

 gnuplot_ex

 v0.2.2

 Table of contents

 	GnuplotEx

 	Guides

 	Low-Level API

 	High-Level API

 	Phoenix LiveView Integration

 	Ecosystem Integration

 	Performance Benchmarks

 	
 Modules

 	GnuplotEx

 	GnuplotEx.Async

 	GnuplotEx.Channel

 	GnuplotEx.Channel.RateLimiter

 	GnuplotEx.Command

 	GnuplotEx.Command.Formatter

 	GnuplotEx.Dataset

 	GnuplotEx.Dataset.Binary

 	GnuplotEx.Dataset.Helpers

 	GnuplotEx.GridData

 	GnuplotEx.LiveView.Cache

 	GnuplotEx.LiveView.Component

 	GnuplotEx.LiveView.Streaming

 	GnuplotEx.ML.Confusion

 	GnuplotEx.ML.Embeddings

 	GnuplotEx.ML.Loss

 	GnuplotEx.ML.ROC

 	GnuplotEx.Plot

 	GnuplotEx.Plot.Abbreviations

 	GnuplotEx.Plot.Nonlinear

 	GnuplotEx.Plot.Palette

 	GnuplotEx.Plot.Renderer

 	GnuplotEx.Plot.Series

 	GnuplotEx.Plot.Theme

 	GnuplotEx.PlotList

 	GnuplotEx.Port

 	GnuplotEx.Session

 	GnuplotEx.Spec

 	GnuplotEx.Version

 	
 Mix Tasks

 	mix bench

 	mix docs.examples

 GnuplotEx

An Elixir wrapper for Gnuplot 6+ with SVG-first output and ergonomic API design.
Ideal for data science, machine learning visualization, and scientific computing in Elixir.

 	[image: Multi-series line plot]

 Low-Level API - gnuplot_ex v0.2.2

 Low-Level API

The low-level API gives you direct control over gnuplot commands. It's the foundation of GnuplotEx and provides maximum flexibility for advanced use cases.
Overview
The low-level API consists of three main functions:
	GnuplotEx.plot/1 - Execute commands without data
	GnuplotEx.plot/2 - Execute commands with datasets
	GnuplotEx.plot/3 - Execute with options or named session

Commands are represented as nested Elixir lists that get serialized to gnuplot syntax.
Command Syntax
Basic Structure
Each command is a list where the first element is typically a gnuplot keyword:
[:set, :terminal, :svg] # => set terminal svg
[:set, :title, "My Plot"] # => set title "My Plot"
[:plot, ~c"sin(x)"] # => plot sin(x)
Type Conversion Rules
	Elixir Type	Example	Gnuplot Output
	Atom	:terminal	terminal
	String	"My Title"	"My Title"
	Charlist	~c"sin(x)"	sin(x)
	Integer	800	800
	Float	3.14	3.14
	Range	0..10	[0:10]
	Tuple	{800, 600}	800,600

Strings vs Charlists
This is the most important distinction:
	Strings ("...") become quoted in gnuplot - use for titles, labels, filenames
	Charlists (~c"...") become unquoted - use for functions, expressions, raw gnuplot syntax

String: quoted output
[:set, :title, "Sine Wave"] # => set title "Sine Wave"

Charlist: unquoted expression
[:plot, ~c"sin(x) * cos(x)"] # => plot sin(x) * cos(x)

Mixed usage
[:plot, ~c"sin(x)", :title, "Sine"] # => plot sin(x) title "Sine"

Colors require charlists with escaped quotes
[:plot, "-", :linecolor, ~c"rgb \"#E95420\""]
=> plot "-" linecolor rgb "#E95420"
Plotting Functions
Plotting Gnuplot Functions
Use charlists for mathematical expressions:
Plot a function
GnuplotEx.plot([
 [:set, :terminal, :svg],
 [:set, :output, "/tmp/sine.svg"],
 [:set, :title, "Sine Wave"],
 [:set, :xlabel, "x"],
 [:set, :ylabel, "y"],
 [:set, :grid],
 [:set, :xrange, -10..10],
 [:plot, ~c"sin(x)", :with, :lines, :linewidth, 2]
])
[image: Sine Function]
Multiple Functions
Use the plots/1 helper for cleaner multi-function syntax:
GnuplotEx.plot([
 [:set, :terminal, :svg],
 [:set, :output, "/tmp/trig.svg"],
 [:set, :xrange, ~c"[-2*pi:2*pi]"],
 [:set, :yrange, ~c"[-1.5:1.5]"],
 GnuplotEx.plots([
 [~c"sin(x)", :title, "sin", :with, :lines],
 [~c"cos(x)", :title, "cos", :with, :lines],
 [~c"sin(x)*cos(x)", :title, "sin*cos", :with, :lines]
])
])
[image: Multiple Functions]
Plotting Data
Basic Data Plot
Pass data as the second argument. Use "-" as placeholder:
data = for x <- 1..50, do: [x, :math.sin(x / 5)]

GnuplotEx.plot([
 [:set, :terminal, :svg],
 [:set, :output, "/tmp/data.svg"],
 [:set, :title, "Data Points"],
 [:set, :grid],
 [:plot, "-", :with, :points, :pointtype, 7, :title, "Data"]
], [data])
[image: Data Points]
Line Plots with Data
data = for x <- 0..100, do: [x, :math.sin(x / 10) * x / 20]

GnuplotEx.plot([
 [:set, :terminal, :svg],
 [:set, :output, "/tmp/lines.svg"],
 [:set, :title, "Growth with Oscillation"],
 [:set, :xlabel, "Time"],
 [:set, :ylabel, "Value"],
 [:set, :grid],
 [:plot, "-", :with, :lines, :linewidth, 2, :linecolor, ~c"rgb \"#E95420\""]
], [data])
[image: Line Plot]
Multiple Datasets
Each "-" corresponds to one dataset in order:
sine_data = for x <- 0..100, do: [x, :math.sin(x / 10)]
cosine_data = for x <- 0..100, do: [x, :math.cos(x / 10)]
combined = for x <- 0..100, do: [x, :math.sin(x / 10) + :math.cos(x / 10)]

GnuplotEx.plot([
 [:set, :terminal, :svg],
 [:set, :output, "/tmp/multi.svg"],
 [:set, :title, "Multiple Datasets"],
 [:set, :grid],
 GnuplotEx.plots([
 ["-", :with, :lines, :title, "sin(x)"],
 ["-", :with, :lines, :title, "cos(x)"],
 ["-", :with, :lines, :title, "sin(x)+cos(x)"]
])
], [sine_data, cosine_data, combined])
[image: Multiple Datasets]
Mixed Functions and Data
Combine gnuplot functions with data in the same plot:
noisy_data = for x <- 0..100 do
 [x, :math.sin(x / 10) + (:rand.uniform() - 0.5) * 0.3]
end

GnuplotEx.plot([
 [:set, :terminal, :svg],
 [:set, :output, "/tmp/mixed.svg"],
 [:set, :title, "Noisy Data vs Ideal"],
 [:set, :grid],
 GnuplotEx.plots([
 ["-", :with, :points, :pointtype, 7, :title, "Measured"],
 [~c"sin(x/10)", :with, :lines, :linewidth, 2, :title, "Ideal"]
])
], [noisy_data])
[image: Mixed Plot]
3D Plots
Surface Plots
Use splot for 3D data. For pm3d surfaces, wrap data in GridData to add blank lines between rows:
Generate grid data
data = for x <- -20..20, y <- -20..20 do
 xf = x / 5
 yf = y / 5
 z = :math.sin(:math.sqrt(xf*xf + yf*yf))
 [xf, yf, z]
end

Wrap in GridData for proper pm3d formatting
grid_data = GnuplotEx.GridData.new(data)

GnuplotEx.plot([
 [:set, :terminal, :svg, :size, {800, 600}],
 [:set, :output, "/tmp/surface.svg"],
 [:set, :title, "3D Surface"],
 [:set, :pm3d, :depthorder],
 [:set, :view, {60, 30}],
 [:set, :palette, :viridis],
 [:splot, "-", :with, :pm3d, :notitle]
], [grid_data])
[image: 3D Surface]
Parametric Surfaces
GnuplotEx.plot([
 [:set, :terminal, :svg, :size, {600, 600}],
 [:set, :output, "/tmp/parametric.svg"],
 [:set, :parametric],
 [:set, :urange, ~c"[0:2*pi]"],
 [:set, :vrange, ~c"[-pi/2:pi/2]"],
 [:set, :isosamples, {30, 30}],
 [:set, :hidden3d],
 [:set, :title, "Sphere"],
 [:splot, ~c"cos(u)*cos(v), sin(u)*cos(v), sin(v)"]
])
Output Formats
Terminal Types
SVG (vector)
[:set, :terminal, :svg, :size, {800, 600}]

PNG (raster)
[:set, :terminal, :pngcairo, :size, {800, 600}]

PDF
[:set, :terminal, :pdfcairo, :size, {6, 4}]

ASCII art (useful for terminal output)
[:set, :terminal, :dumb, :size, {80, 24}]
File Output
[:set, :output, "/path/to/file.svg"]
Advanced Features
Styling
Line styles (colors as charlists)
[:set, :style, :line, 1, :linecolor, ~c"rgb \"#E95420\"", :linewidth, 2]
[:set, :style, :line, 2, :linecolor, ~c"rgb \"#3daee9\"", :linewidth, 2, :dashtype, 2]

Point styles
[:plot, "-", :with, :points, :pointtype, 7, :pointsize, 1.5]

Fill styles
[:set, :style, :fill, :solid, 0.5, :border, -1]
Axes Configuration
Integer ranges use Elixir Range
[:set, :xrange, 0..100]

Float ranges use charlists
[:set, :yrange, ~c"[-1.5:1.5]"]

Logarithmic scale
[:set, :logscale, :x]
[:set, :logscale, :y, 10]

Tics
[:set, :xtics, 10]
[:set, :ytics, 0.5]
[:set, :mxtics, 5] # minor tics

Grid
[:set, :grid, :xtics, :ytics]
Legend (Key)
Position
[:set, :key, :top, :left]
[:set, :key, :bottom, :right]
[:set, :key, :outside]

Styling
[:set, :key, :box]
[:set, :key, :font, ",10"]

Disable
[:unset, :key]
Annotations
Labels
[:set, :label, "Peak", :at, {5, 0.9}]
[:set, :label, "Valley", :at, {15, -0.9}, :textcolor, ~c"rgb \"red\""]

Arrows
[:set, :arrow, :from, {0, 0}, :to, {5, 0.9}]
Spec and Dry Mode
Inspecting Commands
Use build_spec/2 to see what will be sent to gnuplot:
commands = [
 [:set, :terminal, :svg],
 [:set, :title, "Test"],
 [:plot, "-", :with, :lines]
]

data = [[1, 1], [2, 4], [3, 9]]

spec = GnuplotEx.build_spec(commands, [data])
IO.puts(spec.script)
Output:
set terminal svg;
set title "Test";
plot "-" with lines
Dry Mode
Test commands without executing:
{:ok, spec} = GnuplotEx.plot(commands, data, dry: true)
IO.inspect(spec)
Deferred Execution
Build spec now, execute later:
spec = GnuplotEx.build_spec(commands, data)

... later ...
{:ok, _} = GnuplotEx.Spec.execute(spec)
Sessions
Named sessions allow multiple independent gnuplot processes:
Start a named session
{:ok, _pid} = GnuplotEx.Session.start_link(name: :analysis)

Plot to specific session
GnuplotEx.plot(:analysis, [
 [:set, :terminal, :svg],
 [:set, :output, "/tmp/analysis.svg"],
 [:plot, ~c"sin(x)"]
], [])

List active sessions
GnuplotEx.sessions() # => [:analysis]
Error Handling
case GnuplotEx.plot(commands, data) do
 {:ok, script} ->
 IO.puts("Success! Script: #{script}")

 {:error, :gnuplot_not_found} ->
 IO.puts("gnuplot is not installed or not in PATH")

 {:error, {:exit, code, output}} ->
 IO.puts("gnuplot error (code #{code}): #{output}")

 {:error, :timeout} ->
 IO.puts("Command timed out")
end
Complete Example
Putting it all together - a publication-quality plot:
Define colors as charlists
orange = ~c"rgb \"#E95420\""
blue = ~c"rgb \"#3daee9\""

Generate sample data with noise
:rand.seed(:exsss, {1, 2, 3})
data = for x <- 0..100 do
 noise = (:rand.uniform() - 0.5) * 0.2
 [x / 10, :math.exp(-x / 50) * :math.sin(x / 5) + noise]
end

Theoretical curve points
theory = for x <- 0..100 do
 [x / 10, :math.exp(-x / 50) * :math.sin(x / 5)]
end

GnuplotEx.plot([
 # Output settings
 [:set, :terminal, :svg, :size, {700, 450}, :font, "Arial,12"],
 [:set, :output, "/tmp/complete.svg"],

 # Title and labels
 [:set, :title, "Damped Oscillation", :font, ",14"],
 [:set, :xlabel, "Time (s)"],
 [:set, :ylabel, "Amplitude"],

 # Axes (float ranges use charlists)
 [:set, :xrange, 0..10],
 [:set, :yrange, ~c"[-1:1]"],
 [:set, :xtics, 2],
 [:set, :ytics, 0.5],
 [:set, :grid],

 # Legend
 [:set, :key, :top, :right, :box],

 # Plot data and theory
 GnuplotEx.plots([
 ["-", :with, :points, :pointtype, 7, :pointsize, 0.7,
 :linecolor, orange, :title, "Measured"],
 ["-", :with, :lines, :linewidth, 2,
 :linecolor, blue, :title, "Theory"]
])
], [data, theory])
[image: Complete Example]
Next Steps
	High-Level API - Fluent builder for common plots

 High-Level API - gnuplot_ex v0.2.2

 High-Level API

The high-level API provides a fluent builder pattern for creating plots. It abstracts away gnuplot command syntax while retaining full flexibility.
Overview
Build plots using a pipeline of functions:
GnuplotEx.new()
|> GnuplotEx.title("My Plot")
|> GnuplotEx.scatter(data, label: "Points")
|> GnuplotEx.x_label("X Axis")
|> GnuplotEx.to_svg("/tmp/plot.svg")
Or start directly from data:
data
|> GnuplotEx.scatter(label: "Points")
|> GnuplotEx.title("My Plot")
|> GnuplotEx.to_svg("/tmp/plot.svg")
2D Plot Types
Scatter Plots
Point-based visualization for discrete data:
data = for x <- 1..50, do: [x, :math.sin(x / 5) + :rand.uniform() * 0.2]

GnuplotEx.scatter(data, label: "Measurements", color: "#E95420", point_size: 1.2)
|> GnuplotEx.title("Scatter Plot")
|> GnuplotEx.x_label("Time")
|> GnuplotEx.y_label("Value")
|> GnuplotEx.to_svg("/tmp/scatter.svg")
[image: Scatter Plot]
Options:
	:label - Legend label
	:color - Point color
	:point_type - Shape (1-14 or :circle, :square, etc.)
	:point_size - Size multiplier

Line Plots
Connected points with optional smoothing:
data = for x <- 0..100, do: [x, :math.sin(x / 10)]

GnuplotEx.line(data, label: "Sine", color: "#3daee9", line_width: 2)
|> GnuplotEx.title("Line Plot")
|> GnuplotEx.to_svg("/tmp/line.svg")
[image: Line Plot]
Options:
	:label - Legend label
	:color - Line color
	:line_width - Line thickness
	:smooth - Smoothing (:csplines, :bezier, :sbezier)

Multiple Series
Combine multiple series in one plot:
sine = for x <- 0..100, do: [x, :math.sin(x / 10)]
cosine = for x <- 0..100, do: [x, :math.cos(x / 10)]

GnuplotEx.new()
|> GnuplotEx.title("Multiple Series")
|> GnuplotEx.line(sine, label: "sin(x)", color: "#E95420")
|> GnuplotEx.line(cosine, label: "cos(x)", color: "#3daee9")
|> GnuplotEx.legend(:top_right)
|> GnuplotEx.to_svg("/tmp/multi.svg")
[image: Multiple Series]
Histograms
Frequency distribution of values:
Generate normal-ish distribution
data = for _ <- 1..1000, do: Enum.sum(for _ <- 1..12, do: :rand.uniform()) - 6

GnuplotEx.histogram(data, bins: 30, color: "#27ae60", fill: :solid)
|> GnuplotEx.title("Distribution")
|> GnuplotEx.x_label("Value")
|> GnuplotEx.y_label("Frequency")
|> GnuplotEx.to_svg("/tmp/histogram.svg")
[image: Histogram]
Options:
	:bins - Number of bins
	:color - Bar color
	:fill - Fill style (:solid, :transparent)

Pie Charts
Proportional data as circular sectors:
data = [
 %{label: "Desktop", value: 45},
 %{label: "Mobile", value: 35},
 %{label: "Tablet", value: 15},
 %{label: "Other", value: 5}
]

GnuplotEx.pie(data, colors: ["#E95420", "#3daee9", "#27ae60", "#f39c12"])
|> GnuplotEx.title("Device Usage")
|> GnuplotEx.to_svg("/tmp/pie.svg")
[image: Pie Chart]
Data formats:
	List of values: [30, 25, 20]
	List of maps: [%{label: "A", value: 30}, ...]
	List of tuples: [{"A", 30}, {"B", 25}]

Options:
	:labels - Slice labels
	:colors - Color list or palette name
	:explode - Indices of slices to offset
	:start_angle - Starting angle in degrees

Donut Charts
Pie chart with hollow center:
data = [30, 25, 20, 15, 10]

GnuplotEx.donut(data,
 inner_radius: 0.5,
 labels: ["A", "B", "C", "D", "E"],
 colors: :viridis)
|> GnuplotEx.title("Donut Chart")
|> GnuplotEx.to_svg("/tmp/donut.svg")
[image: Donut Chart]
Options: All pie options plus:
	:inner_radius - Hole size 0.0-1.0 (default: 0.5)

Polygons
Filled closed shapes:
Triangle
triangle = [[0, 0], [2, 0], [1, 1.7]]

Square
square = [[3, 0], [5, 0], [5, 2], [3, 2]]

GnuplotEx.new()
|> GnuplotEx.polygon(triangle, color: "#E95420", label: "Triangle")
|> GnuplotEx.polygon(square, color: "#3daee9", label: "Square")
|> GnuplotEx.title("Polygons")
|> GnuplotEx.to_svg("/tmp/polygon.svg")
[image: Polygons]
Options:
	:color - Fill color
	:fill - Style (:solid, :transparent, :empty)
	:alpha - Transparency 0.0-1.0
	:border_color - Border color
	:border_width - Border thickness

3D Plot Types
3D Scatter
Point clouds in 3D space:
Random 3D points
points = for _ <- 1..200 do
 [:rand.uniform() * 10, :rand.uniform() * 10, :rand.uniform() * 10]
end

GnuplotEx.scatter3d(points, label: "Random", color: "#E95420")
|> GnuplotEx.title("3D Scatter")
|> GnuplotEx.x_label("X")
|> GnuplotEx.y_label("Y")
|> GnuplotEx.z_label("Z")
|> GnuplotEx.view_angle(60, 30)
|> GnuplotEx.to_svg("/tmp/scatter3d.svg")
[image: 3D Scatter]
Surfaces
3D surface from data or function:
From data points
data = for x <- -20..20, y <- -20..20 do
 xf = x / 5
 yf = y / 5
 z = :math.sin(:math.sqrt(xf*xf + yf*yf))
 [xf, yf, z]
end

GnuplotEx.surface(data)
|> GnuplotEx.title("Surface Plot")
|> GnuplotEx.palette(:viridis)
|> GnuplotEx.view_angle(60, 30)
|> GnuplotEx.to_svg("/tmp/surface.svg")
[image: Surface Plot]
From function:
GnuplotEx.surface(
 fn x, y -> :math.sin(x) * :math.cos(y) end,
 x_range: {-:math.pi(), :math.pi()},
 y_range: {-:math.pi(), :math.pi()},
 samples: {40, 40}
)
|> GnuplotEx.palette(:plasma)
|> GnuplotEx.to_svg("/tmp/surface_fn.svg")
Options:
	:surface_style - :pm3d, :lines, :hidden3d
	:samples - Grid resolution

Parametric Surfaces
Surfaces defined by parametric equations:
Torus
torus = fn u, v ->
 r = 0.3 # tube radius
 c = 1.0 # center radius
 {(c + r * :math.cos(v)) * :math.cos(u),
 (c + r * :math.cos(v)) * :math.sin(u),
 r * :math.sin(v)}
end

GnuplotEx.parametric_surface(torus,
 u_range: {0, 2 * :math.pi()},
 v_range: {0, 2 * :math.pi()},
 samples: {40, 20})
|> GnuplotEx.title("Torus")
|> GnuplotEx.palette(:magma)
|> GnuplotEx.to_svg("/tmp/torus.svg")
[image: Parametric Surface]
Contour Plots
Level curves of 3D data:
data = for x <- -30..30, y <- -30..30 do
 xf = x / 10
 yf = y / 10
 [xf, yf, xf*xf - yf*yf]
end

GnuplotEx.contour(data, contour_levels: 15, contour_style: :base)
|> GnuplotEx.title("Contour Plot")
|> GnuplotEx.palette(:cividis)
|> GnuplotEx.to_svg("/tmp/contour.svg")
Options:
	:contour_levels - Number of contour lines
	:contour_style - :base, :surface, :both

3D Polygons
Filled shapes in 3D:
Two triangles forming a surface
mesh = [
 [[0, 0, 0], [1, 0, 0], [0.5, 0.5, 1]],
 [[1, 0, 0], [1, 1, 0], [0.5, 0.5, 1]]
]

GnuplotEx.polygon3d(mesh, color: "#E95420", alpha: 0.8)
|> GnuplotEx.title("3D Mesh")
|> GnuplotEx.view_angle(60, 30)
|> GnuplotEx.to_svg("/tmp/mesh.svg")
Multivariate Plots
Spider/Radar Charts
Compare entities across multiple axes:
data = [
 %{name: "Product A", quality: 8, price: 6, support: 9, features: 7, ease: 8},
 %{name: "Product B", quality: 6, price: 9, support: 5, features: 8, ease: 7}
]

GnuplotEx.spider(data, filled: true, alpha: 0.3)
|> GnuplotEx.title("Product Comparison")
|> GnuplotEx.to_svg("/tmp/spider.svg")
[image: Spider Chart]
Data formats:
	Single map: %{axis1: v1, axis2: v2, ...}
	List of maps: [%{name: "A", axis1: v1, ...}, ...]
	Matrix with axes: [[v1, v2], [v3, v4]] with :axes option

Options:
	:filled - Fill the polygon
	:alpha - Fill transparency
	:axes - Axis names for matrix data

Parallel Coordinates
Visualize high-dimensional data:
data = [
 %{price: 25000, mpg: 32, hp: 130, weight: 2800},
 %{price: 35000, mpg: 28, hp: 180, weight: 3200},
 %{price: 45000, mpg: 22, hp: 250, weight: 3800},
 %{price: 55000, mpg: 18, hp: 350, weight: 4200}
]

