

 grisp

 v2.8.0

 Table of contents

 	Changelog

 	Overview

 	License

 	
 Modules

 	grisp

 	grisp_barebox

 	grisp_bitmap

 	grisp_eeprom

 	grisp_info

 	grisp_led

 	grisp_nmea

 	grisp_onewire

 	onewire_ds18b20

 	onewire_ds2408

 	pmod_acl2

 	pmod_als

 	pmod_dio

 	pmod_gps

 	pmod_gyro

 	pmod_hb5

 	pmod_hygro

 	pmod_maxsonar

 	pmod_mtds

 	pmod_nav

 	pmod_ssr

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to
Semantic Versioning.
Unreleased
2.8.0 - 2025-02-03
Added
	Add issue trigger to otp_pkg.yaml grisp/#147
	Announce new package in Slack grisp/#148
	Add the module grisp_info to get information about the grisp hardware, the boot status and the current software on system partions or sdcard. grisp/#149
	Add PWM support grisp/#153
	Add missing pin in the docs grisp/#152
	Add MTDS driver grisp/#151

Changed
	Port documentation to ExDoc grisp/#155

Fixed
	Fix cached version for CI cron job grisp/#145
	Fix check_otp_rel.yaml grisp/#146
	Fix CI/CD package upload
	Fix duplication of xcomp files in overlay grisp/#150o
	Fix edoc and check in CI grisp/#154

2.7.0 - 2024-10-11
Added
	New pmod_ssr driver
	Support for rebooting the board on crash and/or exit of the VM, so calling
init:stop() will reboot the board if the option on_exit is set to reboot in
grisp.ini.

2.6.0 - 2024-07-29
Fixed
	Fix barebox error handling grisp/#137
	Fix the commands available in RTEMS shell grisp/#132

Added
	Expose emulation status through grisp.hrl macro ?IS_EMULATED grisp/#137
	Copy configuration files to /etc during boot grisp/#132
	Add default configuration for DNS support grisp/#132
	Add RTEMS log priority option in INI file grisp/#132

2.5.0 - 2024-06-25
Added - Remove ssl patch for OTP-26 builds
grisp/#127 - Add support for OTP 27
grisp/#130 - Add support for OTP 26.2
grisp/#131
2.4.0 - 2024-01-18
Added
	Support for OTP 26 grisp/#121

	Add BLAS and LAPACK nif support grisp/#118

	New shell option for grisp.ini grisp/#125

Fixed
	Fix emulation for grisp 2 grisp/#117

2.3.0 - 2022-07-27
Added
	Support for OTP 25

2.2.0 - 2022-07-18
Added
	Support for OTP 24

Fixed
	Removed redundant command line argument boot debug output

2.1.0 - 2022-06-07
Added
	It is now possible to use UART (lower row) and I2C PMOD ports as GPIO pins
	PmodHB5 driver now supports the new available GPIO pins

2.0.0 - 2022-02-01
*Note! This release is not compatible with GRiSP 1 yet! GRiSP 1
compatibility will get added in a later patch release.*
Added
	grisp_hw module for hardware access functions
	grisp_rtems module containing NIFs for selected RTEMS functions

Changed
	grisp_gpio interface has been updated and simplified
	grisp_spi interface has been updated and simplified
	grisp_i2c interface has been updated and simplified
	pmod_gps now validates the NMEA sentences and parses the GGA ones
	pmod_gps API changed, it now returns a pre-parsed tuple, and for the GGA a
parsed map of the sentence fields

Removed
	Breaking change! The old GPIO API has been removed in favor of a new API
	Breaking change! The old SPI API has been removed in favor of a new API
	Breaking change! The old I2C API has been removed in favor of a new API

1.2.1 - 2020-07-02
Fixed
	Updated to grisp_emulation 0.1.2 with proper PmodGYRO emulation
(#76)

1.2.0 - 2020-03-03
Added
	Add link to totorial to Pmod NAV doc #59
	Add documentation #71 (maehjam)

	Add documentation #68 (maehjam)
	Add documentation for PmodNAV #67 (maehjam)

Fixed
	add_device fails for PmodHYGRO #69

	Fix for add_device, fix of read message, add documentation #70 (maehjam)
	Fix edoc syntax #66 (nextl00p)

1.1.6 - 2019-09-27
Changed
	Remove deprecated maintainers section #65 (nextl00p)

1.1.5 - 2019-09-27
Added
	Make it possible to configure UART pins as GPIO #37
	Implement read command for pmod_gyro #61 (GalaxyGorilla)
	Gps #57 (aytchell)
	Add support for OTP 22 #54 (sylane)
	Add missing SPI pins #56 (Theuns-Botha)
	Examples for grisp_led:pattern/2 using functions #50 (Laymer)
	Add Feature wireless ad hoc network mode #41 (Laymer)
	Add Digilent Pmod_ALS ambient light sensor driver. #40 (Laymer)
	Add pmod hygro driver #31 (sebb7)

