

 gen_stage

 v1.3.2

 Table of contents

 	
 Modules

 	ConsumerSupervisor

 	GenStage

 	GenStage.BroadcastDispatcher

 	GenStage.DemandDispatcher

 	GenStage.Dispatcher

 	GenStage.PartitionDispatcher

ConsumerSupervisor behaviour

A supervisor that starts children as events flow in.
A ConsumerSupervisor can be used as the consumer in a GenStage pipeline.
A new child process will be started per event, where the event is appended
to the arguments in the child specification.
A ConsumerSupervisor can be attached to a producer by returning
:subscribe_to from init/1 or explicitly with GenStage.sync_subscribe/3
and GenStage.async_subscribe/2.
Once subscribed, the supervisor will ask the producer for :max_demand events
and start child processes as events arrive. As child processes terminate, the
supervisor will accumulate demand and request more events once :min_demand
is reached. This allows the ConsumerSupervisor to work similar to a pool,
except a child process is started per event. The minimum amount of concurrent
children per producer is specified by :min_demand and the maximum is given
by :max_demand.
Example
Let's define a GenStage consumer as a ConsumerSupervisor that subscribes
to a producer named Producer and starts a new process for each event
received from the producer. Each new process will be started by calling
Printer.start_link/1, which simply starts a task that will print the
incoming event to the terminal.
defmodule Consumer do
 use ConsumerSupervisor

 def start_link(arg) do
 ConsumerSupervisor.start_link(__MODULE__, arg)
 end

 def init(_arg) do
 # Note: By default the restart for a child is set to :permanent
 # which is not supported in ConsumerSupervisor. You need to explicitly
 # set the :restart option either to :temporary or :transient.
 children = [%{id: Printer, start: {Printer, :start_link, []}, restart: :transient}]
 opts = [strategy: :one_for_one, subscribe_to: [{Producer, max_demand: 50}]]
 ConsumerSupervisor.init(children, opts)
 end
end
Then in the Printer module:
defmodule Printer do
 def start_link(event) do
 # Note: this function must return the format of `{:ok, pid}` and like
 # all children started by a Supervisor, the process must be linked
 # back to the supervisor (if you use `Task.start_link/1` then both
 # these requirements are met automatically)
 Task.start_link(fn ->
 IO.inspect({self(), event})
 end)
 end
end
Similar to Supervisor, ConsumerSupervisor also provides start_link/3,
which allows developers to start a supervisor with the help of a callback
module.
Name Registration
A supervisor is bound to the same name registration rules as a GenServer.
Read more about it in the GenServer docs.

 Summary

 Types

 option()

 Options used by the start* functions

 Callbacks

 init(args)

 Callback invoked to start the supervisor and during hot code upgrades.

 Functions

 count_children(supervisor)

 Returns a map containing count values for the supervisor.

 init(list, opts)

 Receives a template to initialize and a set of options.

 start_child(supervisor, args)

 Starts a child in the consumer supervisor.

 start_link(children, options)

 Starts a supervisor with the given children.

 start_link(mod, args, opts \\ [])

 Starts a consumer supervisor module with the given args.

 terminate_child(supervisor, pid)

 Terminates the given child pid.

 which_children(supervisor)

 Returns a list with information about all children.

 Types

 option()

 @type option() ::
 {:registry, atom()}
 | {:name, Supervisor.name()}
 | {:strategy, Supervisor.Spec.strategy()}
 | {:max_restarts, non_neg_integer()}
 | {:max_seconds, non_neg_integer()}
 | {:subscribe_to, [GenStage.stage() | {GenStage.stage(), keyword()}]}

Options used by the start* functions

 Callbacks

 init(args)

 @callback init(args :: term()) ::
 {:ok, [:supervisor.child_spec()], options :: keyword()} | :ignore

Callback invoked to start the supervisor and during hot code upgrades.
Options
	:strategy - the restart strategy option. Only :one_for_one
is supported by consumer supervisors.

	:max_restarts - the maximum amount of restarts allowed in
a time frame. Defaults to 3 times.

	:max_seconds - the time frame in which :max_restarts applies
in seconds. Defaults to 5 seconds.

	:subscribe_to - a list of producers to subscribe to. Each element
represents the producer or a tuple with the producer and the subscription
options, for example, [Producer] or [{Producer, max_demand: 20, min_demand: 10}].

 Functions

 count_children(supervisor)

 @spec count_children(Supervisor.supervisor()) :: %{
 specs: non_neg_integer(),
 active: non_neg_integer(),
 supervisors: non_neg_integer(),
 workers: non_neg_integer()
}

Returns a map containing count values for the supervisor.
The map contains the following keys:
	:specs - always 1 as consumer supervisors have a single specification

	:active - the count of all actively running child processes managed by
this supervisor

	:supervisors - the count of all supervisors whether or not the child
process is still alive

	:workers - the count of all workers, whether or not the child process
is still alive

 init(list, opts)

Receives a template to initialize and a set of options.
This is typically invoked at the end of the init/1 callback of module-based supervisors.
This function returns a the child specification and the supervisor flags.
Examples
Using the child specification changes introduced in Elixir 1.5:
defmodule MyConsumerSupervisor do
 use ConsumerSupervisor

 def start_link(arg) do
 ConsumerSupervisor.start_link(__MODULE__, arg)
 end

 def init(_arg) do
 ConsumerSupervisor.init([MyConsumer], strategy: :one_for_one, subscribe_to: MyProducer)
 end
end

 start_child(supervisor, args)

 @spec start_child(Supervisor.supervisor(), [term()]) :: Supervisor.on_start_child()

Starts a child in the consumer supervisor.
The child process will be started by appending the given list of
args to the existing function arguments in the child specification.
This child is started separately from any producer and does not
count towards the demand of any of them.
If the child process starts, function returns {:ok, child} or
{:ok, child, info}, the pid is added to the supervisor, and the
function returns the same value.
If the child process start function returns :ignore, an error tuple,
or an erroneous value, or if it fails, the child is discarded and
:ignore or {:error, error} where error is a term containing
information about the error is returned.

 start_link(children, options)

 @spec start_link([Supervisor.Spec.spec() | Supervisor.child_spec()], [option()]) ::
 Supervisor.on_start()

 @spec start_link(module(), any()) :: Supervisor.on_start()

Starts a supervisor with the given children.
A strategy is required to be given as an option. Furthermore,
the :max_restarts, :max_seconds, and :subscribe_to
values can be configured as described in the documentation for the
init/1 callback.
The options can also be used to register a supervisor name.
The supported values are described under the "Name Registration"
section in the GenServer module docs.
The child processes specified in children will be started by appending
the event to process to the existing function arguments in the child specification.
Note that the consumer supervisor is linked to the parent process
and will exit not only on crashes but also if the parent process
exits with :normal reason.

 start_link(mod, args, opts \\ [])

 @spec start_link(module(), any(), [option()]) :: Supervisor.on_start()

Starts a consumer supervisor module with the given args.
To start the supervisor, the init/1 callback will be invoked in the given
module, with args passed to it. The init/1 callback must return a
supervision specification which can be created with the help of the
Supervisor module.
If the init/1 callback returns :ignore, this function returns
:ignore as well and the supervisor terminates with reason :normal.
If it fails or returns an incorrect value, this function returns
{:error, term} where term is a term with information about the
error, and the supervisor terminates with reason term.
The :name option can also be given in order to register a supervisor
name. The supported values are described under the "Name Registration"
section in the GenServer module docs.

 terminate_child(supervisor, pid)

 @spec terminate_child(Supervisor.supervisor(), pid()) :: :ok | {:error, :not_found}

Terminates the given child pid.
If successful, the function returns :ok. If there is no
such pid, the function returns {:error, :not_found}.

 which_children(supervisor)

 @spec which_children(Supervisor.supervisor()) :: [
 {:undefined, pid() | :restarting, :worker | :supervisor,
 :dynamic | [module()]}
]

Returns a list with information about all children.
Note that calling this function when supervising a large number
of children under low memory conditions can cause an out of memory
exception.
This function returns a list of tuples containing:
	id - as defined in the child specification but is always
set to :undefined for consumer supervisors

	child - the pid of the corresponding child process or the
atom :restarting if the process is about to be restarted

	type - :worker or :supervisor as defined in the child
specification

	modules - as defined in the child specification

GenStage behaviour

Stages are data-exchange steps that send and/or receive data
from other stages.
When a stage sends data, it acts as a producer. When it receives
data, it acts as a consumer. Stages may take both producer and
consumer roles at once, acting as consumer producers.
Stage types
Besides taking both producer and consumer roles, a stage may be
called "source" if it only produces items or called "sink" if it
only consumes items.
For example, imagine the stages below where A sends data to B
that sends data to C:
[A] -> [B] -> [C]
we conclude that:
	A is only a producer (and therefore a source)
	B is both producer and consumer
	C is only a consumer (and therefore a sink)

