

 grizzly

 v8.6.6

 [image: Logo]

 Table of contents

 	README

 	Changelog

 	Grizzly Cookbook

 	

 	Modules

 	Grizzly.Commands.Table

 	Core

 	Grizzly

 	Grizzly.Autocomplete

 	Grizzly.FirmwareUpdates

 	Grizzly.Inclusions

 	Grizzly.Indicator

 	Grizzly.Network

 	Grizzly.Node

 	Grizzly.Options

 	Grizzly.Report

 	Grizzly.StatusReporter

 	Grizzly.StatusReporter.Console

 	Grizzly.Supervisor

 	Grizzly.Trace

 	Grizzly.Trace.Record

 	Grizzly.CommandHandlers.AckResponse

 	Grizzly.CommandHandlers.AggregateReport

 	Grizzly.CommandHandlers.SupervisionReport

 	Grizzly.CommandHandlers.WaitReport

 	Behaviours

 	Grizzly.CommandHandler

 	Grizzly.FirmwareUpdateHandler

 	Grizzly.InclusionHandler

 	Grizzly.Inclusions.NetworkAdapter

 	Grizzly Command Modules

 	Grizzly.SwitchBinary

 	Virtual Devices

 	Grizzly.VirtualDevices

 	Grizzly.VirtualDevices.Device

 	Grizzly.VirtualDevices.TemperatureSensor

 	Grizzly.VirtualDevices.Thermostat

 	Z/IP Gateway

 	Grizzly.ZIPGateway.Config

 	Grizzly.ZIPGateway.LogMonitor

 	Grizzly.ZIPGateway.Supervisor

 	Z-Wave

 	Grizzly.Inclusions.ZWaveAdapter

 	Grizzly.ZWave

 	Grizzly.ZWave.CRC

 	Grizzly.ZWave.Command

 	Grizzly.ZWave.CommandClass

 	Grizzly.ZWave.DSK

 	Grizzly.ZWave.DeviceClass

 	Grizzly.ZWave.DeviceClasses

 	Grizzly.ZWave.Encoding

 	Grizzly.ZWave.IconType

 	Grizzly.ZWave.QRCode

 	Grizzly.ZWave.Security

 	Grizzly.ZWave.Security.S0NonceTable

 	Grizzly.ZWave.SmartStart.MetaExtension

 	Grizzly.ZWave.SmartStart.MetaExtension.UUID16

 	Grizzly.ZWaveFirmware

 	Grizzly.ZWaveFirmware.UpgradeSpec

 	Transports

 	Grizzly.Transport

 	Grizzly.Transport.Response

 	Grizzly.Transports.DTLS

 	Z-Wave Protocol

 	Grizzly.ZWave.CommandClasses

 	Grizzly.ZWave.CommandClasses.Alarm

 	Grizzly.ZWave.CommandClasses.Antitheft

 	Grizzly.ZWave.CommandClasses.AntitheftUnlock

 	Grizzly.ZWave.CommandClasses.ApplicationStatus

 	Grizzly.ZWave.CommandClasses.Association

 	Grizzly.ZWave.CommandClasses.AssociationGroupInfo

 	Grizzly.ZWave.CommandClasses.BarrierOperator

 	Grizzly.ZWave.CommandClasses.Basic

 	Grizzly.ZWave.CommandClasses.Battery

 	Grizzly.ZWave.CommandClasses.CRC16Encap

 	Grizzly.ZWave.CommandClasses.CentralScene

 	Grizzly.ZWave.CommandClasses.Clock

 	Grizzly.ZWave.CommandClasses.Configuration

 	Grizzly.ZWave.CommandClasses.DeviceResetLocally

 	Grizzly.ZWave.CommandClasses.DoorLock

 	Grizzly.ZWave.CommandClasses.FirmwareUpdateMD

 	Grizzly.ZWave.CommandClasses.Hail

 	Grizzly.ZWave.CommandClasses.HumidityControlMode

 	Grizzly.ZWave.CommandClasses.HumidityControlOperatingState

 	Grizzly.ZWave.CommandClasses.HumidityControlSetpoint

 	Grizzly.ZWave.CommandClasses.Indicator

 	Grizzly.ZWave.CommandClasses.Mailbox

 	Grizzly.ZWave.CommandClasses.ManufacturerSpecific

 	Grizzly.ZWave.CommandClasses.Meter

 	Grizzly.ZWave.CommandClasses.MultiChannel

 	Grizzly.ZWave.CommandClasses.MultiChannelAssociation

 	Grizzly.ZWave.CommandClasses.MultiCommand

 	Grizzly.ZWave.CommandClasses.NetworkManagementBasicNode

 	Grizzly.ZWave.CommandClasses.NetworkManagementInclusion

 	Grizzly.ZWave.CommandClasses.NetworkManagementInstallationMaintenance

 	Grizzly.ZWave.CommandClasses.NetworkManagementProxy

 	Grizzly.ZWave.CommandClasses.NoOperation

 	Grizzly.ZWave.CommandClasses.NodeNaming

 	Grizzly.ZWave.CommandClasses.NodeProvisioning

 	Grizzly.ZWave.CommandClasses.Powerlevel

 	Grizzly.ZWave.CommandClasses.S0

 	Grizzly.ZWave.CommandClasses.SceneActivation

 	Grizzly.ZWave.CommandClasses.SceneActuatorConf

 	Grizzly.ZWave.CommandClasses.ScheduleEntryLock

 	Grizzly.ZWave.CommandClasses.Security2

 	Grizzly.ZWave.CommandClasses.Security2.AAD

 	Grizzly.ZWave.CommandClasses.SensorBinary

 	Grizzly.ZWave.CommandClasses.SensorMultilevel

 	Grizzly.ZWave.CommandClasses.SoundSwitch

 	Grizzly.ZWave.CommandClasses.Supervision

 	Grizzly.ZWave.CommandClasses.SwitchBinary

 	Grizzly.ZWave.CommandClasses.SwitchMultilevel

 	Grizzly.ZWave.CommandClasses.ThermostatFanMode

 	Grizzly.ZWave.CommandClasses.ThermostatFanState

 	Grizzly.ZWave.CommandClasses.ThermostatMode

 	Grizzly.ZWave.CommandClasses.ThermostatOperatingState

 	Grizzly.ZWave.CommandClasses.ThermostatSetback

 	Grizzly.ZWave.CommandClasses.ThermostatSetpoint

 	Grizzly.ZWave.CommandClasses.Time

 	Grizzly.ZWave.CommandClasses.TimeParameters

 	Grizzly.ZWave.CommandClasses.UserCode

 	Grizzly.ZWave.CommandClasses.Version

 	Grizzly.ZWave.CommandClasses.WakeUp

 	Grizzly.ZWave.CommandClasses.WindowCovering

 	Grizzly.ZWave.CommandClasses.ZIP

 	Grizzly.ZWave.CommandClasses.ZIPGateway

 	Grizzly.ZWave.CommandClasses.ZwaveplusInfo

 	Grizzly.ZWave.Commands.AdminCodeGet

 	Grizzly.ZWave.Commands.AdminCodeReport

 	Grizzly.ZWave.Commands.AdminCodeSet

 	Grizzly.ZWave.Commands.AlarmEventSupportedGet

 	Grizzly.ZWave.Commands.AlarmEventSupportedReport

 	Grizzly.ZWave.Commands.AlarmGet

 	Grizzly.ZWave.Commands.AlarmReport

 	Grizzly.ZWave.Commands.AlarmSet

 	Grizzly.ZWave.Commands.AlarmTypeSupportedGet

 	Grizzly.ZWave.Commands.AlarmTypeSupportedReport

 	Grizzly.ZWave.Commands.AntitheftGet

 	Grizzly.ZWave.Commands.AntitheftReport

 	Grizzly.ZWave.Commands.AntitheftSet

 	Grizzly.ZWave.Commands.AntitheftUnlockGet

 	Grizzly.ZWave.Commands.AntitheftUnlockReport

 	Grizzly.ZWave.Commands.AntitheftUnlockSet

 	Grizzly.ZWave.Commands.ApplicationBusy

 	Grizzly.ZWave.Commands.ApplicationNodeInfoGet

 	Grizzly.ZWave.Commands.ApplicationNodeInfoReport

 	Grizzly.ZWave.Commands.ApplicationRejectedRequest

 	Grizzly.ZWave.Commands.AssociationGet

 	Grizzly.ZWave.Commands.AssociationGroupCommandListGet

 	Grizzly.ZWave.Commands.AssociationGroupCommandListReport

 	Grizzly.ZWave.Commands.AssociationGroupInfoGet

 	Grizzly.ZWave.Commands.AssociationGroupInfoReport

 	Grizzly.ZWave.Commands.AssociationGroupNameGet

 	Grizzly.ZWave.Commands.AssociationGroupNameReport

 	Grizzly.ZWave.Commands.AssociationGroupingsGet

 	Grizzly.ZWave.Commands.AssociationGroupingsReport

 	Grizzly.ZWave.Commands.AssociationRemove

 	Grizzly.ZWave.Commands.AssociationReport

 	Grizzly.ZWave.Commands.AssociationSet

 	Grizzly.ZWave.Commands.AssociationSpecificGroupGet

 	Grizzly.ZWave.Commands.AssociationSpecificGroupReport

 	Grizzly.ZWave.Commands.BarrierOperatorGet

 	Grizzly.ZWave.Commands.BarrierOperatorReport

 	Grizzly.ZWave.Commands.BarrierOperatorSet

 	Grizzly.ZWave.Commands.BarrierOperatorSignalGet

 	Grizzly.ZWave.Commands.BarrierOperatorSignalReport

 	Grizzly.ZWave.Commands.BarrierOperatorSignalSet

 	Grizzly.ZWave.Commands.BarrierOperatorSignalSupportedGet

 	Grizzly.ZWave.Commands.BarrierOperatorSignalSupportedReport

 	Grizzly.ZWave.Commands.BasicGet

 	Grizzly.ZWave.Commands.BasicReport

 	Grizzly.ZWave.Commands.BasicSet

 	Grizzly.ZWave.Commands.BatteryGet

 	Grizzly.ZWave.Commands.BatteryReport

 	Grizzly.ZWave.Commands.CRC16Encap

 	Grizzly.ZWave.Commands.CentralSceneConfigurationGet

 	Grizzly.ZWave.Commands.CentralSceneConfigurationReport

 	Grizzly.ZWave.Commands.CentralSceneConfigurationSet

 	Grizzly.ZWave.Commands.CentralSceneNotification

 	Grizzly.ZWave.Commands.CentralSceneSupportedGet

 	Grizzly.ZWave.Commands.CentralSceneSupportedReport

 	Grizzly.ZWave.Commands.ClockGet

 	Grizzly.ZWave.Commands.ClockReport

 	Grizzly.ZWave.Commands.ClockSet

 	Grizzly.ZWave.Commands.ConfigurationBulkGet

 	Grizzly.ZWave.Commands.ConfigurationBulkReport

 	Grizzly.ZWave.Commands.ConfigurationBulkSet

 	Grizzly.ZWave.Commands.ConfigurationGet

 	Grizzly.ZWave.Commands.ConfigurationInfoGet

 	Grizzly.ZWave.Commands.ConfigurationInfoReport

 	Grizzly.ZWave.Commands.ConfigurationNameGet

 	Grizzly.ZWave.Commands.ConfigurationNameReport

 	Grizzly.ZWave.Commands.ConfigurationPropertiesGet

 	Grizzly.ZWave.Commands.ConfigurationPropertiesReport

 	Grizzly.ZWave.Commands.ConfigurationReport

 	Grizzly.ZWave.Commands.ConfigurationSet

 	Grizzly.ZWave.Commands.DSKGet

 	Grizzly.ZWave.Commands.DSKReport

 	Grizzly.ZWave.Commands.DateGet

 	Grizzly.ZWave.Commands.DateReport

 	Grizzly.ZWave.Commands.DefaultSet

 	Grizzly.ZWave.Commands.DefaultSetComplete

 	Grizzly.ZWave.Commands.DeviceResetLocallyNotification

 	Grizzly.ZWave.Commands.DoorLockCapabilitiesGet

 	Grizzly.ZWave.Commands.DoorLockCapabilitiesReport

 	Grizzly.ZWave.Commands.DoorLockConfigurationGet

 	Grizzly.ZWave.Commands.DoorLockConfigurationReport

 	Grizzly.ZWave.Commands.DoorLockConfigurationSet

 	Grizzly.ZWave.Commands.DoorLockOperationGet

 	Grizzly.ZWave.Commands.DoorLockOperationReport

 	Grizzly.ZWave.Commands.DoorLockOperationSet

 	Grizzly.ZWave.Commands.ExtendedNodeAddStatus

 	Grizzly.ZWave.Commands.ExtendedUserCodeGet

 	Grizzly.ZWave.Commands.ExtendedUserCodeReport

 	Grizzly.ZWave.Commands.ExtendedUserCodeSet

 	Grizzly.ZWave.Commands.FailedNodeListGet

 	Grizzly.ZWave.Commands.FailedNodeListReport

 	Grizzly.ZWave.Commands.FailedNodeRemove

 	Grizzly.ZWave.Commands.FailedNodeRemoveStatus

 	Grizzly.ZWave.Commands.FailedNodeReplace

 	Grizzly.ZWave.Commands.FailedNodeReplaceStatus

 	Grizzly.ZWave.Commands.FirmwareMDGet

 	Grizzly.ZWave.Commands.FirmwareMDReport

 	Grizzly.ZWave.Commands.FirmwareUpdateActivationReport

 	Grizzly.ZWave.Commands.FirmwareUpdateActivationSet

 	Grizzly.ZWave.Commands.FirmwareUpdateMDGet

 	Grizzly.ZWave.Commands.FirmwareUpdateMDReport

 	Grizzly.ZWave.Commands.FirmwareUpdateMDRequestGet