Fixed
	Edoc doesn't build on master #60
	grisp_led:pattern documentation is missing the Fun argument #49
	Data decoding for pmod_maxsonar is wrong #42
	Quickfix for typo #64 (Laymer)

	Quickfix decoding pattern #51 (Laymer)
	Split out emulation layer #46 (Theuns-Botha)
	Fixed data decoding for 'Digilent PmodMAXSONAR' #43 (aytchell)

1.1.4 - 2018-07-30
Fixed
	PmodNAV magnetometer fails initialization "sometimes" #11

1.1.3 - 2018-07-30
Changed
	Make embedded mode the default #34 (nextl00p)

Fixed
	erlang:get_stacktrace/0 is deprecated in OTP 21 #33
	deprecated erlang:get_stacktrace/0 function #36 (getong)

1.1.2 - 2018-06-21
	Add support for OTP 21.0

1.1.1 - 2018-06-06
Added
	Add support for OTP 21.0-rc1 #27 (sylane)
	[WIP] Update to support RTEMS 5.0 #26 (eproxus)

Fixed
	Start Erlang runtime when source dependencies are included #25
	Writing to a file hangs the system after listing files #24

1.1.0 - 2018-05-24
Added
	Add support for DHCP configuration file #23 (sylane)
	Make onewire driver concurrency safe #21 (eproxus)
	Add version to OTP xcomp file #20 (sylane)
	Add board config and OTP cross-compilation config #18 (sylane)

1.0.1 - 2017-12-19
Fixed
	Can't compile sample application on Ubuntu 16.04 server #17
	Ubuntu 16.04 is missing build-essential package as dependency #16
	Build failing on Mac 10.10.5 #15

1.0.0 - 2017-11-17
Fixed
	grisp_spi_drv is no gen_server #12
	Fix display of error message during boot, even when correct hostname … #14 (nextl00p)

0.1.1 - 2017-11-08
Fixed
	Added missing files to Hex package

0.1.0 - 2017-11-06
Added
	Added emulator instructions in README #8 (nextl00p)
	Quickcheck: model for 3 type of crashes plus clustering #4 (ThomasArts)
	Quickcheck model for LEDs #1 (ThomasArts)

Changed
	Raw refactoring of onewire interface #6 (ThomasArts)

Fixed
	Supervision restart strategies #3
	grisp_led is accepting interval 0 (as well as negative intervals) #2
	Fixed wrong registers in rotation vector #9 (nextl00p)
	Fix for #2. Negative intervals are now treated by turning off leds #5 (nextl00p)

 Overview

 [image: GRiSP Logo]
 [image: GRiSP Logo]

 License - grisp v2.8.0

 License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "{}"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright {yyyy} {name of copyright owner}

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 grisp - grisp v2.8.0

grisp

GRiSP Runtime API.
This module contains the main API for working with the GRiSP runtime.

 Summary

 Types

 device()

 An object representing the running device.

 slot()

 Designates a hardware slot on the GRiSP board. This should be the lower case
version of the slot names printed on the board itself.

 Functions

 add_device(Slot, Driver)

 Equivalent to add_device/3.

 add_device(Slot, Driver, Opts)

 Add and start the device instance for a connected device.

 device(Slot)

 Return the device instance at the specified slot (if any).

 devices()

 List all running devices instances.

 remove_device(Device)

 Remove and stop the device instance for a device.

 Types

 device()

 -opaque device()

An object representing the running device.

 slot()

 -type slot() :: atom().

Designates a hardware slot on the GRiSP board. This should be the lower case
version of the slot names printed on the board itself.
E.g. spi1 for SPI1 or gpio2 for GPIO2.

 Functions

 add_device(Slot, Driver)

 -spec add_device(slot(), module()) -> device().

Equivalent to add_device/3.

 add_device(Slot, Driver, Opts)

 -spec add_device(slot(), module(), map()) -> device().

Add and start the device instance for a connected device.
This starts a device driver instance of the specified module and connected to
the specified slot. No hardware validation is possible to check that the
correct device is actually connected, but many drivers run an initialization
check for specific device IDs and other similar characteristics which will
fail if no device or the wrong device is connected.
The set of options is passed to the driver and is specific to each driver.
Returns the created device instance.

 device(Slot)

 -spec device(slot()) -> device().

Return the device instance at the specified slot (if any).
Errors
	{no_device_connected, Slot}.

 devices()

 -spec devices() -> [device()].

List all running devices instances.
Returns a list of all running device instances as device objects.

 remove_device(Device)

 -spec remove_device(device()) -> ok.