As we will see in the upcoming "Examples" section, we must
specify the type of the stage when we implement it.
To start the flow of events, we always subscribe consumers to
producers. Once the communication channel between consumers and producers
is established, consumers will ask producers for events.
We typically say that the consumer is sending demand upstream.
Once demand arrives, the producer will emit events, never
emitting more events than the consumer asked for. This provides
a back-pressure mechanism.
A consumer may have multiple producers and a producer may have
multiple consumers. When a consumer asks for data to many producers, each producer
is handled separately, with its own demand. When a producer
receives demand and sends data to multiple consumers, the demand
is tracked and the events are sent by a dispatcher. This allows
producers to send data using different "strategies". See
GenStage.Dispatcher for more information.
Example
Let's define the simple pipeline below:
[A] -> [B] -> [C]
where A is a producer that will emit items starting from 0,
B is a producer-consumer that will receive those items and
multiply them by a given number and C will receive those events
and print them to the terminal.
Let's start with A. Since A is a producer, its main
responsibility is to receive demand and generate events.
Those events may be in memory or an external queue system.
For simplicity, let's implement a simple counter starting
from a given value of counter received on init/1:
defmodule A do
 use GenStage

 def start_link(number) do
 GenStage.start_link(A, number)
 end

 def init(counter) do
 {:producer, counter}
 end

 def handle_demand(demand, counter) when demand > 0 do
 # If the counter is 3 and we ask for 2 items, we will
 # emit the items 3 and 4, and set the state to 5.
 events = Enum.to_list(counter..counter+demand-1)
 {:noreply, events, counter + demand}
 end
end
B is a consumer-producer. This means it does not explicitly
handle the demand because the demand is always forwarded to
its producer. Once A receives the demand from B, it will send
events to B which will be transformed by B as desired. In
our case, B will receive events and multiply them by a number
given on initialization and stored as the state:
defmodule B do
 use GenStage

 def start_link(multiplier) do
 GenStage.start_link(B, multiplier)
 end

 def init(multiplier) do
 {:producer_consumer, multiplier}
 end

 def handle_events(events, _from, multiplier) do
 events = Enum.map(events, & &1 * multiplier)
 {:noreply, events, multiplier}
 end
end
C will finally receive those events and print them every second
to the terminal:
defmodule C do
 use GenStage

 def start_link(_opts) do
 GenStage.start_link(C, :ok)
 end

 def init(:ok) do
 {:consumer, :the_state_does_not_matter}
 end

 def handle_events(events, _from, state) do
 # Wait for a second.
 Process.sleep(1000)

 # Inspect the events.
 IO.inspect(events)

 # We are a consumer, so we would never emit items.
 {:noreply, [], state}
 end
end
Now we can start and connect them:
{:ok, a} = A.start_link(0) # starting from zero
{:ok, b} = B.start_link(2) # multiply by 2
{:ok, c} = C.start_link([]) # state does not matter

GenStage.sync_subscribe(c, to: b)
GenStage.sync_subscribe(b, to: a)
Typically, we subscribe from bottom to top. Since A will
start producing items only when B connects to it, we want this
subscription to happen when the whole pipeline is ready. After
you subscribe all of them, demand will start flowing upstream and
events downstream.
Usage guidelines
As you get familiar with GenStage, developers may tend to create layers
of stages, such as A, B and C, for achieving concurrency. For example,
stage A does step 1 in your company workflow, stage B does step 2 and
so forth. That's an anti-pattern.
The same guideline that applies to processes also applies to GenStage:
use processes/stages to model runtime properties, such as concurrency and
data-transfer, and not for code organization or domain design purposes.
For the latter, you should use modules and functions.
If your domain has to process the data in multiple steps, you should write
that logic in separate modules and not directly in a GenStage. You only add
stages according to runtime needs, typically when you need to provide back-
pressure or leverage concurrency. This way you are free to experiment with
different GenStage pipelines without touching your business rules.
In particular, if your logic has three distinct steps, instead of starting
three different stages for each step, it may be best to start multiple
instances of a single stage that executes all steps. Instead of this:
[Producer Stage] -> [Stage Step 1] -> [Stage Step 2] -> [Stage Step 3]
You should rather have this:
 [Consumer Step 1 + Step 2 + Step 3]
 /
[Producer]->-[Consumer Step 1 + Step 2 + Step 3]
 \
 [Consumer Step 1 + Step 2 + Step 3]
The benefit of this approach is that you can scale the code based on the machine
resources and runtime needs rather than the number of steps during development.
Finally, if you don't need back-pressure at all and you just need to process
data that is already in-memory in parallel, a simpler solution is available
directly in Elixir via Task.async_stream/2. This function consumes a stream
of data, with each entry running in a separate task. The maximum number of tasks
is configurable via the :max_concurrency option.
Demand
When implementing consumers, we often set the :max_demand and
:min_demand on subscription. The :max_demand specifies the
maximum amount of events that must be in flow while the :min_demand
specifies the minimum threshold to trigger for more demand. The consumer
will never ask the producer for more than :max_demand events at a time.
When the producer emits enough events for the consumer's demand to go
down to :min_demand, only then the consumer will ask for more events
(in other words, it will "send more demand upstream").
An example with numbers will help clarify this. Say that :max_demand is
1000 and :min_demand is 750. Initially, the consumer asks for 1000
events to the producer. Say that the producer produces 100 events at a time.
The first "batch" of 100 events goes to the consumer and the consumer's demand
goes down to 900. Another batch is produced and the demand goes down to 800.
At this point, the producer has not been asked for more events yet since the demand
didn't go below :min_demand yet. When the producer produces the next batch of
100 events, the consumer will process 50 events and the demand reaches the
minimum of 750. The consumer sends 250 demand upstream (which is up to :max_demand).
of 250 to reach :min_demand again, and then consume the 50 events remaining.
handle_demand/2 will be called on the producer with a demand of 250.
In the example above, B is a :producer_consumer and therefore
acts as a buffer. Getting the proper demand values in B is
important: making the buffer too small may make the whole pipeline
slower, making the buffer too big may unnecessarily consume
memory.
When such values are applied to the stages above, it is easy
to see the producer works in batches. The producer A ends-up
emitting batches of 50 items which will take approximately
50 seconds to be consumed by C, which will then request another
batch of 50 items.
init and :subscribe_to
In the example above, we have started the processes A, B, and C
independently and subscribed them later on. But most often it is
simpler to subscribe a consumer to its producer on its init/1
callback. This way, if the consumer crashes, restarting the consumer
will automatically re-invoke its init/1 callback and resubscribe
it to the producer.
This approach works as long as the producer can be referenced when
the consumer starts - such as by name for a named process. For example,
if we change the process A and B to be started as follows:
Let's call the stage in module A as A
GenStage.start_link(A, 0, name: A)
Let's call the stage in module B as B
GenStage.start_link(B, 2, name: B)
No need to name consumers as they won't be subscribed to
GenStage.start_link(C, :ok)
We can now change the init/1 callback for C to the following:
def init(:ok) do
 {:consumer, :the_state_does_not_matter, subscribe_to: [B]}
end
Subscription options as outlined in sync_subscribe/3 can also be
given by making each subscription a tuple, with the process name or
pid as first element and the options as second:
def init(:ok) do
 {:consumer, :the_state_does_not_matter, subscribe_to: [{B, options}]}
end
Similarly, we should change B to subscribe to A on init/1. Let's
also set :max_demand to 10 when we do so:
def init(number) do
 {:producer_consumer, number, subscribe_to: [{A, max_demand: 10}]}
end
And we will no longer need to call sync_subscribe/2.
Another advantage of using :subscribe_to is that it makes it straight-forward
to leverage concurrency by simply starting multiple consumers that subscribe
to their producer (or producer-consumer). This can be done in the example above
by simply calling start link multiple times:
Start 4 consumers
GenStage.start_link(C, :ok)
GenStage.start_link(C, :ok)
GenStage.start_link(C, :ok)
GenStage.start_link(C, :ok)
In a supervision tree, this is often done by starting multiple workers. Typically
we update each start_link/1 call to start a named process:
def start_link(number) do
 GenStage.start_link(A, number, name: A)
end
And the same for module B:
def start_link(number) do
 GenStage.start_link(B, number, name: B)
end
Module C does not need to be updated because it won't be subscribed to.
Then we can define our supervision tree like this:
children = [
 {A, 0},
 {B, 2},
 Supervisor.child_spec({C, []}, id: :c1),
 Supervisor.child_spec({C, []}, id: :c2),
 Supervisor.child_spec({C, []}, id: :c3),
 Supervisor.child_spec({C, []}, id: :c4)
]

