and signatures stored.
Examples
{:ok, response} = Gemini.generate("Hello", model: "gemini-3-pro-preview")
chat = Chat.add_model_response(chat, response)
chat.last_signatures contains any signatures from the response

 add_turn(chat, role, message)

 @spec add_turn(
 t(),
 String.t(),
 String.t()
 | [map()]
 | [Altar.ADM.FunctionCall.t()]
 | [Altar.ADM.ToolResult.t()]
) :: t()

Add a turn to the chat history.
This function handles different types of content based on the role and message type:
	User text messages: add_turn(chat, "user", "Hello")
	Model text responses: add_turn(chat, "model", "Hi there!")
	Model function calls: add_turn(chat, "model", [%FunctionCall{...}])
	User function responses: add_turn(chat, "user", [%ToolResult{...}])

For user messages, if there are stored thought signatures from the previous
model response, they will be automatically attached to the user's message part.
Returns a new chat struct with the updated history, preserving immutability.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Create a new chat session with optional configuration.
Options
All standard Gemini API options are supported:
	:model - Model name (defaults to configured default)
	:temperature - Generation temperature (0.0-1.0)
	:max_output_tokens - Maximum tokens to generate
	:generation_config - Full GenerationConfig struct
	:safety_settings - List of SafetySetting structs
	:system_instruction - System instruction content
	And more...

Examples
chat = Gemini.Chat.new()
chat = Gemini.Chat.new(model: "gemini-2.5-pro", temperature: 0.3)

Gemini.Live.Models

Live API model selection helpers.
Live API model availability can vary by rollout. This module provides
a consistent way to choose a suitable model, preferring newer models
when available while falling back to stable defaults.

 Summary

 Types

 modality()

 Functions

 candidates(modality)

 Returns the candidate Live API models for a modality in preference order.

 default(modality)

 Returns the default Live API model for a modality.

 pick_from_available(candidates, available_models)

 Select the first candidate present in an available model list.

 resolve(modality, opts \\ [])

 Resolve the most appropriate Live API model for a modality.

 Types

 modality()

 @type modality() :: :text | :audio | :image

 Functions

 candidates(modality)

 @spec candidates(modality()) :: [String.t()]

Returns the candidate Live API models for a modality in preference order.

 default(modality)

 @spec default(modality()) :: String.t()

Returns the default Live API model for a modality.

 pick_from_available(candidates, available_models)

 @spec pick_from_available([String.t()], [String.t()]) :: {:ok, String.t()} | :none

Select the first candidate present in an available model list.
Returns {:ok, model} or :none if no candidates match.

 resolve(modality, opts \\ [])

 @spec resolve(
 modality(),
 keyword()
) :: String.t()

Resolve the most appropriate Live API model for a modality.
Uses the Gemini API list_models response when available, then falls back
to the default model if no candidates are listed.
Options
	:auth - Auth strategy passed to Coordinator.list_models/1 (default: :gemini)
	:available_models - Explicit list of available models (bypass API call)
	:candidates - Override candidate list (strings)
	:require_method - Supported generation method to filter on (default: "bidiGenerateContent")

Gemini.RateLimiter

Rate limiting, concurrency gating, and retry management for Gemini API requests.
This module provides automatic rate limit handling that is enabled by default.
All requests are paced to respect Gemini's quota limits, with automatic retries
and backoff when rate limits are encountered.
Features
	Automatic rate limit enforcement - Requests wait when rate limited (429 responses)
	Concurrency gating - Limits concurrent requests per model (default: 4)
	Token budgeting - Tracks usage to preemptively avoid rate limits
	Adaptive mode - Optionally adjusts concurrency based on 429 responses
	Structured errors - Returns {:error, {:rate_limited, retry_at, details}}
	Telemetry events - Observable rate limit wait/error events

Default Behavior
The rate limiter is ON by default. Requests are:
	Checked against the current retry window (from previous 429s)
	Gated by concurrency permits (default 4 per model)
	Optionally checked against token budget
	Retried with backoff on transient failures

Configuration
Configure globally via application environment:
config :gemini_ex, :rate_limiter,
 max_concurrency_per_model: 4, # nil or 0 disables concurrency gating
 permit_timeout_ms: :infinity, # :infinity (default) or a number to cap wait
 max_attempts: 3, # Retry attempts for transient errors
 base_backoff_ms: 1000, # Base backoff duration
 jitter_factor: 0.25, # Jitter range (±25%)
 adaptive_concurrency: false, # Enable adaptive mode
 adaptive_ceiling: 8, # Max concurrency in adaptive mode
 profile: :prod # :dev, :prod, or :custom
Per-Request Options
Override behavior on individual requests:
Gemini.generate("Hello", [
 disable_rate_limiter: true, # Bypass all rate limiting
 non_blocking: true, # Return immediately if rate limited
 max_concurrency_per_model: 8, # Override concurrency limit
 permit_timeout_ms: :infinity, # Per-call override for permit wait
 concurrency_key: "tenant_a" # Optional partition key for concurrency gate
])
Non-Blocking Mode
When non_blocking: true, rate-limited requests return immediately:
case Gemini.generate("Hello", non_blocking: true) do
 {:ok, response} ->
 handle_response(response)

 {:error, {:rate_limited, retry_at, details}} ->
 # Schedule retry for later
 schedule_retry(retry_at)
end
Structured Errors
Rate limit errors include retry information:
{:error, {:rate_limited, ~U[2025-12-03 10:05:30Z], %{
 quota_metric: "TokensPerMinute",
 quota_id: "gemini-flash-lite-latest",
 attempt: 1
}}}

{:error, {:transient_failure, 3, original_error}}
Telemetry Events
The rate limiter emits telemetry events:
	[:gemini_ex, :rate_limit, :request, :start] - Request submitted
	[:gemini_ex, :rate_limit, :request, :stop] - Request completed
	[:gemini_ex, :rate_limit, :wait] - Waiting for retry window
	[:gemini_ex, :rate_limit, :error] - Rate limit error

 Summary

 Functions

 available_permits(model, opts \\ [])

 Get the number of available concurrency permits for a model.

 check_status(model, opts \\ [])

 Check if a request would be rate limited without executing.

 config(opts \\ [])

 Build a configuration struct from options.

 enabled?(opts \\ [])

 Check if rate limiting is enabled for the given options.

 execute(request_fn, model, opts \\ [])

 Execute a request through the rate limiter.

 execute_streaming(start_fn, model, opts \\ [])

 Execute a long-lived streaming request through the rate limiter.

 execute_with_usage_tracking(request_fn, model, opts \\ [])

 Execute a request and track token usage from the response.

 get_retry_state(model, opts \\ [])

 Get the current retry state for a model.

 get_usage(model, opts \\ [])

 Get current token usage for a model within the sliding window.

 reset_all()

 Reset all rate limiter state.

 Functions

 available_permits(model, opts \\ [])

 @spec available_permits(
 String.t(),
 keyword()
) :: non_neg_integer()

Get the number of available concurrency permits for a model.

 check_status(model, opts \\ [])

 @spec check_status(
 String.t(),
 keyword()
) ::
 :ok
 | {:rate_limited, DateTime.t(), map()}
 | {:over_budget, map()}
 | {:no_permits, non_neg_integer()}

Check if a request would be rate limited without executing.
Useful for preflight checks before submitting requests.
Returns
	:ok - Request can proceed
	{:rate_limited, retry_at, details} - Currently rate limited
	{:over_budget, usage} - Would exceed token budget
	{:no_permits, 0} - No concurrency permits available

 config(opts \\ [])

 @spec config(keyword()) :: Gemini.RateLimiter.Config.t()

Build a configuration struct from options.
Useful for inspecting the resolved configuration.

 enabled?(opts \\ [])

 @spec enabled?(keyword()) :: boolean()

Check if rate limiting is enabled for the given options.

 execute(request_fn, model, opts \\ [])

 @spec execute(
 (-> {:ok, term()} | {:error, term()}),
 String.t(),
 keyword()
) :: {:ok, term()} | {:error, term()}

Execute a request through the rate limiter.
This is the primary entry point for rate-limited requests. It handles:
	Rate limit state checking
	Concurrency permit acquisition
	Token budget verification
	Retry with backoff on failures

Parameters
	request_fn - Zero-arity function that makes the actual request
	model - Model name for rate limit tracking
	opts - Options (see module docs for full list)

Examples
Basic usage
{:ok, response} = RateLimiter.execute(
 fn -> HTTP.post(path, body) end,
 "gemini-flash-lite-latest"
)

With options
{:ok, response} = RateLimiter.execute(
 fn -> HTTP.post(path, body) end,
 "gemini-flash-lite-latest",
 non_blocking: true,
 max_concurrency_per_model: 8
)

 execute_streaming(start_fn, model, opts \\ [])

 @spec execute_streaming((-> {:ok, term()} | {:error, term()}), String.t(), keyword()) ::
 {:ok, {term(), (atom(), map() | nil -> :ok)}} | {:error, term()}

Execute a long-lived streaming request through the rate limiter.
Holds the concurrency permit and budget reservation until the returned
release_fn is invoked (typically on stream completion/error/stop).

 execute_with_usage_tracking(request_fn, model, opts \\ [])

 @spec execute_with_usage_tracking(
 (-> {:ok, term()} | {:error, term()}),
 String.t(),
 keyword()
) :: {:ok, term()} | {:error, term()}

Execute a request and track token usage from the response.
Similar to execute/3 but also records token usage from successful
responses for budget tracking.

 get_retry_state(model, opts \\ [])

 @spec get_retry_state(
 String.t(),
 keyword()
) :: Gemini.RateLimiter.State.retry_state() | nil

Get the current retry state for a model.
Returns information about the current rate limit window, if any.

 get_usage(model, opts \\ [])

 @spec get_usage(
 String.t(),
 keyword()
) :: Gemini.RateLimiter.State.usage_window() | nil

Get current token usage for a model within the sliding window.

 reset_all()

 @spec reset_all() :: :ok

Reset all rate limiter state.
Useful for testing or after configuration changes.

Gemini.RateLimiter.ConcurrencyGate

Per-model concurrency gating using semaphore-like permits.
Throttles request bursts by limiting concurrent requests per model.
Supports adaptive mode that adjusts concurrency based on 429 responses.
Features
	Configurable per-model concurrency limits
	Adaptive mode: starts low, raises until 429, then backs off
	Non-blocking mode support for immediate returns
	ETS-based permit tracking for cross-process visibility

 Summary

 Types

 model_key()

 permit_state()

 Functions

 acquire(model, config)

 Acquire a permit for the given model.

 available_permits(model, config)

 Get the number of available permits for a model.

 get_state(model)

 Get current permit state for a model.

 handle_holder_down(model, holder_pid)

 init()

 Initialize the ETS table for permit tracking.

 release(model)

 Release a permit for the given model.

 reset_all()

 Reset all state (useful for testing).

 signal_429(model, config)

 Signal that a 429 was received for adaptive backoff.

 signal_success(model, config)

 Signal that a request succeeded for adaptive raise.

 Types

 model_key()

 @type model_key() :: String.t()

 permit_state()

 @type permit_state() :: %{
 current: non_neg_integer(),
 max: pos_integer(),
 adaptive_max: pos_integer() | nil,
 waiting: [pid()],
 holders: %{required(pid()) => {non_neg_integer(), pid()}}
}

 Functions

 acquire(model, config)

 @spec acquire(model_key(), Gemini.RateLimiter.Config.t()) :: :ok | {:error, atom()}

Acquire a permit for the given model.
Returns immediately if a permit is available. If no permit is available:
	In blocking mode: waits until a permit becomes available
	In non-blocking mode: returns {:error, :no_permit_available}

Parameters
	model - Model name
	config - Rate limiter configuration

Returns
	:ok - Permit acquired
	{:error, :no_permit_available} - No permit available (non-blocking mode)
	{:error, :concurrency_disabled} - Concurrency gating is disabled

 available_permits(model, config)

 @spec available_permits(model_key(), Gemini.RateLimiter.Config.t()) ::
 non_neg_integer()

Get the number of available permits for a model.

 get_state(model)

 @spec get_state(model_key()) :: permit_state() | nil

Get current permit state for a model.

 handle_holder_down(model, holder_pid)

 init()

 @spec init() :: :ok

Initialize the ETS table for permit tracking.
Called automatically when the RateLimitManager starts, but also
lazily initialized on first access to support direct calls without
the supervisor running.

 release(model)

 @spec release(model_key()) :: :ok

Release a permit for the given model.
Called after a request completes (success or failure).

 reset_all()

 @spec reset_all() :: :ok

Reset all state (useful for testing).

 signal_429(model, config)

 @spec signal_429(model_key(), Gemini.RateLimiter.Config.t()) :: :ok

Signal that a 429 was received for adaptive backoff.
In adaptive mode, reduces the effective max concurrency.

 signal_success(model, config)

 @spec signal_success(model_key(), Gemini.RateLimiter.Config.t()) :: :ok

Signal that a request succeeded for adaptive raise.
In adaptive mode, gradually increases concurrency up to the ceiling.

Gemini.RateLimiter.Config

Configuration management for the rate limiter.
Provides configuration defaults and profile-based settings for rate limiting,
concurrency gating, token budgeting, and retry behavior.
Configuration Options
	:max_concurrency_per_model - Maximum concurrent requests per model (default: 4, nil/0 disables)
	:max_attempts - Maximum retry attempts (default: 3)
	:base_backoff_ms - Base backoff duration in milliseconds (default: 1000)
	:jitter_factor - Jitter factor for backoff (default: 0.25)
	:non_blocking - Return immediately with retry_at instead of waiting (default: false)
	:disable_rate_limiter - Disable all rate limiting (default: false)
	:adaptive_concurrency - Enable adaptive concurrency (default: false)
	:adaptive_ceiling - Maximum concurrency when adaptive mode is enabled (default: 8)
	:token_budget_per_window - Maximum tokens per window (default: profile-dependent; base is 32_000, :prod profile sets 500_000; nil disables)
	:window_duration_ms - Duration of budget window in milliseconds (default: 60_000)
	:max_budget_wait_ms - Maximum time to block on over-budget windows before returning (default: nil = no cap)
	:budget_safety_multiplier - Multiplier applied to estimated tokens when reserving budget (default: 1.0)
	:permit_timeout_ms - Maximum time to wait for a concurrency permit before timing out (default: :infinity; set a number to cap wait)
	:profile - Configuration profile (see below)

Profiles
Choose a profile matching your Google Cloud tier. Rate limits are per-project
(not per-API key) and vary by model. View your actual limits in
AI Studio.
Tier Qualifications
	Tier	Qualification
	Free	Users in eligible countries
	Tier 1	Billing account linked to project
	Tier 2	>$250 total spend + 30 days since payment
	Tier 3	>$1,000 total spend + 30 days since payment

Profile Settings
	Profile	Best For	Token Budget
	:free_tier	Development, testing	32,000
	:paid_tier_1	Standard production	1,000,000
	:paid_tier_2	High throughput	2,000,000
	:paid_tier_3	Maximum throughput	4,000,000
	:dev	Local development	16,000
	:prod	Production (default)	500,000
	:custom	Explicit settings	-

Defaults & precedence
	build/0 uses the :prod profile by default → token_budget_per_window is 500_000.
	The base struct default (32_000) is overridden by the selected profile.
	:custom uses the base defaults unless you explicitly override fields.
	Order of application: base defaults → profile → app config → per-call overrides.

Example Configuration
Select a tier profile
config :gemini_ex, :rate_limiter, profile: :paid_tier_1

Or customize specific settings
config :gemini_ex, :rate_limiter,
 profile: :prod,
 token_budget_per_window: 1_000_000,
 max_concurrency_per_model: 8

Disable token budgeting (not recommended)
config :gemini_ex, :rate_limiter,
 token_budget_per_window: nil

 Summary

 Types

 profile()

 t()

 Functions

 build(overrides \\ [])

 Build a configuration struct from application config and overrides.

 concurrency_enabled?(config)

 Check if concurrency gating is enabled.

 enabled?(config)

 Check if rate limiting is enabled.

 Types

 profile()

 @type profile() ::
 :dev
 | :prod
 | :custom
 | :free_tier
 | :paid_tier_1
 | :paid_tier_2
 | :paid_tier_3

 t()

 @type t() :: %Gemini.RateLimiter.Config{
 adaptive_ceiling: pos_integer(),
 adaptive_concurrency: boolean(),
 base_backoff_ms: pos_integer(),
 budget_safety_multiplier: float(),
 disable_rate_limiter: boolean(),
 jitter_factor: float(),
 max_attempts: pos_integer(),
 max_budget_wait_ms: pos_integer() | nil,
 max_concurrency_per_model: non_neg_integer() | nil,
 non_blocking: boolean(),
 permit_timeout_ms: pos_integer() | :infinity,
 profile: profile(),
 token_budget_per_window: non_neg_integer() | nil,
 window_duration_ms: pos_integer()
}

 Functions

 build(overrides \\ [])

 @spec build(keyword()) :: t()

Build a configuration struct from application config and overrides.
Parameters
	overrides - Keyword list of configuration overrides

Examples
config = Config.build(max_concurrency_per_model: 8, profile: :prod)

 concurrency_enabled?(config)

 @spec concurrency_enabled?(t()) :: boolean()

Check if concurrency gating is enabled.

 enabled?(config)

 @spec enabled?(t()) :: boolean()

Check if rate limiting is enabled.

Gemini.RateLimiter.Manager

Central rate limiter manager that coordinates request submission.
Wraps outbound requests with:
	Rate limit checking and enforcement
	Concurrency gating
	Token budgeting
	Retry handling with backoff

Enabled by default. Use disable_rate_limiter: true to opt out.
Features
	ETS-based state for cross-process visibility
	Per-model/location/metric tracking
	Configurable concurrency limits with adaptive mode
	Token budget estimation and tracking
	Telemetry event emission

Usage
Execute a request through the rate limiter
{:ok, response} = Manager.execute(
 fn -> HTTP.post(path, body, opts) end,
 "gemini-flash-lite-latest",
 opts
)

Non-blocking mode returns immediately if rate limited
case Manager.execute(fn -> ... end, model, non_blocking: true) do
 {:ok, response} -> handle_response(response)
 {:error, {:rate_limited, retry_at, details}} -> schedule_retry(retry_at)
end
Configuration
Configure via application environment or per-request options:
config :gemini_ex, :rate_limiter,
 max_concurrency_per_model: 4,
 max_attempts: 3,
 base_backoff_ms: 1000,
 profile: :prod
Per-request overrides:
Gemini.generate("Hello", [
 disable_rate_limiter: true, # Bypass rate limiter
 non_blocking: true, # Return immediately if rate limited
 max_concurrency_per_model: 8 # Override concurrency
])

 Summary

 Types

 execute_opts()

 request_fn()

 streaming_release_fn()

 Functions

 check_status(model, opts \\ [])

 Check if a request would be rate limited without executing it.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 execute(request_fn, model, opts \\ [])

 Execute a request through the rate limiter.

 execute_streaming(start_fn, model, opts \\ [])

 Execute a long-lived streaming request through the rate limiter.

 execute_with_usage_tracking(request_fn, model, opts \\ [])

 Execute a request, extracting and recording usage from the response.

 get_retry_state(model, opts \\ [])

 Get the current retry state for a model.

 get_usage(model, opts \\ [])

 Get current token usage for a model.

 reset_all()

 Reset all rate limiter state (useful for testing).

 start_link(opts \\ [])

 Start the rate limiter manager.

 Types

 execute_opts()

 @type execute_opts() :: keyword()

 request_fn()

 @type request_fn() :: (-> {:ok, term()} | {:error, term()})

 streaming_release_fn()

 @type streaming_release_fn() :: (atom(), map() | nil -> :ok)

 Functions

 check_status(model, opts \\ [])

 @spec check_status(String.t(), execute_opts()) ::
 :ok
 | {:rate_limited, DateTime.t(), map()}
 | {:over_budget, map()}
 | {:no_permits, non_neg_integer()}

Check if a request would be rate limited without executing it.
Returns
	:ok - Request can proceed
	{:rate_limited, retry_at, details} - Currently rate limited
	{:over_budget, usage} - Would exceed token budget
	{:no_permits, available} - No concurrency permits available

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 execute(request_fn, model, opts \\ [])

 @spec execute(request_fn(), String.t(), execute_opts()) ::
 {:ok, term()} | {:error, term()}

Execute a request through the rate limiter.
Parameters
	request_fn - Zero-arity function that makes the actual HTTP request
	model - Model name for rate limit tracking
	opts - Options for rate limiting and the underlying request

Options
	:location - Location for rate limit tracking (default: "us-central1")
	:disable_rate_limiter - Bypass all rate limiting (default: false)
	:non_blocking - Return immediately if rate limited (default: false)
	:max_concurrency_per_model - Override concurrency limit
	:estimated_input_tokens - Estimated tokens for budget checking
	:estimated_cached_tokens - Estimated cached-context tokens for budget checking
	:token_budget_per_window - Maximum tokens per window (nil = no limit)

Returns
	{:ok, response} - Request succeeded
	{:error, {:rate_limited, retry_at, details}} - Rate limited
	{:error, {:transient_failure, attempts, last_error}} - Transient failure
	{:error, term()} - Other error

 execute_streaming(start_fn, model, opts \\ [])

 @spec execute_streaming(request_fn(), String.t(), execute_opts()) ::
 {:ok, {term(), streaming_release_fn()}} | {:error, term()}

Execute a long-lived streaming request through the rate limiter.
Returns the start result and a release function that must be called once
the stream completes, errors, or is stopped to reconcile budget and
release concurrency permits.

 execute_with_usage_tracking(request_fn, model, opts \\ [])

 @spec execute_with_usage_tracking(request_fn(), String.t(), execute_opts()) ::
 {:ok, term()} | {:error, term()}

Execute a request, extracting and recording usage from the response.
Similar to execute/3 but also records token usage from successful responses.

 get_retry_state(model, opts \\ [])

 @spec get_retry_state(
 String.t(),
 keyword()
) :: Gemini.RateLimiter.State.retry_state() | nil

Get the current retry state for a model.

 get_usage(model, opts \\ [])

 @spec get_usage(
 String.t(),
 keyword()
) :: Gemini.RateLimiter.State.usage_window() | nil

Get current token usage for a model.

 reset_all()

 @spec reset_all() :: :ok

Reset all rate limiter state (useful for testing).

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Start the rate limiter manager.

Gemini.RateLimiter.RetryManager

Manages retry logic with backoff strategies.
Handles:
	429 rate limit responses with server-provided RetryInfo delay
	Transient 5xx errors with exponential backoff and jitter
	Network/transport errors with bounded retries

Coordinates with the rate limiter state to avoid double retries.

 Summary

 Types

 response_status()

 retry_result()

 Functions

 calculate_backoff(attempt, config)

 Calculate backoff duration for a given attempt.

 classify_response(arg)

 Classify a response to determine retry behavior.

 execute_with_retry(request_fn, state_key, config, opts \\ [])

 Execute a request function with retry handling.

 extract_retry_info(arg1)

 Extract retry delay from a 429 error response.

 Types

 response_status()

 @type response_status() :: :success | :rate_limited | :transient | :permanent

 retry_result()

 @type retry_result() ::
 {:ok, term()}
 | {:error, {:rate_limited, DateTime.t(), map()}}
 | {:error, {:transient_failure, pos_integer(), term()}}
 | {:error, term()}

 Functions

 calculate_backoff(attempt, config)

 @spec calculate_backoff(pos_integer(), Gemini.RateLimiter.Config.t()) :: pos_integer()

Calculate backoff duration for a given attempt.
Uses exponential backoff with jitter: base 2^(attempt-1) (1 ± jitter)

 classify_response(arg)

 @spec classify_response({:ok, term()} | {:error, term()}) :: response_status()

Classify a response to determine retry behavior.
Returns
	:success - Request succeeded
	:rate_limited - 429 response, should wait for RetryInfo delay
	:transient - Retryable error (5xx, network)
	:permanent - Non-retryable error (4xx except 429)

 execute_with_retry(request_fn, state_key, config, opts \\ [])

 @spec execute_with_retry(
 (-> {:ok, term()} | {:error, term()}),
 Gemini.RateLimiter.State.state_key(),
 Gemini.RateLimiter.Config.t(),
 keyword()
) :: retry_result()

Execute a request function with retry handling.
Parameters
	request_fn - Zero-arity function that makes the actual request
	state_key - Key for rate limit state tracking
	config - Rate limiter configuration
	opts - Additional options

Options
	:attempt - Current attempt number (internal use)

Returns
	{:ok, response} - Request succeeded
	{:error, {:rate_limited, retry_at, details}} - Rate limited, wait until retry_at
	{:error, {:transient_failure, attempts, last_error}} - Transient failure after max attempts
	{:error, reason} - Permanent failure

 extract_retry_info(arg1)

 @spec extract_retry_info({:error, term()}) :: map()

Extract retry delay from a 429 error response.

Gemini.RateLimiter.State

ETS-based state management for rate limiting.
Tracks per-model/location/metric state including:
	retry_until timestamps derived from 429 RetryInfo
	Token usage sliding windows for budget estimation
	Concurrency permits for gating

State is keyed by {model, location, metric} tuples for fine-grained tracking.

 Summary

 Types

 reservation_ctx()

 retry_state()

 state_key()

 usage_window()

 Functions

 build_key(model, location, metric)

 Build a state key from model, location, and metric.

 clear_retry_state(key)

 Clear the retry state for a key (called after successful request).

 get_current_usage(key)

 Get current usage within the sliding window.

 get_retry_state(key)

 Get the current retry state details for a key.

 get_retry_until(key)

 Get the current retry_until timestamp for a given key.

 init()

 Initialize the ETS table for state storage.

 reconcile_reservation(key, reservation_ctx, usage_map, opts \\ [])

 Reconcile a reservation with actual usage, returning surplus or charging shortfall.

 record_usage(key, input_tokens, output_tokens, opts \\ [])

 Record token usage in the sliding window.

 release_reservation(key, reservation_ctx, opts \\ [])

 Remove a reservation without adding usage (e.g., when the request never executed).

 reset_all()

 Reset all state (useful for testing).

 set_retry_state(key, retry_info)

 Update the retry_until state from a 429 response with RetryInfo.

 try_reserve_budget(key, estimated_total_tokens, budget, opts \\ [])

 Atomically reserve tokens in the current window.

 Types

 reservation_ctx()

 @type reservation_ctx() :: %{
 reserved_tokens: non_neg_integer(),
 estimated_tokens: non_neg_integer(),
 window_start: DateTime.t() | nil,
 window_end: DateTime.t() | nil,
 budget: non_neg_integer() | nil
}

 retry_state()

 @type retry_state() :: %{
 retry_until: DateTime.t() | nil,
 quota_metric: String.t() | nil,
 quota_id: String.t() | nil,
 quota_dimensions: map() | nil,
 quota_value: term() | nil,
 last_429_at: DateTime.t() | nil
}

 state_key()

 @type state_key() :: {model :: String.t(), location :: String.t(), metric :: atom()}

 usage_window()

 @type usage_window() :: %{
 input_tokens: non_neg_integer(),
 output_tokens: non_neg_integer(),
 reserved_tokens: non_neg_integer(),
 window_start: DateTime.t(),
 window_duration_ms: pos_integer()
}

 Functions

 build_key(model, location, metric)

 @spec build_key(String.t(), String.t() | nil, atom()) :: state_key()

Build a state key from model, location, and metric.

 clear_retry_state(key)

 @spec clear_retry_state(state_key()) :: :ok

Clear the retry state for a key (called after successful request).

 get_current_usage(key)

 @spec get_current_usage(state_key()) :: usage_window() | nil

Get current usage within the sliding window.

 get_retry_state(key)

 @spec get_retry_state(state_key()) :: retry_state() | nil

Get the current retry state details for a key.

 get_retry_until(key)

 @spec get_retry_until(state_key()) :: DateTime.t() | nil

Get the current retry_until timestamp for a given key.
Returns nil if no retry is needed or the timestamp has passed.

 init()

 @spec init() :: :ok

Initialize the ETS table for state storage.
Called automatically when the RateLimitManager starts, but also
lazily initialized on first access to support direct calls without
the supervisor running.

 reconcile_reservation(key, reservation_ctx, usage_map, opts \\ [])

 @spec reconcile_reservation(state_key(), reservation_ctx(), map() | nil, keyword()) ::
 usage_window()

Reconcile a reservation with actual usage, returning surplus or charging shortfall.

 record_usage(key, input_tokens, output_tokens, opts \\ [])

 @spec record_usage(state_key(), non_neg_integer(), non_neg_integer(), keyword()) ::
 :ok

Record token usage in the sliding window.
Parameters
	key - State key tuple
	input_tokens - Number of input tokens used
	output_tokens - Number of output tokens used
	opts - Options including:	:window_duration_ms - Custom window duration (default: 60_000)

 release_reservation(key, reservation_ctx, opts \\ [])

 @spec release_reservation(state_key(), reservation_ctx(), keyword()) :: usage_window()

Remove a reservation without adding usage (e.g., when the request never executed).

 reset_all()

 @spec reset_all() :: :ok

Reset all state (useful for testing).

 set_retry_state(key, retry_info)

 @spec set_retry_state(state_key(), map()) :: :ok

Update the retry_until state from a 429 response with RetryInfo.
Parameters
	key - State key tuple
	retry_info - Map containing retry delay and quota information

RetryInfo format from Gemini API
%{
 "retryDelay" => "60s",
 "quotaMetric" => "...",
 "quotaId" => "...",
 "quotaDimensions" => %{...}
}

 try_reserve_budget(key, estimated_total_tokens, budget, opts \\ [])

 @spec try_reserve_budget(
 state_key(),
 non_neg_integer(),
 non_neg_integer() | nil,
 keyword()
) ::
 {:ok, reservation_ctx()} | {:error, {:over_budget, map()}}

Atomically reserve tokens in the current window.
Returns {:ok, reservation_ctx} when the reservation fits, or
{:error, {:over_budget, details}} when it would exceed the configured budget.

Gemini.Streaming.ToolOrchestrator

GenServer responsible for managing a single, stateful, automatic tool-calling stream.
This orchestrator handles the complex multi-stage streaming process:
	Starts the initial streaming HTTP request to the Gemini API
	Buffers and inspects incoming chunks for function calls
	When function calls are detected, stops the first stream and executes tools
	Starts a second streaming request with the complete history including tool results
	Proxies the final stream events to the original subscriber

The orchestrator maintains state throughout this process and handles errors gracefully.

 Summary

 Types

 orchestrator_state()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(stream_id, subscriber_pid, chat, auth_strategy, config)

 Start a new tool orchestrator for automatic streaming.

 Types

 orchestrator_state()

 @type orchestrator_state() :: %{
 stream_id: String.t(),
 subscriber_pid: pid(),
 chat: Gemini.Chat.t(),
 auth_strategy: :gemini | :vertex_ai,
 config: keyword(),
 phase: :awaiting_model_call | :executing_tools | :awaiting_final_response,
 first_stream_pid: pid() | nil,
 second_stream_pid: pid() | nil,
 buffered_chunks: [map()],
 turn_limit: non_neg_integer(),
 error: term() | nil
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(stream_id, subscriber_pid, chat, auth_strategy, config)

 @spec start_link(String.t(), pid(), Gemini.Chat.t(), :gemini | :vertex_ai, keyword()) ::
 GenServer.on_start()

Start a new tool orchestrator for automatic streaming.
Parameters
	stream_id: Unique identifier for this stream
	subscriber_pid: Process to receive final stream events
	chat: Initial chat state with history and options
	auth_strategy: Authentication strategy to use
	config: Additional configuration options

Returns
	{:ok, pid()}: Orchestrator started successfully
	{:error, reason}: Failed to start orchestrator

Gemini.Supervisor

Top-level supervisor for the Gemini application.
Manages the streaming infrastructure, tool execution runtime, and rate limiting,
providing a unified supervision tree for all Gemini components.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(init_arg \\ :ok)

 Start the Gemini supervisor.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(init_arg \\ :ok)

 @spec start_link(term()) :: Supervisor.on_start()

Start the Gemini supervisor.

Gemini.TaskSupervisor

Named task supervisor for Gemini background tasks.

 Summary

 Types

 start_child_result()

 Functions

 child_spec(arg)

 start_child(fun)

 Types

 start_child_result()

 @type start_child_result() :: {:ok, pid()} | {:error, term()}

 Functions

 child_spec(arg)

 @spec child_spec(term()) :: Supervisor.child_spec()

 start_child(fun)

 @spec start_child((-> any())) :: start_child_result()

Gemini.Tools

High-level facade for tool registration and execution in the Gemini client.
This module provides a convenient interface for developers to register tool
implementations and execute function calls returned by the Gemini API. It
integrates with the ALTAR LATER runtime for robust tool execution.
Usage
Register a tool
{:ok, declaration} = Altar.ADM.new_function_declaration(%{
 name: "get_weather",
 description: "Gets weather for a location",
 parameters: %{}
})

:ok = Gemini.Tools.register(declaration, &MyApp.Tools.get_weather/1)

Execute function calls from API response
function_calls = [%Altar.ADM.FunctionCall{...}]
{:ok, results} = Gemini.Tools.execute_calls(function_calls)

 Summary

 Functions

 execute_calls(function_calls)

 Execute a list of function calls in parallel using the LATER executor.

 register(declaration, fun)

 Register a tool implementation with the LATER registry.

 Functions

 execute_calls(function_calls)

 @spec execute_calls([Altar.ADM.FunctionCall.t()]) :: {:ok, [Altar.ADM.ToolResult.t()]}

Execute a list of function calls in parallel using the LATER executor.
Takes a list of %Altar.ADM.FunctionCall{} structs (typically from a
GenerateContentResponse) and executes them concurrently, returning a list
of %Altar.ADM.ToolResult{} structs.
Returns {:ok, [ToolResult.t()]} on success. Individual tool failures
are captured in the ToolResult's is_error field rather than causing
the entire operation to fail.

 register(declaration, fun)

 @spec register(Altar.ADM.FunctionDeclaration.t(), (map() -> any())) ::
 :ok | {:error, term()}

Register a tool implementation with the LATER registry.
	declaration is a validated %Altar.ADM.FunctionDeclaration{}
	fun is an arity-1 function that accepts a map of arguments

Returns :ok on success or {:error, reason} if registration fails.

Gemini.Tools.AutomaticFunctionCalling

Implements the Automatic Function Calling (AFC) loop for Gemini.
AFC automatically executes function calls from Gemini responses and continues
the conversation until no more function calls are needed or limits are reached.
How It Works
	Send initial request to Gemini with tools defined
	Check if response contains function calls
	If yes, execute function calls against the registry
	Build function response content
	Send new request with function results
	Repeat until no more function calls or max_calls reached

Configuration
Use config/1 to create an AFC configuration:
config = AFC.config(
 max_calls: 10, # Maximum function calls before stopping
 ignore_call_history: false, # Whether to track call history
 enabled: true # Enable/disable AFC
)
Usage with Coordinator
AFC is typically used through the high-level API:
Define tools
tools = [
 %FunctionDeclaration{
 name: "get_weather",
 description: "Get current weather",
 parameters: %{type: "object", properties: %{"location" => %{type: "string"}}}
 }
]

Define registry
registry = %{
 "get_weather" => fn args -> WeatherService.get(args["location"]) end
}

Generate with AFC
{:ok, response} = Gemini.generate(
 "What's the weather in NYC?",
 tools: tools,
 auto_execute_tools: true,
 tool_registry: registry
)
Manual AFC Loop
For more control, you can use the AFC functions directly:
response = initial_response
history = []
call_count = 0
config = AFC.config(max_calls: 5)

{final_response, call_count, history} =
 AFC.loop(response, contents, registry, config, call_count, history, generate_fn)

 Summary

 Types

 call_history()

 config()

 generate_fn()

 Functions

 build_function_response_content(calls, results)

 Build content containing function responses for the API.

 config(opts \\ [])

 Create an AFC configuration.

 extract_function_calls(response)

 Extract function calls from a Gemini API response.

 extract_model_content_for_api(response)

 Extract model content from a response in API-compatible format.

 has_function_calls?(response)

 Check if a response contains function calls.

 loop(response, contents, registry, config, call_count, history, generate_fn, opts \\ [])

 Execute the AFC loop.

 should_continue?(response, config, call_count)

 Determine if the AFC loop should continue.

 track_history(history, calls)

 Track function call history.

 Types

 call_history()

 @type call_history() :: [Altar.ADM.FunctionCall.t()]

 config()

 @type config() :: Gemini.Tools.AutomaticFunctionCalling.Config.t()

 generate_fn()

 @type generate_fn() :: (list(), keyword() -> {:ok, map()} | {:error, term()})

 Functions

 build_function_response_content(calls, results)

 @spec build_function_response_content([Altar.ADM.FunctionCall.t()], [
 Gemini.Tools.Executor.execution_result()
]) :: map()

Build content containing function responses for the API.
Parameters
	calls: List of executed FunctionCall structs
	results: List of execution results from Executor

Returns
A content map with role "function" and function response parts.

 config(opts \\ [])

 @spec config(keyword()) :: Gemini.Tools.AutomaticFunctionCalling.Config.t()

Create an AFC configuration.
Options
	:max_calls - Maximum number of function calls to execute (default: 10)
	:ignore_call_history - If true, don't track call history (default: false)
	:enabled - Enable or disable AFC (default: true)
	:parallel_execution - Execute multiple calls in parallel (default: false)

Examples
Default configuration
config = AFC.config()

Custom configuration
config = AFC.config(max_calls: 5, parallel_execution: true)

Disable AFC
config = AFC.config(enabled: false)

 extract_function_calls(response)

 @spec extract_function_calls(map()) :: [Altar.ADM.FunctionCall.t()]

Extract function calls from a Gemini API response.
Parameters
	response: Raw API response map or GenerateContentResponse struct

Returns
List of FunctionCall structs.
Examples
calls = AFC.extract_function_calls(response)
[%FunctionCall{name: "get_weather", args: %{"location" => "NYC"}}] = calls

 extract_model_content_for_api(response)

 @spec extract_model_content_for_api(map()) :: map()

Extract model content from a response in API-compatible format.
This is useful for multi-turn conversations where you need to include
the model's response (including function calls) in the conversation history.
Parameters
	response: A GenerateContentResponse struct or raw API response map

Returns
A map with role: "model" and parts in API format (camelCase keys).
Examples
Get model content for conversation history
model_content = AFC.extract_model_content_for_api(response)
contents = [user_content, model_content, function_response_content]

 has_function_calls?(response)

 @spec has_function_calls?(map()) :: boolean()

Check if a response contains function calls.
Examples
if AFC.has_function_calls?(response) do
 # Handle function calls
end

 loop(response, contents, registry, config, call_count, history, generate_fn, opts \\ [])

 @spec loop(
 map(),
 list(),
 Gemini.Tools.Executor.function_registry(),
 Gemini.Tools.AutomaticFunctionCalling.Config.t(),
 non_neg_integer(),
 call_history(),
 generate_fn(),
 keyword()
) :: {map(), non_neg_integer(), call_history()}

Execute the AFC loop.
This is the main entry point for automatic function calling. It:
	Checks if response contains function calls
	Executes them against the registry
	Builds function response content
	Calls the generate function with updated contents
	Repeats until done or limits reached

Parameters
	response: Initial Gemini response
	contents: Current conversation contents
	registry: Function registry map
	config: AFC configuration
	call_count: Current call count (usually 0)
	history: Call history (usually [])
	generate_fn: Function to call Gemini API

Returns
{final_response, final_call_count, final_history}
Examples
generate_fn = fn contents, opts ->
 Gemini.APIs.Coordinator.generate_content(contents, opts)
end

{response, call_count, history} =
 AFC.loop(initial_response, contents, registry, config, 0, [], generate_fn)

 should_continue?(response, config, call_count)

 @spec should_continue?(
 map(),
 Gemini.Tools.AutomaticFunctionCalling.Config.t(),
 non_neg_integer()
) ::
 boolean()

Determine if the AFC loop should continue.
Returns true if:
	AFC is enabled
	Response contains function calls
	Call count is below max_calls limit

Parameters
	response: The current Gemini response
	config: AFC configuration
	call_count: Current number of executed calls

Examples
if AFC.should_continue?(response, config, call_count) do
 # Continue AFC loop
end

 track_history(history, calls)

 @spec track_history(call_history(), [Altar.ADM.FunctionCall.t()]) :: call_history()

Track function call history.
Parameters
	history: Current call history
	calls: New calls to add

Returns
Updated history with new calls appended.

Gemini.Tools.AutomaticFunctionCalling.Config

Configuration for automatic function calling.

 Summary

 Types

 t()

 AFC configuration

 Types

 t()

 @type t() :: %Gemini.Tools.AutomaticFunctionCalling.Config{
 enabled: boolean(),
 ignore_call_history: boolean(),
 max_calls: non_neg_integer(),
 parallel_execution: boolean()
}

AFC configuration

Gemini.Tools.Executor

Executes function calls from Gemini API responses against a registry of implementations.
This module provides the core function execution infrastructure for tool calling.
It handles:
	Executing single function calls against a function registry
	Batch execution of multiple calls (sequential or parallel)
	Building function responses for multi-turn conversations
	Error handling and recovery

Function Registry
A function registry is a map from function names to implementations:
registry = %{
 "get_weather" => fn args -> WeatherService.get(args["location"]) end,
 "search_database" => fn args -> Database.search(args["query"]) end
}
You can also use create_registry/1 for convenience:
registry = Executor.create_registry(
 get_weather: &WeatherService.get(&1["location"]),
 search_database: &Database.search(&1["query"])
)
Examples
Single execution
{:ok, call} = FunctionCall.new(call_id: "1", name: "add", args: %{"a" => 1, "b" => 2})
registry = %{"add" => fn args -> args["a"] + args["b"] end}

{:ok, result} = Executor.execute(call, registry)
#=> {:ok, 3}

Batch execution
calls = [call1, call2, call3]
results = Executor.execute_all(calls, registry)

Parallel execution for I/O-bound functions
results = Executor.execute_all_parallel(calls, registry)

Build responses for Gemini API
responses = Executor.build_responses(calls, results)

 Summary

 Types

 execution_result()

 function_impl()

 function_registry()

 Functions

 build_responses(calls, results)

 Build FunctionResponse structs from execution results.

 create_registry(functions)

 Create a function registry from a keyword list or map.

 execute(function_call, registry)

 Execute a single function call against the registry.

 execute_all(calls, registry)

 Execute multiple function calls sequentially.

 execute_all_parallel(calls, registry, opts \\ [])

 Execute multiple function calls in parallel.

 Types

 execution_result()

 @type execution_result() :: {:ok, term()} | {:error, term()}

 function_impl()

 @type function_impl() :: (map() -> term()) | {module(), atom(), list()}

 function_registry()

 @type function_registry() :: %{required(String.t()) => function_impl()}

 Functions

 build_responses(calls, results)

 @spec build_responses([Altar.ADM.FunctionCall.t()], [execution_result()]) :: [
 Gemini.Types.FunctionResponse.t()
]

Build FunctionResponse structs from execution results.
Creates responses suitable for sending back to the Gemini API
in multi-turn function calling conversations.
Parameters
	calls: Original function calls
	results: Execution results from execute_all/2 or execute_all_parallel/3

Returns
List of FunctionResponse structs.
Examples
calls = [call1, call2]
results = Executor.execute_all(calls, registry)
responses = Executor.build_responses(calls, results)

Use responses in next Gemini API call
contents = [previous_response, %{role: "function", parts: responses}]

 create_registry(functions)

 @spec create_registry(keyword() | map()) :: function_registry()

Create a function registry from a keyword list or map.
Converts atom keys to strings for consistent lookup.
Examples
From keyword list
registry = Executor.create_registry(
 add: fn args -> args["a"] + args["b"] end,
 multiply: fn args -> args["a"] * args["b"] end
)

From map with string keys
registry = Executor.create_registry(%{
 "add" => fn args -> args["a"] + args["b"] end
})

 execute(function_call, registry)

 @spec execute(Altar.ADM.FunctionCall.t(), function_registry()) :: execution_result()

Execute a single function call against the registry.
Parameters
	call: A FunctionCall struct with name and args
	registry: Map from function names to implementations

Returns
	{:ok, result} - Function executed successfully
	{:error, {:unknown_function, name}} - Function not found in registry
	{:error, {:execution_error, exception}} - Function raised an exception

Examples
{:ok, call} = FunctionCall.new(call_id: "1", name: "double", args: %{"n" => 5})
registry = %{"double" => fn args -> args["n"] * 2 end}

{:ok, 10} = Executor.execute(call, registry)

 execute_all(calls, registry)

 @spec execute_all([Altar.ADM.FunctionCall.t()], function_registry()) :: [
 execution_result()
]

Execute multiple function calls sequentially.
Returns results in the same order as the input calls.
Parameters
	calls: List of FunctionCall structs
	registry: Function registry

Returns
List of execution results, one for each call.
Examples
results = Executor.execute_all([call1, call2], registry)
[{:ok, result1}, {:ok, result2}] = results

 execute_all_parallel(calls, registry, opts \\ [])

 @spec execute_all_parallel(
 [Altar.ADM.FunctionCall.t()],
 function_registry(),
 keyword()
) :: [
 execution_result()
]

Execute multiple function calls in parallel.
Uses Task.async_stream for concurrent execution. Best for I/O-bound
functions like HTTP requests or database queries.
Parameters
	calls: List of FunctionCall structs
	registry: Function registry
	opts: Options passed to Task.async_stream (default: max_concurrency: 10)

Returns
List of execution results, in the same order as input calls.
Examples
Execute 3 slow operations in parallel
results = Executor.execute_all_parallel([call1, call2, call3], registry)

Gemini.Types.BatchJob

Type definitions for batch processing jobs.
Batch processing allows submitting large numbers of requests at once
with 50% cost savings compared to interactive API calls.
Batch Job States
	:job_state_unspecified - Initial/unknown state
	:queued - Job is queued for processing
	:pending - Job is preparing to run
	:running - Job is actively processing
	:succeeded - Job completed successfully
	:failed - Job failed
	:cancelling - Job is being cancelled
	:cancelled - Job was cancelled
	:paused - Job is paused (Vertex AI)
	:expired - Job expired
	:partially_succeeded - Some requests succeeded, some failed

Example
Create a batch job
{:ok, batch} = Gemini.APIs.Batches.create(
 "gemini-2.5-flash",
 file_name: "files/input-12345"
)

Poll for completion
{:ok, completed} = Gemini.APIs.Batches.wait(batch.name)

Get results
if BatchJob.succeeded?(completed) do
 IO.puts("Processed #{completed.completion_stats.total_count} requests")
end

 Summary

 Types

 batch_destination()

 Batch job destination configuration.

 batch_source()

 Batch job source configuration.

 completion_stats()

 Completion statistics for a batch job.

 job_error()

 Batch job error details.

 job_state()

 Batch job state enumeration.

 t()

 Represents a batch processing job.