GnuplotEx.parallel(data, color: "#3daee9", line_width: 2)
|> GnuplotEx.title("Car Specifications")
|> GnuplotEx.to_svg("/tmp/parallel.svg")
[image: Parallel Coordinates]
Configuration
Title and Labels
GnuplotEx.new()
|> GnuplotEx.title("Main Title")
|> GnuplotEx.x_label("X Axis Label")
|> GnuplotEx.y_label("Y Axis Label")
|> GnuplotEx.z_label("Z Axis Label") # 3D only
Axis Ranges
GnuplotEx.new()
|> GnuplotEx.x_range(0..100) # Integer range
|> GnuplotEx.y_range({-1.5, 1.5}) # Float tuple
|> GnuplotEx.z_range(-10..10) # 3D only
Legend Position
GnuplotEx.new()
|> GnuplotEx.legend(:top_left) # Position
|> GnuplotEx.legend(:off) # Hide legend
Positions: :top_right, :top_left, :bottom_right, :bottom_left, :top_center, :bottom_center, :center, :off
Plot Size
GnuplotEx.new()
|> GnuplotEx.size({800, 600})
3D View Angle
GnuplotEx.surface(data)
|> GnuplotEx.view_angle(60, 30) # rotation, elevation
|> GnuplotEx.azimuth(15) # additional rotation
Themes
Apply consistent styling with themes:
Built-in themes
GnuplotEx.new() |> GnuplotEx.theme(:default)
GnuplotEx.new() |> GnuplotEx.theme(:dark)
GnuplotEx.new() |> GnuplotEx.theme(:publication)
Default Theme
Minimal styling with grid enabled.
Dark Theme
Dark background with light text. Good for presentations.
GnuplotEx.scatter(data)
|> GnuplotEx.theme(:dark)
|> GnuplotEx.title("Dark Theme")
|> GnuplotEx.to_svg("/tmp/dark.svg")
[image: Dark Theme]
Publication Theme
Clean black-and-white style for papers.
GnuplotEx.line(data)
|> GnuplotEx.theme(:publication)
|> GnuplotEx.title("Publication Ready")
|> GnuplotEx.to_svg("/tmp/publication.svg")
[image: Publication Theme]
Color Palettes
Named palettes for surfaces and heatmaps:
GnuplotEx.surface(data) |> GnuplotEx.palette(:viridis)
GnuplotEx.surface(data) |> GnuplotEx.palette(:magma)
GnuplotEx.surface(data) |> GnuplotEx.palette(:plasma)
GnuplotEx.surface(data) |> GnuplotEx.palette(:inferno)
GnuplotEx.surface(data) |> GnuplotEx.palette(:cividis)
GnuplotEx.surface(data) |> GnuplotEx.palette(:turbo)
Custom palette:
GnuplotEx.surface(data)
|> GnuplotEx.palette(["#440154", "#21918c", "#fde725"])
Control colorbar:
GnuplotEx.surface(data)
|> GnuplotEx.colorbar_range(0..100)
|> GnuplotEx.colorbar(:off) # Hide colorbar
Nonlinear Axes
Transform axis scales:
Log scale
GnuplotEx.scatter(data)
|> GnuplotEx.nonlinear(:x, :log10)
|> GnuplotEx.nonlinear(:y, :log10)

Other presets
|> GnuplotEx.nonlinear(:x, :log) # Natural log
|> GnuplotEx.nonlinear(:x, :sqrt) # Square root
|> GnuplotEx.nonlinear(:x, :inverse) # 1/x
|> GnuplotEx.nonlinear(:x, :probit) # Normal CDF
|> GnuplotEx.nonlinear(:x, :logit) # Logit

Custom transformation
|> GnuplotEx.nonlinear(:y, via: "asin(y)", inverse: "sin(y)")
Supported axes: :x, :x2, :y, :y2, :z, :r, :cb
Remove transformation:
plot |> GnuplotEx.unset_nonlinear(:x)
Output Formats
SVG (Vector)
plot |> GnuplotEx.to_svg("/tmp/plot.svg")
PNG (Raster)
plot |> GnuplotEx.to_png("/tmp/plot.png")
Generic Render
plot |> GnuplotEx.render(:svg, output: "/tmp/plot.svg")
plot |> GnuplotEx.render(:png, output: "/tmp/plot.png", size: {1200, 800})
plot |> GnuplotEx.render(:pdf, output: "/tmp/plot.pdf")
ASCII Art
{:ok, ascii} = plot |> GnuplotEx.to_ascii()
IO.puts(ascii)
Abbreviations
Common options have short forms:
	Short	Full
	:t	:title / :label
	:c	:color
	:lw	:line_width
	:ps	:point_size
	:pt	:point_type
	:xl	:x_label
	:yl	:y_label
	:zl	:z_label
	:xr	:x_range
	:yr	:y_range
	:zr	:z_range
	:pal	:palette
	:f	:filled
	:a	:alpha
	:bc	:border_color
	:bw	:border_width
	:ir	:inner_radius

Example:
GnuplotEx.scatter(data, t: "Points", c: "#E95420", ps: 1.5)
Inspection and Debugging
View Generated Commands
spec = GnuplotEx.scatter(data) |> GnuplotEx.to_spec()
IO.puts(spec.script)
Dry Mode
{:ok, spec} = GnuplotEx.render(plot, :svg, output: "/tmp/test.svg", dry: true)
IO.inspect(spec)
Export Script
Save reproducible gnuplot script:
GnuplotEx.scatter(data)
|> GnuplotEx.title("My Plot")
|> GnuplotEx.save_script("/tmp/plot.gp")
Raw Command Escape Hatch
For features not covered by the high-level API:
GnuplotEx.new()
|> GnuplotEx.scatter(data)
|> GnuplotEx.command([:set, :grid, :xtics])
|> GnuplotEx.command([:set, :arrow, :from, {0, 0}, :to, {10, 10}])
|> GnuplotEx.to_svg("/tmp/custom.svg")
Complete Example
Generate sample data
:rand.seed(:exsss, {42, 42, 42})

measured = for x <- 1..50 do
 [x, :math.sin(x / 8) * 10 + :rand.uniform() * 3 - 1.5]
end

trend = for x <- 1..50 do
 [x, :math.sin(x / 8) * 10]
end

Create publication-ready plot
GnuplotEx.new()
|> GnuplotEx.title("Experimental Results")
|> GnuplotEx.scatter(measured, label: "Measured", color: "#E95420", point_size: 0.8)
|> GnuplotEx.line(trend, label: "Model", color: "#3daee9", line_width: 2)
|> GnuplotEx.x_label("Time (s)")
|> GnuplotEx.y_label("Amplitude (V)")
|> GnuplotEx.x_range(0..55)
|> GnuplotEx.y_range({-15, 15})
|> GnuplotEx.legend(:top_right)
|> GnuplotEx.size({700, 450})
|> GnuplotEx.to_svg("/tmp/complete.svg")
[image: Complete Example]
Next Steps
	Low-Level API - Direct gnuplot control

 Phoenix LiveView Integration - gnuplot_ex v0.2.2

 Phoenix LiveView Integration

GnuplotEx provides Phoenix LiveView support for real-time, interactive data visualization in web applications.
Installation
Add both dependencies to your mix.exs:
def deps do
 [
 {:gnuplot_ex, "~> 0.5"},
 {:phoenix_live_view, "~> 1.0"}
]
end
Then run:
mix deps.get

Quick Start
1. Basic Usage
The simplest way to render a plot in LiveView is using the live_gnuplot/1 component:
defmodule MyAppWeb.ChartLive do
 use Phoenix.LiveView
 import GnuplotEx.LiveView.Component

 def render(assigns) do
 ~H"""
 <div class="container">
 <h1>My Chart</h1>
 <.live_gnuplot plot={@plot} />
 </div>
 """
 end

 def mount(_params, _session, socket) do
 data = [[1, 2], [2, 4], [3, 6], [4, 8], [5, 10]]

 plot = GnuplotEx.new()
 |> GnuplotEx.scatter(data, label: "Points")
 |> GnuplotEx.title("My Plot")
 |> GnuplotEx.x_label("X Axis")
 |> GnuplotEx.y_label("Y Axis")

 {:ok, assign(socket, plot: plot)}
 end
end
2. Real-time Updates
Update the plot when data changes:
defmodule MyAppWeb.RealtimeChartLive do
 use Phoenix.LiveView
 import GnuplotEx.LiveView.Component

 def render(assigns) do
 ~H"""
 <.live_gnuplot plot={@plot} width={1200} height={400} />
 """
 end

 def mount(_params, _session, socket) do
 # Subscribe to data updates
 if connected?(socket) do
 :timer.send_interval(1000, self(), :tick)
 end

 socket = assign(socket,
 data: [],
 max_points: 50
)

 {:ok, socket}
 end

 def handle_info(:tick, socket) do
 # Add new data point
 new_point = [
 System.system_time(:second),
 :rand.uniform() * 100
]

 # Keep only last N points (rolling window)
 data = ([new_point] ++ socket.assigns.data)
 |> Enum.take(socket.assigns.max_points)

 # Create updated plot
 plot = GnuplotEx.line(data,
 label: "Sensor Data",
 color: "#E95420"
)
 |> GnuplotEx.x_label("Time")
 |> GnuplotEx.y_label("Value")
 |> GnuplotEx.theme(:dark)

 {:noreply, assign(socket, data: data, plot: plot)}
 end
end
3. Interactive 3D Plots
For 3D plots with mouse/touch controls, use the JavaScript hook:
Step 1: Add the hook to your app.js:
// assets/js/app.js
import { GnuplotInteractive } from "../../deps/gnuplot_ex/priv/static/gnuplot_ex_hooks"

let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 hooks: { GnuplotInteractive }
})
Step 2: Use the hook in your LiveView:
def render(assigns) do
 ~H"""
 <.live_gnuplot
 plot={@plot}
 id="interactive-3d"
 phx-hook="GnuplotInteractive"
 width={800}
 height={600}
 />
 """
end

def mount(_params, _session, socket) do
 plot = GnuplotEx.surface(
 fn x, y -> :math.sin(x) * :math.cos(y) end,
 x_range: -5..5,
 y_range: -5..5,
 title: "Interactive Surface"
)
 |> GnuplotEx.palette(:viridis)

 {:ok, assign(socket, plot: plot)}
end
Controls:
	Left-click drag: Rotate
	Scroll wheel: Zoom
	Right-click drag: Pan
	Touch: Drag to rotate, pinch to zoom

Component Options
The live_gnuplot/1 component accepts the following attributes:
	Attribute	Type	Default	Description
	plot	GnuplotEx.Plot	required	The plot to render
	format	:svg | :png	:svg	Output format
	width	integer	800	Plot width in pixels
	height	integer	600	Plot height in pixels
	cache	boolean	true	Enable plot caching
	cache_ttl	integer	60_000	Cache TTL in milliseconds
	class	string	""	CSS class for container
	on_error	function	nil	Custom error handler
	rest	global	-	Additional HTML attributes

Examples
Custom size
<.live_gnuplot plot={@plot} width={1200} height={600} />

PNG format
<.live_gnuplot plot={@plot} format={:png} />

Disable caching
<.live_gnuplot plot={@plot} cache={false} />

Custom cache TTL (5 minutes)
<.live_gnuplot plot={@plot} cache_ttl={300_000} />

Custom CSS class
<.live_gnuplot plot={@plot} class="my-chart shadow-lg" />

With fallback content
<.live_gnuplot plot={@plot}>
 <:fallback>
 <div class="loading">Rendering plot...</div>
 </:fallback>
</.live_gnuplot>

Custom error handler
<.live_gnuplot
 plot={@plot}
 on_error={fn reason ->
 Phoenix.HTML.Tag.content_tag(:div, "Error: #{reason}", class: "error")
 end}
/>
Advanced Patterns
Multiple Plots in a Dashboard
defmodule MyAppWeb.DashboardLive do
 use Phoenix.LiveView
 import GnuplotEx.LiveView.Component

 def render(assigns) do
 ~H"""
 <div class="grid grid-cols-2 gap-4">
 <.live_gnuplot plot={@plot1} />
 <.live_gnuplot plot={@plot2} />
 <.live_gnuplot plot={@plot3} />
 <.live_gnuplot plot={@plot4} />
 </div>
 """
 end

 def mount(_params, _session, socket) do
 socket = assign(socket,
 plot1: create_plot1(),
 plot2: create_plot2(),
 plot3: create_plot3(),
 plot4: create_plot4()
)

 {:ok, socket}
 end
end
Debouncing Rapid Updates
For high-frequency data, debounce updates to avoid overwhelming the renderer:
def handle_info({:data_point, point}, socket) do
 # Cancel previous debounce timer if exists
 if socket.assigns[:debounce_timer] do
 Process.cancel_timer(socket.assigns.debounce_timer)
 end

 # Add point to buffer
 data = [point | socket.assigns.data] |> Enum.take(100)

 # Schedule update in 100ms
 timer = Process.send_after(self(), :update_plot, 100)

 {:noreply, assign(socket, data: data, debounce_timer: timer)}
end

def handle_info(:update_plot, socket) do
 plot = GnuplotEx.line(socket.assigns.data)

 {:noreply, assign(socket, plot: plot, debounce_timer: nil)}
end
User-Controlled Plot Options
Let users customize the plot:
def render(assigns) do
 ~H"""
 <div>
 <form phx-change="update_options">
 <select name="theme">
 <option value="default">Default</option>
 <option value="dark">Dark</option>
 <option value="publication">Publication</option>
 </select>

 <select name="palette">
 <option value="viridis">Viridis</option>
 <option value="plasma">Plasma</option>
 <option value="magma">Magma</option>
 </select>
 </form>

 <.live_gnuplot plot={@plot} />
 </div>
 """
end

def handle_event("update_options", %{"theme" => theme, "palette" => palette}, socket) do
 plot = socket.assigns.base_plot
 |> GnuplotEx.theme(String.to_atom(theme))
 |> GnuplotEx.palette(String.to_atom(palette))

 {:noreply, assign(socket, plot: plot)}
end
Streaming Data with Channels
Receive real-time data via Phoenix Channels:
def mount(_params, _session, socket) do
 if connected?(socket) do
 MyAppWeb.Endpoint.subscribe("sensor:#{socket.assigns.sensor_id}")
 end

 {:ok, assign(socket, data: [], plot: initial_plot())}
end

def handle_info(%{event: "measurement", payload: measurement}, socket) do
 data = [measurement | socket.assigns.data] |> Enum.take(100)
 plot = GnuplotEx.line(data, label: "Sensor #{socket.assigns.sensor_id}")

 {:noreply, assign(socket, data: data, plot: plot)}
end
Performance Tips
1. Enable Caching
The component caches rendered plots by default to avoid redundant gnuplot executions:
Cache enabled (default) - renders once, reuses SVG
<.live_gnuplot plot={@plot} cache={true} cache_ttl={60_000} />
2. Limit Data Points
For real-time plots, use rolling windows to limit data size:
Keep only last 100 points
data = ([new_point] ++ data) |> Enum.take(100)
3. Debounce High-Frequency Updates
Batch rapid updates to reduce render frequency:
Update plot every 100ms instead of every data point
Process.send_after(self(), :update_plot, 100)
4. Use Appropriate Formats
	SVG: Best for web display, scales well, larger file size
	PNG: Smaller file size, fixed resolution, faster transfer

Use PNG for large complex plots
<.live_gnuplot plot={@plot} format={:png} />
5. Monitor Cache Statistics
In IEx
GnuplotEx.LiveView.Cache.stats()
=> %{entries: 42, memory_bytes: 1_048_576}

Clear cache if needed
GnuplotEx.LiveView.Cache.clear()
Testing
Component Testing
defmodule MyAppWeb.ChartLiveTest do
 use MyAppWeb.ConnCase, async: true

 import Phoenix.LiveViewTest

 test "renders plot", %{conn: conn} do
 {:ok, view, html} = live(conn, "/charts")

 assert html =~ "gnuplot-container"
 assert html =~ "<svg"
 end

 test "updates plot on data change", %{conn: conn} do
 {:ok, view, _html} = live(conn, "/charts")

 # Send update event
 send(view.pid, {:new_data, [[1, 2], [3, 4]]})

 html = render(view)
 assert html =~ "<svg"
 end
end
Unit Testing Plots
test "creates valid plot struct" do
 plot = GnuplotEx.new()
 |> GnuplotEx.scatter([[1, 2], [3, 4]])
 |> GnuplotEx.title("Test")

 assert %GnuplotEx.Plot{} = plot
 assert plot.title == "Test"
 assert length(plot.series) == 1
end
Troubleshooting
Plot Not Rendering
	Check gnuplot installation:
gnuplot --version
Should be 6.0+

	Check logs for errors:
In LiveView
require Logger
Logger.debug("Rendering plot: #{inspect(@plot)}")

	Disable cache to debug:
<.live_gnuplot plot={@plot} cache={false} />

Interactive Controls Not Working
	Verify hook is loaded:
// app.js should have:
import { GnuplotInteractive } from "..."
hooks: { GnuplotInteractive }

	Check element has phx-hook attribute:
<.live_gnuplot plot={@plot} id="my-plot" phx-hook="GnuplotInteractive" />

	Ensure plot has an id:
The id attribute is required for hooks to attach properly.

High Memory Usage
	Clear cache periodically:
Schedule cache cleanup
Process.send_after(self(), :clear_cache, 300_000)

def handle_info(:clear_cache, socket) do
 GnuplotEx.LiveView.Cache.clear()
 {:noreply, socket}
end

	Reduce cache TTL:
<.live_gnuplot plot={@plot} cache_ttl={10_000} /> # 10 seconds

	Use PNG for large plots:
<.live_gnuplot plot={@plot} format={:png} />

Examples
Real-time Sensor Dashboard
Complete example of a real-time monitoring dashboard:
defmodule MyAppWeb.SensorDashboardLive do
 use Phoenix.LiveView
 import GnuplotEx.LiveView.Component

 def mount(_params, _session, socket) do
 if connected?(socket) do
 :timer.send_interval(1000, self(), :tick)
 end

 socket = assign(socket,
 temperature: [],
 humidity: [],
 pressure: [],
 max_points: 100
)

 {:ok, socket}
 end

 def render(assigns) do
 ~H"""
 <div class="sensor-dashboard">
 <h1>Sensor Dashboard</h1>

 <div class="grid grid-cols-3 gap-4">
 <div>
 <h2>Temperature</h2>
 <.live_gnuplot plot={temperature_plot(@temperature)} />
 </div>

 <div>
 <h2>Humidity</h2>
 <.live_gnuplot plot={humidity_plot(@humidity)} />
 </div>

 <div>
 <h2>Pressure</h2>
 <.live_gnuplot plot={pressure_plot(@pressure)} />
 </div>
 </div>
 </div>
 """
 end

 def handle_info(:tick, socket) do
 # Simulate sensor readings
 temp = [System.system_time(:second), 20 + :rand.uniform() * 10]
 humid = [System.system_time(:second), 40 + :rand.uniform() * 20]
 press = [System.system_time(:second), 1000 + :rand.uniform() * 50]

 socket = socket
 |> update(:temperature, &append_point(&1, temp, socket.assigns.max_points))
 |> update(:humidity, &append_point(&1, humid, socket.assigns.max_points))
 |> update(:pressure, &append_point(&1, press, socket.assigns.max_points))

 {:noreply, socket}
 end

 defp append_point(data, point, max) do
 ([point] ++ data) |> Enum.take(max)
 end

 defp temperature_plot(data) do
 GnuplotEx.line(data,
 label: "°C",
 color: "#E95420"
)
 |> GnuplotEx.y_label("Temperature (°C)")
 |> GnuplotEx.y_range(0..40)
 end

 defp humidity_plot(data) do
 GnuplotEx.line(data,
 label: "%",
 color: "#0066CC"
)
 |> GnuplotEx.y_label("Humidity (%)")
 |> GnuplotEx.y_range(0..100)
 end

 defp pressure_plot(data) do
 GnuplotEx.line(data,
 label: "hPa",
 color: "#00AA00"
)
 |> GnuplotEx.y_label("Pressure (hPa)")
 |> GnuplotEx.y_range(950..1050)
 end
end
Further Reading
	Phoenix LiveView Documentation
	GnuplotEx High-level API
	Gnuplot Documentation

 Ecosystem Integration - gnuplot_ex v0.2.2

 Ecosystem Integration

GnuplotEx integrates seamlessly with the Elixir machine learning and data science ecosystem,
providing direct plotting support for Nx tensors, Explorer DataFrames, and specialized ML visualization helpers.
Installation
All ecosystem integrations are optional. Add the dependencies you need to your mix.exs:
def deps do
 [
 {:gnuplot_ex, "~> 0.1"},
 # Optional: For Nx tensor support
 {:nx, "~> 0.7"},
 # Optional: For DataFrame support (uses Polars backend)
 {:explorer, "~> 0.8"}
]
end
Nx Tensor Support
GnuplotEx can directly plot Nx tensors with automatic dimension handling.
1D Tensors (Line Plots)
1D tensors are treated as y-values with auto-generated x indices:
tensor = Nx.tensor([1.0, 4.0, 2.0, 8.0, 5.0, 7.0, 3.0])

GnuplotEx.new()
|> GnuplotEx.line(tensor, label: "Signal")
|> GnuplotEx.title("1D Tensor as Line Plot")
|> GnuplotEx.render(:svg)
[image: 1D Tensor Line Plot]
2D Tensors (Scatter/Line Plots)
2D tensors with 2 columns are treated as [x, y] points:
Generate some 2D points
tensor = Nx.tensor([
 [1.0, 2.0],
 [2.0, 4.0],
 [3.0, 6.0],
 [4.0, 8.0],
 [5.0, 10.0]
])

GnuplotEx.new()
|> GnuplotEx.scatter(tensor, label: "Linear Relationship")
|> GnuplotEx.title("2D Tensor Scatter Plot")
|> GnuplotEx.render(:svg)
[image: 2D Tensor Scatter Plot]
2D Tensors as Heatmaps
2D tensors with more than 3 columns are treated as grid data for heatmaps:
Create a 2D matrix for heatmap
matrix = Nx.tensor([
 [1, 2, 3, 4, 5],
 [2, 4, 6, 8, 10],
 [3, 6, 9, 12, 15],
 [4, 8, 12, 16, 20],
 [5, 10, 15, 20, 25]
])

Convert to list for surface plots
GnuplotEx.new()
|> GnuplotEx.surface(Nx.to_list(matrix))
|> GnuplotEx.palette(:viridis)
|> GnuplotEx.title("2D Matrix Heatmap")
|> GnuplotEx.render(:svg)
[image: 2D Matrix Heatmap]
3D Tensors (Scatter Plots)
2D tensors with 3 columns are treated as [x, y, z] points:
3D point cloud
tensor = Nx.tensor([
 [1.0, 2.0, 3.0],
 [2.0, 3.0, 4.0],
 [3.0, 4.0, 5.0],
 [4.0, 5.0, 6.0]
])

GnuplotEx.new()
|> GnuplotEx.scatter3d(tensor, label: "3D Points")
|> GnuplotEx.title("3D Tensor Scatter")
|> GnuplotEx.render(:svg)
[image: 3D Tensor Scatter]
Explorer DataFrame Support
Explorer DataFrames can be plotted directly with automatic column type detection.
Basic Usage
alias Explorer.DataFrame

df = DataFrame.new(%{
 x: [1, 2, 3, 4, 5],
 y: [2, 4, 6, 8, 10]
})