Remove and stop the device instance for a device.
This will gracefully stop the device instance and remove it from the runtime.
This includes running any termination code inside the device driver module
(see the specific driver module for your device for more information).

 grisp_barebox - grisp v2.8.0

grisp_barebox

 Summary

 Functions

 commit()

 get(Name)

 get_all()

 load()

 set(Name, Value)

 Functions

 commit()

 get(Name)

 get_all()

 load()

 set(Name, Value)

 grisp_bitmap - grisp v2.8.0

grisp_bitmap

Bitstring editing and printing.

 Summary

 Types

 coding()

 Functions

 get_bits(Bin, Start, Len)

 Get a part of a bitstring.

 get_bytes(Bin, Start, Len)

 Equivalent to get_bits(Bin, Start * 8, Len * 8).

 pp(Bin)

 Print binary as hexadecimal numbers.

 pp/2

 Print binary as numbers.

 set_bits(Bin, Start, Value)

 Replace a part of a bitsting.

 set_bytes(Bin, Start, Value)

 Equivalent to set_bits(Bin, Start * 8, Value).

 Types

 coding()

 -type coding() :: bin | binary | dec | decimal | hex | hexadecimal | nib | nibble.

 Functions

 get_bits(Bin, Start, Len)

 -spec get_bits(bitstring(), non_neg_integer(), non_neg_integer()) -> bitstring().

Get a part of a bitstring.
Example
 1> grisp_bitmap:get_bits(<<1,2,3,4,5>>, 6, 2).
 <<1:2>>

 get_bytes(Bin, Start, Len)

 -spec get_bytes(binary(), non_neg_integer(), non_neg_integer()) -> binary().

Equivalent to get_bits(Bin, Start * 8, Len * 8).

 pp(Bin)

 -spec pp(bitstring()) -> ok.

Print binary as hexadecimal numbers.
Example
 2> grisp_bitmap:pp(<<16#f2, 17>>).
 F2 11
 ok

 pp/2

 -spec pp(bitstring(), coding() | #{display => coding()}) -> ok.

Print binary as numbers.
Example
 3> grisp_bitmap:pp(<<16#f2, 17>>, nib).
 1111 0010 0001 0001
 ok
 4> grisp_bitmap:pp(<<16#f2, 17>>, #{display => bin}).
 1111 0010 0001 0001
 ok

 set_bits(Bin, Start, Value)

 -spec set_bits(bitstring(), non_neg_integer(), bitstring()) -> bitstring().

Replace a part of a bitsting.
Example
5> grisp_bitmap:pp(grisp_bitmap:set_bits(<<2#00000000>>, 6, <<2#1:1>>), bin).
00000010
ok

 set_bytes(Bin, Start, Value)

 -spec set_bytes(binary(), non_neg_integer(), bitstring()) -> binary().

Equivalent to set_bits(Bin, Start * 8, Value).

 grisp_eeprom - grisp v2.8.0

grisp_eeprom

 Summary

 Functions

 read(Name, ReadAddr, ReadSize)

 write(Name, WriteAddr, Data)

 Functions

 read(Name, ReadAddr, ReadSize)

 write(Name, WriteAddr, Data)

 grisp_info - grisp v2.8.0

grisp_info

GRiSP general information.
When running grisp on a host machine during development, the functions return:
1> grisp_info:hardware().
#{
 platform => host,
 version => <<"1">>,
 serial => <<"0000">>
 batch => 1,
 pcb_variant => 1
 pcb_version => <<"1">>,
 prod_date => {{2022, 1, 28},{0,0,0}}
}
2> grisp_info:boot().
#{
 boot => host,
 valid => host,
 next => host
}
For grisp_info:software() to be defined during local development, a term file
named MANIFEST must exists in the current directory and looks like:
%% coding: utf-8
{platform, <<"grisp2">>}.
{id, <<"83613140847d62b47c3f220b6f43e2de561be441">>}.
{relname, <<"my_app">>}.
{relvsn, <<"0.1.0">>}.
{profiles, [dev]}.
{package, [
 {toolchain, [{revision, <<"516707805fd33285679e9e64585b995d31d926ec">>}]},
 {rtems, [{version, <<"5">>}]},
 {otp, [{version, <<"26.2.5.4">>}]}
]}.

 Summary

 Types

 boot_info()

 boot_source()

 boot_system()

 hardware_info()

 software_info()

 Functions

 boot()

 hardware()

 software()

 software(Source)

 Types

 boot_info()

 -type boot_info() :: #{boot := boot_source(), active := boot_system(), next := boot_system()}.

 boot_source()

 -type boot_source() :: sdcard | boot_system().

 boot_system()

 -type boot_system() :: system_a | system_b.

 hardware_info()

 -type hardware_info() ::
 #{platform := atom(),
 version := binary(),
 serial := binary(),
 batch := pos_integer(),
 pcb_variant := pos_integer(),
 pcb_version := binary(),
 prod_date := calendar:datetime()}.

 software_info()

 -type software_info() ::
 #{id := undefined | binary(),
 relname := undefined | binary(),
 relvsn := undefined | binary(),
 profiles := undefined | [atom()],
 toolchain_rev := undefined | binary(),
 rtems_ver := undefined | binary(),
 otp_ver := undefined | binary()}.

