

 glob_ex

 v0.1.4

 Table of contents

 	Modules

 	GlobEx

 	GlobEx.Sigils

 	GlobEx.CompileError

GlobEx

Provides glob expressions for Elixir.
A glob expression looks like an ordinary path, except that the following
"wildcard characters" are interpreted in a special way:
	? - matches one character.
	* - matches any number of characters up to the end of the filename, the
next dot, or the next slash.
	** - two adjacent *'s used as a single pattern will match all
files and zero or more directories and subdirectories.
	[char1,char2,...] - matches any of the characters listed; two
characters separated by a hyphen will match a range of characters.
Do not add spaces before and after the comma as it would then match
paths containing the space character itself.
	{item1,item2,...} - matches one of the alternatives.
Do not add spaces before and after the comma as it would then match
paths containing the space character itself.

Other characters represent themselves. Only paths that have
exactly the same character in the same position will match. Note
that matching is case-sensitive: "a" will not match "A".
Directory separators must always be written as /, even on Windows.
You may call Path.expand/1 to normalize the path before invoking
this function.
A character preceded by loses its special meaning.
Note that must be written as \ in a string literal.
For example, "\?*" will match any filename starting with ?.
Glob expressions in can be created using compile/2, compile!/2 or the
sigils ~g (see GlobEx.Sigils.sigil_g/2) or ~G (see
GlobEx.Sigils.sigil_G/2).
A simple glob expressions matching all `.exs` files in a tree. By default,
the patterns `*` and `?` do not match files starting with a `.`.
~g|**/*.exs|

The modifier `d` let the glob treat files starting with a `.` as any other
file.
~g|**/*.exs|d

 Anchor for this section

 Summary

 Types

 t()

 Functions

 compile(glob, opts \\ [])

 Compiles the glob expression.

 compile!(glob, opts \\ [])

 Compiles the glob expression and raises GlobEx.CompileError in case of errors.

 ls(glob_ex)

 Traverses paths according to the given glob expression and returns a list of
matches.

 match?(glob_ex, path)

 Returns a boolean indicating whether there was a match or not.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %GlobEx{compiled: [term()], match_dot: boolean(), source: binary()}

 Anchor for this section

Functions

 Link to this function

 compile(glob, opts \\ [])

 View Source

 @spec compile(
 binary(),
 keyword()
) :: {:ok, t()} | {:error, GlobEx.CompileError.t()}

Compiles the glob expression.
It returns {:ok, regex} in case of success, {:error, reason} otherwise.
See the module documentation for how to write a glob expression.
By default, the patterns * and ? do not match files starting with a ..
This behaviour can be change with the option :match_dot.

 options

 Options

	:match_dot - (boolean) if false, the special wildcard characters * and ?
will not match files starting with a .. If true, files starting with
a . will not be treated specially. Defaults to false.

 examples

 Examples

iex> GlobEx.compile("src/**/?oo.ex")
{:ok, ~g|src/**/?oo.ex|}

iex> GlobEx.compile("src/{a,b/?oo.ex")
{:error, %GlobEx.CompileError{reason: {:missing_delimiter, 5}}}

 Link to this function

 compile!(glob, opts \\ [])

 View Source

 @spec compile!(
 binary(),
 keyword()
) :: t()

Compiles the glob expression and raises GlobEx.CompileError in case of errors.
See the module documentation for how to write a glob expression and
compile/2 for the available options.

 Link to this function

 ls(glob_ex)

 View Source

 @spec ls(t()) :: [Path.t()]

Traverses paths according to the given glob expression and returns a list of
matches.
See the module documentation for how to write a glob expression.

 examples

 Examples

iex> GlobEx.ls(~g|{lib,test}/**/*.{ex,exs}|)
[
 "lib/glob_ex.ex",
 "lib/glob_ex/compiler.ex",
 "lib/glob_ex/compiler_error.ex",
 "lib/glob_ex/sigils.ex",
 "test/glob_ex/compiler_test.exs",
 "test/glob_ex_test.exs",
 "test/test_helper.exs"
]

 Link to this function

 match?(glob_ex, path)

 View Source

 @spec match?(t(), Path.t()) :: boolean()

Returns a boolean indicating whether there was a match or not.
See the module documentation for how to write a glob expression.

 examples

 Examples

iex> GlobEx.match?(~g|{lib,test}/**/*.{ex,exs}|, "lib/foo/bar.ex")
true

iex> GlobEx.match?(~g|{lib,test}/**/*.{ex,exs}|, "lib/foo/bar.java")
false

GlobEx.Sigils

This module provides the sigils ~g|| and ~G||.

 Anchor for this section

 Summary

 Functions

 sigil_G(arg, options)

 Handles the sigil ~G for globs.

 sigil_g(term, modifiers)

 Handles the sigil ~g for globs.

 Anchor for this section

Functions

 Link to this macro

 sigil_G(arg, options)

 View Source

 (macro)

Handles the sigil ~G for globs.
It returns a glob expression pattern without interpolations and without escape
characters.
See the module documentation GlobEx for how to write a glob expression.

 examples

 Examples

iex> ~G|*.txt|
~g|*.txt|

iex> GlobEx.match?(~G|f#{a,b}|, "f#a")
true

 Link to this macro

 sigil_g(term, modifiers)

 View Source

 (macro)

Handles the sigil ~g for globs.
See the module documentation GlobEx for how to write a glob expression.

 examples

 Examples

iex> ~g|*.txt|
~g|*.txt|

iex> ~g|*.#{"txt"}|
~g|*.txt|

iex> GlobEx.match?(~g|f\#{a,b}|, "f#a")
true

GlobEx.CompileError exception

TODO

 Anchor for this section

 Summary

 Types

 reason()

 t()

 Anchor for this section

Types

 Link to this type

 reason()

 View Source

 @type reason() :: :emtpy | :invalid

 Link to this type

 t()

 View Source

 @type t() :: %GlobEx.CompileError{__exception__: true, reason: reason()}

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