 	Grizzly.ZWave.Commands.FirmwareUpdateMDRequestReport

 	Grizzly.ZWave.Commands.FirmwareUpdateMDStatusReport

 	Grizzly.ZWave.Commands.Hail

 	Grizzly.ZWave.Commands.HumidityControlModeGet

 	Grizzly.ZWave.Commands.HumidityControlModeReport

 	Grizzly.ZWave.Commands.HumidityControlModeSet

 	Grizzly.ZWave.Commands.HumidityControlModeSupportedGet

 	Grizzly.ZWave.Commands.HumidityControlModeSupportedReport

 	Grizzly.ZWave.Commands.HumidityControlOperatingStateGet

 	Grizzly.ZWave.Commands.HumidityControlOperatingStateReport

 	Grizzly.ZWave.Commands.HumidityControlSetpointCapabilitiesGet

 	Grizzly.ZWave.Commands.HumidityControlSetpointCapabilitiesReport

 	Grizzly.ZWave.Commands.HumidityControlSetpointGet

 	Grizzly.ZWave.Commands.HumidityControlSetpointReport

 	Grizzly.ZWave.Commands.HumidityControlSetpointScaleSupportedGet

 	Grizzly.ZWave.Commands.HumidityControlSetpointScaleSupportedReport

 	Grizzly.ZWave.Commands.HumidityControlSetpointSet

 	Grizzly.ZWave.Commands.HumidityControlSetpointSupportedGet

 	Grizzly.ZWave.Commands.HumidityControlSetpointSupportedReport

 	Grizzly.ZWave.Commands.IncludedNIFReport

 	Grizzly.ZWave.Commands.IndicatorDescriptionGet

 	Grizzly.ZWave.Commands.IndicatorDescriptionReport

 	Grizzly.ZWave.Commands.IndicatorGet

 	Grizzly.ZWave.Commands.IndicatorReport

 	Grizzly.ZWave.Commands.IndicatorSet

 	Grizzly.ZWave.Commands.IndicatorSupportedGet

 	Grizzly.ZWave.Commands.IndicatorSupportedReport

 	Grizzly.ZWave.Commands.LearnModeSet

 	Grizzly.ZWave.Commands.LearnModeSetStatus

 	Grizzly.ZWave.Commands.MailboxConfigurationGet

 	Grizzly.ZWave.Commands.MailboxConfigurationReport

 	Grizzly.ZWave.Commands.MailboxConfigurationSet

 	Grizzly.ZWave.Commands.MailboxNodeFailing

 	Grizzly.ZWave.Commands.MailboxQueue

 	Grizzly.ZWave.Commands.MailboxWakeUpNotification

 	Grizzly.ZWave.Commands.ManufacturerSpecificDeviceSpecificGet

 	Grizzly.ZWave.Commands.ManufacturerSpecificDeviceSpecificReport

 	Grizzly.ZWave.Commands.ManufacturerSpecificGet

 	Grizzly.ZWave.Commands.ManufacturerSpecificReport

 	Grizzly.ZWave.Commands.MeterGet

 	Grizzly.ZWave.Commands.MeterReport

 	Grizzly.ZWave.Commands.MeterReset

 	Grizzly.ZWave.Commands.MeterSupportedGet

 	Grizzly.ZWave.Commands.MeterSupportedReport

 	Grizzly.ZWave.Commands.MultiChannelAggregatedMembersGet

 	Grizzly.ZWave.Commands.MultiChannelAggregatedMembersReport

 	Grizzly.ZWave.Commands.MultiChannelAssociationGet

 	Grizzly.ZWave.Commands.MultiChannelAssociationGroupingsGet

 	Grizzly.ZWave.Commands.MultiChannelAssociationGroupingsReport

 	Grizzly.ZWave.Commands.MultiChannelAssociationRemove

 	Grizzly.ZWave.Commands.MultiChannelAssociationReport

 	Grizzly.ZWave.Commands.MultiChannelAssociationSet

 	Grizzly.ZWave.Commands.MultiChannelCapabilityGet

 	Grizzly.ZWave.Commands.MultiChannelCapabilityReport

 	Grizzly.ZWave.Commands.MultiChannelCommandEncapsulation

 	Grizzly.ZWave.Commands.MultiChannelEndpointFind

 	Grizzly.ZWave.Commands.MultiChannelEndpointFindReport

 	Grizzly.ZWave.Commands.MultiChannelEndpointGet

 	Grizzly.ZWave.Commands.MultiChannelEndpointReport

 	Grizzly.ZWave.Commands.MultiCommandEncapsulated

 	Grizzly.ZWave.Commands.NetworkManagementMultiChannelCapabilityGet

 	Grizzly.ZWave.Commands.NetworkManagementMultiChannelCapabilityReport

 	Grizzly.ZWave.Commands.NetworkManagementMultiChannelEndPointGet

 	Grizzly.ZWave.Commands.NetworkManagementMultiChannelEndPointReport

 	Grizzly.ZWave.Commands.NetworkUpdateRequest

 	Grizzly.ZWave.Commands.NetworkUpdateRequestStatus

 	Grizzly.ZWave.Commands.NoOperation

 	Grizzly.ZWave.Commands.NodeAdd

 	Grizzly.ZWave.Commands.NodeAddDSKReport

 	Grizzly.ZWave.Commands.NodeAddDSKSet

 	Grizzly.ZWave.Commands.NodeAddKeysReport

 	Grizzly.ZWave.Commands.NodeAddKeysSet

 	Grizzly.ZWave.Commands.NodeAddStatus

 	Grizzly.ZWave.Commands.NodeInfoCacheReport

 	Grizzly.ZWave.Commands.NodeInfoCachedGet

 	Grizzly.ZWave.Commands.NodeInformationSend

 	Grizzly.ZWave.Commands.NodeListGet

 	Grizzly.ZWave.Commands.NodeListReport

 	Grizzly.ZWave.Commands.NodeLocationGet

 	Grizzly.ZWave.Commands.NodeLocationReport

 	Grizzly.ZWave.Commands.NodeLocationSet

 	Grizzly.ZWave.Commands.NodeNameGet

 	Grizzly.ZWave.Commands.NodeNameReport

 	Grizzly.ZWave.Commands.NodeNameSet

 	Grizzly.ZWave.Commands.NodeNeighborUpdateRequest

 	Grizzly.ZWave.Commands.NodeNeighborUpdateStatus

 	Grizzly.ZWave.Commands.NodeProvisioningDelete

 	Grizzly.ZWave.Commands.NodeProvisioningGet

 	Grizzly.ZWave.Commands.NodeProvisioningListIterationGet

 	Grizzly.ZWave.Commands.NodeProvisioningListIterationReport

 	Grizzly.ZWave.Commands.NodeProvisioningReport

 	Grizzly.ZWave.Commands.NodeProvisioningSet

 	Grizzly.ZWave.Commands.NodeRemove

 	Grizzly.ZWave.Commands.NodeRemoveStatus

 	Grizzly.ZWave.Commands.PowerlevelGet

 	Grizzly.ZWave.Commands.PowerlevelReport

 	Grizzly.ZWave.Commands.PowerlevelSet

 	Grizzly.ZWave.Commands.PowerlevelTestNodeGet

 	Grizzly.ZWave.Commands.PowerlevelTestNodeReport

 	Grizzly.ZWave.Commands.PowerlevelTestNodeSet

 	Grizzly.ZWave.Commands.PriorityRouteGet

 	Grizzly.ZWave.Commands.PriorityRouteReport

 	Grizzly.ZWave.Commands.PriorityRouteSet

 	Grizzly.ZWave.Commands.RssiGet

 	Grizzly.ZWave.Commands.RssiReport

 	Grizzly.ZWave.Commands.S0CommandsSupportedGet

 	Grizzly.ZWave.Commands.S0CommandsSupportedReport

 	Grizzly.ZWave.Commands.S0MessageEncapsulation

 	Grizzly.ZWave.Commands.S0NetworkKeySet

 	Grizzly.ZWave.Commands.S0NetworkKeyVerify

 	Grizzly.ZWave.Commands.S0NonceGet

 	Grizzly.ZWave.Commands.S0NonceReport

 	Grizzly.ZWave.Commands.S0SecuritySchemeGet

 	Grizzly.ZWave.Commands.S0SecuritySchemeInherit

 	Grizzly.ZWave.Commands.S0SecuritySchemeReport

 	Grizzly.ZWave.Commands.S2CommandsSupportedGet

 	Grizzly.ZWave.Commands.S2CommandsSupportedReport

 	Grizzly.ZWave.Commands.S2KexFail

 	Grizzly.ZWave.Commands.S2KexGet

 	Grizzly.ZWave.Commands.S2KexReport

 	Grizzly.ZWave.Commands.S2KexSet

 	Grizzly.ZWave.Commands.S2MessageEncapsulation

 	Grizzly.ZWave.Commands.S2MessageEncapsulation.Extensions

 	Grizzly.ZWave.Commands.S2NetworkKeyGet

 	Grizzly.ZWave.Commands.S2NetworkKeyReport

 	Grizzly.ZWave.Commands.S2NetworkKeyVerify

 	Grizzly.ZWave.Commands.S2NonceGet

 	Grizzly.ZWave.Commands.S2NonceReport

 	Grizzly.ZWave.Commands.S2PublicKeyReport

 	Grizzly.ZWave.Commands.S2ResynchronizationEvent

 	Grizzly.ZWave.Commands.S2TransferEnd

 	Grizzly.ZWave.Commands.SceneActivationSet

 	Grizzly.ZWave.Commands.SceneActuatorConfGet

 	Grizzly.ZWave.Commands.SceneActuatorConfReport

 	Grizzly.ZWave.Commands.SceneActuatorConfSet

 	Grizzly.ZWave.Commands.ScheduleEntryLockDailyRepeatingGet

 	Grizzly.ZWave.Commands.ScheduleEntryLockDailyRepeatingReport

 	Grizzly.ZWave.Commands.ScheduleEntryLockDailyRepeatingSet

 	Grizzly.ZWave.Commands.ScheduleEntryLockEnableAllSet

 	Grizzly.ZWave.Commands.ScheduleEntryLockEnableSet

 	Grizzly.ZWave.Commands.ScheduleEntryLockTimeOffsetGet

 	Grizzly.ZWave.Commands.ScheduleEntryLockTimeOffsetReport

 	Grizzly.ZWave.Commands.ScheduleEntryLockTimeOffsetSet

 	Grizzly.ZWave.Commands.ScheduleEntryLockWeekDayGet

 	Grizzly.ZWave.Commands.ScheduleEntryLockWeekDayReport

 	Grizzly.ZWave.Commands.ScheduleEntryLockWeekDaySet

 	Grizzly.ZWave.Commands.ScheduleEntryLockYearDayGet

 	Grizzly.ZWave.Commands.ScheduleEntryLockYearDayReport

 	Grizzly.ZWave.Commands.ScheduleEntryLockYearDaySet

 	Grizzly.ZWave.Commands.ScheduleEntryTypeSupportedGet

 	Grizzly.ZWave.Commands.ScheduleEntryTypeSupportedReport

 	Grizzly.ZWave.Commands.SensorBinaryGet

 	Grizzly.ZWave.Commands.SensorBinaryReport

 	Grizzly.ZWave.Commands.SensorBinarySupportedSensorGet

 	Grizzly.ZWave.Commands.SensorBinarySupportedSensorReport

 	Grizzly.ZWave.Commands.SensorMultilevelGet

 	Grizzly.ZWave.Commands.SensorMultilevelReport

 	Grizzly.ZWave.Commands.SensorMultilevelSupportedScaleGet

 	Grizzly.ZWave.Commands.SensorMultilevelSupportedScaleReport

 	Grizzly.ZWave.Commands.SensorMultilevelSupportedSensorGet

 	Grizzly.ZWave.Commands.SensorMultilevelSupportedSensorReport

 	Grizzly.ZWave.Commands.SmartStartJoinStarted

 	Grizzly.ZWave.Commands.SoundSwitchConfigurationGet

 	Grizzly.ZWave.Commands.SoundSwitchConfigurationReport

 	Grizzly.ZWave.Commands.SoundSwitchConfigurationSet

 	Grizzly.ZWave.Commands.SoundSwitchToneInfoGet

 	Grizzly.ZWave.Commands.SoundSwitchToneInfoReport

 	Grizzly.ZWave.Commands.SoundSwitchTonePlayGet

 	Grizzly.ZWave.Commands.SoundSwitchTonePlayReport

 	Grizzly.ZWave.Commands.SoundSwitchTonePlaySet

 	Grizzly.ZWave.Commands.SoundSwitchTonesNumberGet

 	Grizzly.ZWave.Commands.SoundSwitchTonesNumberReport

 	Grizzly.ZWave.Commands.StatisticsClear

 	Grizzly.ZWave.Commands.StatisticsGet

 	Grizzly.ZWave.Commands.StatisticsReport

 	Grizzly.ZWave.Commands.SupervisionGet

 	Grizzly.ZWave.Commands.SupervisionReport

 	Grizzly.ZWave.Commands.SwitchBinaryGet

 	Grizzly.ZWave.Commands.SwitchBinaryReport

 	Grizzly.ZWave.Commands.SwitchBinarySet

 	Grizzly.ZWave.Commands.SwitchMultilevelGet

 	Grizzly.ZWave.Commands.SwitchMultilevelReport

 	Grizzly.ZWave.Commands.SwitchMultilevelSet

 	Grizzly.ZWave.Commands.SwitchMultilevelStartLevelChange

 	Grizzly.ZWave.Commands.SwitchMultilevelStopLevelChange

 	Grizzly.ZWave.Commands.ThermostatFanModeGet

 	Grizzly.ZWave.Commands.ThermostatFanModeReport

 	Grizzly.ZWave.Commands.ThermostatFanModeSet