 Functions

 boot()

 -spec boot() -> boot_info().

 hardware()

 -spec hardware() -> hardware_info().

 software()

 -spec software() -> software_info().

 software(Source)

 -spec software(Source :: boot_source()) -> software_info() | undefined.

 grisp_led - grisp v2.8.0

grisp_led

 Summary

 Types

 color()

 color_name()

 color_value()

 pattern()

 position()

 time()

 Functions

 color(Pos, Color)

 Set the color of an LED.

 flash(Pos, Color, Interval)

 Flash an LED in an on/off pattern with the specified color.

 off(Pos)

 Turn off an LED.

 pattern(Pos, Pattern)

 Animate an LED with a pattern of colors and intervals.

 read(Pos)

 Types

 color()

 -type color() :: color_name() | color_value().

 color_name()

 -type color_name() :: off | black | blue | green | aqua | red | magenta | yellow | white.

 color_value()

 -type color_value() :: {0 | 1, 0 | 1, 0 | 1}.

 pattern()

 -type pattern() :: [{time(), color() | fun(() -> color())}].

 position()

 -type position() :: 1 | 2.

 time()

 -type time() :: pos_integer() | infinity.

 Functions

 color(Pos, Color)

 -spec color(position(), color()) -> ok.

Set the color of an LED.
Examples
1> grisp_led:color(1, red).
ok
2> grisp_led:color(2, {0, 1, 0}).
ok

 flash(Pos, Color, Interval)

 -spec flash(position(), color(), time()) -> ok.

Flash an LED in an on/off pattern with the specified color.
Examples
1> grisp_led:flash(2, blue, 500).
ok

 off(Pos)

 -spec off(position()) -> ok.

Turn off an LED.

 pattern(Pos, Pattern)

 -spec pattern(position(), pattern()) -> ok.

Animate an LED with a pattern of colors and intervals.
Examples
1> grisp_led:pattern(1, [{300, green}, {500, yellow}, {700, red}, {infinity, off}]).
ok
2> Rainbow = [{300, {R, G, B}} || R <- [0,1], G <- [0,1], B <- [0,1], {R, G, B} =/= {0, 0, 0}].
[{300,{0,0,1}},
 {300,{0,1,0}},
 {300,{0,1,1}},
 {300,{1,0,0}},
 {300,{1,0,1}},
 {300,{1,1,0}},
 {300,{1,1,1}}]
3> grisp_led:pattern(2, Rainbow).
ok
The color can also be specified using functions as generators
instead of explicitly stating the color :
2> Random = fun() -> {rand:uniform(2) - 1, rand:uniform(2) -1, rand:uniform(2) - 1} end.
#Fun<erl_eval.20.128620087>
3> grisp_led:pattern(1, [{100, Random}]).
As well as by composing lists of intervals and pattern functions :
4> Funs = [fun() -> {X rem 2, rand:uniform(2) - 1 , 1} end || X <- lists:seq(1,10)].
[#Fun<erl_eval.20.128620087>, ...
5> Intervals = lists:seq(1000,1900,100).
[1000,1100,1200,1300,1400,1500,1600,1700,1800,1900]
6> Result = lists:zip(Intervals, Funs).
[{1000,#Fun<erl_eval.20.128620087>},...
7> grisp_led:pattern(1, Result).

 read(Pos)

 grisp_nmea - grisp v2.8.0

grisp_nmea

 Summary

 Types

 message_id/0

 talker_id/0

 Functions

 parse(Bad)

 Types

 message_id/0

 -type message_id() ::
 dtm | gbq | gbs | gga | gll | glq | gnq | gns | gpq | grs | gsa | gst | gsv | rmc | txt |
 vlw | vtg | zda |
 binary().

 talker_id/0

 -type talker_id() :: gps | glonass | galileo | beidou | any | binary().

 Functions

 parse(Bad)

 -spec parse(binary()) -> {ok, {talker_id(), message_id(), map() | binary()}} | {error, term()}.

 grisp_onewire - grisp v2.8.0

grisp_onewire

Driver API for the
DS2482-100 Single-Channel 1-Wire Master
The functions in this module refer to the function commands documented in the
masters data sheet.
Each function has a hexadecimal command code that is referenced in the
specification sheet.

 Summary

 Functions

 bus_reset()

 Reset the bus and check the register for devices.

 detect()

 Reset device and activate active pullup (APU).

 read_byte()

 Read one data byte from the 1-Wire line.

 reset()

 Reset the 1-Wire Master and terminate any ongoing 1-Wire communication.

 search()

 Search the bus for devices.

 transaction(Fun)

 Run a 1-Wire transaction.

 write_byte(Byte)

 Write one data byte to the 1-Wire line.

 write_config/1

 Write configuration into 1-Wire master register.