 Functions

 cancelled?(arg1)

 Checks if the batch job was cancelled.

 complete?(arg1)

 Checks if the batch job is complete (terminal state).

 failed?(arg1)

 Checks if the batch job failed.

 from_api_response(response)

 Creates a BatchJob from API response.

 get_id(batch_job)

 Extracts the batch ID from the full name.

 get_progress(batch_job)

 Gets the completion percentage if available.

 parse_state(arg1)

 Parses API state string to atom.

 running?(arg1)

 Checks if the batch job is still running.

 state_to_api(atom)

 Converts job state atom to API string format.

 succeeded?(arg1)

 Checks if the batch job succeeded.

 Types

 batch_destination()

 @type batch_destination() :: %{
 optional(:file_name) => String.t(),
 optional(:gcs_uri) => String.t(),
 optional(:bigquery_uri) => String.t(),
 optional(:format) => String.t(),
 optional(:inlined_responses) => [map()]
}

Batch job destination configuration.

 batch_source()

 @type batch_source() :: %{
 optional(:file_name) => String.t(),
 optional(:gcs_uri) => [String.t()],
 optional(:bigquery_uri) => String.t(),
 optional(:format) => String.t(),
 optional(:inlined_requests) => [map()]
}

Batch job source configuration.

 completion_stats()

 @type completion_stats() :: %{
 optional(:total_count) => integer(),
 optional(:success_count) => integer(),
 optional(:failure_count) => integer()
}

Completion statistics for a batch job.

 job_error()

 @type job_error() :: %{
 optional(:code) => integer(),
 optional(:message) => String.t(),
 optional(:details) => [String.t()]
}

Batch job error details.

 job_state()

 @type job_state() ::
 :job_state_unspecified
 | :queued
 | :pending
 | :running
 | :succeeded
 | :failed
 | :cancelling
 | :cancelled
 | :paused
 | :expired
 | :partially_succeeded

Batch job state enumeration.

 t()

 @type t() :: %Gemini.Types.BatchJob{
 completion_stats: completion_stats() | nil,
 create_time: String.t() | nil,
 dest: batch_destination() | nil,
 display_name: String.t() | nil,
 end_time: String.t() | nil,
 error: job_error() | nil,
 model: String.t() | nil,
 name: String.t() | nil,
 src: batch_source() | nil,
 start_time: String.t() | nil,
 state: job_state() | nil,
 update_time: String.t() | nil
}

Represents a batch processing job.
Fields
	name - Resource name (e.g., "batches/abc123" for Gemini, "batchPredictionJobs/123" for Vertex)
	display_name - Human-readable name
	state - Current job state
	model - Model used for processing
	src - Input source configuration
	dest - Output destination configuration
	create_time - When the job was created
	start_time - When the job started running
	end_time - When the job completed
	update_time - Last update timestamp
	error - Error details if failed
	completion_stats - Processing statistics

 Functions

 cancelled?(arg1)

 @spec cancelled?(t()) :: boolean()

Checks if the batch job was cancelled.

 complete?(arg1)

 @spec complete?(t()) :: boolean()

Checks if the batch job is complete (terminal state).

 failed?(arg1)

 @spec failed?(t()) :: boolean()

Checks if the batch job failed.

 from_api_response(response)

 @spec from_api_response(map()) :: t()

Creates a BatchJob from API response.
Handles both Gemini API and Vertex AI response formats.

 get_id(batch_job)

 @spec get_id(t()) :: String.t() | nil

Extracts the batch ID from the full name.

 get_progress(batch_job)

 @spec get_progress(t()) :: float() | nil

Gets the completion percentage if available.

 parse_state(arg1)

 @spec parse_state(String.t() | nil) :: job_state() | nil

Parses API state string to atom.

 running?(arg1)

 @spec running?(t()) :: boolean()

Checks if the batch job is still running.

 state_to_api(atom)

 @spec state_to_api(job_state()) :: String.t()

Converts job state atom to API string format.

 succeeded?(arg1)

 @spec succeeded?(t()) :: boolean()

Checks if the batch job succeeded.

Gemini.Types.Blob

Binary data with MIME type for Gemini API.

 Summary

 Types

 blob_data()

 Base64 encoded binary data.

 mime_type()

 MIME type of the data.

 t()

 Functions

 from_file(file_path)

 Create a blob from a file path.

 new(data, mime_type)

 Create a new blob with base64 encoded data.

 Types

 blob_data()

 @type blob_data() :: String.t()

Base64 encoded binary data.

 mime_type()

 @type mime_type() :: String.t()

MIME type of the data.

 t()

 @type t() :: %Gemini.Types.Blob{data: String.t(), mime_type: String.t()}

 Functions

 from_file(file_path)

 @spec from_file(String.t()) :: {:ok, t()} | {:error, Gemini.Error.t()}

Create a blob from a file path.

 new(data, mime_type)

 @spec new(String.t(), String.t()) :: t()

Create a new blob with base64 encoded data.

Gemini.Types.CachedContentUsageMetadata

Metadata describing cached content usage.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.CachedContentUsageMetadata{
 audio_duration_seconds: (integer() | nil) | nil,
 cached_content_token_count: (integer() | nil) | nil,
 image_count: (integer() | nil) | nil,
 text_count: (integer() | nil) | nil,
 total_token_count: (integer() | nil) | nil,
 video_duration_seconds: (integer() | nil) | nil
}

Gemini.Types.CreateBatchJobConfig

Configuration for creating a batch job.

 Summary

 Types

 t()

 Configuration for batch job creation.

 Types

 t()

 @type t() :: %Gemini.Types.CreateBatchJobConfig{
 display_name: String.t() | nil,
 generation_config: map() | nil,
 model: String.t() | nil,
 system_instruction: map() | nil
}

Configuration for batch job creation.
	display_name - Human-readable name for the batch
	model - Model to use for processing
	generation_config - Generation configuration for content batches
	system_instruction - System instruction for content batches

Gemini.Types.CreateFileSearchStoreConfig

Configuration for creating a new File Search Store.
Example
config = %CreateFileSearchStoreConfig{
 display_name: "Product Documentation",
 description: "Technical docs for all our products",
 vector_config: %{
 embedding_model: "text-embedding-004",
 dimensions: 768
 }
}

{:ok, store} = Gemini.APIs.FileSearchStores.create(config)

 Summary

 Types

 t()

 Configuration for creating a file search store.

 Functions

 to_api_request(config)

 Converts the config to API request format.

 Types

 t()

 @type t() :: %Gemini.Types.CreateFileSearchStoreConfig{
 description: String.t() | nil,
 display_name: String.t() | nil,
 vector_config: Gemini.Types.FileSearchStore.vector_config() | nil
}

Configuration for creating a file search store.
Fields
	display_name - Human-readable name for the store
	description - Description of the store's purpose
	vector_config - Optional vector embedding configuration

 Functions

 to_api_request(config)

 @spec to_api_request(t()) :: map()

Converts the config to API request format.

Gemini.Types.DeleteFileResponse

Response type for file deletion.

 Summary

 Types

 t()

 Response from deleting a file (empty on success).

 Types

 t()

 @type t() :: %Gemini.Types.DeleteFileResponse{success: boolean()}

Response from deleting a file (empty on success).

Gemini.Types.Document

Type definitions for RAG document management.
Documents are stored in RAG stores and used for semantic search and
retrieval-augmented generation (RAG) workflows.
Document Lifecycle
	Upload a file to a RAG store
	Document is created with metadata
	Document is indexed for search
	Use in generation with grounding

Example
List documents in a store
{:ok, response} = Gemini.APIs.Documents.list("ragStores/my-store")

Get document metadata
{:ok, doc} = Gemini.APIs.Documents.get("ragStores/my-store/documents/doc123")

Delete when no longer needed
:ok = Gemini.APIs.Documents.delete(doc.name)

 Summary

 Types

 document_metadata()

 Document metadata for custom properties.

 document_state()

 Document state enumeration.

 t()

 Represents a document in a RAG store.

 Functions

 active?(arg1)

 Checks if the document is ready for use.

 failed?(arg1)

 Checks if the document processing failed.

 from_api_response(response)

 Creates a Document from API response.

 get_id(document)

 Extracts the document ID from the full resource name.

 get_store_id(document)

 Extracts the store ID from the document's full resource name.

 parse_state(arg1)

 Parses document state from API string.

 processing?(arg1)

 Checks if the document is still processing.

 state_to_api(atom)

 Converts state atom to API string.

 Types

 document_metadata()

 @type document_metadata() :: %{optional(String.t()) => String.t()}

Document metadata for custom properties.

 document_state()

 @type document_state() :: :state_unspecified | :processing | :active | :failed

Document state enumeration.

 t()

 @type t() :: %Gemini.Types.Document{
 chunk_count: integer() | nil,
 create_time: String.t() | nil,
 display_name: String.t() | nil,
 error: map() | nil,
 metadata: document_metadata() | nil,
 mime_type: String.t() | nil,
 name: String.t() | nil,
 size_bytes: integer() | nil,
 source_uri: String.t() | nil,
 state: document_state() | nil,
 update_time: String.t() | nil
}

Represents a document in a RAG store.
Fields
	name - Resource name (e.g., "ragStores/abc/documents/xyz")
	display_name - Human-readable name
	state - Processing state
	create_time - When the document was created
	update_time - Last update timestamp
	size_bytes - Document size in bytes
	source_uri - Original source URI (if applicable)
	mime_type - MIME type of the document
	metadata - Custom metadata key-value pairs
	error - Error details if processing failed
	chunk_count - Number of chunks the document was split into

 Functions

 active?(arg1)

 @spec active?(t()) :: boolean()

Checks if the document is ready for use.

 failed?(arg1)

 @spec failed?(t()) :: boolean()

Checks if the document processing failed.

 from_api_response(response)

 @spec from_api_response(map()) :: t()

Creates a Document from API response.

 get_id(document)

 @spec get_id(t()) :: String.t() | nil

Extracts the document ID from the full resource name.

 get_store_id(document)

 @spec get_store_id(t()) :: String.t() | nil

Extracts the store ID from the document's full resource name.

 parse_state(arg1)

 @spec parse_state(String.t() | nil) :: document_state() | nil

Parses document state from API string.

 processing?(arg1)

 @spec processing?(t()) :: boolean()

Checks if the document is still processing.

 state_to_api(atom)

 @spec state_to_api(document_state()) :: String.t()

Converts state atom to API string.

Gemini.Types.Enums

Comprehensive enumeration types for the Gemini API.
This module provides type-safe enums for all API enumeration values,
including safety settings, finish reasons, task types, and more.
Usage
alias Gemini.Types.Enums.{HarmCategory, HarmBlockThreshold, TaskType}

Create safety settings
settings = [
 %{category: HarmCategory.to_api(:harassment), threshold: HarmBlockThreshold.to_api(:medium_and_above)}
]

Use task types for embeddings
opts = [task_type: TaskType.to_api(:retrieval_document)]

Gemini.Types.Enums.AspectRatio

Image aspect ratios for image generation.

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() :: :square | :portrait | :landscape | :landscape_16_9

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Enums.BlockedReason

Reasons why content generation was blocked.

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() ::
 :unspecified
 | :safety
 | :other
 | :blocklist
 | :prohibited_content
 | :spii
 | :image_safety

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Enums.CodeExecutionOutcome

Outcome of code execution.

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() :: :unspecified | :ok | :failed | :deadline_exceeded

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Enums.DynamicRetrievalMode

Dynamic retrieval configuration modes.

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() :: :unspecified | :dynamic | :mode_off

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Enums.ExecutableCodeLanguage

Supported languages for code execution.

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() :: :unspecified | :python

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Enums.FinishReason

Reasons why generation finished.
Values
	:unspecified - Default/unknown reason
	:stop - Natural stopping point (EOS token)
	:max_tokens - Maximum token limit reached
	:safety - Blocked due to safety concerns
	:recitation - Blocked due to recitation/copyright
	:language - Unsupported language
	:other - Other/unspecified reason
	:blocklist - Content matched a blocklist
	:prohibited_content - Prohibited content detected
	:spii - Sensitive PII detected
	:malformed_function_call - Invalid function call format
	:image_safety - Image safety issue

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() ::
 :unspecified
 | :stop
 | :max_tokens
 | :safety
 | :recitation
 | :language
 | :other
 | :blocklist
 | :prohibited_content
 | :spii
 | :malformed_function_call
 | :image_safety

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Enums.FunctionCallingMode

Function calling configuration modes.
Values
	:auto - Model decides when to call functions
	:any - Model must call at least one function
	:none - Model cannot call functions

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() :: :auto | :any | :none

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Enums.GroundingAttributionConfidence

Confidence levels for grounding attribution.

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() :: :unspecified | :low | :medium | :high

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Enums.HarmBlockThreshold

Threshold levels for blocking harmful content.
Values
	:unspecified - Default/unknown threshold
	:block_low_and_above - Block content with low+ probability of harm
	:block_medium_and_above - Block content with medium+ probability
	:block_only_high - Only block high probability harmful content
	:block_none - Don't block any content (for research/testing)
	:off - Safety filter is completely off

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() ::
 :unspecified
 | :block_low_and_above
 | :block_medium_and_above
 | :block_only_high
 | :block_none
 | :off

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Enums.HarmCategory

Categories of harmful content that can be filtered.
Values
	:unspecified - Default/unknown category
	:harassment - Harassment and bullying content
	:hate_speech - Hate speech targeting identity groups
	:sexually_explicit - Sexually explicit content
	:dangerous_content - Content promoting dangerous activities
	:civic_integrity - Content affecting civic integrity (elections, etc.)
	:derogatory - Derogatory content (deprecated)
	:toxicity - Toxic content (deprecated)
	:violence - Violent content (deprecated)
	:sexual - Sexual content (deprecated)
	:medical - Medical misinformation (deprecated)
	:dangerous - Dangerous content (deprecated)

 Summary

 Types

 t()

 Functions

 all()

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() ::
 :unspecified
 | :harassment
 | :hate_speech
 | :sexually_explicit
 | :dangerous_content
 | :civic_integrity
 | :derogatory
 | :toxicity
 | :violence
 | :sexual
 | :medical
 | :dangerous

 Functions

 all()

 @spec all() :: [t()]

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Enums.HarmProbability

Probability levels of harmful content.
Returned in SafetyRating to indicate likelihood of harm.

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() :: :unspecified | :negligible | :low | :medium | :high

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Enums.ImageSize

Output image sizes for image generation.

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() :: :size_512 | :size_1024 | :size_2048

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Enums.TaskType

Task types for embedding generation.
Different task types optimize embeddings for specific use cases.
Values
	:unspecified - Default task type
	:retrieval_query - Text is a search query
	:retrieval_document - Text is a document being indexed
	:semantic_similarity - For similarity comparison
	:classification - For classification tasks
	:clustering - For clustering tasks
	:question_answering - For Q&A systems
	:fact_verification - For fact checking
	:code_retrieval_query - For code search queries

 Summary

 Types

 t()

 Functions

 all()

 Returns all task types for analysis.

 from_api(arg1)

 retrieval_types()

 Returns task types optimized for retrieval/search.

 to_api(atom)

 Types

 t()

 @type t() ::
 :unspecified
 | :retrieval_query
 | :retrieval_document
 | :semantic_similarity
 | :classification
 | :clustering
 | :question_answering
 | :fact_verification
 | :code_retrieval_query

 Functions

 all()

 @spec all() :: [t()]

Returns all task types for analysis.

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 retrieval_types()

 @spec retrieval_types() :: [t()]

Returns task types optimized for retrieval/search.

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Enums.ThinkingLevel

Thinking configuration levels for Gemini 3 models.
Values
	:unspecified - Unspecified thinking level
	:minimal - Minimal thinking (Gemini 3 Flash only)
	:low - Low thinking level
	:medium - Medium thinking level (Gemini 3 Flash only)
	:high - High thinking level (default)

Model Support
	Gemini 3 Pro: :low, :high
	Gemini 3 Flash: :minimal, :low, :medium, :high

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() :: :unspecified | :minimal | :low | :medium | :high

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Enums.VoiceName

Available voice names for text-to-speech.

 Summary

 Types

 t()

 Functions

 all()

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() :: :aoede | :charon | :fenrir | :kore | :puck | :custom

 Functions

 all()

 @spec all() :: [t()]

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.File

Type definitions for file management operations.
The Files API allows uploading, downloading, and managing files that can be
used with Gemini models for multimodal content generation.
File States
Files go through several states during processing:
	:state_unspecified - Initial/unknown state
	:processing - File is being processed
	:active - File is ready to use
	:failed - Processing failed

File Sources
	:source_unspecified - Unknown source
	:uploaded - User uploaded the file
	:generated - API generated the file (e.g., from video generation)
	:registered - File registered from GCS via RegisterFiles API

Example
Upload a file
{:ok, file} = Gemini.upload_file("path/to/image.png")

Check file state
case file.state do
 :active -> IO.puts("File is ready: #{file.uri}")
 :processing -> IO.puts("Still processing...")
 :failed -> IO.puts("Failed: #{file.error}")
end

Use in content generation
{:ok, response} = Gemini.generate([
 %{type: "text", text: "What's in this image?"},
 %{type: "file", uri: file.uri, mime_type: file.mime_type}
])

 Summary

 Types

 file_source()

 File source enumeration values.

 file_state()

 File state enumeration values.

 file_status()

 File status/error information.

 t()

 Represents a file in the Gemini API.

 video_metadata()

 Video metadata for video files.

 Functions

 active?(arg1)

 Checks if the file is ready to use.

 downloadable?(arg1)

 Checks if the file can be downloaded (only generated files).

 failed?(arg1)

 Checks if the file processing failed.

 from_api_response(response)

 Creates a new File struct from API response.

 get_id(file)

 Extracts the file ID from the file name.

 parse_source(arg1)

 Parses API source string to atom.

 parse_state(arg1)

 Parses API state string to atom.

 processing?(arg1)

 Checks if the file is still processing.

 source_to_api(atom)

 Converts file source atom to API string format.

 state_to_api(atom)

 Converts file state atom to API string format.

 Types

 file_source()

 @type file_source() :: :source_unspecified | :uploaded | :generated | :registered

File source enumeration values.
	:source_unspecified - Unknown source
	:uploaded - User uploaded the file
	:generated - API generated the file (e.g., video generation)
	:registered - File registered from GCS via RegisterFiles API

 file_state()

 @type file_state() :: :state_unspecified | :processing | :active | :failed

File state enumeration values.
	:state_unspecified - Initial/unknown state
	:processing - File is being processed by the API
	:active - File is ready to use in requests
	:failed - File processing failed (check error field)

 file_status()

 @type file_status() :: %{
 optional(:message) => String.t(),
 optional(:code) => integer()
}

File status/error information.

 t()

 @type t() :: %Gemini.Types.File{
 create_time: String.t() | nil,
 display_name: String.t() | nil,
 download_uri: String.t() | nil,
 error: file_status() | nil,
 expiration_time: String.t() | nil,
 mime_type: String.t() | nil,
 name: String.t() | nil,
 sha256_hash: String.t() | nil,
 size_bytes: integer() | nil,
 source: file_source() | nil,
 state: file_state() | nil,
 update_time: String.t() | nil,
 uri: String.t() | nil,
 video_metadata: video_metadata() | nil
}

Represents a file in the Gemini API.
Writable Fields (can be set on upload)
	name - Resource name (format: "files/{file_id}")
	display_name - Human-readable display name (max 512 characters)
	mime_type - MIME type (e.g., "image/png", "video/mp4")

Read-Only Fields (output only)
	size_bytes - File size in bytes
	create_time - Creation timestamp (ISO 8601)
	expiration_time - When the file expires (ISO 8601)
	update_time - Last update timestamp (ISO 8601)
	sha256_hash - Base64-encoded SHA256 hash
	uri - URI for using the file in content (e.g., "gs://...")
	download_uri - Download URI (only for generated files)
	state - Current processing state
	source - How the file was created
	video_metadata - Metadata for video files
	error - Error information if state is :failed

 video_metadata()

 @type video_metadata() :: %{
 optional(:video_duration) => String.t(),
 optional(:video_duration_seconds) => integer()
}

Video metadata for video files.

 Functions

 active?(arg1)

 @spec active?(t()) :: boolean()

Checks if the file is ready to use.

 downloadable?(arg1)

 @spec downloadable?(t()) :: boolean()

Checks if the file can be downloaded (only generated files).

 failed?(arg1)

 @spec failed?(t()) :: boolean()

Checks if the file processing failed.

 from_api_response(response)

 @spec from_api_response(map()) :: t()

Creates a new File struct from API response.
Parameters
	response - Map from API response with string keys

Examples
response = %{
 "name" => "files/abc123",
 "displayName" => "my-image.png",
 "mimeType" => "image/png",
 "sizeBytes" => "1024",
 "state" => "ACTIVE"
}
file = Gemini.Types.File.from_api_response(response)

 get_id(file)

 @spec get_id(t()) :: String.t() | nil

Extracts the file ID from the file name.
Examples
file = %Gemini.Types.File{name: "files/abc123"}
Gemini.Types.File.get_id(file)
=> "abc123"

 parse_source(arg1)

 @spec parse_source(String.t() | nil) :: file_source() | nil

Parses API source string to atom.

 parse_state(arg1)

 @spec parse_state(String.t() | nil) :: file_state() | nil

Parses API state string to atom.

 processing?(arg1)

 @spec processing?(t()) :: boolean()

Checks if the file is still processing.

 source_to_api(atom)

 @spec source_to_api(file_source()) :: String.t()

Converts file source atom to API string format.

 state_to_api(atom)

 @spec state_to_api(file_state()) :: String.t()

Converts file state atom to API string format.

Gemini.Types.FileData

URI-based file data reference used in parts and tool results.

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parse file data from API response.

 to_api(file_data)

 Convert file data to API camelCase map.

 Types

 t()

 @type t() :: %Gemini.Types.FileData{
 display_name: String.t() | nil,
 file_uri: String.t(),
 mime_type: String.t()
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parse file data from API response.

 to_api(file_data)

 @spec to_api(t() | nil) :: map() | nil

Convert file data to API camelCase map.

Gemini.Types.FileSearchDocument

Represents a document within a File Search Store.
This is similar to the regular Document type but specific to file search stores.
Documents are created when files are imported into the store.

 Summary

 Types

 document_state()

 Document state in the file search store.

 t()

 A document in a file search store.

 Functions

 active?(arg1)

 Checks if the document is active.

 from_api_response(response)

 Creates a FileSearchDocument from API response.

 parse_state(arg1)

 Parses document state from API string.

 Types

 document_state()

 @type document_state() :: :state_unspecified | :processing | :active | :failed

Document state in the file search store.

 t()

 @type t() :: %Gemini.Types.FileSearchDocument{
 chunk_count: integer() | nil,
 create_time: String.t() | nil,
 display_name: String.t() | nil,
 error: map() | nil,
 mime_type: String.t() | nil,
 name: String.t() | nil,
 size_bytes: integer() | nil,
 state: document_state() | nil,
 update_time: String.t() | nil
}

A document in a file search store.
Fields
	name - Resource name (e.g., "fileSearchStores/abc/documents/xyz")
	display_name - Human-readable name
	state - Processing state
	create_time - When the document was created
	update_time - Last update timestamp
	size_bytes - Document size in bytes
	mime_type - MIME type of the document
	chunk_count - Number of chunks for indexing
	error - Error details if processing failed

 Functions

 active?(arg1)

 @spec active?(t()) :: boolean()

Checks if the document is active.

 from_api_response(response)

 @spec from_api_response(map()) :: t()

Creates a FileSearchDocument from API response.

 parse_state(arg1)

 @spec parse_state(String.t() | nil) :: document_state() | nil

Parses document state from API string.

Gemini.Types.FileSearchStore

Type definitions for File Search Stores (semantic search stores).
File Search Stores enable semantic search over uploaded documents using
vector embeddings. They are part of the RAG (Retrieval-Augmented Generation)
system and are only available through Vertex AI.
Store States
Stores go through several states during their lifecycle:
	:state_unspecified - Initial/unknown state
	:creating - Store is being created
	:active - Store is ready to use
	:deleting - Store is being deleted
	:failed - Store creation/operation failed

Example
Create a file search store
config = %CreateFileSearchStoreConfig{
 display_name: "Product Documentation",
 description: "Technical documentation for our products"
}
{:ok, store} = Gemini.APIs.FileSearchStores.create(config)

Check store state
case store.state do
 :active -> IO.puts("Store ready: #{store.name}")
 :creating -> IO.puts("Still creating...")
 :failed -> IO.puts("Failed to create store")
end

Import files
{:ok, _doc} = Gemini.APIs.FileSearchStores.import_file(
 store.name,
 "files/uploaded-doc-id"
)

 Summary

 Types

 file_search_store_state()

 File search store state enumeration.

 t()

 Represents a File Search Store for semantic search.

 vector_config()

 Vector embedding configuration for the store.

 Functions

 active?(arg1)

 Checks if the store is active and ready to use.

 creating?(arg1)

 Checks if the store is still being created.

 failed?(arg1)

 Checks if the store operation failed.

 from_api_response(response)

 Creates a FileSearchStore from API response.

 get_id(file_search_store)

 Extracts the store ID from the full resource name.

 parse_state(arg1)

 Parses store state from API string.

 state_to_api(atom)

 Converts state atom to API string format.

 Types

 file_search_store_state()

 @type file_search_store_state() ::
 :state_unspecified | :creating | :active | :deleting | :failed

File search store state enumeration.
	:state_unspecified - Initial/unknown state
	:creating - Store is being created
	:active - Store is ready for operations
	:deleting - Store is being deleted
	:failed - Operation failed

 t()

 @type t() :: %Gemini.Types.FileSearchStore{
 create_time: String.t() | nil,
 description: String.t() | nil,
 display_name: String.t() | nil,
 document_count: integer() | nil,
 name: String.t() | nil,
 state: file_search_store_state() | nil,
 total_size_bytes: integer() | nil,
 update_time: String.t() | nil,
 vector_config: vector_config() | nil
}

Represents a File Search Store for semantic search.
Fields
	name - Resource name (format: "fileSearchStores/{store_id}")
	display_name - Human-readable name
	description - Store description
	state - Current state
	create_time - Creation timestamp (ISO 8601)
	update_time - Last update timestamp (ISO 8601)
	document_count - Number of documents in the store
	total_size_bytes - Total size of all documents
	vector_config - Vector embedding configuration

 vector_config()

 @type vector_config() :: %{
 optional(:embedding_model) => String.t(),
 optional(:dimensions) => pos_integer()
}

Vector embedding configuration for the store.

 Functions

 active?(arg1)

 @spec active?(t()) :: boolean()

Checks if the store is active and ready to use.

 creating?(arg1)

 @spec creating?(t()) :: boolean()

Checks if the store is still being created.

 failed?(arg1)

 @spec failed?(t()) :: boolean()

Checks if the store operation failed.

 from_api_response(response)

 @spec from_api_response(map()) :: t()

Creates a FileSearchStore from API response.
Parameters
	response - Map from API response with string keys

Examples
response = %{
 "name" => "fileSearchStores/abc123",
 "displayName" => "My Store",
 "state" => "ACTIVE",
 "documentCount" => 42
}
store = FileSearchStore.from_api_response(response)

 get_id(file_search_store)

 @spec get_id(t()) :: String.t() | nil

Extracts the store ID from the full resource name.
Examples
store = %FileSearchStore{name: "fileSearchStores/abc123"}
FileSearchStore.get_id(store)
=> "abc123"

 parse_state(arg1)

 @spec parse_state(String.t() | nil) :: file_search_store_state() | nil

Parses store state from API string.

 state_to_api(atom)

 @spec state_to_api(file_search_store_state()) :: String.t()

Converts state atom to API string format.

Gemini.Types.FunctionResponse

Result output of a function call.

 Summary

 Types

 scheduling()

 t()

 Functions

 from_api(data)

 Parse function response from API payload.

 to_api(data)

 Convert function response to API camelCase map.

 Types

 scheduling()

 @type scheduling() :: :scheduling_unspecified | :silent | :when_idle | :interrupt

 t()

 @type t() :: %Gemini.Types.FunctionResponse{
 id: String.t() | nil,
 name: String.t(),
 response: map(),
 scheduling: scheduling() | nil,
 will_continue: boolean() | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parse function response from API payload.

 to_api(data)

 @spec to_api(t() | nil) :: map() | nil

Convert function response to API camelCase map.

Gemini.Types.Generation.Image

Type definitions for image generation using Google's Imagen models.
Imagen is Google's text-to-image generation model that creates high-quality images
from text descriptions. These types support image generation, editing, and upscaling
operations through the Vertex AI API.
Supported Models
	imagegeneration@006 - Latest stable Imagen model
	imagen-3.0-generate-001 - Imagen 3.0 generation model

Example
config = %ImageGenerationConfig{
 number_of_images: 4,
 aspect_ratio: "1:1",
 safety_filter_level: :block_some,
 person_generation: :allow_adult
}

{:ok, images} = Gemini.APIs.Images.generate(
 "A serene mountain landscape at sunset",
 config
)
See Gemini.APIs.Images for API functions.

 Summary

 Types

 aspect_ratio()

 Aspect ratio for generated images.

 edit_mode()

 Edit mode for image editing operations.

 person_generation()

 Person generation policy.

 safety_filter_level()

 Safety filter levels for generated images.

 t()

 upscale_factor()

 Upscale factor for image enhancement.

 Functions

 build_edit_params(prompt, image_data, mask_data, config)

 Builds parameters map for image editing API request.

 build_generation_params(prompt, config)

 Builds parameters map for image generation API request.

 build_upscale_params(image_data, config)

 Builds parameters map for image upscaling API request.

 format_edit_mode(atom)

 Converts edit mode to API format.

 format_person_generation(atom)

 Converts person generation policy to API format.

 format_safety_filter_level(atom)

 Converts safety filter level atom to API format.

 format_upscale_factor(atom)

 Converts upscale factor to API format.

 parse_generated_image(data)

 Parses a generated image from API response.

 parse_safety_filter_level(level)

 Converts API-style safety filter level string to atom.

 Types

 aspect_ratio()

 @type aspect_ratio() :: String.t()

Aspect ratio for generated images.
Common aspect ratios:
	"1:1" - Square (1024x1024)
	"9:16" - Portrait, mobile (768x1344)
	"16:9" - Landscape, desktop (1344x768)
	"4:3" - Standard portrait (896x1152)
	"3:4" - Standard landscape (1152x896)

 edit_mode()

 @type edit_mode() :: :inpainting | :outpainting | :product_image

Edit mode for image editing operations.
	:inpainting - Edit specific regions (requires mask)
	:outpainting - Extend image beyond original boundaries (requires mask)
	:product_image - Product-focused editing

 person_generation()

 @type person_generation() :: :allow_adult | :allow_all | :allow_none | :dont_allow

Person generation policy.
	:allow_adult - Allow generation of adult humans
	:allow_all - Allow generation of humans of all ages
	:allow_none - Do not generate recognizable people

Legacy alias: :dont_allow (mapped to :allow_none)

 safety_filter_level()

 @type safety_filter_level() :: :block_most | :block_some | :block_few | :block_none

Safety filter levels for generated images.
	:block_most - Strictest filtering, blocks most potentially sensitive content
	:block_some - Moderate filtering (recommended for most use cases)
	:block_few - Permissive filtering, blocks only highly sensitive content
	:block_none - No safety filtering applied

 t()

 @type t() :: Gemini.Types.Generation.Image.ImageGenerationConfig.t()

 upscale_factor()

 @type upscale_factor() :: :x2 | :x4

Upscale factor for image enhancement.
	:x2 - 2x upscale (e.g., 1024x1024 -> 2048x2048)
	:x4 - 4x upscale (e.g., 1024x1024 -> 4096x4096)

 Functions

 build_edit_params(prompt, image_data, mask_data, config)

 @spec build_edit_params(
 String.t(),
 String.t(),
 String.t() | nil,
 Gemini.Types.Generation.Image.EditImageConfig.t()
) :: map()

Builds parameters map for image editing API request.

 build_generation_params(prompt, config)

 @spec build_generation_params(
 String.t(),
 Gemini.Types.Generation.Image.ImageGenerationConfig.t()
) ::
 map()

Builds parameters map for image generation API request.

 build_upscale_params(image_data, config)

 @spec build_upscale_params(
 String.t(),
 Gemini.Types.Generation.Image.UpscaleImageConfig.t()
) :: map()

Builds parameters map for image upscaling API request.

 format_edit_mode(atom)

 @spec format_edit_mode(edit_mode()) :: String.t()

Converts edit mode to API format.
Examples
iex> format_edit_mode(:inpainting)
"inpainting"

 format_person_generation(atom)

 @spec format_person_generation(person_generation()) :: String.t()

Converts person generation policy to API format.
Examples
iex> format_person_generation(:allow_adult)
"allowAdult"

 format_safety_filter_level(atom)

 @spec format_safety_filter_level(safety_filter_level()) :: String.t()

Converts safety filter level atom to API format.
Examples
iex> format_safety_filter_level(:block_some)
"blockSome"

 format_upscale_factor(atom)

 @spec format_upscale_factor(upscale_factor()) :: String.t()

Converts upscale factor to API format.
Examples
iex> format_upscale_factor(:x2)
"x2"

 parse_generated_image(data)

 @spec parse_generated_image(map()) :: Gemini.Types.Generation.Image.GeneratedImage.t()

Parses a generated image from API response.

 parse_safety_filter_level(level)

 @spec parse_safety_filter_level(String.t() | atom()) :: safety_filter_level()

Converts API-style safety filter level string to atom.
Examples
iex> parse_safety_filter_level("BLOCK_SOME")
:block_some

iex> parse_safety_filter_level(:block_most)
:block_most

Gemini.Types.Generation.Image.EditImageConfig

Configuration for image editing operations.
Fields
	prompt - Text description of desired edits
	edit_mode - Type of editing operation (default: :inpainting)
	mask_mode - How to interpret the mask (default: :foreground)
	mask_dilation - Expand mask by pixels (0-50, default: 0)
	guidance_scale - How closely to follow the prompt (default: ~15.0)
	number_of_images - Number of variations to generate (1-8, default: 1)
	safety_filter_level - Content safety filtering (default: :block_some)
	seed - Random seed for reproducibility
	output_mime_type - Output format (default: "image/png")

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Generation.Image.EditImageConfig{
 edit_mode: :inpainting | :outpainting | :product_image,
 guidance_scale: float() | nil,
 mask_dilation: integer(),
 mask_mode: atom(),
 number_of_images: pos_integer(),
 output_mime_type: String.t(),
 prompt: String.t() | nil,
 safety_filter_level: :block_most | :block_some | :block_few | :block_none,
 seed: integer() | nil
}

Gemini.Types.Generation.Image.GeneratedImage

Represents a generated image result.
Fields
	image_data - Base64-encoded image data
	mime_type - MIME type of the image
	image_size - Size information (width, height in pixels)
	safety_attributes - Safety classification results
	rai_info - Responsible AI filtering information

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Generation.Image.GeneratedImage{
 image_data: String.t() | nil,
 image_size: map() | nil,
 mime_type: String.t() | nil,
 rai_info: map() | nil,
 safety_attributes: map() | nil
}

Gemini.Types.Generation.Image.ImageGenerationConfig

Configuration for image generation requests.
Fields
	number_of_images - Number of images to generate (1-8, default: 1)
	aspect_ratio - Image aspect ratio (default: "1:1")
	safety_filter_level - Content safety filtering (default: :block_some)
	person_generation - Person generation policy (default: :allow_none; legacy :dont_allow supported)
	output_mime_type - Output format, "image/png" or "image/jpeg" (default: "image/png")
	output_compression_quality - JPEG quality 0-100 (default: 80, only for JPEG)
	negative_prompt - Text describing what to avoid in the image
	seed - Random seed for reproducibility
	guidance_scale - How closely to follow the prompt (1.0-20.0, default: ~7.0)
	language - Language code for prompt interpretation (e.g., "en", "es")
	add_watermark - Whether to add a watermark (default: true)

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Generation.Image.ImageGenerationConfig{
 add_watermark: boolean(),
 aspect_ratio: String.t(),
 guidance_scale: float() | nil,
 language: String.t() | nil,
 negative_prompt: String.t() | nil,
 number_of_images: pos_integer(),
 output_compression_quality: integer() | nil,
 output_mime_type: String.t(),
 person_generation: :allow_adult | :allow_all | :allow_none | :dont_allow,
 safety_filter_level: :block_most | :block_some | :block_few | :block_none,
 seed: integer() | nil
}

Gemini.Types.Generation.Image.UpscaleImageConfig

Configuration for image upscaling operations.
Fields
	upscale_factor - Scale factor for upscaling (default: :x2)
	output_mime_type - Output format (default: "image/png")
	output_compression_quality - JPEG quality 0-100 (only for JPEG)

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Generation.Image.UpscaleImageConfig{
 output_compression_quality: integer() | nil,
 output_mime_type: String.t(),
 upscale_factor: :x2 | :x4
}

Gemini.Types.Generation.Video

Type definitions for video generation using Google's Veo models.
Veo is Google's advanced text-to-video generation model that creates high-quality
videos from text descriptions. Video generation is a long-running operation that
requires polling to check completion status.
Supported Models
	veo-2.0-generate-001 - Veo 2.0 video generation model
	veo-3.1-generate-preview - Veo 3.1 preview
	veo-3.1-fast-generate-preview - Veo 3.1 Fast preview
	veo-3.0-generate-001 - Veo 3.0 stable
	veo-3.0-fast-generate-001 - Veo 3.0 Fast stable

Example
config = %VideoGenerationConfig{
 number_of_videos: 1,
 duration_seconds: 8,
 aspect_ratio: "16:9"
}

{:ok, operation} = Gemini.APIs.Videos.generate(
 "A cat playing piano in a cozy living room",
 config
)

Wait for completion
{:ok, completed} = Gemini.APIs.Operations.wait(operation.name)

Get video URLs
videos = completed.response["generatedVideos"]
See Gemini.APIs.Videos for API functions.

 Summary

 Types

 aspect_ratio()

 Aspect ratio for generated videos.

 compression_format()

 Video compression format.

 reference_type()

 Reference image type for video generation.

 resolution()

 Resolution for generated videos.

 t()

 Functions

 build_generation_params(prompt, config)

 Builds parameters map for video generation API request.

 complete?(video_operation)

 Checks if a video operation is complete.

 extract_videos(operation)

 Extracts generated videos from a completed operation.

 failed?(video_operation)

 Checks if a video operation failed.

 format_compression_format(atom)

 Converts compression format to API format.

 format_person_generation(atom)

 Converts person generation policy to API format.

 format_safety_filter_level(atom)

 Converts safety filter level to API format.

 parse_generated_video(data)

 Parses a generated video from API response.

 succeeded?(video_operation)

 Checks if a video operation succeeded.

 wrap_operation(operation)

 Wraps an Operation with video-specific metadata.

 Types

 aspect_ratio()

 @type aspect_ratio() :: String.t()

Aspect ratio for generated videos.
Common aspect ratios:
	"9:16" - Vertical/mobile (e.g., 720x1280)
	"16:9" - Horizontal/desktop (e.g., 1280x720)
	"1:1" - Square (e.g., 1024x1024)

 compression_format()

 @type compression_format() :: :h264 | :h265

Video compression format.
	:h264 - H.264/AVC compression (default, widely compatible)
	:h265 - H.265/HEVC compression (better quality, smaller size)

 reference_type()

 @type reference_type() :: String.t()

Reference image type for video generation.
Common values:
	"asset" - Preserve the referenced subject
	"style" - Apply visual style

 resolution()

 @type resolution() :: String.t()

Resolution for generated videos.
Supported values:
	"720p" (default)
	"1080p" (up to 8s duration)

 t()

 @type t() :: Gemini.Types.Generation.Video.VideoGenerationConfig.t()

 Functions

 build_generation_params(prompt, config)

 @spec build_generation_params(
 String.t(),
 Gemini.Types.Generation.Video.VideoGenerationConfig.t()
) ::
 map()

Builds parameters map for video generation API request.

 complete?(video_operation)

 @spec complete?(Gemini.Types.Generation.Video.VideoOperation.t()) :: boolean()

Checks if a video operation is complete.

 extract_videos(operation)

 @spec extract_videos(Gemini.Types.Operation.t()) ::
 {:ok, [Gemini.Types.Generation.Video.GeneratedVideo.t()]} | {:error, term()}

Extracts generated videos from a completed operation.

 failed?(video_operation)

 @spec failed?(Gemini.Types.Generation.Video.VideoOperation.t()) :: boolean()

Checks if a video operation failed.

 format_compression_format(atom)

 @spec format_compression_format(compression_format()) :: String.t()

Converts compression format to API format.
Examples
iex> format_compression_format(:h264)
"h264"

 format_person_generation(atom)

 @spec format_person_generation(atom()) :: String.t()

Converts person generation policy to API format.

 format_safety_filter_level(atom)

 @spec format_safety_filter_level(atom()) :: String.t()

Converts safety filter level to API format.

 parse_generated_video(data)

 @spec parse_generated_video(map()) :: Gemini.Types.Generation.Video.GeneratedVideo.t()

Parses a generated video from API response.

 succeeded?(video_operation)

 @spec succeeded?(Gemini.Types.Generation.Video.VideoOperation.t()) :: boolean()

Checks if a video operation succeeded.

 wrap_operation(operation)

 @spec wrap_operation(Gemini.Types.Operation.t()) ::
 Gemini.Types.Generation.Video.VideoOperation.t()

Wraps an Operation with video-specific metadata.

Gemini.Types.Generation.Video.GeneratedVideo

Represents a generated video result.
Fields
	video_uri - GCS URI where the video is stored
	video_data - Base64-encoded video data (if requested inline)
	mime_type - MIME type of the video (e.g., "video/mp4")
	duration_seconds - Actual duration of the video
	resolution - Video resolution (width x height)
	safety_attributes - Safety classification results
	rai_info - Responsible AI filtering information

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Generation.Video.GeneratedVideo{
 duration_seconds: float() | nil,
 mime_type: String.t() | nil,
 rai_info: map() | nil,
 resolution: map() | nil,
 safety_attributes: map() | nil,
 video_data: String.t() | nil,
 video_uri: String.t() | nil
}

Gemini.Types.Generation.Video.VideoGenerationConfig

Configuration for video generation requests.
Fields
	number_of_videos - Number of videos to generate (1-4, default: 1)
	duration_seconds - Video duration in seconds (4-8, default: 8)
	aspect_ratio - Video aspect ratio (default: "16:9")
	fps - Frames per second (24, 25, or 30, default: 24)
	compression_format - Video compression format (default: :h264)
	safety_filter_level - Content safety filtering (default: :block_some)
	negative_prompt - Text describing what to avoid in the video
	seed - Random seed for reproducibility
	guidance_scale - How closely to follow the prompt (1.0-20.0)
	person_generation - Person generation policy (default: :allow_none; legacy :dont_allow supported)
	image - Optional image input for image-to-video
	last_frame - Optional last frame for interpolation (Veo 3.1)
	reference_images - Optional list of reference images (Veo 3.1)
	video - Optional input video for extension (Veo 3.1)
	resolution - Output resolution ("720p" or "1080p")

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Generation.Video.VideoGenerationConfig{
 aspect_ratio: String.t(),
 compression_format: :h264 | :h265,
 duration_seconds: pos_integer(),
 fps: pos_integer(),
 guidance_scale: float() | nil,
 image: (Gemini.Types.Blob.t() | map()) | nil,
 last_frame: (Gemini.Types.Blob.t() | map()) | nil,
 negative_prompt: String.t() | nil,
 number_of_videos: pos_integer(),
 person_generation: atom(),
 reference_images:
 [Gemini.Types.Generation.Video.VideoGenerationReferenceImage.t()] | nil,
 resolution: String.t() | nil,
 safety_filter_level: atom(),
 seed: integer() | nil,
 video: (Gemini.Types.Blob.t() | map()) | nil
}

Gemini.Types.Generation.Video.VideoGenerationReferenceImage

Reference image used to guide video generation.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Generation.Video.VideoGenerationReferenceImage{
 image: (Gemini.Types.Blob.t() | map()) | nil,
 reference_type: String.t()
}

Gemini.Types.Generation.Video.VideoOperation

Represents a video generation operation with progress tracking.
Video generation is a long-running operation that can take several minutes.
This struct wraps the base Operation type with video-specific helpers.
Fields
	operation - Base Operation struct
	progress_percent - Estimated completion percentage (0-100)
	estimated_completion_time - Estimated time until completion

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Generation.Video.VideoOperation{
 estimated_completion_time: DateTime.t() | nil,
 operation: Gemini.Types.Operation.t() | nil,
 progress_percent: float() | nil
}

Gemini.Types.GenerationConfig

Configuration for content generation parameters.

