View Source GoogleApi.AIPlatform.V1.Model.GoogleCloudAiplatformV1ExplanationParameters (google_api_ai_platform v0.15.0)
Parameters to configure explaining for Model's predictions.
Attributes
-
examples
(type:GoogleApi.AIPlatform.V1.Model.GoogleCloudAiplatformV1Examples.t
, default:nil
) - Example-based explanations that returns the nearest neighbors from the provided dataset. -
integratedGradientsAttribution
(type:GoogleApi.AIPlatform.V1.Model.GoogleCloudAiplatformV1IntegratedGradientsAttribution.t
, default:nil
) - An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365 -
outputIndices
(type:list(any())
, default:nil
) - If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes). -
sampledShapleyAttribution
(type:GoogleApi.AIPlatform.V1.Model.GoogleCloudAiplatformV1SampledShapleyAttribution.t
, default:nil
) - An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265. -
topK
(type:integer()
, default:nil
) - If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs. -
xraiAttribution
(type:GoogleApi.AIPlatform.V1.Model.GoogleCloudAiplatformV1XraiAttribution.t
, default:nil
) - An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
Summary
Functions
Unwrap a decoded JSON object into its complex fields.
Types
@type t() :: %GoogleApi.AIPlatform.V1.Model.GoogleCloudAiplatformV1ExplanationParameters{ examples: GoogleApi.AIPlatform.V1.Model.GoogleCloudAiplatformV1Examples.t() | nil, integratedGradientsAttribution: GoogleApi.AIPlatform.V1.Model.GoogleCloudAiplatformV1IntegratedGradientsAttribution.t() | nil, outputIndices: [any()] | nil, sampledShapleyAttribution: GoogleApi.AIPlatform.V1.Model.GoogleCloudAiplatformV1SampledShapleyAttribution.t() | nil, topK: integer() | nil, xraiAttribution: GoogleApi.AIPlatform.V1.Model.GoogleCloudAiplatformV1XraiAttribution.t() | nil }
Functions
Unwrap a decoded JSON object into its complex fields.