 Functions

 bus_reset()

 -spec bus_reset() -> nothing_present | presence_detected | short_detected.

Reset the bus and check the register for devices.
This function can only be used inside of a transaction/1 call.
Return Value Description
	Atom	Description
	nothing_present	No device on the bus detected
	presence_detected	Some devices on the bus detected
	short_detected	A short circuit between data and ground on the bus detected

Command code: b4h.

 detect()

 -spec detect() -> ok.

Reset device and activate active pullup (APU).
This function can only be used inside of a transaction/1 call.
See also: reset/0, write_config/1.

 read_byte()

Read one data byte from the 1-Wire line.
This function can only be used inside of a transaction/1 call.
Command codes: 96h, e1h

 reset()

 -spec reset() -> ok.

Reset the 1-Wire Master and terminate any ongoing 1-Wire communication.
This function can only be used inside of a transaction/1 call.
Command code: f0h.

 search()

 -spec search() -> fail | nothing_present | short_detected | [[byte()]].

Search the bus for devices.
This function can only be used inside of a transaction/1 call.
If there are connected devices, i.e., bus_reset/0 returns
presence_detected, this function provides a list of the unique 64-bit
addresses of all detected devices.
Otherwise, the return values match the values from bus_reset/0 or
fail for other failures during the search.
The addresses are represented as lists of eight byte values.
Example
With five DS18B20 temperature sensors connected one can list the five device
IDs:
 1> grisp_onewire:transaction(fun grisp_onewire:search/0).
 [[40,255,203,173,80,23,4,182],
 [40,255,67,77,96,23,5,138],
 [40,255,190,25,96,23,3,203],
 [40,255,54,42,96,23,5,35],
 [40,255,18,91,96,23,3,62]]

 transaction(Fun)

 -spec transaction(fun()) -> any().

Run a 1-Wire transaction.
Use this function to make sure that there is only one process running on the
1-Wire.
Example
 2> grisp_onewire:transaction(fun() ->
 presence_detected = grisp_onewire:bus_reset(),
 grisp_onewire:write_byte(16#cc)
 end).
 ok

 write_byte(Byte)

 -spec write_byte(integer()) -> ok.

Write one data byte to the 1-Wire line.
This function can only be used inside of a transaction/1 call.
Command code: a5h_

 write_config/1

 -spec write_config([apu | overdrive | spu] | integer()) -> ok.

Write configuration into 1-Wire master register.
This function can only be used inside of a transaction/1 call.
The default configuration is 0, i.e., all three configurable bits set to
0. This corresponds to an empty list. Each atom in the list activates the
corresponding configuration (sets the bit to 1) and each atom not present in
the list leads to a deactivation (sets the bit to 0).
Atom to Integer to Configuration Bit Mapping
	Atom	Integer	Configuration Bit	Activates
	apu	1	Bit 0 (APU)	Active pullup
	spu	4	Bit 2 (SPU)	Strong pullup
	overdrive	8	Bit 3 (1WS)	1-Wire overdrive speed

Example
To activate active pullup and overdrive speed use:
 3> grisp_onewire:transaction(fun() -> grisp_onewire:write_config([apu, overdrive]) end).
 ok
This is the same as:
 4> grisp_onewire:transaction(fun() -> grisp_onewire:write_config(1 bor 8) end).
 ok
Command code: d2h.

 onewire_ds18b20 - grisp v2.8.0

onewire_ds18b20

Communicate with the
DS18B20 - Programmable Resolution 1-Wire Digital Thermometer

 Summary

 Functions

 convert(ID, Timeout)

 Initiate a temperature measurement.

 read_scratchpad(ID)

 Read the scratchpad.

 temp(ID)

 Read the temperature in °C from the scratchpad.

 Functions

 convert(ID, Timeout)

 -spec convert([byte()], any()) -> ok.

Initiate a temperature measurement.
Example
 1> onewire_ds18b20:convert([40,255,190,25,96,23,3,203], 500).
 ok

 read_scratchpad(ID)

 -spec read_scratchpad([byte()]) -> {LSB :: binary(), MSB :: binary(), Config :: binary()}.

Read the scratchpad.
Returns the two bytes of the temperature register (LSB and MSB) and
the one byte of the configuration register.

 temp(ID)

 -spec temp([byte()]) -> float().