 	Grizzly.ZWave.Commands.ThermostatFanModeSupportedGet

 	Grizzly.ZWave.Commands.ThermostatFanModeSupportedReport

 	Grizzly.ZWave.Commands.ThermostatFanStateGet

 	Grizzly.ZWave.Commands.ThermostatFanStateReport

 	Grizzly.ZWave.Commands.ThermostatModeGet

 	Grizzly.ZWave.Commands.ThermostatModeReport

 	Grizzly.ZWave.Commands.ThermostatModeSet

 	Grizzly.ZWave.Commands.ThermostatModeSupportedGet

 	Grizzly.ZWave.Commands.ThermostatModeSupportedReport

 	Grizzly.ZWave.Commands.ThermostatOperatingStateGet

 	Grizzly.ZWave.Commands.ThermostatOperatingStateReport

 	Grizzly.ZWave.Commands.ThermostatSetbackGet

 	Grizzly.ZWave.Commands.ThermostatSetbackReport

 	Grizzly.ZWave.Commands.ThermostatSetbackSet

 	Grizzly.ZWave.Commands.ThermostatSetpointCapabilitiesGet

 	Grizzly.ZWave.Commands.ThermostatSetpointCapabilitiesReport

 	Grizzly.ZWave.Commands.ThermostatSetpointGet

 	Grizzly.ZWave.Commands.ThermostatSetpointReport

 	Grizzly.ZWave.Commands.ThermostatSetpointSet

 	Grizzly.ZWave.Commands.ThermostatSetpointSupportedGet

 	Grizzly.ZWave.Commands.ThermostatSetpointSupportedReport

 	Grizzly.ZWave.Commands.TimeGet

 	Grizzly.ZWave.Commands.TimeOffsetGet

 	Grizzly.ZWave.Commands.TimeOffsetReport

 	Grizzly.ZWave.Commands.TimeOffsetSet

 	Grizzly.ZWave.Commands.TimeParametersGet

 	Grizzly.ZWave.Commands.TimeParametersReport

 	Grizzly.ZWave.Commands.TimeParametersSet

 	Grizzly.ZWave.Commands.TimeReport

 	Grizzly.ZWave.Commands.UserCodeCapabilitiesGet

 	Grizzly.ZWave.Commands.UserCodeCapabilitiesReport

 	Grizzly.ZWave.Commands.UserCodeChecksumGet

 	Grizzly.ZWave.Commands.UserCodeChecksumReport

 	Grizzly.ZWave.Commands.UserCodeGet

 	Grizzly.ZWave.Commands.UserCodeKeypadModeGet

 	Grizzly.ZWave.Commands.UserCodeKeypadModeReport

 	Grizzly.ZWave.Commands.UserCodeKeypadModeSet

 	Grizzly.ZWave.Commands.UserCodeReport

 	Grizzly.ZWave.Commands.UserCodeSet

 	Grizzly.ZWave.Commands.UserCodeUsersNumberGet

 	Grizzly.ZWave.Commands.UserCodeUsersNumberReport

 	Grizzly.ZWave.Commands.VersionCapabilitiesGet

 	Grizzly.ZWave.Commands.VersionCapabilitiesReport

 	Grizzly.ZWave.Commands.VersionCommandClassGet

 	Grizzly.ZWave.Commands.VersionCommandClassReport

 	Grizzly.ZWave.Commands.VersionGet

 	Grizzly.ZWave.Commands.VersionReport

 	Grizzly.ZWave.Commands.VersionZWaveSoftwareGet

 	Grizzly.ZWave.Commands.VersionZWaveSoftwareReport

 	Grizzly.ZWave.Commands.WakeUpIntervalCapabilitiesGet

 	Grizzly.ZWave.Commands.WakeUpIntervalCapabilitiesReport

 	Grizzly.ZWave.Commands.WakeUpIntervalGet

 	Grizzly.ZWave.Commands.WakeUpIntervalReport

 	Grizzly.ZWave.Commands.WakeUpIntervalSet

 	Grizzly.ZWave.Commands.WakeUpNoMoreInformation

 	Grizzly.ZWave.Commands.WakeUpNotification

 	Grizzly.ZWave.Commands.WindowCoveringGet

 	Grizzly.ZWave.Commands.WindowCoveringReport

 	Grizzly.ZWave.Commands.WindowCoveringSet

 	Grizzly.ZWave.Commands.WindowCoveringStartLevelChange

 	Grizzly.ZWave.Commands.WindowCoveringStopLevelChange

 	Grizzly.ZWave.Commands.WindowCoveringSupportedGet

 	Grizzly.ZWave.Commands.WindowCoveringSupportedReport

 	Grizzly.ZWave.Commands.ZIPKeepAlive

 	Grizzly.ZWave.Commands.ZIPPacket

 	Grizzly.ZWave.Commands.ZIPPacket.HeaderExtensions

 	Grizzly.ZWave.Commands.ZIPPacket.HeaderExtensions.EncapsulationFormatInfo

 	Grizzly.ZWave.Commands.ZIPPacket.HeaderExtensions.ExpectedDelay

 	Grizzly.ZWave.Commands.ZIPPacket.HeaderExtensions.InstallationAndMaintenanceReport

 	Grizzly.ZWave.Commands.ZWaveLongRangeChannelGet

 	Grizzly.ZWave.Commands.ZWaveLongRangeChannelReport

 	Grizzly.ZWave.Commands.ZWaveLongRangeChannelSet

 	Grizzly.ZWave.Commands.ZwaveplusInfoGet

 	Grizzly.ZWave.Commands.ZwaveplusInfoReport

 	Exceptions

 	Grizzly.FirmwareError

 	Grizzly.ZWave.DecodeError

 	Grizzly.ZWave.ZWaveError

 	Mix Tasks

 	mix zipgateway.cfg

 	mix zwave.gen.command

 	mix zwave.gen.command_class

README

[image: CircleCI]
[image: Hex.pm]
An Elixir library for Z-Wave

 Installation

def deps do
 [
 {:grizzly, "~> 5.2"}
]
end

 Hardware Requirements

	Z-Wave Bridge Controller	

 Changelog - grizzly v8.6.6

Changelog

This project follows Semantic Versioning.

 [v8.6.6] - 2024-12-13

 Added

	Handle incoming Multi Channel Association commands for endpoint associations (#1029)

 v8.6.5 - 2024-12-05

 Fixed

	Handle out-of-order receipt of Version Command Class Reports (#1027)

 v8.6.4 - 2024-11-25

 Added

	Add retry logic to unsolicited server listen call (#1021)
	Provide the possible scales for a given sensor type (#1019)
	Support alarm reports for Alarm CC v1 (#1017)	Unknown alarm types and events will be the raw value

 Fixed

	Fix the decoding of alarm_type_supported_report when version 1 of alarm types and events are also supported by the device (#1024)

 v8.6.3 - 2024-11-05

 Fixed

	Inclusion Server handles Extended Node Add Status (#1015)

 v8.6.2 - 2024-11-04

 Added

	Add function to get all notification types (#1005)
	Forward unsolicited Node Remove Status to inclusion handler (#1007pull/1007)
	Implement Meter Get v2-6 (#1012)

 Fixed

	Inclusion timeout must be at least as long as the S2 bootstrapping timeouts (#1008smartrent/grizzly/pull/1008)
	Send Device Reset Locally notifications before closing connections (#1009grizzly/pull/1009)
	Thermostat Setpoint values should be signed (#1010)

 v8.6.1 - 2024-10-21

 Changed

	Use atoms for scale in Sensor Multilevel Get to align with Sensor Multilevel Report (#1003)

 v8.6.0 - 2024-10-17

 Added

	Support finding all endpoints with Multi Channel Endpoint Find and Multi Channel Endpoint Find Report (#998, #1000)
	Add util to get NWI Home Id from DSK (#1001)
	Add missing multilevel sensor types (#995)
	Update Z-Wave XML to 2024A specification (#981)

 Fixed

	Continue inclusion started by an inclusion controller (#997)
	Fix another issue with Z/IP Gateway's Node Add Status formatting (#996)
	Fix association management for certification (#994)
	Ignore extended CCs when parsing command class lists (#993)
	Change keys_granted to granted_keys for consistency (#992)

 Changed

	Use thousand_island to manage the unsolicited server (#987)

 v8.5.3 - 2024-09-23

 Added

	Added missing notification events (#980)

 Fixed

	Prevent depletion of UnsolicitedServer listen sockets (#988)
	Fix acknowledged flag sometimes being incorrectly false (#983)

 Changed

	Traces record node ids instead of IP addresses (#985)

 v8.5.2 - 2024-09-11

 Fixed

	Fix parsing of last working route / speed in transmission stats (#974)
	Use dynamic delays between image fragments during firmware updates (#975, #977)
	Wait for previous ack before continuing firmware upload (#978)

 v8.5.1 - 2024-09-06

 Added

	Support malformed Thermostat Setpoint Capabilities Report from B36-T10 / ADC-T2000 (#969)
	Support manufacturer-specific thermostat modes (#970)

 v8.5.0 - 2024-08-28

 Added

	Implement Configuration Info Get/Report (#961)

 Fixed

	Ignore nack_response when updating device firmware instead of crashing (#966)
	Do not strip Z-Wave LR transmission stats (#963)
	Handle empty node info in (Extended) Node Add Status (#964)
	Fix encoding of Node Provisioning Set command (#962)
	Trim trailing null bytes from User Code Report (#959)

 Changed

	Remove support for Z/IP Gateway EEPROM migration (#960)

 v8.4.0 - 2024-08-05

 Fixed

	Ignore invalid TLV segments when parsing SmartStart codes (#950)
	Add missing :more_info option to Grizzly.command_opt/0 (#951)
	Fix connection crash when receiving NACK / Queue Full (#953)
	Quiet down logs when ignoring fw update reports (#954)
	Remove useless more info flag from ack responses (#955)
	DTLS listen sockets start in passive mode (#956)
	Fix Z/IP Gateway log prefix (#957)

 Changed

	Send a Grizzly.Report for nack responses to queued commands (#952)

 v8.3.0 - 2024-07-17

 Changed

	Allow undefined values for user id status (#946)

 v8.2.3 - 2024-06-25

 Changed

	Use a fixed log prefix when running Z/IP Gateway (#942)

 v8.2.2 - 2024-06-05

 Added

	Elixir 1.17 compatibility (#935)

 Fixed

	Remove leading space from test in Z/IP Gateway log monitor (#936)

 v8.2.1 - 2024-06-03

 Fixed

	Bring the ThermostatOperatingState spec in line with impl (#933)

 v8.2.0 - 2024-05-17

 Added

	Implement S0 Command Class (#899)
	Implement S2 Command Class (#900)

 v8.1.0 - 2024-05-02

 Added

	Improve firmware updates for wakeup devices (#922)
	Implement Included NIF Report command (#923)
	Allow creation of unnamed AsyncConnections (#924)
	Fix typo in definition of Grizzly.send_command_error (#925)

 v8.0.1 - 2024-04-24

 Fixed

	Allow 4 byte input for Door Lock Operation Report (#919)

 v8.0.0 - 2024-04-22

 Breaking Changes

	Virtual devices now have their IDs assigned statically at registration (#917)

 Added

	Colorize DSKs when inspecting (#916)

 v7.4.2 - 2024-04-11

 Fixed

	Stopping an already-stopped CommandRunner no longer raises (#912)
	Allow any value when decoding battery level (#913)

 v7.4.1 - 2024-03-15

 Fixed

	Handle commands timing out or being queued during firmware updates (#908)

 v7.4.0 - 2024-02-08

 Added

	Implement Thermostat Setpoint Capabilities Get/Report (#901)
	Implement Thermostat Fan Mode Supported Get/Report (#902)

 v7.3.0 - 2024-02-07

 Added

	Add missing commands to SensorMultilevel CC (#895)
	Ignore extra trailing bytes when decoding ThermostatSetpointReport (#896)