Supervisor.start_link(children, strategy: :rest_for_one)
Having multiple consumers is often the easiest and simplest way to leverage
concurrency in a GenStage pipeline, especially if events can be processed out
of order.
Also note that we set the supervision strategy to :rest_for_one. This is
important. Consider an alternative case where :one_for_one is used. If the
producer A terminates, all of the other processes will terminate too, since
they are consuming events produced by A. In this scenario, the supervisor will
see multiple processes shutting down at the same time, and conclude there are
too many failures in a short interval. However, if the strategy is
:rest_for_one, the supervisor will shut down the rest of tree, and already
expect the remaining processes to fail. One downside of :rest_for_one though
is that if a C process dies, any other C process after it will die too.
You can solve this by putting them under their own supervisor if desired.
Another alternative to the scenario above is to use a ConsumerSupervisor
for consuming the events instead of N consumers. The ConsumerSupervisor
will communicate with the producer respecting the back-pressure properties
and start a separate supervised process per event. The number of children
concurrently running in a ConsumerSupervisor is at most max_demand and
the average amount of children is (max_demand + min_demand) / 2.
Buffering
In many situations, mismatches might happen between how many events can be produced
and how many events can be consumed. In those cases, we usually need to buffer
some things. Let's explore the possible scenarios.
In the first scenario, producers may attempt to emit events while no consumers
have yet subscribed. Alternatively, producers may produce more events than the
consumers' demand asked for. In these cases, producers will have to buffer events
until a consumer is available or consumers have enough demand again.
In the second scenario, consumers may ask producers for events that are not
yet available. In this case, producers have to buffer consumer demand
until new events can be produced.
As we will see next, buffering events emitted by producers can be done
automatically by GenStage. Buffering the demand, instead, is a case that
must be explicitly considered by developers implementing producers.
Buffering events
Due to the concurrent nature of Elixir software, sometimes a producer
may dispatch events without consumers to send those events to. For example,
imagine a :consumer B subscribes to :producer A. Next, the consumer B
sends demand to A, which starts producing events to satisfy the demand.
Now, if the consumer B crashes, the producer may attempt to dispatch the
now produced events but it no longer has a consumer to send those events to.
In such cases, the producer will automatically buffer the events until another
consumer subscribes. Note however, all of the events being consumed by
B in its handle_events/3 at the moment of the crash will be lost.
The buffer can also be used in cases where external sources only send
events in batches larger than asked for. For example, if you are
receiving events from an external source that only sends events
in batches of 1000 and the internal demand is smaller than
that, the buffer allows you to always emit batches of 1000 events
even when the consumer has asked for less. This tends to simplify
code in producers since they don't need to emit exactly as many events
as the demand but can just emit events as they come.
In all of those cases when an event cannot be sent immediately by
a producer, the event will be automatically stored and sent the next
time consumers ask for events. The size of the buffer is configured
via the :buffer_size option returned by init/1 and the default
value is 10_000. If the :buffer_size is exceeded, an error is logged.
See the documentation for init/1 for more detailed information about
the :buffer_size option.
Buffering demand
In case consumers send demand and the producer is not yet ready to
fill in the demand, producers must buffer the demand until data arrives.
As an example, let's implement a producer that broadcasts messages
to consumers. For producers, we need to consider two scenarios:
	what if events arrive and there are no consumers?
	what if consumers send demand and there are not enough events?

One way to implement such a broadcaster is to simply rely on the internal
buffer available in GenStage, dispatching events as they arrive, as explained
in the previous section:
defmodule Broadcaster do
 use GenStage

 @doc "Starts the broadcaster."
 def start_link() do
 GenStage.start_link(__MODULE__, :ok, name: __MODULE__)
 end

 @doc "Sends an event and returns only after the event is dispatched."
 def sync_notify(event, timeout \\ 5000) do
 GenStage.call(__MODULE__, {:notify, event}, timeout)
 end

 def init(:ok) do
 {:producer, :ok, dispatcher: GenStage.BroadcastDispatcher}
 end

 def handle_call({:notify, event}, _from, state) do
 {:reply, :ok, [event], state} # Dispatch immediately
 end

 def handle_demand(_demand, state) do
 {:noreply, [], state} # We don't care about the demand
 end
end
By always sending events as soon as they arrive, if there is any demand,
we will serve the existing demand, otherwise the event will be queued in
GenStage's internal buffer. In case events are being queued and not being
consumed, a log message will be emitted when we exceed the :buffer_size
configuration. This behavior can be customized by implementing the optional
format_discarded/2 callback.
While the implementation above is enough to solve the constraints above,
a more robust implementation would have tighter control over the events
and demand by tracking this data locally, leaving the GenStage internal
buffer only for cases where consumers crash without consuming all data.
To handle such cases, we will use a two-element tuple as the broadcaster state
where the first element is a queue and the second element is the pending
demand. When events arrive and there are no consumers, we will store the
event in the queue alongside information about the process that broadcast
the event. When consumers send demand and there are not enough events, we will
increase the pending demand. Once we have both data and demand, we
acknowledge the process that has sent the event to the broadcaster and finally
broadcast the event downstream.
defmodule QueueBroadcaster do
 use GenStage

 @doc "Starts the broadcaster."
 def start_link() do
 GenStage.start_link(__MODULE__, :ok, name: __MODULE__)
 end

 @doc "Sends an event and returns only after the event is dispatched."
 def sync_notify(event, timeout \\ 5000) do
 GenStage.call(__MODULE__, {:notify, event}, timeout)
 end

 ## Callbacks

 def init(:ok) do
 {:producer, {:queue.new, 0}, dispatcher: GenStage.BroadcastDispatcher}
 end

 def handle_call({:notify, event}, from, {queue, pending_demand}) do
 queue = :queue.in({from, event}, queue)
 dispatch_events(queue, pending_demand, [])
 end

 def handle_demand(incoming_demand, {queue, pending_demand}) do
 dispatch_events(queue, incoming_demand + pending_demand, [])
 end

 defp dispatch_events(queue, 0, events) do
 {:noreply, Enum.reverse(events), {queue, 0}}
 end

 defp dispatch_events(queue, demand, events) do
 case :queue.out(queue) do
 {{:value, {from, event}}, queue} ->
 GenStage.reply(from, :ok)
 dispatch_events(queue, demand - 1, [event | events])
 {:empty, queue} ->
 {:noreply, Enum.reverse(events), {queue, demand}}
 end
 end
end
Let's also implement a consumer that automatically subscribes to the
broadcaster on init/1. The advantage of doing so on initialization
is that, if the consumer crashes while it is supervised, the subscription
is automatically re-established when the supervisor restarts it.
defmodule Printer do
 use GenStage

 @doc "Starts the consumer."
 def start_link() do
 GenStage.start_link(__MODULE__, :ok)
 end

 def init(:ok) do
 # Starts a permanent subscription to the broadcaster
 # which will automatically start requesting items.
 {:consumer, :ok, subscribe_to: [QueueBroadcaster]}
 end

 def handle_events(events, _from, state) do
 for event <- events do
 IO.inspect {self(), event}
 end
 {:noreply, [], state}
 end
end
With the broadcaster in hand, now let's start the producer as well
as multiple consumers:
Start the producer
QueueBroadcaster.start_link()

Start multiple consumers
Printer.start_link()
Printer.start_link()
Printer.start_link()
Printer.start_link()
At this point, all consumers must have sent their demand which we were not
able to fulfill. Now by calling QueueBroadcaster.sync_notify/1, the event
shall be broadcast to all consumers at once as we have buffered the demand
in the producer:
QueueBroadcaster.sync_notify(:hello_world)
If we had called QueueBroadcaster.sync_notify(:hello_world) before any
consumer was available, the event would also have been buffered in our own
queue and served only when demand had been received.
By having control over the demand and queue, the broadcaster has
full control on how to behave when there are no consumers, when the
queue grows too large, and so forth.
Asynchronous work and handle_subscribe
Both :producer_consumer and :consumer stages have been designed to do
their work in the handle_events/3 callback. This means that, after
handle_events/3 has been executed, both :producer_consumer and :consumer
stages will immediately send demand upstream and ask for more items. It is
assumed that events have been fully processed by handle_events/3.
Such default behaviour makes :producer_consumer and :consumer stages
unfeasible for doing asynchronous work. However, given GenStage was designed
to run with multiple consumers, it is not a problem to perform synchronous or
blocking actions inside handle_events/3 as you can then start multiple
consumers in order to max both CPU and IO usage as necessary.
On the other hand, if you must perform some work asynchronously,
GenStage comes with an option that manually controls how demand
is sent upstream, avoiding the default behaviour where demand is
sent after handle_events/3. Such can be done by implementing
the handle_subscribe/4 callback and returning {:manual, state}
instead of the default {:automatic, state}. Once the consumer mode
is set to :manual, developers must use GenStage.ask/3 to send
demand upstream when necessary.
Note that :max_demand and :min_demand must be manually respected when
asking for demand through GenStage.ask/3.
For example, the ConsumerSupervisor module processes events
asynchronously by starting a process for each event and this is achieved by
manually sending demand to producers. ConsumerSupervisor
can be used to distribute work to a limited amount of
processes, behaving similar to a pool where a new process is
started for each event. See the ConsumerSupervisor docs for more
information.
Setting the demand to :manual in handle_subscribe/4 is not
only useful for asynchronous work but also for setting up other
mechanisms for back-pressure. As an example, let's implement a
consumer that is allowed to process a limited number of events
per time interval. Those are often called rate limiters:
defmodule RateLimiter do
 use GenStage

 def init(_) do
 # Our state will keep all producers and their pending demand
 {:consumer, %{}}
 end

 def handle_subscribe(:producer, opts, from, producers) do
 # We will only allow max_demand events every 5000 milliseconds
 pending = opts[:max_demand] || 1000
 interval = opts[:interval] || 5000

 # Register the producer in the state
 producers = Map.put(producers, from, {pending, interval})
 # Ask for the pending events and schedule the next time around
 producers = ask_and_schedule(producers, from)

 # Returns manual as we want control over the demand
 {:manual, producers}
 end

 def handle_cancel(_, from, producers) do
 # Remove the producers from the map on unsubscribe
 {:noreply, [], Map.delete(producers, from)}
 end

 def handle_events(events, from, producers) do
 # Bump the amount of pending events for the given producer
 producers = Map.update!(producers, from, fn {pending, interval} ->
 {pending + length(events), interval}
 end)