Read the temperature in °C from the scratchpad.
Example
 onewire_ds18b20:temp([40,255,190,25,96,23,3,203]).
 22.375

 onewire_ds2408 - grisp v2.8.0

onewire_ds2408

 Summary

 Functions

 read_channel(Sel, Count)

 write_channel(Sel, _)

 Functions

 read_channel(Sel, Count)

 write_channel(Sel, _)

 pmod_acl2 - grisp v2.8.0

pmod_acl2

 Summary

 Functions

 g()

 raw()

 Functions

 g()

 raw()

 pmod_als - grisp v2.8.0

pmod_als

Digilent Pmod_ALS module.
This component provides ambient light-to-digital
sensing through the SPI2 interface on a 6-pin connector.
For further information about the Digilent Pmod_ALS
and its components :
https://store.digilentinc.com/pmod-als-ambient-light-sensor/
Texas Instrument's ADC081S021 analog-to-digital converter
http://www.ti.com/lit/ds/symlink/adc081s021.pdf
Vishay Semiconductor's TEMT6000X01.
http://www.vishay.com/docs/81579/temt6000.pdf
Start the driver with
 1> grisp:add_device(spi2, pmod_als).

 Summary

 Functions

 percentage()

 Returns a the percentage of current ambient light
based on the read/0 function. The value
is rounded to the closest integer.

 read()

 Returns the ambient light value that is currently sensed
by the ALS module. On success, the return value is a number
in the 0..255 range that is proportional to the luminous
intensity.

 Functions

 percentage()

 -spec percentage() -> 0..100.

Returns a the percentage of current ambient light
based on the read/0 function. The value
is rounded to the closest integer.

 read()

 -spec read() -> 0..255 | no_return().

Returns the ambient light value that is currently sensed
by the ALS module. On success, the return value is a number
in the 0..255 range that is proportional to the luminous
intensity.
Technically, the values are representative of the
power perceived by the phototransistor from the light source
incoming at an angle of ±60°. It is a model of the response
of the human eye to the same light source that is obtained
by calculating the luminosity function.
The peak wavelength sensitivity of the module is at 570nm
making it close to the human eye (555nm). This implies that
return values will be the highest when the ALS is exposed to
wavelengths of green light with a slight yellow tint.

 pmod_dio - grisp v2.8.0

pmod_dio

 Summary

 Functions

 crc5(Bitstring)

 handle_call(Request, From, State)

 handle_cast(Request, State)

 init(Slot)

 read(Chip, Reg)

 read_burst(Chip, Reg)

 start_link(Connector, Opts)

 write(Chip, Reg, Value)

 Functions

 crc5(Bitstring)

 handle_call(Request, From, State)

 handle_cast(Request, State)

 init(Slot)

 read(Chip, Reg)

 read_burst(Chip, Reg)

 start_link(Connector, Opts)

 write(Chip, Reg, Value)

 pmod_gps - grisp v2.8.0

pmod_gps

PmodGPS
module.
The PmodGPS sends the GPS data over UART.
Start the driver with
1> grisp:add_device(uart, pmod_gps).

 Summary

 Functions

 get(MessageId)

 Get the GPS data.

 Functions

 get(MessageId)

 -spec get(grisp_nmea:message_id()) ->
 {grisp_nmea:talker_id(), grisp_nmea:message_id(), map() | binary()} | undefined.

Get the GPS data.
The input parameter specifies which type of sentence to get.
For a description of the sentences see the
PmodGPS Reference Manual.
The sentence CRC is checked for all the sentence types, but for now only the
GGA values are parsed. If other sentences are needed, grisp_nmea needs to be
extended to support more types.
Example
 2> pmod_gps:get(gga).
 {gps,gga,#{alt => 61.9,fixed => true,lat => 52.122661666666666,long => 11.594928333333334,time => 53912000}}}
 3> pmod_gps:get(gsa).
 {gps,gsa,<<\"A,3,17,06,19,02,24,,,,,,,,2.69,2.51,0.97\">>}
 4> pmod_gps:get(gsv).
 {gps,gsv,<<\"3,3,12,14,22,317,17,17,10,040,35,29,09,203,,22,02,351\">>}
 5> pmod_gps:get(rmc).
 {gps,rmc,<<\"150007.000,A,5207.3592,N,01135.6895,E,0.46,255.74,120220,,,A\">>}
 6> pmod_gps:get(vtg).
 {gps,vtg,<<\"297.56,T,,M,0.65,N,1.21,K,A\">>}

 pmod_gyro - grisp v2.8.0

pmod_gyro

PmodGYRO
module that gets the gyroscopes data via SPI.
Start the driver with
1> grisp:add_device(spi1, pmod_gyro).

 Summary

 Functions

 read()

 Read the gyroscopes X, Y and Z values in degrees per second.

 Functions

 read()

 -spec read() -> {X :: float(), Y :: float(), Z :: float()}.