 Fixed

	Encode extended node id correctly in S2ResynchronizationEvent (#887)

 v7.2.0 - 2024-01-30

 Added

	Implement missing Meter CC commands (#890)
	Use correct security classes for LR in advanced joining option (#892)

 Fixed

	Fix incorrect match clause in catch (#893)

 v7.1.4 - 2024-01-26

 Added

	Hard reset Z-Wave module on Z/IP Gateway exit (#888)

 v7.1.3 - 2024-01-09

 Fixed

	Fix more false positives in SAPI status reporting (#884)

 v7.1.2 - 2024-01-08

 Fixed

	Support Elixir 1.16 (#881)

 v7.1.1 - 2024-01-03

 Fixed

	Remove any() from type send_command_response (#873)
	Fix false positives in SAPI status reporting (#879)

 v7.1.0 - 2023-12-05

 Added

	Implement Humidity Control CCs (#867)
	UnsolicitedServer includes node id in Logger metadata (#869)

 Fixed

	Simplify bitmask encoding and decoding (#866)
	Fix User Code Set when User ID Status is 0x00 (#868)
Fix Node Add Status parsing when length is off by one (#871)

 v7.0.4 - 2023-11-08

 Added

	Record original command binary in Logger metadata (#864)

 v7.0.3 - 2023-11-06

 Added

	Report Serial API status (#861)

 Fixed

	Correct CC name from multi_command to multi_cmd (#858)
	Grizzly supports v3 of Association Group Info CC (#859)
	Fix incorrect installation and maintenance header extension name (#860)
	Catch exits when closing all connections (#862)

 v7.0.2 - 2023-10-17

 Added

	Implement Sensor Binary Supported Sensor Get/Report (#848)
	Decode state_idle event params for all notification types (#849)

 Fixed

	Suppress DTLS errors for "TLS Alert: unexpected message" (#845)
	Close all DTLS connections on Z/IP Gateway exit (#850)

 Misc

	Add credo_binary_patterns and adjust patterns to pass (#847)

 v7.0.1 - 2023-09-26

 Fixed

	Allow speed to be 0 (unknown/not set) in Priority Route Report (#842)
	Ignore installation and maintenance report header extension in outgoing Z/IP Packets (#843)

 v7.0.0 - 2023-09-25

 Added

	Grizzly.Inclusions passes command params through to NodeAdd and SetLearnMode (#838)
	Implement Priority Route Set command (#839)

 Changed

	Fix parsing of speed parameter in Priority Route Report (#839)
	BREAKING: Z-Wave module firmware upgrade rewrite (#840)

 v6.8.8 - 2023-09-01

 Fixed

	Reports indicate command acknowledgement (#836)
	Handle {:error, :timeout} when getting all node ids (#835)

 Misc

	Remove dead code from Grizzly.UnsolicitedServer (#832)

 v6.8.7 - 2023-08-30

 Fixed

	Reply to unsolicited commands on the same DTLS connection (#827)
	Execute external callbacks in Tasks (#830)

 v6.8.6 - 2023-08-25

 Fixed

	Z/IP Gateway ready checker waits for initial node list report (#824)
	Rename Master Code commands to Admin Code (#825)

 v6.8.5 - 2023-08-21

 Fixed

	Value in Multilevel Sensor Reports should be interpreted as signed (#817)
	Cap Z-Wave float precision at 7 (#818)
	Ignore reserved field values when parsing Battery Reports (#820)
	Ignore trailing bytes in Door Lock Operation Report (#821)
	Ignore illegal values for door lock mode (#822)

 v6.8.4 - 2023-08-07

 Fixed

	Fix response handler for Multi Channel Association Get (#813)
	Add missing state values to Thermostat Operating State (#814)
	Fix encoding/decoding for Meter Report v2-5 (#815)

 v6.8.3 - 2023-08-01

 Fixed

	Fix :ack_request in response to AsyncConnection command (#810)

 v6.8.2 - 2023-07-31

 Added

	Implement Sound Switch CC v1-2 (#806)
	Implement all commands from User Code CC v2 (#697)

 Fixed

	Fix async command timeout handling (#808)
	Fix decoding of meter type in Meter Reports (#807)

 v6.8.1 - 2023-07-19

 Changed

	Pass trace options through from Grizzly.Supervisor (#803)
	Made network management command arguments more consistent (#804)

 v6.8.0 - 2023-07-18

 Added

	Add telemetry (#751)
	Implement Mailbox Command Class (#777)
	Allow DTLSv1.2 for Z/IP Gateway connections (#782)
	Add :raw trace format (#784)
	Add option to ignore keepalive frames in traces (#785)
	Use Z-Wave XML to generate command class mappings (#793)
	Add :mode option to Grizzly.send_command/4 (#795)

 Fixed

	Use correct command module for Wake Up Interval Set in Grizzly.ZWave.Decoder (#798)
	Skip unsupported values when parsing command class lists (#799)
	Trace :text format prints command binary (without Z/IP Packet header) exactly as received (#800)

 v6.7.1 - 2023-06-20

 Added

	Added Grizzly.Network.get_lifeline_association/1 convenience function (#781)

 Fixed

	Increased default command timeout to 15 seconds (#776)
	Unsolicited server ACKs all messages (#778)
	Made opts arg optional in Grizzly.Network.node_neighbor_update_request/2 (#780)

 v6.7.0 - 2023-06-02

 Added

	Subscribe to all commands from a given node

 Fixed

	Replace Logger.warn with Logger.warning
	Ignore trailing bytes in MultilevelSwitchReport
	Transmission stats use minimum of rssi_hops for rssi_dbm instead of average
	Use signed values for Thermostat Setpoint Set (fixes an error when the value is negative)

 Misc

	Drop support for OTP 24

 v6.6.1 - 2023-05-12

 Added

	Opt-in IEx autocompletion for Grizzly.send_command (#763)

 Fixed

	Ignore unexpected trailing bytes in ConfigurationReport (#764)
	Reduce log level for closed connections in UnsolicitedServer (#765)
	Better logging for DTLS unexpected error messages (#767)

 v6.6.0 - 2023-05-05

 Changed / Fixed

	Commands are no longer retried by default (#761)
	Node Add Status always includes the :command_classes param even when empty (#760)

 v6.5.1 - 2023-05-01

 Fixed

	Device classes in Node Add Status are now decoded like in Node Info Cached Get (#759)

 v6.5.0 - 2023-05-01

 Added

	Implement Network Management Basic Node / Node Information Send command (#749)
	Add helper functions for some common debugging tasks (#754)
	Extract Home ID and network keys from Z/IP Gateway logs (#755)

 Changed / Fixed

	Reset tun/tap interface in Z/IP Gateway tunnel script (#750)
	Update RSSI to signal bar calculation (#752)
	Normalize multilevel switch report for Leviton DZ1KD-1BZ (#753)

 v6.4.0 - 2023-04-18

 Added

	Support arbitrary extra items in Z/IP Gateway config (#744)
	Support signed integer, unsigned integer, enum, and bit field formats in Configuration Set (#745)

 v6.3.0 - 2023-04-13

 Added

	Add API to restart Z/IP Gateway (#739)
	Implement S0/S2 Security Commands Supported Get/Report (#739)
	Implement Network Management Inclusion Failed Node Replace (#741)
	Optionally dump traces in Erlang external term format (#742)

 Changed/Fixed

	Allow all out-of-spec values in RSSI_REPORT (#740)
	Trace dumps are now formatted in the calling process instead of the trace server process (#742)

 v6.2.0 - 2023-04-05

NOTE: Dropped support for Elixir 1.11.

 Added

	Add support for sending supervised commands (#727)

 Fixed

	Set more info flag when ACKing supervision get commands (#735)
	Fix trace dump for :no_operation commands (#733)

 v6.1.1 - 2023-03-29

 Fixed

	Adds simple command name validation to Grizzly.Commands.Table to ensure correct naming in implementation modules
	Fixed the command class versions list for the HVAC virtual thermostat

 v6.1.0 - 2023-03-22

 Added

	Network Management Inclusion CC (#718)	Neighbor Update Request
	Neighbor Update Status

	Version CC (#718)	Capabilities Get
	Capabilities Report
	Z-Wave Software Get
	Z-Wave Software Report

 Fixed

	Fix encoding of RSSI values in RSSI_REPORT (#722)
	Rescue errors in Grizzly.Trace.dump/1 (#723)
	Fix command name for Wake Up Notification (#725)

 v6.0.1 - 2023-03-13

 Fixed

	Typespec for ThermostatSetpointReport params now includes all params (#712)
	Enabled Dialyzer :extra_return and :missing_return options and fixed some incorrect return values (#714)
	Fixed interpretation of :target_value param in SwitchMultilevel{Set,Report} (#715)

 v6.0.0 - 2022-03-03

 Fixed

	Handle illegal values from Z/IP Gateway in RSSI_REPORT (#705)

 BREAKING CHANGES

	Use abbreviations (:f and :c) for temperature scales (#706)

 v5.4.1 - 2022-02-14

	Improve InclusionServer crash recovery from non-idle status (#699)

 v5.4.0 - 2022-02-06

 Added

	Support for Master Code Set/Get/Report commands from User Codes command class (#693)

 Fixed

	Parse multilevel switch level 0xFF as 100 (instead of 99) (695)

 v5.3.0 - 2022-12-16

 Added

	Support for getting configuration parameter name (#691)

 v5.2.8 - 2022-12-09

 Changed

	Attempting to stop add/remove/learn mode while the inclusion server is idle returns :ok (#688)
	Types for command classes and device classes are now generated from their mapping tables (#689)

 v5.2.7 - 2022-11-17

 Fixed

	Fix virtual temperature sensor command handling (#685)

 v5.2.6 - 2022-10-28

 Fixed

	Format IPv6 addresses in traces using standard port notation (#677)
	Record correct node IP for outgoing traces (#679)
	Prevent a crash in Grizzly.Trace.dump/1 when an S2 device has recently been included (#680)

 v5.2.5 - 2022-10-18

 Fixed

	Support unknown weekday in clock command class (@jfcloutier)

 v5.2.4 - 2022-10-14

 Added

	Implement event parameter decoding for home security idle notifications (#671)

 v5.2.3 - 2022-09-28

 Fixed

	Fix Elixir 1.14 deprecation warnings (@bjyoungblood)

 v5.2.2 - 2022-09-27

 Fixed

	Handling timeout of node removing (@jfcloutier)

 v5.2.1 - 2022-09-26

 Fixed

	Fix typo for celsius (@jwdotjs)
	Handle timeout on DSK input during inclusion (@jfcloutier)
	Fix inclusion crash leading to invalid in-memory controller state

 v5.2.0 - 2022-09-15

 Added

	Grizzly.VirtualDevices.Device.set_device_id/2 callback function (@jfcloutier)
	Grizzly.VirtualDevices.TemperatureSensor.state() now has a :device_id
field (@jfcloutier)
	Grizzly.VirtualDevices.TemperatureSensor.set_device_id/2 implementation
(@jfcloutier)
	Grizzly.VirtualDevices.Thermostat.set_device_id/2 implementation (@jfcloutier)

 Fixed

	When a virtual device is started outside of Grizzly, Grizzly would still
automatically add them to virtual network (@jfcloutier)

 v5.1.2 - 2022-08-09

 Fixed

	Handling timeouts during S2 inclusion process

 v5.1.1 - 2022-08-09

 Fixed

	GenServer calling its self during S2 inclusion

 v5.1.0 - 2022-08-02

 Changed

	Deprecated Grizzly.Inclusions.stop/0, please use remove_node_stop/0,
add_node_stop/0, or learn_mode_stop/0 instead.

 Added

	Grizzly.Inclusions.NetworkAdapter behaviour
	Grizzly.Inclusions.ZWaveAdapter implementation of the network adapter
behaviour (default adapter Grizzly uses).

 Fixed

	Issues around canceling the inclusion process

 v5.0.2 - 2022-07-28

 Fixed

	Passing a configuration set value parameter that is bigger than the supplied
size parameter. (@jfcloutier)

 v5.0.1 - 2022-06-27

 Fixed

	Virtual thermostat reporting fan state command class did not actually support
that command class (@jfcloutier)

 v5.0.0 - 2022-06-24

Refactored the Grizzly.VirtualDevices.Device behaviour. The behavior no longer
has an init/1 callback. Moreover, the handle_command/2 callback still exists
but second parameter is not Grizzly.VirtualDevices.Device.device_opts() type.
Lastly, a new callback device_spec/1 was added.
The change to handle_command/2 also changes the return value expected by the
behaviour. If you have implemented this behaviour see the documentation for
Grizzly.VirtualDevices.Device.handle_command/2 for new return values.
The Grizzly.VirtualDevices.Thermostat and
Grizzly.VirtualDevices.TemperatureSensor have both been updated to reflect the
changes to the virtual device behaviour. In order to use either of these virtual
devices you will need to call start_link/1 on them before you're able to send
commands to them.
This change requires process based device implementations to be supervised
outside of the Grizzly supervision tree. This allows the consuming application
the ability to control how the virtual devices are started and when and how they
should be shut down.