GnuplotEx.new()
|> GnuplotEx.scatter(df, label: "DataFrame Points")
|> GnuplotEx.title("DataFrame Scatter Plot")
|> GnuplotEx.render(:svg)
[image: DataFrame Scatter Plot]
Column Selection
Explicitly specify which columns to use:
df = DataFrame.new(%{
 time: [1, 2, 3, 4, 5],
 temperature: [20, 22, 21, 23, 22],
 humidity: [50, 52, 48, 55, 53]
})

Plot temperature over time
GnuplotEx.new()
|> GnuplotEx.line(df, x: :time, y: :temperature, label: "Temperature")
|> GnuplotEx.title("Temperature Over Time")
|> GnuplotEx.render(:svg)

Or use explicit columns list
GnuplotEx.new()
|> GnuplotEx.line(df, columns: [:time, :humidity], label: "Humidity")
|> GnuplotEx.render(:svg)
[image: Temperature Time Series]
Working with Real Data
Load CSV data
df = Explorer.DataFrame.from_csv!("data.csv")

Auto-detect columns (uses first two numeric columns)
GnuplotEx.new()
|> GnuplotEx.scatter(df)
|> GnuplotEx.title("Data Analysis")
|> GnuplotEx.render(:svg)
ML Visualization Helpers
GnuplotEx includes specialized helpers for common machine learning visualization tasks.
Loss Curves
Plot training and validation loss over epochs:
alias GnuplotEx.ML.Loss

train_loss = [0.9, 0.7, 0.5, 0.35, 0.25, 0.18, 0.12, 0.08]
val_loss = [0.95, 0.75, 0.55, 0.42, 0.35, 0.30, 0.28, 0.27]

Loss.plot(train_loss, val_loss,
 title: "Model Training Progress",
 x_label: "Epoch",
 y_label: "Cross-Entropy Loss"
)
|> GnuplotEx.render(:svg)
[image: Training Loss Curves]
Plot multiple metrics:
metrics = %{
 train_loss: [0.9, 0.7, 0.5, 0.3, 0.2],
 val_loss: [0.95, 0.75, 0.55, 0.4, 0.35],
 train_acc: [0.6, 0.7, 0.8, 0.88, 0.92],
 val_acc: [0.55, 0.68, 0.78, 0.82, 0.85]
}

Loss.plot_metrics(metrics,
 title: "Training Metrics",
 x_label: "Epoch"
)
|> GnuplotEx.render(:svg)
[image: Training Metrics]
Confusion Matrix
Visualize classification results:
alias GnuplotEx.ML.Confusion

Binary classification
matrix = [
 [85, 15], # True Negative, False Positive
 [10, 90] # False Negative, True Positive
]
classes = ["Negative", "Positive"]

Confusion.plot(matrix, classes,
 title: "Binary Classification Results"
)
|> GnuplotEx.render(:svg)
Multi-class with normalization:
matrix = [
 [50, 3, 2],
 [4, 45, 1],
 [2, 2, 46]
]
classes = ["Cat", "Dog", "Bird"]

Confusion.plot(matrix, classes,
 normalize: true,
 title: "Normalized Confusion Matrix"
)
|> GnuplotEx.render(:svg)
[image: Confusion Matrix]
Calculate metrics from confusion matrix:
accuracy = Confusion.accuracy(matrix) # Overall accuracy
precision = Confusion.precision(matrix) # Per-class precision
recall = Confusion.recall(matrix) # Per-class recall
f1 = Confusion.f1_score(matrix) # Per-class F1 score
ROC Curves
Plot Receiver Operating Characteristic curves:
alias GnuplotEx.ML.ROC

From precomputed FPR/TPR
fpr = [0.0, 0.1, 0.2, 0.4, 0.6, 1.0]
tpr = [0.0, 0.5, 0.7, 0.85, 0.95, 1.0]

ROC.plot(fpr, tpr,
 auc: 0.87,
 title: "ROC Curve"
)
|> GnuplotEx.render(:svg)
Calculate ROC curve from scores and labels:
scores = [0.9, 0.8, 0.7, 0.6, 0.4, 0.3, 0.2, 0.1]
labels = [1, 1, 0, 1, 0, 1, 0, 0]

{fpr, tpr, _thresholds} = ROC.calculate_curve(scores, labels)
auc = ROC.calculate_auc(fpr, tpr)

ROC.plot(fpr, tpr, auc: auc)
|> GnuplotEx.render(:svg)
[image: ROC Curve]
Multi-class ROC curves:
roc_data = %{
 "Cat" => {fpr_cat, tpr_cat, 0.92},
 "Dog" => {fpr_dog, tpr_dog, 0.88},
 "Bird" => {fpr_bird, tpr_bird, 0.95}
}

ROC.plot_multiclass(roc_data,
 title: "One-vs-Rest ROC Curves"
)
|> GnuplotEx.render(:svg)
Embedding Visualization
Visualize dimensionality reduction results (t-SNE, UMAP, PCA):
alias GnuplotEx.ML.Embeddings

2D embeddings with labels
embeddings = [
 [1.2, 3.4], [1.5, 3.1], [1.3, 3.8], # Class 0
 [5.2, 6.1], [5.5, 6.3], [5.1, 5.9], # Class 1
 [3.0, 1.2], [3.2, 1.5], [2.8, 1.1] # Class 2
]
labels = [0, 0, 0, 1, 1, 1, 2, 2, 2]

Embeddings.plot(embeddings, labels,
 label_names: ["Cluster A", "Cluster B", "Cluster C"],
 title: "t-SNE Visualization"
)
|> GnuplotEx.render(:svg)
[image: 2D Embeddings]
3D embeddings:
embeddings_3d = [
 [1, 2, 3], [1.5, 2.5, 3.5],
 [5, 6, 7], [5.5, 6.5, 7.5]
]
labels = [0, 0, 1, 1]

Embeddings.plot(embeddings_3d, labels,
 title: "3D t-SNE"
)
|> GnuplotEx.render(:svg)
[image: 3D Embeddings]
Complete ML Training Example
Here's a complete example showing how to visualize a training loop:
defmodule TrainingVisualizer do
 alias GnuplotEx.ML.{Loss, Confusion, ROC}

 def visualize_training(history, predictions, labels) do
 # 1. Plot training curves
 loss_plot = Loss.plot(
 history.train_loss,
 history.val_loss,
 title: "Training Progress"
)
 GnuplotEx.save(loss_plot, "training_loss.svg")

 # 2. Plot all metrics
 metrics_plot = Loss.plot_metrics(%{
 train_loss: history.train_loss,
 val_loss: history.val_loss,
 train_acc: history.train_acc,
 val_acc: history.val_acc
 })
 GnuplotEx.save(metrics_plot, "training_metrics.svg")

 # 3. Confusion matrix
 cm = build_confusion_matrix(predictions, labels)
 cm_plot = Confusion.plot(cm, ["Class A", "Class B", "Class C"],
 normalize: true
)
 GnuplotEx.save(cm_plot, "confusion_matrix.svg")

 # 4. ROC curve
 {fpr, tpr, _} = ROC.calculate_curve(predictions, labels)
 auc = ROC.calculate_auc(fpr, tpr)
 roc_plot = ROC.plot(fpr, tpr, auc: auc)
 GnuplotEx.save(roc_plot, "roc_curve.svg")

 :ok
 end

 defp build_confusion_matrix(predictions, labels) do
 # Build confusion matrix from predictions and labels
 # ... implementation
 end
end
Integration with Axon
If you're using Axon for neural networks, you can integrate GnuplotEx for visualization:
defmodule AxonTrainer do
 require Axon

 def train_with_visualization(model, train_data, val_data) do
 history = %{train_loss: [], val_loss: [], train_acc: [], val_acc: []}

 model
 |> Axon.Loop.trainer(:mean_squared_error, Axon.Optimizers.adam(0.001))
 |> Axon.Loop.metric(:accuracy)
 |> Axon.Loop.handle_event(:epoch_completed, fn state ->
 # Collect metrics each epoch
 history = update_history(history, state)

 # Live plot every 10 epochs
 if rem(state.epoch, 10) == 0 do
 plot_live(history)
 end

 {:continue, state}
 end)
 |> Axon.Loop.run(train_data, epochs: 100)

 history
 end

 defp plot_live(history) do
 GnuplotEx.ML.Loss.plot(history.train_loss, history.val_loss)
 |> GnuplotEx.render(:svg)
 |> then(fn {:ok, svg} -> File.write!("live_training.svg", svg) end)
 end
end
Performance Tips
	Use streams for large datasets: GnuplotEx uses streaming to handle large Nx tensors and DataFrames efficiently.

	Cache rendered plots: When using LiveView, enable caching to avoid re-rendering unchanged plots:
<.live_gnuplot plot={@plot} cache={true} cache_ttl={60_000} />

	Batch updates: When plotting real-time data, batch multiple points before updating the plot.

	Choose appropriate formats: Use :svg for vector graphics (web), :png for raster images.

Troubleshooting
"No numeric columns found" Error
Explorer DataFrames need at least one numeric column for plotting. Check your column types:
Explorer.DataFrame.dtypes(df)
Nx Tensor Shape Errors
Ensure your tensor has the expected shape:
Nx.shape(tensor) # Should be {n}, {n, 2}, {n, 3}, or {rows, cols}
Memory Issues with Large Datasets
For very large datasets, consider downsampling before plotting:
Downsample Nx tensor
tensor
|> Nx.to_list()
|> Enum.take_every(10)
|> Nx.tensor()

Downsample DataFrame
df
|> Explorer.DataFrame.sample(1000)

 Performance Benchmarks - gnuplot_ex v0.2.2

 Performance Benchmarks

GnuplotEx is designed for high performance with large datasets and parallel rendering.
Large Dataset Performance
Binary mode significantly outperforms text mode for large datasets.
[image: Large Dataset Benchmark]
Recommendation: Use binary: true for datasets larger than 50K points.
Large dataset with binary mode
data = for i <- 1..1_000_000, do: [i, :math.sin(i / 1000)]

GnuplotEx.scatter(data, binary: true)
|> GnuplotEx.title("1M Points")
|> GnuplotEx.to_png("/tmp/large.png")
Parallel Rendering
Render multiple plots concurrently with render_many/3 for significant speedups.
[image: Parallel Benchmark]
Render 50 plots in parallel
plots = for i <- 1..50 do
 data = for x <- 1..1000, do: [x, :math.sin(x / 100 + i)]
 GnuplotEx.line(data, label: "Series #{i}")
end

Sequential
results = Enum.map(plots, &GnuplotEx.render(&1, :svg))

Parallel (much faster)
results = GnuplotEx.render_many(plots, :svg)

Control concurrency
results = GnuplotEx.render_many(plots, :svg, max_concurrency: 4)
Async Rendering
Use render_async/3 for non-blocking renders in concurrent applications.
Start render without blocking
task = GnuplotEx.render_async(plot, :svg)

Do other work...
Process.sleep(100)

Get result when needed
{:ok, svg} = Task.await(task)
Running Benchmarks
Run benchmarks on your system:
mix bench # Run all benchmarks
mix bench --large # Large dataset benchmark only
mix bench --parallel # Parallel rendering benchmark only

 GnuplotEx - gnuplot_ex v0.2.2

GnuplotEx

Elixir wrapper for Gnuplot 6+.
GnuplotEx provides both low-level and high-level APIs for creating plots.
This module contains the low-level API that gives direct control over
gnuplot commands.
Requirements
	Gnuplot 6.0+ installed and available in PATH
	Elixir 1.18+

Quick Start
Plot a sine wave to SVG
GnuplotEx.plot([
 [:set, :terminal, :svg, :size, {800, 600}],
 [:set, :output, "/tmp/sine.svg"],
 [:plot, 'sin(x)']
])

Plot data points
data = for x <- 1..100, do: [x, :math.sin(x / 10)]

GnuplotEx.plot([
 [:set, :terminal, :svg],
 [:set, :output, "/tmp/data.svg"],
 [:plot, "-", :with, :lines, :title, "Sine Wave"]
], [data])
Command Syntax
Commands are represented as nested lists where:
	Atoms become unquoted strings: :set → set
	Strings become quoted: "Title" → "Title"
	Charlists become raw expressions: 'sin(x)' → sin(x)
	Ranges become gnuplot ranges: 0..10 → [0:10]
	Tuples become comma-separated: {800, 600} → 800,600

Multiple Datasets
Use plots/1 or splots/1 to plot multiple datasets:
GnuplotEx.plot([
 [:set, :terminal, :svg],
 [:set, :output, "/tmp/multi.svg"],
 GnuplotEx.plots([
 ["-", :with, :points, :title, "Points"],
 ["-", :with, :lines, :title, "Lines"]
])
], [data1, data2])

 Summary

 Types

 command()

 command_term()

 dataset()

 plot_option()

 Functions

 azimuth(plot, angle)

 Set the azimuth angle for 3D plots.

 build_spec(commands, datasets \\ [])

 Build an inspectable spec from commands and datasets.

 colorbar(plot, setting)

 Show or hide the colorbar.

 colorbar_range(plot, range)

 Set the colorbar range.

 command(plot, cmd)

 Add a raw gnuplot command (escape hatch).

 contour(plot, data_or_fn)

 contour(plot, data_or_fn, opts)

 Add a contour plot.

 datablock(plot, name, data)

 Define a named datablock for reuse across multiple series.

 donut(plot, data)

 donut(plot, data, opts)

 Add a donut chart series.

 histogram(plot, data)

 histogram(plot, data, opts)

 Add a histogram series.

 legend(plot, position)

 Set the legend position.

 line(plot, data)

 line(plot, data, opts)

 Add a line plot series.

 new(opts \\ [])

 Create a new empty plot for the fluent builder API.

 nonlinear(plot, axis, transform)

 Apply a nonlinear transformation to an axis.

 palette(plot, palette_value)

 Set the color palette for surfaces and heatmaps.

 parallel(plot, data)

 parallel(plot, data, opts)

 Add a parallel coordinates series.

 parametric_surface(func, opts)

 parametric_surface(plot, func, opts)

 Add a parametric surface plot.

 pie(plot, data)

 pie(plot, data, opts)

 Add a pie chart series.

 plot(commands)

 Execute gnuplot commands without datasets.

 plot(commands, datasets)

 Execute gnuplot commands with datasets.

 plot(session_name, commands, datasets)

 Execute gnuplot commands with a third argument.

 plots(commands)

 Build a comma-separated plot list for multiple 2D datasets.

 polygon3d(plot, data)

 polygon3d(plot, data, opts)

 Add a 3D polygon mesh series.

 polygon(plot, data)

 polygon(plot, data, opts)

 Add a 2D polygon series.

 render(plot, format \\ :svg, opts \\ [])

 Render a plot to a specific format.

 render_async(plot, format \\ :svg, opts \\ [])

 Render plot asynchronously, returning a Task.

 render_many(plots, format \\ :svg, opts \\ [])

 Render multiple plots in parallel.

 save_script(plot, path)

 Export plot as a reproducible gnuplot script file.

 scatter3d(plot, data)

 scatter3d(plot, data, opts)

 Add a 3D scatter series.

 scatter(plot, data)

 scatter(plot, data, opts)

 Add a scatter plot series.

 sessions()

 List all active named sessions.

 size(plot, dimensions)

 Set the plot size.

 spider(plot, data)

 spider(plot, data, opts)

 Add a spider/radar chart series.

 splots(commands)

 Build a comma-separated splot list for multiple 3D datasets.

 surface(plot, data_or_fn)

 surface(plot, data_or_fn, opts)

 Add a surface plot.

 theme(plot, theme_value)

 Set the plot theme.

 title(plot, title_text)

 Set the plot title.

 to_ascii(plot, opts \\ [])

 Render plot to ASCII art.

 to_png(plot, path, opts \\ [])

 Render plot to PNG file.

 to_spec(plot)

 Convert a Plot to a Spec for inspection without execution.

 to_svg(plot, path, opts \\ [])

 Render plot to SVG file.

 unset_nonlinear(plot, axis)

 Remove a nonlinear transformation from an axis.

 version()

 Get the installed gnuplot version.

 version!()

 Check if gnuplot version meets the minimum requirement (6.0.0).

 view_angle(plot, rotation, elevation)

 Set the 3D view angle.

 x_label(plot, label)

 Set the X-axis label.

 x_range(plot, range)

 Set the X-axis range.

 y_label(plot, label)

 Set the Y-axis label.

 y_range(plot, range)

 Set the Y-axis range.

 z_label(plot, label)

 Set the Z-axis label (for 3D plots).

 z_range(plot, range)

 Set the Z-axis range (for 3D plots).

 Types

 command()

 @type command() :: [command_term()]

 command_term()

 @type command_term() ::
 atom() | String.t() | charlist() | number() | Range.t() | tuple()

 dataset()

 @type dataset() :: [[number()] | tuple()]

 plot_option()

 @type plot_option() :: {:dry, boolean()}

 Functions

 azimuth(plot, angle)

 @spec azimuth(GnuplotEx.Plot.t(), number()) :: GnuplotEx.Plot.t()

Set the azimuth angle for 3D plots.
Example
plot |> GnuplotEx.azimuth(30)

 build_spec(commands, datasets \\ [])

 @spec build_spec([command()], [dataset()]) :: GnuplotEx.Spec.t()

Build an inspectable spec from commands and datasets.
Useful for debugging or deferred execution.
Example
spec = GnuplotEx.build_spec(commands, data)
IO.inspect(spec)

Execute later
{:ok, _} = GnuplotEx.Spec.execute(spec)

 colorbar(plot, setting)

 @spec colorbar(GnuplotEx.Plot.t(), :on | :off) :: GnuplotEx.Plot.t()

Show or hide the colorbar.
Example
plot |> GnuplotEx.colorbar(:off)

 colorbar_range(plot, range)

 @spec colorbar_range(GnuplotEx.Plot.t(), Range.t() | {number(), number()}) ::
 GnuplotEx.Plot.t()

Set the colorbar range.
Controls the data range mapped to the color palette.
Example
plot |> GnuplotEx.colorbar_range(0..100)
plot |> GnuplotEx.colorbar_range({-1, 1})

 command(plot, cmd)

 @spec command(GnuplotEx.Plot.t(), list()) :: GnuplotEx.Plot.t()

Add a raw gnuplot command (escape hatch).
Example
plot |> GnuplotEx.command([:set, :grid])

 contour(plot, data_or_fn)

 contour(plot, data_or_fn, opts)

 @spec contour(GnuplotEx.Plot.t(), Enumerable.t() | fun(), keyword()) ::
 GnuplotEx.Plot.t()

Add a contour plot.
Options
	:label - Legend label
	:contour_levels - Number of contour levels
	:contour_style - :base (default), :surface, or :both

Example
data = for x <- -5..5, y <- -5..5, do: [x, y, x*x + y*y]
GnuplotEx.contour(data, contour_levels: 10)

 datablock(plot, name, data)

 @spec datablock(GnuplotEx.Plot.t(), atom(), Enumerable.t()) :: GnuplotEx.Plot.t()

Define a named datablock for reuse across multiple series.
Named datablocks allow you to define data once and reference it multiple
times in different plot commands. This is useful when the same data should
be displayed with different styles (e.g., as both scatter and line).
Example
GnuplotEx.new()
|> GnuplotEx.datablock(:mydata, [[1, 2], [3, 4], [5, 6]])
|> GnuplotEx.scatter(:mydata, label: "Points")
|> GnuplotEx.line(:mydata, label: "Line")
|> GnuplotEx.to_svg("/tmp/reused_data.svg")

 donut(plot, data)

 donut(plot, data, opts)

 @spec donut(GnuplotEx.Plot.t(), Enumerable.t(), keyword()) :: GnuplotEx.Plot.t()

Add a donut chart series.
Donut charts are pie charts with a hollow center. This is achieved by
setting an inner radius that creates a ring-shaped visualization.
Data Formats
Same as pie/2,3:
	List of numbers: [30, 25, 20]
	List of {label, value} tuples: [{"A", 30}, {"B", 25}]
	List of maps: [%{label: "A", value: 30}, %{label: "B", value: 25}]

Options
	:inner_radius - Inner radius ratio 0.0-1.0 (default: 0.5)
	:labels - List of slice labels
	:colors - List of colors or palette name
	:explode - List of slice indices to offset outward
	:start_angle - Starting angle in degrees

Examples
Default donut (50% hole)
[30, 25, 20, 15, 10]
|> GnuplotEx.donut()
|> GnuplotEx.to_svg("/tmp/donut.svg")

Thin ring
GnuplotEx.donut(data, inner_radius: 0.7)

With styling
GnuplotEx.new()
|> GnuplotEx.title("Distribution")
|> GnuplotEx.donut(data, ir: 0.4, colors: :plasma)

 histogram(plot, data)

 histogram(plot, data, opts)

 @spec histogram(GnuplotEx.Plot.t(), Enumerable.t(), keyword()) :: GnuplotEx.Plot.t()

Add a histogram series.
Options
	:label - Legend label
	:color - Bar color
	:bins - Number of bins
	:fill - Fill style (:solid, :transparent)

Example
values |> GnuplotEx.histogram(bins: 20) |> GnuplotEx.to_svg(path)

 legend(plot, position)

 @spec legend(GnuplotEx.Plot.t(), atom()) :: GnuplotEx.Plot.t()

Set the legend position.
Positions
	:top_right (default)
	:top_left
	:bottom_right
	:bottom_left
	:off - Hide legend

Example
plot |> GnuplotEx.legend(:top_left)

 line(plot, data)

 line(plot, data, opts)

 @spec line(GnuplotEx.Plot.t(), Enumerable.t(), keyword()) :: GnuplotEx.Plot.t()

Add a line plot series.
Options
	:label - Legend label
	:color - Line color
	:line_width - Line width
	:smooth - Smoothing (:csplines, :bezier)

Example
GnuplotEx.new()
|> GnuplotEx.line(data, label: "Trend", color: "#666")

 new(opts \\ [])

 @spec new(keyword()) :: GnuplotEx.Plot.t()

Create a new empty plot for the fluent builder API.
Options
	:title - Plot title
	:size - Plot dimensions as {width, height}
	:theme - Theme preset or custom theme

Example
GnuplotEx.new()
|> GnuplotEx.title("My Plot")
|> GnuplotEx.scatter(data)
|> GnuplotEx.to_svg("/tmp/plot.svg")

 nonlinear(plot, axis, transform)

 @spec nonlinear(
 GnuplotEx.Plot.t(),
 GnuplotEx.Plot.nonlinear_axis(),
 GnuplotEx.Plot.nonlinear_transform()
) :: GnuplotEx.Plot.t()

Apply a nonlinear transformation to an axis.
Nonlinear transformations use gnuplot 6's set nonlinear command to create
log scales, square root scales, and other nonlinear axis mappings.
Preset Transformations
	:log10 - Base-10 logarithmic scale
	:log - Natural logarithmic scale
	:sqrt - Square root scale
	:inverse - Reciprocal scale (1/x)
	:probit - Probit (normal CDF) scale
	:logit - Logit scale

Supported Axes
	:x, :x2 - X axes
	:y, :y2 - Y axes
	:z - Z axis (3D)
	:r - Radial axis (polar)
	:cb - Colorbar axis