 Summary

 Types

 t()

 Functions

 balanced(opts \\ [])

 Create a balanced generation config.

 creative(opts \\ [])

 Create a creative generation config (higher temperature).

 deterministic(opts \\ [])

 Create a deterministic generation config.

 image_config(config \\ %__MODULE__{}, opts)

 Configure image generation settings for Gemini 3 Pro Image.

 include_thoughts(config \\ %__MODULE__{}, include)

 Enable thought summaries in model response.

 json_response(config \\ %__MODULE__{})

 Set JSON response format.

 max_tokens(config \\ %__MODULE__{}, tokens)

 Set maximum output tokens.

 media_resolution(config \\ %__MODULE__{}, resolution)

 Set media resolution preference.

 new(opts \\ [])

 Create a new generation config with default values.

 precise(opts \\ [])

 Create a precise generation config (lower temperature).

 property_ordering(config \\ %__MODULE__{}, ordering)

 Set property ordering for Gemini 2.0 models.

 response_modalities(config \\ %__MODULE__{}, modalities)

 Set response modalities for the model output.

 seed(config \\ %__MODULE__{}, value)

 Set deterministic generation seed.

 speech_config(config \\ %__MODULE__{}, speech_config)

 Set speech generation configuration.

 stop_sequences(config \\ %__MODULE__{}, sequences)

 Add stop sequences.

 structured_json(schema)

 Configure structured JSON output with schema.

 structured_json(config, schema)

 structured_json(config, schema, opts)

 temperature(config \\ %__MODULE__{}, temp)

 Set temperature for response generation.

 text_response(config \\ %__MODULE__{})

 Set plain text response format.

 thinking_budget(config \\ %__MODULE__{}, budget)

 Set thinking budget for Gemini 2.5 series models (legacy).

 thinking_config(config \\ %__MODULE__{}, budget, opts \\ [])

 Set complete thinking configuration (budget + thoughts).

 thinking_level(config \\ %__MODULE__{}, level)

 Set thinking level for Gemini 3 models.

 Types

 t()

 @type t() :: %Gemini.Types.GenerationConfig{
 candidate_count: integer() | nil,
 frequency_penalty: float() | nil,
 image_config: Gemini.Types.GenerationConfig.ImageConfig.t() | nil,
 logprobs: integer() | nil,
 max_output_tokens: integer() | nil,
 media_resolution: Gemini.Types.MediaResolution.t() | nil,
 presence_penalty: float() | nil,
 property_ordering: [String.t()] | nil,
 response_json_schema: map() | nil,
 response_logprobs: boolean() | nil,
 response_mime_type: String.t() | nil,
 response_modalities: [Gemini.Types.Modality.t()] | nil,
 response_schema: map() | nil,
 seed: integer() | nil,
 speech_config: Gemini.Types.SpeechConfig.t() | nil,
 stop_sequences: [String.t()],
 temperature: float() | nil,
 thinking_config: Gemini.Types.GenerationConfig.ThinkingConfig.t() | nil,
 top_k: integer() | nil,
 top_p: float() | nil
}

 Functions

 balanced(opts \\ [])

Create a balanced generation config.

 creative(opts \\ [])

Create a creative generation config (higher temperature).

 deterministic(opts \\ [])

Create a deterministic generation config.

 image_config(config \\ %__MODULE__{}, opts)

 @spec image_config(
 t(),
 keyword()
) :: t()

Configure image generation settings for Gemini 3 Pro Image.
Used with gemini-3-pro-image-preview model for generating images.
Parameters
	config: GenerationConfig struct (defaults to new config)
	opts: Keyword list of image options	:aspect_ratio - Output aspect ratio (e.g., "16:9", "1:1", "4:3", "3:4", "9:16")
	:image_size - Output resolution ("2K" or "4K")

Examples
Generate 4K landscape image
config = GenerationConfig.image_config(aspect_ratio: "16:9", image_size: "4K")

Generate square image at 2K
config = GenerationConfig.image_config(aspect_ratio: "1:1", image_size: "2K")

Chain with other options
config =
 GenerationConfig.new()
 |> GenerationConfig.image_config(aspect_ratio: "16:9", image_size: "4K")

 include_thoughts(config \\ %__MODULE__{}, include)

 @spec include_thoughts(t(), boolean()) :: t()

Enable thought summaries in model response.
When enabled, the model includes a summary of its reasoning process.
Parameters
	config: GenerationConfig struct (defaults to new config)
	include: Boolean to enable/disable thought summaries

Examples
Enable thought summaries
config = GenerationConfig.include_thoughts(true)

Combine with thinking budget
config =
 GenerationConfig.new()
 |> GenerationConfig.thinking_budget(2048)
 |> GenerationConfig.include_thoughts(true)

 json_response(config \\ %__MODULE__{})

Set JSON response format.

 max_tokens(config \\ %__MODULE__{}, tokens)

Set maximum output tokens.

 media_resolution(config \\ %__MODULE__{}, resolution)

 @spec media_resolution(t(), Gemini.Types.MediaResolution.t()) :: t()

Set media resolution preference.

 new(opts \\ [])

Create a new generation config with default values.

 precise(opts \\ [])

Create a precise generation config (lower temperature).

 property_ordering(config \\ %__MODULE__{}, ordering)

 @spec property_ordering(t(), [String.t()]) :: t()

Set property ordering for Gemini 2.0 models.
Explicitly defines the order in which properties appear in the generated JSON.
Required for Gemini 2.0 Flash and Gemini 2.0 Flash-Lite when using structured outputs.
Not needed for Gemini 2.5+ models (they preserve schema key order automatically).
Parameters
	config: GenerationConfig struct (defaults to new config)
	ordering: List of property names in desired order

Examples
For Gemini 2.0 models
config = GenerationConfig.property_ordering(["name", "age", "email"])

Chain with other options
config =
 GenerationConfig.new()
 |> GenerationConfig.json_response()
 |> GenerationConfig.property_ordering(["firstName", "lastName"])
Model Compatibility
	Gemini 2.5+: Optional (implicit ordering from schema keys)
	Gemini 2.0: Required when using structured outputs

 response_modalities(config \\ %__MODULE__{}, modalities)

 @spec response_modalities(t(), [Gemini.Types.Modality.t()]) :: t()

Set response modalities for the model output.

 seed(config \\ %__MODULE__{}, value)

 @spec seed(t(), integer()) :: t()

Set deterministic generation seed.

 speech_config(config \\ %__MODULE__{}, speech_config)

 @spec speech_config(t(), Gemini.Types.SpeechConfig.t()) :: t()

Set speech generation configuration.

 stop_sequences(config \\ %__MODULE__{}, sequences)

Add stop sequences.

 structured_json(schema)

 @spec structured_json(map()) :: t()

Configure structured JSON output with schema.
Convenience helper that sets both response MIME type and schema in one call.
By default this uses response_json_schema (standard JSON Schema). To use
Gemini's internal schema format, pass schema_type: :response_schema.
Parameters
	config: GenerationConfig struct (defaults to new config)
	schema: JSON Schema map defining the output structure

Examples
Basic structured output (JSON Schema)
config = GenerationConfig.structured_json(%{
 "type" => "object",
 "properties" => %{
 "answer" => %{"type" => "string"},
 "confidence" => %{"type" => "number"}
 }
})

With property ordering for Gemini 2.0
config =
 GenerationConfig.structured_json(%{
 "type" => "object",
 "properties" => %{
 "name" => %{"type" => "string"},
 "age" => %{"type" => "integer"}
 }
 })
 |> GenerationConfig.property_ordering(["name", "age"])

Complex schema with new keywords
config = GenerationConfig.structured_json(%{
 "type" => "object",
 "properties" => %{
 "score" => %{
 "type" => "number",
 "minimum" => 0,
 "maximum" => 100
 }
 }
})

Internal schema format (response_schema)
config = GenerationConfig.structured_json(%{"type" => "OBJECT"}, schema_type: :response_schema)
Supported JSON Schema Keywords
	Basic types: string, number, integer, boolean, object, array
	Object: properties, required, additionalProperties
	Array: items, prefixItems, minItems, maxItems
	String: enum, format, pattern
	Number: minimum, maximum, enum
	Union types: anyOf
	References: $ref
	Nullable: type: ["string", "null"]

See docs/guides/structured_outputs.md for comprehensive examples.

 structured_json(config, schema)

 @spec structured_json(t(), map()) :: t()

 @spec structured_json(
 map(),
 keyword()
) :: t()

 structured_json(config, schema, opts)

 @spec structured_json(t(), map(), keyword()) :: t()

 temperature(config \\ %__MODULE__{}, temp)

 @spec temperature(t(), float()) :: t()

Set temperature for response generation.
Controls randomness in the output. Higher values (e.g., 0.9) make output more random,
while lower values (e.g., 0.1) make it more focused and deterministic.
Parameters
	config: GenerationConfig struct (defaults to new config)
	temp: Temperature value (typically 0.0 to 1.0)

Examples
Low temperature for focused output
config = GenerationConfig.temperature(0.2)

High temperature for creative output
config = GenerationConfig.temperature(0.9)

Chain with other options
config =
 GenerationConfig.new()
 |> GenerationConfig.temperature(0.7)
 |> GenerationConfig.max_tokens(1000)

 text_response(config \\ %__MODULE__{})

Set plain text response format.

 thinking_budget(config \\ %__MODULE__{}, budget)

 @spec thinking_budget(t(), integer()) :: t()

Set thinking budget for Gemini 2.5 series models (legacy).
For Gemini 3 models, use thinking_level/2 instead.
Controls how many thinking tokens the model can use for internal reasoning.
Parameters
	config: GenerationConfig struct (defaults to new config)
	budget: Integer controlling thinking tokens	0: Disable thinking (Flash/Lite only, NOT Pro)
	-1: Dynamic thinking (model decides budget)
	Positive integer: Fixed budget	Flash: 0-24,576
	Pro: 128-32,768
	Lite: 512-24,576

Important
Cannot be used with thinking_level in the same request.
Examples
Disable thinking (save costs)
config = GenerationConfig.thinking_budget(0)

Dynamic thinking (model decides)
config = GenerationConfig.thinking_budget(-1)

Fixed budget (balance cost/quality)
config = GenerationConfig.thinking_budget(1024)

Chain with other options
config =
 GenerationConfig.new()
 |> GenerationConfig.temperature(0.7)
 |> GenerationConfig.thinking_budget(2048)

 thinking_config(config \\ %__MODULE__{}, budget, opts \\ [])

 @spec thinking_config(t(), integer(), keyword()) :: t()

Set complete thinking configuration (budget + thoughts).
Convenience function to set both thinking budget and thought inclusion.
Parameters
	config: GenerationConfig struct (defaults to new config)
	budget: Thinking budget integer
	opts: Keyword list with optional :include_thoughts boolean

Examples
Set budget and enable thoughts
config = GenerationConfig.thinking_config(1024, include_thoughts: true)

Just budget (thoughts disabled)
config = GenerationConfig.thinking_config(512)

 thinking_level(config \\ %__MODULE__{}, level)

 @spec thinking_level(
 t(),
 Gemini.Types.GenerationConfig.ThinkingConfig.thinking_level()
) :: t()

Set thinking level for Gemini 3 models.
Controls the depth of reasoning before the model responds.
Parameters
	config: GenerationConfig struct (defaults to new config)
	level: Thinking level atom	:minimal - Minimal thinking (Gemini 3 Flash only)
	:low - Minimizes latency and cost. Best for simple instruction following.
	:medium - Balanced thinking (Gemini 3 Flash only)
	:high - Maximizes reasoning depth. Model may take longer for first token.

Important
Cannot be used with thinking_budget in the same request.
Examples
Fast responses for simple tasks
config = GenerationConfig.thinking_level(:low)

Deep reasoning for complex tasks (default)
config = GenerationConfig.thinking_level(:high)

Chain with other options
config =
 GenerationConfig.new()
 |> GenerationConfig.thinking_level(:low)
 |> GenerationConfig.max_tokens(1000)

Gemini.Types.GenerationConfig.ImageConfig

Configuration for image generation in Gemini 3 Pro Image.
Used with gemini-3-pro-image-preview model for generating and editing images.
Fields
	aspect_ratio - Output image aspect ratio (e.g., "16:9", "1:1", "4:3", "3:4", "9:16")
	image_size - Output resolution ("2K" or "4K")
	output_mime_type - MIME type for the generated image (Vertex-only)
	output_compression_quality - JPEG compression quality (Vertex-only)

Example
image_config = %ImageConfig{
 aspect_ratio: "16:9",
 image_size: "4K"
}

 Summary

 Types

 aspect_ratio()

 image_size()

 t()

 Image generation configuration

 Types

 aspect_ratio()

 @type aspect_ratio() :: String.t()

 image_size()

 @type image_size() :: String.t()

 t()

 @type t() :: %Gemini.Types.GenerationConfig.ImageConfig{
 aspect_ratio: aspect_ratio() | nil,
 image_size: image_size() | nil,
 output_compression_quality: integer() | nil,
 output_mime_type: String.t() | nil
}

Image generation configuration

Gemini.Types.GenerationConfig.ThinkingConfig

Configuration for thinking/reasoning in Gemini models.
Gemini 3 (Recommended)
Use thinking_level for Gemini 3 models:
	:minimal - Minimal thinking (Gemini 3 Flash only)
	:low - Minimizes latency and cost. Best for simple tasks.
	:medium - Balanced thinking (Gemini 3 Flash only)
	:high - Maximizes reasoning depth (default for Gemini 3).

Model Support
	Gemini 3 Pro: :low, :high
	Gemini 3 Flash: :minimal, :low, :medium, :high

Gemini 2.5 (Legacy)
Use thinking_budget for Gemini 2.5 models:
	0 - Disable thinking (Flash/Lite only)
	-1 - Dynamic thinking
	Positive integer - Fixed token budget

Important
You cannot use both thinking_level and thinking_budget in the same request.
Doing so will return a 400 error from the API.

 Summary

 Types

 t()

 Thinking configuration for Gemini models

 thinking_level()

 Types

 t()

 @type t() :: %Gemini.Types.GenerationConfig.ThinkingConfig{
 include_thoughts: boolean() | nil,
 thinking_budget: integer() | nil,
 thinking_level: thinking_level() | nil
}

Thinking configuration for Gemini models

 thinking_level()

 @type thinking_level() :: :unspecified | :minimal | :low | :medium | :high

Gemini.Types.Interactions.AgentConfig

Agent config union (DynamicAgentConfig | DeepResearchAgentConfig).

 Summary

 Types

 t()

 Functions

 from_api(cfg)

 to_api(map)

 Types

 t()

 @type t() ::
 Gemini.Types.Interactions.DynamicAgentConfig.t()
 | Gemini.Types.Interactions.DeepResearchAgentConfig.t()
 | map()

 Functions

 from_api(cfg)

 @spec from_api(map() | t() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.AllowedTools

Allowed tools configuration ({mode, tools}).

 Summary

 Types

 t()

 Functions

 from_api(allowed)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.AllowedTools{
 mode: Gemini.Types.Interactions.ToolChoiceType.t() | nil,
 tools: [String.t()] | nil
}

 Functions

 from_api(allowed)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.Annotation

Citation information for model-generated text.

 Summary

 Types

 t()

 Functions

 from_api(annotation)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.Annotation{
 end_index: non_neg_integer() | nil,
 source: String.t() | nil,
 start_index: non_neg_integer() | nil
}

 Functions

 from_api(annotation)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.AudioContent

An audio content block (type: "audio").

 Summary

 Types

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.AudioContent{
 data: String.t() | nil,
 mime_type: String.t() | nil,
 type: String.t(),
 uri: String.t() | nil
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.AudioMimeType

Audio mime types for Interactions content.
Python models this as a Literal[...] | str union; in Elixir we accept any string.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: String.t()

Gemini.Types.Interactions.CachedTokensByModality

Cached token count for a response modality.

 Summary

 Types

 modality()

 t()

 Functions

 from_api(value)

 to_api(map)

 Types

 modality()

 @type modality() :: String.t()

 t()

 @type t() :: %Gemini.Types.Interactions.CachedTokensByModality{
 modality: modality() | nil,
 tokens: non_neg_integer() | nil
}

 Functions

 from_api(value)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.CodeExecution

code_execution tool declaration.

 Summary

 Types

 t()

 Functions

 from_api(tool)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.CodeExecution{type: String.t()}

 Functions

 from_api(tool)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.CodeExecutionCallArguments

Arguments for a code_execution_call content block.

 Summary

 Types

 language()

 t()

 Functions

 from_api(args)

 to_api(map)

 Types

 language()

 @type language() :: String.t()

 t()

 @type t() :: %Gemini.Types.Interactions.CodeExecutionCallArguments{
 code: String.t() | nil,
 language: language() | nil
}

 Functions

 from_api(args)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.CodeExecutionCallContent

Code execution call content block (type: "code_execution_call").

 Summary

 Types

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.CodeExecutionCallContent{
 arguments: Gemini.Types.Interactions.CodeExecutionCallArguments.t() | nil,
 id: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.CodeExecutionResultContent

Code execution result content block (type: "code_execution_result").

 Summary

 Types

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.CodeExecutionResultContent{
 call_id: String.t() | nil,
 is_error: boolean() | nil,
 result: String.t() | nil,
 signature: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.ComputerUse

computer_use tool declaration.
Note: API key uses camelCase excludedPredefinedFunctions.

 Summary

 Types

 environment()

 t()

 Functions

 from_api(tool)

 to_api(map)

 Types

 environment()

 @type environment() :: String.t()

 t()

 @type t() :: %Gemini.Types.Interactions.ComputerUse{
 environment: environment() | nil,
 excluded_predefined_functions: [String.t()] | nil,
 type: String.t()
}

 Functions

 from_api(tool)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.Content

Union type for Interactions input/output content blocks.

 Summary

 Types

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 t()

 @type t() ::
 Gemini.Types.Interactions.TextContent.t()
 | Gemini.Types.Interactions.ImageContent.t()
 | Gemini.Types.Interactions.AudioContent.t()
 | Gemini.Types.Interactions.DocumentContent.t()
 | Gemini.Types.Interactions.VideoContent.t()
 | Gemini.Types.Interactions.ThoughtContent.t()
 | Gemini.Types.Interactions.FunctionCallContent.t()
 | Gemini.Types.Interactions.FunctionResultContent.t()
 | Gemini.Types.Interactions.CodeExecutionCallContent.t()
 | Gemini.Types.Interactions.CodeExecutionResultContent.t()
 | Gemini.Types.Interactions.URLContextCallContent.t()
 | Gemini.Types.Interactions.URLContextResultContent.t()
 | Gemini.Types.Interactions.GoogleSearchCallContent.t()
 | Gemini.Types.Interactions.GoogleSearchResultContent.t()
 | Gemini.Types.Interactions.MCPServerToolCallContent.t()
 | Gemini.Types.Interactions.MCPServerToolResultContent.t()
 | Gemini.Types.Interactions.FileSearchCallContent.t()
 | Gemini.Types.Interactions.FileSearchResultContent.t()

 Functions

 from_api(content)

 @spec from_api(map() | t() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.DeepResearchAgentConfig

Deep Research agent configuration (type: "deep-research").
Fields
	thinking_summaries - "auto" or "none"

 Summary

 Types

 t()

 thinking_summaries()

 Functions

 from_api(config)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeepResearchAgentConfig{
 thinking_summaries: thinking_summaries() | nil,
 type: String.t()
}

 thinking_summaries()

 @type thinking_summaries() :: String.t()

 Functions

 from_api(config)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.Delta

Discriminated union for content.delta.delta payloads (18 variants).

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(map)

 Types

 t()

 @type t() ::
 Gemini.Types.Interactions.DeltaTextDelta.t()
 | Gemini.Types.Interactions.DeltaImageDelta.t()
 | Gemini.Types.Interactions.DeltaAudioDelta.t()
 | Gemini.Types.Interactions.DeltaDocumentDelta.t()
 | Gemini.Types.Interactions.DeltaVideoDelta.t()
 | Gemini.Types.Interactions.DeltaThoughtSummaryDelta.t()
 | Gemini.Types.Interactions.DeltaThoughtSignatureDelta.t()
 | Gemini.Types.Interactions.DeltaFunctionCallDelta.t()
 | Gemini.Types.Interactions.DeltaFunctionResultDelta.t()
 | Gemini.Types.Interactions.DeltaCodeExecutionCallDelta.t()
 | Gemini.Types.Interactions.DeltaCodeExecutionResultDelta.t()
 | Gemini.Types.Interactions.DeltaURLContextCallDelta.t()
 | Gemini.Types.Interactions.DeltaURLContextResultDelta.t()
 | Gemini.Types.Interactions.DeltaGoogleSearchCallDelta.t()
 | Gemini.Types.Interactions.DeltaGoogleSearchResultDelta.t()
 | Gemini.Types.Interactions.DeltaMCPServerToolCallDelta.t()
 | Gemini.Types.Interactions.DeltaMCPServerToolResultDelta.t()
 | Gemini.Types.Interactions.DeltaFileSearchResultDelta.t()
 | map()

 Functions

 from_api(delta)

 @spec from_api(map() | t() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaAudioDelta

Audio content delta for streaming responses.

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaAudioDelta{
 data: String.t() | nil,
 mime_type: String.t() | nil,
 type: String.t(),
 uri: String.t() | nil
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaCodeExecutionCallDelta

Code execution call delta for streaming responses.

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaCodeExecutionCallDelta{
 arguments: Gemini.Types.Interactions.CodeExecutionCallArguments.t() | nil,
 id: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaCodeExecutionResultDelta

Code execution result delta for streaming responses.

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaCodeExecutionResultDelta{
 call_id: String.t() | nil,
 is_error: boolean() | nil,
 result: String.t() | nil,
 signature: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaDocumentDelta

Document content delta for streaming responses.

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaDocumentDelta{
 data: String.t() | nil,
 mime_type: String.t() | nil,
 type: String.t(),
 uri: String.t() | nil
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaFileSearchResultDelta

File search result delta for streaming responses.

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaFileSearchResultDelta{
 result:
 [Gemini.Types.Interactions.DeltaFileSearchResultDeltaResult.t()] | nil,
 type: String.t()
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaFileSearchResultDeltaResult

Result type for file search result delta.

 Summary

 Types

 t()

 Functions

 from_api(result)

 to_api(result)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaFileSearchResultDeltaResult{
 file_search_store: String.t() | nil,
 text: String.t() | nil,
 title: String.t() | nil
}

 Functions

 from_api(result)

 @spec from_api(map() | nil) :: t() | nil

 to_api(result)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaFunctionCallDelta

Function call delta for streaming responses.

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaFunctionCallDelta{
 arguments: map() | nil,
 id: String.t() | nil,
 name: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaFunctionResultDelta

Function result delta for streaming responses.

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaFunctionResultDelta{
 call_id: String.t() | nil,
 is_error: boolean() | nil,
 name: String.t() | nil,
 result: Gemini.Types.Interactions.DeltaFunctionResultDeltaResult.t() | nil,
 type: String.t()
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaFunctionResultDeltaResult

Result type for function result delta.

 Summary

 Types

 t()

 Functions

 from_api(items)

 to_api(value)

 Types

 t()

 @type t() ::
 Gemini.Types.Interactions.DeltaFunctionResultDeltaResultItems.t() | String.t()

 Functions

 from_api(items)

 @spec from_api(term()) :: t() | nil

 to_api(value)

 @spec to_api(t() | nil) :: term()

Gemini.Types.Interactions.DeltaFunctionResultDeltaResultItems

Items container for function result delta.

 Summary

 Types

 t()

 Functions

 from_api(items)

 to_api(items)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaFunctionResultDeltaResultItems{
 items:
 [Gemini.Types.Interactions.DeltaFunctionResultDeltaResultItemsItem.t()]
 | nil
}

 Functions

 from_api(items)

 @spec from_api(map() | nil) :: t() | nil

 to_api(items)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaFunctionResultDeltaResultItemsItem

Item type for function result delta.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: String.t() | Gemini.Types.Interactions.ImageContent.t()

Gemini.Types.Interactions.DeltaGoogleSearchCallDelta

Google search call delta for streaming responses.

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaGoogleSearchCallDelta{
 arguments: Gemini.Types.Interactions.GoogleSearchCallArguments.t() | nil,
 id: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaGoogleSearchResultDelta

Google search result delta for streaming responses.

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaGoogleSearchResultDelta{
 call_id: String.t() | nil,
 is_error: boolean() | nil,
 result: [Gemini.Types.Interactions.GoogleSearchResult.t()] | nil,
 signature: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaImageDelta

Image content delta for streaming responses.

 Summary

 Types

 resolution()

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 resolution()

 @type resolution() :: String.t()

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaImageDelta{
 data: String.t() | nil,
 mime_type: String.t() | nil,
 resolution: resolution() | nil,
 type: String.t(),
 uri: String.t() | nil
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaMCPServerToolCallDelta

MCP server tool call delta for streaming responses.

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaMCPServerToolCallDelta{
 arguments: map() | nil,
 id: String.t() | nil,
 name: String.t() | nil,
 server_name: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaMCPServerToolResultDelta

MCP server tool result delta for streaming responses.

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaMCPServerToolResultDelta{
 call_id: String.t() | nil,
 name: String.t() | nil,
 result:
 Gemini.Types.Interactions.DeltaMCPServerToolResultDeltaResult.t() | nil,
 server_name: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaMCPServerToolResultDeltaResult

Result type for MCP server tool result delta.

 Summary

 Types

 t()

 Functions

 from_api(items)

 to_api(value)

 Types

 t()

 @type t() ::
 Gemini.Types.Interactions.DeltaMCPServerToolResultDeltaResultItems.t()
 | String.t()

 Functions

 from_api(items)

 @spec from_api(term()) :: t() | nil

 to_api(value)

 @spec to_api(t() | nil) :: term()

Gemini.Types.Interactions.DeltaMCPServerToolResultDeltaResultItems

Items container for MCP server tool result delta.

 Summary

 Types

 t()

 Functions

 from_api(items)

 to_api(items)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaMCPServerToolResultDeltaResultItems{
 items:
 [Gemini.Types.Interactions.DeltaMCPServerToolResultDeltaResultItemsItem.t()]
 | nil
}

 Functions

 from_api(items)

 @spec from_api(map() | nil) :: t() | nil

 to_api(items)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaMCPServerToolResultDeltaResultItemsItem

Item type for MCP server tool result delta.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: String.t() | Gemini.Types.Interactions.ImageContent.t()

Gemini.Types.Interactions.DeltaTextDelta

Text content delta for streaming responses.

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaTextDelta{
 annotations: [Gemini.Types.Interactions.Annotation.t()] | nil,
 text: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaThoughtSignatureDelta

Thought signature delta for streaming responses.

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaThoughtSignatureDelta{
 signature: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaThoughtSummaryDelta

Thought summary delta for streaming responses.

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaThoughtSummaryDelta{
 content: Gemini.Types.Interactions.DeltaThoughtSummaryDeltaContent.t() | nil,
 type: String.t()
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaThoughtSummaryDeltaContent

Content type for thought summary delta.

 Summary

 Types

 t()

 Types

 t()

 @type t() ::
 Gemini.Types.Interactions.TextContent.t()
 | Gemini.Types.Interactions.ImageContent.t()

Gemini.Types.Interactions.DeltaURLContextCallDelta

URL context call delta for streaming responses.

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaURLContextCallDelta{
 arguments: Gemini.Types.Interactions.URLContextCallArguments.t() | nil,
 id: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaURLContextResultDelta

URL context result delta for streaming responses.

 Summary

 Types

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaURLContextResultDelta{
 call_id: String.t() | nil,
 is_error: boolean() | nil,
 result: [Gemini.Types.Interactions.URLContextResult.t()] | nil,
 signature: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DeltaVideoDelta

Video content delta for streaming responses.

 Summary

 Types

 resolution()

 t()

 Functions

 from_api(delta)

 to_api(delta)

 Types

 resolution()

 @type resolution() :: String.t()

 t()

 @type t() :: %Gemini.Types.Interactions.DeltaVideoDelta{
 data: String.t() | nil,
 mime_type: String.t() | nil,
 resolution: resolution() | nil,
 type: String.t(),
 uri: String.t() | nil
}

 Functions

 from_api(delta)

 @spec from_api(map() | nil) :: t() | nil

 to_api(delta)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.DocumentContent

A document content block (type: "document").
Supported MIME Types
	"application/pdf" - PDF documents

 Summary

 Types

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DocumentContent{
 data: String.t() | nil,
 mime_type: String.t() | nil,
 type: String.t(),
 uri: String.t() | nil
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.DynamicAgentConfig

Dynamic agent configuration (type: "dynamic").
Python allows arbitrary extra keys; in Elixir we store them under config.

 Summary

 Types

 t()

 Functions

 from_api(config)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.DynamicAgentConfig{
 config: map(),
 type: String.t()
}

 Functions

 from_api(config)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.Events

Helpers for decoding Interactions SSE events.

 Summary

 Functions

 from_api(event)

 Functions

 from_api(event)

 @spec from_api(map() | Gemini.Types.Interactions.Events.InteractionSSEEvent.t() | nil) ::
 Gemini.Types.Interactions.Events.InteractionSSEEvent.t() | nil

Gemini.Types.Interactions.Events.ContentDelta

Interactions SSE event: content.delta.

 Summary

 Types

 t()

 Functions

 from_api(event)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.Events.ContentDelta{
 delta: Gemini.Types.Interactions.Delta.t() | nil,
 event_id: String.t() | nil,
 event_type: String.t() | nil,
 index: non_neg_integer() | nil
}

 Functions

 from_api(event)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.Events.ContentStart

Interactions SSE event: content.start.

 Summary

 Types

 t()

 Functions

 from_api(event)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.Events.ContentStart{
 content: Gemini.Types.Interactions.Content.t() | nil,
 event_id: String.t() | nil,
 event_type: String.t() | nil,
 index: non_neg_integer() | nil
}

 Functions

 from_api(event)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.Events.ContentStop

Interactions SSE event: content.stop.

 Summary

 Types

 t()

 Functions

 from_api(event)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.Events.ContentStop{
 event_id: String.t() | nil,
 event_type: String.t() | nil,
 index: non_neg_integer() | nil
}

 Functions

 from_api(event)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.Events.Error

Error payload inside an Interactions SSE error event.

 Summary

 Types

 t()

 Functions

 from_api(err)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.Events.Error{
 code: String.t() | nil,
 message: String.t() | nil
}

 Functions

 from_api(err)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.Events.ErrorEvent

Interactions SSE event: event_type: "error".

 Summary

 Types

 t()

 Functions

 from_api(event)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.Events.ErrorEvent{
 error: Gemini.Types.Interactions.Events.Error.t() | nil,
 event_id: String.t() | nil,
 event_type: String.t() | nil
}

 Functions

 from_api(event)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.Events.InteractionEvent

Interactions SSE event: interaction.start or interaction.complete.

 Summary

 Types

 event_type()

 t()

 Functions

 from_api(event)

 to_api(map)

 Types

 event_type()

 @type event_type() :: String.t()

 t()

 @type t() :: %Gemini.Types.Interactions.Events.InteractionEvent{
 event_id: String.t() | nil,
 event_type: event_type() | nil,
 interaction: Gemini.Types.Interactions.Interaction.t() | nil
}

 Functions

 from_api(event)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.Events.InteractionSSEEvent

Union type for Interactions SSE events (6 variants).

 Summary

 Types

 t()

 Types

 t()

 @type t() ::
 Gemini.Types.Interactions.Events.InteractionEvent.t()
 | Gemini.Types.Interactions.Events.InteractionStatusUpdate.t()
 | Gemini.Types.Interactions.Events.ContentStart.t()
 | Gemini.Types.Interactions.Events.ContentDelta.t()
 | Gemini.Types.Interactions.Events.ContentStop.t()
 | Gemini.Types.Interactions.Events.ErrorEvent.t()

Gemini.Types.Interactions.Events.InteractionStatusUpdate

Interactions SSE event: interaction.status_update.

 Summary

 Types

 t()

 Functions

 from_api(event)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.Events.InteractionStatusUpdate{
 event_id: String.t() | nil,
 event_type: String.t() | nil,
 interaction_id: String.t() | nil,
 status: Gemini.Types.Interactions.Interaction.status() | nil
}

 Functions

 from_api(event)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.FileSearch

file_search tool declaration.

 Summary

 Types

 t()

 Functions

 from_api(tool)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.FileSearch{
 file_search_store_names: [String.t()] | nil,
 metadata_filter: String.t() | nil,
 top_k: non_neg_integer() | nil,
 type: String.t()
}

 Functions

 from_api(tool)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.FileSearchCallContent

File Search call content block (type: "file_search_call").
This content type is emitted when the model invokes a file search tool
to search through file search stores.

 Summary

 Types

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.FileSearchCallContent{
 id: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.FileSearchResult

An item inside file_search_result results.

 Summary

 Types

 t()

 Functions

 from_api(result)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.FileSearchResult{
 file_search_store: String.t() | nil,
 text: String.t() | nil,
 title: String.t() | nil
}

 Functions

 from_api(result)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.FileSearchResultContent

File Search result content block (type: "file_search_result").

 Summary

 Types

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.FileSearchResultContent{
 result: [Gemini.Types.Interactions.FileSearchResult.t()] | nil,
 type: String.t()
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.Function

function tool declaration.

 Summary

 Types

 t()

 Functions

 from_api(tool)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.Function{
 description: String.t() | nil,
 name: String.t() | nil,
 parameters: map() | nil,
 type: String.t()
}

 Functions

 from_api(tool)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.FunctionCallContent

A function tool call content block (type: "function_call").

 Summary

 Types

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.FunctionCallContent{
 arguments: map(),
 id: String.t(),
 name: String.t(),
 type: String.t()
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.FunctionResultContent

A function tool result content block (type: "function_result").
The result payload may include strings, image content blocks, or arbitrary
structured data returned by tools.

 Summary

 Types

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.FunctionResultContent{
 call_id: String.t(),
 is_error: boolean() | nil,
 name: String.t() | nil,
 result: term(),
 type: String.t()
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.GenerationConfig

Interactions GenerationConfig (snake_case keys).

 Summary

 Types

 t()

 thinking_summaries()

 Functions

 from_api(config)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.GenerationConfig{
 image_config: Gemini.Types.Interactions.ImageConfig.t() | nil,
 max_output_tokens: non_neg_integer() | nil,
 seed: integer() | nil,
 speech_config: [Gemini.Types.Interactions.SpeechConfig.t()] | nil,
 stop_sequences: [String.t()] | nil,
 temperature: float() | nil,
 thinking_level: Gemini.Types.Interactions.ThinkingLevel.t() | nil,
 thinking_summaries: thinking_summaries() | nil,
 tool_choice: Gemini.Types.Interactions.ToolChoice.t() | nil,
 top_p: float() | nil
}

 thinking_summaries()

 @type thinking_summaries() :: String.t()

 Functions

 from_api(config)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.GoogleSearch

google_search tool declaration.

 Summary

 Types

 t()

 Functions

 from_api(tool)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.GoogleSearch{type: String.t()}

 Functions

 from_api(tool)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.GoogleSearchCallArguments

Arguments for a google_search_call content block.

 Summary

 Types

 t()

 Functions

 from_api(args)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.GoogleSearchCallArguments{
 queries: [String.t()] | nil
}

 Functions

 from_api(args)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.GoogleSearchCallContent

Google Search call content block (type: "google_search_call").

 Summary

 Types

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.GoogleSearchCallContent{
 arguments: Gemini.Types.Interactions.GoogleSearchCallArguments.t() | nil,
 id: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.GoogleSearchResult

A Google Search result item.

 Summary

 Types

 t()

 Functions

 from_api(result)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.GoogleSearchResult{
 rendered_content: String.t() | nil,
 title: String.t() | nil,
 url: String.t() | nil
}

 Functions

 from_api(result)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.GoogleSearchResultContent

Google Search result content block (type: "google_search_result").

 Summary

 Types

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.GoogleSearchResultContent{
 call_id: String.t() | nil,
 is_error: boolean() | nil,
 result: [Gemini.Types.Interactions.GoogleSearchResult.t()] | nil,
 signature: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.ImageConfig

Configuration for image generation in Interactions.
This type controls image generation parameters when using the Interactions API
with image generation capabilities.
Aspect Ratios
The following aspect ratios are supported:
	Ratio	Description
	"1:1"	Square format
	"2:3"	Portrait (vertical)
	"3:2"	Landscape (horizontal)
	"3:4"	Portrait (vertical)
	"4:3"	Landscape (horizontal), standard photo
	"4:5"	Portrait (vertical), Instagram-style
	"5:4"	Landscape (horizontal)
	"9:16"	Portrait (vertical), phone screen/stories
	"16:9"	Landscape (horizontal), widescreen
	"21:9"	Ultrawide panoramic

Image Sizes
The following image sizes are supported:
	Size	Description
	"1K"	~1024 pixels on the longest edge
	"2K"	~2048 pixels on the longest edge
	"4K"	~4096 pixels on the longest edge

Example
config = %Gemini.Types.Interactions.ImageConfig{
 aspect_ratio: "16:9",
 image_size: "2K"
}

Use in Interactions generation config
Gemini.APIs.Interactions.create(
 session_id: session_id,
 input: "Generate an image of a sunset",
 config: %{
 generation_config: %{
 image_config: config
 }
 }
)

 Summary

 Types

 t()

 Image generation configuration.

 Functions

 from_api(config)

 Creates an ImageConfig from API response.

 new(opts \\ [])

 Creates a new ImageConfig with validation.

 to_api(config)

 Converts ImageConfig to API format with snake_case keys.

 valid_aspect_ratio?(ratio)

 Checks if an aspect ratio is valid.

 valid_aspect_ratios()

 Returns the list of valid aspect ratios.

 valid_image_size?(size)

 Checks if an image size is valid.

 valid_image_sizes()

 Returns the list of valid image sizes.

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.ImageConfig{
 aspect_ratio: String.t() | nil,
 image_size: String.t() | nil
}

Image generation configuration.
	aspect_ratio - The aspect ratio for generated images
	image_size - The size/resolution for generated images

 Functions

 from_api(config)

 @spec from_api(map() | nil) :: t() | nil

Creates an ImageConfig from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new ImageConfig with validation.
Raises ArgumentError if invalid values are provided.
Parameters
	opts - Keyword list with configuration:	:aspect_ratio - One of ["1:1", "2:3", "3:2", "3:4", "4:3", "4:5", "5:4", "9:16", "16:9", "21:9"]
	:image_size - One of ["1K", "2K", "4K"]

Examples
ImageConfig.new(aspect_ratio: "16:9", image_size: "2K")
#=> %ImageConfig{aspect_ratio: "16:9", image_size: "2K"}

ImageConfig.new(aspect_ratio: "4:5")
#=> %ImageConfig{aspect_ratio: "4:5", image_size: nil}

ImageConfig.new(aspect_ratio: "invalid")
#=> ** (ArgumentError) Invalid aspect_ratio: invalid

 to_api(config)

 @spec to_api(t() | nil) :: map() | nil

Converts ImageConfig to API format with snake_case keys.

 valid_aspect_ratio?(ratio)

 @spec valid_aspect_ratio?(String.t()) :: boolean()

Checks if an aspect ratio is valid.

 valid_aspect_ratios()

 @spec valid_aspect_ratios() :: [String.t()]

Returns the list of valid aspect ratios.

 valid_image_size?(size)

 @spec valid_image_size?(String.t()) :: boolean()

Checks if an image size is valid.

 valid_image_sizes()

 @spec valid_image_sizes() :: [String.t()]

Returns the list of valid image sizes.

Gemini.Types.Interactions.ImageContent

An image content block (type: "image").

 Summary

 Types

 resolution()

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 resolution()

 @type resolution() :: :low | :medium | :high | :ultra_high | String.t()

 t()

 @type t() :: %Gemini.Types.Interactions.ImageContent{
 data: String.t() | nil,
 mime_type: String.t() | nil,
 resolution: resolution() | nil,
 type: String.t(),
 uri: String.t() | nil
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.ImageMimeType

Image mime types for Interactions content.
Python models this as a Literal[...] | str union; in Elixir we accept any string.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: String.t()

Gemini.Types.Interactions.Input

Input union for Interactions create.
Mirrors Python:
	string
	single content block
	list of content blocks
	list of turns

 Summary

 Types

 t()

 Functions

 to_api(value)

 Types

 t()

 @type t() ::
 String.t()
 | Gemini.Types.Interactions.Content.t()
 | [Gemini.Types.Interactions.Content.t()]
 | [Gemini.Types.Interactions.Turn.t()]
 | map()
 | [map()]

 Functions

 to_api(value)

 @spec to_api(t()) :: term()

Gemini.Types.Interactions.InputTokensByModality

Input token count for a response modality.

 Summary

 Types

 modality()

 t()

 Functions

 from_api(value)

 to_api(map)

 Types

 modality()

 @type modality() :: String.t()

 t()

 @type t() :: %Gemini.Types.Interactions.InputTokensByModality{
 modality: modality() | nil,
 tokens: non_neg_integer() | nil
}

 Functions

 from_api(value)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.Interaction

Interactions Interaction resource.
JSON keys are snake_case, matching the Python SDK and Interactions API.

 Summary

 Types

 status()

 t()

 Functions

 from_api(interaction)

 to_api(map)

 Types

 status()

 @type status() :: String.t()

 t()

 @type t() :: %Gemini.Types.Interactions.Interaction{
 agent: String.t() | nil,
 created: DateTime.t() | nil,
 id: String.t(),
 model: String.t() | nil,
 outputs: [Gemini.Types.Interactions.Content.t()] | nil,
 previous_interaction_id: String.t() | nil,
 role: String.t() | nil,
 status: status(),
 updated: DateTime.t() | nil,
 usage: Gemini.Types.Interactions.Usage.t() | nil
}

 Functions

 from_api(interaction)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.MCPServer

mcp_server tool declaration.

 Summary

 Types

 t()

 Functions

 from_api(tool)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.MCPServer{
 allowed_tools: [Gemini.Types.Interactions.AllowedTools.t()] | nil,
 headers: map() | nil,
 name: String.t() | nil,
 type: String.t(),
 url: String.t() | nil
}

 Functions

 from_api(tool)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.MCPServerToolCallContent

MCP server tool call content block (type: "mcp_server_tool_call").

 Summary

 Types

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.MCPServerToolCallContent{
 arguments: map(),
 id: String.t(),
 name: String.t(),
 server_name: String.t(),
 type: String.t()
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.MCPServerToolResultContent

MCP server tool result content block (type: "mcp_server_tool_result").
The result payload may include strings, image content blocks, or arbitrary
structured data returned by the MCP server.

 Summary

 Types

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.MCPServerToolResultContent{
 call_id: String.t(),
 name: String.t() | nil,
 result: term(),
 server_name: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.OutputTokensByModality

Output token count for a response modality.

 Summary

 Types

 modality()

 t()

 Functions

 from_api(value)

 to_api(map)

 Types

 modality()

 @type modality() :: String.t()

 t()

 @type t() :: %Gemini.Types.Interactions.OutputTokensByModality{
 modality: modality() | nil,
 tokens: non_neg_integer() | nil
}

 Functions

 from_api(value)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.SpeechConfig

Speech config for Interactions generation (different from generateContent).

 Summary

 Types

 t()

 Functions

 from_api(config)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.SpeechConfig{
 language: String.t() | nil,
 speaker: String.t() | nil,
 voice: String.t() | nil
}

 Functions

 from_api(config)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.TextContent

A text content block (type: "text").

 Summary

 Types

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.TextContent{
 annotations: [Gemini.Types.Interactions.Annotation.t()] | nil,
 text: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.ThinkingLevel

Thinking level for Interactions generation ("minimal", "low", "medium", "high").

 Summary

 Types

 t()

 Types

 t()

 @type t() :: String.t()

Gemini.Types.Interactions.ThoughtContent

A thought content block (type: "thought").

 Summary

 Types

 summary_item()

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 summary_item()

 @type summary_item() ::
 Gemini.Types.Interactions.TextContent.t()
 | Gemini.Types.Interactions.ImageContent.t()

 t()

 @type t() :: %Gemini.Types.Interactions.ThoughtContent{
 signature: String.t() | nil,
 summary: [summary_item()] | nil,
 type: String.t()
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.Tool

Union type for Interactions tools.

 Summary

 Types

 t()

 Functions

 from_api(tool)

 to_api(map)

 Types

 t()

 @type t() ::
 Gemini.Types.Interactions.Function.t()
 | Gemini.Types.Interactions.GoogleSearch.t()
 | Gemini.Types.Interactions.CodeExecution.t()
 | Gemini.Types.Interactions.URLContext.t()
 | Gemini.Types.Interactions.ComputerUse.t()
 | Gemini.Types.Interactions.MCPServer.t()
 | Gemini.Types.Interactions.FileSearch.t()
 | map()

 Functions

 from_api(tool)

 @spec from_api(map() | t() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.Interactions.ToolChoice

Tool choice union (ToolChoiceType | ToolChoiceConfig).

 Summary

 Types

 t()

 Functions

 from_api(config)

 to_api(value)

 Types

 t()

 @type t() ::
 Gemini.Types.Interactions.ToolChoiceType.t()
 | Gemini.Types.Interactions.ToolChoiceConfig.t()
 | map()

 Functions

 from_api(config)

 @spec from_api(term()) :: t() | nil

 to_api(value)

 @spec to_api(t() | nil) :: term()

Gemini.Types.Interactions.ToolChoiceConfig

Tool choice configuration.

 Summary

 Types

 t()

 Functions

 from_api(config)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.ToolChoiceConfig{
 allowed_tools: Gemini.Types.Interactions.AllowedTools.t() | nil
}

 Functions

 from_api(config)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.ToolChoiceType

Tool choice type ("auto" | "any" | "none" | "validated").

 Summary

 Types

 t()

 Types

 t()

 @type t() :: String.t()

Gemini.Types.Interactions.ToolUseTokensByModality

Tool-use token count for a response modality.

 Summary

 Types

 modality()

 t()

 Functions

 from_api(value)

 to_api(map)

 Types

 modality()

 @type modality() :: String.t()

 t()

 @type t() :: %Gemini.Types.Interactions.ToolUseTokensByModality{
 modality: modality() | nil,
 tokens: non_neg_integer() | nil
}

 Functions

 from_api(value)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.Turn

A conversation turn in the Interactions API.

 Summary

 Types

 content()

 t()

 Functions

 from_api(turn)

 to_api(map)

 Types

 content()

 @type content() :: String.t() | [Gemini.Types.Interactions.Content.t()] | nil

 t()

 @type t() :: %Gemini.Types.Interactions.Turn{
 content: content() | nil,
 role: String.t() | nil
}

 Functions

 from_api(turn)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.URLContext

url_context tool declaration.

 Summary

 Types

 t()

 Functions

 from_api(tool)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.URLContext{type: String.t()}

 Functions

 from_api(tool)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.URLContextCallArguments

Arguments for a url_context_call content block.