 Changed

	Deleted Grizzly.VirtualDevices.init/1 callback
	Changed parameters and return values from
Grizzly.VirtualDevices.Device.handle_command/2
	Deleted Grizzly.VirtualDevices.handle_info/2 callback
	Grizzly.VirtualDevices.Thermostat (see module docs)
	Grizzly.VirtualDevices.TemperatureSensor (see module docs)

 Added

	Grizzly.VirtualDevices.Device.device_opts() type
	Grizzly.VirtualDevices.Device.device_spec/1 callback
	Support for empty alarm report event params (@jfcloutier)
	Support long range node ids in the smart start meta extension field
:network_status (@jfcloutier)
	Grizzly.VirtualDevices.whereis/1

 Fixed

	Grizzly.ZWave.Commands.NodeAddStatus.param() value :node_id type now
reflects virtual device ids

 v4.0.1 - 2022-06-13

 Fixed

	Fix ClockReport command :name field (@jfcloutier)
	Fix forcing zipgateway cache update when calling Grizzly.Node.get_info/2

 v4.0.0 - 2022-05-19

Breaking change in the Grizzly.VirtualDevices.Device behaviour. If you have
not implemented a custom virtual device then you can safely upgrade.
If you have implemented a custom virtual device the init/0 callback is now
init/1. To upgrade change your implementation to:
@impl Grizzly.VirtualDevice.Device
def init(_) do
 {:ok, my_state, my_device_class}
end
The change is to add the _ as the argument to your init implementation.

 Changed

	Grizzly.VirtualDevice.Devices behaviour init/0 callback is now init/1

 Added

	Support for the sensor multilevel get command for the
Grizzly.VirtualDevices.Thermostat virtual device implementation
	Virtual device support for Grizzly.Node.set_lifeline_association/2
	Add virtual device support for the battery get command
	Add virtual device support for the version get command
	Add handle_info/2 callback in Grizzly.VirtualDevices.Device behaviour to
allow asynchronous events to broadcast Z-Wave reports
	Add return value for handle_command/2 callback in
Grizzly.VirtualDevices.Device behaviour to allow broadcasts Z-Wave reports
based off incoming commands
	Grizzly.VirtualDevices.add_device/2 now allows a tuple
{my_device_impl, my_device_opts} has the first argument
	Grizzly.VirtualDevices.TemperatureSensor virtual device

 Fixed

	Ensure Grizzly.VirtualDevices.Thermostat device implementation returns
:noreply for unsupported command classes. (@jfcloutier)
	Fix to calculating RSSI averages (@jfcloutier)
	Crashing the initialization of a new virtual device caused the virtual device
network to get in a bad state

 v3.0.0 - 2022-05-12

Breaking change in these modules:
	Grizzly.ZWave.CommandClasses.NetworkManagementInstallationMaintenance
	Grizzly.ZWave.Commands.PriorityRouteReport

In NetworkManagementInstallationMaintenance command class the :speed type
is now a list of speed() rather than a single speed. This effects the command
PriorityRouteReport parameter :speed. This parameter is now a list of
speed() rather than a single value.
If you do not use this command you can safely upgrade with no changes.
If you do use this command you will need to update code that assumes the
:speed parameter is single value.
This change was made to better aline with the Z-Wave specification.

 Changed

	Grizzly.ZWave.CommandClasses.NetworkManagementInstallationMaintenance.neighbor_param()
type's :speed param returns a list of type speed(). (@jfcloutier)
	Grizzly.ZWave.Commands.PriorityRouteReport.params()'s :speed param is now
a list of speed() than than a single speed(). (@jfcloutier)

 Added

	Grizzly.VirtualDevices module to allow virtual devices
	Grizzly.VirtualDevices.Device behaviour to allow custom virtual devices to
be used with Grizzly
	Grizzly.VirtualDevices.Thermostat virtual device implementation for a basic
virtual thermostat device
	Grizzly.ZWave.DeviceClass module for defining common device class
specifications
	Grizzly.send_command/4 virtual device support, so you can send commands to
virtual devices just like you would a regular Z-Wave device
	Grizzly.Network.opt() type now allows for a :seq_number option
	Grizzly.Network.get_all_node_ids/1 to get a list of both regular and virtual
device ids
	Grizzly.Node.get_info/2 support for virtual device

 Fixed

	Error when the primary route report would try to be handled (@jfcloutier)

 v2.1.0 - 2022-04-27

 Added

	Grizzly.ZWave.CommandClasses.WindowCovering (@jfcloutier)
	Grizzly.ZWave.Commands.WindowCoveringGet (@jfcloutier)
	Grizzly.ZWave.Commands.WindowCoveringReport (@jfcloutier)
	Grizzly.ZWave.Commands.WindowCoveringSet (@jfcloutier)
	Grizzly.ZWave.Commands.WindowCoveringStartLevelChange (@jfcloutier)
	Grizzly.ZWave.Commands.WindowCoveringStopLevelChange (@jfcloutier)
	Grizzly.ZWave.Commands.WindowCoveringSupportedGet (@jfcloutier)
	Grizzly.ZWave.Commands.WindowCoveringSupportedReport (@jfcloutier)

 Fixed

	When a lock does not encode an UserCodeReport as an event parameter (@jfcloutier)
	When an unknown user code is encoded as a empty string (@jfcloutier)

 v2.0.0 - 2022-03-21

 Breaking change

For this release we removed the on_ready option for Grizzly and added the
Grizzly.StatusReporter behaviour. This is a module that the consuming
application can implement to get a more specific type of ready status. There are
a handful of moving parts to getting Z-Wave and Grizzly up, so this behaviour
can be extended over time to handle more ready cases.
To use the status reporter:
defmodule MyApp.StatusReporter do
 @behaviour Grizzly.StatusReporter

 @impl Grizzly.StatusReporter
 def read() do
 # Grizzly and Z-Wave are set up!
 :ok
 end

 @impl Grizzly.StatusReporter
 def zwave_firmware_update_status(status) do
 # Grizzly is trying informing you if it tried to update teh Z-Wave firmware
 # and what the status of that attempt is
 :ok
 end
end

 New feature

The newest feature is automatic Z-Wave firmware update. This feature is opt-in
and will only try to run if configured. This is useful if you need to update
the Z-Wave firmware when Grizzly starts. Here's the configuration:
grizzly_opts = [
 # enables the updating the Z-Wave chip
 update_zwave_firmware: true,
 # configure which firmwares you might want to flash to the Z-Wave chip.
 zwave_firmware: [%{chip_type: 7, path: "/path/to/firmware_file", version: "7.16.03"}],
 # path the Z-Wave programmer program provided by Silicon Labs
 zw_programmer_path: "/usr/sbin/zw_programmer",
 # ..other options
]

{Grizzly, grizzly_opts}

 Changed

	removed :on_ready Grizzly option

 Added

	Z-Wave firmware updates on Grizzly start (@jfcloutier)
	Ability to get the Z-Wave chip version information (@jfcloutier)
	Add Grizzly.StatusReporter behaviour

 v1.0.1 - 2022-02-28

 Fixed

	Ignore extra bytes reported in association group list by some devices (@jfcloutier)
	Decode 0x00..0x063 as :on in Basic command class to align with Z-Wave
specification (@jfcloutier)

 v1.0.0 - 2021-12-20

This release bumps Grizzly to v1.0.0. Grizzly has been used for many years now
and has helped a product pass Z-Wave certification. Most the work that gone
into Grizzly for the last little while has been minor changes and bug fixes, but
core API has remained stable.
Thank you to everyone who has contributed over the years!

 v0.22.7 - 2021-12-2

 Fixed

	Unhandled errors when trying to firmware upgrade (@jfcloutier)
	Unhandled errors when trying to get failed node list (@jfcloutier)

 v0.22.6 - 2021-11-29

 Added

	Grizzly.ZWave.CommandClasses.BarrierOperator (@jfcloutier)
	Grizzly.ZWave.Commands.BarrierOperatorGet (@jfcloutier)
	Grizzly.ZWave.Commands.BarrierOperatorReport (@jfcloutier)
	Grizzly.ZWave.Commands.BarrierOperatorSet (@jfcloutier)
	Grizzly.ZWave.Commands.BarrierOperatorSignalGet (@jfcloutier)
	Grizzly.ZWave.Commands.BarrierOperatorSignalReport (@jfcloutier)
	Grizzly.ZWave.Commands.BarrierOperatorSignalSet (@jfcloutier)
	Grizzly.ZWave.Commands.BarrierOperatorSignalSupportedGet (@jfcloutier)
	Grizzly.ZWave.Commands.BarrierOperatorSignalSupportedReport (@jfcloutier)

 v0.22.5 - 2021-11-22

 Added

	Grizzly.ZWave.Commands.FailedNodeListGet (@jfcloutier)
	Grizzly.Network.report_failed_node_ids/0 (@jfcloutier)

 v0.22.4 - 2021-11-16

 Added

	Grizzly.ZWave.Commands.ThermostatSetpointSupportedGet (@bjyoungblood)
	Grizzly.ZWave.Commands.ThermostatSetpointSupportedReport (@bjyoungblood)
	Grizzly.ZWave.Commands.ThermostatModeSupportedGet (@bjyoungblood)
	Grizzly.ZWave.Commands.ThermostatModeSupportedReport (@bjyoungblood)
	Add how to heal Z-Wave network to cookbook

 Fixes

	No longer hard crashs on Z/IP Packets that don't follow Z-Wave spec
	Fix crash when zipgateway's mailbox queue is full when trying to send command
to a sleeping device

 v0.22.3 - 2021-10-22

 Fixes

	Make CentralSceneSupportedReport more forgiving

 v0.22.2 - 2021-10-12

 Fixes

	Incorrect parsing of :motion type from a SensorBinaryReport

 v0.22.1 - 2021-10-4

 Added

	Support version 3 Grizzly.ZWave.Commands.S2ResynchronizationEvent command
(Z-Wave LR)

 Fixes

	Grizzly.ZWave.Commands.FailedNodeListReport command not able to parse empty
extended node id list

 v0.22.0 - 2021-10-01

This release brings Grizzly up to speed to support command classes that have
been updated to support extended node ids. This allows Grizzly to support
zipgateway versions that have Z-Wave Long Range support. That is zipgateway
>= v7.15.

 Changed

	Removed Grizzly.ZWave.Commands.NodeAddStatus.status() type	Now is Grizzly.ZWave.CommandClasses.NetworkManagementInclusion.node_add_status()

	Changed return type of
Grizzly.ZWave.CommandClasses.ThermostatSetpoint.decode_type/1 function from
{:ok, Grizzly.ZWave.CommandClasses.ThermostatSetpoint.type()} to
Grizzly.ZWave.CommandClasses.ThermostatSetpoint.type()

 Added

	Support version 4 Grizzly.ZWave.Commands.NodeListReport command (Z-Wave LR)
	Support version 4 Grizzly.ZWave.Commands.NodeRemoveStatus command (Z-Wave LR)
	Support version 4 Grizzly.ZWave.Commands.FailedNodeListReport command (Z-Wave LR)
	Support version 4 Grizzly.ZWave.Commands.FailedNodeRemove command (Z-Wave LR)
	Support version 4 Grizzly.ZWave.Commands.FailedNodeRemoveStatus command (Z-Wave LR)
	Support version 4 Grizzly.ZWave.Commands.NodeInfoCachedGet command (Z-Wave LR)
	Support version 4 Grizzly.ZWave.Commands.RssiReport command (Z-Wave LR)
	Grizzly.ZWave.Commands.ZWaveLongRangeChannelGet command
	Grizzly.ZWave.Commands.ZWaveLongRangeChannelReport command
	Grizzly.ZWave.Commands.ZWaveLongRangeChannelSet command
	Grizzly.ZWave.Commands.ExtendedNodeAddStatus command
	Grizzly.ZWave.Commands.NetworkManagementMultiChannelEndPointGet command
	Grizzly.ZWave.Commands.NetworkManagementMultiChannelEndPointReport command
	Grizzly.ZWave.Commands.NetworkManagementMultiChannelCapabilityGet command
	Grizzly.ZWave.Commands.NetworkManagementMultiChannelCapabilityReport command
	Grizzly.Network.add_long_range_device/2 function
	Grizzly.ZWave.CommandClasses.NetworkManagementInclusion.parse_node_add_status/1
function
	Grizzly.ZWave.CommandClasses.NetworkManagementInclusion.parse_node_info/1
function
	Grizzly.ZWave.CommandClasses.NetworkManagementInclusion.node_add_status() type
	Grizzly.ZWave.CommandClasses.NetworkManagementInclusion.extended_node_info_report()
type
	Grizzly.ZWave.CommandClasses.NetworkManagementInclusion.node_info_report() type
	Grizzly.ZWave.CommandClasses.NetworkManagementInclusion.tagged_command_classes()
type
	Grizzly.ZWave.Command.encode_params/2 optional callback
	Support parsing header new IME report stats from version 5 of ZIP command class
	The atom :na to Grizzly.ZWave.CommandClasses.ThermostatSetpoint.type() type