Examples
Log scale on X axis
GnuplotEx.new()
|> GnuplotEx.scatter(data)
|> GnuplotEx.nonlinear(:x, :log10)
|> GnuplotEx.to_svg("/tmp/logscale.svg")

Multiple axes with different transforms
GnuplotEx.new()
|> GnuplotEx.scatter(data)
|> GnuplotEx.nonlinear(:x, :log10)
|> GnuplotEx.nonlinear(:y, :sqrt)

Custom transformation
GnuplotEx.nonlinear(plot, :y, via: "sqrt(y)", inverse: "y**2")

 palette(plot, palette_value)

 @spec palette(GnuplotEx.Plot.t(), atom() | [String.t()]) :: GnuplotEx.Plot.t()

Set the color palette for surfaces and heatmaps.
Named Palettes
	:viridis - Perceptually uniform, colorblind-friendly
	:magma - Dark to light, warm tones
	:plasma - Blue to yellow through pink
	:inferno - Dark to light, fire-like
	:cividis - Colorblind-optimized blue-yellow
	:turbo - Rainbow-like, high contrast

Example
GnuplotEx.surface(data) |> GnuplotEx.palette(:viridis)
GnuplotEx.surface(data) |> GnuplotEx.palette(["#440154", "#21918c", "#fde725"])

 parallel(plot, data)

 parallel(plot, data, opts)

 @spec parallel(GnuplotEx.Plot.t(), map() | Enumerable.t(), keyword()) ::
 GnuplotEx.Plot.t()

Add a parallel coordinates series.
Parallel coordinates display multivariate data with each variable
represented as a vertical axis. Lines connect values across all axes,
making it easy to see patterns and relationships in high-dimensional data.
Data Formats
	Single map: %{var1: value1, var2: value2, ...} (one line)
	List of maps: [%{var1: v1, var2: v2}, ...] (multiple lines)
	List of lists: [[v1, v2, ...], ...] (with :axes option)

Options
	:label - Legend label for this series
	:axes - List of axis names (required for list-of-lists format)
	:color - Line color
	:line_width - Line width (alias: :lw)

Examples
From map data (auto-detect axes)
data = [
 %{price: 25000, mpg: 30, horsepower: 150, weight: 3000},
 %{price: 35000, mpg: 25, horsepower: 200, weight: 3500}
]
GnuplotEx.parallel(data)
|> GnuplotEx.to_svg("/tmp/parallel.svg")

With styling
GnuplotEx.parallel(data, color: "#3daee9", lw: 2)

Matrix format with explicit axes
matrix = [[25000, 30, 150], [35000, 25, 200]]
GnuplotEx.parallel(matrix, axes: ["Price", "MPG", "HP"])

With plot builder
GnuplotEx.new()
|> GnuplotEx.title("Car Comparison")
|> GnuplotEx.parallel(data1, label: "Dataset A", color: "#E95420")
|> GnuplotEx.parallel(data2, label: "Dataset B", color: "#3daee9")

 parametric_surface(func, opts)

 parametric_surface(plot, func, opts)

 @spec parametric_surface(GnuplotEx.Plot.t(), fun(), keyword()) :: GnuplotEx.Plot.t()

Add a parametric surface plot.
The function should take (u, v) parameters and return {x, y, z}.
Options
	:label - Legend label
	:u_range - U parameter range (required)
	:v_range - V parameter range (required)
	:samples - Grid resolution
	:surface_style - :pm3d, :lines, or :hidden3d

Example
Sphere
sphere = fn u, v ->
 {:math.cos(u) * :math.cos(v),
 :math.sin(u) * :math.cos(v),
 :math.sin(v)}
end

GnuplotEx.parametric_surface(sphere,
 u_range: {0, 2 * :math.pi()},
 v_range: {-:math.pi()/2, :math.pi()/2})

 pie(plot, data)

 pie(plot, data, opts)

 @spec pie(GnuplotEx.Plot.t(), Enumerable.t(), keyword()) :: GnuplotEx.Plot.t()

Add a pie chart series.
Pie charts display proportional data as circular sectors. Each slice
represents a portion of the whole based on its value relative to the sum.
Data Formats
	List of numbers: [30, 25, 20, 15, 10]
	List of {label, value} tuples: [{"A", 30}, {"B", 25}]
	List of maps: [%{label: "A", value: 30}, %{label: "B", value: 25}]

Options
	:labels - List of slice labels (auto-detected from maps/tuples)
	:colors - List of colors or palette name (e.g., :viridis)
	:explode - List of slice indices to offset outward (0-based)
	:start_angle - Starting angle in degrees (0 = top, clockwise)

Examples
Simple pie from values
[30, 25, 20, 15, 10]
|> GnuplotEx.pie()
|> GnuplotEx.to_svg("/tmp/pie.svg")

With labels and colors
data = [
 %{label: "Category A", value: 30},
 %{label: "Category B", value: 25},
 %{label: "Category C", value: 20}
]
GnuplotEx.pie(data, colors: ["#E95420", "#3daee9", "#27ae60"])

Exploded slice
GnuplotEx.pie(data, explode: [0]) # First slice exploded

With plot builder
GnuplotEx.new()
|> GnuplotEx.title("Sales Distribution")
|> GnuplotEx.pie(data, colors: :viridis)

 plot(commands)

 @spec plot([command()]) :: {:ok, String.t()} | {:error, term()}

Execute gnuplot commands without datasets.
Example
GnuplotEx.plot([
 [:set, :terminal, :dumb],
 [:plot, 'sin(x)']
])

 plot(commands, datasets)

 @spec plot([command()], [dataset()]) :: {:ok, String.t()} | {:error, term()}

Execute gnuplot commands with datasets.
Each dataset corresponds to a "-" placeholder in the commands.
Data is streamed to gnuplot's stdin for memory efficiency.
Parameters
	commands - List of gnuplot commands as nested lists
	datasets - List of datasets, each being a list of points

Returns
	{:ok, command_string} - Success
	{:error, :gnuplot_not_found} - gnuplot not in PATH
	{:error, {:exit, code, output}} - gnuplot error
	{:error, :timeout} - Execution timed out

Example
data = [[0, 0], [1, 1], [2, 4], [3, 9]]

GnuplotEx.plot([
 [:set, :terminal, :svg],
 [:set, :output, "/tmp/plot.svg"],
 [:set, :title, "Quadratic"],
 [:plot, "-", :with, :linespoints]
], [data])

 plot(session_name, commands, datasets)

 @spec plot(atom(), [command()], [dataset()]) :: {:ok, String.t()} | {:error, term()}

 @spec plot([command()], [dataset()], [plot_option()]) ::
 {:ok, String.t() | GnuplotEx.Spec.t()} | {:error, term()}

Execute gnuplot commands with a third argument.
Named Session (atom, list, list)
Start a session first
{:ok, _} = GnuplotEx.Session.start_link(name: :analysis)

Plot to that session
GnuplotEx.plot(:analysis, commands, data)
With Options (list, list, keyword)
Options:
	:dry - If true, returns the spec without executing (default: false)
 # Dry mode - returns spec without executing
 {:ok, spec} = GnuplotEx.plot(commands, data, dry: true)
 IO.inspect(spec)

 plots(commands)

 @spec plots([command()]) :: command()

Build a comma-separated plot list for multiple 2D datasets.
Example
GnuplotEx.plot([
 [:set, :terminal, :svg],
 GnuplotEx.plots([
 ["-", :with, :points],
 ["-", :with, :lines]
])
], [data1, data2])
This generates: plot "-" with points, "-" with lines

 polygon3d(plot, data)

 polygon3d(plot, data, opts)

 @spec polygon3d(GnuplotEx.Plot.t(), Enumerable.t(), keyword()) :: GnuplotEx.Plot.t()

Add a 3D polygon mesh series.
3D polygons are filled closed shapes in 3D space, useful for rendering
meshes and custom surfaces.
Data Formats
	Single polygon: [[x1, y1, z1], [x2, y2, z2], [x3, y3, z3], ...]
	Multiple polygons (mesh): [[[x1, y1, z1], ...], [[x2, y2, z2], ...]]

Options
	:label - Legend label
	:color - Fill color
	:fill - Fill style (:solid, :transparent, :pattern, :empty)
	:alpha - Fill transparency 0.0-1.0
	:border_color - Border line color
	:border_width - Border line width

Abbreviations
	:c - color
	:bc - border_color
	:bw - border_width
	:a - alpha

Examples
3D triangle
vertices = [[0, 0, 0], [1, 0, 0], [0.5, 1, 0.5]]
GnuplotEx.polygon3d(vertices, color: "#E95420")
|> GnuplotEx.to_svg("/tmp/polygon3d.svg")

Mesh (multiple polygons)
mesh = [
 [[0, 0, 0], [1, 0, 0], [0.5, 1, 0.5]],
 [[1, 0, 0], [1, 1, 0], [0.5, 1, 0.5]]
]
GnuplotEx.polygon3d(mesh, fill: :transparent, alpha: 0.8)

 polygon(plot, data)

 polygon(plot, data, opts)

 @spec polygon(GnuplotEx.Plot.t(), Enumerable.t(), keyword()) :: GnuplotEx.Plot.t()

Add a 2D polygon series.
Polygons are filled closed shapes defined by vertices. Supports single
polygons or multiple polygons rendered together.
Data Formats
	Single polygon: [[x1, y1], [x2, y2], [x3, y3], ...]
	Multiple polygons: [[[x1, y1], ...], [[x2, y2], ...]]

Options
	:label - Legend label
	:color - Fill color
	:fill - Fill style (:solid, :transparent, :pattern, :empty)
	:alpha - Fill transparency 0.0-1.0
	:border_color - Border line color
	:border_width - Border line width

Abbreviations
	:c - color
	:bc - border_color
	:bw - border_width
	:a - alpha

Examples
Triangle
vertices = [[0, 0], [1, 0], [0.5, 1]]
GnuplotEx.polygon(vertices, color: "#3daee9")
|> GnuplotEx.to_svg("/tmp/triangle.svg")

Multiple shapes
shapes = [
 [[0, 0], [1, 0], [1, 1], [0, 1]],
 [[2, 0], [3, 0], [2.5, 1]]
]
GnuplotEx.polygon(shapes, fill: :solid, bc: "#000")

With plot builder
GnuplotEx.new()
|> GnuplotEx.title("Shapes")
|> GnuplotEx.polygon(vertices, color: "#E95420", bw: 2)

 render(plot, format \\ :svg, opts \\ [])

 @spec render(GnuplotEx.Plot.t(), atom(), keyword()) ::
 {:ok, String.t()} | {:error, term()}

Render a plot to a specific format.
Formats
	:svg - SVG vector graphics (default)
	:png - PNG raster image
	:pdf - PDF document
	:dumb - ASCII art

Options
	:output - Output file path (required for file formats)
	:size - {width, height} tuple
	:on_progress - Progress callback fn(sent, total) -> any
	:timeout - Override base timeout in milliseconds

Example
GnuplotEx.new()
|> GnuplotEx.scatter(data)
|> GnuplotEx.render(:svg, output: "/tmp/plot.svg")

With progress monitoring for large datasets
GnuplotEx.render(plot, :png,
 output: "/tmp/large.png",
 on_progress: fn sent, total -> IO.puts("Progress: #{sent}/#{total}") end
)

 render_async(plot, format \\ :svg, opts \\ [])

 @spec render_async(GnuplotEx.Plot.t(), atom(), keyword()) :: Task.t()

Render plot asynchronously, returning a Task.
Example
task = GnuplotEx.render_async(plot, :svg)
Do other work...
{:ok, svg} = Task.await(task)

 render_many(plots, format \\ :svg, opts \\ [])

 @spec render_many([GnuplotEx.Plot.t()], atom(), keyword()) :: [
 ok: String.t(),
 error: term()
]

Render multiple plots in parallel.
Example
plots = [plot1, plot2, plot3]
results = GnuplotEx.render_many(plots, :svg, max_concurrency: 4)

 save_script(plot, path)

 @spec save_script(GnuplotEx.Plot.t(), String.t()) :: :ok | {:error, term()}

Export plot as a reproducible gnuplot script file.
The generated script includes inline data and can be run with:
gnuplot script.gp
Example
GnuplotEx.new()
|> GnuplotEx.scatter(data, label: "Points")
|> GnuplotEx.title("My Plot")
|> GnuplotEx.save_script("/tmp/plot.gp")

 scatter3d(plot, data)

 scatter3d(plot, data, opts)

 @spec scatter3d(GnuplotEx.Plot.t(), Enumerable.t(), keyword()) :: GnuplotEx.Plot.t()

Add a 3D scatter series.
Data should be a list of [x, y, z] points.
Options
	:label - Legend label
	:color - Point color
	:point_type - Point shape (1-14)
	:point_size - Point size multiplier

Example
points = for _ <- 1..100, do: [:rand.uniform(), :rand.uniform(), :rand.uniform()]
GnuplotEx.scatter3d(points, label: "Random")
|> GnuplotEx.to_svg("/tmp/scatter3d.svg")

 scatter(plot, data)

 scatter(plot, data, opts)

 @spec scatter(GnuplotEx.Plot.t(), Enumerable.t(), keyword()) :: GnuplotEx.Plot.t()

Add a scatter plot series.
Can be called with just data to start a new plot, or with an existing plot.
Options
	:label - Legend label
	:color - Point color (e.g., "#E95420")
	:point_type - Point shape (1-14)
	:point_size - Point size multiplier

Example
Start new plot with data
data |> GnuplotEx.scatter(label: "Points") |> GnuplotEx.to_svg(path)

Add to existing plot
GnuplotEx.new()
|> GnuplotEx.scatter(data1, label: "Series 1")
|> GnuplotEx.scatter(data2, label: "Series 2")

 sessions()

 @spec sessions() :: [atom()]

List all active named sessions.
Example
GnuplotEx.sessions()
=> [:analysis, :realtime]

 size(plot, dimensions)

 @spec size(
 GnuplotEx.Plot.t(),
 {pos_integer(), pos_integer()}
) :: GnuplotEx.Plot.t()

Set the plot size.
Example
plot |> GnuplotEx.size({800, 600})

 spider(plot, data)

 spider(plot, data, opts)

 @spec spider(GnuplotEx.Plot.t(), map() | Enumerable.t(), keyword()) ::
 GnuplotEx.Plot.t()

Add a spider/radar chart series.
Spider charts display multivariate data on axes radiating from a center point.
Useful for comparing multiple entities across several metrics.
Data Formats
	Single map: %{axis1: value1, axis2: value2, ...}
	List of maps: [%{name: "A", axis1: v1, ...}, ...]
	List of lists: [[v1, v2, ...], ...] (with :axes option)

Options
	:label - Legend label
	:axes - List of axis names (required for list-of-lists data)
	:filled - Fill the spider area (default: false)
	:alpha - Fill transparency 0.0-1.0 (default: 0.3)
	:color - Line/fill color

Examples
Single entity
stats = %{speed: 8, power: 6, defense: 7, magic: 5}
GnuplotEx.spider(stats, label: "Warrior", filled: true)
|> GnuplotEx.to_svg("/tmp/spider.svg")

Multiple entities comparison
data = [
 %{name: "Warrior", speed: 8, power: 6, defense: 7},
 %{name: "Mage", speed: 5, power: 9, defense: 4}
]
GnuplotEx.spider(data, filled: true)

With plot builder
GnuplotEx.new()
|> GnuplotEx.title("Character Comparison")
|> GnuplotEx.spider(data1, label: "A", filled: true)
|> GnuplotEx.spider(data2, label: "B", filled: false)

 splots(commands)

 @spec splots([command()]) :: command()

Build a comma-separated splot list for multiple 3D datasets.
Example
GnuplotEx.plot([
 [:set, :terminal, :svg],
 GnuplotEx.splots([
 ["-", :with, :pm3d],
 ["-", :with, :lines]
])
], [surface1, surface2])
This generates: splot "-" with pm3d, "-" with lines

 surface(plot, data_or_fn)

 surface(plot, data_or_fn, opts)

 @spec surface(GnuplotEx.Plot.t(), Enumerable.t() | fun(), keyword()) ::
 GnuplotEx.Plot.t()

Add a surface plot.
Data can be:
	A list of [x, y, z] points
	A function (x, y) -> z (requires x_range/y_range)

Options
	:label - Legend label
	:surface_style - :pm3d (default), :lines, or :hidden3d
	:samples - Grid resolution

Example
From data
data = for x <- 0..10, y <- 0..10, do: [x, y, x*x + y*y]
GnuplotEx.surface(data) |> GnuplotEx.to_svg("/tmp/surface.svg")

From function
GnuplotEx.surface(fn x, y -> :math.sin(x) * :math.cos(y) end,
 x_range: -5..5, y_range: -5..5)

 theme(plot, theme_value)

 @spec theme(GnuplotEx.Plot.t(), atom() | map()) :: GnuplotEx.Plot.t()

Set the plot theme.
Presets
	:default - Minimal theme with grid
	:dark - Dark background theme
	:publication - Publication-ready styling

Example
plot |> GnuplotEx.theme(:dark)

 title(plot, title_text)

 @spec title(GnuplotEx.Plot.t(), String.t()) :: GnuplotEx.Plot.t()

Set the plot title.
Example
plot |> GnuplotEx.title("My Plot")

 to_ascii(plot, opts \\ [])

 @spec to_ascii(
 GnuplotEx.Plot.t(),
 keyword()
) :: {:ok, String.t()} | {:error, term()}

Render plot to ASCII art.
Returns the ASCII representation as a string in the result.
Example
{:ok, ascii} = plot |> GnuplotEx.to_ascii()
IO.puts(ascii)

 to_png(plot, path, opts \\ [])

 @spec to_png(GnuplotEx.Plot.t(), String.t(), keyword()) ::
 {:ok, String.t()} | {:error, term()}

Render plot to PNG file.
Example
plot |> GnuplotEx.to_png("/tmp/plot.png")

 to_spec(plot)

 @spec to_spec(GnuplotEx.Plot.t()) :: GnuplotEx.Spec.t()

Convert a Plot to a Spec for inspection without execution.
Example
spec = plot |> GnuplotEx.to_spec()
IO.inspect(spec)

 to_svg(plot, path, opts \\ [])

 @spec to_svg(GnuplotEx.Plot.t(), String.t(), keyword()) ::
 {:ok, String.t()} | {:error, term()}

Render plot to SVG file.
Example
plot |> GnuplotEx.to_svg("/tmp/plot.svg")

 unset_nonlinear(plot, axis)

 @spec unset_nonlinear(GnuplotEx.Plot.t(), GnuplotEx.Plot.nonlinear_axis()) ::
 GnuplotEx.Plot.t()

Remove a nonlinear transformation from an axis.
Returns the axis to linear scaling.
Example
plot
|> GnuplotEx.nonlinear(:x, :log10)
|> GnuplotEx.unset_nonlinear(:x)

 version()

 @spec version() :: {:ok, String.t()} | {:error, term()}

Get the installed gnuplot version.
Example
{:ok, "6.0.0"} = GnuplotEx.version()

 version!()

 @spec version!() :: {:ok, String.t()} | {:error, term()}

Check if gnuplot version meets the minimum requirement (6.0.0).
Example
{:ok, "6.0.0"} = GnuplotEx.version!()
{:error, {:version_too_old, "5.4.0", "6.0.0"}} = GnuplotEx.version!()

 view_angle(plot, rotation, elevation)

 @spec view_angle(GnuplotEx.Plot.t(), number(), number()) :: GnuplotEx.Plot.t()

Set the 3D view angle.
Controls the viewing angle for 3D plots using rotation and elevation.
	rotation - Rotation around the Z-axis in degrees (0-360)
	elevation - Elevation angle in degrees (0-90, where 90 is top-down)

Example
plot |> GnuplotEx.view_angle(60, 30)

 x_label(plot, label)

 @spec x_label(GnuplotEx.Plot.t(), String.t()) :: GnuplotEx.Plot.t()

Set the X-axis label.
Example
plot |> GnuplotEx.x_label("Time (s)")

 x_range(plot, range)

 @spec x_range(GnuplotEx.Plot.t(), Range.t() | {number(), number()}) ::
 GnuplotEx.Plot.t()

Set the X-axis range.
Example
plot |> GnuplotEx.x_range(0..100)
plot |> GnuplotEx.x_range({-10, 10})

 y_label(plot, label)

 @spec y_label(GnuplotEx.Plot.t(), String.t()) :: GnuplotEx.Plot.t()

Set the Y-axis label.
Example
plot |> GnuplotEx.y_label("Value")

 y_range(plot, range)

 @spec y_range(GnuplotEx.Plot.t(), Range.t() | {number(), number()}) ::
 GnuplotEx.Plot.t()

Set the Y-axis range.
Example
plot |> GnuplotEx.y_range(-1..1)

 z_label(plot, label)

 @spec z_label(GnuplotEx.Plot.t(), String.t()) :: GnuplotEx.Plot.t()

Set the Z-axis label (for 3D plots).
Example
plot |> GnuplotEx.z_label("Height (m)")

 z_range(plot, range)

 @spec z_range(GnuplotEx.Plot.t(), Range.t() | {number(), number()}) ::
 GnuplotEx.Plot.t()

Set the Z-axis range (for 3D plots).
Example
plot |> GnuplotEx.z_range(0..100)

 GnuplotEx.Async - gnuplot_ex v0.2.2

GnuplotEx.Async

Async rendering functions for GnuplotEx.
Provides non-blocking alternatives to synchronous render functions,
enabling parallel plot generation and real-time streaming use cases.
Examples
Single async render
task = GnuplotEx.Async.render(plot, :svg)
{:ok, svg} = Task.await(task)

Parallel multi-plot rendering
plots = [plot1, plot2, plot3]
results = GnuplotEx.Async.render_many(plots, :svg, max_concurrency: 4)

Fire-and-forget with callback
GnuplotEx.Async.render_callback(plot, :svg, fn
 {:ok, svg} -> push_to_client(svg)
 {:error, reason} -> log_error(reason)
end)

 Summary

 Functions

 await_many(tasks, timeout \\ 5000)

 Await multiple render tasks with a timeout.

 render(plot, format \\ :svg, opts \\ [])

 Render a plot asynchronously, returning a Task.

 render_callback(plot, format, callback, opts \\ [])

 Render with callback on completion.

 render_many(plots, format \\ :svg, opts \\ [])

 Render multiple plots in parallel using Task.async_stream.

