Confusion matrix for binary classification models.
-
accuracy(type:float(), default:nil) - The fraction of predictions given the correct label. -
f1Score(type:float(), default:nil) - The equally weighted average of recall and precision. -
falseNegatives(type:String.t, default:nil) - Number of false samples predicted as false. -
falsePositives(type:String.t, default:nil) - Number of false samples predicted as true. -
positiveClassThreshold(type:float(), default:nil) - Threshold value used when computing each of the following metric. -
precision(type:float(), default:nil) - The fraction of actual positive predictions that had positive actual labels. -
recall(type:float(), default:nil) - The fraction of actual positive labels that were given a positive prediction. -
trueNegatives(type:String.t, default:nil) - Number of true samples predicted as false. -
truePositives(type:String.t, default:nil) - Number of true samples predicted as true.