 Summary

 Types

 t()

 Functions

 from_api(args)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.URLContextCallArguments{
 urls: [String.t()] | nil
}

 Functions

 from_api(args)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.URLContextCallContent

URL context call content block (type: "url_context_call").

 Summary

 Types

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.URLContextCallContent{
 arguments: Gemini.Types.Interactions.URLContextCallArguments.t() | nil,
 id: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.URLContextResult

URL context result item ({status, url}).

 Summary

 Types

 status()

 t()

 Functions

 from_api(result)

 to_api(map)

 Types

 status()

 @type status() :: String.t()

 t()

 @type t() :: %Gemini.Types.Interactions.URLContextResult{
 status: status() | nil,
 url: String.t() | nil
}

 Functions

 from_api(result)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.URLContextResultContent

URL context result content block (type: "url_context_result").

 Summary

 Types

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.URLContextResultContent{
 call_id: String.t() | nil,
 is_error: boolean() | nil,
 result: [Gemini.Types.Interactions.URLContextResult.t()] | nil,
 signature: String.t() | nil,
 type: String.t()
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.Usage

Token usage statistics for an Interaction.

 Summary

 Types

 t()

 Functions

 from_api(usage)

 to_api(map)

 Types

 t()

 @type t() :: %Gemini.Types.Interactions.Usage{
 cached_tokens_by_modality:
 [Gemini.Types.Interactions.CachedTokensByModality.t()] | nil,
 input_tokens_by_modality:
 [Gemini.Types.Interactions.InputTokensByModality.t()] | nil,
 output_tokens_by_modality:
 [Gemini.Types.Interactions.OutputTokensByModality.t()] | nil,
 tool_use_tokens_by_modality:
 [Gemini.Types.Interactions.ToolUseTokensByModality.t()] | nil,
 total_cached_tokens: non_neg_integer() | nil,
 total_input_tokens: non_neg_integer() | nil,
 total_output_tokens: non_neg_integer() | nil,
 total_thought_tokens: non_neg_integer() | nil,
 total_tokens: non_neg_integer() | nil,
 total_tool_use_tokens: non_neg_integer() | nil
}

 Functions

 from_api(usage)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.VideoContent

A video content block (type: "video").

 Summary

 Types

 resolution()

 t()

 Functions

 from_api(content)

 to_api(map)

 Types

 resolution()

 @type resolution() :: :low | :medium | :high | :ultra_high | String.t()

 t()

 @type t() :: %Gemini.Types.Interactions.VideoContent{
 data: String.t() | nil,
 mime_type: String.t() | nil,
 resolution: resolution() | nil,
 type: String.t(),
 uri: String.t() | nil
}

 Functions

 from_api(content)

 @spec from_api(map() | nil) :: t() | nil

 to_api(map)

 @spec to_api(t() | map() | nil) :: map() | nil

Gemini.Types.Interactions.VideoMimeType

Video mime types for Interactions content.
Python models this as a Literal[...] | str union; in Elixir we accept any string.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: String.t()

Gemini.Types.ListBatchJobsResponse

Response type for listing batch jobs.

 Summary

 Types

 t()

 Response from listing batch jobs.

 Functions

 from_api_response(response)

 Creates a ListBatchJobsResponse from API response.

 has_more_pages?(list_batch_jobs_response)

 Checks if there are more pages available.

 Types

 t()

 @type t() :: %Gemini.Types.ListBatchJobsResponse{
 batch_jobs: [Gemini.Types.BatchJob.t()],
 next_page_token: String.t() | nil
}

Response from listing batch jobs.

 Functions

 from_api_response(response)

 @spec from_api_response(map()) :: t()

Creates a ListBatchJobsResponse from API response.

 has_more_pages?(list_batch_jobs_response)

 @spec has_more_pages?(t()) :: boolean()

Checks if there are more pages available.

Gemini.Types.ListDocumentsResponse

Response type for listing documents in a RAG store.

 Summary

 Types

 t()

 Response from listing documents.

 Functions

 from_api_response(response)

 Creates a ListDocumentsResponse from API response.

 has_more_pages?(list_documents_response)

 Checks if there are more pages available.

 Types

 t()

 @type t() :: %Gemini.Types.ListDocumentsResponse{
 documents: [Gemini.Types.Document.t()],
 next_page_token: String.t() | nil
}

Response from listing documents.

 Functions

 from_api_response(response)

 @spec from_api_response(map()) :: t()

Creates a ListDocumentsResponse from API response.

 has_more_pages?(list_documents_response)

 @spec has_more_pages?(t()) :: boolean()

Checks if there are more pages available.

Gemini.Types.ListFileSearchStoresResponse

Response type for listing file search stores.

 Summary

 Types

 t()

 Response from listing file search stores.

 Functions

 from_api_response(response)

 Creates a ListFileSearchStoresResponse from API response.

 has_more_pages?(list_file_search_stores_response)

 Checks if there are more pages available.

 Types

 t()

 @type t() :: %Gemini.Types.ListFileSearchStoresResponse{
 file_search_stores: [Gemini.Types.FileSearchStore.t()],
 next_page_token: String.t() | nil
}

Response from listing file search stores.
	file_search_stores - List of FileSearchStore structs
	next_page_token - Token for fetching next page (nil if no more pages)

 Functions

 from_api_response(response)

 @spec from_api_response(map()) :: t()

Creates a ListFileSearchStoresResponse from API response.

 has_more_pages?(list_file_search_stores_response)

 @spec has_more_pages?(t()) :: boolean()

Checks if there are more pages available.

Gemini.Types.ListFilesResponse

Response type for listing files.

 Summary

 Types

 t()

 Response from listing files.

 Functions

 from_api_response(response)

 Creates a ListFilesResponse from API response.

 has_more_pages?(list_files_response)

 Checks if there are more pages available.

 Types

 t()

 @type t() :: %Gemini.Types.ListFilesResponse{
 files: [Gemini.Types.File.t()],
 next_page_token: String.t() | nil
}

Response from listing files.
	files - List of File structs
	next_page_token - Token for fetching next page (nil if no more pages)

 Functions

 from_api_response(response)

 @spec from_api_response(map()) :: t()

Creates a ListFilesResponse from API response.

 has_more_pages?(list_files_response)

 @spec has_more_pages?(t()) :: boolean()

Checks if there are more pages available.

Gemini.Types.ListOperationsResponse

Response type for listing operations.

 Summary

 Types

 t()

 Response from listing operations.

 Functions

 from_api_response(response)

 Creates a ListOperationsResponse from API response.

 has_more_pages?(list_operations_response)

 Checks if there are more pages available.

 Types

 t()

 @type t() :: %Gemini.Types.ListOperationsResponse{
 next_page_token: String.t() | nil,
 operations: [Gemini.Types.Operation.t()]
}

Response from listing operations.
	operations - List of Operation structs
	next_page_token - Token for fetching next page (nil if no more pages)

 Functions

 from_api_response(response)

 @spec from_api_response(map()) :: t()

Creates a ListOperationsResponse from API response.

 has_more_pages?(list_operations_response)

 @spec has_more_pages?(t()) :: boolean()

Checks if there are more pages available.

Gemini.Types.ListRagStoresResponse

Response type for listing RAG stores.

 Summary

 Types

 t()

 Response from listing RAG stores.

 Functions

 from_api_response(response)

 Creates a ListRagStoresResponse from API response.

 has_more_pages?(list_rag_stores_response)

 Checks if there are more pages available.

 Types

 t()

 @type t() :: %Gemini.Types.ListRagStoresResponse{
 next_page_token: String.t() | nil,
 rag_stores: [Gemini.Types.RagStore.t()]
}

Response from listing RAG stores.

 Functions

 from_api_response(response)

 @spec from_api_response(map()) :: t()

Creates a ListRagStoresResponse from API response.

 has_more_pages?(list_rag_stores_response)

 @spec has_more_pages?(t()) :: boolean()

Checks if there are more pages available.

Gemini.Types.MediaResolution

Media resolution enum for controlling token allocation on media inputs.
Includes :media_resolution_ultra_high for highest fidelity on supported models.

 Summary

 Types

 t()

 Functions

 from_api(value)

 Convert API value to enum atom.

 to_api(value)

 Convert enum atom to API string.

 Types

 t()

 @type t() ::
 :media_resolution_unspecified
 | :media_resolution_low
 | :media_resolution_medium
 | :media_resolution_high
 | :media_resolution_ultra_high

 Functions

 from_api(value)

 @spec from_api(String.t() | nil) :: t() | nil

Convert API value to enum atom.

 to_api(value)

 @spec to_api(t() | atom() | nil) :: String.t() | nil

Convert enum atom to API string.

Gemini.Types.Modality

Response modality types for multimodal generation.

 Summary

 Types

 t()

 Functions

 from_api(value)

 Convert API modality string to atom.

 to_api(value)

 Convert modality atom to API string.

 Types

 t()

 @type t() :: :modality_unspecified | :text | :image | :audio

 Functions

 from_api(value)

 @spec from_api(String.t() | nil) :: t() | nil

Convert API modality string to atom.

 to_api(value)

 @spec to_api(t() | nil) :: String.t() | nil

Convert modality atom to API string.

Gemini.Types.Operation

Type definitions for long-running operations.
Long-running operations are used for tasks that may take significant time to complete,
such as video generation, file imports, model tuning, and batch processing.
Operation Lifecycle
	Initiated - Operation is created, done: false
	Running - Operation is processing, done: false
	Completed - Operation finished successfully, done: true, response populated
	Failed - Operation failed, done: true, error populated

Polling Pattern
{:ok, operation} = some_long_running_call()

Poll until complete
{:ok, completed} = Gemini.APIs.Operations.wait(operation.name,
 poll_interval: 5000,
 timeout: 300_000
)

case completed do
 %{done: true, error: nil, response: response} ->
 IO.puts("Success: #{inspect(response)}")
 %{done: true, error: error} ->
 IO.puts("Failed: #{error.message}")
end
Example
Video generation returns an operation
{:ok, op} = Gemini.generate_video("A cat playing piano")

Wait for completion
{:ok, completed} = Gemini.APIs.Operations.wait(op.name)

Get the result
video_uri = completed.response["generatedVideos"]

 Summary

 Types

 operation_error()

 Operation error details.

 t()

 Represents a long-running operation.

 Functions

 complete?(arg1)

 Checks if the operation is complete (successfully or failed).

 failed?(arg1)

 Checks if the operation failed.

 from_api_response(response)

 Creates an Operation from API response.

 get_id(operation)

 Extracts the operation ID from the full name.

 get_progress(operation)

 Gets the progress percentage from metadata, if available.

 running?(arg1)

 Checks if the operation is still running.

 succeeded?(arg1)

 Checks if the operation completed successfully.

 Types

 operation_error()

 @type operation_error() :: %{
 optional(:code) => integer(),
 optional(:message) => String.t(),
 optional(:details) => [map()]
}

Operation error details.

 t()

 @type t() :: %Gemini.Types.Operation{
 done: boolean(),
 error: operation_error() | nil,
 metadata: map() | nil,
 name: String.t() | nil,
 response: map() | nil
}

Represents a long-running operation.
Fields
	name - Server-assigned unique identifier (e.g., "operations/abc123")
	metadata - Service-specific metadata about the operation progress
	done - Whether the operation is complete (true = finished, false = in progress)
	error - Error result if the operation failed (mutually exclusive with response)
	response - Success result if the operation completed (mutually exclusive with error)

 Functions

 complete?(arg1)

 @spec complete?(t()) :: boolean()

Checks if the operation is complete (successfully or failed).

 failed?(arg1)

 @spec failed?(t()) :: boolean()

Checks if the operation failed.

 from_api_response(response)

 @spec from_api_response(map()) :: t()

Creates an Operation from API response.
Parameters
	response - Map from API response with string keys

Examples
response = %{
 "name" => "operations/abc123",
 "done" => false,
 "metadata" => %{"@type" => "...", "progress" => 50}
}
op = Gemini.Types.Operation.from_api_response(response)

 get_id(operation)

 @spec get_id(t()) :: String.t() | nil

Extracts the operation ID from the full name.
Examples
op = %Operation{name: "operations/abc123"}
Operation.get_id(op)
=> "abc123"

 get_progress(operation)

 @spec get_progress(t()) :: float() | nil

Gets the progress percentage from metadata, if available.
Returns nil if progress information is not available in metadata.

 running?(arg1)

 @spec running?(t()) :: boolean()

Checks if the operation is still running.

 succeeded?(arg1)

 @spec succeeded?(t()) :: boolean()

Checks if the operation completed successfully.

Gemini.Types.Part

Part type for content in Gemini API.
Gemini 3 Features
Media Resolution
Control token allocation for media processing with media_resolution:
	:low - 280 tokens for images, 70 for video
	:medium - 560 tokens for images, 70 for video
	:high - 1120 tokens for images, 280 for video

Thought Signature
Gemini 3 returns thought_signature fields that must be echoed back
in subsequent turns to maintain reasoning context. The SDK handles
this automatically in chat sessions.

 Summary

 Types

 inline_data()

 Inline data (base64 encoded).

 t()

 text_content()

 Text content.

 Functions

 blob(data, mime_type)

 Create a blob part with raw data and MIME type.

 file(path)

 Create a part from a file path.

 from_api(part)

 Parse a part from API payload.

 inline_data(data, mime_type)

 Create an inline data part with base64 encoded data.

 inline_data_with_resolution(data, mime_type, resolution)

 Create an inline data part with media resolution for Gemini 3.

 text(text)

 Create a text part.

 with_resolution(part, resolution)

 Set media resolution on an existing part.

 with_thought_signature(part, signature)

 Set thought signature on an existing part.

 Types

 inline_data()

 @type inline_data() :: Gemini.Types.Blob.t() | nil

Inline data (base64 encoded).

 t()

 @type t() :: %Gemini.Types.Part{
 file_data: Gemini.Types.FileData.t() | nil,
 function_call: Altar.ADM.FunctionCall.t() | nil,
 function_response: Gemini.Types.FunctionResponse.t() | nil,
 inline_data: Gemini.Types.Blob.t() | nil,
 media_resolution:
 Gemini.Types.MediaResolution.t()
 | Gemini.Types.Part.MediaResolution.t()
 | nil,
 text: String.t() | nil,
 thought: boolean() | nil,
 thought_signature: String.t() | nil
}

 text_content()

 @type text_content() :: String.t() | nil

Text content.

 Functions

 blob(data, mime_type)

 @spec blob(String.t(), String.t()) :: t()

Create a blob part with raw data and MIME type.

 file(path)

 @spec file(String.t()) :: t()

Create a part from a file path.

 from_api(part)

 @spec from_api(map() | nil) :: t() | map() | nil

Parse a part from API payload.

 inline_data(data, mime_type)

 @spec inline_data(String.t(), String.t()) :: t()

Create an inline data part with base64 encoded data.

 inline_data_with_resolution(data, mime_type, resolution)

 @spec inline_data_with_resolution(String.t(), String.t(), :low | :medium | :high) ::
 t()

Create an inline data part with media resolution for Gemini 3.
Parameters
	data: Base64 encoded data
	mime_type: MIME type of the data
	resolution: Media resolution level (:low, :medium, or :high)

Examples
High resolution for detailed image analysis
Part.inline_data_with_resolution(image_data, "image/jpeg", :high)

Low resolution for faster processing
Part.inline_data_with_resolution(video_frame, "image/png", :low)

 text(text)

 @spec text(String.t()) :: t()

Create a text part.

 with_resolution(part, resolution)

 @spec with_resolution(t(), :low | :medium | :high) :: t()

Set media resolution on an existing part.
Parameters
	part: Existing Part struct
	resolution: Resolution level (:low, :medium, or :high)

Examples
part = Part.inline_data(image_data, "image/jpeg")
|> Part.with_resolution(:high)

 with_thought_signature(part, signature)

 @spec with_thought_signature(t(), String.t()) :: t()

Set thought signature on an existing part.
Used to maintain reasoning context across API calls in Gemini 3.
The SDK handles this automatically in most cases.
Parameters
	part: Existing Part struct
	signature: Thought signature string from a previous response

Gemini.Types.Part.MediaResolution

Media resolution settings for Gemini 3 vision processing.

 Summary

 Types

 level()

 t()

 Types

 level()

 @type level() ::
 :media_resolution_low | :media_resolution_medium | :media_resolution_high

 t()

 @type t() :: %Gemini.Types.Part.MediaResolution{level: level() | nil}

Gemini.Types.PrebuiltVoiceConfig

Configuration for a prebuilt voice.

 Summary

 Types

 t()

 Functions

 from_api(data)

 to_api(config)

 Types

 t()

 @type t() :: %Gemini.Types.PrebuiltVoiceConfig{voice_name: String.t() | nil}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

 to_api(config)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.RagStore

Type definitions for RAG stores (FileSearchStores).
RAG stores contain documents that can be searched semantically
and used for retrieval-augmented generation.

 Summary

 Types

 store_state()

 RAG store state enumeration.

 t()

 Represents a RAG store.

 Functions

 active?(arg1)

 Checks if the store is active.

 from_api_response(response)

 Creates a RagStore from API response.

 get_id(rag_store)

 Extracts the store ID from the full name.

 parse_state(arg1)

 Parses store state from API string.

 Types

 store_state()

 @type store_state() :: :state_unspecified | :creating | :active | :deleting | :failed

RAG store state enumeration.

 t()

 @type t() :: %Gemini.Types.RagStore{
 create_time: String.t() | nil,
 description: String.t() | nil,
 display_name: String.t() | nil,
 document_count: integer() | nil,
 name: String.t() | nil,
 state: store_state() | nil,
 total_size_bytes: integer() | nil,
 update_time: String.t() | nil,
 vector_config: map() | nil
}

Represents a RAG store.
Fields
	name - Resource name (e.g., "ragStores/abc123")
	display_name - Human-readable name
	description - Store description
	state - Current state
	create_time - When the store was created
	update_time - Last update timestamp
	document_count - Number of documents in the store
	total_size_bytes - Total size of all documents
	vector_config - Vector embedding configuration

 Functions

 active?(arg1)

 @spec active?(t()) :: boolean()

Checks if the store is active.

 from_api_response(response)

 @spec from_api_response(map()) :: t()

Creates a RagStore from API response.

 get_id(rag_store)

 @spec get_id(t()) :: String.t() | nil

Extracts the store ID from the full name.

 parse_state(arg1)

 @spec parse_state(String.t() | nil) :: store_state() | nil

Parses store state from API string.

Gemini.Types.Request.BatchEmbedContentsRequest

Request structure for batch embedding multiple content items.
Allows generating embeddings for multiple text inputs in a single API call,
which is more efficient than individual requests.
Fields
	requests: List of individual embed content requests

Examples
%BatchEmbedContentsRequest{
 requests: [
 %EmbedContentRequest{
 model: "models/gemini-embedding-001",
 content: %Content{parts: [%Part{text: "First text"}]}
 },
 %EmbedContentRequest{
 model: "models/gemini-embedding-001",
 content: %Content{parts: [%Part{text: "Second text"}]}
 }
]
}

 Summary

 Types

 t()

 Functions

 new(texts, opts \\ [])

 Creates a new batch embedding request from a list of texts.

 to_api_map(batch_embed_contents_request)

 Converts the batch request to API-compatible map format.

 Types

 t()

 @type t() :: %Gemini.Types.Request.BatchEmbedContentsRequest{
 requests: [Gemini.Types.Request.EmbedContentRequest.t()]
}

 Functions

 new(texts, opts \\ [])

 @spec new(
 [String.t()],
 keyword()
) :: t()

Creates a new batch embedding request from a list of texts.
Uses auth-aware embedding model selection:
	Gemini API: gemini-embedding-001 with taskType parameter
	Vertex AI: embeddinggemma with prompt prefix formatting

Parameters
	texts: List of text strings to embed
	opts: Optional keyword list of options to apply to all requests	:model: Model to use (default: auto-detected based on auth)
	:task_type: Task type for optimized embeddings
	:output_dimensionality: Dimension reduction

Examples
BatchEmbedContentsRequest.new([
 "What is AI?",
 "How does machine learning work?",
 "Explain neural networks"
])

BatchEmbedContentsRequest.new(
 ["Doc 1", "Doc 2"],
 task_type: :retrieval_document,
 output_dimensionality: 256
)

 to_api_map(batch_embed_contents_request)

 @spec to_api_map(t()) :: map()

Converts the batch request to API-compatible map format.

Gemini.Types.Request.CountTokensRequest

Request structure for counting tokens.
Supports counting tokens for both simple contents and
full GenerateContentRequest structures.

 Summary

 Types

 t()

 Functions

 new(input, opts \\ [])

 Create a new CountTokensRequest.

 to_json_map(count_tokens_request)

 Convert request to map suitable for JSON encoding.

 Types

 t()

 @type t() :: %Gemini.Types.Request.CountTokensRequest{
 contents: [Gemini.Types.Content.t()] | nil,
 generate_content_request:
 Gemini.Types.Request.GenerateContentRequest.t() | nil
}

 Functions

 new(input, opts \\ [])

 @spec new(
 String.t()
 | [Gemini.Types.Content.t()]
 | Gemini.Types.Request.GenerateContentRequest.t(),
 keyword()
) :: {:ok, t()} | {:error, String.t()}

Create a new CountTokensRequest.
Parameters
	input - Either contents (string/list) or a GenerateContentRequest
	opts - Additional options

Examples
iex> CountTokensRequest.new("Hello world")
{:ok, %CountTokensRequest{contents: [%Content{...}]}}

iex> CountTokensRequest.new(generate_request)
{:ok, %CountTokensRequest{generate_content_request: generate_request}}

 to_json_map(count_tokens_request)

 @spec to_json_map(t()) :: map()

Convert request to map suitable for JSON encoding.
Only includes the non-nil field (either contents or generate_content_request).

Gemini.Types.Request.EmbedContentBatch

Async batch embedding job request.
Submit a large batch of embedding requests for asynchronous processing
at 50% cost compared to interactive API.
Fields
	model: Model to use (e.g., "models/gemini-embedding-001")
	name: Output only - assigned by API (format: "batches/{batchId}")
	display_name: Human-readable batch name (required)
	input_config: Input configuration (file or inline requests)
	priority: Processing priority (default 0, higher = more urgent)

Examples
Create batch with inline requests
EmbedContentBatch.new(
 "models/gemini-embedding-001",
 input_config,
 display_name: "Knowledge Base Embeddings"
)

With priority
EmbedContentBatch.new(
 "models/gemini-embedding-001",
 input_config,
 display_name: "Urgent Batch",
 priority: 10
)

 Summary

 Types

 t()

 Functions

 new(model, input_config, opts \\ [])

 Creates a new async batch embedding request.

 to_api_map(batch)

 Converts the batch request to API-compatible map format.

 Types

 t()

 @type t() :: %Gemini.Types.Request.EmbedContentBatch{
 display_name: String.t(),
 input_config: Gemini.Types.Request.InputEmbedContentConfig.t(),
 model: String.t(),
 name: String.t() | nil,
 priority: integer() | nil
}

 Functions

 new(model, input_config, opts \\ [])

 @spec new(String.t(), Gemini.Types.Request.InputEmbedContentConfig.t(), keyword()) ::
 t()

Creates a new async batch embedding request.
Parameters
	model: Model to use (e.g., "gemini-embedding-001" or full path)
	input_config: Input configuration (file or inline)
	opts: Optional keyword list	:display_name: Human-readable name (required)
	:priority: Processing priority (default: 0)
	:name: Batch identifier (output only, set by API)

Examples
EmbedContentBatch.new(
 "gemini-embedding-001",
 input_config,
 display_name: "My Batch"
)

 to_api_map(batch)

 @spec to_api_map(t()) :: map()

Converts the batch request to API-compatible map format.
The API expects all fields to be wrapped in a batch object.

Gemini.Types.Request.EmbedContentRequest

Request structure for embedding content using Gemini embedding models.
Represents a request to generate text embeddings from input content.
Embeddings are numerical representations of text that enable use cases
such as clustering, similarity measurement, and information retrieval.
API Differences
This module handles the differences between Gemini API and Vertex AI embedding models:
	Gemini API (gemini-embedding-001): Uses taskType parameter
	Vertex AI (embeddinggemma): Uses prompt prefixes like "task: search result | query: "

The new/2 function automatically detects the model type and formats accordingly.
Fields
	model: The embedding model to use (e.g., "gemini-embedding-001" or "embeddinggemma")
	content: The content to embed (only text parts will be processed)
	task_type: Optional task type for optimized embeddings
	title: Optional title for retrieval documents
	output_dimensionality: Optional dimension reduction for embeddings

Examples
Simple embedding request (auto-detects model from auth)
EmbedContentRequest.new("What is the meaning of life?")

With task type - automatically formats for model type
EmbedContentRequest.new("Document text here",
 task_type: :retrieval_document,
 title: "Important Document",
 output_dimensionality: 256
)

For EmbeddingGemma, the text becomes:
"title: Important Document | text: Document text here"

 Summary

 Types

 t()

 task_type()

 Functions

 format_for_embedding_gemma(text, task_type, opts \\ [])

 Format text with the appropriate prompt prefix for EmbeddingGemma models.

 new(text, opts \\ [])

 Creates a new embedding request from text content.

 new_for_api(text, api_type, opts \\ [])

 Creates an embedding request with explicit API type specification.

 to_api_map(request)

 Converts the request struct to API-compatible map format.

 Types

 t()

 @type t() :: %Gemini.Types.Request.EmbedContentRequest{
 content: Gemini.Types.Content.t(),
 model: String.t(),
 output_dimensionality: pos_integer() | nil,
 task_type: task_type() | nil,
 title: String.t() | nil
}

 task_type()

 @type task_type() ::
 :task_type_unspecified
 | :retrieval_query
 | :retrieval_document
 | :semantic_similarity
 | :classification
 | :clustering
 | :question_answering
 | :fact_verification
 | :code_retrieval_query

 Functions

 format_for_embedding_gemma(text, task_type, opts \\ [])

 @spec format_for_embedding_gemma(String.t(), task_type() | nil, keyword()) ::
 String.t()

Format text with the appropriate prompt prefix for EmbeddingGemma models.
This is exposed for cases where you need to manually format text for
EmbeddingGemma without going through the full request creation.
Parameters
	text: The original text
	task_type: Task type atom
	opts: Options including :title for retrieval_document

Examples
format_for_embedding_gemma("My query", :retrieval_query)
#=> "task: search result | query: My query"

format_for_embedding_gemma("My document", :retrieval_document, title: "Title")
#=> "title: Title | text: My document"

 new(text, opts \\ [])

 @spec new(
 String.t(),
 keyword()
) :: t()

Creates a new embedding request from text content.
Automatically handles model-specific formatting:
	For Gemini embedding models: Uses taskType parameter
	For EmbeddingGemma: Prepends prompt prefix to text content

Parameters
	text: The text to embed
	opts: Optional keyword list of options	:model: Model to use (default: auto-detected based on auth)
	:task_type: Task type for optimized embeddings
	:title: Title for retrieval documents (required for EmbeddingGemma with :retrieval_document)
	:output_dimensionality: Dimension reduction

Examples
Basic usage (auto-detects model)
EmbedContentRequest.new("What is AI?")

With task type (works with both APIs)
EmbedContentRequest.new("Document content",
 task_type: :retrieval_document,
 title: "AI Overview"
)

Explicit model selection
EmbedContentRequest.new("Query text",
 model: "embeddinggemma",
 task_type: :retrieval_query
)
Text becomes: "task: search result | query: Query text"

 new_for_api(text, api_type, opts \\ [])

 @spec new_for_api(String.t(), :gemini | :vertex_ai, keyword()) :: t()

Creates an embedding request with explicit API type specification.
Use this when you need to force a specific API's embedding model regardless
of the current authentication configuration.
Parameters
	text: The text to embed
	api_type: :gemini or :vertex_ai
	opts: Same options as new/2

Examples
Force Gemini API embedding model
EmbedContentRequest.new_for_api("Query", :gemini, task_type: :retrieval_query)

Force Vertex AI embedding model
EmbedContentRequest.new_for_api("Document", :vertex_ai, task_type: :retrieval_document)

 to_api_map(request)

 @spec to_api_map(t()) :: map()

Converts the request struct to API-compatible map format.
Converts snake_case field names to camelCase as required by the Gemini API.
For EmbeddingGemma models, the task type is already embedded in the text content.

Gemini.Types.Request.GenerateContentRequest

Request structure for content generation.
Supports all generation parameters including safety settings,
system instructions, tools, and generation configuration.

 Summary

 Types

 t()

 Functions

 new(contents, opts \\ [])

 Create a new GenerateContentRequest with validation.

 to_json_map(request)

 Convert request to map suitable for JSON encoding.

 Types

 t()

 @type t() :: %Gemini.Types.Request.GenerateContentRequest{
 contents: [Gemini.Types.Content.t()],
 generation_config: Gemini.Types.GenerationConfig.t() | nil,
 safety_settings: [Gemini.Types.SafetySetting.t()],
 system_instruction: Gemini.Types.Content.t() | nil,
 tool_config: map() | nil,
 tools: [map()]
}

 Functions

 new(contents, opts \\ [])

 @spec new(
 String.t() | [Gemini.Types.Content.t()],
 keyword()
) :: {:ok, t()} | {:error, String.t()}

Create a new GenerateContentRequest with validation.
Parameters
	contents - List of Content structs or single string
	opts - Keyword list of options:	:generation_config - GenerationConfig struct
	:safety_settings - List of SafetySetting structs
	:system_instruction - System instruction as Content or string
	:tools - List of tool definitions
	:tool_config - Tool configuration

Examples
iex> GenerateContentRequest.new("Hello world")
{:ok, %GenerateContentRequest{contents: [%Content{...}]}}

iex> GenerateContentRequest.new([Content.text("Hello")])
{:ok, %GenerateContentRequest{...}}

 to_json_map(request)

 @spec to_json_map(t()) :: map()

Convert request to map suitable for JSON encoding.
Removes nil fields to create clean JSON payload.

Gemini.Types.Request.GetModelRequest

Request structure for getting a specific model.

 Summary

 Types

 t()

 Functions

 new(model_name)

 Create a new GetModelRequest with name normalization.

 Types

 t()

 @type t() :: %Gemini.Types.Request.GetModelRequest{name: String.t()}

 Functions

 new(model_name)

 @spec new(String.t()) :: {:ok, t()} | {:error, String.t()}

Create a new GetModelRequest with name normalization.
Examples
iex> GetModelRequest.new("gemini-flash-lite-latest")
{:ok, %GetModelRequest{name: "models/gemini-flash-lite-latest"}}

iex> GetModelRequest.new("models/gemini-2.5-pro")
{:ok, %GetModelRequest{name: "models/gemini-2.5-pro"}}

iex> GetModelRequest.new("")
{:error, "Model name cannot be empty"}

Gemini.Types.Request.InlinedEmbedContentRequest

A single embedding request within an async batch, with optional metadata.
Used to submit individual embedding requests as part of an async batch operation.
Each request can include metadata for tracking purposes.
Fields
	request: The embedding request (EmbedContentRequest)
	metadata: Optional metadata (map) to track request identity

Examples
Simple inlined request
%InlinedEmbedContentRequest{
 request: %EmbedContentRequest{
 model: "models/gemini-embedding-001",
 content: %Content{parts: [%Part{text: "Hello world"}]}
 }
}

With metadata
%InlinedEmbedContentRequest{
 request: embed_request,
 metadata: %{"document_id" => "doc-123", "category" => "tech"}
}

 Summary

 Types

 t()

 Functions

 new(request, opts \\ [])

 Creates a new inlined embed content request.

 to_api_map(inlined_request)

 Converts the inlined request to API-compatible map format.

 Types

 t()

 @type t() :: %Gemini.Types.Request.InlinedEmbedContentRequest{
 metadata: map() | nil,
 request: Gemini.Types.Request.EmbedContentRequest.t()
}

 Functions

 new(request, opts \\ [])

 @spec new(
 Gemini.Types.Request.EmbedContentRequest.t(),
 keyword()
) :: t()

Creates a new inlined embed content request.
Parameters
	request: The EmbedContentRequest to include
	opts: Optional keyword list	:metadata: Metadata map for tracking

Examples
InlinedEmbedContentRequest.new(embed_request)

InlinedEmbedContentRequest.new(embed_request,
 metadata: %{"id" => "123"}
)

 to_api_map(inlined_request)

 @spec to_api_map(t()) :: map()

Converts the inlined request to API-compatible map format.

Gemini.Types.Request.InlinedEmbedContentRequests

Container for multiple inlined embedding requests in a batch.
Wraps a list of InlinedEmbedContentRequest structs for submission
as part of an async batch embedding job.
Fields
	requests: List of InlinedEmbedContentRequest structs

Examples
%InlinedEmbedContentRequests{
 requests: [
 %InlinedEmbedContentRequest{request: embed_req1},
 %InlinedEmbedContentRequest{request: embed_req2}
]
}

 Summary

 Types

 t()

 Functions

 new(requests)

 Creates a new container for inlined requests.

 to_api_map(inlined_embed_content_requests)

 Converts the inlined requests container to API-compatible map format.

 Types

 t()

 @type t() :: %Gemini.Types.Request.InlinedEmbedContentRequests{
 requests: [Gemini.Types.Request.InlinedEmbedContentRequest.t()]
}

 Functions

 new(requests)

 @spec new([Gemini.Types.Request.InlinedEmbedContentRequest.t()]) :: t()

Creates a new container for inlined requests.
Parameters
	requests: List of InlinedEmbedContentRequest structs

Examples
InlinedEmbedContentRequests.new([req1, req2, req3])

 to_api_map(inlined_embed_content_requests)

 @spec to_api_map(t()) :: map()

Converts the inlined requests container to API-compatible map format.

Gemini.Types.Request.InputEmbedContentConfig

Input configuration for async batch embedding.
Specifies where to read batch embedding requests from. This is a union type -
exactly ONE of the fields must be set.
Union Type - Choose ONE:
	file_name: Google Cloud Storage URI (e.g., "gs://bucket/inputs.jsonl")
	requests: InlinedEmbedContentRequests for inline processing

Per spec: Cannot specify both. One must be nil.
Examples
File-based input
InputEmbedContentConfig.new_from_file("gs://my-bucket/embeddings/batch-001.jsonl")

Inline requests
InputEmbedContentConfig.new_from_requests(inlined_requests)

 Summary

 Types

 t()

 Functions

 new_from_file(file_name)

 Creates input config from a Google Cloud Storage file.

 new_from_requests(requests)

 Creates input config from inline requests.

 to_api_map(input_embed_content_config)

 Converts the input config to API-compatible map format.

 validate(arg1)

 Validates that exactly one input source is specified.

 Types

 t()

 @type t() :: %Gemini.Types.Request.InputEmbedContentConfig{
 file_name: String.t() | nil,
 requests: Gemini.Types.Request.InlinedEmbedContentRequests.t() | nil
}

 Functions

 new_from_file(file_name)

 @spec new_from_file(String.t()) :: t()

Creates input config from a Google Cloud Storage file.
Parameters
	file_name: GCS URI (e.g., "gs://bucket/inputs.jsonl")

Examples
InputEmbedContentConfig.new_from_file("gs://my-bucket/batch.jsonl")

 new_from_requests(requests)

 @spec new_from_requests(Gemini.Types.Request.InlinedEmbedContentRequests.t()) :: t()

Creates input config from inline requests.
Parameters
	requests: InlinedEmbedContentRequests container

Examples
InputEmbedContentConfig.new_from_requests(inlined_requests)

 to_api_map(input_embed_content_config)

 @spec to_api_map(t()) :: map()

Converts the input config to API-compatible map format.
For file-based: {"fileName": "gs://..."}
For inline: {"requests": {"requests": [...]}}

 validate(arg1)

 @spec validate(t()) :: :ok | {:error, String.t()}

Validates that exactly one input source is specified.
Returns
	:ok if valid
	{:error, reason} if invalid

Examples
InputEmbedContentConfig.validate(config)

Gemini.Types.Request.ListModelsRequest

Request structure for listing models with pagination support.

 Summary

 Types

 t()

 Functions

 new(opts \\ [])

 Create a new ListModelsRequest with validation.

 to_query_params(list_models_request)

 Build query parameters string from request.

 Types

 t()

 @type t() :: %Gemini.Types.Request.ListModelsRequest{
 page_size: integer() | nil,
 page_token: String.t() | nil
}

 Functions

 new(opts \\ [])

 @spec new(keyword()) :: {:ok, t()} | {:error, String.t()}

Create a new ListModelsRequest with validation.
Parameters
	opts - Keyword list of options:	:page_size - Number of models per page (1-1000)
	:page_token - Token for pagination

Examples
iex> ListModelsRequest.new(page_size: 50)
{:ok, %ListModelsRequest{page_size: 50}}

iex> ListModelsRequest.new(page_size: 2000)
{:error, "Page size must be between 1 and 1000"}

 to_query_params(list_models_request)

 @spec to_query_params(t()) :: String.t()

Build query parameters string from request.

Gemini.Types.Response.BatchEmbedContentsResponse

Response structure for batch embedding requests.
Contains embeddings for multiple content items in the same order as
the input requests.
Fields
	embeddings: List of content embeddings

Examples
%BatchEmbedContentsResponse{
 embeddings: [
 %ContentEmbedding{values: [0.1, 0.2, ...]},
 %ContentEmbedding{values: [0.3, 0.4, ...]},
 %ContentEmbedding{values: [0.5, 0.6, ...]}
]
}

 Summary

 Types

 t()

 Functions

 from_api_response(map)

 Creates a new batch embedding response from API response data.

 get_all_values(batch_embed_contents_response)

 Gets all embedding values as a list of lists.

 Types

 t()

 @type t() :: %Gemini.Types.Response.BatchEmbedContentsResponse{
 embeddings: [Gemini.Types.Response.ContentEmbedding.t()]
}

 Functions

 from_api_response(map)

 @spec from_api_response(map()) :: t()

Creates a new batch embedding response from API response data.
Parameters
	data: Map containing the API response

Examples
BatchEmbedContentsResponse.from_api_response(%{
 "embeddings" => [
 %{"values" => [0.1, 0.2]},
 %{"values" => [0.3, 0.4]}
]
})

 get_all_values(batch_embed_contents_response)

 @spec get_all_values(t()) :: [[float()]]

Gets all embedding values as a list of lists.
Examples
response = %BatchEmbedContentsResponse{...}
all_values = BatchEmbedContentsResponse.get_all_values(response)
=> [[0.1, 0.2, ...], [0.3, 0.4, ...], ...]

Gemini.Types.Response.BatchState

Represents the state of an async batch embedding job.
States
	:unspecified - State not specified
	:pending - Job queued, not yet processing
	:processing - Currently being processed
	:completed - Successfully completed
	:failed - Processing failed
	:cancelled - Job was cancelled

Examples
Convert from API response
BatchState.from_string("PROCESSING")
=> :processing

Convert to API format
BatchState.to_string(:completed)
=> "COMPLETED"

 Summary

 Types

 t()

 Functions

 from_string(state_string)

 Converts a string state from the API to an atom.

 to_string(state)

 Converts an atom state to the API string format.

 Types

 t()

 @type t() :: :unspecified | :pending | :processing | :completed | :failed | :cancelled

 Functions

 from_string(state_string)

 @spec from_string(String.t()) :: t()

Converts a string state from the API to an atom.
Handles both uppercase API format (e.g., "PENDING") and lowercase format.
Unknown states default to :unspecified.
Parameters
	state_string: The state string from the API

Returns
The corresponding atom state
Examples
BatchState.from_string("PROCESSING")
=> :processing

BatchState.from_string("pending")
=> :pending

BatchState.from_string("UNKNOWN")
=> :unspecified

 to_string(state)

 @spec to_string(t()) :: String.t()

Converts an atom state to the API string format.
Parameters
	state: The state atom

Returns
The API string representation
Examples
BatchState.to_string(:processing)
=> "PROCESSING"

BatchState.to_string(:completed)
=> "COMPLETED"

Gemini.Types.Response.Candidate

Content candidate in response.

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parse candidate from API payload.

 Types

 t()

 @type t() :: %Gemini.Types.Response.Candidate{
 avg_logprobs: float() | nil,
 citation_metadata: Gemini.Types.Response.CitationMetadata.t() | nil,
 content: Gemini.Types.Content.t() | nil,
 finish_message: String.t() | nil,
 finish_reason: String.t() | nil,
 grounding_attributions: [Gemini.Types.Response.GroundingAttribution.t()],
 index: integer() | nil,
 safety_ratings: [Gemini.Types.Response.SafetyRating.t()],
 token_count: integer() | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parse candidate from API payload.

Gemini.Types.Response.CitationMetadata

Citation metadata for generated content.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Response.CitationMetadata{
 citation_sources: [Gemini.Types.Response.CitationSource.t()]
}

Gemini.Types.Response.CitationSource

Citation source information.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Response.CitationSource{
 end_index: integer() | nil,
 license: String.t() | nil,
 start_index: integer() | nil,
 uri: String.t() | nil
}

Gemini.Types.Response.ContentEmbedding

A list of floats representing an embedding.
Embeddings are numerical representations of text that can be used for
various purposes such as similarity comparison, clustering, and retrieval.
Fields
	values: List of float values representing the embedding vector

Examples
%ContentEmbedding{
 values: [0.123, -0.456, 0.789, 0.234, ...]
}

 Summary

 Types

 t()

 Functions

 cosine_similarity(content_embedding1, content_embedding2)

 Calculates cosine similarity between two embeddings.

 dimensionality(content_embedding)

 Gets the dimensionality of the embedding.

 dot_product(content_embedding1, content_embedding2)

 Calculates the dot product between two embeddings.

 euclidean_distance(content_embedding1, content_embedding2)

 Calculates Euclidean distance between two embeddings.

 from_api_response(map)

 Creates a new content embedding from API response data.

 get_values(content_embedding)

 Gets the embedding values.

 norm(content_embedding)

 Calculates the L2 norm (Euclidean magnitude) of the embedding.

 normalize(embedding)

 Normalizes the embedding to unit length (L2 norm = 1).

 Types

 t()

 @type t() :: %Gemini.Types.Response.ContentEmbedding{values: [float()]}

 Functions

 cosine_similarity(content_embedding1, content_embedding2)

 @spec cosine_similarity(t(), t()) :: float() | {:error, String.t()}

Calculates cosine similarity between two embeddings.
Cosine similarity measures the cosine of the angle between two vectors,
ranging from -1 (opposite) to 1 (identical).
This metric focuses on direction rather than magnitude, making it ideal
for semantic similarity. For best results with dimensions other than 3072,
normalize embeddings first using normalize/1.
Parameters
	embedding1: First embedding
	embedding2: Second embedding

Returns
	Float value between -1.0 and 1.0, or
	{:error, reason} if embeddings have different dimensions

Examples
emb1 = %ContentEmbedding{values: [1.0, 0.0, 0.0]}
emb2 = %ContentEmbedding{values: [0.0, 1.0, 0.0]}
ContentEmbedding.cosine_similarity(emb1, emb2)
=> 0.0

For best results with non-3072 dimensions, normalize first
norm1 = ContentEmbedding.normalize(emb1)
norm2 = ContentEmbedding.normalize(emb2)
ContentEmbedding.cosine_similarity(norm1, norm2)

 dimensionality(content_embedding)

 @spec dimensionality(t()) :: non_neg_integer()

Gets the dimensionality of the embedding.
Examples
embedding = %ContentEmbedding{values: [0.1, 0.2, 0.3]}
ContentEmbedding.dimensionality(embedding)
=> 3

 dot_product(content_embedding1, content_embedding2)

 @spec dot_product(t(), t()) :: float() | {:error, String.t()}

Calculates the dot product between two embeddings.
The dot product is a fundamental vector operation used in many similarity
metrics. For normalized vectors, the dot product equals the cosine similarity.
Parameters
	embedding1: First embedding
	embedding2: Second embedding

Returns
	Float value, or
	{:error, reason} if embeddings have different dimensions

Examples
emb1 = %ContentEmbedding{values: [1.0, 2.0, 3.0]}
emb2 = %ContentEmbedding{values: [4.0, 5.0, 6.0]}
ContentEmbedding.dot_product(emb1, emb2)
=> 32.0 (1*4 + 2*5 + 3*6)

 euclidean_distance(content_embedding1, content_embedding2)

 @spec euclidean_distance(t(), t()) :: float() | {:error, String.t()}

Calculates Euclidean distance between two embeddings.
Euclidean distance represents the straight-line distance between two points
in multidimensional space. Unlike cosine similarity, it considers both
direction and magnitude.
Parameters
	embedding1: First embedding
	embedding2: Second embedding

Returns
	Float value >= 0, or
	{:error, reason} if embeddings have different dimensions

Examples
emb1 = %ContentEmbedding{values: [0.0, 0.0]}
emb2 = %ContentEmbedding{values: [3.0, 4.0]}
ContentEmbedding.euclidean_distance(emb1, emb2)
=> 5.0

 from_api_response(map)

 @spec from_api_response(map()) :: t()

Creates a new content embedding from API response data.
Parameters
	data: Map containing the embedding values

Examples
ContentEmbedding.from_api_response(%{"values" => [0.1, 0.2, 0.3]})

 get_values(content_embedding)

 @spec get_values(t()) :: [float()]

Gets the embedding values.
Examples
embedding = %ContentEmbedding{values: [0.1, 0.2, 0.3]}
ContentEmbedding.get_values(embedding)
=> [0.1, 0.2, 0.3]

 norm(content_embedding)

 @spec norm(t()) :: float()

Calculates the L2 norm (Euclidean magnitude) of the embedding.
The norm represents the length of the vector in multidimensional space.
For normalized embeddings, the norm should be 1.0.
Examples
embedding = %ContentEmbedding{values: [3.0, 4.0]}
ContentEmbedding.norm(embedding)
=> 5.0

normalized = ContentEmbedding.normalize(embedding)
ContentEmbedding.norm(normalized)
=> 1.0

 normalize(embedding)

 @spec normalize(t()) :: t()

Normalizes the embedding to unit length (L2 norm = 1).
Per the Gemini API specification, embeddings with dimensions other than 3072
should be normalized for accurate semantic similarity comparison.
The 3072-dimensional embeddings are already normalized by the API, but
embeddings with other dimensions (768, 1536, etc.) need explicit normalization.
Examples
embedding = %ContentEmbedding{values: [3.0, 4.0]}
normalized = ContentEmbedding.normalize(embedding)
=> %ContentEmbedding{values: [0.6, 0.8]}

ContentEmbedding.norm(normalized)
=> 1.0

Gemini.Types.Response.CountTokensResponse

Response from counting tokens.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Response.CountTokensResponse{total_tokens: integer()}

Gemini.Types.Response.EmbedContentBatch

Complete async batch embedding job status and results.
Returned by get_batch_status and get_batch_result operations.
Represents the full state of an async batch embedding job including
progress, timing, and results.
Fields
	model: Model used for embeddings
	name: Batch identifier (format: "batches/{batchId}")
	display_name: Human-readable batch name
	input_config: Input configuration (file or inline)
	output: Output containing results (when complete)
	create_time: When batch was created
	end_time: When batch completed/failed
	update_time: Last update timestamp
	batch_stats: Progress and completion statistics
	state: Current batch state
	priority: Processing priority

Examples
%EmbedContentBatch{
 model: "models/gemini-embedding-001",
 name: "batches/abc123def456",
 display_name: "Knowledge Base Embeddings",
 state: :processing,
 batch_stats: %EmbedContentBatchStats{
 request_count: 1000,
 successful_request_count: 750,
 failed_request_count: 50,
 pending_request_count: 200
 },
 create_time: ~U[2025-10-14 17:00:00Z],
 ...
}

 Summary

 Types

 t()

 Functions

 complete?(arg1)

 Checks if the batch is complete (either succeeded or failed).

 failed?(arg1)

 Checks if the batch failed.

 from_api_response(data)

 Creates a batch from API response data.

 processing?(arg1)

 Checks if the batch is currently processing.

 progress_percentage(embed_content_batch)

 Calculates the progress percentage of the batch.