 Functions

 await_many(tasks, timeout \\ 5000)

 @spec await_many([Task.t()], timeout()) :: [term()]

Await multiple render tasks with a timeout.
Helper for managing multiple async renders started with render/3.
Example
tasks = Enum.map(plots, &GnuplotEx.Async.render/1)
results = GnuplotEx.Async.await_many(tasks, 30_000)

 render(plot, format \\ :svg, opts \\ [])

 @spec render(GnuplotEx.Plot.t(), atom(), keyword()) :: Task.t()

Render a plot asynchronously, returning a Task.
The task can be awaited with Task.await/2 or monitored for completion.
Options
All options are passed through to GnuplotEx.render/3.
Example
task = GnuplotEx.Async.render(plot, :svg)
... do other work ...
{:ok, svg} = Task.await(task)

 render_callback(plot, format, callback, opts \\ [])

 @spec render_callback(GnuplotEx.Plot.t(), atom(), (term() -> any()), keyword()) ::
 {:ok, pid()}

Render with callback on completion.
Useful for fire-and-forget scenarios or when integrating with
message-passing systems. The callback receives the render result.
Example
GnuplotEx.Async.render_callback(plot, :svg, fn
 {:ok, svg} -> send(pid, {:plot_ready, svg})
 {:error, reason} -> Logger.error("Render failed: #{reason}")
end)
Returns immediately with {:ok, pid}
Options
All options are passed through to GnuplotEx.render/3.

 render_many(plots, format \\ :svg, opts \\ [])

 @spec render_many([GnuplotEx.Plot.t()], atom(), keyword()) :: [
 ok: binary(),
 error: term()
]

Render multiple plots in parallel using Task.async_stream.
Returns a list of results in the same order as the input plots
(unless ordered: false is specified).
Options
	:max_concurrency - Maximum concurrent renders (default: System.schedulers_online())
	:timeout - Per-plot timeout in ms (default: 30_000)
	:ordered - Return results in order (default: true)

All other options are passed through to GnuplotEx.render/3.
Example
plots = [plot1, plot2, plot3]
results = GnuplotEx.Async.render_many(plots, :svg, max_concurrency: 4)
=> [{:ok, svg1}, {:ok, svg2}, {:ok, svg3}]

Handle mixed results
Enum.each(results, fn
 {:ok, svg} -> save(svg)
 {:error, reason} -> log_error(reason)
end)

 GnuplotEx.Channel - gnuplot_ex v0.2.2

GnuplotEx.Channel

Phoenix Channel for real-time plot streaming.
Enables pushing rendered plots to connected clients via WebSocket.
Includes built-in rate limiting for backpressure control.
Setup
	Add the channel to your socket:
 defmodule MyAppWeb.UserSocket do
 use Phoenix.Socket
 channel "gnuplot:*", GnuplotEx.Channel
 # ... socket implementation
 end

	Start the RateLimiter in your supervision tree (or let GnuplotEx.Application do it):
 children = [
 GnuplotEx.Channel.RateLimiter
]

Client Messages
	"render" - Request a plot render: {plot_id, plot_spec, format}
	"subscribe" - Subscribe to plot updates: {plot_ids: [...]}
	"unsubscribe" - Unsubscribe from updates: {plot_ids: [...]}

Server Messages
	"plot:update" - Pushed plot update {plot_id, format, data, timestamp}
	"plot:rendered" - Response to render request {plot_id, format, data, render_time_ms}
	"plot:error" - Render error {plot_id, reason, message}
	"plot:rate_limited" - Backpressure signal {plot_id, retry_after_ms}

Example: Server-side streaming
Push a pre-rendered plot to all subscribers
GnuplotEx.Channel.push_plot("dashboard", "sensor-1", svg_data, :svg)

Render and stream a plot
plot = GnuplotEx.scatter(data) |> GnuplotEx.title("Live Data")
GnuplotEx.Channel.stream_plot("dashboard", "cpu-usage", plot, :svg)
Example: Client-side (JavaScript)
let channel = socket.channel("gnuplot:dashboard", {})

channel.on("plot:update", ({plot_id, data, format}) => {
 document.getElementById(plot_id).innerHTML = data
})

channel.join()

// Request a specific render
channel.push("render", {plot_id: "chart1", format: "svg"})

 Summary

 Functions

 child_spec(init_arg)

 handle_in(binary, map, socket)

 Handle render request from client.

 join(arg, params, socket)

 Join a gnuplot topic.

 push_plot(topic, plot_id, data, format)

 Push a pre-rendered plot to all subscribers on a topic.

 start_link(triplet)

 stream_many(topic, plot_tuples, format, opts \\ [])

 Stream multiple plots in parallel.

 stream_plot(topic, plot_id, plot, format, opts \\ [])

 Render a plot and stream it to subscribers.

 Functions

 child_spec(init_arg)

 handle_in(binary, map, socket)

Handle render request from client.
Expects: %{"plot_id" => id, "format" => fmt, "spec" => plot_spec}
The plot_spec should be a serializable representation of the plot.
For security, this only supports pre-registered plot builders.

 join(arg, params, socket)

Join a gnuplot topic.
Topics follow the pattern gnuplot:<namespace> where namespace
can be any string identifier (e.g., "dashboard", "user:123").

 push_plot(topic, plot_id, data, format)

 @spec push_plot(String.t(), String.t(), binary(), atom()) :: :ok | {:error, term()}

Push a pre-rendered plot to all subscribers on a topic.
This is the most efficient way to stream plots when you've already
rendered the output.
Parameters
	topic - The gnuplot topic (e.g., "dashboard")
	plot_id - Unique identifier for this plot
	data - The rendered plot data (SVG string, PNG binary, etc.)
	format - The format atom (:svg, :png, etc.)

Example
svg = GnuplotEx.render(plot, :svg)
GnuplotEx.Channel.push_plot("dashboard", "sensor-1", svg, :svg)

 start_link(triplet)

 stream_many(topic, plot_tuples, format, opts \\ [])

 @spec stream_many(String.t(), [{String.t(), GnuplotEx.Plot.t()}], atom(), keyword()) ::
 :ok

Stream multiple plots in parallel.
Renders all plots concurrently and pushes each as it completes.
Example
plots = [
 {"cpu", cpu_plot},
 {"memory", mem_plot},
 {"disk", disk_plot}
]

GnuplotEx.Channel.stream_many("dashboard", plots, :svg)

 stream_plot(topic, plot_id, plot, format, opts \\ [])

 @spec stream_plot(String.t(), String.t(), GnuplotEx.Plot.t(), atom(), keyword()) ::
 :ok | {:error, term()}

Render a plot and stream it to subscribers.
Combines rendering and pushing in one call. Uses async rendering
to avoid blocking the caller.
Parameters
	topic - The gnuplot topic
	plot_id - Unique identifier for this plot
	plot - A GnuplotEx.Plot struct
	format - Output format (:svg, :png, etc.)
	opts - Render options

Options
	:timeout - Render timeout in ms (default: 30_000)
	All other options passed to GnuplotEx.render/3

Example
plot = GnuplotEx.scatter(sensor_data) |> GnuplotEx.title("Live Sensors")
GnuplotEx.Channel.stream_plot("dashboard", "sensors", plot, :svg)

 GnuplotEx.Channel.RateLimiter - gnuplot_ex v0.2.2

GnuplotEx.Channel.RateLimiter

Token bucket rate limiter for plot streaming.
Provides backpressure for high-frequency plot updates to prevent
overwhelming clients or consuming excessive resources.
Algorithm
Uses a token bucket algorithm:
	Each plot_id has its own bucket
	Tokens regenerate at rate per second
	Bucket can hold up to burst tokens
	Each update consumes one token

Configuration
config :gnuplot_ex,
 channel_rate: 10, # updates per second
 channel_burst: 20 # max burst size
Example
Check if allowed (returns remaining tokens or error)
case RateLimiter.check("sensor-1") do
 {:ok, remaining} -> push_update(...)
 {:error, :rate_limited, retry_after_ms} -> send_rate_limit_error(...)
end

Always allow (for admin/bypass)
RateLimiter.allow("admin-plot")

 Summary

 Functions

 allow(plot_id, opts \\ [])

 Force allow an update, bypassing rate limits.

 check(plot_id, opts \\ [])

 Check if a plot update is allowed under rate limits.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 reset(plot_id, opts \\ [])

 Reset rate limit state for a plot.

 start_link(opts \\ [])

 Start the rate limiter process.

 stats(opts \\ [])

 Get rate limiter stats.

 tokens(plot_id, opts \\ [])

 Get current token count for a plot.

 Functions

 allow(plot_id, opts \\ [])

 @spec allow(
 String.t(),
 keyword()
) :: :ok

Force allow an update, bypassing rate limits.
Useful for admin actions or priority updates.

 check(plot_id, opts \\ [])

 @spec check(
 String.t(),
 keyword()
) :: {:ok, non_neg_integer()} | {:error, :rate_limited, pos_integer()}

Check if a plot update is allowed under rate limits.
Returns:
	{:ok, remaining_tokens} - Update allowed
	{:error, :rate_limited, retry_after_ms} - Rate limited, wait before retry

Example
case RateLimiter.check("my-plot") do
 {:ok, _} -> proceed_with_update()
 {:error, :rate_limited, ms} -> schedule_retry(ms)
end

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 reset(plot_id, opts \\ [])

 @spec reset(
 String.t(),
 keyword()
) :: :ok

Reset rate limit state for a plot.
Restores tokens to full burst capacity.

 start_link(opts \\ [])

Start the rate limiter process.

 stats(opts \\ [])

 @spec stats(keyword()) :: map()

Get rate limiter stats.

 tokens(plot_id, opts \\ [])

 @spec tokens(
 String.t(),
 keyword()
) :: non_neg_integer() | nil

Get current token count for a plot.
Returns nil if plot has no rate limit state.

 GnuplotEx.Command - gnuplot_ex v0.2.2

GnuplotEx.Command protocol

Protocol for formatting Elixir terms as gnuplot command strings.
This protocol enables extensible command serialization. Users can implement
it for custom types to integrate with the plotting API.
Built-in Implementations
	Type	Example Input	Output
	Atom	:set	"set"
	Integer	42	"42"
	Float	3.14	"3.14"
	String	"Title"	"\"Title\""
	Charlist	'sin(x)'	"sin(x)"
	Range	0..10	"[0:10]"
	Tuple	{800, 600}	"800,600"
	List	[:set, :term]	"set term"
	PlotList	comma-separated	"a, b, c"

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 format(term)

 Format an Elixir term as a gnuplot command string.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 format(term)

 @spec format(t()) :: String.t()

Format an Elixir term as a gnuplot command string.

 GnuplotEx.Command.Formatter - gnuplot_ex v0.2.2

GnuplotEx.Command.Formatter

Helper functions for formatting multiple commands.

 Summary

 Functions

 format_commands(commands)

 Format a list of commands into a gnuplot script string.

 Functions

 format_commands(commands)

 @spec format_commands([list()]) :: String.t()

Format a list of commands into a gnuplot script string.
Commands are joined with semicolons and newlines.
Example
iex> commands = [[:set, :terminal, :svg], [:plot, 'sin(x)']]
iex> GnuplotEx.Command.Formatter.format_commands(commands)
"set terminal svg;\nplot sin(x)"

 GnuplotEx.Dataset - gnuplot_ex v0.2.2

GnuplotEx.Dataset protocol

Protocol for formatting data for gnuplot transmission.
Implement this protocol for custom data types to enable direct plotting.
Built-in Implementations
	List - formats as inline text data

Example
defimpl GnuplotEx.Dataset, for: MyCustomDataFrame do
 def format(df, opts) do
 df
 |> MyCustomDataFrame.to_rows()
 |> GnuplotEx.Dataset.Helpers.format_text()
 end
end

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 format(data, opts \\ [])

 Format data for gnuplot transmission.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 format(data, opts \\ [])

 @spec format(
 t(),
 keyword()
) :: Enumerable.t()

Format data for gnuplot transmission.
Returns a Stream of strings to be sent to gnuplot's stdin.
Options
	:mode - :text (default) or :binary (future)

 GnuplotEx.Dataset.Binary - gnuplot_ex v0.2.2

GnuplotEx.Dataset.Binary

Binary data formatting for gnuplot.
Provides functions to write data in gnuplot's binary format for faster
transmission of large datasets. Uses temporary files which are cleaned
up after rendering.
Gnuplot Binary Format
Gnuplot expects binary data as raw IEEE 754 doubles (64-bit floats)
with native byte order:
plot 'data.bin' binary format='%double%double' using 1:2
Example
Write binary data
{:ok, path, format} = Binary.write_temp([[1.0, 2.0], [3.0, 4.0]])
path = "/tmp/gnuplot_xxx.bin"
format = "%double%double"

Clean up after use
Binary.cleanup([path])

 Summary

 Functions

 cleanup(paths)

 Clean up temporary binary files.

 column_count(data)

 Count the number of columns in the first row of data.

 format_string(columns)

 Generate gnuplot format string based on column count.

 write_temp(data, opts \\ [])

 Write data to a temporary file in binary format.

 Functions

 cleanup(paths)

 @spec cleanup([String.t()]) :: :ok

Clean up temporary binary files.
Silently ignores files that don't exist or can't be deleted.
Example
Binary.cleanup(["/tmp/gnuplot_xxx.bin", "/tmp/gnuplot_yyy.bin"])

 column_count(data)

 @spec column_count(Enumerable.t()) :: non_neg_integer()

Count the number of columns in the first row of data.
Returns 0 for empty data.
Examples
iex> GnuplotEx.Dataset.Binary.column_count([[1, 2, 3], [4, 5, 6]])
3

iex> GnuplotEx.Dataset.Binary.column_count([])
0

 format_string(columns)

 @spec format_string(non_neg_integer()) :: String.t()

Generate gnuplot format string based on column count.
Examples
iex> GnuplotEx.Dataset.Binary.format_string(2)
"%double%double"

iex> GnuplotEx.Dataset.Binary.format_string(3)
"%double%double%double"

 write_temp(data, opts \\ [])

 @spec write_temp(
 Enumerable.t(),
 keyword()
) :: {:ok, String.t(), String.t()} | {:error, term()}

Write data to a temporary file in binary format.
Returns {:ok, path, format_string} where:
	path is the temp file path
	format_string is the gnuplot format specifier (e.g., "%double%double")

Options
	:prefix - Temp file prefix (default: "gnuplot_")

Example
{:ok, path, format} = Binary.write_temp([[1.0, 2.0], [3.0, 4.0]])

 GnuplotEx.Dataset.Helpers - gnuplot_ex v0.2.2

GnuplotEx.Dataset.Helpers

Shared utilities for dataset formatting.
Provides stream-based formatting for efficient memory usage with large datasets.

 Summary

 Functions

 format_grid(data)

 Format 3D grid dataset for pm3d surface rendering.

 format_point(point)

 Format a single data point as a space-separated string.

 format_text(data)

 Format dataset as a text stream for gnuplot inline data.

 format_value(value)

 Format a single value for gnuplot.

 Functions

 format_grid(data)

 @spec format_grid(Enumerable.t()) :: Enumerable.t()

Format 3D grid dataset for pm3d surface rendering.
Inserts blank lines between rows when the first column (x/u) value changes.
This is required for gnuplot's pm3d to render surfaces correctly.
Example
iex> data = [[0, 0, 1], [0, 1, 2], [1, 0, 3], [1, 1, 4]]
iex> data |> GnuplotEx.Dataset.Helpers.format_grid() |> Enum.join()
"0 0 1\n0 1 2\n\n1 0 3\n1 1 4\ne\n"

 format_point(point)

 @spec format_point(list() | tuple()) :: String.t()

Format a single data point as a space-separated string.
Handles both list and tuple formats.
Examples
iex> GnuplotEx.Dataset.Helpers.format_point([1, 2, 3])
"1 2 3"

iex> GnuplotEx.Dataset.Helpers.format_point({1.5, 2.5})
"1.5 2.5"

 format_text(data)

 @spec format_text(Enumerable.t()) :: Enumerable.t()

Format dataset as a text stream for gnuplot inline data.
Returns a Stream that yields formatted rows followed by the gnuplot
end-of-data marker (e).
Supports both flat data (list of points) and grid data (list of rows of points).
Grid data gets blank lines between rows for pm3d surface rendering.
Example
iex> data = [[0, 0], [1, 2], [2, 4]]
iex> data |> GnuplotEx.Dataset.Helpers.format_text() |> Enum.join()
"0 0\n1 2\n2 4\ne\n"

 format_value(value)

 @spec format_value(number() | String.t()) :: String.t()

Format a single value for gnuplot.
Examples
iex> GnuplotEx.Dataset.Helpers.format_value(42)
"42"

iex> GnuplotEx.Dataset.Helpers.format_value(3.14)
"3.14"

iex> GnuplotEx.Dataset.Helpers.format_value("label")
"label"

iex> GnuplotEx.Dataset.Helpers.format_value("with space")
"\"with space\""

 GnuplotEx.GridData - gnuplot_ex v0.2.2

GnuplotEx.GridData

Wrapper for 3D grid data that needs blank lines between rows for pm3d rendering.

 Summary

 Functions

 new(data)

 Functions

 new(data)

 GnuplotEx.LiveView.Cache - gnuplot_ex v0.2.2

GnuplotEx.LiveView.Cache

ETS-based cache for rendered plots with TTL support.
Prevents redundant gnuplot executions when plot data hasn't changed.
Thread-safe for concurrent LiveView processes.
Usage
The cache is automatically started by the application supervision tree
when Phoenix LiveView is available.
You typically don't need to interact with this module directly - the
GnuplotEx.LiveView.Component handles caching automatically.
Manual Usage
Get cached plot output
case GnuplotEx.LiveView.Cache.get(cache_key) do
 {:ok, output} -> output
 :miss -> # render plot
end

Store plot output with TTL
GnuplotEx.LiveView.Cache.put(cache_key, output, 60_000)

Get cache statistics
stats = GnuplotEx.LiveView.Cache.stats()
=> %{entries: 42, memory_bytes: 1_048_576}

Clear all cache entries
GnuplotEx.LiveView.Cache.clear()
Configuration
config/config.exs
config :gnuplot_ex,
 cache_cleanup_interval: 60_000 # milliseconds

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear()

 Clear all cache entries.

 get(key)

 Get cached plot output.

 put(key, output, ttl_ms)

 Store plot output with TTL.

 start_link(opts \\ [])

 Starts the cache GenServer.

 stats()

 Get cache statistics.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear()

 @spec clear() :: :ok

Clear all cache entries.
Examples
iex> GnuplotEx.LiveView.Cache.clear()
:ok

 get(key)

 @spec get(term()) :: {:ok, binary()} | :miss

Get cached plot output.
Returns {:ok, output} if found and not expired, :miss otherwise.
Examples
iex> GnuplotEx.LiveView.Cache.get(:my_key)
{:ok, "<svg>...</svg>"}

iex> GnuplotEx.LiveView.Cache.get(:nonexistent)
:miss

 put(key, output, ttl_ms)

 @spec put(term(), binary(), pos_integer()) :: :ok

Store plot output with TTL.
Examples
iex> GnuplotEx.LiveView.Cache.put(:my_key, "<svg>...</svg>", 60_000)
:ok

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the cache GenServer.
This is typically called by the application supervision tree.

 stats()

 @spec stats() :: %{entries: non_neg_integer(), memory_bytes: non_neg_integer()}

Get cache statistics.
Returns a map with:
	:entries - Number of cached items
	:memory_bytes - Approximate memory usage in bytes

Examples
iex> GnuplotEx.LiveView.Cache.stats()
%{entries: 42, memory_bytes: 1_048_576}

 GnuplotEx.LiveView.Component - gnuplot_ex v0.2.2

GnuplotEx.LiveView.Component

Phoenix LiveView components for GnuplotEx.
Provides the live_gnuplot/1 function component for rendering plots in LiveView.
Installation
Add {:phoenix_live_view, "~> 1.0"} to your dependencies in mix.exs.
Basic Usage
defmodule MyAppWeb.ChartLive do
 use Phoenix.LiveView
 import GnuplotEx.LiveView.Component

 def render(assigns) do
 ~H"""
 <.live_gnuplot plot={@plot} />
 """
 end

 def mount(_params, _session, socket) do
 plot = GnuplotEx.new()
 |> GnuplotEx.scatter([[1, 2], [3, 4], [5, 6]])
 |> GnuplotEx.title("My Plot")

 {:ok, assign(socket, plot: plot)}
 end
end
Real-time Updates
def handle_info({:new_data, data}, socket) do
 plot = GnuplotEx.new()
 |> GnuplotEx.line(data, label: "Real-time")

 {:noreply, assign(socket, plot: plot)}
end
Interactive 3D
For interactive 3D plots with mouse controls, use the GnuplotInteractive hook:
<.live_gnuplot
 plot={@plot}
 id="my-plot"
 phx-hook="GnuplotInteractive"
/>
See the LiveView guide for more examples.

 Summary

 Functions

 live_gnuplot(assigns)

 Renders a GnuplotEx plot in LiveView.

 Functions

 live_gnuplot(assigns)

Renders a GnuplotEx plot in LiveView.
Attributes
	plot (required) - The GnuplotEx.Plot struct to render
	format - Output format (:svg or :png), defaults to :svg
	width - Plot width in pixels, defaults to 800
	height - Plot height in pixels, defaults to 600
	cache - Enable plot caching, defaults to true
	cache_ttl - Cache TTL in milliseconds, defaults to 60_000 (1 minute)
	class - CSS class for container div, defaults to ""
	on_error - Custom error handler function, defaults to nil
	rest - Additional HTML attributes passed to the container

Slots
	fallback - Content to show while loading or on error

Examples
Basic usage
<.live_gnuplot plot={@plot} />

Custom size
<.live_gnuplot plot={@plot} width={1200} height={600} />

PNG format with caching disabled
<.live_gnuplot plot={@plot} format={:png} cache={false} />

With fallback content
<.live_gnuplot plot={@plot}>
 <:fallback>
 <div class="loading">Rendering plot...</div>
 </:fallback>
</.live_gnuplot>

With custom error handler
<.live_gnuplot
 plot={@plot}
 on_error={fn reason -> content_tag(:p, "Error: #{reason}") end}
/>
Attributes
	plot (GnuplotEx.Plot) (required) - The plot to render.
	format (:atom) - Output format. Defaults to :svg. Must be one of :svg, or :png.
	width (:integer) - Plot width in pixels. Defaults to 800.
	height (:integer) - Plot height in pixels. Defaults to 600.
	cache (:boolean) - Enable plot caching. Defaults to true.
	cache_ttl (:integer) - Cache TTL in milliseconds. Defaults to 60000.
	class (:string) - CSS class for container. Defaults to "".
	on_error (:any) - Custom error handler function. Defaults to nil.
	Global attributes are accepted. Additional HTML attributes.

Slots
	fallback - Content to show while loading or on error.

 GnuplotEx.LiveView.Streaming - gnuplot_ex v0.2.2

GnuplotEx.LiveView.Streaming

Streaming helpers for real-time plot updates in LiveView.
Provides utilities for:
	Non-blocking async rendering with prepare_async/3
	Debounced plot streams with new_stream/2 and push_stream/3
	Rate-limited updates

Async Rendering
For plots that take time to render, use async rendering to avoid
blocking the socket:
def mount(_params, _session, socket) do
 socket =
 socket
 |> assign(:plot, build_plot())
 |> prepare_async(:plot, :plot_result)

 {:ok, socket}
end

def render(assigns) do
 ~H"""
 <.live_gnuplot_async result={@plot_result}>
 <:loading><.spinner /></:loading>
 </.live_gnuplot_async>
 """
end
Debounced Streams
For high-frequency updates (e.g., sensor data), use debounced streams
to limit render frequency:
def mount(_params, _session, socket) do
 socket =
 socket
 |> new_stream(:sensor_plots, debounce: 100)

 {:ok, socket}
end

def handle_info({:sensor_data, data}, socket) do
 plot = GnuplotEx.scatter(data)
 {:noreply, push_stream(socket, :sensor_plots, "sensor-1", plot)}
end

 Summary

 Functions

 broadcast_plot(topic, plot_id, plot, format, opts \\ [])

 Render a plot and broadcast to channel subscribers.

 handle_debounce(socket, stream_name, plot_id)

 Handle the debounce timer message.

 new_stream(socket, stream_name, opts \\ [])

 Create a new debounced stream for plot updates.

 prepare_async(socket, plot_key, result_key, opts \\ [])

 Prepare an async rendering task for a plot.

 push_stream(socket, stream_name, plot_id, plot)

 Push a plot update to a stream with debouncing.