 Fixed

	Parsing thermostat setpoint types that are considered NA by the specification
	Version report command parsing for zipgateway >= 7.14

 v0.21.1 - 2021-9-21

 Fixed

	Transmission stats	Ensure :rssi_4bars and :rssi_dbm accurately calculate no signal when :rssi_hops are nil

 v0.21.0 - 2021-9-20

 Added

	Transmission stats	Added :rssi_4bars and :rssi_dbm

 Changed

	Transmission stats	:rssi is now :rssi_hops and has been changed from a tuple to a list
	:last_working_route and :transmission_speed have been separated
	:last_working_route is now a list
	:route_changed is now a boolean

 Fixed

	Fix error when sending Grizzly.ZWave.Commands.StatisticsGet

 v0.20.2 - 2021-8-11

 Changed

	Turn off TLS warning for connecting with zipgateway server

 v0.20.1 - 2021-7-1

 Added

	Support for ScheduleEntryLock command class	Grizzly.ZWave.CommandClasses.ScheduleEntryLock
	Grizzly.ZWave.Commands.ScheduleEntryLockDailyRepeatingGet
	Grizzly.ZWave.Commands.ScheduleEntryLockDailyRepeatingReport
	Grizzly.ZWave.Commands.ScheduleEntryLockDailyRepeatingSet
	Grizzly.ZWave.Commands.ScheduleEntryLockEnableAllSet
	Grizzly.ZWave.Commands.ScheduleEntryLockEnableSet
	Grizzly.ZWave.Commands.ScheduleEntryLockTimeOffsetGet
	Grizzly.ZWave.Commands.ScheduleEntryLockTimeOffsetReport
	Grizzly.ZWave.Commands.ScheduleEntryLockTimeOffsetSet
	Grizzly.ZWave.Commands.ScheduleEntryLockWeekDayGet
	Grizzly.ZWave.Commands.ScheduleEntryLockWeekDayReport
	Grizzly.ZWave.Commands.ScheduleEntryLockWeekDaySet
	Grizzly.ZWave.Commands.ScheduleEntryLockYearDayGet
	Grizzly.ZWave.Commands.ScheduleEntryLockYearDayReport
	Grizzly.ZWave.Commands.ScheduleEntryLockYearDaySet
	Grizzly.ZWave.Commands.ScheduleEntryTypeSupportedGet
	Grizzly.ZWave.Commands.ScheduleEntryTypeSupportedReport

	Support for elixir 1.12-otp-24

Thank you to those who contributed to this release:
	Grace Yanagida

 Fixed

	Invalid warnings when calling function in Grizzly.SwitchBinary

 v0.20.0 - 2021-6-14

The release breaks the return value of
Grizzly.ZWave.CommandClasses.NodeProvisioning.optional_dsk_to_binary/1 from
returning nil to returning a DSK filled will 0s if an empty binary string
is passed into the function.
If you have not called this function directly then it is safe to upgrade to
v0.20.0.

 Changed

	Allow values greater than 99 to be passed in
Grizzly.ZWave.Commands.SwitchMultilevelSet.encode_target_value/1

 v0.19.1 - 2021-4-23

 Added

	Configuration option for setting the RF region
	Configuration option for setting power level settings
	Allow passing send command options to functions in Grizzly.SwitchBinary
module

Thank you to djantea for testing out the RF configuration changes!

 v0.19.0 - 2021-4-19

Breaking change in regards to how meta extensions are passed to
Grizzly.Network.set_node_provisioning/3.
The meta extension were once structs that need to be built and passed to the
function, but now they are a keyword list. Please see
Grizzly.ZWave.SmartStart.MetaExtension module for more details on the keyword
keys and their values.

 Added

	Added Grizzly.SwitchBinary has a higher level helper module to control
	binary switches
	Added basic support for including Z-Wave LR devices
	Added LR command class support for NetworkManagementInclusion
	Support version 2 of User Number Report command
	Better handling of RSSI channel reports
	Better handling of Association Group Name Report command

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.18.3 - 2021-3-11

 Added

	Grizzly.ZWave.DSK.parse_pin/1
	Grizzly.ZWave.DSK.to_pin_string/1

 Fixed

	Ensure that the DSK binary is 128 bits

 v0.18.2 - 2021-2-18

 Added

	Use cerlc library for Grizzly.ZWave.CRC
	Clean up inspects from tests
	Ensure zipgateway files are usable by system utils for zipgateway

 v0.18.1 - 2021-2-10

 Fixed

	Fix up dialyzer types

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.18.0 - 2021-2-10

This release breaks the DSK API and other supporting APIs. If you have not
supported S2 inclusions, smart start, or use the DSK API for any reason then it
should be safe to upgrade.
The break to DSKs is the new Grizzly.ZWave.DSK.t() struct. All inclusion and
node provisioning commands now expect a Grizzly.ZWave.DSK.t(). There are two
times you will need to get a DSK.t():
	User input of a DSK pin (the nicely formatted representation)
	The binary (<<>>) representation.

For the first case you can use Grizzly.ZWave.DSK.parse/1 and for the second
case you can use Grizzly.ZWave.DSK.new/1.
A common use case for DSKs is using the DSK pin (the first 5 digits in the DSK)
to do S2 inclusion. This was done by calling
Grizzly.Inclusions.set_input_dsk/1. Where the input DSK was an
non_neg_integer(). This API has been changed to take a DSK.t().

 Example

dsk_pin = "12345"
{:ok, dsk} = Grizzly.ZWave.DSK.parse(dsk_pin)

Grizzly.Inclusions.set_input_dsk(dsk)
This API is more useful for taking user input (which the DSK pin is), parsing
it, and passing the DSK to the inclusion process. Also this pushes validation of
DSK to the Grizzly.ZWave.DSK.parse/1 function.
dsk_pin = "123456"
{:error, :invalid_dsk} = Grizzly.ZWave.DSK.parse(dsk_pin)
The DSK.t() has the String.Chars protocol implemented so if you want to a
pretty representation of the DSK, say for logging or displaying the DSK to the
user, you call the to_string/1 function on the DSK.t(). Also, see
Grizzly.ZWave.DSK.to_string/2 for more details.
If you need to access the raw binary form of the DSK you the DSK.t() exposes
the :raw field, so you can access that via dsk.raw.
This release also added support S2/SmartStart QR code generation. See the
Grizzly.ZWave.QRCode module for more details.

 Changed

	Grizzly.Inclusions.set_input_dsk/1 use to take non_neg_integer() type as
	an argument, but the type has changed to Grizzly.ZWave.DSK.t()
	Grizzly.ZWave.CommandClasses.NodeProvisioning.optional_dsk_to_binary/1 use
to take a string as the DSK input but now it takes Grizzly.ZWave.DSK.t()
	Grizzly.ZWave.CommandClasses.NodeProvisioning.optional_binary_to_dsk/1 use
to take a string as the DSK input but now it takes Grizzly.ZWave.DSK.t()
	The following commands had params that took a string for the DSK and now take
Grizzly.ZWave.DSK.t():	Grizzly.ZWave.Commands.DSKReport
	Grizzly.ZWave.Commands.LearnModeSetStatus
	Grizzly.ZWave.Commands.NodeAddDSKReport
	Grizzly.ZWave.Commands.NodeAddDSKSet
	Grizzly.ZWave.Commands.NodeAddStatus
	Grizzly.ZWave.Commands.NodeProvisioningDelete
	Grizzly.ZWave.Commands.NodeProvisioningGet
	Grizzly.ZWave.Commands.NodeProvisioningListIterationReport
	Grizzly.ZWave.Commands.NodeProvisioningReport
	Grizzly.ZWave.Commands.NodeProvisioningSet
	Grizzly.ZWave.Commands.SmartStartJoinStarted

 Added

	QR code support via the Grizzly.ZWave.QRCode module.

 v0.17.7 - 2021-2-4

 Fixed

	An issue when zipgateway sends an invalid FirmwareMDReport packet causing
invalid hardware version errors during firmware updates.

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.17.6 - 2021-2-3

 Fixed

	Grizzly would throw an exception when calling
Grizzly.commands_for_command_class/1
	Grizzly would always return an empty list of supported commands for a command
class when calling Grizzly.commands_for_command_class/1 even though Grizzly
supports commands for that command class
	Fix S2 DSK pin setting when the pin was <256

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.17.5 - 2021-1-26

 Added

	Docs on operating indicator light

 Fixed

	Crash when indicator handler is nil
	Math for MeterReport

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.17.4 - 2021-1-21

 Added

	Support for handling indicator events via the :indicator_handler option to
the Grizzly.Supervisor.

 v0.17.3 - 2021-1-14

 Added

	Grizzly.Trace module for logging Z/IP packets that are sent from and
received by Grizzly.

 Fixed

	No match error when trying to encode a node id list

 v0.17.2 - 2021-1-13

 Added

	Decoding the NodeInfoCacheGet command

 Fixed

	Incorrect return value for NodeInfoCacheGet when decoding the params
	Issues around firmware updates and zipgateway versions >= 7.14.2

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.17.1 - 2021-1-12

Added supported for using zipgateway versions >= 7.14.2.
When upgrading from a zipgateway version less than 7.14.2 you should provide
the zgw_eeprom_to_sqlite utility in your system or firmware. The utility should
be located in /usr/bin. Grizzly will try to run the utility if we detected it.
You can configure the database file and eeprom file via :database_file and
:eeprom_file options for the Grizzly.Supervisor. These are optional and no
changes are necessary for how you start Grizzly if you have already been using
Grizzly.

 Added

	Support for zipgateway versions >= 7.14.2
	:eeprom_file to supervisor args (optional)
	:database_file to supervisor args (optional)

Thank you to those who contributed to this release:
	Frank Hunleth

 v0.17.0 - 2021-1-8

Breaking change with how Grizzly reports water alarms.
If you are listening for water alarm notifications you will need to update from
:water to :water_alarm. This change was made to align better with the Z-Wave
specification.

 Added

	Complete support for all notification events
	Support for version 2 of the Antitheft command class
	Support for SceneActuatorConf command class
	Support for SceneActivation command class
	More support for Erlang 23.2 DSL messages

 Changed

	:water is not :water_alarm notification

 Fixed

	When receiving the supervision command class with a command encapsulated
Grizzly was not actually processing the encapsulated command.

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.16.2 - 2020-12-23

 Added

	:list_mode param for the
Grizzly.ZWave.Commands.AssociationGroupInfoReport command.

 v0.16.1 - 2020-12-22

 Added

	Grizzly.ZWave.Commands.S2ResynchronizationEvent

 Fixed

	Data structure change in the associations file when deleting all associations
	Wrong MultiChannelAssociation version number being reported to devices
	Ensure ack responses are sent when extra commands are received
	Force bind to fd00::aaaa::2 since zipgateway forces that all acks come
from this address
	Crash when receiving errors other than timeouts when trying to establish
connections to zipgateway

Thank you to those who contributed to this release:
	Frank Hunleth

 v0.16.0 - 2020-12-21

This release introduces a breaking change to the naming of the command class get
and command class report modules. If you are using those modules directly, you
will need to update to the use the new module names.

 Changed

	Grizzly.ZWave.Commands.CommandClassGet is now
Grizzly.ZWave.Commands.VersionCommandClassGet
	The :name field for :command_class_get is now :version_command_class_get
	Grizzly.ZWave.Commands.CommandClassReport is now
Grizzly.ZWave.Commands.VersionCommandClassReport
	The :name field for :command_class_report is now
:version_command_class_report

 Added

	Added support for forcing the Z-Wave cache to update when fetching node
information. See Grizzly.Node.get_info/2 for more information.
	Support for OTP 23.2

 Fixed

	In some GenServers an exception would cascade

 Changed

	Easier to read stack traces when some GenServers crash

 v0.15.11 - 2020-12-11

 Added

	Support for DoorLock command class version 4

 Fixed

	Querying command class versions for extra commands on the LAN will return the
version report correctly now.

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.15.10 - 2020-12-8

 Added

	Support for querying the gateway about the command class versions it supports
when querying extra supported command classes.