 Types

 t()

 @type t() :: %Gemini.Types.Response.EmbedContentBatch{
 batch_stats: Gemini.Types.Response.EmbedContentBatchStats.t() | nil,
 create_time: DateTime.t() | nil,
 display_name: String.t(),
 end_time: DateTime.t() | nil,
 input_config: Gemini.Types.Request.InputEmbedContentConfig.t() | nil,
 model: String.t(),
 name: String.t(),
 output: Gemini.Types.Response.EmbedContentBatchOutput.t() | nil,
 priority: integer() | nil,
 state: Gemini.Types.Response.BatchState.t(),
 update_time: DateTime.t() | nil
}

 Functions

 complete?(arg1)

 @spec complete?(t()) :: boolean()

Checks if the batch is complete (either succeeded or failed).
Examples
EmbedContentBatch.complete?(batch)
=> true

 failed?(arg1)

 @spec failed?(t()) :: boolean()

Checks if the batch failed.
Examples
EmbedContentBatch.failed?(batch)
=> false

 from_api_response(data)

 @spec from_api_response(map()) :: t()

Creates a batch from API response data.
Parameters
	data: Map containing the API response

Examples
EmbedContentBatch.from_api_response(%{
 "model" => "models/gemini-embedding-001",
 "name" => "batches/abc123",
 "displayName" => "My Batch",
 "state" => "PROCESSING",
 ...
})

 processing?(arg1)

 @spec processing?(t()) :: boolean()

Checks if the batch is currently processing.
Examples
EmbedContentBatch.processing?(batch)
=> true

 progress_percentage(embed_content_batch)

 @spec progress_percentage(t()) :: float() | nil

Calculates the progress percentage of the batch.
Returns nil if batch stats are not available.
Examples
EmbedContentBatch.progress_percentage(batch)
=> 75.5

Gemini.Types.Response.EmbedContentBatchOutput

Output of an async batch embedding job.
This is a union type - exactly ONE of the fields will be set.
Union Type - ONE will be set:
	responses_file: File ID containing JSONL responses (for file-based output)
	inlined_responses: Direct inline responses (for inline output)

Fields
	responses_file: GCS file containing batch results
	inlined_responses: Container with inline response data

Examples
File-based output
%EmbedContentBatchOutput{
 responses_file: "gs://bucket/outputs/batch-001-results.jsonl",
 inlined_responses: nil
}

Inline output
%EmbedContentBatchOutput{
 responses_file: nil,
 inlined_responses: %InlinedEmbedContentResponses{...}
}

 Summary

 Types

 t()

 Functions

 file_based?(arg1)

 Checks if the output is file-based.

 from_api_response(data)

 Creates batch output from API response data.

 inline?(arg1)

 Checks if the output is inline.

 Types

 t()

 @type t() :: %Gemini.Types.Response.EmbedContentBatchOutput{
 inlined_responses:
 Gemini.Types.Response.InlinedEmbedContentResponses.t() | nil,
 responses_file: String.t() | nil
}

 Functions

 file_based?(arg1)

 @spec file_based?(t()) :: boolean()

Checks if the output is file-based.
Examples
EmbedContentBatchOutput.file_based?(output)
=> true

 from_api_response(data)

 @spec from_api_response(map()) :: t()

Creates batch output from API response data.
Parameters
	data: Map containing the API response

Examples
EmbedContentBatchOutput.from_api_response(%{
 "responsesFile" => "gs://bucket/results.jsonl"
})

 inline?(arg1)

 @spec inline?(t()) :: boolean()

Checks if the output is inline.
Examples
EmbedContentBatchOutput.inline?(output)
=> false

Gemini.Types.Response.EmbedContentBatchStats

Statistics about an async embedding batch job.
Tracks the progress and status of requests within a batch.
Fields
	request_count: Total number of requests in the batch (required)
	successful_request_count: Number of successfully completed requests
	failed_request_count: Number of failed requests
	pending_request_count: Number of requests still pending

Examples
From API response
stats = EmbedContentBatchStats.from_api_response(%{
 "requestCount" => "100",
 "successfulRequestCount" => "75",
 "failedRequestCount" => "5",
 "pendingRequestCount" => "20"
})

Check progress
EmbedContentBatchStats.progress_percentage(stats)
=> 80.0

Check if complete
EmbedContentBatchStats.complete?(stats)
=> false

 Summary

 Types

 t()

 Functions

 complete?(embed_content_batch_stats)

 Checks if the batch is complete (no pending requests).

 failure_rate(stats)

 Calculates the failure rate of completed requests.

 from_api_response(data)

 Creates stats from an API response map.

 progress_percentage(stats)

 Calculates the progress percentage of the batch.

 success_rate(stats)

 Calculates the success rate of completed requests.

 Types

 t()

 @type t() :: %Gemini.Types.Response.EmbedContentBatchStats{
 failed_request_count: non_neg_integer() | nil,
 pending_request_count: non_neg_integer() | nil,
 request_count: non_neg_integer(),
 successful_request_count: non_neg_integer() | nil
}

 Functions

 complete?(embed_content_batch_stats)

 @spec complete?(t()) :: boolean()

Checks if the batch is complete (no pending requests).
Parameters
	stats: The batch statistics

Returns
true if no pending requests remain, false otherwise
Examples
stats = %EmbedContentBatchStats{
 request_count: 100,
 successful_request_count: 100,
 failed_request_count: 0,
 pending_request_count: 0
}

EmbedContentBatchStats.complete?(stats)
=> true

 failure_rate(stats)

 @spec failure_rate(t()) :: float()

Calculates the failure rate of completed requests.
Parameters
	stats: The batch statistics

Returns
Failure rate as a float percentage (0.0 to 100.0)
Examples
stats = %EmbedContentBatchStats{
 request_count: 100,
 successful_request_count: 80,
 failed_request_count: 20,
 pending_request_count: 0
}

EmbedContentBatchStats.failure_rate(stats)
=> 20.0

 from_api_response(data)

 @spec from_api_response(map()) :: t()

Creates stats from an API response map.
Handles both string and integer values from the API.
Parameters
	data: Map containing batch statistics from the API

Returns
A new EmbedContentBatchStats struct
Examples
EmbedContentBatchStats.from_api_response(%{
 "requestCount" => "100",
 "successfulRequestCount" => "75"
})

 progress_percentage(stats)

 @spec progress_percentage(t()) :: float()

Calculates the progress percentage of the batch.
Progress is calculated as: (successful + failed) / total * 100
Parameters
	stats: The batch statistics

Returns
Progress as a float percentage (0.0 to 100.0)
Examples
stats = %EmbedContentBatchStats{
 request_count: 100,
 successful_request_count: 75,
 failed_request_count: 5,
 pending_request_count: 20
}

EmbedContentBatchStats.progress_percentage(stats)
=> 80.0

 success_rate(stats)

 @spec success_rate(t()) :: float()

Calculates the success rate of completed requests.
Parameters
	stats: The batch statistics

Returns
Success rate as a float percentage (0.0 to 100.0)
Examples
stats = %EmbedContentBatchStats{
 request_count: 100,
 successful_request_count: 80,
 failed_request_count: 20,
 pending_request_count: 0
}

EmbedContentBatchStats.success_rate(stats)
=> 80.0

Gemini.Types.Response.EmbedContentResponse

Response structure for embedding content requests.
Contains the generated embedding vector from the input content.
Fields
	embedding: The content embedding containing the numerical vector

Examples
%EmbedContentResponse{
 embedding: %ContentEmbedding{
 values: [0.123, -0.456, 0.789, ...]
 }
}

 Summary

 Types

 t()

 Functions

 from_api_response(map)

 Creates a new embedding response from API response data.

 get_values(embed_content_response)

 Extracts the embedding values as a list of floats.

 Types

 t()

 @type t() :: %Gemini.Types.Response.EmbedContentResponse{
 embedding: Gemini.Types.Response.ContentEmbedding.t()
}

 Functions

 from_api_response(map)

 @spec from_api_response(map()) :: t()

Creates a new embedding response from API response data.
Parameters
	data: Map containing the API response

Examples
EmbedContentResponse.from_api_response(%{
 "embedding" => %{"values" => [0.1, 0.2, 0.3]}
})

 get_values(embed_content_response)

 @spec get_values(t()) :: [float()]

Extracts the embedding values as a list of floats.
Examples
response = %EmbedContentResponse{...}
values = EmbedContentResponse.get_values(response)
=> [0.123, -0.456, 0.789, ...]

Gemini.Types.Response.GenerateContentResponse

Response from content generation.

 Summary

 Types

 t()

 Functions

 extract_text(arg1)

 Extract text content from the response.

 finish_reason(arg1)

 Get the finish reason from the first candidate.

 from_api(data)

 Parse a generate content response from the API payload.

 token_usage(arg1)

 Get token usage information from the response.

 Types

 t()

 @type t() :: %Gemini.Types.Response.GenerateContentResponse{
 candidates: [Gemini.Types.Response.Candidate.t()],
 create_time: DateTime.t() | nil,
 model_version: String.t() | nil,
 prompt_feedback: Gemini.Types.Response.PromptFeedback.t() | nil,
 response_id: String.t() | nil,
 usage_metadata: Gemini.Types.Response.UsageMetadata.t() | nil
}

 Functions

 extract_text(arg1)

 @spec extract_text(t()) :: {:ok, String.t()} | {:error, String.t()}

Extract text content from the response.

 finish_reason(arg1)

 @spec finish_reason(t()) :: String.t() | nil

Get the finish reason from the first candidate.

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parse a generate content response from the API payload.

 token_usage(arg1)

 @spec token_usage(t()) :: map() | nil

Get token usage information from the response.

Gemini.Types.Response.GroundingAttribution

Grounding attribution information.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Response.GroundingAttribution{
 content: Gemini.Types.Content.t() | nil,
 source_id: Gemini.Types.Response.GroundingAttributionSourceId.t() | nil
}

Gemini.Types.Response.GroundingAttributionSourceId

Grounding attribution source ID.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Response.GroundingAttributionSourceId{
 grounding_passage: Gemini.Types.Response.GroundingPassageId.t() | nil,
 semantic_retriever_chunk:
 Gemini.Types.Response.SemanticRetrieverChunk.t() | nil
}

Gemini.Types.Response.GroundingPassageId

Grounding passage ID.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Response.GroundingPassageId{
 part_index: integer(),
 passage_id: String.t()
}

Gemini.Types.Response.InlinedEmbedContentResponse

Response for a single request within an async batch.
This is a union type - exactly ONE of response or error will be set.
Union Type - ONE will be set:
	response: Successful EmbedContentResponse
	error: Error status if request failed

Fields
	metadata: Optional metadata from the request
	response: Successful embedding response (if successful)
	error: Error details (if failed)

Examples
Successful response
%InlinedEmbedContentResponse{
 metadata: %{"id" => "123"},
 response: %EmbedContentResponse{...},
 error: nil
}

Failed response
%InlinedEmbedContentResponse{
 metadata: %{"id" => "456"},
 response: nil,
 error: %{"code" => 400, "message" => "Invalid input"}
}

 Summary

 Types

 t()

 Functions

 error?(arg1)

 Checks if the inlined response is an error.

 from_api_response(data)

 Creates an inlined response from API response data.

 success?(arg1)

 Checks if the inlined response is successful.

 Types

 t()

 @type t() :: %Gemini.Types.Response.InlinedEmbedContentResponse{
 error: map() | nil,
 metadata: map() | nil,
 response: Gemini.Types.Response.EmbedContentResponse.t() | nil
}

 Functions

 error?(arg1)

 @spec error?(t()) :: boolean()

Checks if the inlined response is an error.
Examples
InlinedEmbedContentResponse.error?(response)
=> false

 from_api_response(data)

 @spec from_api_response(map()) :: t()

Creates an inlined response from API response data.
Parameters
	data: Map containing the API response

Examples
InlinedEmbedContentResponse.from_api_response(%{
 "metadata" => %{"id" => "123"},
 "response" => %{"embedding" => %{"values" => [...]}}
})

 success?(arg1)

 @spec success?(t()) :: boolean()

Checks if the inlined response is successful.
Examples
InlinedEmbedContentResponse.success?(response)
=> true

Gemini.Types.Response.InlinedEmbedContentResponses

Container for all responses in an inline batch.
Contains a list of InlinedEmbedContentResponse structs, each representing
the result of one request from the batch.
Fields
	inlined_responses: List of InlinedEmbedContentResponse structs

Examples
%InlinedEmbedContentResponses{
 inlined_responses: [
 %InlinedEmbedContentResponse{response: ..., error: nil},
 %InlinedEmbedContentResponse{response: nil, error: ...}
]
}

 Summary

 Types

 t()

 Functions

 failed_responses(inlined_embed_content_responses)

 Extracts all failed responses with their indices and error details.

 from_api_response(map)

 Creates an inlined responses container from API response data.

 successful_responses(inlined_embed_content_responses)

 Extracts all successful responses from the container.

 Types

 t()

 @type t() :: %Gemini.Types.Response.InlinedEmbedContentResponses{
 inlined_responses: [Gemini.Types.Response.InlinedEmbedContentResponse.t()]
}

 Functions

 failed_responses(inlined_embed_content_responses)

 @spec failed_responses(t()) :: [{integer(), map()}]

Extracts all failed responses with their indices and error details.
Returns
List of tuples: {index, error_map}
Examples
failures = InlinedEmbedContentResponses.failed_responses(responses)
=> [{2, %{"code" => 400, "message" => "Invalid"}}, ...]

 from_api_response(map)

 @spec from_api_response(map()) :: t()

Creates an inlined responses container from API response data.
Parameters
	data: Map containing the API response with inlined responses

Examples
InlinedEmbedContentResponses.from_api_response(%{
 "inlinedResponses" => [
 %{"response" => %{"embedding" => ...}},
 %{"error" => %{"code" => 400}}
]
})

 successful_responses(inlined_embed_content_responses)

 @spec successful_responses(t()) :: [Gemini.Types.Response.EmbedContentResponse.t()]

Extracts all successful responses from the container.
Returns
List of EmbedContentResponse structs
Examples
successful = InlinedEmbedContentResponses.successful_responses(responses)
=> [%EmbedContentResponse{...}, %EmbedContentResponse{...}]

Gemini.Types.Response.ListModelsResponse

Response structure for listing models.
Contains the list of models and pagination information.

 Summary

 Types

 t()

 Functions

 filter_models(list_models_response, predicate)

 Filter models by a predicate function.

 group_models(list_models_response, classifier)

 Group models by a classification function.

 has_next_page?(list_models_response)

 Check if there are more pages available.

 model_count(list_models_response)

 Get the total number of models in this response.

 model_names(list_models_response)

 Extract model names from the response.

 Types

 t()

 @type t() :: %Gemini.Types.Response.ListModelsResponse{
 models: [Gemini.Types.Response.Model.t()],
 next_page_token: String.t() | nil
}

 Functions

 filter_models(list_models_response, predicate)

 @spec filter_models(t(), (Gemini.Types.Response.Model.t() -> boolean())) :: [
 Gemini.Types.Response.Model.t()
]

Filter models by a predicate function.

 group_models(list_models_response, classifier)

 @spec group_models(t(), (Gemini.Types.Response.Model.t() -> term())) :: map()

Group models by a classification function.

 has_next_page?(list_models_response)

 @spec has_next_page?(t()) :: boolean()

Check if there are more pages available.

 model_count(list_models_response)

 @spec model_count(t()) :: non_neg_integer()

Get the total number of models in this response.

 model_names(list_models_response)

 @spec model_names(t()) :: [String.t()]

Extract model names from the response.

Gemini.Types.Response.ModalityTokenCount

Token counting information for a single modality.

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parse from API payload.

 to_api(data)

 Convert to API payload map.

 Types

 t()

 @type t() :: %Gemini.Types.Response.ModalityTokenCount{
 modality: Gemini.Types.Modality.t() | :document | nil,
 token_count: integer() | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parse from API payload.

 to_api(data)

 @spec to_api(t() | nil) :: map() | nil

Convert to API payload map.

Gemini.Types.Response.Model

Model information response structure.
Represents the complete model metadata returned by the Gemini API,
including capabilities, token limits, and generation parameters.

 Summary

 Types

 capability_level()

 Model capability level based on features and limits

 capacity_tier()

 Token capacity classification

 t()

 Functions

 capabilities_summary(model)

 Generate a comprehensive capabilities summary.

 capability_score(model)

 Calculate a capability score for model comparison.

 compare_capabilities(model1, model2)

 Compare two models by capability.

 effective_base_id(model)

 Get the effective base model ID.

 has_advanced_params?(model)

 Check if model has advanced generation parameters.

 input_capacity_tier(model)

 Classify model's input token capacity.

 latest_version?(model)

 Check if this appears to be the latest version of a model.

 model_family(model)

 Extract model family from the base model ID.

 output_capacity_tier(model)

 Classify model's output token capacity.

 production_ready?(model)

 Determine if model is suitable for production use.

 supports_embeddings?(model)

 Check if model supports embeddings.

 supports_method?(model, method)

 Check if model supports a specific generation method.

 supports_streaming?(model)

 Check if model supports streaming content generation.

 supports_token_counting?(model)

 Check if model supports token counting.

 Types

 capability_level()

 @type capability_level() :: :basic | :standard | :advanced | :premium

Model capability level based on features and limits

 capacity_tier()

 @type capacity_tier() :: :small | :medium | :large | :very_large

Token capacity classification

 t()

 @type t() :: %Gemini.Types.Response.Model{
 base_model_id: String.t(),
 description: String.t(),
 display_name: String.t(),
 input_token_limit: integer(),
 max_temperature: float() | nil,
 name: String.t(),
 output_token_limit: integer(),
 supported_generation_methods: [String.t()],
 temperature: float() | nil,
 top_k: integer() | nil,
 top_p: float() | nil,
 version: String.t()
}

 Functions

 capabilities_summary(model)

 @spec capabilities_summary(t()) :: map()

Generate a comprehensive capabilities summary.
Example Response
%{
 supports_streaming: true,
 supports_token_counting: true,
 supports_embeddings: false,
 has_temperature: true,
 has_top_k: true,
 has_top_p: false,
 method_count: 3,
 input_capacity: :very_large,
 output_capacity: :medium
}

 capability_score(model)

 @spec capability_score(t()) :: integer()

Calculate a capability score for model comparison.
Higher scores indicate more capable models.

 compare_capabilities(model1, model2)

 @spec compare_capabilities(t(), t()) :: :lt | :eq | :gt

Compare two models by capability.
Returns :lt, :eq, or :gt based on capability scores.

 effective_base_id(model)

 @spec effective_base_id(t()) :: String.t()

Get the effective base model ID.
Prefers the base_model_id field, but falls back to extracting
from the name if base_model_id is nil.
Examples
iex> Model.effective_base_id(%Model{base_model_id: "gemini-flash-lite-latest"})
"gemini-flash-lite-latest"

iex> Model.effective_base_id(%Model{name: "models/gemini-2.5-pro", base_model_id: nil})
"gemini-2.5-pro"

 has_advanced_params?(model)

 @spec has_advanced_params?(t()) :: boolean()

Check if model has advanced generation parameters.
Returns true if the model supports temperature, top_p, or top_k parameters.

 input_capacity_tier(model)

 @spec input_capacity_tier(t()) :: capacity_tier()

Classify model's input token capacity.
Examples
iex> Model.input_capacity_tier(%Model{input_token_limit: 2_000_000})
:very_large

iex> Model.input_capacity_tier(%Model{input_token_limit: 30_000})
:medium

 latest_version?(model)

 @spec latest_version?(t()) :: boolean()

Check if this appears to be the latest version of a model.
Heuristic based on name patterns (no version suffix, "latest" in name).

 model_family(model)

 @spec model_family(t()) :: String.t()

Extract model family from the base model ID.
Examples
iex> Model.model_family(%Model{base_model_id: "gemini-flash-lite-latest"})
"gemini"

iex> Model.model_family(%Model{base_model_id: "gemini-embedding-001"})
"gemini-embedding"

 output_capacity_tier(model)

 @spec output_capacity_tier(t()) :: capacity_tier()

Classify model's output token capacity.

 production_ready?(model)

 @spec production_ready?(t()) :: boolean()

Determine if model is suitable for production use.
Based on capability, capacity, and stability indicators.

 supports_embeddings?(model)

 @spec supports_embeddings?(t()) :: boolean()

Check if model supports embeddings.

 supports_method?(model, method)

 @spec supports_method?(t(), String.t()) :: boolean()

Check if model supports a specific generation method.
Examples
iex> Model.supports_method?(model, "generateContent")
true

iex> Model.supports_method?(model, "nonexistentMethod")
false

 supports_streaming?(model)

 @spec supports_streaming?(t()) :: boolean()

Check if model supports streaming content generation.

 supports_token_counting?(model)

 @spec supports_token_counting?(t()) :: boolean()

Check if model supports token counting.

Gemini.Types.Response.PromptFeedback

Prompt feedback information.

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parse prompt feedback from API payload.

 Types

 t()

 @type t() :: %Gemini.Types.Response.PromptFeedback{
 block_reason: String.t() | nil,
 block_reason_message: String.t() | nil,
 safety_ratings: [Gemini.Types.Response.SafetyRating.t()]
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parse prompt feedback from API payload.

Gemini.Types.Response.SafetyRating

Safety rating for content.

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parse safety rating from API payload.

 Types

 t()

 @type t() :: %Gemini.Types.Response.SafetyRating{
 blocked: boolean() | nil,
 category: String.t(),
 probability: String.t(),
 probability_score: float() | nil,
 severity: String.t() | nil,
 severity_score: float() | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parse safety rating from API payload.

Gemini.Types.Response.SemanticRetrieverChunk

Semantic retriever chunk information.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Response.SemanticRetrieverChunk{
 chunk: String.t(),
 source: String.t()
}

Gemini.Types.Response.TrafficType

Traffic type for API requests (billing classification).

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 Parse traffic type from API string.

 to_api(arg1)

 Convert traffic type atom to API string.

 Types

 t()

 @type t() :: :traffic_type_unspecified | :on_demand | :provisioned_throughput

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

Parse traffic type from API string.

 to_api(arg1)

 @spec to_api(t() | atom() | nil) :: String.t() | nil

Convert traffic type atom to API string.

Gemini.Types.Response.UsageMetadata

Usage metadata for API calls.

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parse usage metadata from API payload.

 Types

 t()

 @type t() :: %Gemini.Types.Response.UsageMetadata{
 cache_tokens_details: [Gemini.Types.Response.ModalityTokenCount.t()] | nil,
 cached_content_token_count: integer() | nil,
 candidates_token_count: integer() | nil,
 prompt_token_count: integer() | nil,
 prompt_tokens_details: [Gemini.Types.Response.ModalityTokenCount.t()] | nil,
 response_tokens_details: [Gemini.Types.Response.ModalityTokenCount.t()] | nil,
 thoughts_token_count: integer() | nil,
 tool_use_prompt_token_count: integer() | nil,
 tool_use_prompt_tokens_details:
 [Gemini.Types.Response.ModalityTokenCount.t()] | nil,
 total_token_count: integer(),
 traffic_type: Gemini.Types.Response.TrafficType.t() | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parse usage metadata from API payload.

Gemini.Types.SafetySetting

Safety settings for content generation.

 Summary

 Types

 category()

 t()

 threshold()

 Functions

 dangerous_content(threshold \\ :block_medium_and_above)

 Create a safety setting for dangerous content.

 defaults()

 Get default safety settings (medium threshold for all categories).

 harassment(threshold \\ :block_medium_and_above)

 Create a safety setting for harassment content.

 hate_speech(threshold \\ :block_medium_and_above)

 Create a safety setting for hate speech content.

 permissive()

 Get permissive safety settings (block only high risk content).

 sexually_explicit(threshold \\ :block_medium_and_above)

 Create a safety setting for sexually explicit content.

 Types

 category()

 @type category() ::
 :harm_category_harassment
 | :harm_category_hate_speech
 | :harm_category_sexually_explicit
 | :harm_category_dangerous_content

 t()

 @type t() :: %Gemini.Types.SafetySetting{category: category(), threshold: threshold()}

 threshold()

 @type threshold() ::
 :harm_block_threshold_unspecified
 | :block_low_and_above
 | :block_medium_and_above
 | :block_only_high
 | :block_none

 Functions

 dangerous_content(threshold \\ :block_medium_and_above)

Create a safety setting for dangerous content.

 defaults()

Get default safety settings (medium threshold for all categories).

 harassment(threshold \\ :block_medium_and_above)

Create a safety setting for harassment content.

 hate_speech(threshold \\ :block_medium_and_above)

Create a safety setting for hate speech content.

 permissive()

Get permissive safety settings (block only high risk content).

 sexually_explicit(threshold \\ :block_medium_and_above)

Create a safety setting for sexually explicit content.

Gemini.Types.Schema

JSON Schema type for defining function parameters in Gemini tool calling.
This module provides a structured way to define parameter schemas for function
declarations. It supports all standard JSON Schema types and converts to the
Gemini API format (with UPPERCASE type names).
Supported Types
	:string - Text values
	:integer - Whole numbers
	:number - Decimal numbers
	:boolean - True/false values
	:array - Lists of items
	:object - Nested objects with properties

Examples
Simple string parameter
schema = Schema.string("User's name")

Object with required fields
schema = Schema.object(%{
 "name" => Schema.string("Person's name"),
 "age" => Schema.integer("Person's age"),
 "email" => Schema.string("Email address")
}, required: ["name", "email"])

Array of strings
schema = Schema.array(Schema.string("Tag"), "List of tags")

Complex nested schema
address = Schema.object(%{
 "street" => Schema.string("Street address"),
 "city" => Schema.string("City"),
 "zip" => Schema.string("ZIP code")
})

person = Schema.object(%{
 "name" => Schema.string("Full name"),
 "address" => address
})
API Conversion
Use to_api_map/1 to convert to the Gemini API format:
schema = Schema.string("A name")
Schema.to_api_map(schema)
#=> %{"type" => "STRING", "description" => "A name"}

 Summary

 Types

 schema_type()

 t()

 JSON Schema definition for function parameters

 Functions

 array(items, description \\ nil, opts \\ [])

 Create an array schema with item schema.

 boolean(description \\ nil, opts \\ [])

 Create a boolean schema with optional description.

 from_api_map(api_map)

 Parse a Schema from Gemini API map format.

 integer(description \\ nil, opts \\ [])

 Create an integer schema with optional description.

 new(opts)

 Create a new Schema with the given options.

 number(description \\ nil, opts \\ [])

 Create a number (float/decimal) schema with optional description.

 object(properties, opts \\ [])

 Create an object schema with properties.

 string(description \\ nil, opts \\ [])

 Create a string schema with optional description.

 to_api_map(schema)

 Convert a Schema struct to Gemini API map format.

 Types

 schema_type()

 @type schema_type() :: :string | :integer | :number | :boolean | :array | :object

 t()

 @type t() :: %Gemini.Types.Schema{
 default: term(),
 description: String.t() | nil,
 enum: [String.t()] | nil,
 format: String.t() | nil,
 items: t() | map() | nil,
 max_items: non_neg_integer() | nil,
 maximum: number() | nil,
 min_items: non_neg_integer() | nil,
 minimum: number() | nil,
 nullable: boolean() | nil,
 pattern: String.t() | nil,
 properties: %{required(String.t()) => t() | map()} | nil,
 required: [String.t()] | nil,
 type: schema_type()
}

JSON Schema definition for function parameters

 Functions

 array(items, description \\ nil, opts \\ [])

 @spec array(t() | map(), String.t() | nil, keyword()) :: t()

Create an array schema with item schema.
Examples
Schema.array(Schema.string("Tag"), "List of tags")
Schema.array(Schema.integer("Score"), "Test scores", min_items: 1)

 boolean(description \\ nil, opts \\ [])

 @spec boolean(
 String.t() | nil,
 keyword()
) :: t()

Create a boolean schema with optional description.
Examples
Schema.boolean("Is active")
Schema.boolean("Feature flag")

 from_api_map(api_map)

 @spec from_api_map(map()) :: {:ok, t()} | {:error, String.t()}

Parse a Schema from Gemini API map format.
Examples
api_map = %{"type" => "STRING", "description" => "A name"}
{:ok, schema} = Schema.from_api_map(api_map)

 integer(description \\ nil, opts \\ [])

 @spec integer(
 String.t() | nil,
 keyword()
) :: t()

Create an integer schema with optional description.
Examples
Schema.integer("User's age")
Schema.integer("Count", minimum: 0, maximum: 100)

 new(opts)

 @spec new(keyword()) :: {:ok, t()} | {:error, String.t()}

Create a new Schema with the given options.
Options
	:type (required) - The schema type (:string, :integer, :number, :boolean, :array, :object)
	:description - Human-readable description
	:enum - List of allowed values for strings
	:items - Schema for array items (when type is :array)
	:properties - Map of property schemas (when type is :object)
	:required - List of required property names
	:nullable - Whether the value can be null
	:format - Format hint (e.g., "date-time", "email")
	:minimum - Minimum value for numbers
	:maximum - Maximum value for numbers
	:min_items - Minimum array length
	:max_items - Maximum array length
	:pattern - Regex pattern for strings
	:default - Default value

Examples
{:ok, schema} = Schema.new(type: :string, description: "A name")

{:ok, schema} = Schema.new(
 type: :object,
 properties: %{
 "name" => %{type: :string},
 "age" => %{type: :integer}
 },
 required: ["name"]
)

 number(description \\ nil, opts \\ [])

 @spec number(
 String.t() | nil,
 keyword()
) :: t()

Create a number (float/decimal) schema with optional description.
Examples
Schema.number("Price in USD")
Schema.number("Temperature", minimum: -273.15)

 object(properties, opts \\ [])

 @spec object(
 %{required(String.t()) => t() | map()},
 keyword()
) :: t()

Create an object schema with properties.
Examples
Schema.object(%{
 "name" => Schema.string("Person's name"),
 "age" => Schema.integer("Age")
}, required: ["name"], description: "A person")

 string(description \\ nil, opts \\ [])

 @spec string(
 String.t() | nil,
 keyword()
) :: t()

Create a string schema with optional description.
Examples
Schema.string("User's name")
Schema.string("Status", enum: ["active", "inactive"])

 to_api_map(schema)

 @spec to_api_map(t() | map()) :: map()

Convert a Schema struct to Gemini API map format.
The Gemini API uses UPPERCASE type names (STRING, INTEGER, etc.)
and camelCase field names.
Examples
schema = Schema.string("A name")
Schema.to_api_map(schema)
#=> %{"type" => "STRING", "description" => "A name"}

Gemini.Types.SpeechConfig

Speech generation configuration.

 Summary

 Types

 t()

 Functions

 from_api(data)

 to_api(config)

 Types

 t()

 @type t() :: %Gemini.Types.SpeechConfig{
 language_code: String.t() | nil,
 voice_config: Gemini.Types.VoiceConfig.t() | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

 to_api(config)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Types.ToolSerialization

Pure data transformation utilities to serialize ALTAR ADM tool structures
into the exact JSON maps expected by the Gemini API.
	Converts snake_case atom keys to camelCase string keys
	Shapes FunctionDeclaration into the correct Tool list payload
	Shapes ToolConfig into %{functionCallingConfig: %{...}}

 Summary

 Types

 api_tool()

 api_tool_config()

 api_tool_list()

 Functions

 to_api_tool_config(tool_config)

 Convert ADM ToolConfig into Gemini API toolConfig map.

 to_api_tool_list(declarations)

 Convert a list of tools into a Gemini API tools list.

 Types

 api_tool()

 @type api_tool() :: map()

 api_tool_config()

 @type api_tool_config() :: map()

 api_tool_list()

 @type api_tool_list() :: [api_tool()]

 Functions

 to_api_tool_config(tool_config)

 @spec to_api_tool_config(Altar.ADM.ToolConfig.t()) :: api_tool_config()

Convert ADM ToolConfig into Gemini API toolConfig map.
Input:
%ToolConfig{mode: :auto | :any | :none, function_names: ["..."]}
Output:
%{
 functionCallingConfig: %{
mode: "AUTO" | "ANY" | "NONE",
allowedFunctionNames: ["..."] # present only when non-empty
 }
}

 to_api_tool_list(declarations)

 @spec to_api_tool_list(list()) :: api_tool_list()

Convert a list of tools into a Gemini API tools list.
Supports:
	ADM FunctionDeclaration structs
	Built-in tools (googleSearch, urlContext, codeExecution)
	Atom shorthand for built-ins (:google_search, :url_context, :code_execution)

Gemini.Types.Tuning

Types for the Tunings API (fine-tuning/model tuning).
This module provides structs for tuning job configuration, status,
and response parsing for Google's model tuning API.

 Summary

 Types

 job_state()

 Functions

 from_api_response(response)

 Parses a tuning job from API response.

 job_complete?(tuning_job)

 Checks if a tuning job has completed (terminal state).

 job_failed?(tuning_job)

 Checks if a tuning job failed.

 job_running?(tuning_job)

 Checks if a tuning job is still running (non-terminal state).

 job_succeeded?(tuning_job)

 Checks if a tuning job succeeded.

 parse_state(arg1)

 Parses job state string to atom.

 state_to_api(atom)

 Converts job state atom to API string.

 to_api_map(config)

 Converts CreateTuningJobConfig to API request map.

 Types

 job_state()

 @type job_state() ::
 :job_state_unspecified
 | :job_state_queued
 | :job_state_pending
 | :job_state_running
 | :job_state_succeeded
 | :job_state_failed
 | :job_state_cancelling
 | :job_state_cancelled
 | :job_state_paused
 | :job_state_expired

 Functions

 from_api_response(response)

 @spec from_api_response(map()) :: Gemini.Types.Tuning.TuningJob.t()

Parses a tuning job from API response.

 job_complete?(tuning_job)

 @spec job_complete?(Gemini.Types.Tuning.TuningJob.t()) :: boolean()

Checks if a tuning job has completed (terminal state).

 job_failed?(tuning_job)

 @spec job_failed?(Gemini.Types.Tuning.TuningJob.t()) :: boolean()

Checks if a tuning job failed.

 job_running?(tuning_job)

 @spec job_running?(Gemini.Types.Tuning.TuningJob.t()) :: boolean()

Checks if a tuning job is still running (non-terminal state).

 job_succeeded?(tuning_job)

 @spec job_succeeded?(Gemini.Types.Tuning.TuningJob.t()) :: boolean()

Checks if a tuning job succeeded.

 parse_state(arg1)

 @spec parse_state(String.t() | nil) :: job_state() | nil

Parses job state string to atom.

 state_to_api(atom)

 @spec state_to_api(job_state()) :: String.t()

Converts job state atom to API string.

 to_api_map(config)

 @spec to_api_map(Gemini.Types.Tuning.CreateTuningJobConfig.t()) :: map()

Converts CreateTuningJobConfig to API request map.

Gemini.Types.Tuning.CreateTuningJobConfig

Configuration for creating a new tuning job.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Tuning.CreateTuningJobConfig{
 adapter_size: String.t() | nil,
 base_model: String.t(),
 epoch_count: integer() | nil,
 labels: map() | nil,
 learning_rate_multiplier: float() | nil,
 training_dataset_uri: String.t(),
 tuned_model_display_name: String.t(),
 validation_dataset_uri: String.t() | nil
}

Gemini.Types.Tuning.HyperParameters

Hyperparameters for supervised tuning.

 Summary

 Types

 t()

 Functions

 from_api_response(params)

 Parses hyperparameters from API response.

 Types

 t()

 @type t() :: %Gemini.Types.Tuning.HyperParameters{
 adapter_size: String.t() | nil,
 epoch_count: integer() | nil,
 learning_rate_multiplier: float() | nil
}

 Functions

 from_api_response(params)

 @spec from_api_response(map() | nil) :: t() | nil

Parses hyperparameters from API response.

Gemini.Types.Tuning.ListTuningJobsResponse

Response from listing tuning jobs with pagination support.

 Summary

 Types

 t()

 Functions

 from_api_response(response)

 Parses list response from API.

 has_more_pages?(list_tuning_jobs_response)

 Checks if there are more pages to fetch.

 Types

 t()

 @type t() :: %Gemini.Types.Tuning.ListTuningJobsResponse{
 next_page_token: String.t() | nil,
 tuning_jobs: [Gemini.Types.Tuning.TuningJob.t()]
}

 Functions

 from_api_response(response)

 @spec from_api_response(map()) :: t()

Parses list response from API.

 has_more_pages?(list_tuning_jobs_response)

 @spec has_more_pages?(t()) :: boolean()

Checks if there are more pages to fetch.

Gemini.Types.Tuning.SupervisedTuningSpec

Specification for supervised tuning configuration.

 Summary

 Types

 t()

 Functions

 from_api_response(spec)

 Parses supervised tuning spec from API response.

 Types

 t()

 @type t() :: %Gemini.Types.Tuning.SupervisedTuningSpec{
 hyper_parameters: Gemini.Types.Tuning.HyperParameters.t() | nil,
 training_dataset_uri: String.t() | nil,
 validation_dataset_uri: String.t() | nil
}

 Functions

 from_api_response(spec)

 @spec from_api_response(map() | nil) :: t() | nil

Parses supervised tuning spec from API response.

Gemini.Types.Tuning.TuningJob

Represents a tuning job with full status and configuration.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Gemini.Types.Tuning.TuningJob{
 base_model: String.t() | nil,
 create_time: String.t() | nil,
 end_time: String.t() | nil,
 error: Gemini.Types.Tuning.TuningJobError.t() | nil,
 name: String.t() | nil,
 start_time: String.t() | nil,
 state: atom() | nil,
 supervised_tuning_spec: Gemini.Types.Tuning.SupervisedTuningSpec.t() | nil,
 tuned_model: String.t() | nil,
 tuned_model_display_name: String.t() | nil,
 update_time: String.t() | nil
}

Gemini.Types.Tuning.TuningJobError

Error information for failed tuning jobs.

 Summary

 Types

 t()

 Functions

 from_api_response(error)

 Parses error from API response.

 Types

 t()

 @type t() :: %Gemini.Types.Tuning.TuningJobError{
 code: integer() | nil,
 details: list() | nil,
 message: String.t() | nil
}

 Functions

 from_api_response(error)

 @spec from_api_response(map() | nil) :: t() | nil

Parses error from API response.

Gemini.Types.UploadFileConfig

Configuration options for file upload.

 Summary

 Types

 t()

 Upload file configuration.

 Types

 t()

 @type t() :: %Gemini.Types.UploadFileConfig{
 display_name: String.t() | nil,
 mime_type: String.t() | nil,
 name: String.t() | nil
}

Upload file configuration.
	name - Custom file name (auto-generated if not provided)
	display_name - Human-readable name (max 512 characters)
	mime_type - MIME type (auto-detected if not provided)

Gemini.Types.VoiceConfig

Voice configuration for speech synthesis.

 Summary

 Types

 t()

 Functions

 from_api(data)

 to_api(config)

 Types

 t()

 @type t() :: %Gemini.Types.VoiceConfig{
 prebuilt_voice_config: Gemini.Types.PrebuiltVoiceConfig.t() | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

 to_api(config)

 @spec to_api(t() | nil) :: map() | nil

Gemini.Utils.MapHelpers

Shared helper functions for building maps with optional values.
These helpers are used throughout the codebase to conditionally add
key-value pairs to maps, skipping nil values.

 Summary

 Functions

 add_query_param(params, key, value)

 Adds a query parameter to a list if the value is not nil.

 build_paginated_path(base_path, opts)

 Builds a path with pagination query parameters.

 maybe_put(map, key, value)

 Conditionally puts a value into a map if the value is not nil.

 maybe_put_non_empty(map, key, value)

 Conditionally puts a value into a map if the value is not nil or empty string.

 maybe_put_non_zero(map, key, value)

 Conditionally puts a value into a map if the value is not nil or zero.

 Functions

 add_query_param(params, key, value)

 @spec add_query_param(list(), String.t(), any()) :: list()

Adds a query parameter to a list if the value is not nil.
Examples
iex> MapHelpers.add_query_param([], "pageSize", 10)
[{"pageSize", 10}]

iex> MapHelpers.add_query_param([{"a", 1}], "b", nil)
[{"a", 1}]

 build_paginated_path(base_path, opts)

 @spec build_paginated_path(
 String.t(),
 keyword()
) :: String.t()

Builds a path with pagination query parameters.
Takes a base path and options keyword list, extracting standard pagination
params (:page_size, :page_token, :filter) and building the full path.
Examples
iex> MapHelpers.build_paginated_path("batches", [page_size: 10])
"batches?pageSize=10"

iex> MapHelpers.build_paginated_path("files", [])
"files"

iex> MapHelpers.build_paginated_path("operations", [page_size: 20, page_token: "abc", filter: "state=ACTIVE"])
"operations?pageSize=20&pageToken=abc&filter=state%3DACTIVE"

 maybe_put(map, key, value)

 @spec maybe_put(map(), any(), any()) :: map()

Conditionally puts a value into a map if the value is not nil.
Examples
iex> MapHelpers.maybe_put(%{a: 1}, :b, 2)
%{a: 1, b: 2}

iex> MapHelpers.maybe_put(%{a: 1}, :b, nil)
%{a: 1}

 maybe_put_non_empty(map, key, value)

 @spec maybe_put_non_empty(map(), any(), any()) :: map()

Conditionally puts a value into a map if the value is not nil or empty string.
Useful when building credential maps where empty strings should be treated as missing.
Examples
iex> MapHelpers.maybe_put_non_empty(%{a: 1}, :b, "value")
%{a: 1, b: "value"}

iex> MapHelpers.maybe_put_non_empty(%{a: 1}, :b, "")
%{a: 1}

iex> MapHelpers.maybe_put_non_empty(%{a: 1}, :b, nil)
%{a: 1}

 maybe_put_non_zero(map, key, value)

 @spec maybe_put_non_zero(map(), any(), any()) :: map()

Conditionally puts a value into a map if the value is not nil or zero.
Useful when building request maps where zero values should be omitted.
Examples
iex> MapHelpers.maybe_put_non_zero(%{a: 1}, :b, 5)
%{a: 1, b: 5}

iex> MapHelpers.maybe_put_non_zero(%{a: 1}, :b, 0)
%{a: 1}

iex> MapHelpers.maybe_put_non_zero(%{a: 1}, :b, nil)
%{a: 1}

Gemini.Utils.PollingHelpers

Shared helper functions for polling operations.
These helpers are used by API modules that need to poll for
operation completion (batches, tunings, documents, etc.).

 Summary

 Functions

 maybe_add(params, key, value)

 Conditionally adds a key-value pair to a keyword list if value is not nil.

 timed_out?(start_time, timeout)

 Check if a polling operation has timed out.

 Functions

 maybe_add(params, key, value)

 @spec maybe_add(keyword(), atom(), any()) :: keyword()

Conditionally adds a key-value pair to a keyword list if value is not nil.
Used for building optional query parameters.
Examples
iex> PollingHelpers.maybe_add([], :page_token, "abc123")
[page_token: "abc123"]

iex> PollingHelpers.maybe_add([], :page_token, nil)
[]

 timed_out?(start_time, timeout)

 @spec timed_out?(integer(), integer()) :: boolean()

Check if a polling operation has timed out.
Parameters
	start_time - The start time in monotonic milliseconds (from System.monotonic_time(:millisecond))
	timeout - The timeout duration in milliseconds

Examples
iex> start = System.monotonic_time(:millisecond)
iex> PollingHelpers.timed_out?(start, 5000)
false

iex> start = System.monotonic_time(:millisecond) - 6000
iex> PollingHelpers.timed_out?(start, 5000)
true

Gemini.Utils.ResourceNames

Utilities for normalizing Google Cloud resource names for Gemini/Vertex AI.

 Summary

 Functions

 cached_contents_path(opts \\ [])

 Build the base cachedContents collection path for the active auth strategy.

 normalize_cache_model_name(model, opts \\ [])

 Normalize a cache model name for the active auth strategy.

 normalize_cached_content_name(name, opts \\ [])

 Normalize cached content names for the active auth strategy.