Read the gyroscopes X, Y and Z values in degrees per second.
Example
 2> pmod_gyro:read().
 {249.28279313922965,-26.078862235243843,12.764756149667337}

 pmod_hb5 - grisp v2.8.0

pmod_hb5

 Summary

 Functions

 backward(State)

 forward(State)

 open(_)

 open(Pin1, Pin2)

 stop(_)

 Functions

 backward(State)

 forward(State)

 open(_)

 open(Pin1, Pin2)

 stop(_)

 pmod_hygro - grisp v2.8.0

pmod_hygro

API for the
PmodHYGRO.
Start the driver with
1> grisp:add_device(i2c, pmod_hygro).

 Summary

 Functions

 humid()

 Measure the humidity in %.

 measurements()

 Measure the temperature and humidity.

 temp()

 Measure the temperature in °C.

 Functions

 humid()

 -spec humid() -> [{humid, float()}].

Measure the humidity in %.
Example
2> pmod_hygro:humid().
[{humid,50.225830078125}]

 measurements()

 -spec measurements() -> [{temp, float()} | {humid, float()}].

Measure the temperature and humidity.
Example
2> pmod_hygro:measurements().
[{temp,24.52362060546875},{humid,50.823974609375}]

 temp()

 -spec temp() -> [{temp, float()}].

Measure the temperature in °C.
Example
2> pmod_hygro:temp().
[{temp,24.6746826171875}]

 pmod_maxsonar - grisp v2.8.0

pmod_maxsonar

Pmod MAXSONAR
module.
The Pmod MAXSONAR cyclically sends measurements via the UART interface.
This module converts and stores the latest measurement.
Start the driver with
1> grisp:add_device(uart, pmod_maxsonar).

 Summary

 Functions

 get()

 Get the latest measured distance in inches.

 Functions

 get()

 -spec get() -> integer().

Get the latest measured distance in inches.

 pmod_mtds - grisp v2.8.0

pmod_mtds

GRiSP device driver for Digilent Pmod MTDS.
NOTE: This driver does not replicate all of the functionality found
in the reference C++ driver. I hope it replicates enough that interested
developers have templates for any further features they might want to add!
Also, a warning: the C++ driver defines some constants (and even commands??)
which are not supported by the device firmware.

For manuals and a C++ reference driver, see
https://github.com/Digilent/vivado-library/tree/master/ip/Pmods/PmodMTDS_v1_0

 Summary

 Types

 bitmap()

 color()

 font()

 position()

 stock_font()

 surface()

 window()

 Functions

 bitmap(X, Y, Color)

 Allocate a new bitmap (usually to back a surface).

 bitmap_draw/5

 Write the contents of one bitmap onto another.

 bitmap_release(Handle)

 Release a bitmap.

 clear(Color)

 Blanks the MTDS to the indicated color.

 color_bg/2

 Set the background draw color of a surface.

 color_fg/2

 Set the foreground draw color of a surface.

 draw_rop(Handle, OpCode)

 Set the bitwise operator used to combine pen + bitmap when drawing.

 font(Handle)

 Retrieve the current font of a surface.

 font(Handle, Font)

 Set the active font for a surface.

 line_to/2

 Draw a line on a surface from the current cursor position to a new one.

 move_to/2

 Move the cursor position on a surface.

 register()

 Registers the caller for touch events for the indicated window.

 register(Window)

 start_link(Interface, Opts)

 Launch the MTDS driver.

 stock_font(Font)

 Convert a human-readable font atom to a font() instance.

 surface()

 Generate a new surface (with no underlying bitmap).

 surface_bitmap(DSHandle, BitmapHandle)

 Tether a surface to a backing bitmap.

 surface_display()

 Retrieve a surface handle to the global display.

 surface_release(Handle)

 Release a surface handle.

 text/3

 Write text on a surface at a given position.

 Types

 bitmap()

 -type bitmap() :: 3238002688..3238002688 + 16777215.

 color()

 -type color() :: {R :: float(), G :: float(), B :: float()}.

 font()

 -type font() :: 3271557120..3271557120 + 16777215.

 position()

 -type position() :: {X :: integer(), Y :: integer()}.

 stock_font()

 -type stock_font() :: console.

 surface()

 -type surface() :: 3221225472..3221225472 + 16777215.

 window()

 -type window() :: 3288334336..3288334336 + 16777215.

 Functions

 bitmap(X, Y, Color)

 -spec bitmap(integer(), integer(), monochrome | color) -> {ok, bitmap()}.

Allocate a new bitmap (usually to back a surface).

 bitmap_draw/5

 -spec bitmap_draw(surface(), position(), surface(), position(), {integer(), integer()}) -> ok.

Write the contents of one bitmap onto another.

 bitmap_release(Handle)

 -spec bitmap_release(bitmap()) -> ok.

Release a bitmap.

 clear(Color)

 -spec clear(Color :: color()) -> ok.

Blanks the MTDS to the indicated color.

 color_bg/2

 -spec color_bg(surface(), color()) -> ok.

Set the background draw color of a surface.

 color_fg/2

 -spec color_fg(surface(), color()) -> ok.