 Fixed

	Spelling error fix for the WakeUpNoMoreInformation command name

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.15.9 - 2020-12-4

 Added

	Sending commands directly to the Z-Wave Gateway by passing
Grizzly.send_command/4 :gateway as the node id.
	How to get DSK for a device in the cookbook docs

 Fixed

	Spelling, whitespace and markdown issues in docs

Thank you to those who contributed to this release:
	Frank Hunleth

 v0.15.8 - 2020-12-1

 Added

	Support for ZwavePlusInfo command class

 Fixed

	No function clause matching error when a connection closes
	Missing support for :undefined indicator

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.15.7 - 2020-11-30

 Added

	Add Grizzly.send_binary/2

 Fixed

	Error when handling older Z-Wave devices that use CRC16 checksums over any
security schema
	Internal typo

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.15.6 - 2020-11-19

 Added

	Add support for NetworkUpdateRequest command
	Add Grizzly.Network.request_network_update/0

 Changed

	Drop support for Elixir 1.8 and 1.9

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.15.5 - 2020-11-12

 Added

	Support multi-channel associations in the unsolicited destination

 Fixed

	Add the :aggregated_endpoints params to the MultiChannelEndpointReport

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.15.4 - 2020-11-5

 Added

	Network management installation and maintenance command class
	Clock command class
	Unsolicited server support for the extra command classes:	Association group command class list
	Association group name get
	Association group info get
	Device reset locally notification

 Changed

	When a supervision get command is received in the unsolicited destination we
send the supervision report for that command back to the sender.
	Dev deps updates
	Code clean up

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.15.3 - 2020-10-27

 Fixed

	Documentation fixes
	Internal firmware update runner bug

 Changed

	Updates in internal association persistence

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.15.2 - 2020-10-23

 Added

	Support for the unknown_event notification event for the access_control
notification type

 Fixed

	Support SupervisionGet command for notifications.
	Tried to send :ack_response via unsolicited server which the unsolicited
server should not be sending anything directly.
	Fix typo in code

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.15.1 - 2020-10-09

 Added

	Support for getting association grouping report via the Z-Wave PAN
	Support for setting associations via the Z-Wave PAN
	Support for removing associations via the Z-Wave PAN
	Support for getting specific associations via the Z-Wave PAN
	Added option to Grizzly.Supervisor for where to store data used by the
	unsolicited server for support of extra command classes

 Changed

	When getting the associations via the Z-Wave PAN, Grizzly will now look at the
stored data and respond accordingly.

 Fixed

	Grizzly.ZWave.Commands.SwitchBinaryReport did not properly encode and decode
the version 2 of the switch binary command class

 v0.15.0 - 2020-10-08

This release does a major overhaul on the Grizzly.Transport behaviour. If you
haven't implemented a custom transport this release should not effect you and
you should be able to update with out too many issues, see the "Removed" section
of this release to note any other breaking changes. If you have created a
custom transport please see the documentation for Grizzly.Transport to see how
transports are now implemented.

 Added

	How to resetting the controller to the cook book
	The :unsolicited_destination option to the Grizzly.Supervisor
	Support for the association get command via the Z-Wave PAN network
	Support proper ack response when a command is delivered through the Z-Wave
PAN
	Grizzly.Transports.UDP - This is experimental and is subject to change.
	Grizzly.ZWave.CommandClasses.CRC16Encap
	Grizzly.ZWave.Commands.CRC16Encap
	Grizzly.ZWave.CommandClasses.Powerlevel
	Grizzly.ZWave.Commands.PowerlevelGet
	Grizzly.ZWave.Commands.PowerlevelReport
	Grizzly.ZWave.Commands.PowerlevelSet
	Grizzly.ZWave.Commands.PowerlevelTestNodeGet
	Grizzly.ZWave.Commands.PowerlevelTestNodeReport
	Grizzly.ZWave.Commands.PowerlevelTestNodeSet

 Changed

	Refactored the Grizzly.Transport behaviour - please see documentation to see
how to use the behaviour now.

 Removed

	Grizzly.Node.get_node_info/1

 Fixed

	MultiChannelAssociationGet command name fix
	Documentation
	Command class fixes for the Grizzly.ZWave.CommandClasses.Time

Thank you to those who contributed to this release:
	Jean-Francois Cloutier
	Jon Wood

 v0.14.8 - 2020-09-29

 Added

	Support for power management notifications

 v0.14.7 - 2020-09-25

 Added

	Added Grizzly.ZWave.Commands.FailedNodeListReport command

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.14.6 - 2020-09-18

 Added

	Cookbook documentation for common uses of Grizzly

 Changed

	Reduced the amount of logging

 v0.14.5 - 2020-09-02

 Fixed

	Commands with aggregated reports did not aggregate the results as expected
	Commands with aggregated reports would crash if that device was also
handling another command due to the aggregate handler assuming that only one
command was being processed at one time

 v0.14.4 - 2020-09-01

 Added

	Full support for ThermostatFanMode mode types

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.14.3 - 2020-08-31

 Fixed

	Fix the start order of the connection supervisor and Z-Wave ready checker
to ensure the supervisor process is alive before trying to test the
connection

 v0.14.2

Added
	Grizzly.ZWave.CRC module for CRC functions related to the Z-Wave protocol

Removed
	crc dependency

 v0.14.1

Enhancements
	Support zipgateway 7.14.01
	Add Grizzly.ZWave.CommandClasses.CentralScene
	Add Grizzly.ZWave.Commands.CentralSceneConfigurationGet
	Add Grizzly.ZWave.Commands.CentralSceneConfigurationSet
	Add Grizzly.ZWave.Commands.CentralSceneConfigurationReport
	Add Grizzly.ZWave.Commands.CentralSceneNotification
	Add Grizzly.ZWave.Commands.CentralSceneSupportedGet
	Add Grizzly.ZWave.Commands.CentralSceneSupportedReport

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.14.0

This breaking change has to do with how Grizzly is started. It is no longer an
application. Grizzly exposes the Grizzly.Supervisor module for a consuming
application to add to its supervision tree. All other APIs are backwards capable.
See the upgrade guide
for more specifics on how to upgrade.
Breaking Changes
	Grizzly is not an OTP application anymore and will need to be started
manually via the new Grizzly.Supervisor module
	All application config/mix config options are not used
	Removed the Grizzly.Runtime module

Enhancements
	Add Grizzly.Supervisor module
	Add Grizzly.ZWave.CommandClasses.Indicator
	Add Grizzly.ZWave.Commands.IndicatorGet
	Add Grizzly.ZWave.Commands.IndicatorSet
	Add Grizzly.ZWave.Commands.IndicatorReport
	Add Grizzly.ZWave.Commands.IndicatorSupportedGet
	Add Grizzly.ZWave.Commands.IndicatorSupportedReport
	Add Grizzly.ZWave.CommandClasses.Antitheft
	Add Grizzly.ZWave.Commands.AntitheftGet
	Add Grizzly.ZWave.Commands.AntitheftReport
	Add Grizzly.ZWave.CommandClasses.AntitheftUnlock
	Add Grizzly.ZWave.Commands.AntitheftUnlockSet
	Add Grizzly.ZWave.Commands.AntitheftUnlockGet
	Add Grizzly.ZWave.Commands.AntitheftUnlockReport
	Add Grizzly.ZWave.Commands.ConfigurationBulkGet
	Add Grizzly.ZWave.Commands.ConfigurationBulkSet
	Add Grizzly.ZWave.Commands.ConfigurationBulkReport
	Add Grizzly.ZWave.Commands.ConfigurationPropertiesGet
	Add Grizzly.ZWave.CommandClasses.ApplicationStatus
	Add Grizzly.ZWave.Commands.ApplicationBusy
	Add Grizzly.ZWave.Commands.ApplicationRejectedRequest

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.13.0

This update breaks the main Grizzly.send_command/4 API as Grizzly use to
respond with different tuples but now it will return with the new
Grizzly.Report.t() data structure. A full guide on the breaking changes
and what needs to be updated can be found here.
This change allows us to gather more information about a response from Grizzly.
For example, with this change you can get transmission stats about network
properties when sending a command now:
{:ok, report} = Grizzly.send_command(node_id, command, command_args, transmission_stats: true)

report.transmission_stats
See the Grizzly.Report module for full details.
Enhancements
	Add Grizzly.Report
	Add getting transmission stats for sent commands
	Docs and type spec updates

 v0.12.3

Fixes
	Handle multichannel commands that are not appropriately encapsulated

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.12.2

Enhancements
	Add Grizzly.ZWave.CommandClasses.Hail
	Add Grizzly.ZWave.Commands.Hail
	Support updated Z-Wave spec command params for
Grizzly.ZWave.Commands.DoorLockOperationReport

 v0.12.1

Enhancements
	Add Grizzly.ZWave.Commands.MultiChannelAggregatedMemberGet
	Add Grizzly.ZWave.Commands.MultiChannelAggregatedMemberReport
	Add Grizzly.ZWave.Commands.MultiChannelCapabilityGet
	Add Grizzly.ZWave.Commands.MultiChannelCommandEncapsulation
	Add Grizzly.ZWave.Commands.MultiChannelEndpointFind
	Add Grizzly.ZWave.Commands.MultiChannelEndpointFindReport
	Add Grizzly.ZWave.CommandClasses.MultiCommand
	Add Grizzly.ZWave.Commands.MultiCommandEncapsulation
	Add Grizzly.ZWave.CommandClasses.Time
	Add Grizzly.ZWave.Commands.DateGet
	Add Grizzly.ZWave.Commands.DateReport
	Add Grizzly.ZWave.Commands.TimeGet
	Add Grizzly.ZWave.Commands.TimeReport
	Add Grizzly.ZWave.Commands.TimeOffsetGet
	Add Grizzly.ZWave.Commands.TimeOffsetReport
	Add Grizzly.ZWave.Commands.TimeOffsetSet
	Add Grizzly.ZWave.CommandsClasses.TimeParameters
	Add Grizzly.ZWave.Commands.TimeParametersGet
	Add Grizzly.ZWave.Commands.TimeParametersReport
	Add Grizzly.ZWave.Commands.TimeParametersSet
	Documentation updates

Fixes
	Some devices send alarm reports that do not match the specification in a
minor way. So, we allow for parsing of these reports now.
	Fixed internal command class name to module implementation mapping issue
for :switch_multilevel_set and :switch_multilevel_get commands.

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.12.0

There is a small breaking change that will only effect you if you hard have
:water_leak_detected_known_location and :water_leak_dropped_known_location
hard coded into your application for any reason. These are notifications about
water leaks, and so if you have not directly tried to match on or handle logic
about water leak notifications then this breaking change should not effect you.
From a high level this release provides updates to Z-Wave notifications in
terms of command support and package parsing, extra tooling for better
introspection, a handful of new commands and command classes, and helpful
configuration items.
Enhancements
	Add Grizzly.ZWave.Commands.ApplicationNodeInfoReport
	Add Grizzly.ZWave.CommandClass.NodeNaming
	Add Grizzly.ZWave.Commands.NodeLocationGet
	Add Grizzly.ZWave.Commands.NodeLocationReport
	Add Grizzly.ZWave.Commands.NodeLocationSet
	Add Grizzly.ZWave.Commands.NodeNameGet
	Add Grizzly.ZWave.Commands.NodeNameReport
	Add Grizzly.ZWave.Commands.NodeNameSet
	Add Grizzly.ZWave.Commands.AlarmGet
	Add Grizzly.ZWave.Commands.AlarmSet
	Add Grizzly.ZWave.Commands.AlarmEventSupportedGet
	Add Grizzly.ZWave.Commands.AlarmEventSupportedReport
	Add Grizzly.ZWave.Commands.AlarmTypeSupportedGet
	Add Grizzly.ZWave.Commands.AlarmTypeSupportedReport
	Add Grizzly.ZWave.Commands.AssociationGroupingsGet
	Add Grizzly.ZWave.Commands.AssociationGroupingsReport
	Add Grizzly.ZWave.Commands.AssociationRemove
	Add Grizzly.ZWave.Commands.AssociationReport
	Add Grizzly.ZWave.Commands.AssociationSpecificGroupingsGet
	Add Grizzly.ZWave.Commands.AssociationSpecificGroupingsReport
	Add Grizzly.ZWave.CommandClasses.MultiChannelAssociation
	Add Grizzly.ZWave.Commands.MultiChannelAssociationGroupingsGet
	Add Grizzly.ZWave.Commands.MultiChannelAssociationGroupingsReport
	Add Grizzly.ZWave.Commands.MultiChannelAssociationRemove
	Add Grizzly.ZWave.Commands.MultiChannelAssociationReport
	Add Grizzly.ZWave.Commands.MultiChannelAssociationSet
	Add Grizzly.ZWave.CommandClass.DeviceResetLocally
	Add Grizzly.ZWave.Commands.DeviceResetLocallyNotification
	Add Grizzly.ZWave.Commands.LearnModeSet
	Add Grizzly.ZWave.Commands.LearnModeSetStatus
	Add Grizzly.Inclusions.learn_mode/1
	Add Grizzly.Inclusions.learn_mode_stop/0
	Support version 8 of the Grizzly.ZWave.Commands.AlarmReport
	Support parsing naming and location parameters from Z-Wave notifications
	Add mix zipgateway.cfg to print out the zipgateway config that Grizzly
is configured to use.
	Add Grizzly.list_commands/0 to list all support Z-Wave commands in
Grizzly.
	Add Grizzly.commands_for_command_class/1 for listing the Z-Wave commands
support by Grizzly for a particular command class.
	Add :handlers to :grizzly configuration options for firmware update and
inclusion handlers.
	Documentation updates

Fixes
	Parsing the wrong byte for into the wrong notification type
	Invalid type spec for Grizzly.ZWave.Security.failed_type_from_byte/1

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.11.0

Grizzly now supports parsing alarm/notification parameters as a keyword list of
parameters. This change is breaking because the event parameters use to be the
raw binary we received from the Z-Wave network and now it is a keyword list.
We only support lock and keypad event parameters currently, but this puts into
place the start of being able to support event parameters.
Enhancements
	Support parsing event parameters for lock and keypad operations

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.10.3

Enhancements
	Add handle_timeout/2 to the Grizzly.InclusionHandler behaviour. This
allows for handling when an inclusion process timesout.
	Add Grizzly.Inclusions.stop/0 force stop any type of inclusion process.
	Add Grizzly.FirmwareUpdates module for updating the Z-Wave firmware on
Z-Wave hardware