 Functions

 cached_contents_path(opts \\ [])

 @spec cached_contents_path(keyword()) :: String.t()

Build the base cachedContents collection path for the active auth strategy.

 normalize_cache_model_name(model, opts \\ [])

 @spec normalize_cache_model_name(
 String.t(),
 keyword()
) :: String.t()

Normalize a cache model name for the active auth strategy.
	Gemini: ensures models/ prefix.
	Vertex: expands to projects/{project}/locations/{location}/publishers/google/models/{model}.

 normalize_cached_content_name(name, opts \\ [])

 @spec normalize_cached_content_name(
 String.t(),
 keyword()
) :: String.t()

Normalize cached content names for the active auth strategy.
	Gemini: ensures cachedContents/ prefix.
	Vertex: expands short names to projects/{project}/locations/{location}/cachedContents/{id}.

Gemini.Validation.ThinkingConfig

Validation for thinking configuration parameters based on model capabilities.
Gemini 3 Models
Use thinking_level for Gemini 3 models:
	:minimal - Minimal thinking (Flash only). Model may still think for complex tasks.
	:low - Minimizes latency and cost
	:medium - Balanced thinking (Flash only)
	:high - Maximizes reasoning depth (default)

Model Support
	Gemini 3 Pro: :low, :high
	Gemini 3 Flash: :minimal, :low, :medium, :high

Gemini 2.5 Models
Gemini 2.5 series models support thinking budgets with model-specific ranges:
	2.5 Pro: 128-32,768 tokens (cannot disable with 0)
	2.5 Flash: 0-24,576 tokens (can disable)
	2.5 Flash Lite: 0 or 512-24,576 tokens

Special value -1 enables dynamic thinking (model decides budget) for all models.
Important
You cannot use both thinking_level and thinking_budget in the same request.
Doing so will return a 400 error from the API.
See: https://ai.google.dev/gemini-api/docs/gemini-3

 Summary

 Types

 thinking_level()

 validation_result()

 Functions

 validate(arg1, model)

 Validate complete thinking config including budget, level, and include_thoughts.

 validate_budget(budget, model)

 Validate thinking budget for a specific model.

 validate_level(level, model \\ nil)

 Validate thinking level for Gemini 3 models.

 Types

 thinking_level()

 @type thinking_level() :: :unspecified | :minimal | :low | :medium | :high

 validation_result()

 @type validation_result() :: :ok | {:error, String.t()}

 Functions

 validate(arg1, model)

 @spec validate(map() | struct(), String.t()) :: validation_result()

Validate complete thinking config including budget, level, and include_thoughts.
Parameters
	config: Map or ThinkingConfig struct
	model: Model name string

Returns
	:ok if valid
	{:error, message} if invalid

Examples
iex> Gemini.Validation.ThinkingConfig.validate(%{thinking_level: :low}, "gemini-3-pro-preview")
:ok

iex> Gemini.Validation.ThinkingConfig.validate(%{thinking_budget: 1024, thinking_level: :low}, "gemini-3-pro-preview")
{:error, "Cannot use both thinking_level and thinking_budget in the same request"}

 validate_budget(budget, model)

 @spec validate_budget(integer(), String.t()) :: validation_result()

Validate thinking budget for a specific model.
Parameters
	budget: Integer budget value
	model: Model name string

Returns
	:ok if valid
	{:error, message} with helpful error message

Examples
iex> Gemini.Validation.ThinkingConfig.validate_budget(1024, "gemini-2.5-flash")
:ok

iex> Gemini.Validation.ThinkingConfig.validate_budget(0, "gemini-2.5-pro")
{:error, "Gemini 2.5 Pro cannot disable thinking (minimum budget: 128)"}

 validate_level(level, model \\ nil)

 @spec validate_level(thinking_level(), String.t() | nil) :: validation_result()

Validate thinking level for Gemini 3 models.
Parameters
	level: Thinking level atom (:minimal, :low, :medium, :high)
	model: Optional model name for Flash-only validation

Returns
	:ok if valid
	{:error, message} if invalid

Examples
iex> Gemini.Validation.ThinkingConfig.validate_level(:low, "gemini-3-pro-preview")
:ok

iex> Gemini.Validation.ThinkingConfig.validate_level(:medium, "gemini-3-pro-preview")
{:error, "Thinking level :medium is only supported on Gemini 3 Flash models"}

Gemini

Gemini Elixir Client
A comprehensive Elixir client for Google's Gemini AI API with dual authentication support,
advanced streaming capabilities, type safety, and built-in telemetry.
Features
	🔐 Dual Authentication: Seamless support for both Gemini API keys and Vertex AI OAuth/Service Accounts
	⚡ Advanced Streaming: Production-grade Server-Sent Events streaming with real-time processing
	🛡️ Type Safety: Complete type definitions with runtime validation
	📊 Built-in Telemetry: Comprehensive observability and metrics out of the box
	💬 Chat Sessions: Multi-turn conversation management with state persistence
	🎭 Multimodal: Full support for text, image, audio, and video content
	🚀 Production Ready: Robust error handling, retry logic, and performance optimizations

Quick Start
Installation
Add to your mix.exs:
def deps do
 [
 {:gemini, "~> 0.0.1"}
]
end
Basic Configuration
Configure your API key in config/runtime.exs:
import Config

config :gemini,
 api_key: System.get_env("GEMINI_API_KEY")
Or set the environment variable:
export GEMINI_API_KEY="your_api_key_here"

Simple Usage
Basic text generation
{:ok, response} = Gemini.generate("Tell me about Elixir programming")
{:ok, text} = Gemini.extract_text(response)
IO.puts(text)

With options
{:ok, response} = Gemini.generate("Explain quantum computing", [
 model: Gemini.Config.get_model(:flash_lite_latest),
 temperature: 0.7,
 max_output_tokens: 1000
])
Streaming
Start a streaming session
{:ok, stream_id} = Gemini.stream_generate("Write a long story", [
 on_chunk: fn chunk -> IO.write(chunk) end,
 on_complete: fn -> IO.puts("\n✅ Complete!") end
])
Authentication
This client supports two authentication methods:
1. Gemini API Key (Simple)
Best for development and simple applications:
Environment variable (recommended)
export GEMINI_API_KEY="your_api_key"

Application config
config :gemini, api_key: "your_api_key"

Per-request override
Gemini.generate("Hello", api_key: "specific_key")
2. Vertex AI (Production)
Best for production Google Cloud applications:
Service Account JSON file
export VERTEX_SERVICE_ACCOUNT="/path/to/service-account.json"
export VERTEX_PROJECT_ID="your-gcp-project"
export VERTEX_LOCATION="us-central1"

Application config
config :gemini, :auth,
 type: :vertex_ai,
 credentials: %{
 service_account_key: System.get_env("VERTEX_SERVICE_ACCOUNT"),
 project_id: System.get_env("VERTEX_PROJECT_ID"),
 location: "us-central1"
 }
Error Handling
The client provides detailed error information with recovery suggestions:
case Gemini.generate("Hello world") do
 {:ok, response} ->
 {:ok, text} = Gemini.extract_text(response)

 {:error, %Gemini.Error{type: :rate_limit} = error} ->
 IO.puts("Rate limited. Retry after: #{error.retry_after}")

 {:error, %Gemini.Error{type: :authentication} = error} ->
 IO.puts("Auth error: #{error.message}")

 {:error, error} ->
 IO.puts("Unexpected error: #{inspect(error)}")
end
Advanced Features
Multimodal Content
content = [
 %{type: "text", text: "What's in this image?"},
 %{type: "image", source: %{type: "base64", data: base64_image}}
]

{:ok, response} = Gemini.generate(content)
Model Management
List available models
{:ok, models} = Gemini.list_models()

Get model details
{:ok, model_info} = Gemini.get_model(Gemini.Config.get_model(:flash_lite_latest))

Count tokens
{:ok, token_count} = Gemini.count_tokens("Your text", model: Gemini.Config.get_model(:flash_lite_latest))
This module provides backward-compatible access to the Gemini API while routing
requests through the unified coordinator for maximum flexibility and performance.

 Summary

 Types

 options()

 Options for content generation and related API calls.

 Functions

 async_batch_embed_contents(texts, opts \\ [])

 Submit an asynchronous batch embedding job for production-scale generation.

 await_batch_completion(batch_name, opts \\ [])

 Poll and wait for batch completion with configurable intervals.

 batch_embed_contents(texts, opts \\ [])

 Generate embeddings for multiple texts in a single batch request.

 chat(opts \\ [])

 Start a new chat session.

 configure(auth_type, credentials)

 Configure authentication for the client.

 count_tokens(contents, opts \\ [])

 Count tokens in the given content.

 create_cache(contents, opts \\ [])

 Create a cached content resource for reuse across requests.

 delete_cache(name, opts \\ [])

 Delete cached content.

 embed_content(text, opts \\ [])

 Generate an embedding for the given text content.

 extract_text(response)

 Extract text from a GenerateContentResponse or raw streaming data.

 extract_thought_signatures(arg1)

 Extract thought signatures from a GenerateContentResponse.

 generate(contents, opts \\ [])

 Generate content using the configured authentication.

 generate_content_with_auto_tools(contents, opts \\ [])

 Generate content with automatic tool execution.

 get_batch_embeddings(batch)

 Retrieve embeddings from a completed batch job.

 get_batch_status(batch_name, opts \\ [])

 Get the current status of an async batch embedding job.

 get_cache(name, opts \\ [])

 Get a cached content by name.

 get_model(model_name)

 Get information about a specific model.

 get_stream_status(stream_id)

 Get stream status.

 list_caches(opts \\ [])

 List cached contents.

 list_models(opts \\ [])

 List available models.

 model_exists?(model_name)

 Check if a model exists.

 send_message(chat, message)

 Send a message in a chat session.

 start_link()

 Start the streaming manager (for compatibility).

 start_stream(contents, opts \\ [])

 Start a managed streaming session.

 stream_generate(contents, opts \\ [])

 Generate content with streaming response (synchronous collection).

 stream_generate_with_auto_tools(contents, opts \\ [])

 Start a streaming session with automatic tool execution.

 subscribe_stream(stream_id)

 Subscribe to streaming events.

 text(contents, opts \\ [])

 Generate text content and return only the text.

 update_cache(name, opts)

 Update cached content TTL/expiry.

 Types

 options()

 @type options() :: [
 model: String.t(),
 generation_config: Gemini.Types.GenerationConfig.t() | nil,
 safety_settings: [Gemini.Types.SafetySetting.t()],
 system_instruction: Gemini.Types.Content.t() | String.t() | nil,
 tools: [map()],
 tool_config: map() | nil,
 api_key: String.t(),
 auth: :gemini | :vertex_ai,
 temperature: float(),
 max_output_tokens: non_neg_integer(),
 top_p: float(),
 top_k: non_neg_integer()
]

Options for content generation and related API calls.
	:model - Model name (string, defaults to configured default model)
	:generation_config - GenerationConfig struct (Gemini.Types.GenerationConfig.t())
	:safety_settings - List of SafetySetting structs ([Gemini.Types.SafetySetting.t()])
	:system_instruction - System instruction as Content struct or string (Gemini.Types.Content.t() | String.t() | nil)

	:tools - List of tool definitions ([map()])
	:tool_config - Tool configuration (map() | nil)

	:api_key - Override API key (string)
	:auth - Authentication strategy (:gemini | :vertex_ai)

	:temperature - Generation temperature (float, 0.0-1.0)
	:max_output_tokens - Maximum tokens to generate (non_neg_integer)
	:top_p - Top-p sampling parameter (float)
	:top_k - Top-k sampling parameter (non_neg_integer)

 Functions

 async_batch_embed_contents(texts, opts \\ [])

 @spec async_batch_embed_contents([String.t()], options()) ::
 {:ok, map()} | {:error, Gemini.Error.t()}

Submit an asynchronous batch embedding job for production-scale generation.
Processes large batches with 50% cost savings compared to interactive API.
See Gemini.options/0 for available options.
Examples
{:ok, batch} = Gemini.async_batch_embed_contents(
 ["Text 1", "Text 2", "Text 3"],
 display_name: "My Batch",
 task_type: :retrieval_document
)

 await_batch_completion(batch_name, opts \\ [])

 @spec await_batch_completion(String.t(), options()) :: {:ok, map()} | {:error, term()}

Poll and wait for batch completion with configurable intervals.
Examples
{:ok, completed} = Gemini.await_batch_completion(
 batch.name,
 poll_interval: 10_000,
 timeout: 600_000
)

 batch_embed_contents(texts, opts \\ [])

 @spec batch_embed_contents([String.t()], options()) ::
 {:ok, map()} | {:error, Gemini.Error.t()}

Generate embeddings for multiple texts in a single batch request.
See Gemini.options/0 for available options.
Examples
{:ok, response} = Gemini.batch_embed_contents([
 "What is AI?",
 "How does ML work?"
])

 chat(opts \\ [])

 @spec chat(options()) :: {:ok, Gemini.Chat.t()}

Start a new chat session.
See Gemini.options/0 for available options.

 configure(auth_type, credentials)

 @spec configure(atom(), map()) :: :ok

Configure authentication for the client.
Examples
Gemini API
Gemini.configure(:gemini, %{api_key: "your_api_key"})

Vertex AI
Gemini.configure(:vertex_ai, %{
 service_account_key: "/path/to/key.json",
 project_id: "your-project",
 location: "us-central1"
})

 count_tokens(contents, opts \\ [])

 @spec count_tokens(String.t() | [Gemini.Types.Content.t()], options()) ::
 {:ok, map()} | {:error, Gemini.Error.t()}

Count tokens in the given content.
See Gemini.options/0 for available options.

 create_cache(contents, opts \\ [])

 @spec create_cache(
 [Gemini.Types.Content.t()] | [map()] | String.t(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Create a cached content resource for reuse across requests.

 delete_cache(name, opts \\ [])

 @spec delete_cache(
 String.t(),
 keyword()
) :: :ok | {:error, term()}

Delete cached content.

 embed_content(text, opts \\ [])

 @spec embed_content(String.t(), options()) ::
 {:ok, map()} | {:error, Gemini.Error.t()}

Generate an embedding for the given text content.
See Gemini.options/0 for available options.
Examples
{:ok, response} = Gemini.embed_content("What is AI?")
{:ok, values} = EmbedContentResponse.get_values(response)

 extract_text(response)

 @spec extract_text(Gemini.Types.Response.GenerateContentResponse.t() | map()) ::
 {:ok, String.t()} | {:error, String.t()}

Extract text from a GenerateContentResponse or raw streaming data.
This function searches through all parts in the response to find text content,
which is important for Gemini 2.5+ models that may include thought parts before
text parts in the response.

 extract_thought_signatures(arg1)

 @spec extract_thought_signatures(
 Gemini.Types.Response.GenerateContentResponse.t()
 | nil
) :: [
 String.t()
]

Extract thought signatures from a GenerateContentResponse.
Gemini 3 models return thought_signature fields on parts that must be
echoed back in subsequent turns to maintain reasoning context.
Parameters
	response: GenerateContentResponse struct

Returns
	List of thought signature strings found in the response

Examples
{:ok, response} = Gemini.generate("Complex question", model: "gemini-3-pro-preview")
signatures = Gemini.extract_thought_signatures(response)
=> ["sig_abc123", "sig_def456"]

 generate(contents, opts \\ [])

 @spec generate(String.t() | [Gemini.Types.Content.t()], options()) ::
 {:ok, Gemini.Types.Response.GenerateContentResponse.t()}
 | {:error, Gemini.Error.t()}

Generate content using the configured authentication.
See Gemini.options/0 for available options.

 generate_content_with_auto_tools(contents, opts \\ [])

 @spec generate_content_with_auto_tools(
 String.t() | [Gemini.Types.Content.t()],
 options()
) ::
 {:ok, Gemini.Types.Response.GenerateContentResponse.t()}
 | {:error, Gemini.Error.t()}

Generate content with automatic tool execution.
This function provides a seamless, Python-SDK-like experience by automatically
handling the tool-calling loop. When the model returns function calls, they are
executed automatically and the conversation continues until a final text response
is received.
Parameters
	contents: String prompt or list of Content structs
	opts: Standard generation options plus:	:turn_limit - Maximum number of tool-calling turns (default: 10)
	:tools - List of tool declarations (required for tool calling)
	:tool_config - Tool configuration (optional)

Examples
Register a tool first
{:ok, declaration} = Altar.ADM.new_function_declaration(%{
 name: "get_weather",
 description: "Gets weather for a location",
 parameters: %{
 type: "object",
 properties: %{location: %{type: "string"}},
 required: ["location"]
 }
})
:ok = Gemini.Tools.register(declaration, &MyApp.get_weather/1)

Use automatic tool execution
{:ok, response} = Gemini.generate_content_with_auto_tools(
 "What's the weather in San Francisco?",
 tools: [declaration],
 model: "gemini-flash-lite-latest"
)
Returns
	{:ok, GenerateContentResponse.t()}: Final text response after all tool calls
	{:error, term()}: Error during generation or tool execution

 get_batch_embeddings(batch)

 @spec get_batch_embeddings(map()) :: {:ok, [map()]} | {:error, String.t()}

Retrieve embeddings from a completed batch job.
Examples
{:ok, batch} = Gemini.get_batch_status(batch_id)
if batch.state == :completed do
 {:ok, embeddings} = Gemini.get_batch_embeddings(batch)
end

 get_batch_status(batch_name, opts \\ [])

 @spec get_batch_status(String.t(), options()) ::
 {:ok, map()} | {:error, Gemini.Error.t()}

Get the current status of an async batch embedding job.
Examples
{:ok, batch} = Gemini.get_batch_status("batches/abc123")
IO.puts("State: #{batch.state}")

 get_cache(name, opts \\ [])

 @spec get_cache(
 String.t(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Get a cached content by name.

 get_model(model_name)

 @spec get_model(String.t()) :: {:ok, map()} | {:error, Gemini.Error.t()}

Get information about a specific model.

 get_stream_status(stream_id)

 @spec get_stream_status(String.t()) :: {:ok, map()} | {:error, Gemini.Error.t()}

Get stream status.

 list_caches(opts \\ [])

 @spec list_caches(keyword()) :: {:ok, map()} | {:error, term()}

List cached contents.

 list_models(opts \\ [])

 @spec list_models(options()) :: {:ok, map()} | {:error, Gemini.Error.t()}

List available models.
See Gemini.options/0 for available options.

 model_exists?(model_name)

 @spec model_exists?(String.t()) :: {:ok, boolean()}

Check if a model exists.

 send_message(chat, message)

 @spec send_message(Gemini.Chat.t(), String.t()) ::
 {:ok, Gemini.Types.Response.GenerateContentResponse.t(), Gemini.Chat.t()}
 | {:error, Gemini.Error.t()}

Send a message in a chat session.

 start_link()

 @spec start_link() :: {:ok, pid()} | {:error, term()}

Start the streaming manager (for compatibility).

 start_stream(contents, opts \\ [])

 @spec start_stream(String.t() | [Gemini.Types.Content.t()], options()) ::
 {:ok, String.t()} | {:error, Gemini.Error.t()}

Start a managed streaming session.
See Gemini.options/0 for available options.

 stream_generate(contents, opts \\ [])

 @spec stream_generate(String.t() | [Gemini.Types.Content.t()], options()) ::
 {:ok, [map()]} | {:error, Gemini.Error.t()}

Generate content with streaming response (synchronous collection).
See Gemini.options/0 for available options.

 stream_generate_with_auto_tools(contents, opts \\ [])

 @spec stream_generate_with_auto_tools(
 String.t() | [Gemini.Types.Content.t()],
 options()
) ::
 {:ok, String.t()} | {:error, Gemini.Error.t()}

Start a streaming session with automatic tool execution.
This function provides streaming support for the automatic tool-calling loop.
When the model returns function calls, they are executed automatically and the
conversation continues until a final text response is streamed to the subscriber.
Parameters
	contents: String prompt or list of Content structs
	opts: Standard generation options plus:	:turn_limit - Maximum number of tool-calling turns (default: 10)
	:tools - List of tool declarations (required for tool calling)
	:tool_config - Tool configuration (optional)

Examples
Register a tool first
{:ok, declaration} = Altar.ADM.new_function_declaration(%{
 name: "get_weather",
 description: "Gets weather for a location",
 parameters: %{
 type: "object",
 properties: %{location: %{type: "string"}},
 required: ["location"]
 }
})
:ok = Gemini.Tools.register(declaration, &MyApp.get_weather/1)

Start streaming with automatic tool execution
{:ok, stream_id} = Gemini.stream_generate_with_auto_tools(
 "What's the weather in San Francisco?",
 tools: [declaration],
 model: "gemini-flash-lite-latest"
)

Subscribe to receive only the final text response
:ok = Gemini.subscribe_stream(stream_id)
Returns
	{:ok, stream_id}: Stream started successfully
	{:error, term()}: Error during stream setup

 subscribe_stream(stream_id)

 @spec subscribe_stream(String.t()) :: :ok | {:error, Gemini.Error.t()}

Subscribe to streaming events.

 text(contents, opts \\ [])

 @spec text(String.t() | [Gemini.Types.Content.t()], options()) ::
 {:ok, String.t()} | {:error, Gemini.Error.t()}

Generate text content and return only the text.
See Gemini.options/0 for available options.

 update_cache(name, opts)

 @spec update_cache(
 String.t(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Update cached content TTL/expiry.

Gemini.APIs.Coordinator

Coordinates API calls across different authentication strategies and endpoints.
Provides a unified interface that can route requests to either Gemini API or Vertex AI
based on configuration, while maintaining the same interface.
This module acts as the main entry point for all Gemini API operations,
automatically handling authentication strategy selection and request routing.
Features
	Unified API for content generation across auth strategies
	Automatic auth strategy selection based on configuration
	Per-request auth strategy override capability
	Consistent error handling and response format
	Support for both streaming and non-streaming operations
	Model listing and token counting functionality

Usage
Use default auth strategy
{:ok, response} = Coordinator.generate_content("Hello world")

Override auth strategy for specific request
{:ok, response} = Coordinator.generate_content("Hello world", auth: :vertex_ai)

Start streaming with specific auth
{:ok, stream_id} = Coordinator.stream_generate_content("Tell me a story", auth: :gemini)
See Gemini.options/0 in Gemini for the canonical list of options.

 Summary

 Types

 api_result(t)

 auth_strategy()

 request_opts()

 Functions

 async_batch_embed_contents(texts_or_requests, opts \\ [])

 Submit an asynchronous batch embedding job for production-scale embedding generation.

 await_batch_completion(batch_name, opts \\ [])

 Poll and wait for batch completion with configurable intervals.

 batch_embed_contents(texts, opts \\ [])

 Generate embeddings for multiple text inputs in a single batch request.

 count_tokens(input, opts \\ [])

 Count tokens in the given input.

 embed_content(text, opts \\ [])

 Generate an embedding for the given text content.

 extract_function_calls(response)

 Extract function calls from a GenerateContentResponse.

 extract_text(response)

 Extract text content from a GenerateContentResponse.

 generate_content(input, opts \\ [])

 Generate content using the specified model and input.

 get_batch_embeddings(batch)

 Retrieve embeddings from a completed batch job.

 get_batch_status(batch_name, opts \\ [])

 Get the current status of an async batch embedding job.

 get_model(model_name, opts \\ [])

 Get information about a specific model.

 has_function_calls?(response)

 Check if a response contains function calls.

 list_models(opts \\ [])

 List available models for the specified authentication strategy.

 stop_stream(stream_id)

 Stop a streaming content generation.

 stream_generate_content(input, opts \\ [])

 Stream content generation with real-time response chunks.

 stream_status(stream_id)

 Get the status of a streaming content generation.

 subscribe_stream(stream_id, subscriber_pid \\ self())

 Subscribe to a streaming content generation.

 unsubscribe_stream(stream_id, subscriber_pid \\ self())

 Unsubscribe from a streaming content generation.

 Types

 api_result(t)

 @type api_result(t) :: {:ok, t} | {:error, term()}

 auth_strategy()

 @type auth_strategy() :: :gemini | :vertex_ai

 request_opts()

 @type request_opts() :: keyword()

 Functions

 async_batch_embed_contents(texts_or_requests, opts \\ [])

 @spec async_batch_embed_contents(
 [String.t()] | [Gemini.Types.Request.EmbedContentRequest.t()],
 Gemini.options()
) :: api_result(Gemini.Types.Response.EmbedContentBatch.t())

Submit an asynchronous batch embedding job for production-scale embedding generation.
Processes large batches of embeddings at 50% cost compared to interactive API.
Returns immediately with a batch ID for polling. Suitable for embedding thousands
to millions of texts for RAG systems, knowledge bases, and large-scale retrieval.
See Gemini.options/0 for available options.
Parameters
	texts_or_requests: List of strings OR list of EmbedContentRequest structs
	opts: Options including model, display_name, priority, task_type, etc.

Options
	:model: Model to use (default: auto-detected based on auth)
	:display_name: Human-readable batch name (required)
	:priority: Processing priority (default: 0, higher = more urgent)
	:task_type: Task type applied to all requests
	:output_dimensionality: Dimension for all embeddings
	:auth: Authentication strategy

Returns
	{:ok, batch} - EmbedContentBatch with :name for polling
	{:error, reason} - Failed to submit batch

Examples
Simple batch
{:ok, batch} = Coordinator.async_batch_embed_contents(
 ["Text 1", "Text 2", "Text 3"],
 display_name: "My Knowledge Base",
 task_type: :retrieval_document
)

Poll for completion
{:ok, updated_batch} = Coordinator.get_batch_status(batch.name)

case updated_batch.state do
 :completed ->
 {:ok, embeddings} = Coordinator.get_batch_embeddings(updated_batch)
 IO.puts("Retrieved #{length(embeddings)} embeddings")
 :processing ->
 progress = updated_batch.batch_stats.successful_request_count
 IO.puts("Progress: #{progress} completed")
 :failed ->
 IO.puts("Batch failed")
end

 await_batch_completion(batch_name, opts \\ [])

 @spec await_batch_completion(
 String.t(),
 keyword()
) :: api_result(Gemini.Types.Response.EmbedContentBatch.t())

Poll and wait for batch completion with configurable intervals.
Convenience function that polls get_batch_status until completion
or timeout. Useful for synchronous workflows or testing.
See Gemini.options/0 for available options.
Options
	:poll_interval: Milliseconds between polls (default: 5000)
	:timeout: Max wait time in milliseconds (default: 600000 = 10 min)
	:on_progress: Callback function called on each poll with batch

Returns
	{:ok, batch} - Completed batch (succeeded or failed)
	{:error, :timeout} - Timed out waiting for completion
	{:error, reason} - Failed to poll status

Examples
{:ok, batch} = Coordinator.async_batch_embed_contents(texts,
 display_name: "Batch 1"
)

{:ok, completed_batch} = Coordinator.await_batch_completion(
 batch.name,
 poll_interval: 10_000, # 10 seconds
 timeout: 1_800_000, # 30 minutes
 on_progress: fn b ->
 if b.batch_stats do
 progress = (b.batch_stats.successful_request_count || 0) / b.batch_stats.request_count * 100
 IO.puts("Progress: #{Float.round(progress, 1)}%")
 end
 end
)

 batch_embed_contents(texts, opts \\ [])

 @spec batch_embed_contents([String.t()], Gemini.options()) ::
 api_result(Gemini.Types.Response.BatchEmbedContentsResponse.t())

Generate embeddings for multiple text inputs in a single batch request.
More efficient than individual requests when embedding multiple texts.
See Gemini.options/0 for available options.
Parameters
	texts: List of text strings to embed
	opts: Options including model, auth strategy, and embedding-specific parameters

Options
Same as embed_content/2, applied to all texts in the batch.
Examples
Batch embedding
{:ok, response} = Coordinator.batch_embed_contents([
 "What is AI?",
 "How does machine learning work?",
 "Explain neural networks"
])

{:ok, all_values} = BatchEmbedContentsResponse.get_all_values(response)

With task type
{:ok, response} = Coordinator.batch_embed_contents(
 ["Doc 1 content", "Doc 2 content", "Doc 3 content"],
 task_type: :retrieval_document,
 output_dimensionality: 256
)

 count_tokens(input, opts \\ [])

 @spec count_tokens(
 String.t() | Gemini.Types.Request.GenerateContentRequest.t(),
 Gemini.options()
) ::
 api_result(%{total_tokens: integer()})

Count tokens in the given input.
See Gemini.options/0 for available options.
Parameters
	input: String or GenerateContentRequest to count tokens for
	opts: Options including model and auth strategy

Options
	:model: Model to use for token counting (defaults to configured default model)
	:auth: Authentication strategy (:gemini or :vertex_ai)

Examples
{:ok, count} = Coordinator.count_tokens("Hello world")
{:ok, count} = Coordinator.count_tokens("Complex text", model: "gemini-2.5-pro", auth: :vertex_ai)

 embed_content(text, opts \\ [])

 @spec embed_content(String.t(), Gemini.options()) ::
 api_result(Gemini.Types.Response.EmbedContentResponse.t())

Generate an embedding for the given text content.
Uses the appropriate embedding model based on detected authentication:
	Gemini API: gemini-embedding-001 (3072 dimensions, task type parameter)
	Vertex AI: embeddinggemma (768 dimensions, prompt prefix formatting)

See Gemini.options/0 for available options.
Parameters
	text: String content to embed
	opts: Options including model, auth strategy, and embedding-specific parameters

Options
	:model: Embedding model to use (default: auto-detected based on auth)
	:auth: Authentication strategy (:gemini or :vertex_ai)
	:task_type: Optional task type for optimized embeddings	:retrieval_query - Text is a search query
	:retrieval_document - Text is a document being searched
	:semantic_similarity - For semantic similarity tasks
	:classification - For classification tasks
	:clustering - For clustering tasks
	:question_answering - For Q&A tasks
	:fact_verification - For fact verification
	:code_retrieval_query - For code retrieval

	:title: Optional title (only for :retrieval_document task type)
	:output_dimensionality: Optional dimension reduction

API-Specific Behavior
For Gemini API (gemini-embedding-001):
	Task type is passed as taskType parameter
	Default dimensions: 3072 (supports MRL: 768, 1536, 3072)
	Dimensions below 3072 need manual normalization

For Vertex AI (embeddinggemma):
	Task type is embedded as prompt prefix in the text
	Default dimensions: 768 (supports MRL: 128, 256, 512, 768)
	All dimensions are pre-normalized

Examples
Simple embedding (auto-detects model)
{:ok, response} = Coordinator.embed_content("What is the meaning of life?")
{:ok, values} = EmbedContentResponse.get_values(response)

With task type (works with both APIs transparently)
{:ok, response} = Coordinator.embed_content(
 "This is a document about AI",
 task_type: :retrieval_document,
 title: "AI Overview"
)

With explicit dimensionality
{:ok, response} = Coordinator.embed_content(
 "Query text",
 task_type: :retrieval_query,
 output_dimensionality: 768
)

 extract_function_calls(response)

 @spec extract_function_calls(
 Gemini.Types.Response.GenerateContentResponse.t()
 | map()
) :: [
 Altar.ADM.FunctionCall.t()
]

Extract function calls from a GenerateContentResponse.
Returns a list of Altar.ADM.FunctionCall structs if the response contains
function calls, or an empty list if none are found.
Examples
{:ok, response} = Coordinator.generate_content("What's the weather?", tools: tools)

case Coordinator.extract_function_calls(response) do
 [] ->
 # No function calls, extract text normally
 {:ok, text} = Coordinator.extract_text(response)

 calls ->
 # Execute function calls and continue conversation
 results = Executor.execute_all(calls, registry)
end

 extract_text(response)

 @spec extract_text(Gemini.Types.Response.GenerateContentResponse.t()) ::
 {:ok, String.t()} | {:error, term()}

Extract text content from a GenerateContentResponse.
Examples
{:ok, response} = Coordinator.generate_content("Hello")
{:ok, text} = Coordinator.extract_text(response)

 generate_content(input, opts \\ [])

 @spec generate_content(
 String.t()
 | [Gemini.Types.Content.t()]
 | Gemini.Types.Request.GenerateContentRequest.t(),
 Gemini.options()
) :: api_result(Gemini.Types.Response.GenerateContentResponse.t())

Generate content using the specified model and input.
See Gemini.options/0 for available options.
Parameters
	input: String prompt or GenerateContentRequest struct
	opts: Options including model, auth strategy, and generation config

Examples
Simple text generation
{:ok, response} = Coordinator.generate_content("What is AI?")

With specific model and auth
{:ok, response} = Coordinator.generate_content(
 "Explain quantum computing",
 model: Gemini.Config.get_model(:flash_lite_latest),
 auth: :vertex_ai,
 temperature: 0.7
)

Using request struct
request = %GenerateContentRequest{...}
{:ok, response} = Coordinator.generate_content(request)

 get_batch_embeddings(batch)

 @spec get_batch_embeddings(Gemini.Types.Response.EmbedContentBatch.t()) ::
 api_result([Gemini.Types.Response.ContentEmbedding.t()])

Retrieve embeddings from a completed batch job.
Only works for batches in :completed state with inline responses.
For file-based outputs, use file download APIs.
Parameters
	batch: Completed EmbedContentBatch

Returns
	{:ok, embeddings} - List of ContentEmbedding results
	{:error, reason} - Batch not complete or file-based

Examples
{:ok, batch} = Coordinator.get_batch_status("batches/abc123")

if batch.state == :completed do
 {:ok, embeddings} = Coordinator.get_batch_embeddings(batch)
 IO.puts("Retrieved #{length(embeddings)} embeddings")
end

 get_batch_status(batch_name, opts \\ [])

 @spec get_batch_status(String.t(), Gemini.options()) ::
 api_result(Gemini.Types.Response.EmbedContentBatch.t())

Get the current status of an async batch embedding job.
Polls the batch status to check progress, completion, or failures.
See Gemini.options/0 for available options.
Parameters
	batch_name: Batch identifier (format: "batches/{batchId}")
	opts: Optional auth and other options

Returns
	{:ok, batch} - Current batch status with stats
	{:error, reason} - Failed to retrieve status

Examples
{:ok, batch} = Coordinator.get_batch_status("batches/abc123")

IO.puts("State: #{batch.state}")

if batch.batch_stats do
 completed = batch.batch_stats.successful_request_count + batch.batch_stats.failed_request_count
 total = batch.batch_stats.request_count
 IO.puts("Progress: #{completed}/#{total}")
end

 get_model(model_name, opts \\ [])

 @spec get_model(String.t(), Gemini.options()) :: api_result(map())

Get information about a specific model.
See Gemini.options/0 for available options.
Parameters
	model_name: Name of the model to retrieve
	opts: Options including auth strategy

Examples
{:ok, model} = Coordinator.get_model(Gemini.Config.get_model(:flash_lite_latest))
{:ok, model} = Coordinator.get_model("gemini-2.5-pro", auth: :vertex_ai)

 has_function_calls?(response)

 @spec has_function_calls?(Gemini.Types.Response.GenerateContentResponse.t() | map()) ::
 boolean()

Check if a response contains function calls.
Examples
{:ok, response} = Coordinator.generate_content("Calculate 2+2", tools: tools)

if Coordinator.has_function_calls?(response) do
 calls = Coordinator.extract_function_calls(response)
 # Handle function calls
else
 {:ok, text} = Coordinator.extract_text(response)
end

 list_models(opts \\ [])

 @spec list_models(Gemini.options()) ::
 api_result(Gemini.Types.Response.ListModelsResponse.t())

List available models for the specified authentication strategy.
See Gemini.options/0 for available options.
Parameters
	opts: Options including auth strategy and pagination

Options
	:auth: Authentication strategy (:gemini or :vertex_ai)
	:page_size: Number of models per page
	:page_token: Pagination token for next page

Examples
List models with default auth
{:ok, models_response} = Coordinator.list_models()

List models with specific auth strategy
{:ok, models_response} = Coordinator.list_models(auth: :vertex_ai)

With pagination
{:ok, models_response} = Coordinator.list_models(
 auth: :gemini,
 page_size: 50,
 page_token: "next_page_token"
)

 stop_stream(stream_id)

 @spec stop_stream(String.t()) :: :ok | {:error, term()}

Stop a streaming content generation.

 stream_generate_content(input, opts \\ [])

 @spec stream_generate_content(
 String.t() | Gemini.Types.Request.GenerateContentRequest.t(),
 Gemini.options()
) :: api_result(String.t())

Stream content generation with real-time response chunks.
See Gemini.options/0 for available options.
Parameters
	input: String prompt or GenerateContentRequest struct
	opts: Options including model, auth strategy, and generation config

Returns
	{:ok, stream_id}: Stream started successfully
	{:error, reason}: Failed to start stream

After starting the stream, subscribe to receive events:
{:ok, stream_id} = Coordinator.stream_generate_content("Tell me a story")
:ok = Coordinator.subscribe_stream(stream_id)

Handle incoming messages
receive do
 {:stream_event, ^stream_id, event} ->
 IO.inspect(event, label: "Stream Event")
 {:stream_complete, ^stream_id} ->
 IO.puts("Stream completed")
 {:stream_error, ^stream_id, stream_error} ->
 IO.puts("Stream error: #{inspect(stream_error)}")
end
Examples
Basic streaming
{:ok, stream_id} = Coordinator.stream_generate_content("Write a poem")

With specific configuration
{:ok, stream_id} = Coordinator.stream_generate_content(
 "Explain machine learning",
 model: Gemini.Config.get_model(:flash_lite_latest),
 auth: :gemini,
 temperature: 0.8,
 max_output_tokens: 1000
)

 stream_status(stream_id)

 @spec stream_status(String.t()) :: {:ok, atom()} | {:error, term()}

Get the status of a streaming content generation.

 subscribe_stream(stream_id, subscriber_pid \\ self())

 @spec subscribe_stream(String.t(), pid()) :: :ok | {:error, term()}

Subscribe to a streaming content generation.
Parameters
	stream_id: ID of the stream to subscribe to
	subscriber_pid: Process to receive stream events (defaults to current process)

Examples
{:ok, stream_id} = Coordinator.stream_generate_content("Hello")
:ok = Coordinator.subscribe_stream(stream_id)

In a different process
:ok = Coordinator.subscribe_stream(stream_id, target_pid)

 unsubscribe_stream(stream_id, subscriber_pid \\ self())

 @spec unsubscribe_stream(String.t(), pid()) :: :ok | {:error, term()}

Unsubscribe from a streaming content generation.

Gemini.Auth

Authentication strategy behavior and implementations for Gemini and Vertex AI.
This module provides a unified interface for different authentication methods:
	Gemini API: Simple API key authentication
	Vertex AI: OAuth2/Service Account authentication

 Summary

 Types

 auth_type()

 credentials()

 Functions

 build_headers(auth_type, credentials)

 Build authenticated headers for the given strategy and credentials.

 build_path(auth_type, model, endpoint, credentials)

 Build the full path for an API endpoint.

 get_base_url(auth_type, credentials)

 Get the base URL for the given strategy and credentials.

 get_strategy(auth_type)

 Get the appropriate authentication strategy based on configuration.

 refresh_credentials(auth_type, credentials)

 Refresh credentials if needed (mainly for Vertex AI OAuth tokens).

 Types

 auth_type()

 @type auth_type() :: :gemini | :vertex_ai

 credentials()

 @type credentials() ::
 %{api_key: String.t()}
 | %{access_token: String.t(), project_id: String.t(), location: String.t()}

 Functions

 build_headers(auth_type, credentials)

 @spec build_headers(auth_type(), map()) ::
 {:ok, [{String.t(), String.t()}]} | {:error, term()}

Build authenticated headers for the given strategy and credentials.
Returns {:ok, headers} on success, or {:error, reason} if authentication fails
(e.g., service account token generation failure).

 build_path(auth_type, model, endpoint, credentials)

 @spec build_path(auth_type(), String.t(), String.t(), map()) :: String.t()

Build the full path for an API endpoint.

 get_base_url(auth_type, credentials)

 @spec get_base_url(auth_type(), map()) :: String.t() | {:error, term()}

Get the base URL for the given strategy and credentials.

 get_strategy(auth_type)

 @spec get_strategy(auth_type()) :: module()

Get the appropriate authentication strategy based on configuration.

 refresh_credentials(auth_type, credentials)

 @spec refresh_credentials(auth_type(), map()) :: {:ok, map()} | {:error, term()}

Refresh credentials if needed (mainly for Vertex AI OAuth tokens).

Gemini.Auth.GeminiStrategy

Authentication strategy for Google Gemini API using API key.
This strategy uses the simple x-goog-api-key header authentication
method used by the Gemini API.

Gemini.Auth.MultiAuthCoordinator

Coordinates multiple authentication strategies for concurrent usage.
Enables per-request auth strategy selection while maintaining
independent credential management and request routing.
This module serves as the central coordination point for the Gemini Unified
Implementation's multi-auth capability, allowing applications to use both
Gemini API and Vertex AI authentication strategies simultaneously.

 Summary

 Types

 auth_result()

 auth_strategy()

 credentials()

 request_opts()

 Functions

 coordinate_auth(strategy, opts \\ [])

 Coordinates authentication for the specified strategy.

 get_credentials(strategy, opts \\ [])

 Retrieves credentials for the specified authentication strategy.

 refresh_credentials(strategy)

 Refreshes credentials for the specified authentication strategy.

 validate_auth_config(strategy)

 Validates configuration for the specified authentication strategy.

 Types

 auth_result()

 @type auth_result() :: {:ok, auth_strategy(), headers :: list()} | {:error, term()}

 auth_strategy()

 @type auth_strategy() :: :gemini | :vertex_ai

 credentials()

 @type credentials() :: map()

 request_opts()

 @type request_opts() :: keyword()

 Functions

 coordinate_auth(strategy, opts \\ [])

 @spec coordinate_auth(auth_strategy(), request_opts()) :: auth_result()

Coordinates authentication for the specified strategy.
This is the main entry point for multi-auth coordination. It routes
authentication requests to the appropriate strategy while maintaining
independent credential management.
Parameters
	strategy: The authentication strategy (:gemini or :vertex_ai)
	opts: Request options (may include configuration overrides)

Returns
	{:ok, strategy, headers} on successful authentication
	{:error, reason} on authentication failure

Examples
Coordinate Gemini API authentication
{:ok, :gemini, headers} = MultiAuthCoordinator.coordinate_auth(:gemini, [])

Coordinate Vertex AI authentication
{:ok, :vertex_ai, headers} = MultiAuthCoordinator.coordinate_auth(:vertex_ai, [])

With configuration overrides
{:ok, :gemini, headers} = MultiAuthCoordinator.coordinate_auth(:gemini, [api_key: "override"])

 get_credentials(strategy, opts \\ [])

 @spec get_credentials(auth_strategy(), request_opts()) ::
 {:ok, credentials()} | {:error, term()}

Retrieves credentials for the specified authentication strategy.
Loads credentials from configuration, with optional overrides from request options.
Parameters
	strategy: The authentication strategy
	opts: Optional configuration overrides

Returns
	{:ok, credentials} on success
	{:error, reason} on failure

 refresh_credentials(strategy)

 @spec refresh_credentials(auth_strategy()) :: {:ok, credentials()} | {:error, term()}

Refreshes credentials for the specified authentication strategy.
For strategies that support credential refresh (like Vertex AI OAuth tokens),
this function will generate fresh credentials. For strategies that don't
need refresh (like Gemini API keys), it returns the existing credentials.
Parameters
	strategy: The authentication strategy

Returns
	{:ok, refreshed_credentials} on success
	{:error, reason} on failure

 validate_auth_config(strategy)

 @spec validate_auth_config(auth_strategy()) :: :ok | {:error, term()}

Validates configuration for the specified authentication strategy.
Checks that all required configuration is present and valid for the
given strategy.
Parameters
	strategy: The authentication strategy to validate

Returns
	:ok if configuration is valid
	{:error, reason} if configuration is invalid or missing

Gemini.Auth.VertexStrategy

Authentication strategy for Google Vertex AI using OAuth2/Service Account.
This strategy supports multiple authentication methods:
	Service Account JSON file (via VERTEX_JSON_FILE environment variable)
	OAuth2 access tokens
	Application Default Credentials (ADC)

Based on the Vertex AI documentation, this strategy can generate self-signed JWTs
for authenticated endpoints and standard Bearer tokens for regular API calls.
ADC Support
If no explicit credentials are provided, this strategy will automatically
fall back to Application Default Credentials (ADC), which searches for
credentials in the following order:
	GOOGLE_APPLICATION_CREDENTIALS environment variable
	User credentials from gcloud CLI (~/.config/gcloud/application_default_credentials.json)
	GCP metadata server (for Cloud Run, GKE, Compute Engine, etc.)

 Summary

 Functions

 authenticate(arg1)

 Authenticate with Vertex AI using various methods.

 create_signed_jwt(service_account_email, audience, credentials, opts \\ [])

 Create a signed JWT for authenticated Vertex AI endpoints.

 headers(credentials)

 Get authentication headers for Vertex AI requests.

 Functions

 authenticate(arg1)

Authenticate with Vertex AI using various methods.
Supports the following authentication methods:
	OAuth2 with project_id and location
	Service Account with key file path
	Service Account with key data
	Direct access token

 create_signed_jwt(service_account_email, audience, credentials, opts \\ [])

 @spec create_signed_jwt(String.t(), String.t(), map(), keyword()) ::
 {:ok, String.t()} | {:error, term()}

Create a signed JWT for authenticated Vertex AI endpoints.
This is used for Vector Search endpoints with JWT authentication as described in v1.md.
Parameters
	service_account_email: The service account email (issuer)
	audience: The audience specified during index deployment
	credentials: The credentials map containing authentication info
	opts: Additional options for JWT creation

Examples
iex> credentials = %{service_account_key: "/path/to/key.json"}
iex> {:ok, jwt} = Gemini.Auth.VertexStrategy.create_signed_jwt(
...> "my-service@project.iam.gserviceaccount.com",
...> "my-app-audience",
...> credentials
...>)

 headers(credentials)

Get authentication headers for Vertex AI requests.
Supports multiple credential types:
	%{access_token: token} - Direct access token
	%{service_account_key: path} - Service account JSON file path
	%{service_account_data: data} - Service account JSON data
	%{jwt_token: token} - Pre-signed JWT token

Returns {:ok, headers} on success, or {:error, reason} if authentication fails.