 Functions

 broadcast_plot(topic, plot_id, plot, format, opts \\ [])

 @spec broadcast_plot(String.t(), String.t(), GnuplotEx.Plot.t(), atom(), keyword()) ::
 :ok | {:error, term()}

Render a plot and broadcast to channel subscribers.
Combines rendering with channel broadcasting for real-time updates.
Example
In a GenServer or process monitoring data:
def handle_info({:data, data}, state) do
 plot = GnuplotEx.scatter(data)
 :ok = broadcast_plot("dashboard", "sensor-1", plot, :svg)
 {:noreply, state}
end

 handle_debounce(socket, stream_name, plot_id)

 @spec handle_debounce(Phoenix.LiveView.Socket.t(), atom(), String.t()) ::
 Phoenix.LiveView.Socket.t()

Handle the debounce timer message.
Add this to your handle_info/2:
def handle_info({:gnuplot_debounce, stream_name, plot_id}, socket) do
 {:noreply, GnuplotEx.LiveView.Streaming.handle_debounce(socket, stream_name, plot_id)}
end

 new_stream(socket, stream_name, opts \\ [])

 @spec new_stream(Phoenix.LiveView.Socket.t(), atom(), keyword()) ::
 Phoenix.LiveView.Socket.t()

Create a new debounced stream for plot updates.
Streams batch rapid updates to reduce render frequency
while keeping the UI responsive.
Options
	:debounce - Minimum ms between updates (default: 50)
	:format - Output format (default: :svg)

Example
socket
|> new_stream(:charts, debounce: 100)

 prepare_async(socket, plot_key, result_key, opts \\ [])

 @spec prepare_async(Phoenix.LiveView.Socket.t(), atom(), atom(), keyword()) ::
 Phoenix.LiveView.Socket.t()

Prepare an async rendering task for a plot.
This sets up a LiveView async assign that renders the plot
in a background task, allowing the socket to continue processing.
Parameters
	socket - The LiveView socket
	plot_key - The key where the plot is stored in assigns
	result_key - The key to store the async result
	opts - Options

Options
	:format - Output format (default: :svg)
	:width - Plot width (default: 800)
	:height - Plot height (default: 600)

Example
socket
|> assign(:plot, my_plot)
|> prepare_async(:plot, :plot_result)

 push_stream(socket, stream_name, plot_id, plot)

 @spec push_stream(Phoenix.LiveView.Socket.t(), atom(), String.t(), GnuplotEx.Plot.t()) ::
 Phoenix.LiveView.Socket.t()

Push a plot update to a stream with debouncing.
If updates arrive faster than the debounce interval, only the
latest plot will be rendered. This prevents overwhelming the
renderer during rapid data updates.
Example
In handle_info
def handle_info({:data, data}, socket) do
 plot = GnuplotEx.scatter(data)
 {:noreply, push_stream(socket, :charts, "my-chart", plot)}
end

 GnuplotEx.ML.Confusion - gnuplot_ex v0.2.2

GnuplotEx.ML.Confusion

Confusion matrix heatmap visualization.
Provides functions to visualize classification confusion matrices as heatmaps
with proper labels, normalization options, and customizable color schemes.
Examples
Basic confusion matrix
matrix = [
 [50, 2, 1],
 [3, 45, 2],
 [1, 1, 48]
]
classes = ["Cat", "Dog", "Bird"]

plot = GnuplotEx.ML.Confusion.plot(matrix, classes)
GnuplotEx.render(plot, :svg)

Normalized confusion matrix
plot = GnuplotEx.ML.Confusion.plot(matrix, classes,
 normalize: true,
 title: "Normalized Confusion Matrix"
)

 Summary

 Functions

 accuracy(matrix)

 Calculate accuracy from confusion matrix.

 f1_score(matrix)

 Calculate F1 score from confusion matrix.

 normalize_matrix(matrix)

 Normalize confusion matrix by row (true class).

 plot(matrix, class_names, opts \\ [])

 Plot a confusion matrix as a heatmap.

 precision(matrix)

 Calculate per-class precision from confusion matrix.

 recall(matrix)

 Calculate per-class recall from confusion matrix.

 Functions

 accuracy(matrix)

Calculate accuracy from confusion matrix.
Returns the overall accuracy (sum of diagonal / sum of all elements).
Example
iex> matrix = [[50, 10], [5, 35]]
iex> GnuplotEx.ML.Confusion.accuracy(matrix)
0.85

 f1_score(matrix)

Calculate F1 score from confusion matrix.
Returns a list of F1 scores for each class.
F1 = 2 (precision recall) / (precision + recall)
Example
iex> matrix = [[50, 10], [5, 35]]
iex> GnuplotEx.ML.Confusion.f1_score(matrix)
[0.8771929824561403, 0.823529411764706]

 normalize_matrix(matrix)

Normalize confusion matrix by row (true class).
Each row sums to 1.0, showing the proportion of predictions for each true class.
Example
iex> matrix = [[50, 10], [5, 35]]
iex> GnuplotEx.ML.Confusion.normalize_matrix(matrix)
[[0.8333333333333334, 0.16666666666666666], [0.125, 0.875]]

 plot(matrix, class_names, opts \\ [])

Plot a confusion matrix as a heatmap.
Creates a heatmap visualization of a confusion matrix with class labels
on both axes and optional normalization.
Parameters
	matrix - 2D list representing the confusion matrix (rows = true labels, cols = predicted labels)
	class_names - List of class names for labels

Options
	:normalize - Normalize by row (true class) when true (default: false)
	:title - Plot title (default: "Confusion Matrix")
	:palette - Color palette (default: :viridis)
	:show_values - Annotate cells with values (default: false, gnuplot limitation)
	:colorbar - Show colorbar (default: true)
	:value_format - Format string for normalized values (default: "%.2f")

Examples
Binary classification
matrix = [[95, 5], [10, 90]]
classes = ["Negative", "Positive"]
plot = GnuplotEx.ML.Confusion.plot(matrix, classes)

Multi-class with normalization
matrix = [[50, 2, 1], [3, 45, 2], [1, 1, 48]]
classes = ["Cat", "Dog", "Bird"]
plot = GnuplotEx.ML.Confusion.plot(matrix, classes,
 normalize: true,
 palette: :plasma
)

Custom color scheme
plot = GnuplotEx.ML.Confusion.plot(matrix, classes,
 palette: {:custom, ["#ffffff", "#ff0000"]}
)

 precision(matrix)

Calculate per-class precision from confusion matrix.
Precision = True Positives / (True Positives + False Positives)
Returns a list of precision values for each class.
Example
iex> matrix = [[50, 10], [5, 35]]
iex> GnuplotEx.ML.Confusion.precision(matrix)
[0.9090909090909091, 0.7777777777777778]

 recall(matrix)

Calculate per-class recall from confusion matrix.
Recall = True Positives / (True Positives + False Negatives)
Returns a list of recall values for each class.
Example
iex> matrix = [[50, 10], [5, 35]]
iex> GnuplotEx.ML.Confusion.recall(matrix)
[0.8333333333333334, 0.875]

 GnuplotEx.ML.Embeddings - gnuplot_ex v0.2.2

GnuplotEx.ML.Embeddings

Embedding visualization for dimensionality reduction techniques.
Provides functions to visualize high-dimensional embeddings (t-SNE, UMAP, PCA, etc.)
in 2D or 3D space, with points colored by class labels or clusters.
Examples
2D embeddings with labels
embeddings = [[1.2, 3.4], [2.1, 4.3], [1.5, 3.8], [5.2, 6.1], [5.5, 6.3]]
labels = [0, 0, 0, 1, 1]

plot = GnuplotEx.ML.Embeddings.plot(embeddings, labels,
 label_names: ["Class A", "Class B"]
)

3D embeddings
embeddings_3d = [[1, 2, 3], [2, 3, 4], [5, 6, 7], [6, 7, 8]]
labels = [0, 0, 1, 1]

plot = GnuplotEx.ML.Embeddings.plot(embeddings_3d, labels)

 Summary

 Functions

 plot(embeddings, labels, opts \\ [])

 Plot 2D or 3D embeddings colored by labels.

 plot_2d(embeddings, labels, opts \\ [])

 Plot 2D embeddings colored by labels.

 plot_3d(embeddings, labels, opts \\ [])

 Plot 3D embeddings colored by labels.

 plot_unlabeled(embeddings, opts \\ [])

 Plot embeddings without labels (all same color).

 Functions

 plot(embeddings, labels, opts \\ [])

Plot 2D or 3D embeddings colored by labels.
Automatically detects dimensionality based on the first embedding point
and creates either a 2D scatter plot or 3D scatter plot accordingly.
Parameters
	embeddings - List of embedding vectors, each being a 2D or 3D point
	labels - List of integer labels corresponding to each embedding

Options
	:label_names - List of class names (default: auto-generated "Class 0", "Class 1", ...)
	:title - Plot title (default: "Embeddings" for 2D, "3D Embeddings" for 3D)
	:colors - Map of label indices to colors (auto-assigned if not provided)
	:point_type - Point type (default: 7 - filled circle)
	:point_size - Point size (default: 1.5)
	:legend - Legend position (default: :top_right)
	:x_label - X-axis label (default: "Dimension 1")
	:y_label - Y-axis label (default: "Dimension 2")
	:z_label - Z-axis label for 3D (default: "Dimension 3")

Examples
iex> embeddings = [[1.2, 3.4], [2.1, 4.3], [1.5, 3.8], [5.2, 6.1]]
iex> labels = [0, 0, 1, 1]
iex> plot = GnuplotEx.ML.Embeddings.plot(embeddings, labels)

With custom labels and colors
iex> plot = GnuplotEx.ML.Embeddings.plot(embeddings, labels,
...> label_names: ["Setosa", "Versicolor"],
...> colors: %{0 => "#E95420", 1 => "#0066CC"},
...> title: "t-SNE Visualization"
...>)

3D embeddings
iex> embeddings_3d = [[1, 2, 3], [2, 3, 4], [5, 6, 7]]
iex> labels = [0, 0, 1]
iex> plot = GnuplotEx.ML.Embeddings.plot(embeddings_3d, labels)

 plot_2d(embeddings, labels, opts \\ [])

Plot 2D embeddings colored by labels.
Creates a 2D scatter plot with different colors/markers for each class.
Parameters
	embeddings - List of 2D embedding vectors [x, y]
	labels - List of integer labels corresponding to each embedding

Options
Same as plot/3, plus:
	:x_label - X-axis label (default: "Dimension 1")
	:y_label - Y-axis label (default: "Dimension 2")

Examples
iex> embeddings = [[1.2, 3.4], [2.1, 4.3], [5.2, 6.1]]
iex> labels = [0, 0, 1]
iex> plot = GnuplotEx.ML.Embeddings.plot_2d(embeddings, labels,
...> title: "PCA Visualization",
...> x_label: "PC1",
...> y_label: "PC2"
...>)

 plot_3d(embeddings, labels, opts \\ [])

Plot 3D embeddings colored by labels.
Creates a 3D scatter plot with different colors/markers for each class.
Parameters
	embeddings - List of 3D embedding vectors [x, y, z]
	labels - List of integer labels corresponding to each embedding

Options
Same as plot/3, plus:
	:z_label - Z-axis label (default: "Dimension 3")

Examples
iex> embeddings = [[1, 2, 3], [2, 3, 4], [5, 6, 7]]
iex> labels = [0, 0, 1]
iex> plot = GnuplotEx.ML.Embeddings.plot_3d(embeddings, labels,
...> title: "3D t-SNE",
...> label_names: ["Cluster 1", "Cluster 2"]
...>)

 plot_unlabeled(embeddings, opts \\ [])

Plot embeddings without labels (all same color).
Useful for unsupervised visualization or when labels are not available.
Examples
iex> embeddings = [[1, 2], [3, 4], [5, 6]]
iex> plot = GnuplotEx.ML.Embeddings.plot_unlabeled(embeddings,
...> title: "UMAP Projection",
...> color: "#E95420"
...>)

 GnuplotEx.ML.Loss - gnuplot_ex v0.2.2

GnuplotEx.ML.Loss

Helpers for plotting training metrics and loss curves.
Provides convenient functions for common machine learning visualization patterns
including loss curves, training vs validation comparisons, and multi-metric plots.
Examples
Simple loss curve
train_loss = [0.9, 0.7, 0.5, 0.3, 0.2]
val_loss = [0.95, 0.75, 0.6, 0.45, 0.35]

plot = GnuplotEx.ML.Loss.plot(train_loss, val_loss)
GnuplotEx.render(plot, :svg)

Multiple metrics
metrics = %{
 train_loss: [0.9, 0.7, 0.5, 0.3, 0.2],
 val_loss: [0.95, 0.75, 0.6, 0.45, 0.35],
 train_acc: [0.6, 0.7, 0.8, 0.85, 0.9],
 val_acc: [0.55, 0.68, 0.75, 0.82, 0.88]
}

plot = GnuplotEx.ML.Loss.plot_metrics(metrics,
 title: "Training Progress",
 x_label: "Epoch"
)

 Summary

 Functions

 plot(train_loss, val_loss, opts \\ [])

 Plot training and validation loss curves.

 plot_metrics(metrics_map, opts \\ [])

 Plot multiple metrics on the same plot.

 plot_single(values, opts \\ [])

 Plot a single loss/metric curve.

 Functions

 plot(train_loss, val_loss, opts \\ [])

Plot training and validation loss curves.
Creates a line plot showing both training and validation loss over epochs/iterations,
making it easy to identify overfitting or underfitting patterns.
Options
	:title - Plot title (default: "Training Progress")
	:x_label - Label for x-axis (default: "Epoch")
	:y_label - Label for y-axis (default: "Loss")
	:train_label - Label for training line (default: "Training Loss")
	:val_label - Label for validation line (default: "Validation Loss")
	:train_color - Color for training line (default: "#E95420" - Ubuntu orange)
	:val_color - Color for validation line (default: "#0066CC" - blue)
	:line_width - Line width (default: 2)
	:legend - Legend position (default: :top_right)

Examples
iex> train_loss = [0.9, 0.7, 0.5, 0.3, 0.2]
iex> val_loss = [0.95, 0.75, 0.6, 0.45, 0.35]
iex> plot = GnuplotEx.ML.Loss.plot(train_loss, val_loss)

Custom styling
iex> plot = GnuplotEx.ML.Loss.plot(train_loss, val_loss,
...> title: "Model Training",
...> x_label: "Iteration",
...> train_color: "#FF0000",
...> val_color: "#00FF00"
...>)

 plot_metrics(metrics_map, opts \\ [])

Plot multiple metrics on the same plot.
Takes a map of metric names to value lists and plots them all together.
Useful for comparing multiple metrics (loss, accuracy, F1, etc.) in one view.
Options
	:title - Plot title (default: "Training Metrics")
	:x_label - Label for x-axis (default: "Epoch")
	:y_label - Label for y-axis (default: "Value")
	:colors - Map of metric names to colors (auto-assigned if not provided)
	:line_width - Line width (default: 2)
	:legend - Legend position (default: :top_right)

Examples
iex> metrics = %{
...> train_loss: [0.9, 0.7, 0.5, 0.3, 0.2],
...> val_loss: [0.95, 0.75, 0.6, 0.45, 0.35],
...> train_acc: [0.6, 0.7, 0.8, 0.85, 0.9],
...> val_acc: [0.55, 0.68, 0.75, 0.82, 0.88]
...> }
iex> plot = GnuplotEx.ML.Loss.plot_metrics(metrics)

With custom colors
iex> plot = GnuplotEx.ML.Loss.plot_metrics(metrics,
...> colors: %{
...> train_loss: "#E95420",
...> val_loss: "#0066CC",
...> train_acc: "#77DD77",
...> val_acc: "#FF6B6B"
...> }
...>)

 plot_single(values, opts \\ [])

Plot a single loss/metric curve.
Useful for plotting a single metric over time without train/val split.
Options
	:title - Plot title (default: "Training Metric")
	:x_label - Label for x-axis (default: "Epoch")
	:y_label - Label for y-axis (default: "Value")
	:label - Line label (default: "Metric")
	:color - Line color (default: "#E95420")
	:line_width - Line width (default: 2)

Examples
iex> loss_values = [0.9, 0.7, 0.5, 0.3, 0.2]
iex> plot = GnuplotEx.ML.Loss.plot_single(loss_values,
...> title: "Training Loss",
...> y_label: "Cross-Entropy Loss"
...>)

 GnuplotEx.ML.ROC - gnuplot_ex v0.2.2

GnuplotEx.ML.ROC

ROC curve visualization for binary and multi-class classification.
Provides functions to plot Receiver Operating Characteristic (ROC) curves,
which show the trade-off between true positive rate and false positive rate
at various classification thresholds.
Examples
Binary classification ROC curve
fpr = [0.0, 0.1, 0.2, 0.5, 1.0]
tpr = [0.0, 0.6, 0.8, 0.95, 1.0]

plot = GnuplotEx.ML.ROC.plot(fpr, tpr, auc: 0.85)
GnuplotEx.render(plot, :svg)

Multi-class ROC curves
roc_data = %{
 "Class A" => {fpr_a, tpr_a, 0.92},
 "Class B" => {fpr_b, tpr_b, 0.88},
 "Class C" => {fpr_c, tpr_c, 0.85}
}

plot = GnuplotEx.ML.ROC.plot_multiclass(roc_data)

 Summary

 Functions

 calculate_auc(fpr, tpr)

 Calculate the area under the ROC curve (AUC) using the trapezoidal rule.

 calculate_curve(scores, labels, opts \\ [])

 Calculate ROC curve points from scores and labels.

 plot(fpr, tpr, opts \\ [])

 Plot a binary classification ROC curve.

 plot_multiclass(roc_data, opts \\ [])

 Plot ROC curves for multi-class classification.

 Functions

 calculate_auc(fpr, tpr)

Calculate the area under the ROC curve (AUC) using the trapezoidal rule.
Parameters
	fpr - List of false positive rates (x values, must be sorted)
	tpr - List of true positive rates (y values)

Returns
The AUC value as a float between 0.0 and 1.0.
Examples
iex> fpr = [0.0, 0.25, 0.5, 0.75, 1.0]
iex> tpr = [0.0, 0.5, 0.75, 0.9, 1.0]
iex> GnuplotEx.ML.ROC.calculate_auc(fpr, tpr)
0.8125

 calculate_curve(scores, labels, opts \\ [])

Calculate ROC curve points from scores and labels.
Given prediction scores and true binary labels, computes the FPR and TPR
at various thresholds.
Parameters
	scores - List of prediction scores (higher = more likely positive)
	labels - List of true binary labels (1 for positive, 0 for negative)

Options
	:n_thresholds - Number of thresholds to evaluate (default: 100)

Returns
A tuple {fpr, tpr, thresholds} where each is a list.
Examples
iex> scores = [0.9, 0.8, 0.7, 0.4, 0.3, 0.1]
iex> labels = [1, 1, 0, 1, 0, 0]
iex> {fpr, tpr, _thresholds} = GnuplotEx.ML.ROC.calculate_curve(scores, labels)

 plot(fpr, tpr, opts \\ [])

Plot a binary classification ROC curve.
Creates a plot showing the True Positive Rate vs False Positive Rate,
with a diagonal line representing random guessing (AUC = 0.5).
Parameters
	fpr - List of false positive rates (x-axis values)
	tpr - List of true positive rates (y-axis values)

Options
	:auc - Area Under Curve value to display in label (default: nil)
	:title - Plot title (default: "ROC Curve")
	:label - Legend label (default: auto-generated with AUC if provided)
	:color - Line color (default: "#E95420" - Ubuntu orange)
	:line_width - Line width (default: 2)
	:show_random - Show random classifier baseline (default: true)
	:legend - Legend position (default: :bottom_right)

Examples
iex> fpr = [0.0, 0.1, 0.2, 0.5, 1.0]
iex> tpr = [0.0, 0.6, 0.8, 0.95, 1.0]
iex> plot = GnuplotEx.ML.ROC.plot(fpr, tpr, auc: 0.85)

Without AUC label
iex> plot = GnuplotEx.ML.ROC.plot(fpr, tpr,
...> label: "My Classifier",
...> color: "#0066CC"
...>)

Hide random baseline
iex> plot = GnuplotEx.ML.ROC.plot(fpr, tpr,
...> auc: 0.85,
...> show_random: false
...>)

 plot_multiclass(roc_data, opts \\ [])

Plot ROC curves for multi-class classification.
Creates a single plot with ROC curves for multiple classes, useful for
visualizing one-vs-rest or one-vs-one classification performance.
Parameters
	roc_data - Map of class names to {fpr, tpr, auc} tuples

Options
	:title - Plot title (default: "Multi-class ROC Curves")
	:colors - Map of class names to colors (auto-assigned if not provided)
	:line_width - Line width (default: 2)
	:show_random - Show random classifier baseline (default: true)
	:legend - Legend position (default: :bottom_right)

Examples
iex> roc_data = %{
...> "Cat" => {[0.0, 0.1, 0.3, 1.0], [0.0, 0.7, 0.95, 1.0], 0.92},
...> "Dog" => {[0.0, 0.15, 0.4, 1.0], [0.0, 0.65, 0.9, 1.0], 0.88},
...> "Bird" => {[0.0, 0.2, 0.5, 1.0], [0.0, 0.6, 0.85, 1.0], 0.85}
...> }
iex> plot = GnuplotEx.ML.ROC.plot_multiclass(roc_data)

Custom colors
iex> plot = GnuplotEx.ML.ROC.plot_multiclass(roc_data,
...> colors: %{
...> "Cat" => "#E95420",
...> "Dog" => "#0066CC",
...> "Bird" => "#77DD77"
...> }
...>)

 GnuplotEx.Plot - gnuplot_ex v0.2.2

GnuplotEx.Plot

High-level plot builder with fluent API.
Build plots using a pipeline of functions:
GnuplotEx.new()
|> GnuplotEx.title("My Plot")
|> GnuplotEx.scatter(data, label: "Points", color: "#E95420")
|> GnuplotEx.x_label("X Axis")
|> GnuplotEx.y_label("Y Axis")
|> GnuplotEx.to_svg("/tmp/plot.svg")
3D Plots
GnuplotEx.scatter3d(points)
|> GnuplotEx.z_label("Z Axis")
|> GnuplotEx.view_angle(60, 30)
|> GnuplotEx.to_svg("/tmp/scatter3d.svg")
Fields
	:title - Plot title
	:x_label, :y_label, :z_label - Axis labels
	:x_range, :y_range, :z_range - Axis ranges (Range or tuple)
	:legend - Legend position (:top_right, :bottom_left, :off, etc.)
	:theme - Theme atom or struct
	:size - Plot size as {width, height}
	:terminal - Output terminal (:svg, :png, :dumb, etc.)
	:output - Output file path
	:series - List of Series structs
	:commands - Additional raw gnuplot commands
	:view - 3D view angle as {rotation, elevation}
	:azimuth - Azimuth angle for 3D
	:is_3d - Flag indicating 3D plot (auto-set)
	:palette - Color palette for surfaces (atom or list of colors)
	:colorbar_range - Range for the colorbar
	:colorbar - Show/hide colorbar (:on or :off)
	:nonlinear - Nonlinear axis transformations (map of axis => transform)
	:datablocks - Named data blocks for reuse (map of name => data)

 Summary

 Types

 legend_position()

 nonlinear_axis()

 nonlinear_preset()

 nonlinear_transform()

 t()

 Functions

 azimuth(plot, angle)

 Set the azimuth angle for 3D plots.

 colorbar(plot, setting)

 Show or hide the colorbar.

 colorbar_range(plot, range)

 Set the colorbar range.

 command(plot, cmd)

 Add a raw gnuplot command.

 contour(plot, data_or_fn, opts \\ [])

 Add a contour plot.

 datablock(plot, name, data)

 Define a named data block for reuse.

 donut(plot, data, opts \\ [])

 Add a donut chart series.

 histogram(plot, data, opts \\ [])

 Add a histogram series to the plot.

 legend(plot, position)

 Set the legend position.

 line(plot, data, opts \\ [])

 Add a line series to the plot.

 new(opts \\ [])

 Create a new empty plot.

 nonlinear(plot, axis, transform)

 Apply a nonlinear transformation to an axis.

 palette(plot, palette)

 Set the color palette for surfaces and heatmaps.

 parallel(plot, data, opts \\ [])

 Add a parallel coordinates series.

 parametric_surface(plot, func, opts)

 Add a parametric surface plot.

 pie(plot, data, opts \\ [])

 Add a pie chart series.

 polygon3d(plot, data, opts \\ [])

 Add a 3D polygon mesh series.

 polygon(plot, data, opts \\ [])

 Add a 2D polygon series.

 scatter3d(plot, data, opts \\ [])

 Add a 3D scatter series to the plot.

 scatter(plot, data, opts \\ [])

 Add a scatter series to the plot.

 size(plot, arg)

 Set the plot size.

 spider(plot, data, opts \\ [])

 Add a spider/radar chart series.

 surface(plot, data_or_fn, opts \\ [])

 Add a surface plot from data.

 theme(plot, theme)

 Set the plot theme.

 title(plot, title_text)

 Set the plot title.

 unset_nonlinear(plot, axis)

 Remove a nonlinear transformation from an axis.

 view_angle(plot, rotation, elevation)

 Set the 3D view angle.

 x_label(plot, label)

 Set the X-axis label.

 x_range(plot, range)

 Set the X-axis range.

 y_label(plot, label)

 Set the Y-axis label.

 y_range(plot, range)

 Set the Y-axis range.

 z_label(plot, label)

 Set the Z-axis label (for 3D plots).

 z_range(plot, range)

 Set the Z-axis range (for 3D plots).