 # Consume the events by printing them.
 IO.inspect(events)

 # A producer_consumer would return the processed events here.
 {:noreply, [], producers}
 end

 def handle_info({:ask, from}, producers) do
 # This callback is invoked by the Process.send_after/3 message below.
 {:noreply, [], ask_and_schedule(producers, from)}
 end

 defp ask_and_schedule(producers, from) do
 case producers do
 %{^from => {pending, interval}} ->
 # Ask for any pending events
 GenStage.ask(from, pending)
 # And let's check again after interval
 Process.send_after(self(), {:ask, from}, interval)
 # Finally, reset pending events to 0
 Map.put(producers, from, {0, interval})
 %{} ->
 producers
 end
 end
end
Let's subscribe the RateLimiter above to the
producer we have implemented at the beginning of the module
documentation:
{:ok, a} = GenStage.start_link(A, 0)
{:ok, b} = GenStage.start_link(RateLimiter, :ok)

Ask for 10 items every 2 seconds
GenStage.sync_subscribe(b, to: a, max_demand: 10, interval: 2000)
Although the rate limiter above is a consumer, it could be made a
producer-consumer by changing init/1 to return a :producer_consumer
and then forwarding the events in handle_events/3.
Callbacks
GenStage is implemented on top of a GenServer with a few additions.
Besides exposing all of the GenServer callbacks, it also provides
handle_demand/2 to be implemented by producers and handle_events/3 to be
implemented by consumers, as shown above, as well as subscription-related
callbacks. Furthermore, all the callback responses have been modified to
potentially emit events. See the callbacks documentation for more
information.
By adding use GenStage to your module, Elixir will automatically
define all callbacks for you except for the following ones:
	init/1 - must be implemented to choose between :producer, :consumer, or :producer_consumer stages
	handle_demand/2 - must be implemented by :producer stages
	handle_events/3 - must be implemented by :producer_consumer and :consumer stages

use GenStage also defines a child_spec/1 function, allowing the
defined module to be put under a supervision tree in Elixir v1.5+.
The generated child_spec/1 can be customized with the following options:
	:id - the child specification id, defaults to the current module
	:start - how to start the child process (defaults to calling __MODULE__.start_link/1)
	:restart - when the child should be restarted, defaults to :permanent
	:shutdown - how to shut down the child

For example:
use GenStage, restart: :transient, shutdown: 10_000
See the Supervisor docs for more information.
Although this module exposes functions similar to the ones found in
the GenServer API, like call/3 and cast/2, developers can also
rely directly on GenServer functions such as GenServer.multi_call/4
and GenServer.abcast/3 if they wish to.
Name registration
GenStage is bound to the same name registration rules as a GenServer.
Read more about it in the GenServer docs.
Message protocol overview
This section will describe the message protocol implemented
by stages. By documenting these messages, we will allow
developers to provide their own stage implementations.
Back-pressure
When data is sent between stages, it is done by a message
protocol that provides back-pressure. The first step is
for the consumer to subscribe to the producer. Each
subscription has a unique reference.
Once subscribed, the consumer may ask the producer for messages
for the given subscription. The consumer may demand more items
whenever it wants to. A consumer must never receive more data
than it has asked for from any given producer stage.
A consumer may have multiple producers, where each demand is managed
individually (on a per-subscription basis). A producer may have multiple
consumers, where the demand and events are managed and delivered according to
a GenStage.Dispatcher implementation.
Producer messages
The producer is responsible for sending events to consumers
based on demand. These are the messages that consumers can
send to producers:
	{:"$gen_producer", from :: {consumer_pid, subscription_tag}, {:subscribe, current, options}} -
sent by the consumer to the producer to start a new subscription.
Before sending, the consumer MUST monitor the producer for clean-up
purposes in case of crashes. The subscription_tag is unique to
identify the subscription. It is typically the subscriber monitoring
reference although it may be any term.
Once sent, the consumer MAY immediately send demand to the producer.
The current field, when not nil, is a two-item tuple containing a
subscription that must be cancelled with the given reason before the
current one is accepted.
Once received, the producer MUST monitor the consumer. However, if
the subscription reference is known, it MUST send a :cancel message
to the consumer instead of monitoring and accepting the subscription.

	{:"$gen_producer", from :: {consumer_pid, subscription_tag}, {:cancel, reason}} -
sent by the consumer to cancel a given subscription.
Once received, the producer MUST send a :cancel reply to the
registered consumer (which may not necessarily be the one received
in the tuple above). Keep in mind, however, there is no guarantee
such messages can be delivered in case the producer crashes before.
If the pair is unknown, the producer MUST send an appropriate cancel
reply.

	{:"$gen_producer", from :: {consumer_pid, subscription_tag}, {:ask, demand}} -
sent by consumers to ask demand for a given subscription (identified
by subscription_tag).
Once received, the producer MUST send data up to the demand. If the
pair is unknown, the producer MUST send an appropriate cancel reply.

Consumer messages
The consumer is responsible for starting the subscription
and sending demand to producers. These are the messages that
producers can send to consumers:
	{:"$gen_consumer", from :: {producer_pid, subscription_tag}, {:cancel, reason}} -
sent by producers to cancel a given subscription.
It is used as a confirmation for client cancellations OR
whenever the producer wants to cancel some upstream demand.

	{:"$gen_consumer", from :: {producer_pid, subscription_tag}, events :: [event, ...]} -
events sent by producers to consumers.
subscription_tag identifies the subscription. The third argument
is a non-empty list of events. If the subscription is unknown, the
events must be ignored and a cancel message must be sent to the producer.

 Summary

 Types

 consumer_and_producer_consumer_option()

 Option values used by the init* common to :consumer and :producer_consumer types

 consumer_option()

 Option values used by the init* functions when stage type is :consumer

 from()

 The term that identifies a subscription associated with the corresponding producer/consumer.

 producer_and_producer_consumer_option()

 Option values used by the init* common to :producer and :producer_consumer types

 producer_consumer_option()

 Option values used by the init* functions when stage type is :producer_consumer

 producer_only_option()

 Option values used by the init* specific to :producer type

 producer_option()

 Option values used by the init* functions when stage type is :producer

 stage()

 The stage.

 subscription_option()

 Option used by the subscribe* functions

 subscription_options()

 Options used by the subscribe* functions

 subscription_tag()

 The term that identifies a subscription.

 type()

 The supported stage types.

 Callbacks

 code_change(old_vsn, state, extra)

 The same as GenServer.code_change/3.

 format_discarded(discarded, state)

 Invoked when items are discarded from the buffer.

 format_status(arg1, list)

 The same as GenServer.format_status/2.

 handle_call(request, from, state)

 Invoked to handle synchronous call/3 messages.

 handle_cancel(cancellation_reason, from, state)

 Invoked when a consumer is no longer subscribed to a producer.

 handle_cast(request, state)

 Invoked to handle asynchronous cast/2 messages.

 handle_demand(demand, state)

 Invoked on :producer stages.

 handle_events(events, from, state)

 Invoked on :producer_consumer and :consumer stages to handle events.

 handle_info(message, state)

 Invoked to handle all other messages.

 handle_subscribe(producer_or_consumer, subscription_options, from, state)

 Invoked when a consumer subscribes to a producer.

 init(args)

 Invoked when the server is started.

 terminate(reason, state)

 The same as GenServer.terminate/2.

 Functions

 ask(producer_subscription, demand, opts \\ [])

 Asks the given demand to the producer.

 async_info(stage, msg)

 Asynchronously queues an info message that is delivered after all
currently buffered events.

 async_resubscribe(stage, subscription_tag, reason, opts)

 Cancels subscription_tag with reason and resubscribe
to the same stage with the given options.

 async_subscribe(stage, opts)

 Asks the consumer to subscribe to the given producer asynchronously.

 call(stage, request, timeout \\ 5000)

 Makes a synchronous call to the stage and waits for its reply.

 cancel(producer_subscription, reason, opts \\ [])

 Cancels the given subscription on the producer.

 cast(stage, request)

 Sends an asynchronous request to the stage.

 demand(stage)

 Returns the demand mode for a producer.

 demand(stage, mode)

 Sets the demand mode for a producer.

 estimate_buffered_count(stage, timeout \\ 5000)

 Returns the estimated number of buffered items for a producer.

 from_enumerable(stream, opts \\ [])

 Starts a producer stage from an enumerable (or stream).

 reply(client, reply)

 Replies to a client.

 start(module, args, options \\ [])

 Starts a GenStage process without links (outside of a supervision tree).

 start_link(module, args, options \\ [])

 Starts a GenStage process linked to the current process.

 stop(stage, reason \\ :normal, timeout \\ :infinity)

 Stops the stage with the given reason.

 stream(subscriptions, options \\ [])

 Creates a stream that subscribes to the given producers
and emits the appropriate messages.

 sync_info(stage, msg, timeout \\ 5000)

 Queues an info message that is delivered after all currently buffered events.

 sync_resubscribe(stage, subscription_tag, reason, opts, timeout \\ 5000)

 Cancels subscription_tag with reason and resubscribe
to the same stage with the given options.

 sync_subscribe(stage, opts, timeout \\ 5000)

 Asks the consumer to subscribe to the given producer synchronously.