Gemini.Live.Audio

Audio utilities for Live API.
Provides helper functions for working with audio data in the Live API.
The Live API uses specific audio formats for input and output.
Audio Formats
	Input: 16-bit PCM, 16kHz, mono
	Output: 16-bit PCM, 24kHz, mono

Usage
Create an audio blob for sending
blob = Audio.create_input_blob(pcm_data)
Session.send_realtime_input(session, audio: blob)

Decode audio from server response
pcm_data = Audio.decode_output(base64_data)
Sample Rates
The different sample rates for input and output mean that you may need
to resample audio when recording from or playing to standard audio devices.
	Input: 16kHz (16,000 samples per second)
	Output: 24kHz (24,000 samples per second)

 Summary

 Types

 audio_blob()

 Functions

 bytes_for_duration(duration_ms, sample_rate \\ 16000)

 Calculates the byte size needed for a given duration of audio.

 chunk_audio(pcm_data, chunk_duration_ms, sample_rate \\ 16000)

 Splits audio data into chunks of specified duration.

 create_input_blob(pcm_data, opts \\ [])

 Creates an audio blob for sending to the Live API.

 decode_output(base64_data)

 Decodes audio data from a server response.

 decode_output_safe(base64_data)

 Safely decodes audio data, returning an error tuple on failure.

 duration_ms(pcm_data, sample_rate \\ 16000)

 Calculates the duration of audio data in milliseconds.

 input_mime_type()

 Returns the expected input MIME type for audio.

 input_sample_rate()

 Returns the input sample rate (16kHz).

 output_mime_type()

 Returns the output MIME type for audio.

 output_sample_rate()

 Returns the output sample rate (24kHz).

 Types

 audio_blob()

 @type audio_blob() :: %{data: binary() | String.t(), mime_type: String.t()}

 Functions

 bytes_for_duration(duration_ms, sample_rate \\ 16000)

 @spec bytes_for_duration(non_neg_integer(), pos_integer()) :: non_neg_integer()

Calculates the byte size needed for a given duration of audio.
Parameters
	duration_ms - Duration in milliseconds
	sample_rate - Sample rate (default: input_sample_rate)

Returns
Number of bytes needed for the given duration.
Example
Get bytes needed for 100ms of input audio
bytes = Audio.bytes_for_duration(100)
#=> 3200 # (16000 samples/sec * 0.1 sec * 2 bytes/sample)

 chunk_audio(pcm_data, chunk_duration_ms, sample_rate \\ 16000)

 @spec chunk_audio(binary(), pos_integer(), pos_integer()) :: [binary()]

Splits audio data into chunks of specified duration.
Useful for streaming audio to the Live API in appropriately-sized chunks.
Parameters
	pcm_data - Raw PCM audio data
	chunk_duration_ms - Duration of each chunk in milliseconds
	sample_rate - Sample rate (default: input_sample_rate)

Returns
List of binary chunks, each containing audio for the specified duration.
The last chunk may be shorter if the audio doesn't divide evenly.
Example
Split audio into 100ms chunks for streaming
chunks = Audio.chunk_audio(pcm_data, 100)
Enum.each(chunks, fn chunk ->
 blob = Audio.create_input_blob(chunk)
 Session.send_realtime_input(session, audio: blob)
end)

 create_input_blob(pcm_data, opts \\ [])

 @spec create_input_blob(
 binary(),
 keyword()
) :: audio_blob()

Creates an audio blob for sending to the Live API.
Takes raw PCM audio data (16-bit, 16kHz, mono) and returns
a properly formatted blob for use with Session.send_realtime_input/2.
Parameters
	pcm_data - Raw PCM audio data as binary (16-bit, 16kHz, mono)
	opts - Optional options:	:encode - Whether to base64 encode the data (default: false)

Returns
A map with :data and :mime_type keys suitable for the Live API.
Examples
With raw binary data
blob = Audio.create_input_blob(pcm_data)
Session.send_realtime_input(session, audio: blob)

With pre-encoding (if you want to send encoded data)
blob = Audio.create_input_blob(pcm_data, encode: true)

 decode_output(base64_data)

 @spec decode_output(String.t()) :: binary()

Decodes audio data from a server response.
The Live API returns audio data as base64-encoded strings.
This function decodes them back to raw PCM data.
Parameters
	base64_data - Base64-encoded audio data from server response

Returns
Raw PCM audio data as binary (16-bit, 24kHz, mono).
Example
From a server response part
audio_data = response.server_content.model_turn.parts
 |> Enum.find(& &1.inline_data)
 |> Map.get(:inline_data)
 |> Map.get(:data)
 |> Audio.decode_output()

 decode_output_safe(base64_data)

 @spec decode_output_safe(String.t()) :: {:ok, binary()} | {:error, term()}

Safely decodes audio data, returning an error tuple on failure.
Parameters
	base64_data - Base64-encoded audio data

Returns
	{:ok, binary} - Successfully decoded audio data
	{:error, reason} - Decoding failed

 duration_ms(pcm_data, sample_rate \\ 16000)

 @spec duration_ms(binary(), pos_integer()) :: non_neg_integer()

Calculates the duration of audio data in milliseconds.
Parameters
	pcm_data - Raw PCM audio data (16-bit samples)
	sample_rate - Sample rate of the audio (default: input_sample_rate)

Returns
Duration in milliseconds as an integer.
Example
Calculate duration of input audio
duration_ms = Audio.duration_ms(pcm_data)

Calculate duration of output audio
duration_ms = Audio.duration_ms(output_data, Audio.output_sample_rate())

 input_mime_type()

 @spec input_mime_type() :: String.t()

Returns the expected input MIME type for audio.
Example
Audio.input_mime_type()
#=> "audio/pcm;rate=16000"

 input_sample_rate()

 @spec input_sample_rate() :: pos_integer()

Returns the input sample rate (16kHz).
The Live API expects input audio at 16kHz sample rate.
Example
Audio.input_sample_rate()
#=> 16000

 output_mime_type()

 @spec output_mime_type() :: String.t()

Returns the output MIME type for audio.
Example
Audio.output_mime_type()
#=> "audio/pcm;rate=24000"

 output_sample_rate()

 @spec output_sample_rate() :: pos_integer()

Returns the output sample rate (24kHz).
The Live API returns audio at 24kHz sample rate.
Example
Audio.output_sample_rate()
#=> 24000

Gemini.Live.EphemeralToken

Creates ephemeral tokens for client-side Live API access.
Ephemeral tokens allow secure client-side WebSocket connections by providing
short-lived, restricted credentials. They are designed for client-to-server
implementations where the token is used in a browser or mobile app.
Security Benefits
	Short-lived tokens reduce risk if extracted from client-side code
	Tokens can be locked to specific configurations
	Usage limits prevent token reuse

Usage
Server-side: Create token
{:ok, token} = EphemeralToken.create(
 uses: 1,
 expire_minutes: 30,
 live_connect_constraints: %{
 model: "gemini-2.5-flash-native-audio-preview-12-2025",
 config: %{response_modalities: ["AUDIO"]}
 }
)

Return token.name to client
Client uses token.name as API key for WebSocket connection
Token Lifetimes
	expire_time - How long the token is valid for messages (default: 30 minutes)
	new_session_expire_time - Deadline to start a new session (default: 1 minute)

Constraints
Tokens can be locked to specific configurations:
	Model name
	Generation config (response modalities, temperature, etc.)
	Session resumption settings

This prevents clients from using the token with different configurations
than intended by the server.
Note
Ephemeral tokens are only compatible with the Live API at this time.

 Summary

 Types

 create_opts()

 Functions

 create(opts \\ [])

 Creates an ephemeral token for Live API access.

 Types

 create_opts()

 @type create_opts() :: [
 uses: pos_integer(),
 expire_minutes: pos_integer(),
 new_session_expire_minutes: pos_integer(),
 live_connect_constraints: map()
]

 Functions

 create(opts \\ [])

 @spec create(create_opts()) :: {:ok, map()} | {:error, term()}

Creates an ephemeral token for Live API access.
Options
	:uses - Number of times token can be used (default: 1)
	:expire_minutes - Token expiration in minutes (default: 30)
	:new_session_expire_minutes - New session deadline in minutes (default: 1)
	:live_connect_constraints - Lock token to specific config

Constraints Format
The :live_connect_constraints option accepts a map with:
	:model - Model name to lock to
	:config - Configuration map with:	:response_modalities - List of modalities (:audio, :text, or strings)
	:temperature - Temperature setting
	:session_resumption - Session resumption config

Returns
	{:ok, %{name: token_string, ...}} - Token created successfully
	{:error, reason} - Token creation failed

Examples
Simple token
{:ok, token} = EphemeralToken.create()

Token with constraints
{:ok, token} = EphemeralToken.create(
 uses: 1,
 expire_minutes: 15,
 live_connect_constraints: %{
 model: "gemini-2.5-flash-native-audio-preview-12-2025",
 config: %{
 response_modalities: [:audio],
 temperature: 0.7
 }
 }
)

Use the token name as API key
token.name # => "authTokens/abc123..."

Gemini.Live.Session

GenServer managing a Live API WebSocket session.
Provides a high-level interface for real-time bidirectional communication
with Gemini models for voice, video, and text interactions.
Usage
Start a session
{:ok, pid} = Session.start_link(
 model: "gemini-2.5-flash-native-audio-preview-12-2025",
 auth: :gemini,
 on_message: fn msg -> IO.inspect(msg) end,
 on_error: fn err -> Logger.error(inspect(err)) end
)

Connect to the Live API
:ok = Session.connect(pid)

Send text content
:ok = Session.send_client_content(pid, "Hello!")

Send realtime audio
:ok = Session.send_realtime_input(pid, audio: audio_blob)

Close when done
:ok = Session.close(pid)
Callbacks
	on_message - Called for each server message
	on_error - Called on errors
	on_close - Called when session closes
	on_tool_call - Called when model requests tool execution (may return tool responses)
	on_transcription - Called for audio transcriptions
	on_voice_activity - Called for voice activity signals

Session State
The session tracks:
	Connection status
	Setup completion
	Active tool calls
	Session resumption handle
	Usage metadata

Audio Format
	Input: 16-bit PCM, 16kHz, mono
	Output: 16-bit PCM, 24kHz, mono

 Summary

 Types

 callback()

 session_status()

 state()

 tool_call_callback()

 tool_call_callback_result()

 tool_response()

 tool_responses()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 close(session)

 Closes the session gracefully.

 connect(session)

 Connects to the Live API and sends setup configuration.

 get_session_handle(session)

 Returns the session resumption handle (if available).

 send_client_content(session, content, opts \\ [])

 Sends client content (text turns) to the model.

 send_realtime_input(session, opts)

 Sends realtime input (audio, video, text) to the model.

 send_tool_response(session, responses)

 Sends tool/function responses to the model.

 start_link(opts)

 Starts a new Live session process.

 status(session)

 Returns the current session status.

 Types

 callback()

 @type callback() :: (term() -> any())

 session_status()

 @type session_status() ::
 :disconnected | :connecting | :setup_pending | :ready | :closing

 state()

 @type state() :: %{
 websocket: Gemini.Client.WebSocket.t() | term() | nil,
 websocket_module: module(),
 websocket_opts: keyword(),
 status: session_status(),
 config: map(),
 callbacks: map(),
 pending_setup: Gemini.Types.Live.Setup.t() | nil,
 session_handle: String.t() | nil,
 usage_metadata: map() | nil,
 owner: pid()
}

 tool_call_callback()

 @type tool_call_callback() :: (Gemini.Types.Live.ToolCall.t() ->
 tool_call_callback_result())

 tool_call_callback_result()

 @type tool_call_callback_result() ::
 :ok
 | {:tool_response, tool_responses()}
 | {:send_tool_response, tool_responses()}
 | tool_responses()

 tool_response()

 @type tool_response() :: map()

 tool_responses()

 @type tool_responses() :: [tool_response()]

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 close(session)

 @spec close(GenServer.server()) :: :ok

Closes the session gracefully.
Returns
	:ok - Session closed

 connect(session)

 @spec connect(GenServer.server()) :: :ok | {:error, term()}

Connects to the Live API and sends setup configuration.
Must be called after start_link/1 to establish the WebSocket connection.
Waits for the setup_complete response before returning.
Returns
	:ok - Connected and setup complete
	{:error, reason} - Connection failed

 get_session_handle(session)

 @spec get_session_handle(GenServer.server()) :: String.t() | nil

Returns the session resumption handle (if available).
The handle can be used to resume a session after disconnection.
Only available if session_resumption was enabled and the server
has provided a handle.

 send_client_content(session, content, opts \\ [])

 @spec send_client_content(GenServer.server(), String.t() | list(), keyword()) ::
 :ok | {:error, term()}

Sends client content (text turns) to the model.
Parameters
	session - Session PID
	content - String or list of turn maps
	opts - Options:	:turn_complete - Whether this completes the turn (default: true)

Returns
	:ok - Content sent
	{:error, reason} - Send failed

Examples
Simple text
Session.send_client_content(pid, "What is 2+2?")

With turn control
Session.send_client_content(pid, "Part 1", turn_complete: false)
Session.send_client_content(pid, "Part 2", turn_complete: true)

Multi-turn context
Session.send_client_content(pid, [
 %{role: "user", parts: [%{text: "Hello"}]},
 %{role: "model", parts: [%{text: "Hi!"}]},
 %{role: "user", parts: [%{text: "How are you?"}]}
])

 send_realtime_input(session, opts)

 @spec send_realtime_input(
 GenServer.server(),
 keyword()
) :: :ok | {:error, term()}

Sends realtime input (audio, video, text) to the model.
Parameters
	session - Session PID
	opts - Input options:	:audio - Audio blob (16-bit PCM, 16kHz mono)
	:video - Video blob
	:text - Text string
	:activity_start - Signal start of user activity
	:activity_end - Signal end of user activity
	:audio_stream_end - Signal audio stream ended

Returns
	:ok - Input sent
	{:error, reason} - Send failed

Examples
Send audio chunk
Session.send_realtime_input(pid, audio: %{data: pcm_data, mime_type: "audio/pcm;rate=16000"})

Signal manual activity
Session.send_realtime_input(pid, activity_start: true)
Session.send_realtime_input(pid, audio: audio_chunk)
Session.send_realtime_input(pid, activity_end: true)

 send_tool_response(session, responses)

 @spec send_tool_response(GenServer.server(), list()) :: :ok | {:error, term()}

Sends tool/function responses to the model.
Parameters
	session - Session PID
	responses - List of function response maps with :id, :name, and :response keys

Returns
	:ok - Response sent
	{:error, reason} - Send failed

Example
Session.send_tool_response(pid, [
 %{id: "call_123", name: "get_weather", response: %{temp: 72}}
])

 start_link(opts)

 @spec start_link(keyword()) :: GenServer.on_start()

Starts a new Live session process.
Options
	:model - Required. Model name (e.g., "gemini-2.5-flash-native-audio-preview-12-2025")
	:auth - Auth strategy (:gemini or :vertex_ai, default: auto-detect)
	:project_id - Required for Vertex AI
	:location - Vertex AI location (default: "us-central1")
	:api_version - Live API version (default: "v1beta")
	:generation_config - Generation configuration
	:system_instruction - System instruction content
	:tools - Tool declarations
	:proactivity - Proactivity configuration (v1alpha)
	:enable_affective_dialog - Enable affective dialog (v1alpha)
	:realtime_input_config - Realtime input configuration
	:on_message - Callback for server messages
	:on_error - Callback for errors
	:on_close - Callback for session close
	:on_tool_call - Callback for tool call requests (may return tool responses)	Return {:tool_response, responses} or a list of responses to send automatically

	:on_tool_call_cancellation - Callback for tool call cancellation
	:on_transcription - Callback for transcriptions
	:on_voice_activity - Callback for voice activity signals
	:on_session_resumption - Callback for session resumption updates
	:on_go_away - Callback for GoAway notices (impending disconnection)
	:session_resumption - Enable session resumption
	:resume_handle - Handle from previous session to resume
	:context_window_compression - Enable context compression
	:websocket_module - Advanced: override WebSocket client module (useful for testing)
	:websocket_opts - Advanced: extra options passed to WebSocket.connect/2

Returns
	{:ok, pid} - Session started
	{:error, reason} - Start failed

Examples
{:ok, session} = Session.start_link(
 model: "gemini-2.5-flash-native-audio-preview-12-2025",
 auth: :gemini,
 generation_config: %{response_modalities: ["TEXT"]},
 on_message: fn msg -> IO.inspect(msg) end
)

 status(session)

 @spec status(GenServer.server()) :: session_status()

Returns the current session status.
Status Values
	:disconnected - Not connected
	:connecting - Connection in progress
	:setup_pending - Connected, waiting for setup_complete
	:ready - Connected and ready for messages
	:closing - Received GoAway, closing soon

Gemini.SSE.Parser

Server-Sent Events (SSE) parser for streaming responses.
Handles partial chunks and maintains state across multiple calls.
Properly parses SSE format with incremental data.

 Summary

 Types

 parse_result()

 t()

 Functions

 extract_text(arg1)

 Extract text content from a streaming event.

 finalize(parser)

 Finalize parsing and return any remaining events in buffer.

 new()

 Create a new SSE parser state.

 parse_chunk(chunk, state)

 Parse incoming SSE chunk and return events + updated state.

 stream_done?(arg1)

 Check if an event indicates the stream is done.

 Types

 parse_result()

 @type parse_result() :: {:ok, [map()], t()} | {:error, term()}

 t()

 @type t() :: %Gemini.SSE.Parser{buffer: String.t(), events: [map()]}

 Functions

 extract_text(arg1)

 @spec extract_text(map()) :: String.t() | nil

Extract text content from a streaming event.

 finalize(parser)

 @spec finalize(t()) :: {:ok, [map()]}

Finalize parsing and return any remaining events in buffer.
Call this when the stream is complete to get any final partial events.

 new()

 @spec new() :: t()

Create a new SSE parser state.

 parse_chunk(chunk, state)

 @spec parse_chunk(String.t(), t()) :: parse_result()

Parse incoming SSE chunk and return events + updated state.
Examples
iex> parser = SSE.Parser.new()
iex> chunk = "data: {\"text\": \"hello\"}
"
iex> {:ok, events, new_parser} = SSE.Parser.parse_chunk(chunk, parser)
iex> length(events)
1

 stream_done?(arg1)

 @spec stream_done?(map()) :: boolean()

Check if an event indicates the stream is done.

Gemini.Streaming.UnifiedManager

Unified streaming manager that supports multiple authentication strategies.
This is the canonical streaming manager for the Gemini client, supporting concurrent
usage of both Gemini API and Vertex AI authentication strategies within the same
application.
Features:
	HTTP streaming with real-time event delivery
	Multi-authentication strategy support via MultiAuthCoordinator
	Per-stream authentication strategy selection
	Concurrent usage of multiple auth strategies
	Resource management and cleanup

 Summary

 Types

 auth_strategy()

 manager_state()

 stream_id()

 stream_state()

 subscriber_ref()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_stats()

 Get manager statistics.

 get_stream_info(stream_id)

 Get stream information.

 list_streams()

 List all active streams.

 start_link(opts \\ [])

 Start the unified streaming manager.

 start_stream(model, request_body, opts \\ [])

 Start a new stream.

 stop_stream(stream_id)

 Stop a stream.

 stream_status(stream_id)

 Get the status of a stream.

 subscribe(stream_id, subscriber_pid \\ self())

 Subscribe to a stream to receive events.

 subscribe_stream(stream_id, subscriber_pid \\ self())

 Subscribe to stream events.

 unsubscribe(stream_id, subscriber_pid \\ self())

 Unsubscribe from a stream.

 Types

 auth_strategy()

 @type auth_strategy() :: :gemini | :vertex_ai

 manager_state()

 @type manager_state() :: %{
 streams: %{required(stream_id()) => stream_state()},
 stream_counter: non_neg_integer(),
 max_streams: pos_integer(),
 default_timeout: pos_integer()
}

 stream_id()

 @type stream_id() :: String.t()

 stream_state()

 @type stream_state() :: %{
 stream_id: stream_id(),
 stream_pid: pid() | nil,
 model: String.t(),
 request_body: map(),
 status: :starting | :active | :completed | :error | :stopped,
 error: term() | nil,
 started_at: DateTime.t(),
 subscribers: [subscriber_ref()],
 events_count: non_neg_integer(),
 last_event_at: DateTime.t() | nil,
 config: keyword(),
 auth_strategy: auth_strategy(),
 release_fn: nil | (atom(), map() | nil -> :ok)
}

 subscriber_ref()

 @type subscriber_ref() :: {pid(), reference()}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_stats()

 @spec get_stats() :: map()

Get manager statistics.

 get_stream_info(stream_id)

 @spec get_stream_info(stream_id()) :: {:ok, map()} | {:error, term()}

Get stream information.

 list_streams()

 @spec list_streams() :: [stream_id()]

List all active streams.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Start the unified streaming manager.

 start_stream(model, request_body, opts \\ [])

 @spec start_stream(String.t(), map(), keyword()) ::
 {:ok, stream_id()} | {:error, term()}

 @spec start_stream(term(), keyword(), pid()) :: {:ok, stream_id()} | {:error, term()}

Start a new stream.
API Variants
New API: start_stream(model, request_body, opts)
	model: The model to use for generation
	request_body: The request body for content generation
	opts: Options including auth strategy and other config

Legacy API: start_stream(contents, opts, subscriber_pid)
	contents: Content to stream (string or list of Content structs)
	opts: Generation options (model, generation_config, etc.)
	subscriber_pid: Process to receive stream events

Options
	:auth: Authentication strategy (:gemini or :vertex_ai)
	:timeout: Request timeout in milliseconds
	Other options passed to the streaming request

Examples
New API with Gemini auth
{:ok, stream_id} = UnifiedManager.start_stream(
 Gemini.Config.get_model(:flash_lite_latest),
 %{contents: [%{parts: [%{text: "Hello"}]}]},
 auth: :gemini
)

Legacy API
{:ok, stream_id} = UnifiedManager.start_stream("Hello", [model: Gemini.Config.get_model(:flash_lite_latest)], self())

 stop_stream(stream_id)

 @spec stop_stream(stream_id()) :: :ok | {:error, term()}

Stop a stream.

 stream_status(stream_id)

 @spec stream_status(stream_id()) :: {:ok, atom()} | {:error, term()}

Get the status of a stream.

 subscribe(stream_id, subscriber_pid \\ self())

 @spec subscribe(stream_id(), pid()) :: :ok | {:error, term()}

Subscribe to a stream to receive events.

 subscribe_stream(stream_id, subscriber_pid \\ self())

 @spec subscribe_stream(stream_id(), pid()) :: :ok | {:error, term()}

Subscribe to stream events.

 unsubscribe(stream_id, subscriber_pid \\ self())

 @spec unsubscribe(stream_id(), pid()) :: :ok | {:error, term()}

Unsubscribe from a stream.

Gemini.Client

Main client module that delegates to the appropriate HTTP client implementation.
This module provides a unified interface for making HTTP requests to the Gemini API,
abstracting away the specific implementation details of the underlying HTTP client.

 Summary

 Functions

 get(path, opts \\ [])

 Make a GET request using the configured authentication.

 post(path, body, opts \\ [])

 Make a POST request using the configured authentication.

 request(method, path, body, auth_config, opts \\ [])

 Make an authenticated HTTP request.

 Functions

 get(path, opts \\ [])

Make a GET request using the configured authentication.
Parameters
	path - The API path to request
	opts - Optional keyword list of request options

Returns
	{:ok, response} - Successful response
	{:error, Error.t()} - Error details

 post(path, body, opts \\ [])

Make a POST request using the configured authentication.
Parameters
	path - The API path to request
	body - The request body (will be JSON encoded)
	opts - Optional keyword list of request options

Returns
	{:ok, response} - Successful response
	{:error, Error.t()} - Error details

 request(method, path, body, auth_config, opts \\ [])

Make an authenticated HTTP request.
Parameters
	method - HTTP method (:get, :post, etc.)
	path - The API path to request
	body - The request body (nil for GET requests)
	auth_config - Authentication configuration
	opts - Optional keyword list of request options

Returns
	{:ok, response} - Successful response
	{:error, Error.t()} - Error details

Gemini.Client.HTTP

HTTP client for both Gemini and Vertex AI APIs using Req.
Supports multiple authentication strategies for regular (non-streaming) HTTP requests.
For streaming requests, see Gemini.Client.HTTPStreaming.
Rate Limiting
All requests are automatically routed through the rate limiter unless
disable_rate_limiter: true is passed in options. The rate limiter:
	Enforces concurrency limits per model
	Honors 429 RetryInfo delays from the API
	Retries transient failures with backoff
	Tracks token usage for budget estimation

See Gemini.RateLimiter for configuration options.

 Summary

 Functions

 delete(path, opts \\ [])

 Make a DELETE request using the configured authentication.

 get(path, opts \\ [])

 Make a GET request using the configured authentication.

 patch(path, body, opts \\ [])

 Make a PATCH request using the configured authentication.

 post(path, body, opts \\ [])

 Make a POST request using the configured authentication.

 request(method, path, body, auth_config, opts \\ [])

 Make an authenticated HTTP request.

 Functions

 delete(path, opts \\ [])

Make a DELETE request using the configured authentication.

 get(path, opts \\ [])

Make a GET request using the configured authentication.

 patch(path, body, opts \\ [])

Make a PATCH request using the configured authentication.

 post(path, body, opts \\ [])

Make a POST request using the configured authentication.

 request(method, path, body, auth_config, opts \\ [])

Make an authenticated HTTP request.
Options
In addition to standard request options, supports rate limiter options:
	:disable_rate_limiter - Bypass rate limiting (default: false)
	:non_blocking - Return immediately if rate limited (default: false)
	:max_concurrency_per_model - Override concurrency limit

Gemini.Client.HTTPStreaming

HTTP client for streaming Server-Sent Events (SSE) from Gemini API.
Provides proper streaming support with:
	Incremental SSE parsing
	Connection management
	Error handling and retries
	Backpressure support

 Summary

 Types

 stream_callback()

 stream_event()

 Functions

 stream_sse(url, headers, body, callback, opts \\ [])

 Start an SSE stream with a callback function.

 stream_to_process(url, headers, body, stream_id, target_pid, opts \\ [])

 Start an SSE stream that sends events to a GenServer process.

 Types

 stream_callback()

 @type stream_callback() :: (stream_event() -> :ok | :stop)

 stream_event()

 @type stream_event() :: %{
 type: :data | :error | :complete,
 data: map() | nil,
 error: term() | nil
}

 Functions

 stream_sse(url, headers, body, callback, opts \\ [])

 @spec stream_sse(
 String.t(),
 [{String.t(), String.t()}],
 map() | nil,
 stream_callback(),
 keyword()
) :: {:ok, :completed} | {:error, term()}

Start an SSE stream with a callback function.
Parameters
	url - Full URL for the streaming endpoint
	headers - HTTP headers including authentication
	body - Request body (will be JSON encoded)
	callback - Function called for each event
	opts - Options including timeout, retry settings	:timeout - Receive timeout per attempt (default: Gemini.Config.timeout/0)
	:max_retries - Number of retry attempts (default: 3)
	:max_backoff_ms - Max backoff between retries (default: 10_000)
	:connect_timeout - Finch connect timeout (default: 5_000)

Examples
callback = fn
 %{type: :data, data: data} ->
 IO.puts("Received data")
 :ok
 %{type: :complete} ->
 IO.puts("Stream complete")
 :ok
 %{type: :error, error: _error} ->
 IO.puts("Stream error")
 :stop
end

HTTPStreaming.stream_sse(url, headers, body, callback)

 stream_to_process(url, headers, body, stream_id, target_pid, opts \\ [])

 @spec stream_to_process(
 String.t(),
 [{String.t(), String.t()}],
 map(),
 String.t(),
 pid(),
 keyword()
) :: {:ok, pid()} | {:error, term()}

Start an SSE stream that sends events to a GenServer process.
Events are sent as messages: {:stream_event, stream_id, event}

Gemini.Client.WebSocket

WebSocket client for Gemini Live API using :gun.
This module provides low-level WebSocket connectivity with:
	TLS/HTTP2 connection management
	Automatic reconnection handling with configurable retry logic
	Message framing and parsing
	Auth strategy integration (Gemini API / Vertex AI)
	Comprehensive telemetry integration

Usage
Typically used through Gemini.Live.Session rather than directly.
{:ok, conn} = WebSocket.connect(:gemini, model: "gemini-2.5-flash")
:ok = WebSocket.send(conn, %{setup: setup_config})
{:ok, message} = WebSocket.receive(conn)
:ok = WebSocket.close(conn)
Connection Options
	:model - Required. Model name for the Live API
	:project_id - Required for Vertex AI
	:location - Vertex AI location (default: "us-central1")
	:api_version - API version (default: "v1beta")
	:timeout - Connection timeout in ms (default: 30000)
	:retry_attempts - Number of retry attempts for transient failures (default: 3)
	:retry_delay - Initial delay between retries in ms (default: 1000)
	:retry_backoff - Backoff multiplier for retries (default: 2.0)

Connection State
The connection struct tracks:
	Gun connection PID
	Stream reference
	Authentication strategy
	Connection status

Endpoints
	Gemini API: wss://generativelanguage.googleapis.com/ws/google.ai.generativelanguage.v1beta.GenerativeService.BidiGenerateContent?key=API_KEY
	Vertex AI: wss://{location}-aiplatform.googleapis.com/ws/google.cloud.aiplatform.v1beta1.LlmBidiService/BidiGenerateContent?project=...&location=...

Telemetry Events
This module emits the following telemetry events:
	[:gemini, :live, :websocket, :connect, :start] - Connection attempt started
	[:gemini, :live, :websocket, :connect, :stop] - Connection established
	[:gemini, :live, :websocket, :connect, :exception] - Connection failed
	[:gemini, :live, :websocket, :send] - Message sent
	[:gemini, :live, :websocket, :receive] - Message received
	[:gemini, :live, :websocket, :close] - Connection closed
	[:gemini, :live, :websocket, :retry] - Retry attempt

 Summary

 Types

 auth_strategy()

 connection_error()

 connection_status()

 retry_config()

 t()

 Functions

 close(conn)

 Closes the WebSocket connection gracefully.

 connect(auth_strategy, opts \\ [])

 Establishes a WebSocket connection to the Live API.

 connected?(arg1)

 Checks if the connection is active.

 receive(conn, timeout \\ 60000)

 Receives the next message from the WebSocket connection.

 receive_all(conn)

 Receives all available messages without blocking.

 retryable_error?(arg1)

 Checks if an error is retryable.

 send(conn, message)

 Sends a message over the WebSocket connection.

 status(web_socket)

 Returns the current connection status.

 Types

 auth_strategy()

 @type auth_strategy() :: :gemini | :vertex_ai

 connection_error()

 @type connection_error() ::
 :project_id_required_for_vertex_ai
 | :no_api_key
 | {:open_failed, term()}
 | {:connection_failed, term()}
 | {:upgrade_failed, integer(), list()}
 | {:upgrade_error, term()}
 | :upgrade_timeout
 | {:max_retries_exceeded, term()}

 connection_status()

 @type connection_status() :: :connecting | :connected | :closing | :closed

 retry_config()

 @type retry_config() :: %{
 attempts: non_neg_integer(),
 delay: non_neg_integer(),
 backoff: float()
}

 t()

 @type t() :: %Gemini.Client.WebSocket{
 api_version: String.t(),
 auth_strategy: auth_strategy() | nil,
 gun_pid: pid() | nil,
 location: String.t() | nil,
 model: String.t() | nil,
 project_id: String.t() | nil,
 retry_config: retry_config(),
 status: connection_status(),
 stream_ref: reference() | nil
}

 Functions

 close(conn)

 @spec close(t()) :: :ok

Closes the WebSocket connection gracefully.
Parameters
	conn - The WebSocket connection struct

Returns
	:ok - Always returns :ok

 connect(auth_strategy, opts \\ [])

 @spec connect(
 auth_strategy(),
 keyword()
) :: {:ok, t()} | {:error, connection_error()}

Establishes a WebSocket connection to the Live API.
Parameters
	auth_strategy - :gemini or :vertex_ai
	opts - Connection options:	:model - Required. Model name
	:project_id - Required for Vertex AI
	:location - Vertex AI location (default: "us-central1")
	:api_version - API version (default: "v1beta")
	:timeout - Connection timeout in ms (default: 30000)
	:retry_attempts - Number of retry attempts (default: 3)
	:retry_delay - Initial retry delay in ms (default: 1000)
	:retry_backoff - Backoff multiplier (default: 2.0)

Returns
	{:ok, connection} - Successfully connected
	{:error, reason} - Connection failed

Examples
{:ok, conn} = WebSocket.connect(:gemini, model: "gemini-2.5-flash-native-audio-preview-12-2025")

{:ok, conn} = WebSocket.connect(:vertex_ai,
 model: "gemini-2.5-flash-native-audio-preview-12-2025",
 project_id: "my-project",
 location: "us-central1"
)

With custom retry configuration
{:ok, conn} = WebSocket.connect(:gemini,
 model: "gemini-2.5-flash",
 retry_attempts: 5,
 retry_delay: 2000,
 retry_backoff: 1.5
)

 connected?(arg1)

 @spec connected?(t()) :: boolean()

Checks if the connection is active.

 receive(conn, timeout \\ 60000)

 @spec receive(t(), timeout()) :: {:ok, map()} | {:error, term()}

Receives the next message from the WebSocket connection.
This is a blocking call that waits for the next message.
Parameters
	conn - The connection struct
	timeout - Timeout in milliseconds (default: 60000)

Returns
	{:ok, message} - Received and parsed JSON message
	{:error, :timeout} - No message received within timeout
	{:error, :closed} - Connection closed
	{:error, reason} - Other error

 receive_all(conn)

 @spec receive_all(t()) :: [map()]

Receives all available messages without blocking.
Returns a list of messages that are immediately available.

 retryable_error?(arg1)

 @spec retryable_error?(term()) :: boolean()

Checks if an error is retryable.
Returns true if the error is a transient failure that might succeed on retry.
Parameters
	error - The error to check

Returns
	true if the error is retryable
	false otherwise

 send(conn, message)

 @spec send(t(), map()) :: :ok | {:error, term()}

Sends a message over the WebSocket connection.
The message should be a map that will be JSON-encoded.
Parameters
	conn - The WebSocket connection struct
	message - A map to be JSON-encoded and sent

Returns
	:ok - Message sent successfully
	{:error, reason} - Send failed

Example
:ok = WebSocket.send(conn, %{
 "clientContent" => %{
 "turns" => [%{"role" => "user", "parts" => [%{"text" => "Hello"}]}],
 "turnComplete" => true
 }
})

 status(web_socket)

 @spec status(t()) :: connection_status()

Returns the current connection status.

Gemini.Types.Live.AudioTranscriptionConfig

Audio transcription configuration for Live API sessions.
This type enables transcription of voice input or model audio output.
The transcription aligns with the input audio language (for input) or
the language code specified for output audio (for output).
Example
Enable input transcription
%AudioTranscriptionConfig{}

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 Parses from API response.

 new(opts \\ [])

 Creates a new AudioTranscriptionConfig.

 to_api(arg1)

 Converts to API format (camelCase).

 Types

 t()

 @type t() :: %Gemini.Types.Live.AudioTranscriptionConfig{}

 Functions

 from_api(arg1)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new AudioTranscriptionConfig.

 to_api(arg1)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.AutomaticActivityDetection

Automatic activity detection configuration for Live API sessions.
Configures automatic detection of user activity (voice and text input).
When enabled (the default), the server automatically detects when the
user starts and stops speaking.
Fields
	disabled - If true, automatic detection is disabled and client must send activity signals
	start_of_speech_sensitivity - How likely speech is to be detected at start
	end_of_speech_sensitivity - How likely detected speech is to end
	prefix_padding_ms - Duration of speech required before start-of-speech is committed
	silence_duration_ms - Duration of silence required before end-of-speech is committed

Example
%AutomaticActivityDetection{
 disabled: false,
 start_of_speech_sensitivity: :high,
 end_of_speech_sensitivity: :low,
 prefix_padding_ms: 100,
 silence_duration_ms: 500
}

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new AutomaticActivityDetection configuration.

 to_api(value)

 Converts to API format (camelCase).

 Types

 t()

 @type t() :: %Gemini.Types.Live.AutomaticActivityDetection{
 disabled: boolean() | nil,
 end_of_speech_sensitivity: Gemini.Types.Live.Enums.EndSensitivity.t() | nil,
 prefix_padding_ms: integer() | nil,
 silence_duration_ms: integer() | nil,
 start_of_speech_sensitivity:
 Gemini.Types.Live.Enums.StartSensitivity.t() | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new AutomaticActivityDetection configuration.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.ClientContent

Client content message for Live API sessions.
Incremental update of the current conversation delivered from the client.
All content is unconditionally appended to the conversation history and
used as part of the prompt to generate content.
A message here will interrupt any current model generation.
Fields
	turns - Content appended to the current conversation. For single-turn queries,
this is a single instance. For multi-turn queries, this contains conversation
history and the latest request.
	turn_complete - If true, indicates that server content generation should start
with the currently accumulated prompt.

Example
%ClientContent{
 turns: [
 %{role: "user", parts: [%{text: "Hello!"}]}
],
 turn_complete: true
}

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new ClientContent.

 to_api(value)

 Converts to API format (camelCase).

 Types

 t()

 @type t() :: %Gemini.Types.Live.ClientContent{
 turn_complete: boolean() | nil,
 turns: [Gemini.Types.Content.t() | map()] | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new ClientContent.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.ContextWindowCompression

Context window compression configuration for Live API sessions.
Enables context window compression - a mechanism for managing the model's
context window so that it does not exceed a given length.
Fields
	trigger_tokens - Number of tokens that triggers compression (default: 80% of context limit)
	sliding_window - Sliding window compression mechanism configuration

Example
%ContextWindowCompression{
 trigger_tokens: 16000,
 sliding_window: %SlidingWindow{target_tokens: 8000}
}

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new ContextWindowCompression configuration.

 to_api(value)

 Converts to API format (camelCase).

 Types

 t()

 @type t() :: %Gemini.Types.Live.ContextWindowCompression{
 sliding_window: Gemini.Types.Live.SlidingWindow.t() | nil,
 trigger_tokens: integer() | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new ContextWindowCompression configuration.

 to_api(value)

 @spec to_api(t() | map() | nil) :: map() | nil

Converts to API format (camelCase).
Accepts structs, maps with atom keys, or maps with string keys.
Uses fetch_value to properly preserve falsey values like 0 or false.

Gemini.Types.Live.Enums

Enumeration types for the Live API (WebSocket).
This module provides type-safe enums for Live API configuration values,
including activity handling, speech sensitivity, and turn coverage.
Usage
alias Gemini.Types.Live.Enums.{ActivityHandling, StartSensitivity, TurnCoverage}

Configure activity handling
handling = ActivityHandling.to_api(:start_of_activity_interrupts)

Set speech sensitivity
sensitivity = StartSensitivity.to_api(:high)

Gemini.Types.Live.Enums.ActivityHandling

The different ways of handling user activity.
Values
	:unspecified - Default behavior is START_OF_ACTIVITY_INTERRUPTS
	:start_of_activity_interrupts - Start of activity will interrupt the model's response (barge in)
	:no_interruption - The model's response will not be interrupted

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() :: :unspecified | :start_of_activity_interrupts | :no_interruption

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Live.Enums.EndSensitivity

Determines how end of speech is detected.
Values
	:unspecified - Default is HIGH sensitivity
	:high - Automatic detection ends speech more often
	:low - Automatic detection ends speech less often

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() :: :unspecified | :high | :low

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Live.Enums.StartSensitivity

Determines how start of speech is detected.
Values
	:unspecified - Default is HIGH sensitivity
	:high - Automatic detection will detect the start of speech more often
	:low - Automatic detection will detect the start of speech less often

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() :: :unspecified | :high | :low

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Live.Enums.TurnCoverage

Options about which input is included in the user's turn.
Values
	:unspecified - Default behavior is TURN_INCLUDES_ONLY_ACTIVITY
	:turn_includes_only_activity - User's turn only includes activity since last turn
	:turn_includes_all_input - User's turn includes all realtime input since last turn

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() :: :unspecified | :turn_includes_only_activity | :turn_includes_all_input

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Live.Enums.VadSignalType

Voice Activity Detection signal types.
Values
	:unspecified - Unspecified signal type
	:start_of_speech - Start of speech detected
	:end_of_speech - End of speech detected

 Summary

 Types

 t()

 Functions

 from_api(arg1)

 to_api(atom)

 Types

 t()

 @type t() :: :unspecified | :start_of_speech | :end_of_speech

 Functions

 from_api(arg1)

 @spec from_api(String.t() | nil) :: t() | nil

 to_api(atom)

 @spec to_api(t()) :: String.t()

Gemini.Types.Live.GoAway

Notice from the server that the connection will soon be terminated.
When received, clients should prepare to disconnect and optionally
use session resumption to continue the session on a new connection.
Fields
	time_left - Duration string indicating remaining time before termination

Example
%GoAway{time_left: "30s"}

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new GoAway message.

 to_api(value)

 Converts to API format (camelCase).

 Types

 t()

 @type t() :: %Gemini.Types.Live.GoAway{time_left: String.t() | nil}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new GoAway message.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.GroundingMetadata

Grounding metadata for Live API responses.
Contains information about sources and attributions for grounded content.
Fields
	grounding_attributions - List of grounding attributions
	web_search_queries - Search queries used for grounding
	search_entry_point - Entry point for search
	retrieval_queries - Retrieval queries used

Example
%GroundingMetadata{
 web_search_queries: ["weather today"],
 grounding_attributions: [%{source: "...", confidence: "HIGH"}]
}

 Summary

 Types

 grounding_attribution()

 search_entry_point()

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new GroundingMetadata.

 to_api(value)

 Converts to API format (camelCase).

 Types

 grounding_attribution()

 @type grounding_attribution() :: %{
 source_id: map() | nil,
 content: map() | nil,
 segment: map() | nil,
 confidence_score: float() | nil
}

 search_entry_point()

 @type search_entry_point() :: %{
 rendered_content: String.t() | nil,
 sdk_blob: String.t() | nil
}

 t()

 @type t() :: %Gemini.Types.Live.GroundingMetadata{
 grounding_attributions: [grounding_attribution()] | nil,
 retrieval_queries: [String.t()] | nil,
 search_entry_point: search_entry_point() | nil,
 web_search_queries: [String.t()] | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new GroundingMetadata.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.ProactivityConfig

Proactivity configuration for Live API sessions.
Configures the proactivity features of the model. When enabled, the model
can respond proactively to input and ignore irrelevant input.
Fields
	proactive_audio - If enabled, the model can reject responding to prompts.
For example, this allows the model to ignore out of context speech or
stay silent if the user did not make a request.

Example
%ProactivityConfig{proactive_audio: true}

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new ProactivityConfig.

 to_api(value)

 Converts to API format (camelCase).

 Types

 t()

 @type t() :: %Gemini.Types.Live.ProactivityConfig{proactive_audio: boolean() | nil}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new ProactivityConfig.

 to_api(value)

 @spec to_api(t() | map() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.RealtimeInput

Realtime input for Live API sessions.
User input that is sent in real time. Different from ClientContent in that:
	Can be sent continuously without interrupting model generation
	End of turn is derived from user activity (e.g., end of speech)
	Data is processed incrementally for fast response start
	Always assumed to be user's input (cannot populate conversation history)

Fields
	media_chunks - Deprecated: Use audio, video, or text instead
	audio - Realtime audio input stream
	video - Realtime video input stream
	text - Realtime text input stream
	activity_start - Marks start of user activity (only with manual detection)
	activity_end - Marks end of user activity (only with manual detection)
	audio_stream_end - Indicates audio stream has ended (e.g., mic off)

Example
Audio input
%RealtimeInput{
 audio: %{mime_type: "audio/pcm", data: base64_audio_data}
}

Text input
%RealtimeInput{text: "Hello, how are you?"}

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new RealtimeInput.

 to_api(value)

 Converts to API format (camelCase).

 Types

 t()

 @type t() :: %Gemini.Types.Live.RealtimeInput{
 activity_end: boolean() | nil,
 activity_start: boolean() | nil,
 audio: Gemini.Types.Blob.t() | map() | nil,
 audio_stream_end: boolean() | nil,
 media_chunks: [Gemini.Types.Blob.t() | map()] | nil,
 text: String.t() | nil,
 video: Gemini.Types.Blob.t() | map() | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new RealtimeInput.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.RealtimeInputConfig

Realtime input configuration for Live API sessions.
Configures the realtime input behavior in BidiGenerateContent, including
automatic activity detection, activity handling (barge-in behavior),
and turn coverage settings.
Fields
	automatic_activity_detection - Configuration for automatic voice/text detection
	activity_handling - What effect activity has on model generation
	turn_coverage - Which input is included in the user's turn

Example
%RealtimeInputConfig{
 automatic_activity_detection: %AutomaticActivityDetection{disabled: false},
 activity_handling: :start_of_activity_interrupts,
 turn_coverage: :turn_includes_only_activity
}

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new RealtimeInputConfig.

 to_api(value)

 Converts to API format (camelCase).

 Types

 t()

 @type t() :: %Gemini.Types.Live.RealtimeInputConfig{
 activity_handling: Gemini.Types.Live.Enums.ActivityHandling.t() | nil,
 automatic_activity_detection:
 Gemini.Types.Live.AutomaticActivityDetection.t() | nil,
 turn_coverage: Gemini.Types.Live.Enums.TurnCoverage.t() | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new RealtimeInputConfig.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.ServerContent

Server content message for Live API sessions.
Incremental server update generated by the model in response to client
messages. Content is generated as quickly as possible, not in real time.
Clients may choose to buffer and play it out in real time.
Fields
	model_turn - Content generated by the model as part of the conversation
	generation_complete - True if the model is done generating
	turn_complete - True if the model has completed its turn
	interrupted - True if a client message interrupted model generation
	grounding_metadata - Grounding metadata for the generated content
	input_transcription - Transcription of input audio
	output_transcription - Transcription of model's audio output
	url_context_metadata - Metadata from URL context retrieval

Example
%ServerContent{
 model_turn: %{role: "model", parts: [%{text: "Hello!"}]},
 turn_complete: true
}

 Summary

 Types

 content()

 t()

 url_context_metadata()

 Functions

 extract_text(arg1)

 Extracts text from the model turn.

