GoogleApi.BigQuery.V2.Model.BinaryConfusionMatrix (google_api_big_query v0.63.0) View Source
Confusion matrix for binary classification models.
Attributes
-
accuracy(type:float(), default:nil) - The fraction of predictions given the correct label. -
f1Score(type:float(), default:nil) - The equally weighted average of recall and precision. -
falseNegatives(type:String.t, default:nil) - Number of false samples predicted as false. -
falsePositives(type:String.t, default:nil) - Number of false samples predicted as true. -
positiveClassThreshold(type:float(), default:nil) - Threshold value used when computing each of the following metric. -
precision(type:float(), default:nil) - The fraction of actual positive predictions that had positive actual labels. -
recall(type:float(), default:nil) - The fraction of actual positive labels that were given a positive prediction. -
trueNegatives(type:String.t, default:nil) - Number of true samples predicted as false. -
truePositives(type:String.t, default:nil) - Number of true samples predicted as true.
Link to this section Summary
Functions
Unwrap a decoded JSON object into its complex fields.
Link to this section Types
Specs
t() :: %GoogleApi.BigQuery.V2.Model.BinaryConfusionMatrix{
accuracy: float() | nil,
f1Score: float() | nil,
falseNegatives: String.t() | nil,
falsePositives: String.t() | nil,
positiveClassThreshold: float() | nil,
precision: float() | nil,
recall: float() | nil,
trueNegatives: String.t() | nil,
truePositives: String.t() | nil
}
Link to this section Functions
Specs
Unwrap a decoded JSON object into its complex fields.