GoogleApi.BigQuery.V2.Model.BinaryConfusionMatrix (google_api_big_query v0.70.1) View Source

Confusion matrix for binary classification models.

Attributes

  • accuracy (type: float(), default: nil) - The fraction of predictions given the correct label.
  • f1Score (type: float(), default: nil) - The equally weighted average of recall and precision.
  • falseNegatives (type: String.t, default: nil) - Number of false samples predicted as false.
  • falsePositives (type: String.t, default: nil) - Number of false samples predicted as true.
  • positiveClassThreshold (type: float(), default: nil) - Threshold value used when computing each of the following metric.
  • precision (type: float(), default: nil) - The fraction of actual positive predictions that had positive actual labels.
  • recall (type: float(), default: nil) - The fraction of actual positive labels that were given a positive prediction.
  • trueNegatives (type: String.t, default: nil) - Number of true samples predicted as false.
  • truePositives (type: String.t, default: nil) - Number of true samples predicted as true.

Link to this section Summary

Functions

Unwrap a decoded JSON object into its complex fields.

Link to this section Types

Specs

t() :: %GoogleApi.BigQuery.V2.Model.BinaryConfusionMatrix{
  accuracy: float() | nil,
  f1Score: float() | nil,
  falseNegatives: String.t() | nil,
  falsePositives: String.t() | nil,
  positiveClassThreshold: float() | nil,
  precision: float() | nil,
  recall: float() | nil,
  trueNegatives: String.t() | nil,
  truePositives: String.t() | nil
}

Link to this section Functions

Specs

decode(struct(), keyword()) :: struct()

Unwrap a decoded JSON object into its complex fields.