 Types

 legend_position()

 @type legend_position() ::
 :top_right
 | :top_left
 | :bottom_right
 | :bottom_left
 | :top_center
 | :bottom_center
 | :center
 | :off

 nonlinear_axis()

 @type nonlinear_axis() :: :x | :x2 | :y | :y2 | :z | :r | :cb

 nonlinear_preset()

 @type nonlinear_preset() :: :log10 | :log | :sqrt | :inverse | :probit | :logit

 nonlinear_transform()

 @type nonlinear_transform() ::
 nonlinear_preset() | {String.t(), String.t()} | keyword()

 t()

 @type t() :: %GnuplotEx.Plot{
 azimuth: number() | nil,
 colorbar: :on | :off | nil,
 colorbar_range: Range.t() | {number(), number()} | nil,
 commands: [list()],
 datablocks: %{required(atom()) => Enumerable.t()},
 is_3d: boolean() | nil,
 legend: legend_position() | nil,
 nonlinear: %{required(nonlinear_axis()) => nonlinear_transform()} | nil,
 output: String.t() | nil,
 palette: atom() | [String.t()] | GnuplotEx.Plot.Palette.t() | nil,
 series: [GnuplotEx.Plot.Series.t()],
 size: {pos_integer(), pos_integer()} | nil,
 terminal: atom() | nil,
 theme: atom() | map() | nil,
 title: String.t() | nil,
 view: {number(), number()} | nil,
 x_label: String.t() | nil,
 x_range: Range.t() | {number(), number()} | nil,
 y_label: String.t() | nil,
 y_range: Range.t() | {number(), number()} | nil,
 z_label: String.t() | nil,
 z_range: Range.t() | {number(), number()} | nil
}

 Functions

 azimuth(plot, angle)

 @spec azimuth(t(), number()) :: t()

Set the azimuth angle for 3D plots.
Controls additional rotation around the viewing axis.
Example
plot |> GnuplotEx.Plot.azimuth(30)

 colorbar(plot, setting)

 @spec colorbar(t(), :on | :off) :: t()

Show or hide the colorbar.
Example
plot |> GnuplotEx.colorbar(:off)

 colorbar_range(plot, range)

 @spec colorbar_range(t(), Range.t() | {number(), number()}) :: t()

Set the colorbar range.
Controls the data range mapped to the color palette.
Example
plot |> GnuplotEx.colorbar_range(0..100)
plot |> GnuplotEx.colorbar_range({-1, 1})

 command(plot, cmd)

 @spec command(t(), list()) :: t()

Add a raw gnuplot command.
This is an escape hatch for commands not covered by the high-level API.
Example
plot |> GnuplotEx.Plot.command([:set, :grid, :xtics])

 contour(plot, data_or_fn, opts \\ [])

 @spec contour(t(), Enumerable.t() | fun(), keyword()) :: t()

Add a contour plot.
Options
	:label - Legend label
	:contour_levels - Number of contour levels
	:contour_style - :base (default), :surface, or :both
	:samples - Grid resolution

Example
data = for x <- -5..5, y <- -5..5, do: [x, y, x*x + y*y]
plot |> GnuplotEx.Plot.contour(data, contour_levels: 10, contour_style: :base)

 datablock(plot, name, data)

 @spec datablock(t(), atom(), Enumerable.t()) :: t()

Define a named data block for reuse.
Data blocks allow you to define data once and reference it in multiple series.
This is useful when you want to plot the same data with different styles
(e.g., both scatter and line), or when referencing data multiple times
in complex plots.
Parameters
	plot - The plot struct
	name - Atom name for the datablock (e.g., :mydata)
	data - The data to store (list, DataFrame, Tensor, etc.)

Example
GnuplotEx.new()
|> GnuplotEx.datablock(:points, [[1, 2], [3, 4], [5, 6]])
|> GnuplotEx.scatter(:points, label: "Scatter")
|> GnuplotEx.line(:points, label: "Line")
|> GnuplotEx.render(:svg)

 donut(plot, data, opts \\ [])

 @spec donut(t(), Enumerable.t(), keyword()) :: t()

Add a donut chart series.
Donut charts are pie charts with a hole in the center.
This is a convenience wrapper for pie/3 with an :inner_radius option.
Options
All options from pie/3 plus:
	:inner_radius - Inner radius ratio 0.0-1.0 (default: 0.5)

Example
data = [30, 25, 20, 15, 10]
GnuplotEx.donut(data, inner_radius: 0.6)
|> GnuplotEx.to_svg("/tmp/donut.svg")

 histogram(plot, data, opts \\ [])

 @spec histogram(t(), Enumerable.t(), keyword()) :: t()

Add a histogram series to the plot.
Options
	:label - Legend label
	:color - Bar color
	:bins - Number of bins (uses gnuplot auto if not specified)
	:fill - Fill style (:solid, :transparent, etc.)

Example
plot |> GnuplotEx.Plot.histogram(values, bins: 20, fill: :solid)

 legend(plot, position)

 @spec legend(t(), legend_position()) :: t()

Set the legend position.
Positions
	:top_right (default)
	:top_left
	:bottom_right
	:bottom_left
	:top_center
	:bottom_center
	:center
	:off - Hide legend

Example
plot |> GnuplotEx.Plot.legend(:top_left)
plot |> GnuplotEx.Plot.legend(:off)

 line(plot, data, opts \\ [])

 @spec line(t(), Enumerable.t(), keyword()) :: t()

Add a line series to the plot.
Options
	:label - Legend label
	:color - Line color
	:line_width - Line width
	:smooth - Smoothing (:csplines, :bezier, etc.)

Abbreviations
	:t - title/label
	:c - color
	:lw - line_width

Example
plot |> GnuplotEx.Plot.line(data, label: "Trend", color: "#666", line_width: 2)

 new(opts \\ [])

 @spec new(keyword()) :: t()

Create a new empty plot.
Options
	:title - Plot title
	:size - Plot dimensions as {width, height}
	:theme - Theme preset or custom theme

Example
GnuplotEx.new()
GnuplotEx.new(title: "My Plot", size: {800, 600})

 nonlinear(plot, axis, transform)

 @spec nonlinear(t(), nonlinear_axis(), nonlinear_transform()) :: t()

Apply a nonlinear transformation to an axis.
Nonlinear transformations use gnuplot 6's set nonlinear command to create
log scales, square root scales, and other nonlinear axis mappings.
Preset Transformations
	:log10 - Base-10 logarithmic scale
	:log - Natural logarithmic scale
	:sqrt - Square root scale
	:inverse - Reciprocal scale (1/x)
	:probit - Probit (normal CDF) scale
	:logit - Logit scale

Supported Axes
	:x, :x2 - X axes
	:y, :y2 - Y axes
	:z - Z axis (3D)
	:r - Radial axis (polar)
	:cb - Colorbar axis

Examples
Log scale on X axis
plot |> GnuplotEx.nonlinear(:x, :log10)

Multiple axes
plot
|> GnuplotEx.nonlinear(:x, :log10)
|> GnuplotEx.nonlinear(:y, :sqrt)

Custom transformation
plot |> GnuplotEx.nonlinear(:y, via: "sqrt(y)", inverse: "y**2")

 palette(plot, palette)

 @spec palette(t(), atom() | [String.t()] | GnuplotEx.Plot.Palette.t()) :: t()

Set the color palette for surfaces and heatmaps.
Named Palettes
	:viridis - Perceptually uniform, colorblind-friendly
	:magma - Dark to light, warm tones
	:plasma - Blue to yellow through pink
	:inferno - Dark to light, fire-like
	:cividis - Colorblind-optimized blue-yellow
	:turbo - Rainbow-like, high contrast

Example
plot |> GnuplotEx.palette(:viridis)
plot |> GnuplotEx.palette(["#440154", "#21918c", "#fde725"])

 parallel(plot, data, opts \\ [])

 @spec parallel(t(), map() | Enumerable.t(), keyword()) :: t()

Add a parallel coordinates series.
Parallel coordinates display multivariate data with each variable
represented as a vertical axis. Data points are lines connecting
values across all axes.
Data Formats
	Single map: %{var1: value1, var2: value2, ...} (one line)
	List of maps: [%{var1: v1, var2: v2}, ...] (multiple lines)
	List of lists: [[v1, v2, ...], ...] (with :axes option)

Options
	:label - Legend label for this series
	:axes - List of axis names (required for list-of-lists format)
	:color - Line color
	:line_width - Line width

Example
data = [
 %{price: 25000, mpg: 30, hp: 150},
 %{price: 35000, mpg: 25, hp: 200}
]
GnuplotEx.new()
|> GnuplotEx.parallel(data, label: "Cars")
|> GnuplotEx.to_svg("/tmp/parallel.svg")

 parametric_surface(plot, func, opts)

 @spec parametric_surface(t(), fun(), keyword()) :: t()

Add a parametric surface plot.
The function should take (u, v) parameters and return {x, y, z}.
Options
	:label - Legend label
	:u_range - U parameter range (required)
	:v_range - V parameter range (required)
	:samples - Grid resolution as {u, v} or single value
	:surface_style - :pm3d (default), :lines, or :hidden3d

Example
Sphere
sphere = fn u, v ->
 {:math.cos(u) * :math.cos(v),
 :math.sin(u) * :math.cos(v),
 :math.sin(v)}
end

plot |> GnuplotEx.Plot.parametric_surface(sphere,
 u_range: {0, 2 * :math.pi()},
 v_range: {-:math.pi()/2, :math.pi()/2})

 pie(plot, data, opts \\ [])

 @spec pie(t(), Enumerable.t(), keyword()) :: t()

Add a pie chart series.
Pie charts display proportional data as circular sectors.
Data Formats
	List of values: [30, 25, 20, 15, 10]
	List of maps: [%{label: "A", value: 30}, %{label: "B", value: 25}]
	List of tuples: [{"A", 30}, {"B", 25}]

Options
	:labels - List of slice labels
	:colors - List of colors or palette name (e.g., :viridis)
	:explode - List of slice indices to explode (offset outward)
	:start_angle - Starting angle in degrees (0 = top, clockwise)

Example
data = [
 %{label: "Category A", value: 30},
 %{label: "Category B", value: 25},
 %{label: "Category C", value: 20}
]
GnuplotEx.pie(data, colors: ["#E95420", "#3daee9", "#27ae60"])
|> GnuplotEx.to_svg("/tmp/pie.svg")

 polygon3d(plot, data, opts \\ [])

 @spec polygon3d(t(), Enumerable.t(), keyword()) :: t()

Add a 3D polygon mesh series.
3D polygons are filled closed shapes in 3D space, useful for meshes and surfaces.
Data Formats
	Single polygon: [[x1, y1, z1], [x2, y2, z2], [x3, y3, z3], ...]
	Multiple polygons (mesh): [[[x1, y1, z1], ...], [[x2, y2, z2], ...]]

Options
	:label - Legend label
	:color - Fill color
	:fill - Fill style (:solid, :transparent, :pattern, :empty)
	:alpha - Fill transparency 0.0-1.0 (for transparent fill)
	:border_color - Border line color
	:border_width - Border line width

Abbreviations
	:c - color
	:bc - border_color
	:bw - border_width
	:a - alpha

Example
3D triangle
vertices = [[0, 0, 0], [1, 0, 0], [0.5, 1, 0.5]]
GnuplotEx.polygon3d(vertices, color: "#E95420")

Mesh (multiple polygons)
mesh = [
 [[0, 0, 0], [1, 0, 0], [0.5, 1, 0.5]],
 [[1, 0, 0], [1, 1, 0], [0.5, 1, 0.5]]
]
GnuplotEx.polygon3d(mesh, fill: :transparent, alpha: 0.8)

 polygon(plot, data, opts \\ [])

 @spec polygon(t(), Enumerable.t(), keyword()) :: t()

Add a 2D polygon series.
Polygons are filled closed shapes defined by vertices.
Data Formats
	Single polygon: [[x1, y1], [x2, y2], [x3, y3], ...]
	Multiple polygons: [[[x1, y1], ...], [[x2, y2], ...]]

Options
	:label - Legend label
	:color - Fill color
	:fill - Fill style (:solid, :transparent, :pattern, :empty)
	:alpha - Fill transparency 0.0-1.0 (for transparent fill)
	:border_color - Border line color
	:border_width - Border line width

Abbreviations
	:c - color
	:bc - border_color
	:bw - border_width
	:a - alpha

Example
Triangle
vertices = [[0, 0], [1, 0], [0.5, 1]]
GnuplotEx.polygon(vertices, color: "#3daee9")

Multiple shapes
shapes = [
 [[0, 0], [1, 0], [1, 1], [0, 1]],
 [[2, 0], [3, 0], [2.5, 1]]
]
GnuplotEx.polygon(shapes, fill: :solid, border_color: "#000")

 scatter3d(plot, data, opts \\ [])

 @spec scatter3d(t(), Enumerable.t(), keyword()) :: t()

Add a 3D scatter series to the plot.
Data should be a list of [x, y, z] points.
Options
	:label - Legend label
	:color - Point color
	:point_type - Point shape (1-14 or atom like :circle)
	:point_size - Point size multiplier

Example
points = for _ <- 1..100, do: [:rand.uniform(), :rand.uniform(), :rand.uniform()]
plot |> GnuplotEx.Plot.scatter3d(points, label: "Random Points")

 scatter(plot, data, opts \\ [])

 @spec scatter(t(), Enumerable.t(), keyword()) :: t()

Add a scatter series to the plot.
Options
	:label - Legend label
	:color - Point color
	:point_type - Point shape (1-14 or atom like :circle)
	:point_size - Point size multiplier

Abbreviations
	:t - title/label
	:c - color
	:ps - point_size
	:pt - point_type

Example
plot |> GnuplotEx.Plot.scatter(data, label: "Points", color: "#E95420")

 size(plot, arg)

 @spec size(
 t(),
 {pos_integer(), pos_integer()}
) :: t()

Set the plot size.
Example
plot |> GnuplotEx.Plot.size({800, 600})

 spider(plot, data, opts \\ [])

 @spec spider(t(), map() | Enumerable.t(), keyword()) :: t()

Add a spider/radar chart series.
Spider charts display multivariate data on axes radiating from a center point.
Useful for comparing multiple entities across several metrics.
Data Formats
	Map: %{axis1: value1, axis2: value2, ...}
	List of maps: [%{name: "A", axis1: v1, ...}, ...]
	List of lists: [[v1, v2, ...], ...] (with :axes option)

Options
	:label - Legend label
	:axes - List of axis names (required for list-of-lists data)
	:filled - Fill the spider area (default: false)
	:alpha - Fill transparency 0.0-1.0 (default: 0.3)
	:color - Line/fill color

Abbreviations
	:f - filled
	:a - alpha

Examples
Single entity
stats = %{speed: 8, power: 6, defense: 7, magic: 5}
plot |> GnuplotEx.Plot.spider(stats, label: "Warrior", filled: true)

Multiple entities
data = [
 %{name: "Warrior", speed: 8, power: 6, defense: 7},
 %{name: "Mage", speed: 5, power: 9, defense: 4}
]
plot |> GnuplotEx.Plot.spider(data)

Matrix format
plot |> GnuplotEx.Plot.spider([[8, 6, 7], [5, 9, 4]],
 axes: [:speed, :power, :defense], filled: true)

 surface(plot, data_or_fn, opts \\ [])

 @spec surface(t(), Enumerable.t() | fun(), keyword()) :: t()

Add a surface plot from data.
Data can be:
	A list of [x, y, z] points (will be arranged in grid)
	A 2D matrix of z values (with x_range/y_range for coordinates)
	A function (x, y) -> z (with x_range/y_range for sampling)

Options
	:label - Legend label
	:color - Surface color
	:surface_style - :pm3d (default), :lines, or :hidden3d
	:samples - Grid resolution as {x, y} or single value

Examples
From data points
data = for x <- 0..10, y <- 0..10, do: [x, y, x*x + y*y]
plot |> GnuplotEx.Plot.surface(data)

From function
plot |> GnuplotEx.Plot.surface(fn x, y -> :math.sin(x) * :math.cos(y) end,
 x_range: -5..5, y_range: -5..5, samples: {50, 50})

 theme(plot, theme)

 @spec theme(t(), atom() | map()) :: t()

Set the plot theme.
Presets
	:default - Minimal theme with grid
	:dark - Dark background theme
	:publication - Publication-ready styling

Example
plot |> GnuplotEx.Plot.theme(:dark)

 title(plot, title_text)

 @spec title(t(), String.t()) :: t()

Set the plot title.
Example
plot |> GnuplotEx.Plot.title("My Plot")

 unset_nonlinear(plot, axis)

 @spec unset_nonlinear(t(), nonlinear_axis()) :: t()

Remove a nonlinear transformation from an axis.
Returns the axis to linear scaling.
Example
plot
|> GnuplotEx.nonlinear(:x, :log10)
|> GnuplotEx.unset_nonlinear(:x)

 view_angle(plot, rotation, elevation)

 @spec view_angle(t(), number(), number()) :: t()

Set the 3D view angle.
Controls the viewing angle for 3D plots using rotation and elevation.
	rotation - Rotation around the Z-axis in degrees (0-360)
	elevation - Elevation angle in degrees (0-90, where 90 is top-down)

Example
plot |> GnuplotEx.Plot.view_angle(60, 30)

 x_label(plot, label)

 @spec x_label(t(), String.t()) :: t()

Set the X-axis label.
Example
plot |> GnuplotEx.Plot.x_label("Time (s)")

 x_range(plot, range)

 @spec x_range(t(), Range.t() | {number(), number()}) :: t()

Set the X-axis range.
Example
plot |> GnuplotEx.Plot.x_range(0..100)
plot |> GnuplotEx.Plot.x_range({-10, 10})

 y_label(plot, label)

 @spec y_label(t(), String.t()) :: t()

Set the Y-axis label.
Example
plot |> GnuplotEx.Plot.y_label("Value")

 y_range(plot, range)

 @spec y_range(t(), Range.t() | {number(), number()}) :: t()

Set the Y-axis range.
Example
plot |> GnuplotEx.Plot.y_range(-1..1)
plot |> GnuplotEx.Plot.y_range({0, 100})

 z_label(plot, label)

 @spec z_label(t(), String.t()) :: t()

Set the Z-axis label (for 3D plots).
Example
plot |> GnuplotEx.Plot.z_label("Height (m)")

 z_range(plot, range)

 @spec z_range(t(), Range.t() | {number(), number()}) :: t()

Set the Z-axis range (for 3D plots).
Example
plot |> GnuplotEx.Plot.z_range(0..100)
plot |> GnuplotEx.Plot.z_range({-10, 10})

 GnuplotEx.Plot.Abbreviations - gnuplot_ex v0.2.2

GnuplotEx.Plot.Abbreviations

Expands abbreviated keywords to full forms.
This module provides a consistent way to use short keyword names
in plot functions for convenience.
Abbreviations
	Short	Full
	t	title or label
	xl	x_label
	yl	y_label
	zl	z_label
	xr	x_range
	yr	y_range
	zr	z_range
	c	color
	lw	line_width
	ps	point_size
	pt	point_type
	l	label
	ur	u_range
	vr	v_range
	ss	surface_style
	cl	contour_levels
	cs	contour_style
	pal	palette
	cbr	colorbar_range
	cb	colorbar
	f	filled
	a	alpha
	ir	inner_radius
	exp	explode
	sa	start_angle
	bc	border_color
	bw	border_width

Example
iex> GnuplotEx.Plot.Abbreviations.expand([t: "Title", xr: 0..10, c: "#red"])
[title: "Title", x_range: 0..10, color: "#red"]

 Summary

 Functions

 abbreviations()

 Get all available abbreviations.

 expand(opts)

 Expand abbreviated keywords in an options list.