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new ServerContent.

 to_api(value)

 Converts to API format (camelCase).

 Types

 content()

 @type content() :: %{optional(:role) => String.t(), optional(:parts) => [map()]}

 t()

 @type t() :: %Gemini.Types.Live.ServerContent{
 generation_complete: boolean() | nil,
 grounding_metadata: Gemini.Types.Live.GroundingMetadata.t() | nil,
 input_transcription: Gemini.Types.Live.Transcription.t() | nil,
 interrupted: boolean() | nil,
 model_turn: content() | nil,
 output_transcription: Gemini.Types.Live.Transcription.t() | nil,
 turn_complete: boolean() | nil,
 url_context_metadata: url_context_metadata() | nil
}

 url_context_metadata()

 @type url_context_metadata() :: %{optional(:url_metadata) => [map()]}

 Functions

 extract_text(arg1)

 @spec extract_text(t()) :: String.t() | nil

Extracts text from the model turn.

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new ServerContent.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.ServerMessage

Server message wrapper for Live API responses.
Response message for the BidiGenerateContent call. Contains exactly one
message type field plus optional usage metadata.
Message Types
	setup_complete - Session setup confirmation
	server_content - Content generated by the model
	tool_call - Request to execute function calls
	tool_call_cancellation - Notification to cancel tool calls
	go_away - Notice that server will disconnect soon
	session_resumption_update - Session resumption state update
	voice_activity - Voice activity detection signal

Example
Server content message
%ServerMessage{
 server_content: %ServerContent{
 model_turn: %{role: "model", parts: [%{text: "Hello!"}]},
 turn_complete: true
 },
 usage_metadata: %UsageMetadata{total_token_count: 100}
}

 Summary

 Types

 t()

 Functions

 extract_text(arg1)

 Extracts text from server content if present.

 from_api(data)

 Parses from API response.

 interrupted?(arg1)

 Checks if this is an interrupted message.

 message_type(arg1)

 Returns the message type as an atom.

 new(opts \\ [])

 Creates a new ServerMessage.

 setup_complete?(arg1)

 Checks if this is a setup complete message.

 to_api(value)

 Converts to API format (camelCase).

 turn_complete?(arg1)

 Checks if this is a turn complete message.

 Types

 t()

 @type t() :: %Gemini.Types.Live.ServerMessage{
 go_away: Gemini.Types.Live.GoAway.t() | nil,
 server_content: Gemini.Types.Live.ServerContent.t() | nil,
 session_resumption_update:
 Gemini.Types.Live.SessionResumptionUpdate.t() | nil,
 setup_complete: Gemini.Types.Live.SetupComplete.t() | nil,
 tool_call: Gemini.Types.Live.ToolCall.t() | nil,
 tool_call_cancellation: Gemini.Types.Live.ToolCallCancellation.t() | nil,
 usage_metadata: Gemini.Types.Live.UsageMetadata.t() | nil,
 voice_activity: Gemini.Types.Live.VoiceActivity.t() | nil
}

 Functions

 extract_text(arg1)

 @spec extract_text(t()) :: String.t() | nil

Extracts text from server content if present.

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 interrupted?(arg1)

 @spec interrupted?(t()) :: boolean()

Checks if this is an interrupted message.

 message_type(arg1)

 @spec message_type(t()) :: atom() | nil

Returns the message type as an atom.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new ServerMessage.

 setup_complete?(arg1)

 @spec setup_complete?(t()) :: boolean()

Checks if this is a setup complete message.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

 turn_complete?(arg1)

 @spec turn_complete?(t()) :: boolean()

Checks if this is a turn complete message.

Gemini.Types.Live.SessionResumptionConfig

Session resumption configuration for Live API sessions.
This message is included in the session configuration to enable session
resumption. If configured, the server will send SessionResumptionUpdate
messages that can be used to restore the session later.
Fields
	handle - Handle of a previous session to resume. If not present, a new session is created.
	transparent - If set, server sends last_consumed_client_message_index for transparent reconnections.

Example
Start new session with resumption enabled
%SessionResumptionConfig{}

Resume previous session
%SessionResumptionConfig{handle: "previous_session_handle"}

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new SessionResumptionConfig.

 to_api(value)

 Converts to API format (camelCase).

 Types

 t()

 @type t() :: %Gemini.Types.Live.SessionResumptionConfig{
 handle: String.t() | nil,
 transparent: boolean() | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new SessionResumptionConfig.

 to_api(value)

 @spec to_api(t() | map() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.SessionResumptionUpdate

Session resumption state update from the server.
Only sent if session_resumption was set in the connection config.
Contains information about whether the session can be resumed and the
handle to use for resumption.
Fields
	new_handle - New handle representing a state that can be resumed. Empty if not resumable.
	resumable - True if the session can be resumed at this point.
	last_consumed_client_message_index - Index of last message processed (only with transparent mode).

Example
%SessionResumptionUpdate{
 new_handle: "session_handle_123",
 resumable: true,
 last_consumed_client_message_index: 42
}

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new SessionResumptionUpdate.

 to_api(value)

 Converts to API format (camelCase).

 Types

 t()

 @type t() :: %Gemini.Types.Live.SessionResumptionUpdate{
 last_consumed_client_message_index: integer() | nil,
 new_handle: String.t() | nil,
 resumable: boolean() | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new SessionResumptionUpdate.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.Setup

Session setup configuration for Live API.
Message to be sent in the first (and only in the first) client message.
Contains configuration that applies for the duration of the streaming RPC.
Clients should wait for a SetupComplete message before sending any
additional messages.
Fields
	model - Required. The model's resource name (e.g., "models/gemini-live-2.5-flash-preview")
	generation_config - Generation configuration for the session
	system_instruction - System instructions for the model
	tools - List of tools the model may use
	realtime_input_config - Configuration for realtime input handling
	session_resumption - Session resumption configuration
	context_window_compression - Context window compression configuration
	input_audio_transcription - Enable transcription of input audio
	output_audio_transcription - Enable transcription of output audio
	proactivity - Proactivity configuration
	enable_affective_dialog - Enable affective dialog (v1alpha, native audio)

Example
%Setup{
 model: "models/gemini-live-2.5-flash-preview",
 generation_config: %{
 response_modalities: [:audio],
 speech_config: %{voice_config: %{prebuilt_voice_config: %{voice_name: "Puck"}}}
 },
 system_instruction: %{parts: [%{text: "You are a helpful assistant."}]}
}

 Summary

 Types

 t()

 tool()

 Functions

 from_api(data)

 Parses from API response.

 new(model, opts \\ [])

 Creates a new Setup with the required model and optional configuration.

 to_api(value)

 Converts to API format (camelCase).

 Types

 t()

 @type t() :: %Gemini.Types.Live.Setup{
 context_window_compression:
 Gemini.Types.Live.ContextWindowCompression.t() | nil,
 enable_affective_dialog: boolean() | nil,
 generation_config: Gemini.Types.GenerationConfig.t() | map() | nil,
 input_audio_transcription:
 Gemini.Types.Live.AudioTranscriptionConfig.t() | nil,
 model: String.t(),
 output_audio_transcription:
 Gemini.Types.Live.AudioTranscriptionConfig.t() | nil,
 proactivity: Gemini.Types.Live.ProactivityConfig.t() | nil,
 realtime_input_config: Gemini.Types.Live.RealtimeInputConfig.t() | nil,
 session_resumption: Gemini.Types.Live.SessionResumptionConfig.t() | nil,
 system_instruction: Gemini.Types.Content.t() | map() | nil,
 tools: [tool()] | nil
}

 tool()

 @type tool() :: map()

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(model, opts \\ [])

 @spec new(
 String.t(),
 keyword()
) :: t()

Creates a new Setup with the required model and optional configuration.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.SetupComplete

Setup complete message from the server.
Sent in response to a Setup message from the client when the session
is successfully configured and ready for use.
Fields
	session_id - The session ID of the live session

Example
%SetupComplete{session_id: "session_abc123"}

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new SetupComplete.

 to_api(value)

 Converts to API format (camelCase).

 Types

 t()

 @type t() :: %Gemini.Types.Live.SetupComplete{session_id: String.t() | nil}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new SetupComplete.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.SlidingWindow

Sliding window context compression configuration.
The SlidingWindow method operates by discarding content at the beginning
of the context window. The resulting context will always begin at the start
of a USER role turn. System instructions and any prefix turns will always
remain at the beginning of the result.
Fields
	target_tokens - Target number of tokens to keep. Default is trigger_tokens/2

Example
%SlidingWindow{target_tokens: 8000}

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new SlidingWindow configuration.

 to_api(value)

 Converts to API format (camelCase).

 Types

 t()

 @type t() :: %Gemini.Types.Live.SlidingWindow{target_tokens: integer() | nil}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new SlidingWindow configuration.

 to_api(value)

 @spec to_api(t() | map() | nil) :: map() | nil

Converts to API format (camelCase).
Accepts structs, maps with atom keys, or maps with string keys.
Uses fetch_value to properly preserve falsey values like 0 or false.

Gemini.Types.Live.ToolCall

Tool call request from the server in Live API sessions.
Request for the client to execute the function calls and return
the responses with matching IDs.
Fields
	function_calls - List of function calls to be executed

Example
%ToolCall{
 function_calls: [
 %{
 "id" => "call_123",
 "name" => "get_weather",
 "args" => %{"location" => "Seattle"}
 }
]
}

 Summary

 Types

 function_call()

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new ToolCall.

 to_api(value)

 Converts to API format (camelCase).

 Types

 function_call()

 @type function_call() :: %{
 optional(:id) => String.t(),
 optional(:name) => String.t(),
 optional(:args) => map()
}

 t()

 @type t() :: %Gemini.Types.Live.ToolCall{function_calls: [function_call()] | nil}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new ToolCall.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.ToolCallCancellation

Tool call cancellation notification from the server.
Notification that previously issued tool calls with the specified IDs
should be cancelled. This occurs when clients interrupt server turns.
If there were side-effects to those tool calls, clients may attempt
to undo them.
Fields
	ids - List of tool call IDs to be cancelled

Example
%ToolCallCancellation{ids: ["call_123", "call_456"]}

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new ToolCallCancellation.

 to_api(value)

 Converts to API format (camelCase).

 Types

 t()

 @type t() :: %Gemini.Types.Live.ToolCallCancellation{ids: [String.t()] | nil}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new ToolCallCancellation.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.ToolResponse

Tool response from the client in Live API sessions.
Client-generated response to a ToolCall received from the server.
Individual FunctionResponse objects are matched to their respective
FunctionCall objects by the ID field.
Fields
	function_responses - List of function responses

Example
%ToolResponse{
 function_responses: [
 %{
 id: "call_123",
 name: "get_weather",
 response: %{content: %{temperature: 72, conditions: "sunny"}}
 }
]
}

 Summary

 Types

 function_response()

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new ToolResponse.

 to_api(value)

 Converts to API format (camelCase).

 Types

 function_response()

 @type function_response() :: %{
 optional(:id) => String.t(),
 optional(:name) => String.t(),
 optional(:response) => map()
}

 t()

 @type t() :: %Gemini.Types.Live.ToolResponse{
 function_responses: [function_response()] | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new ToolResponse.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.Transcription

Transcription of audio (input or output) in Live API sessions.
Represents the text transcription of audio content. Transcriptions are sent
independently of other server messages and there is no guaranteed ordering.
Fields
	text - The transcription text

Example
%Transcription{text: "Hello, how can I help you today?"}

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new Transcription.

 to_api(value)

 Converts to API format (camelCase).

 Types

 t()

 @type t() :: %Gemini.Types.Live.Transcription{text: String.t() | nil}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new Transcription.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.UsageMetadata

Usage metadata for Live API responses.
Contains token count information about the request and response,
including breakdowns by modality.
Fields
	prompt_token_count - Number of tokens in the prompt
	cached_content_token_count - Number of tokens in cached content
	response_token_count - Total tokens across all response candidates
	tool_use_prompt_token_count - Tokens in tool-use prompts
	thoughts_token_count - Tokens used for thinking
	total_token_count - Total token count (prompt + response)
	prompt_tokens_details - Token counts by modality for input
	cache_tokens_details - Token counts by modality for cached content
	response_tokens_details - Token counts by modality for response
	tool_use_prompt_tokens_details - Token counts by modality for tool use

Example
%UsageMetadata{
 prompt_token_count: 100,
 response_token_count: 50,
 total_token_count: 150
}

 Summary

 Types

 modality_token_count()

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new UsageMetadata.

 to_api(value)

 Converts to API format (camelCase).

 Types

 modality_token_count()

 @type modality_token_count() :: %{
 modality: String.t() | nil,
 token_count: integer() | nil
}

 t()

 @type t() :: %Gemini.Types.Live.UsageMetadata{
 cache_tokens_details: [modality_token_count()] | nil,
 cached_content_token_count: integer() | nil,
 prompt_token_count: integer() | nil,
 prompt_tokens_details: [modality_token_count()] | nil,
 response_token_count: integer() | nil,
 response_tokens_details: [modality_token_count()] | nil,
 thoughts_token_count: integer() | nil,
 tool_use_prompt_token_count: integer() | nil,
 tool_use_prompt_tokens_details: [modality_token_count()] | nil,
 total_token_count: integer() | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new UsageMetadata.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Live.VoiceActivity

Voice activity signal for Live API sessions.
Indicates voice activity detection status in the audio stream.
Fields
	vad_signal_type - The type of voice activity signal (start/end of speech)

Example
%VoiceActivity{vad_signal_type: :start_of_speech}

 Summary

 Types

 t()

 Functions

 from_api(data)

 Parses from API response.

 new(opts \\ [])

 Creates a new VoiceActivity.

 to_api(value)

 Converts to API format (camelCase).

 Types

 t()

 @type t() :: %Gemini.Types.Live.VoiceActivity{
 vad_signal_type: Gemini.Types.Live.Enums.VadSignalType.t() | nil
}

 Functions

 from_api(data)

 @spec from_api(map() | nil) :: t() | nil

Parses from API response.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new VoiceActivity.

 to_api(value)

 @spec to_api(t() | nil) :: map() | nil

Converts to API format (camelCase).

Gemini.Types.Content

Content type for Gemini API requests and responses.

 Summary

 Types

 parts()

 Ordered parts that constitute a single message.

 role()

 The role of the content creator.

 t()

 Functions

 from_tool_results(results)

 Create content from tool results for function response.

 image(path, role \\ "user")

 Create content with an image from a file path.

 multimodal(text, image_data, mime_type, role \\ "user")

 Create content with text and image.

 text(text, role \\ "user")

 Create content with text.

 Types

 parts()

 @type parts() :: [Gemini.Types.Part.t()]

Ordered parts that constitute a single message.

 role()

 @type role() :: String.t()

The role of the content creator.

 t()

 @type t() :: %Gemini.Types.Content{parts: [Gemini.Types.Part.t()], role: String.t()}

 Functions

 from_tool_results(results)

 @spec from_tool_results([Altar.ADM.ToolResult.t()]) :: t()

Create content from tool results for function response.
Takes a list of validated ToolResult structs and transforms them into
a single Content struct with role "tool" containing functionResponse parts.
Parameters
	results - List of Altar.ADM.ToolResult.t() structs

Returns
	Content struct with role "tool" and functionResponse parts

Examples
iex> results = [%Altar.ADM.ToolResult{call_id: "call_123", content: "result"}]
iex> Gemini.Types.Content.from_tool_results(results)
%Gemini.Types.Content{
 role: "tool",
 parts: [%{functionResponse: %{name: "call_123", response: %{content: "result"}}}]
}

 image(path, role \\ "user")

 @spec image(String.t(), String.t()) :: t()

Create content with an image from a file path.

 multimodal(text, image_data, mime_type, role \\ "user")

 @spec multimodal(String.t(), String.t(), String.t(), String.t()) :: t()

Create content with text and image.

 text(text, role \\ "user")

 @spec text(String.t(), String.t()) :: t()

Create content with text.

Gemini.Types.ModelArmorConfig

Configuration for Model Armor integrations.
This feature is only supported in Vertex AI, not the Gemini Developer API.
Model Armor allows you to apply content filtering templates managed separately
from your generation requests. This provides centralized policy management
for content moderation.
Important
If model_armor_config is provided, safety_settings must NOT be provided.
These two options are mutually exclusive.
Fields
	prompt_template_name - Resource name of the Model Armor template to apply
to prompt content (optional)
	response_template_name - Resource name of the Model Armor template to apply
to response content (optional)

Example
config = %Gemini.Types.ModelArmorConfig{
 prompt_template_name: "projects/my-project/locations/us-central1/templates/prompt-filter",
 response_template_name: "projects/my-project/locations/us-central1/templates/response-filter"
}

Use in generate request (Vertex AI only)
Gemini.generate("Hello world", model_armor_config: config)

 Summary

 Types

 t()

 Model Armor configuration.

 Functions

 from_api(config)

 Creates a ModelArmorConfig from API response.

 new(opts \\ [])

 Creates a new ModelArmorConfig struct.

 to_api(config)

 Converts ModelArmorConfig to API format (camelCase keys).

 validate_exclusivity(arg1, safety_settings, arg3)

 Validates that model_armor_config and safety_settings are not both provided.

 Types

 t()

 @type t() :: %Gemini.Types.ModelArmorConfig{
 prompt_template_name: String.t() | nil,
 response_template_name: String.t() | nil
}

Model Armor configuration.
	prompt_template_name - Model Armor template for filtering prompt content
	response_template_name - Model Armor template for filtering response content

 Functions

 from_api(config)

 @spec from_api(map() | nil) :: t() | nil

Creates a ModelArmorConfig from API response.
Parameters
	data - Map from API response with camelCase string keys

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new ModelArmorConfig struct.
Parameters
	opts - Keyword list with configuration options:	:prompt_template_name - Template name for prompt filtering
	:response_template_name - Template name for response filtering

Examples
config = Gemini.Types.ModelArmorConfig.new(
 prompt_template_name: "projects/my-project/locations/us-central1/templates/t1"
)

 to_api(config)

 @spec to_api(t() | nil) :: map() | nil

Converts ModelArmorConfig to API format (camelCase keys).
Examples
config = %ModelArmorConfig{
 prompt_template_name: "t1",
 response_template_name: "t2"
}

ModelArmorConfig.to_api(config)
#=> %{"promptTemplateName" => "t1", "responseTemplateName" => "t2"}

 validate_exclusivity(arg1, safety_settings, arg3)

 @spec validate_exclusivity(t() | nil, list() | nil, :gemini | :vertex_ai) ::
 :ok | {:error, String.t()}

Validates that model_armor_config and safety_settings are not both provided.
This is a helper for request building - these options are mutually exclusive.
Parameters
	model_armor_config - The model armor config (or nil)
	safety_settings - The safety settings list (or nil/empty)
	api_type - Current API type (:gemini or :vertex_ai)

Returns
	:ok - Validation passed
	{:error, reason} - Validation failed

Examples
validate_exclusivity(%ModelArmorConfig{...}, [], :vertex_ai)
#=> :ok

validate_exclusivity(%ModelArmorConfig{...}, [%SafetySetting{}], :vertex_ai)
#=> {:error, "model_armor_config and safety_settings are mutually exclusive"}

validate_exclusivity(%ModelArmorConfig{...}, nil, :gemini)
#=> {:error, "model_armor_config is only supported in Vertex AI"}

Gemini.Types.RegisterFilesConfig

Configuration for the register_files method.
Example
config = %Gemini.Types.RegisterFilesConfig{
 http_options: %{timeout: 60_000}
}

 Summary

 Types

 t()

 Configuration options for registering GCS files.

 Types

 t()

 @type t() :: %Gemini.Types.RegisterFilesConfig{http_options: map() | nil}

Configuration options for registering GCS files.
	http_options - Optional HTTP options to override defaults

Gemini.Types.RegisterFilesResponse

Response from the register_files method.
Contains the list of files that were registered with the Gemini file service.
Example
{:ok, response} = Gemini.APIs.Files.register_files(
 ["gs://bucket/file.pdf"],
 credentials: credentials
)

Enum.each(response.files, fn file ->
 IO.puts("Registered: #{file.name} - #{file.uri}")
end)

 Summary

 Types

 t()

 Response containing registered files.

 Functions

 from_api(arg1)

 Creates a RegisterFilesResponse from API response.

 Types

 t()

 @type t() :: %Gemini.Types.RegisterFilesResponse{files: [Gemini.Types.File.t()]}

Response containing registered files.
	files - List of File structs for the registered files

 Functions

 from_api(arg1)

 @spec from_api(map()) :: t()

Creates a RegisterFilesResponse from API response.
Parameters
	response - Map from API response with string keys

Examples
response = %{"files" => [%{"name" => "files/abc", "uri" => "gs://bucket/file"}]}
RegisterFilesResponse.from_api(response)

Gemini.Types.Response

Response types for the Gemini API.

Gemini.Config

Unified configuration management for both Gemini and Vertex AI authentication.
Supports multiple authentication strategies:
	Gemini API (AI Studio): API key authentication
	Vertex AI: OAuth2 or Service Account authentication

Model Registry
Models are organized by API compatibility:
	Universal models: Work identically in both Gemini API and Vertex AI
	Gemini API models: Only available in AI Studio (convenience aliases like -latest)
	Vertex AI models: Only available in Vertex AI (e.g., EmbeddingGemma)

Use models_for/1 to discover available models for your auth type.
Auth-Aware Defaults
Default models are automatically selected based on detected authentication:
	Gemini API: gemini-flash-lite-latest (convenience alias)
	Vertex AI: gemini-2.5-flash-lite (universal name)

For embeddings:
	Gemini API: gemini-embedding-001 (3072 dimensions)
	Vertex AI: embeddinggemma (768 dimensions)

Examples
Auto-detects auth and uses appropriate default
Gemini.generate("Hello")

Get models available for specific API
Config.models_for(:vertex_ai)

Check if a model works with an API
Config.model_available?(:flash_lite_latest, :vertex_ai)
#=> false

Get auth-aware embedding model
Config.default_embedding_model()

 Summary

 Types

 api_type()

 auth_config()

 model_category()

 Functions

 api_key()

 Get the API key from environment or application config.
(Legacy function for backward compatibility)

 auth_config()

 Get the authentication configuration.

 available_use_cases()

 List available use-case aliases.

 base_url()

 Get the base URL for the current authentication type.
(Legacy function - now determined by auth strategy)

 current_api_type()

 Get the current API type based on detected authentication.

 default_embedding_dimensions(model)

 Get the default output dimensionality for an embedding model.

 default_embedding_model()

 Get the default embedding model for the current authentication type.

 default_embedding_model_for(atom)

 Get the default embedding model for a specific API type.

 default_model()

 Get the default generation model for the current authentication type.

 default_model_for(atom)

 Get the default model for a specific API type.

 detect_auth_type()

 Detect authentication type based on environment variables.

 detect_auth_type(map)

 Detect authentication type based on configuration map.

 embedding_config(model)

 Get embedding configuration for a specific model.

 embedding_prompt_prefix(task_type, opts \\ [])

 Get the prompt prefix for an EmbeddingGemma task type.

 get()

 Get configuration based on environment variables and application config.
Returns a structured configuration map.

 get(overrides)

 Get configuration with overrides.

 get_auth_config(arg1)

 Get authentication configuration for a specific strategy.

 get_model(model_key, opts \\ [])

 Get a model name by its key or return the string if it's already a model name.

 has_model?(model_key)

 Check if a model key exists in the combined model registry.

 model_api(model_key)

 Get the API compatibility of a model key.

 model_available?(model_key, api_type)

 Check if a model key is available for a specific API type.

 model_for_use_case(use_case, api_type \\ nil)

 Get the model string for a use-case alias.

 models_for(atom)

 List all models available for a specific API type.

 needs_normalization?(model, dimensions)

 Check if an embedding needs normalization for a given dimensionality.

 resolved_use_case_models()

 Get all resolved use-case model mappings.

 telemetry_enabled?()

 Check if telemetry is enabled.

 timeout()

 Get HTTP timeout in milliseconds.

 use_case_token_budget(use_case)

 Get the recommended token budget for a use-case alias.

 uses_prompt_prefix?(model)

 Check if an embedding model uses prompt prefixes for task types.

 validate!()

 Validate that required configuration is present.

 Types

 api_type()

 @type api_type() :: :gemini | :vertex_ai | :both

 auth_config()

 @type auth_config() :: %{type: :gemini | :vertex_ai, credentials: map()}

 model_category()

 @type model_category() :: :generation | :embedding | :thinking | :image | :live | :tts

 Functions

 api_key()

Get the API key from environment or application config.
(Legacy function for backward compatibility)

 auth_config()

Get the authentication configuration.
Returns a map with the authentication type and credentials.
Priority order:
	Environment variables
	Application configuration
	Default to Gemini with API key

 available_use_cases()

 @spec available_use_cases() :: [atom()]

List available use-case aliases.
Examples
iex> Gemini.Config.available_use_cases()
[:cache_context, :fast_path, :report_section]

 base_url()

Get the base URL for the current authentication type.
(Legacy function - now determined by auth strategy)

 current_api_type()

 @spec current_api_type() :: :gemini | :vertex_ai

Get the current API type based on detected authentication.
Returns :gemini or :vertex_ai based on which credentials are configured.

 default_embedding_dimensions(model)

 @spec default_embedding_dimensions(String.t()) :: pos_integer() | nil

Get the default output dimensionality for an embedding model.
Examples
Config.default_embedding_dimensions("gemini-embedding-001")
#=> 3072

Config.default_embedding_dimensions("embeddinggemma")
#=> 768

 default_embedding_model()

 @spec default_embedding_model() :: String.t()

Get the default embedding model for the current authentication type.
Returns different defaults based on detected auth:
	Gemini API (AI Studio): "gemini-embedding-001" (3072 dimensions)
	Vertex AI: "embeddinggemma" (768 dimensions)

Can be overridden via application config:
config :gemini_ex, :default_embedding_model, "your-model"
Examples
With GEMINI_API_KEY set
Config.default_embedding_model()
#=> "gemini-embedding-001"

With VERTEX_PROJECT_ID set
Config.default_embedding_model()
#=> "embeddinggemma"

 default_embedding_model_for(atom)

 @spec default_embedding_model_for(api_type()) :: String.t()

Get the default embedding model for a specific API type.
Parameters
	api_type: :gemini or :vertex_ai

Examples
Config.default_embedding_model_for(:gemini)
#=> "gemini-embedding-001"

Config.default_embedding_model_for(:vertex_ai)
#=> "embeddinggemma"

 default_model()

 @spec default_model() :: String.t()

Get the default generation model for the current authentication type.
Returns different defaults based on detected auth:
	Gemini API (AI Studio): "gemini-flash-lite-latest" (convenience alias)
	Vertex AI: "gemini-2.0-flash-lite" (universal name)

Can be overridden via application config:
config :gemini_ex, :default_model, "your-model"
Examples
With GEMINI_API_KEY set
Config.default_model()
#=> "gemini-flash-lite-latest"

With VERTEX_PROJECT_ID set
Config.default_model()
#=> "gemini-2.5-flash-lite"

 default_model_for(atom)

 @spec default_model_for(api_type()) :: String.t()

Get the default model for a specific API type.
Parameters
	api_type: :gemini or :vertex_ai

Examples
Config.default_model_for(:gemini)
#=> "gemini-flash-lite-latest"

Config.default_model_for(:vertex_ai)
#=> "gemini-2.5-flash-lite"

 detect_auth_type()

Detect authentication type based on environment variables.

 detect_auth_type(map)

Detect authentication type based on configuration map.

 embedding_config(model)

 @spec embedding_config(String.t()) :: map() | nil

Get embedding configuration for a specific model.
Returns configuration including supported dimensions, task type handling, etc.
Parameters
	model: Model name string

Returns
Map with embedding configuration or nil if not an embedding model.
Examples
Config.embedding_config("gemini-embedding-001")
#=> %{
#=> default_dimensions: 3072,
#=> supported_dimensions: [128, 256, 512, 768, 1536, 3072],
#=> recommended_dimensions: [768, 1536, 3072],
#=> uses_task_type_param: true,
#=> requires_normalization_below: 3072
#=> }

Config.embedding_config("embeddinggemma")
#=> %{
#=> default_dimensions: 768,
#=> supported_dimensions: [128, 256, 512, 768],
#=> uses_task_type_param: false,
#=> uses_prompt_prefix: true,
#=> ...
#=> }

 embedding_prompt_prefix(task_type, opts \\ [])

 @spec embedding_prompt_prefix(
 atom(),
 keyword()
) :: String.t()

Get the prompt prefix for an EmbeddingGemma task type.
Parameters
	task_type: Task type atom (e.g., :retrieval_query, :semantic_similarity)
	opts: Optional keyword list	:title - Document title for :retrieval_document task type

Examples
Config.embedding_prompt_prefix(:retrieval_query)
#=> "task: search result | query: "

Config.embedding_prompt_prefix(:retrieval_document, title: "My Document")
#=> "title: My Document | text: "

Config.embedding_prompt_prefix(:retrieval_document)
#=> "title: none | text: "

 get()

Get configuration based on environment variables and application config.
Returns a structured configuration map.

 get(overrides)

Get configuration with overrides.

 get_auth_config(arg1)

 @spec get_auth_config(:gemini | :vertex_ai) :: map()

Get authentication configuration for a specific strategy.
Parameters
	strategy: The authentication strategy (:gemini or :vertex_ai)

Returns
	A map containing configuration for the specified strategy
	Returns empty map if no configuration found

Examples
iex> Gemini.Config.get_auth_config(:gemini)
%{api_key: "your_api_key"}

iex> Gemini.Config.get_auth_config(:vertex_ai)
%{project_id: "your-project", location: "us-central1"}

 get_model(model_key, opts \\ [])

 @spec get_model(
 atom() | String.t(),
 keyword()
) :: String.t()

Get a model name by its key or return the string if it's already a model name.
Optionally validates that the model is available for a specific API.
Parameters
	model_key: Atom key or string model name
	opts: Optional keyword list	:api - Validate model works with :gemini or :vertex_ai
	:strict - If true, raise on incompatible model (default: false, warns)

Examples
iex> Gemini.Config.get_model(:flash_2_0)
"gemini-2.0-flash"

iex> Gemini.Config.get_model("gemini-2.5-flash")
"gemini-2.5-flash"

iex> Gemini.Config.get_model(:flash_lite_latest, api: :vertex_ai)
Logs warning: Model flash_lite_latest (gemini-flash-lite-latest) may not be available on vertex_ai
"gemini-flash-lite-latest"

iex> Gemini.Config.get_model(:flash_lite_latest, api: :vertex_ai, strict: true)
** (ArgumentError) Model :flash_lite_latest not available on vertex_ai

 has_model?(model_key)

 @spec has_model?(atom()) :: boolean()

Check if a model key exists in the combined model registry.
Examples
iex> Gemini.Config.has_model?(:flash_2_0)
true

iex> Gemini.Config.has_model?(:unknown)
false

 model_api(model_key)

 @spec model_api(atom()) :: api_type() | nil

Get the API compatibility of a model key.
Returns
	:both - Model works in both Gemini API and Vertex AI
	:gemini - Model only works in Gemini API (AI Studio)
	:vertex_ai - Model only works in Vertex AI

Examples
Config.model_api(:flash_2_0)
#=> :both

Config.model_api(:flash_lite_latest)
#=> :gemini

Config.model_api(:embedding_gemma)
#=> :vertex_ai

 model_available?(model_key, api_type)

 @spec model_available?(atom(), api_type()) :: boolean()

Check if a model key is available for a specific API type.
Parameters
	model_key: Atom model key to check
	api_type: :gemini or :vertex_ai

Examples
Config.model_available?(:flash_2_0, :vertex_ai)
#=> true

Config.model_available?(:flash_lite_latest, :vertex_ai)
#=> false

Config.model_available?(:embedding_gemma, :gemini)
#=> false

 model_for_use_case(use_case, api_type \\ nil)

 @spec model_for_use_case(atom(), api_type() | nil) :: String.t()

Get the model string for a use-case alias.
Use-case aliases provide consistent model selection with recommended token budgets.
This avoids scattering raw model strings throughout the codebase.
Parameters
	use_case: Use-case atom (:cache_context, :report_section, :fast_path)
	api_type: Optional API type for validation (:gemini or :vertex_ai)

Available Use Cases
	Use Case	Model	Recommended Token Budget
	:cache_context	gemini-2.5-flash	32,000
	:report_section	gemini-2.5-pro	16,000
	:fast_path	gemini-2.5-flash-lite	8,000

Examples
iex> Gemini.Config.model_for_use_case(:cache_context)
"gemini-2.5-flash"

iex> Gemini.Config.model_for_use_case(:fast_path)
"gemini-2.5-flash-lite"

iex> Gemini.Config.model_for_use_case(:cache_context, :vertex_ai)
"gemini-2.5-flash"

 models_for(atom)

 @spec models_for(api_type()) :: map()

List all models available for a specific API type.
Parameters
	api_type: :gemini, :vertex_ai, or :both (universal only)

Examples
Config.models_for(:gemini)
#=> %{flash_lite_latest: "gemini-flash-lite-latest", flash_2_5: "gemini-2.5-flash", ...}

Config.models_for(:vertex_ai)
#=> %{embedding_gemma: "embeddinggemma", flash_2_5: "gemini-2.5-flash", ...}

Config.models_for(:both)
#=> %{flash_2_5: "gemini-2.5-flash", ...} # Only universal models

 needs_normalization?(model, dimensions)

 @spec needs_normalization?(String.t(), pos_integer()) :: boolean()

Check if an embedding needs normalization for a given dimensionality.
Gemini embedding models only return normalized embeddings at full dimensionality.
Lower dimensions need manual normalization. EmbeddingGemma is always normalized.
Examples
Config.needs_normalization?("gemini-embedding-001", 768)
#=> true

Config.needs_normalization?("gemini-embedding-001", 3072)
#=> false

Config.needs_normalization?("embeddinggemma", 256)
#=> false # EmbeddingGemma is always normalized

 resolved_use_case_models()

 @spec resolved_use_case_models() :: %{required(atom()) => String.t()}

Get all resolved use-case model mappings.
Returns a map of use-case atoms to their resolved model strings.
Examples
iex> Gemini.Config.resolved_use_case_models()
%{
 cache_context: "gemini-2.5-flash",
 report_section: "gemini-2.5-pro",
 fast_path: "gemini-2.5-flash-lite"
}

 telemetry_enabled?()

 @spec telemetry_enabled?() :: boolean()

Check if telemetry is enabled.
Determines whether telemetry events should be emitted based on the
application configuration. Telemetry is enabled by default unless
explicitly disabled.
Configuration
Set :telemetry_enabled to false in your application config to disable:
config :gemini, telemetry_enabled: false
Returns
	true - Telemetry is enabled (default)
	false - Telemetry is explicitly disabled

Examples
iex> # Default behavior (telemetry enabled)
iex> Gemini.Config.telemetry_enabled?()
true

iex> # Explicitly disabled
iex> Application.put_env(:gemini, :telemetry_enabled, false)
iex> Gemini.Config.telemetry_enabled?()
false

iex> # Any other value defaults to enabled
iex> Application.put_env(:gemini, :telemetry_enabled, :maybe)
iex> Gemini.Config.telemetry_enabled?()
true

 timeout()

Get HTTP timeout in milliseconds.

 use_case_token_budget(use_case)

 @spec use_case_token_budget(atom()) :: pos_integer()

Get the recommended token budget for a use-case alias.
Parameters
	use_case: Use-case atom

Examples
iex> Gemini.Config.use_case_token_budget(:cache_context)
32000

iex> Gemini.Config.use_case_token_budget(:fast_path)
8000

 uses_prompt_prefix?(model)

 @spec uses_prompt_prefix?(String.t()) :: boolean()

Check if an embedding model uses prompt prefixes for task types.
EmbeddingGemma uses prompt prefixes like "task: search result | query: "
while Gemini embedding models use a taskType parameter.
Examples
Config.uses_prompt_prefix?("embeddinggemma")
#=> true

Config.uses_prompt_prefix?("gemini-embedding-001")
#=> false

 validate!()

Validate that required configuration is present.

Gemini.Error

Standardized error structure for Gemini client.

 Summary

 Types

 api_reason()

 API-specific error code or reason, if provided by Gemini.

 error_details()

 Additional details or context about the error.

 error_message()

 A human-readable message describing the error.

 error_type()

 The type of error.

 http_status()

 The HTTP status code, if the error originated from an HTTP response.

 original_error()

 The original error term, if this error is wrapping another.

 t()

 Functions

 api_error(reason, message, details \\ %{})

 Create an API error from Gemini response.

 auth_error(message, details \\ %{})

 Create an authentication error.

 config_error(message, details \\ %{})

 Create a configuration error.

 http_error(status, message, details \\ %{})

 Create an HTTP error.

 invalid_response(message, details \\ %{})

 Create an invalid response error.

 network_error(message, original_error \\ nil)

 Create a network/connection error.

 new(type, message, attrs \\ [])

 Create a new error with type and message.

 serialization_error(message, details \\ %{})

 Create a JSON serialization/deserialization error.

 validation_error(message, details \\ %{})

 Create a request validation error.

 Types

 api_reason()

 @type api_reason() :: term() | nil

API-specific error code or reason, if provided by Gemini.

 error_details()

 @type error_details() :: map() | nil

Additional details or context about the error.

 error_message()

 @type error_message() :: String.t()

A human-readable message describing the error.

 error_type()

 @type error_type() :: atom()

The type of error.

 http_status()

 @type http_status() :: integer() | nil

The HTTP status code, if the error originated from an HTTP response.

 original_error()

 @type original_error() :: term() | nil

The original error term, if this error is wrapping another.

 t()

 @type t() :: %Gemini.Error{
 api_reason: term() | nil,
 details: map() | nil,
 http_status: integer() | nil,
 message: String.t(),
 original_error: term() | nil,
 type: atom()
}

 Functions

 api_error(reason, message, details \\ %{})

Create an API error from Gemini response.

 auth_error(message, details \\ %{})

Create an authentication error.
This error type is used when authentication fails, such as:
	Invalid API keys
	Service account token generation failures
	Missing or invalid credentials

 config_error(message, details \\ %{})

Create a configuration error.

 http_error(status, message, details \\ %{})

Create an HTTP error.

 invalid_response(message, details \\ %{})

Create an invalid response error.

 network_error(message, original_error \\ nil)

Create a network/connection error.

 new(type, message, attrs \\ [])

Create a new error with type and message.

 serialization_error(message, details \\ %{})

Create a JSON serialization/deserialization error.

 validation_error(message, details \\ %{})

Create a request validation error.

Gemini.Telemetry

Telemetry instrumentation helpers for Gemini library.
This module provides functions to emit telemetry events for requests, streaming,
and other operations throughout the library. It supports the standard telemetry
events defined in the Gemini library specification:
	[:gemini, :request, :start] - HTTP request started
	[:gemini, :request, :stop] - HTTP request completed successfully
	[:gemini, :request, :exception] - HTTP request failed with exception
	[:gemini, :stream, :start] - Streaming request started
	[:gemini, :stream, :chunk] - Streaming chunk received
	[:gemini, :stream, :stop] - Streaming request completed
	[:gemini, :stream, :exception] - Streaming request failed with exception

All telemetry events respect the global telemetry configuration and can be
disabled by setting telemetry_enabled: false in the application config.
Types
The module works with several key data types for telemetry metadata and measurements.

 Summary

 Types

 content_type()

 http_method()

 stream_id()

 telemetry_event()

 telemetry_measurements()

 telemetry_metadata()

 Functions

 build_request_metadata(url, method, opts \\ [])

 Build base metadata for HTTP requests with additional context.

 build_stream_metadata(url, method, stream_id, opts \\ [])

 Build base metadata for streaming requests with additional context.

 calculate_duration(start_time)

 Calculate duration in milliseconds from start time.

 classify_contents(contents)

 Classify content types for telemetry metadata.

 execute(event, measurements, metadata)

 Execute a telemetry event if telemetry is enabled.

 extract_model(opts)

 Extract model name from options or use default.

 generate_stream_id()

 Generate unique stream IDs for telemetry tracking.

 has_non_text_parts?(arg1)

 Check if content has non-text parts (for multimodal classification).

 Types

 content_type()

 @type content_type() :: :text | :multimodal | :unknown

 http_method()

 @type http_method() :: :get | :post | :put | :delete | :patch | atom()

 stream_id()

 @type stream_id() :: binary()

 telemetry_event()

 @type telemetry_event() :: [atom()]

 telemetry_measurements()

 @type telemetry_measurements() :: map()

 telemetry_metadata()

 @type telemetry_metadata() :: map()

 Functions

 build_request_metadata(url, method, opts \\ [])

 @spec build_request_metadata(binary(), http_method(), keyword()) ::
 telemetry_metadata()

Build base metadata for HTTP requests with additional context.
Creates a standardized metadata map for telemetry events related to
HTTP requests, including URL, method, model, and other contextual information.
Parameters
	url - The request URL
	method - The HTTP method (atom)
	opts - Optional keyword list with additional metadata

Returns
A map containing standardized request metadata.
Examples
iex> metadata = Gemini.Telemetry.build_request_metadata("/api/generate", :post, model: "gemini-flash-lite-latest")
iex> metadata.url
"/api/generate"
iex> metadata.method
:post
iex> metadata.model
"gemini-flash-lite-latest"

 build_stream_metadata(url, method, stream_id, opts \\ [])

 @spec build_stream_metadata(binary(), http_method(), stream_id(), keyword()) ::
 telemetry_metadata()

Build base metadata for streaming requests with additional context.
Creates a standardized metadata map for telemetry events related to
streaming requests, including all standard request metadata plus
stream-specific information like stream ID.
Parameters
	url - The request URL
	method - The HTTP method (atom)
	stream_id - Unique identifier for the stream
	opts - Optional keyword list with additional metadata

Returns
A map containing standardized streaming metadata.
Examples
iex> stream_id = "abc123def456"
iex> metadata = Gemini.Telemetry.build_stream_metadata("/api/stream", :post, stream_id)
iex> metadata.stream_id
"abc123def456"
iex> metadata.url
"/api/stream"

 calculate_duration(start_time)

 @spec calculate_duration(integer()) :: non_neg_integer()

Calculate duration in milliseconds from start time.
Computes the elapsed time between a start time (in native units)
and the current time, returning the duration in milliseconds.
Parameters
	start_time - Start time in native time units (from System.monotonic_time/0)

Returns
Duration in milliseconds as an integer.
Examples
iex> start_time = System.monotonic_time()
iex> :timer.sleep(10) # Sleep for 10ms
iex> duration = Gemini.Telemetry.calculate_duration(start_time)
iex> duration >= 10
true

 classify_contents(contents)

 @spec classify_contents(term()) :: content_type()

Classify content types for telemetry metadata.
Analyzes the content structure to determine if it contains only text,
multimodal data (text + images/other media), or unknown content types.
This classification helps with telemetry analysis and monitoring.
Parameters
	contents - The content to classify (string, list, or other)

Returns
	:text - For plain text content
	:multimodal - For content containing non-text elements
	:unknown - For unrecognized content types

Examples
iex> Gemini.Telemetry.classify_contents("Hello world")
:text

iex> Gemini.Telemetry.classify_contents([%{parts: [%{text: "Hello"}]}])
:text

iex> Gemini.Telemetry.classify_contents([%{parts: [%{text: "Hello"}, %{image: "data"}]}])
:multimodal

iex> Gemini.Telemetry.classify_contents(%{unknown: "format"})
:unknown

 execute(event, measurements, metadata)

 @spec execute(telemetry_event(), telemetry_measurements(), telemetry_metadata()) ::
 :ok

Execute a telemetry event if telemetry is enabled.
This function conditionally emits telemetry events based on the global
telemetry configuration. If telemetry is disabled, the function returns
immediately without executing the event.
Parameters
	event - A list of atoms representing the telemetry event name
	measurements - A map of numeric measurements (e.g., duration, size)
	metadata - A map of contextual information about the event

Examples
iex> Gemini.Telemetry.execute([:gemini, :request, :start], %{}, %{url: "/api"})
:ok

iex> # When telemetry is disabled, no event is emitted
iex> Application.put_env(:gemini, :telemetry_enabled, false)
iex> Gemini.Telemetry.execute([:gemini, :request, :start], %{}, %{})
:ok

 extract_model(opts)

 @spec extract_model(keyword() | term()) :: binary()

Extract model name from options or use default.
Retrieves the model name from a keyword list of options, falling back
to the system default model if not specified.
Parameters
	opts - Keyword list of options that may contain a :model key

Returns
The model name as a string.
Examples
iex> Gemini.Telemetry.extract_model(model: "gemini-flash-lite-latest")
"gemini-flash-lite-latest"

iex> Gemini.Telemetry.extract_model([])
Gemini.Config.get_model(:default) # default model

iex> Gemini.Telemetry.extract_model("not a keyword list")
Gemini.Config.get_model(:default) # fallback to default

 generate_stream_id()

 @spec generate_stream_id() :: stream_id()

Generate unique stream IDs for telemetry tracking.
Creates a cryptographically secure random identifier for tracking
streaming operations across multiple telemetry events.
Returns
A 16-character lowercase hexadecimal string representing a unique stream ID.
Examples
iex> stream_id = Gemini.Telemetry.generate_stream_id()
iex> is_binary(stream_id) and byte_size(stream_id) == 16
true

iex> # Stream IDs should be unique
iex> id1 = Gemini.Telemetry.generate_stream_id()
iex> id2 = Gemini.Telemetry.generate_stream_id()
iex> id1 != id2
true

 has_non_text_parts?(arg1)

 @spec has_non_text_parts?(term()) :: boolean()

Check if content has non-text parts (for multimodal classification).
Examines a content structure to determine if it contains any non-text
elements such as images, audio, or other media types.
Parameters
	content - A content structure with parts to examine

Returns
	true - If the content contains non-text parts
	false - If the content contains only text or is not recognized

Examples
iex> Gemini.Telemetry.has_non_text_parts?(%{parts: [%{text: "Hello"}]})
false

iex> Gemini.Telemetry.has_non_text_parts?(%{parts: [%{text: "Hello"}, %{image: "data"}]})
true

iex> Gemini.Telemetry.has_non_text_parts?("not a content structure")
false

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