 Types

 consumer_and_producer_consumer_option()

 @type consumer_and_producer_consumer_option() ::
 {:subscribe_to,
 [atom() | pid() | {GenServer.server(), subscription_options()}]}

Option values used by the init* common to :consumer and :producer_consumer types

 consumer_option()

 @type consumer_option() :: consumer_and_producer_consumer_option()

Option values used by the init* functions when stage type is :consumer

 from()

 @type from() :: {pid(), subscription_tag()}

The term that identifies a subscription associated with the corresponding producer/consumer.

 producer_and_producer_consumer_option()

 @type producer_and_producer_consumer_option() ::
 {:buffer_size, non_neg_integer() | :infinity}
 | {:buffer_keep, :first | :last}
 | {:dispatcher, module() | {module(), GenStage.Dispatcher.options()}}

Option values used by the init* common to :producer and :producer_consumer types

 producer_consumer_option()

 @type producer_consumer_option() ::
 producer_and_producer_consumer_option()
 | consumer_and_producer_consumer_option()

Option values used by the init* functions when stage type is :producer_consumer

 producer_only_option()

 @type producer_only_option() :: {:demand, :forward | :accumulate}

Option values used by the init* specific to :producer type

 producer_option()

 @type producer_option() ::
 producer_only_option() | producer_and_producer_consumer_option()

Option values used by the init* functions when stage type is :producer

 stage()

 @type stage() ::
 pid()
 | atom()
 | {:global, term()}
 | {:via, module(), term()}
 | {atom(), node()}

The stage.

 subscription_option()

 @type subscription_option() ::
 {:cancel, :permanent | :transient | :temporary}
 | {:to, GenServer.server()}
 | {:min_demand, integer()}
 | {:max_demand, integer()}
 | {atom(), term()}

Option used by the subscribe* functions

 subscription_options()

 @type subscription_options() :: [subscription_option()]

Options used by the subscribe* functions

 subscription_tag()

 @opaque subscription_tag()

The term that identifies a subscription.

 type()

 @type type() :: :producer | :consumer | :producer_consumer

The supported stage types.

 Callbacks

 code_change(old_vsn, state, extra)

 (optional)

 @callback code_change(old_vsn, state :: term(), extra :: term()) ::
 {:ok, new_state :: term()} | {:error, reason :: term()}
when old_vsn: term() | {:down, term()}

The same as GenServer.code_change/3.

 format_discarded(discarded, state)

 (optional)

 @callback format_discarded(discarded :: non_neg_integer(), state :: term()) :: boolean()

Invoked when items are discarded from the buffer.
It receives the number of excess (discarded) items from this invocation.
This callback returns a boolean that controls whether the default error log for discarded items is printed or not.
Return true to print the log, return false to skip the log.

 format_status(arg1, list)

 (optional)

 @callback format_status(:normal | :terminate, [
 pdict :: {term(), term()} | (state :: term()),
 ...
]) ::
 status :: term()

The same as GenServer.format_status/2.

 handle_call(request, from, state)

 (optional)

 @callback handle_call(request :: term(), from :: GenServer.from(), state :: term()) ::
 {:reply, reply, [event], new_state}
 | {:reply, reply, [event], new_state, :hibernate}
 | {:noreply, [event], new_state}
 | {:noreply, [event], new_state, :hibernate}
 | {:stop, reason, reply, new_state}
 | {:stop, reason, new_state}
when reply: term(), new_state: term(), reason: term(), event: term()

Invoked to handle synchronous call/3 messages.
call/3 will block until a reply is received (unless the call times out or
nodes are disconnected).
request is the request message sent by a call/3, from is a two-element tuple
containing the caller's PID and a term that uniquely identifies the call, and
state is the current state of the GenStage.
Returning {:reply, reply, [events], new_state} sends the response reply
to the caller after events are dispatched (or buffered) and continues the
loop with new state new_state. In case you want to deliver the reply before
processing events, use reply/2 and return {:noreply, [event], state}. Only :producer and :producer_consumer stages can return a
non-empty list of events.
Returning {:noreply, [event], new_state} does not send a response to the
caller and processes the given events before continuing the loop with new
state new_state. The response must be sent with reply/2. Only :producer and
:producer_consumer stages can return a non-empty list of events.
Hibernating is also supported as an atom to be returned from either
:reply and :noreply tuples.
Returning {:stop, reason, reply, new_state} stops the loop and terminate/2
is called with reason reason and state new_state. Then the reply is sent
as the response to the call and the process exits with reason reason.
Returning {:stop, reason, new_state} is similar to
{:stop, reason, reply, new_state} except that no reply is sent to the caller.
If this callback is not implemented, the default implementation by
use GenStage will return {:stop, {:bad_call, request}, state}.

 handle_cancel(cancellation_reason, from, state)

 (optional)

 @callback handle_cancel(
 cancellation_reason :: {:cancel | :down, reason :: term()},
 from(),
 state :: term()
) ::
 {:noreply, [event], new_state}
 | {:noreply, [event], new_state, :hibernate}
 | {:stop, reason, new_state}
when event: term(), new_state: term(), reason: term()

Invoked when a consumer is no longer subscribed to a producer.
It receives the cancellation reason, the from tuple representing the
cancelled subscription and the state. The cancel_reason will be a
{:cancel, _} tuple if the reason for cancellation was a GenStage.cancel/2
call. Any other value means the cancellation reason was due to an EXIT.
If this callback is not implemented, the default implementation by
use GenStage will return {:noreply, [], state}.
Return values are the same as handle_cast/2.

 handle_cast(request, state)

 (optional)

 @callback handle_cast(request :: term(), state :: term()) ::
 {:noreply, [event], new_state}
 | {:noreply, [event], new_state, :hibernate}
 | {:stop, reason :: term(), new_state}
when new_state: term(), event: term()

Invoked to handle asynchronous cast/2 messages.
request is the request message sent by a cast/2 and state is the current
state of the GenStage.
Returning {:noreply, [event], new_state} dispatches the events and continues
the loop with new state new_state. Only :producer and :producer_consumer
stages can return a non-empty list of events.
Returning {:noreply, [event], new_state, :hibernate} is similar to
{:noreply, new_state} except the process is hibernated before continuing the
loop. See the return values for GenServer.handle_call/3 for more information
on hibernation. Only :producer and :producer_consumer stages can return a
non-empty list of events.
Returning {:stop, reason, new_state} stops the loop and terminate/2 is
called with the reason reason and state new_state. The process exits with
reason reason.
If this callback is not implemented, the default implementation by
use GenStage will return {:stop, {:bad_cast, request}, state}.

 handle_demand(demand, state)

 (optional)

 @callback handle_demand(demand :: pos_integer(), state :: term()) ::
 {:noreply, [event], new_state}
 | {:noreply, [event], new_state, :hibernate}
 | {:stop, reason, new_state}
when new_state: term(), reason: term(), event: term()

Invoked on :producer stages.
This callback is invoked on :producer stages with the demand from
consumers/dispatcher. The producer that implements this callback can use it to
dispatch events.
The producer can do one of these:
	Dispatch exactly as many events as demand.

	Dispatch more events than demand - in this case, GenStage will
buffer the excess events. These events will be "used" by the
consumer/dispatcher next time demand is sent upstream. It's only
once the events in the buffer don't satisfy the demand anymore that
the handle_demand/2 callback is invoked again. See the "Buffering"
section in the module documentation.

	Dispatch less events than demand - in this case, the producer is
responsible for storing the demand ("buffering demand") and then emitting
events when they are available.

See the "Demand" section in the module documentation.
This callback must always be explicitly implemented by :producer stages.
Examples
Demand with buffering
In the following example, the producer emits enough events to at least
satisfy the demand, letting GenStage buffer any excess events:
@impl true
def handle_demand(demand, state) do
 events = List.flatten(fetch_at_least_n_events(demand))
 {:noreply, events, state}
end

defp fetch_at_least_n_events(demand) do
 events = fetch_events()
 demand_left = demand - length(events)

 if demand_left > 0 do
 [events | fetch_at_least_n_events(demand_left)]
 else
 events
 end
end
Stopping when events are over
In the next example, we implement the scenario where a producer can only
produce a limited number of events and should terminate gracefully when
events are not available anymore.
@impl true
def handle_demand(demand, state) do
 case fetch_events() do
 {:available, events} ->
 {:noreply, events, state}

 {:finished, last_events} ->
 GenStage.async_info(self(), :events_finished)
 {:noreply, last_events, state, :hibernate}
 end
end

@impl true
def handle_info(:events_finished, state) do
 {:stop, :normal, state}
end
We use the async_info/2 function to send the producer itself a message
that gets delivered only after the last_events are dispatched. When handling
said message, the producer stops with reason :normal, terminating gracefully.

 handle_events(events, from, state)

 (optional)

 @callback handle_events(events :: [event], from(), state :: term()) ::
 {:noreply, [event], new_state}
 | {:noreply, [event], new_state, :hibernate}
 | {:stop, reason, new_state}
when new_state: term(), reason: term(), event: term()

Invoked on :producer_consumer and :consumer stages to handle events.
Must always be explicitly implemented by such types.
Return values are the same as handle_cast/2.

 handle_info(message, state)

 (optional)

 @callback handle_info(message :: term(), state :: term()) ::
 {:noreply, [event], new_state}
 | {:noreply, [event], new_state, :hibernate}
 | {:stop, reason :: term(), new_state}
when new_state: term(), event: term()

Invoked to handle all other messages.
message is the message and state is the current state of the GenStage. When
a timeout occurs the message is :timeout.
Only :producer and :producer_consumer stages can return a non-empty list
of events.
If this callback is not implemented, the default implementation by
use GenStage will return {:noreply, [], state}.
Return values are the same as handle_cast/2.

 handle_subscribe(producer_or_consumer, subscription_options, from, state)

 (optional)

 @callback handle_subscribe(
 producer_or_consumer :: :producer | :consumer,
 subscription_options(),
 from(),
 state :: term()
) :: {:automatic | :manual, new_state} | {:stop, reason, new_state}
when new_state: term(), reason: term()

Invoked when a consumer subscribes to a producer.
This callback is invoked in both producers and consumers.
producer_or_consumer will be :producer when this callback is
invoked on a consumer that subscribed to a producer, and :consumer
if when this callback is invoked on producers a consumer subscribed to.
For consumers, successful subscriptions must return one of:
	{:automatic, new_state} - means the stage implementation will take care
of automatically sending demand to producers. This is the default.