 Functions

 abbreviations()

 @spec abbreviations() :: map()

Get all available abbreviations.
Returns a map of short keys to full keys.

 expand(opts)

 @spec expand(keyword()) :: keyword()

Expand abbreviated keywords in an options list.
Unknown keys pass through unchanged.
Example
iex> expand([t: "Title", xr: 0..10, c: "#red"])
[title: "Title", x_range: 0..10, color: "#red"]

iex> expand([custom: "value"])
[custom: "value"]

 GnuplotEx.Plot.Nonlinear - gnuplot_ex v0.2.2

GnuplotEx.Plot.Nonlinear

Nonlinear axis transformation support using gnuplot 6's set nonlinear command.
Nonlinear transformations map user coordinates to a shadow coordinate system
for display. This enables log scales, square root scales, and other nonlinear
axis transformations.
Preset Transformations
	Name	Via	Inverse
	:log10	log10(x)	10**x
	:log	log(x)	exp(x)
	:sqrt	sqrt(x)	x**2
	:inverse	1/x	1/x
	:probit	norm(x)	invnorm(x)
	:logit	logit(x)	logistic(x)

Supported Axes
	:x, :x2 - X axes
	:y, :y2 - Y axes
	:z - Z axis (3D)
	:r - Radial axis (polar)
	:cb - Colorbar axis

Example
GnuplotEx.new()
|> GnuplotEx.scatter(data)
|> GnuplotEx.nonlinear(:x, :log10)
|> GnuplotEx.nonlinear(:y, :sqrt)
|> GnuplotEx.to_svg("/tmp/plot.svg")

 Summary

 Functions

 preset?(name)

 Check if a name is a valid preset transformation.

 preset_names()

 Get list of available preset names.

 to_command(axis, transform)

 Convert a nonlinear transformation to a gnuplot command.

 unset_command(axis)

 Generate the unset command for a nonlinear axis.

 valid_axes()

 Get list of valid axis names.

 valid_axis?(axis)

 Check if an axis name is valid for nonlinear transformation.

 Functions

 preset?(name)

 @spec preset?(atom()) :: boolean()

Check if a name is a valid preset transformation.
Example
iex> GnuplotEx.Plot.Nonlinear.preset?(:log10)
true

iex> GnuplotEx.Plot.Nonlinear.preset?(:custom)
false

 preset_names()

 @spec preset_names() :: [atom()]

Get list of available preset names.
Returns [:log10, :log, :sqrt, :inverse, :probit, :logit]

 to_command(axis, transform)

 @spec to_command(atom(), atom() | {String.t(), String.t()} | keyword()) :: [term()]

Convert a nonlinear transformation to a gnuplot command.
Parameters
	axis - The axis to transform (:x, :y, etc.)
	transform - Preset name or {via, inverse} tuple or keyword list

Returns
A list representing the gnuplot command.
Examples
iex> GnuplotEx.Plot.Nonlinear.to_command(:x, :log10)
[:set, :nonlinear, :x, :via, "log10(x)", :inverse, "10**x"]

iex> GnuplotEx.Plot.Nonlinear.to_command(:y, via: "sqrt(y)", inverse: "y**2")
[:set, :nonlinear, :y, :via, "sqrt(y)", :inverse, "y**2"]

 unset_command(axis)

 @spec unset_command(atom()) :: [term()]

Generate the unset command for a nonlinear axis.
Example
iex> GnuplotEx.Plot.Nonlinear.unset_command(:x)
[:unset, :nonlinear, :x]

 valid_axes()

 @spec valid_axes() :: [atom()]

Get list of valid axis names.
Returns [:x, :x2, :y, :y2, :z, :r, :cb]

 valid_axis?(axis)

 @spec valid_axis?(atom()) :: boolean()

Check if an axis name is valid for nonlinear transformation.

 GnuplotEx.Plot.Palette - gnuplot_ex v0.2.2

GnuplotEx.Plot.Palette

Named color palettes for surface plots and heatmaps.
Built-in Palettes
	:viridis - Perceptually uniform, colorblind-friendly (default)
	:magma - Dark to light, warm tones
	:plasma - Blue to yellow through pink
	:inferno - Dark to light, fire-like
	:cividis - Colorblind-optimized blue-yellow
	:turbo - Rainbow-like, high contrast

Example
GnuplotEx.surface(data) |> GnuplotEx.palette(:viridis)

 Summary

 Types

 t()

 Functions

 custom(colors)

 Create a custom palette from a list of colors.

 get(name)

 Get a named palette struct.

 named_palettes()

 List all available named palettes.

 reversed(palette)

 Create a reversed version of a palette.

 to_commands(name)

 Convert a palette to gnuplot commands.

 valid_name?(name)

 Check if a palette name is valid.

 Types

 t()

 @type t() :: %GnuplotEx.Plot.Palette{
 colors: [String.t()] | nil,
 name: atom() | nil,
 reversed: boolean()
}

 Functions

 custom(colors)

 @spec custom([String.t()]) :: t()

Create a custom palette from a list of colors.
Example
Palette.custom(["#440154", "#21918c", "#fde725"])

 get(name)

 @spec get(atom()) :: t()

Get a named palette struct.
Example
Palette.get(:viridis)

 named_palettes()

 @spec named_palettes() :: [atom()]

List all available named palettes.
Example
Palette.named_palettes()
=> [:viridis, :magma, :plasma, :inferno, :cividis, :turbo]

 reversed(palette)

 @spec reversed(t()) :: t()

Create a reversed version of a palette.
Example
Palette.get(:viridis) |> Palette.reversed()

 to_commands(name)

 @spec to_commands(t() | atom() | [String.t()] | nil) :: [list()]

Convert a palette to gnuplot commands.
Accepts:
	nil - returns empty list
	atom - looks up named palette
	list - creates custom palette
	%Palette{} - uses directly

Example
Palette.to_commands(:viridis)
=> [[:set, :palette, :viridis]]

Palette.to_commands(["#000", "#fff"])
=> [[:set, :palette, :defined, ~c"(0.0 \"#000\", 1.0 \"#fff\")"]]

 valid_name?(name)

 @spec valid_name?(atom()) :: boolean()

Check if a palette name is valid.

 GnuplotEx.Plot.Renderer - gnuplot_ex v0.2.2

GnuplotEx.Plot.Renderer

Compiles Plot structs into gnuplot command lists.
This module transforms high-level Plot configurations into the low-level
command lists that can be executed by GnuplotEx.Port.

 Summary

 Functions

 compile(plot)

 Compile a Plot into {commands, datasets, binary_files} tuple.

 Functions

 compile(plot)

 @spec compile(GnuplotEx.Plot.t()) :: {[list()], [Enumerable.t()], [String.t()]}

Compile a Plot into {commands, datasets, binary_files} tuple.
Returns:
	commands - List of gnuplot commands
	datasets - List of datasets to stream via stdin
	binary_files - List of temp file paths for binary data (cleanup after render)

Example
{commands, datasets, binary_files} = Renderer.compile(plot)
result = GnuplotEx.plot(commands, datasets)
Binary.cleanup(binary_files)

 GnuplotEx.Plot.Series - gnuplot_ex v0.2.2

GnuplotEx.Plot.Series

Represents a single data series in a plot.
Series are added to plots via GnuplotEx.scatter/2,3, GnuplotEx.line/2,3,
GnuplotEx.histogram/2,3, GnuplotEx.spider/2,3, GnuplotEx.parallel/2,3,
GnuplotEx.pie/2,3, and GnuplotEx.donut/2,3.
Fields
	:data - The dataset (list, stream, or any Dataset-implementing type)
	:type - Plot type (:scatter, :line, :histogram, :scatter3d, :surface, etc.)
	:label - Legend label
	:color - Color string like "#E95420" or named color
	:line_width - Line width for line plots
	:point_type - Point type for scatter (1-14 or atom)
	:point_size - Point size multiplier
	:fill - Fill style for histograms
	:using - Raw gnuplot "using" clause
	:opts - Additional options passed to gnuplot

3D-specific Fields
	:surface_style - Surface rendering style (:pm3d, :lines, :hidden3d)
	:u_range - U parameter range for parametric surfaces
	:v_range - V parameter range for parametric surfaces
	:samples - Grid resolution for surfaces {x_samples, y_samples}
	:contour_levels - Number of contour levels
	:contour_style - Contour plot style (:base, :surface, :both)
	:function - Function for function-based plots

Spider-specific Fields
	:axes - List of axis names for spider/radar charts
	:filled - Fill the spider polygon area (boolean)
	:alpha - Fill transparency 0.0-1.0 for spider charts

Parallel Coordinates Fields
	:axes - List of axis names (shared with spider charts)

Pie/Donut Chart Fields
	:labels - List of slice labels
	:colors - List of colors or palette name for slices
	:explode - List of slice indices to explode (offset outward)
	:inner_radius - Inner radius ratio 0.0-1.0 for donut charts
	:start_angle - Starting angle in degrees (0 = top, clockwise)

Polygon Fields
	:border_color - Border line color for polygons
	:border_width - Border line width for polygons

Binary Mode
	:binary - Use binary data format for faster transmission (default: false)

 Summary

 Types

 plot_type()

 t()

 Functions

 new(type, data_or_fn, opts \\ [])

 Create a new series with the given type and data.

 Types

 plot_type()

 @type plot_type() ::
 :scatter
 | :line
 | :histogram
 | :bar
 | :impulses
 | :steps
 | :boxes
 | :scatter3d
 | :surface
 | :parametric
 | :contour
 | :wireframe
 | :spider
 | :parallel
 | :pie
 | :donut
 | :polygon
 | :polygon3d

 t()

 @type t() :: %GnuplotEx.Plot.Series{
 alpha: number() | nil,
 axes: [atom() | String.t()] | nil,
 binary: boolean(),
 bins: pos_integer() | nil,
 border_color: String.t() | nil,
 border_width: number() | nil,
 color: String.t() | nil,
 colors: [String.t()] | atom() | nil,
 contour_levels: pos_integer() | nil,
 contour_style: :base | :surface | :both | nil,
 data: Enumerable.t() | nil,
 explode: [non_neg_integer()] | nil,
 fill: atom() | String.t() | nil,
 filled: boolean() | nil,
 function: fun() | nil,
 inner_radius: number() | nil,
 label: String.t() | nil,
 labels: [String.t()] | nil,
 line_width: pos_integer() | nil,
 opts: keyword(),
 point_size: number() | nil,
 point_type: atom() | pos_integer() | nil,
 samples: {pos_integer(), pos_integer()} | pos_integer() | nil,
 smooth: atom() | nil,
 start_angle: number() | nil,
 surface_style: :pm3d | :lines | :hidden3d | nil,
 type: plot_type(),
 u_range: Range.t() | {number(), number()} | nil,
 using: String.t() | nil,
 v_range: Range.t() | {number(), number()} | nil
}

 Functions

 new(type, data_or_fn, opts \\ [])

 @spec new(plot_type(), Enumerable.t() | fun() | nil, keyword()) :: t()

Create a new series with the given type and data.
Example
Series.new(:scatter, data, label: "Points", color: "#E95420")
Series.new(:scatter3d, data, label: "3D Points")
Series.new(:surface, data, surface_style: :pm3d)

 GnuplotEx.Plot.Theme - gnuplot_ex v0.2.2

GnuplotEx.Plot.Theme

Theme configuration for consistent plot styling.
Themes provide a way to apply consistent styling across plots.
Use preset themes or create custom ones.
Preset Themes
	:default - Minimal theme with grid
	:dark - Dark background with light text
	:exdoc - Matches ExDoc dark mode colors
	:publication - Clean style suitable for publications

Example
Use preset
GnuplotEx.new()
|> GnuplotEx.theme(:dark)
|> GnuplotEx.scatter(data)
|> GnuplotEx.to_svg("/tmp/plot.svg")

Custom theme
theme = %GnuplotEx.Plot.Theme{
 background: "#f5f5f5",
 grid: true,
 palette: ["#E95420", "#3daee9", "#27ae60"]
}

GnuplotEx.new()
|> GnuplotEx.theme(theme)
|> GnuplotEx.scatter(data)

 Summary

 Types

 t()

 Functions

 dark()

 Dark theme with dark background and light text.

 default()

 Default minimal theme with grid.

 exdoc()

 ExDoc dark theme.

 get(arg1)

 Get a preset theme by name.

 publication()

 Publication-ready theme.

 to_commands(name)

 Convert theme to gnuplot commands.

 Types

 t()

 @type t() :: %GnuplotEx.Plot.Theme{
 background: String.t() | nil,
 border_color: String.t() | nil,
 commands: [list()],
 font: String.t() | nil,
 font_size: pos_integer() | nil,
 grid: boolean() | keyword() | nil,
 name: atom() | nil,
 palette: atom() | [String.t()] | GnuplotEx.Plot.Palette.t() | nil,
 text_color: String.t() | nil
}

 Functions

 dark()

 @spec dark() :: t()

Dark theme with dark background and light text.
Good for presentations and dashboards.
WCAG 2.1 AA compliant (4.5:1+ contrast ratio).

 default()

 @spec default() :: t()

Default minimal theme with grid.

 exdoc()

 @spec exdoc() :: t()

ExDoc dark theme.
Matches ExDoc's dark mode colors for seamless documentation integration.
WCAG 2.1 AA compliant (4.5:1+ contrast ratio).

 get(arg1)

 @spec get(atom()) :: t()

Get a preset theme by name.
Presets
	:default - Minimal styling with grid enabled
	:dark - Dark background suitable for presentations
	:exdoc - Matches ExDoc dark mode for documentation
	:publication - Clean black-and-white style for papers

Example
theme = GnuplotEx.Plot.Theme.get(:dark)

 publication()

 @spec publication() :: t()

Publication-ready theme.
Clean black-and-white style suitable for academic papers.

 to_commands(name)

 @spec to_commands(t() | atom() | nil) :: [list()]

Convert theme to gnuplot commands.
Returns a list of gnuplot command lists.

 GnuplotEx.PlotList - gnuplot_ex v0.2.2

GnuplotEx.PlotList

Represents a comma-separated list of plot specifications in gnuplot syntax.
Used for specifying multiple plot series in a single plot command.
Example
iex> alias GnuplotEx.PlotList
iex> list = %PlotList{items: [["-", :with, :points], ["-", :with, :lines]]}
iex> GnuplotEx.Command.format(list)
~s("-" with points, "-" with lines)

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %GnuplotEx.PlotList{items: [list()]}

 GnuplotEx.Port - gnuplot_ex v0.2.2

GnuplotEx.Port

Port-based communication with gnuplot.
Handles spawning gnuplot processes, sending commands and data,
and collecting results.
Large Dataset Support
For large datasets, the port automatically scales timeout based on data size.
You can also provide a progress callback to monitor transmission:
GnuplotEx.render(plot, :svg,
 on_progress: fn sent, total -> IO.puts("Progress: #{sent}/#{total}") end
)

 Summary

 Functions

 execute(command_string, datasets, opts \\ [])

 Execute gnuplot commands with optional datasets.

 execute_capture(command_string, datasets, opts \\ [])

 Execute commands and return captured stdout.

 find_executable()

 Find the gnuplot executable path.

 Functions

 execute(command_string, datasets, opts \\ [])

 @spec execute(String.t(), [Enumerable.t()], keyword()) ::
 {:ok, String.t()} | {:error, term()}

Execute gnuplot commands with optional datasets.
Opens a gnuplot port, sends the command string, streams datasets,
and returns the result.
Parameters
	command_string - The gnuplot script to execute
	datasets - List of datasets (each formatted via Dataset protocol)
	opts - Options:	:on_progress - Callback fn(sent, total) -> any for progress monitoring
	:timeout - Override base timeout (ms), default 10_000

Returns
	{:ok, command_string} - Success
	{:error, :gnuplot_not_found} - gnuplot not in PATH
	{:error, {:exit, code, output}} - gnuplot exited with error
	{:error, :timeout} - Execution timed out

Example
iex> cmd = "set terminal dumb; plot sin(x)"
iex> GnuplotEx.Port.execute(cmd, [])
{:ok, "set terminal dumb; plot sin(x)"}

With progress callback
GnuplotEx.Port.execute(cmd, [data],
 on_progress: fn sent, total -> IO.puts("Progress: #{sent}/#{total}") end
)

 execute_capture(command_string, datasets, opts \\ [])

 @spec execute_capture(String.t(), [Enumerable.t()], keyword()) ::
 {:ok, String.t()} | {:error, term()}

Execute commands and return captured stdout.
Used for dumb terminal output (ASCII art).

 find_executable()

 @spec find_executable() :: {:ok, charlist()} | {:error, :gnuplot_not_found}

Find the gnuplot executable path.
Returns {:ok, path} if found, {:error, :gnuplot_not_found} otherwise.
Example
iex> GnuplotEx.Port.find_executable()
{:ok, ~c"/usr/bin/gnuplot"}

 GnuplotEx.Session - gnuplot_ex v0.2.2

GnuplotEx.Session

Named sessions for managing multiple independent gnuplot processes.
Sessions allow you to maintain separate gnuplot contexts, useful for:
	Running multiple plots in parallel
	Keeping different terminal configurations
	Isolating plot state

Example
Start a named session
{:ok, _pid} = GnuplotEx.Session.start_link(name: :analysis)

Plot using the session
GnuplotEx.plot(:analysis, [[:plot, 'sin(x)']])

List active sessions
GnuplotEx.Session.list()
=> [:analysis]

Stop session
GnuplotEx.Session.stop(:analysis)
Default Session
If you call GnuplotEx.plot/2 without a session name, it uses the
one-shot port approach (no persistent session).

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 exists?(name)

 Check if a session exists.

 info(name)

 Get session info.

 list()

 List all active session names.

 plot(name, commands, datasets \\ [])

 Execute a plot in a named session.

 start_link(opts)

 Start a named session.

 stop(name)

 Stop a named session.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 exists?(name)

 @spec exists?(atom()) :: boolean()

Check if a session exists.
Example
GnuplotEx.Session.exists?(:analysis)
=> true

 info(name)

 @spec info(atom()) :: map() | nil

Get session info.
Example
GnuplotEx.Session.info(:analysis)
=> %{name: :analysis, plot_count: 5, started_at: ~U[...]}

 list()

 @spec list() :: [atom()]

List all active session names.
Example
GnuplotEx.Session.list()
=> [:analysis, :realtime]

 plot(name, commands, datasets \\ [])

 @spec plot(atom(), [list()], [list()]) :: {:ok, String.t()} | {:error, term()}

Execute a plot in a named session.
Example
GnuplotEx.Session.plot(:analysis, commands, datasets)

 start_link(opts)

 @spec start_link(keyword()) :: GenServer.on_start()

Start a named session.
Options
	:name - Session name (required)

Example
{:ok, pid} = GnuplotEx.Session.start_link(name: :my_session)

 stop(name)

 @spec stop(atom()) :: :ok

Stop a named session.
Example
:ok = GnuplotEx.Session.stop(:analysis)

 GnuplotEx.Spec - gnuplot_ex v0.2.2

GnuplotEx.Spec

Inspectable command specifications for gnuplot.
Specs provide an intermediate representation that can be built,
inspected, and then executed. Useful for debugging, testing,
and understanding what commands will be sent to gnuplot.
Example
spec = GnuplotEx.Spec.build([
 [:set, :terminal, :svg],
 [:plot, "-", :with, :lines]
], [data])

Inspect the spec
IO.inspect(spec)
=> %GnuplotEx.Spec{
commands: [[:set, :terminal, :svg], ...],
script: "set terminal svg;\nplot \"-\" with lines",
datasets: [[...]]
}

Execute when ready
{:ok, _} = GnuplotEx.Spec.execute(spec)
Dry Mode
Use GnuplotEx.plot/3 with dry: true to get a spec without executing:
{:ok, spec} = GnuplotEx.plot(commands, data, dry: true)

 Summary

 Types

 t()

 Functions

 build(commands, datasets \\ [])

 Build a spec from commands and datasets.

 execute(spec)

 Execute a spec, sending commands to gnuplot.

 format_data(spec)

 Get the formatted data that would be sent to gnuplot.

 to_string(spec)

 Format the spec as a readable string for inspection.

 Types

 t()

 @type t() :: %GnuplotEx.Spec{
 commands: [list()],
 datasets: [list()],
 formatted_data: [String.t()] | nil,
 script: String.t()
}

 Functions

 build(commands, datasets \\ [])

 @spec build([list()], [list()]) :: t()

Build a spec from commands and datasets.
The spec contains:
	commands - Original command lists
	script - Serialized gnuplot script
	datasets - Original dataset lists
	formatted_data - Pre-formatted data strings (populated on execute)

Example
spec = GnuplotEx.Spec.build([[:plot, 'sin(x)']], [])

 execute(spec)

 @spec execute(t()) :: {:ok, String.t()} | {:error, term()}

Execute a spec, sending commands to gnuplot.
Example
spec = GnuplotEx.Spec.build(commands, data)
{:ok, script} = GnuplotEx.Spec.execute(spec)

 format_data(spec)

 @spec format_data(t()) :: String.t()

Get the formatted data that would be sent to gnuplot.
Useful for debugging data transmission issues.
Example
spec = GnuplotEx.Spec.build(commands, data)
formatted = GnuplotEx.Spec.format_data(spec)
IO.puts(formatted)

 to_string(spec)

 @spec to_string(t()) :: String.t()

Format the spec as a readable string for inspection.
Example
spec = GnuplotEx.Spec.build(commands, data)
IO.puts(GnuplotEx.Spec.to_string(spec))

 GnuplotEx.Version - gnuplot_ex v0.2.2

GnuplotEx.Version

Gnuplot version detection and validation.
GnuplotEx requires Gnuplot 6.0 or later for full functionality.

 Summary

 Functions

 check()

 Check if the installed gnuplot version meets the minimum requirement.

 get()

 Get the installed gnuplot version.

 minimum()

 Get the minimum required gnuplot version.

 Functions

 check()

 @spec check() :: {:ok, String.t()} | {:error, term()}

Check if the installed gnuplot version meets the minimum requirement.
Returns {:ok, version_string} if version >= 6.0.0, or {:error, reason}.
Example
iex> GnuplotEx.Version.check()
{:ok, "6.0.0"}

iex> GnuplotEx.Version.check()
{:error, {:version_too_old, "5.4.0", "6.0.0"}}

 get()

 @spec get() :: {:ok, String.t()} | {:error, term()}

Get the installed gnuplot version.
Returns {:ok, version_string} or {:error, reason}.
Example
iex> GnuplotEx.Version.get()
{:ok, "6.0.0"}

 minimum()

 @spec minimum() :: String.t()

Get the minimum required gnuplot version.
Example
iex> GnuplotEx.Version.minimum()
"6.0.0"

 mix bench - gnuplot_ex v0.2.2

mix bench

Run benchmarks and generate charts.
Usage
mix bench # Run all benchmarks
mix bench --large # Run large dataset benchmark only
mix bench --parallel # Run parallel rendering benchmark only
Benchmark charts are saved to guides/examples/.

 mix docs.examples - gnuplot_ex v0.2.2

mix docs.examples

Generate example images for documentation.
Usage
mix docs.examples # Generate all examples (ExDoc theme)
mix docs.examples --low # Generate low-level API examples only
mix docs.examples --high # Generate high-level API examples only
mix docs.examples --ecosystem # Generate ecosystem integration examples only
mix docs.examples --light # Use light theme instead of ExDoc theme
Examples are saved to guides/examples/.
All examples use ExDoc dark theme by default for seamless documentation integration.

OEBPS/guides/examples/benchmark_parallel.png
Time (seconds)

Parallel Rendering: Sequential vs renderyany

Seguenlial (Enum.map)
arallel (renderpany

10

15

20

25

30
Number of Plots

35

40

45

50

OEBPS/dist/epub-4WIP524F.js