Set the foreground draw color of a surface.

 draw_rop(Handle, OpCode)

 -spec draw_rop(surface(), integer()) -> ok.

Set the bitwise operator used to combine pen + bitmap when drawing.

 font(Handle)

 -spec font(surface()) -> {ok, font()}.

Retrieve the current font of a surface.

 font(Handle, Font)

 -spec font(surface(), font()) -> ok.

Set the active font for a surface.

 line_to/2

 -spec line_to(surface(), position()) -> ok.

Draw a line on a surface from the current cursor position to a new one.

 move_to/2

 -spec move_to(surface(), position()) -> ok.

Move the cursor position on a surface.

 register()

Registers the caller for touch events for the indicated window.

 register(Window)

 -spec register(window()) -> ok.

 start_link(Interface, Opts)

 -spec start_link(grisp_spi:bus(), any()) -> {ok, pid()} | ignore | {error, term()}.

Launch the MTDS driver.

 stock_font(Font)

 -spec stock_font(stock_font()) -> font().

Convert a human-readable font atom to a font() instance.

 surface()

 -spec surface() -> {ok, surface()}.

Generate a new surface (with no underlying bitmap).

 surface_bitmap(DSHandle, BitmapHandle)

 -spec surface_bitmap(surface(), bitmap()) -> ok.

Tether a surface to a backing bitmap.

 surface_display()

 -spec surface_display() -> {ok, surface()}.

Retrieve a surface handle to the global display.

 surface_release(Handle)

 -spec surface_release(surface()) -> ok.

Release a surface handle.

 text/3

 -spec text(surface(), iolist(), position()) -> ok.

Write text on a surface at a given position.

 pmod_nav - grisp v2.8.0

pmod_nav

Driver module for the PmodNAV 9-axis IMU plus barometer device.
For more information see the Tutorial at the GRiSP Wiki: PmodNAV Tutorial.
Start the driver with
1> grisp:add_device(spi1, pmod_nav).

 Summary

 Types

 component()

 opts()

 register()

 Functions

 config(Comp, Options)

 Change configurations.

 read(Comp, Registers)

 Equivalent to read(Comp, Registers, #{}).

 read(Comp, Registers, Opts)

 Read registers of a component.

 registers()

 Get the registers (with the possible entries) of all components.

 registers/1

 Get the registers (with the possible entries) of one component.

 Types

 component()

 -type component() :: acc | mag | alt.

 opts()

 -type opts() :: #{}.

 register()

 -type register() :: atom().

 Functions

 config(Comp, Options)

 -spec config(component(), #{}) -> ok.

Change configurations.
Examples
To switch to accelerometer only mode, i.e., power down the gyroscope, use:
2> pmod_nav:config(acc, #{odr_g => power_down}).
ok
To turn the gyroscope back on use:
3> pmod_nav:config(acc, #{odr_g => {hz,14.9}}).
ok
For more possible configurations see the datasheets
LSM9DS1
and
LPS25HB.
Use registers/0 and registers/1 to see the mapping between
Erlang expressions and the bits on the hardware.

 read(Comp, Registers)

 -spec read(component(), [register()]) -> any() | {error, any()}.

Equivalent to read(Comp, Registers, #{}).

 read(Comp, Registers, Opts)

 -spec read(component(), [register()], opts()) -> any() | {error, any()}.

Read registers of a component.
Examples
To read the accelerometer X, Y and Z axises G-forces in milli g, use:
 4> pmod_nav:read(acc, [out_x_xl, out_y_xl, out_z_xl], #{xl_unit => mg}).
 [50.813,6.527,983.7470000000001]
Further Registers
	Component	Registers	Possible Options	Description
	acc	[out_x_g, out_y_g, out_z_g]	#{g_unit => dps | mdps} default dps	Rotation of the axises x,y and z in (milli) degrees per second
	acc	[out_x_xl, out_y_xl, out_z_xl]	#{xl_unit => g | mg} default g	G-force on the axises x,y and z
	mag	[out_x_m, out_y_m, out_z_m]	#{mag_unit => gauss | mgauss} default gauss	Strength of the magnetic field in (milli) gauss
	alt	[press_out]		Pressure in hPa
	alt	[temp_out]		Temperature in °C

For all registers see registers/0 and registers/1
and use the datasheets
LPS25HB
and
LPS25HB
for a complete description.

 registers()

 -spec registers() -> #{component() => #{}}.

Get the registers (with the possible entries) of all components.

 registers/1

 -spec registers(component()) -> #{atom() => any()}.

Get the registers (with the possible entries) of one component.
Example
To see the possible configurations in ctrl_reg1_g use:
4> maps:find(ctrl_reg1_g, pmod_nav:registers(acc)).
{ok,{16,read_write,1,
 [{odr_g,3,
 #{pow