	{:manual, state} - means that demand must be sent to producers
explicitly via ask/3. :manual subscriptions must be cancelled when
handle_cancel/3 is called. :manual can be used when a special
behaviour is desired (for example, ConsumerSupervisor uses :manual
demand in its implementation).

For producers, successful subscriptions must always return
{:automatic, new_state}. :manual mode is not supported.
If this callback is not implemented, the default implementation by
use GenStage will return {:automatic, state}.
Examples
Let's see an example where we define this callback in a consumer that will use
:manual mode. In this case, we'll store the subscription (from) in the
state in order to be able to use it later on when asking demand via ask/3.
def handle_subscribe(:producer, _options, from, state) do
 new_state = %{state | subscription: from}
 {:manual, new_state}
end

 init(args)

 @callback init(args :: term()) ::
 {:producer, state}
 | {:producer, state, [producer_option()]}
 | {:producer_consumer, state}
 | {:producer_consumer, state, [producer_consumer_option()]}
 | {:consumer, state}
 | {:consumer, state, [consumer_option()]}
 | :ignore
 | {:stop, reason :: any()}
when state: any()

Invoked when the server is started.
start_link/3 (or start/3) will block until this callback returns.
args is the argument term (second argument) passed to start_link/3
(or start/3).
In case of successful start, this callback must return a tuple
where the first element is the stage type, which is one of:
	:producer
	:consumer
	:producer_consumer (if the stage is acting as both)

For example:
def init(args) do
 {:producer, some_state}
end
The returned tuple may also contain 3 or 4 elements. The third
element may be the :hibernate atom or a set of options defined
below.
Returning :ignore will cause start_link/3 to return :ignore
and the process will exit normally without entering the loop or
calling terminate/2.
Returning {:stop, reason} will cause start_link/3 to return
{:error, reason} and the process to exit with reason reason
without entering the loop or calling terminate/2.
Options
This callback may return options. Some options are specific to
the chosen stage type while others are shared across all types.
:producer options
	:demand - when :forward, the demand is always forwarded to
the handle_demand/2 callback. When :accumulate, demand is
accumulated until its mode is set to :forward via demand/2.
This is useful as a synchronization mechanism, where the demand
is accumulated until all consumers are subscribed. Defaults to
:forward.

:producer and :producer_consumer options
	:buffer_size - the size of the buffer to store events without
demand. Can be :infinity to signal no limit on the buffer size. Check
the "Buffer events" section of the module documentation. Defaults to
10_000 for :producer, :infinity for :producer_consumer.

	:buffer_keep - returns whether the :first or :last entries
should be kept on the buffer in case the buffer size is exceeded.
Defaults to :last.

	:dispatcher - the dispatcher responsible for handling demands.
Defaults to GenStage.DemandDispatcher. May be either an atom
representing a dispatcher module or a two-element tuple with
the dispatcher module and the dispatcher options.

:consumer and :producer_consumer options
	:subscribe_to - a list of producers to subscribe to. Each element
represents either the producer module or a tuple with the producer module
and the subscription options (as defined in sync_subscribe/2).

 terminate(reason, state)

 (optional)

 @callback terminate(reason, state :: term()) :: term()
when reason: :normal | :shutdown | {:shutdown, term()} | term()

The same as GenServer.terminate/2.

 Functions

 ask(producer_subscription, demand, opts \\ [])

 @spec ask(from(), demand :: non_neg_integer(), [:noconnect | :nosuspend]) ::
 :ok | :noconnect | :nosuspend

Asks the given demand to the producer.
producer_subscription is the subscription this demand will be asked on; this
term could be for example stored in the stage when received in
handle_subscribe/4.
The demand is a non-negative integer with the amount of events to
ask a producer for. If the demand is 0, this function simply returns :ok
without asking for data.
This function must only be used in the cases when a consumer
sets a subscription to :manual mode in the handle_subscribe/4
callback.
It accepts the same options as Process.send/3, and returns the same value as
Process.send/3.

 async_info(stage, msg)

 @spec async_info(stage(), msg :: term()) :: :ok

Asynchronously queues an info message that is delivered after all
currently buffered events.
If the stage is a consumer, it does not have buffered events, so the
message is queued immediately.
This call returns :ok regardless if the info has been successfully
queued or not. It is typically called from the stage itself.

 async_resubscribe(stage, subscription_tag, reason, opts)

 @spec async_resubscribe(
 stage(),
 subscription_tag(),
 reason :: term(),
 subscription_options()
) :: :ok

Cancels subscription_tag with reason and resubscribe
to the same stage with the given options.
This is useful in case you need to update the options in
which you are currently subscribed to in a producer.
This function is async, which means it always returns
:ok once the request is dispatched but without waiting
for its completion.
Options
This function accepts the same options as sync_subscribe/2.

 async_subscribe(stage, opts)

 @spec async_subscribe(stage(), subscription_options()) :: :ok

Asks the consumer to subscribe to the given producer asynchronously.
This function is async, which means it always returns
:ok once the request is dispatched but without waiting
for its completion. This particular function is usually
called from a stage's init/1 callback.
Options
This function accepts the same options as sync_subscribe/2.

 call(stage, request, timeout \\ 5000)

 @spec call(stage(), term(), timeout()) :: term()

Makes a synchronous call to the stage and waits for its reply.
The client sends the given request to the stage and waits until a reply
arrives or a timeout occurs. handle_call/3 will be called on the stage
to handle the request.
stage can be any of the values described in the "Name registration"
section of the documentation for this module.
Timeouts
timeout is an integer greater than zero which specifies how many
milliseconds to wait for a reply, or the atom :infinity to wait
indefinitely. The default value is 5000. If no reply is received within
the specified time, the function call fails and the caller exits. If the
caller catches the failure and continues running, and the stage is just late
with the reply, such reply may arrive at any time later into the caller's message
queue. The caller must in this case be prepared for this and discard any such
garbage messages that are two-element tuples with a reference as the first
element.

 cancel(producer_subscription, reason, opts \\ [])

 @spec cancel(from(), reason :: term(), [:noconnect | :nosuspend]) ::
 :ok | :noconnect | :nosuspend

Cancels the given subscription on the producer.
The second argument is the cancellation reason. Once the
producer receives the request, a confirmation may be
forwarded to the consumer (although there is no guarantee
as the producer may crash for unrelated reasons before).
The consumer will react to the cancellation according to
the :cancel option given when subscribing. For example:
GenStage.cancel({pid, subscription}, :shutdown)
will cause the consumer to crash if the :cancel given
when subscribing is :permanent (the default) but it
won't cause a crash in other modes. See the options in
sync_subscribe/3 for more information.
The cancel operation is an asynchronous request. The
third argument are same options as Process.send/3,
allowing you to pass :noconnect or :nosuspend which
is useful when working across nodes. This function returns
the same value as Process.send/3.

 cast(stage, request)

 @spec cast(stage(), term()) :: :ok

Sends an asynchronous request to the stage.
This function always returns :ok regardless of whether
the destination stage (or node) exists. Therefore it
is unknown whether the destination stage successfully
handled the message.
handle_cast/2 will be called on the stage to handle
the request. In case the stage is on a node which is
not yet connected to the caller one, the call is going to
block until a connection happens.

 demand(stage)

 @spec demand(stage()) :: :forward | :accumulate

Returns the demand mode for a producer.
It is either :forward or :accumulate. See demand/2.

 demand(stage, mode)

 @spec demand(stage(), :forward | :accumulate) :: :ok

Sets the demand mode for a producer.
When :forward, the demand is always forwarded to the handle_demand/2
callback. When :accumulate, both demand and events are accumulated until
its mode is set to :forward. This is useful as a synchronization mechanism,
where the demand is accumulated until all consumers are subscribed. Defaults
to :forward.
This command is asynchronous.

 estimate_buffered_count(stage, timeout \\ 5000)

 @spec estimate_buffered_count(stage(), timeout()) :: non_neg_integer()

Returns the estimated number of buffered items for a producer.

 from_enumerable(stream, opts \\ [])

 @spec from_enumerable(
 Enumerable.t(),
 keyword()
) :: GenServer.on_start()

Starts a producer stage from an enumerable (or stream).
This function will start a stage linked to the current process
that will take items from the enumerable when there is demand.
Since streams are enumerables, we can also pass streams as
arguments (in fact, streams are the most common argument to
this function).
The enumerable is consumed in batches, retrieving max_demand
items the first time and then max_demand - min_demand the
next times. Therefore, for streams that cannot produce items
that fast, it is recommended to pass a lower :max_demand
value as an option.
It is also expected the enumerable is able to produce the whole
batch on demand or terminate. If the enumerable is a blocking one,
for example, because it needs to wait for data from another source,
it will block until the current batch is fully filled. GenStage and
Flow were created exactly to address such issue. So if you have a
blocking enumerable that you want to use in your Flow, then it must
be implemented with GenStage and integrated with from_stages/2.
When the enumerable finishes or halts, the stage will exit with
:normal reason. This means that, if a consumer subscribes to
the enumerable stage and the :cancel option is set to
:permanent, which is the default, the consumer will also exit
with :normal reason. This behaviour can be changed by setting
the :cancel option to either :transient or :temporary
at the moment of subscription as described in the sync_subscribe/3
docs.
Keep in mind that streams that require the use of the process
inbox to work won't behave as expected with this function since
the mailbox is controlled by the stage process itself. For example,
you must not pass the result Task.async_stream/3 to this function.
As explained above, stateful or blocking enumerables are generally
discouraged in GenStage, as GenStage was designed precisely to
support exchange of data in such cases.
Options
	:link - when false, does not link the stage to the current
process. Defaults to true.

	:dispatcher - the dispatcher responsible for handling demands.
Defaults to GenStage.DemandDispatcher. May be either an atom or
a tuple with the dispatcher and the dispatcher options.

	:demand - configures the demand to :forward or :accumulate
mode. See init/1 and demand/2 for more information.

	:stacktrace - the stacktrace of the function that started the
stream.

	:on_cancel - what happens when all consumers cancel. The default
is to keep the stream running. Set it to :stop to stop the producer.
To avoid race conditions, it is recommend to only set this option if
:demand is set to :accumulate and forwarded only after all consumers
subscribe

All other options that would be given for start_link/3 are
also accepted.

 reply(client, reply)

 @spec reply(GenServer.from(), term()) :: :ok

Replies to a client.
This function can be used to explicitly send a reply to a client that
called call/3 when the reply cannot be specified in the return value
of handle_call/3.
client must be the from argument (the second argument) accepted by
handle_call/3 callbacks. reply is an arbitrary term which will be given
back to the client as the return value of the call.
Note that reply/2 can be called from any process, not just the GenStage
that originally received the call (as long as that GenStage communicated the
from argument somehow).
This function always returns :ok.
Examples
def handle_call(:reply_in_one_second, from, state) do
 Process.send_after(self(), {:reply, from}, 1_000)
 {:noreply, [], state}
end

def handle_info({:reply, from}, state) do
 GenStage.reply(from, :one_second_has_passed)
end

 start(module, args, options \\ [])

 @spec start(module(), term(), GenServer.options()) :: GenServer.on_start()

Starts a GenStage process without links (outside of a supervision tree).
See start_link/3 for more information.

 start_link(module, args, options \\ [])

 @spec start_link(module(), term(), GenServer.options()) :: GenServer.on_start()

Starts a GenStage process linked to the current process.
This is often used to start the GenStage as part of a supervision tree.
Once the server is started, the init/1 function of the given module is
called with args as its arguments to initialize the stage. To ensure a
synchronized start-up procedure, this function does not return until init/1
has returned.
Note that a GenStage started with start_link/3 is linked to the
parent process and will exit in case of crashes from the parent. The GenStage
will also exit due to the :normal reason in case it is configured to trap
exits in the init/1 callback.
Options
	:name - used for name registration as described in the "Name
registration" section of the module documentation

	:debug - if present, the corresponding function in the :sys
module is invoked

This function also accepts all the options accepted by
GenServer.start_link/3.
Return values
If the stage is successfully created and initialized, this function returns
{:ok, pid}, where pid is the pid of the stage. If a process with the
specified name already exists, this function returns
{:error, {:already_started, pid}} with the pid of that process.
If the init/1 callback fails with reason, this function returns
{:error, reason}. Otherwise, if init/1 returns {:stop, reason}
or :ignore, the process is terminated and this function returns
{:error, reason} or :ignore, respectively.

 stop(stage, reason \\ :normal, timeout \\ :infinity)

 @spec stop(stage(), reason :: term(), timeout()) :: :ok

Stops the stage with the given reason.
The terminate/2 callback of the given stage will be invoked before
exiting. This function returns :ok if the server terminates with the
given reason; if it terminates with another reason, the call exits.
This function keeps OTP semantics regarding error reporting.
If the reason is any other than :normal, :shutdown or
{:shutdown, _}, an error report is logged.

 stream(subscriptions, options \\ [])

 @spec stream(
 [stage() | {stage(), keyword()}],
 keyword()
) :: Enumerable.t()

Creates a stream that subscribes to the given producers
and emits the appropriate messages.
It expects a list of producers to subscribe to. Each element
represents the producer or a tuple with the producer and the
subscription options as defined in sync_subscribe/2:
GenStage.stream([{producer, max_demand: 100}])
If the producer process exits, the stream will exit with the same
reason. If you want the stream to halt instead, set the cancel option
to either :transient or :temporary as described in the
sync_subscribe/3 docs:
GenStage.stream([{producer, max_demand: 100, cancel: :transient}])
Once all producers are subscribed to, their demand is automatically
set to :forward mode. See the :demand and :producers
options below for more information.
GenStage.stream/1 will "hijack" the inbox of the process
enumerating the stream to subscribe and receive messages
from producers. However it guarantees it won't remove or
leave unwanted messages in the mailbox after enumeration
unless one of the producers comes from a remote node.
For more information, read the "Known limitations" section
below.
Options
	:demand - sets the demand in producers to :forward or
:accumulate after subscription. Defaults to :forward so
 the stream can receive items.

	:producers - the processes to set the demand to :forward
on initialization. It defaults to the processes being subscribed
to. Sometimes the stream is subscribing to a :producer_consumer
instead of a :producer, in such cases, you can set this option
to either an empty list or the list of actual producers so their
demand is properly set.

Known limitations
from_enumerable/2
This module also provides a function called from_enumerable/2
which receives an enumerable (like a stream) and creates a stage
that emits data from the enumerable.
Given both GenStage.from_enumerable/2 and GenStage.stream/2
require the process inbox to send and receive messages, passing
the result of from_enumerable/2 to this function will lead to
unexpected behaviour, as stream/2 will never receive the
messages it expects.
Remote nodes
While it is possible to stream messages from remote nodes,
such should be done with care. In particular, in case of
disconnections, there is a chance the producer will send
messages after the consumer receives its DOWN messages and
those will remain in the process inbox, violating the
common scenario where GenStage.stream/1 does not pollute
the caller inbox. In such cases, it is recommended to
consume such streams from a separate process which will be
discarded after the stream is consumed.

 sync_info(stage, msg, timeout \\ 5000)

 @spec sync_info(stage(), msg :: term(), timeout()) :: :ok

Queues an info message that is delivered after all currently buffered events.
This call is synchronous and will return after the stage has queued
the info message. The message will be eventually handled by the
handle_info/2 callback.
If the stage is a consumer, it does not have buffered events, so the
messaged is queued immediately.
This function will return :ok if the info message is successfully queued.

 sync_resubscribe(stage, subscription_tag, reason, opts, timeout \\ 5000)

 @spec sync_resubscribe(
 stage(),
 subscription_tag(),
 reason :: term(),
 subscription_options(),
 timeout()
) ::
 {:ok, subscription_tag()}
 | {:error, :not_a_consumer}
 | {:error, {:bad_opts, String.t()}}

Cancels subscription_tag with reason and resubscribe
to the same stage with the given options.
This is useful in case you need to update the options in
which you are currently subscribed to in a producer.
This function is sync, which means it will wait until the
subscription message is sent to the producer, although it
won't wait for the subscription confirmation.
See sync_subscribe/2 for options and more information.

 sync_subscribe(stage, opts, timeout \\ 5000)

 @spec sync_subscribe(stage(), subscription_options(), timeout()) ::
 {:ok, subscription_tag()}
 | {:error, :not_a_consumer}
 | {:error, {:bad_opts, String.t()}}

Asks the consumer to subscribe to the given producer synchronously.
This call is synchronous and will return after the called consumer
sends the subscribe message to the producer. It does not, however,
wait for the subscription confirmation. Therefore this function
will return before handle_subscribe/4 is called in the consumer.
In other words, it guarantees the message was sent, but it does not
guarantee a subscription has effectively been established.
This function will return {:ok, subscription_tag} as long as the
subscription message is sent. It will return {:error, :not_a_consumer}
when the stage is not a consumer. subscription_tag is the second element
of the two-element tuple that will be passed to handle_subscribe/4.
Options
	:cancel - :permanent (default), :transient or :temporary.
When permanent, the consumer exits when the producer cancels or exits.
When transient, the consumer exits only if reason is not :normal,
:shutdown, or {:shutdown, reason}. When temporary, it never exits.
In case of exits, the same reason is used to exit the consumer.
In case of cancellations, the reason is wrapped in a :cancel tuple.

	:min_demand - the minimum demand for this subscription. See the module
documentation for more information.

	:max_demand - the maximum demand for this subscription. See the module
documentation for more information.

Any other option is sent to the producer stage. This may be used by
dispatchers for custom configuration. For example, if a producer uses
a GenStage.BroadcastDispatcher, an optional :selector function
that receives an event and returns a boolean limits this subscription to
receiving only those events where the selector function returns a truthy
value:
GenStage.sync_subscribe(consumer,
 to: producer,
 selector: fn %{key: key} -> String.starts_with?(key, "foo-") end)

GenStage.BroadcastDispatcher

A dispatcher that accumulates demand from all consumers
before broadcasting events to all of them.
This dispatcher guarantees that events are dispatched to all
consumers without exceeding the demand of any given consumer.
The :selector option
If a producer uses GenStage.BroadcastDispatcher, its subscribers
can specify an optional :selector function that receives the event
and returns a boolean in the subscription options.
Assume producer and consumer are stages exchanging events of type
%{:key => String.t, any => any}, then by calling
GenStage.sync_subscribe(consumer,
 to: producer,
 selector: fn %{key: key} -> String.starts_with?(key, "foo-") end)
consumer will receive only the events broadcast from producer
for which the selector function returns a truthy value.
The :selector option can be specified in sync and async subscriptions,
as well as in the :subscribe_to list in the return tuple of
GenStage.init/1. For example:
def init(:ok) do
 {:consumer, :ok, subscribe_to:
 [{producer, selector: fn %{key: key} -> String.starts_with?(key, "foo-") end}]}
end
Demand while setting up
 [Producer Consumer 1]
 / \
[Producer] - - [Consumer]
 \ /
 [Producer Consumer 2]
When starting Producer Consumer 1 before Producer Consumer 2 (or even
regular consumers), it is the first batch of events is only delivered to
Producer Consumer 1 since Producer Consummer 2 is not registered yet.
It is therefore recommended to start the producer with
{:producer, state, demand: :accumulate}, which pauses demand in the producers,
and after all stages have been initialized, call GenStage.demand/2 to resume
the producer.

GenStage.DemandDispatcher

A dispatcher that sends batches to the highest demand.
This is the default dispatcher used by GenStage. In order
to avoid greedy consumers, it is recommended that all consumers
have exactly the same maximum demand.
Options
The demand dispatcher accepts the following options
on initialization:
	:shuffle_demands_on_first_dispatch - when true, shuffle the initial demands list
which is constructed on subscription before first dispatch. It prevents overloading
the first consumer on first dispatch. Defaults to false.

	:max_demand - the maximum demand expected on GenStage.ask/3.
Defaults to the first demand asked.

Examples
To start a producer with demands shuffled on first dispatch:
{:producer, state, dispatcher: {GenStage.DemandDispatcher, shuffle_demands_on_first_dispatch: true}}

GenStage.Dispatcher behaviour

This module defines the behaviour used by :producer and
:producer_consumer to dispatch events.
When using a :producer or :producer_consumer, the dispatcher
may be configured on init as follows:
{:producer, state, dispatcher: GenStage.BroadcastDispatcher}
Some dispatchers may require options to be given on initialization,
those can be done with a tuple:
{:producer, state, dispatcher: {GenStage.PartitionDispatcher, partitions: 0..3}}
Elixir ships with the following dispatcher implementations:
	GenStage.DemandDispatcher - dispatches the given batch of
events to the consumer with the biggest demand in a FIFO
ordering. This is the default dispatcher.

	GenStage.BroadcastDispatcher - dispatches all events to all
consumers. The demand is only sent upstream once all consumers
ask for data.

	GenStage.PartitionDispatcher - dispatches all events to a
fixed amount of consumers that works as partitions according
to a hash function.

Dispatcher State
 Note that the Dispatcher state is stored separately from the state of the
 GenStage itself and neither side will have direct access to the state of
 the other.

 Summary

 Types

 options()

 Options used by init/1

 Callbacks

 ask(demand, from, state)

 Called every time a consumer sends demand.

 cancel(from, state)

 Called every time a subscription is cancelled or the consumer goes down.

 dispatch(events, length, state)

 Called every time a producer wants to dispatch an event.

 info(msg, state)

 Used to send an info message to the current process.

 init(opts)

 Called on initialization with the options given on GenStage.init/1.

 subscribe(opts, from, state)

 Called every time the producer gets a new subscriber.

 Types

 options()

 @type options() :: keyword()

Options used by init/1

 Callbacks

 ask(demand, from, state)

 @callback ask(demand :: pos_integer(), from :: {pid(), reference()}, state :: term()) ::
 {:ok, actual_demand :: non_neg_integer(), new_state}
when new_state: term()

Called every time a consumer sends demand.
The demand will always be a positive integer (more than 0).
This callback must return the actual_demand as part of its
return tuple. The returned demand is then sent to producers.
It is guaranteed the reference given in from points to a
reference previously given in subscribe.

 cancel(from, state)

 @callback cancel(from :: {pid(), reference()}, state :: term()) ::
 {:ok, demand :: non_neg_integer(), new_state}
when new_state: term()

Called every time a subscription is cancelled or the consumer goes down.
It is guaranteed the reference given in from points to a reference
previously given in subscribe.

 dispatch(events, length, state)

 @callback dispatch(events :: [term(), ...], length :: pos_integer(), state :: term()) ::
 {:ok, leftover_events :: [term()], new_state}
when new_state: term()

Called every time a producer wants to dispatch an event.
The events will always be a non empty list. This callback may
receive more events than previously asked and therefore must
return events it cannot not effectively deliver as part of its
return tuple. Any leftover_events will be stored by producers
in their buffer.
It is important to emphasize that leftover_events can happen
in any dispatcher implementation. After all, a consumer can
subscribe, ask for events and crash. Eventually the events
the consumer asked will be delivered while the consumer no longer
exists, meaning they must be returned as left_over events until
another consumer subscribes.
This callback is responsible for sending events to consumer
stages. In order to do so, you must store a from value from a
previous ask/3 callback.
It is recommended for these events to be sent with Process.send/3
and the [:noconnect] option as the consumers are all monitored
by the producer. For example:
Process.send(consumer, {:"$gen_consumer", {self(), consumer_ref}, events}, [:noconnect])

 info(msg, state)

 @callback info(msg :: term(), state :: term()) :: {:ok, new_state} when new_state: term()

Used to send an info message to the current process.
In case the dispatcher is doing buffering, the message must
only be sent after all currently buffered consumer messages are
delivered.

 init(opts)

 @callback init(opts :: options()) :: {:ok, state} when state: any()

Called on initialization with the options given on GenStage.init/1.

 subscribe(opts, from, state)

 @callback subscribe(opts :: keyword(), from :: {pid(), reference()}, state :: term()) ::
 {:ok, demand :: non_neg_integer(), new_state} | {:error, term()}
when new_state: term()

Called every time the producer gets a new subscriber.

GenStage.PartitionDispatcher

A dispatcher that sends events according to partitions.
This dispatcher assumes that partitions are evenly distributed.
See the "Even distribution" section for
more information.
When multiple consumers subscribe to one partition, the producer
behaves like a GenStage.DemandDispatcher within that partition.
Options
The partition dispatcher accepts the following options
on initialization:
	:partitions - the number of partitions to dispatch to. It may be
an integer with a total number of partitions, where each partition
is named from 0 up to integer - 1. For example, partitions: 4
will contain four partitions named 0, 1, 2 and 3.
It may also be an enumerable that specifies the name of each partition.
For instance, partitions: [:odd, :even] will build two partitions,
named :odd and :even.

	:hash - the hashing algorithm. It's a function of type
hash_function/0, which receives the event and returns a tuple with two
elements: the event to be dispatched and the partition to dispatch it to.
The function can also return :none, in which case the event
is discarded. The partition must be one of the partitions specified in
:partitions above. The default uses:
fn event -> {event, :erlang.phash2(event, Enum.count(partitions))} end

Examples
To start a producer with four partitions named 0, 1, 2, and 3:
{:producer, state, dispatcher: {GenStage.PartitionDispatcher, partitions: 0..3}}
To start a producer with two partitions named :odd and :even:
{:producer, state, dispatcher: {GenStage.PartitionDispatcher, partitions: [:odd, :even]}}
Subscribe options
When subscribing to a GenStage with a partition dispatcher the following
option is required:
	:partition - the name of the partition. The partition must be one of
the partitions specified in :partitions above.

Examples
The partition function can be given either on init's subscribe_to:
{:consumer, :ok, subscribe_to: [{producer, partition: 0}]}
Or when calling sync_subscribe:
GenStage.sync_subscribe(consumer, to: producer, partition: 0)
Even distribution
This dispatcher assumes that partitions are evenly distributed.
If the data is uneven for long periods of time, then you may
buffer excessive data from busy partitions for long periods of
time. This happens because the producer is unable to distinguish
from which particular consumer/partition demand arrives.
Let's see an example. Imagine you have three consumers, each
for one partition: A, B, and C.
Let's assume 60% of the data goes to A, 20% to B, and 20% to
C. Let's also say that max_demand is 10 and min_demand is
5. When the consumers initially request data (10 events each),
the producer receives a total demand of 30. A will receive 18 of
those (60%), while B and C receive 6 each (20%). After
processing 5 events (the min_demand), each consumer requests
additional 5 events, for a total of 15 additional events. At
this point, that will be 9 additional elements for A, and 3
additional elements for B and C. At the end of these two rounds, we
will have:
A = 18 - 5 + 9 = 22 events
B = 6 - 5 + 3 = 4 events
C = 6 - 5 + 3 = 4 events
Furthermore, as B and C request more items, A will only go further
behind. This behaviour is fine for spikes that should quickly
resolve, but it can be problematic if the data is consistently uneven.

 Summary

 Types

 hash_function()

 The type used for the function passed to the :hash option.

 Types

 hash_function()

 (since 1.2.0)

 @type hash_function() :: (event :: any() ->
 {event :: any(), partition :: any()} | :none)

The type used for the function passed to the :hash option.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