Fixes
	not parsing command classes correctly on Grizzly.ZWave.Commands.NodeAddStatus
	Not stopping an inclusion process correctly when calling
Grizzly.Inclusions.add_node_stop/0

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v.0.10.2

Enhancements
	Add Grizzly.ZWave.Commands.FailedNodeRemove
	Add Grizzly.ZWave.Commands.FailedNodeRemoveStatus

Fixes
	Sensor types returned from the support sensors report
	Broken link in docs

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v.0.10.1

Enhancements
	Add Grizzly.ZWave.Commands.ConfigurationGet
	Add Grizzly.ZWave.Commands.ConfigurationReport

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.10.0

Removed the parameter :secure_command_classes from
Grizzly.ZWave.Command.NodeInfoCacheReport. Also updated the param
:command_classes to be a keyword list of the various command classes that
the node can have.
The fields in the keyword list are:
	:non_secure_supported
	:non_secure_controlled
	:secure_supported
	:secure_controlled

If you are using :secure_command_classes for checking if the device is
securely added you can update like this:

{:ok, node_info} = Grizzly.Node.get_info(10)

Keyword.get(Grizzly.ZWave.Command.param!(node_info, :command_classes), :secure_controlled)
Enhancements
	Add Grizzly.ZWave.Commands.AssociationGroupCommandListGet
	Add Grizzly.ZWave.Commands.AssociationGroupCommandListReport
	Add Grizzly.ZWave.Commands.AssociationGroupInfoGet
	Add Grizzly.ZWave.Commands.AssociationGroupInfoReport
	Add Grizzly.ZWave.Commands.AssociationGroupNameGet
	Add Grizzly.ZWave.Commands.AssociationGroupNameReport
	Add Grizzly.ZWave.Commands.MultiChannelEndpointGet
	Add Grizzly.ZWave.Commands.MultiChannelEndpointReport

Fixes
	Internal command class name discrepancies

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.9.0

The official v0.9.0 release!
If you trying to upgrade from v0.8.x please see Grizzly v0.8.0 -> v0.9.0
guide and follow the Changelog from the initial v0.9.0-rc.0 release.
Changes from the last rc are:
Enhancements
	Support Erlang 23.0 with Elixir 1.10
	Dep updates and tooling enhancements

Fixes
	miss spellings of command names

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.9.0-rc.4

Enhancements
	Add Grizzly.ZWave.Commands.FirmwareMDGet
	Add Grizzly.ZWave.Commands.FirmwareUpdateMDRequestGet
	Add Grizzly.ZWave.Commands.FirmwareUpdateMDRequestReport
	Add Grizzly.ZWave.Commands.FirmwareUpdateMDStatusReport
	Add Grizzly.ZWave.Commands.FirmwareUpdateMDReport
	Add Grizzly.ZWave.Commands.FirmwareUpdateActivationSet
	Add Grizzly.ZWave.Commands.FirmwareUpdateActivationReport
	Remove some dead code

Fixes
	When resetting the controller we were not closing the connections to
the nodes. This caused some error logging in zipgateway and also left
open unused resources. This could cause problems later when reconnecting
devices to resources that were already in the system.

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.9.0-rc.3

Enhancements
	Some Z-Wave devices report the wrong value for the switch multilevel
report so we added support for those values.

Fixes
	When two processes quickly sent the same command to the same device only
one process would receive the response

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.9.0-rc.2

Deprecated
	Grizzly.Node.get_node_info/1 - use Grizzly.Node.get_info/1 instead

Added
	Grizzly.Node.get_info/1
	Grizzly.ZWave.CommandClasses.Supervision
	Grizzly.ZWave.Commands.SupervisionGet
	Grizzly.ZWave.Commands.SupervisionReport
	Grizzly.ZWave.CommandClasses.SensorBinary
	Grizzly.ZWave.Commands.SensorBinaryGet
	Grizzly.ZWave.Commands.SensorBinaryReport

Enhancements
	Support for DoorLockOperationReport >= V3 parsing

Fixes
	Bad parsing of NodAddStatus :failed value

Thank you to those who contributed to this release:
	Jean-Francois Cloutier

 v0.9.0-rc.1

Breaking Changes
	Grizzly.ZWave.IconTypes removed icon_type from the atom values of the
icon name.
	Grizzly.ZWave.DeciveTypes.icon_name() ->
Grizzly.ZWave.DeviceTypes.name()
	Grizzly.ZWave.DeciveTypes.icon_integer() ->
Grizzly.ZWave.DeviceTypes.value()

Enhancements
	Doc updates
	Internal code quality
	Deps updates
	Better types around DSKs
	CI support for elixir versions 1.8, 1.9, and 1.10
	Support all versions of the meter report
	Support a low battery report

 v0.9.0-rc.0

For more detailed guide to the breaking changes and how to upgrade please see
our Grizzly v0.8.0 -> v0.9.0 guide.
This release presents a simpler API, faster boot time, more robustness in Z-Wave communication,
and resolves all open issues on Grizzly that were reported as bugs.

 Removed APIs

	Grizzly.Node struct
	Grizzly.Conn module
	Grizzly.Notifications module
	Grizzly.Packet module
	Grizzly.close_connection
	Grizzly.command_class_versions_known?
	Grizzly.update_command_class_versions
	Grizzly.start_learn_mode
	Grizzly.get_command_class_version
	Grizzly.has_command_class
	Grizzly.connected?
	Grizzly.has_command_class_names
	Grizzly.config
	Grizzly.Network.busy?
	Grizzly.Network.ready?
	Grizzly.Network.get_state
	Grizzly.Network.set_state
	Grizzly.Network.get_node
	Grizzly.Node.new
	Grizzly.Node.update
	Grizzly.Node.put_ip
	Grizzly.Node.get_ip
	Grizzly.Node.connect
	Grizzly.Node.disconnect
	Grizzly.Node.make_config
	Grizzly.Node.has_command_class?
	Grizzly.Node.connected?
	Grizzly.Node.command_class_names
	Grizzly.Node.update_command_class_versions
	Grizzly.Node.get_command_class_version
	Grizzly.Node.command_class_version_known?
	Grizzly.Node.update_command_class
	Grizzly.Node.put_association
	Grizzly.Node.get_association_list
	Grizzly.Node.configure_association
	Grizzly.Node.get_network_information
	Grizzly.Node.initialize_command_versions

 Moved APIs

	Grizzly.reset_controller -> Grizzly.Network.reset_controller
	Grizzly.get_nodes -> Grizzly.Network.get_node_ids
	Grizzly.get_node_info -> Grizzly.Node.get_node_info
	Grizzly.Notifications.subscribe -> Grizzly.subscribe_command and
Grizzly.subscribe_commands
	Grizzly.Notifications.unsubscribe -> Grizzly.unsubscribe
	Grizzly.add_node -> Grizzly.Inclusions.add_node
	Grizzly.remove_node -> Grizzly.Inclusions.remove_node
	Grizzly.add_node_stop -> Grizzly.Inclusions.add_node_stop
	Grizzly.remove_node_stop -> Grizzly.Inclusions.remove_node_stop
	Grizzly.Client -> Grizzly.Transport
	Grizzly.Security -> Grizzly.ZWave.Security
	Grizzly.DSK -> Grizzly.ZWave.DSK
	Grizzly.Node.add_lifeline_group -> Grizzly.Node.set_lifeline_association

We moved all the commands and command classes to be under the the
Grizzly.ZWave module namespace and refactored the command behaviour.

 Grizzly.send_command Changes

The main API function to Grizzly has changed in that it only takes a node id,
command name (atom), command args, and command options.
Also it no longer returns a plain map when there is data to report back from
a Z-Wave node but it will return {:ok, %Grizzly.ZWave.Command{}}.
Please see Grizzly and Grizzly.ZWave.Command docs for more information.

 Connections

Grizzly uses the zipgateway binary under the hood. The binary has its own
networking stack and provides a DTLS server for us to connect to. Prior to
Grizzly v0.9.0 we greatly exposed that implementation detail. However, starting
in Grizzly v0.9.0 we have hidden that implementation detail away and all
connection functionally is handle by Grizzly internally. This leaves the
consumer of Grizzly to just work about sending and receiving commands.
If you are using %Grizzly.Conn{} directly this is no longer available and you
should upgrade to just using the node id you were sending commands to.

 When Grizzly is Ready

We use to send a notification to let the consumer to know when Grizzly is
read. Staring in v0.9.0 the consumer needs to configure Grizzly's runtime
with the on_ready module, function, arg callback.
config :grizzly,
 runtime: [
 on_ready: {MyApp, :some_function, []}
]
See Grizzly.Runtime for more details

 Inclusion Handler Behaviour

Adding and removing a Z-Wave node can be a very interactive process that
involves users being able to talk to the including controller and device. The
way Grizzly < v0.9.0 did it wasn't vary useful or robust. By adding the the
inclusion handler behaviour we allow the consumer to have full control over the
inclusion process, enabling closer to Z-Wave specification inclusion process.
See Grizzly.InclusionHandler and Grizzly.Inclusions for more information.

 Command Handler Behaviour

If you need to handle a Z-Wave command lifecycle differently than the default
Grizzly implementation you can make your own handler and pass it into
Grizzly.send_command as an option:
Grizzly.send_command(node_id, :switch_binary_set, [value: :on], handler: MyHandler)
See Grizzly.CommandHandler for more information.

 Supporting Commands

At the point of the rc.0 release are not fully 100% supporting the same
commands as in < v0.8.8, but we are really close. The commands that we haven't
pulled over are not critical to average Z-Wave device control. We will work to
get all the commands back into place.
Thank you to Jean-Francois Cloutier for contributing so much to this release.

 v0.8.8

	Enhancements	Make Z-Wave versions standard version formatting

	Fixes	Paring the FirmwareMD report for version 5
	Fix spec for queued commands

 v0.8.7

	Enhancements	Support FIRMWARE_UPDATE_MD meta data report command v5

 v0.8.6

	Fixes	duplicate fields on the Grizzly.Node struct

 v0.8.5

	Fixes	various spelling and documentation fixes
	dialzyer fixes

 v0.8.4

	Fixes	Handle when there are no nodes in the node provisioning list when
requesting all the DSKs.

 v0.8.3

	Enhancements	Support Wake Up v2 and Multi Channel Association v3

 v0.8.2

	Enhancements	Support SWITCH_BINARY_REPORT version 2

 v0.8.1

	Enhancements	Update docs and resources

	Fixes	An issue when the unsolicited message server would cause a
no match error that propagated up the supervision tree

Thank you to those who contributed to this release:
	Ryan Winchester

 v0.8.0

Adds support for handling SmartStart meta extension fields.
These fields give more information about the current status, inclusion methods,
and product information for the SmartStart device.
There are two breaking changes:
	All SmartStart meta extensions were moved from Grizzly.CommandClass.NodeProvisioning
namespace into the Grizzly.SmartStart.MetaExtension namespace.
	Upon finalizing the meta extension behaviour and API we made changes to how
previously supported meta extensions worked. Namely, we added a new/1
callback that does parameter validation, and returns {:ok, MetaExtension.t()}.
This breaks the pervious behaviour of to_binary/1 functions in perviously
implemented meta extensions.

	Enhancements	Full support for SmartStart meta extensions
	Add meta_extensions field to Grizzly.CommandClass.NodeProvisioning
commands that can handle meta extensions
	Update Grizzly.Conn.Server.Config docs

	Fixes	Invalid keep alive (heart beat) interval
	Set correct constraints on Time command offset values

Thank you to those who contributed to this release:
	Jean-Francois Cloutier
	Ryan Winchester

 v0.7.0

Introduces SmartStart support!
SmartStart will allow you to pair a device to a Z-Wave controller with out
turning the device on. Devices that support SmartStart will have a device
specific key (DSK) that you can provide to the controller prior to turning on
the device.
iex> Grizzly.send_command(Grizzly.Controller, Grizzly.CommandClass.NodeProvisioning.Set, dsk: dsk)
:ok
After running the above command you can plug in your SmartStart device and the
controller will try to join the Z-Wave network automatically.
As a note, your controller might not have the necessary firmware to have SmartStart.
To verify this you can use RingLogger to read zipgateway logs which at the start
will log if the controller supports SmartStart.

 Breaking Changes

Breaking change to the return value of sending Grizzly.CommandClass.ZipNd.InvNodeSolicitation.
When using that function send_command would return
{:ok, {:node_ip, node_id, ip_address}} but now it returns
{:ok, %{ip_address: ip_address, node_id: node_id, home_id: home_id}}.
	Enhancements	SmartStart support through the NodeProvisioning command class
	Added home_id field to Grizzly.Node.t()
	Support fetching home_id of the Z-Wave nodes when fetching
Z-Wave information about the node

 v0.6.6

	Fixes	Application start failure when providing the correct
data structure to the zipgateway_cfg configuration
field

 v0.6.5

	Enhancements	Support GetDSK command
	Support FailedNodeRemove command
	Allow zipgateway_path configuration
	Generate the zipgateway.cfg to allow device specific
information to be passed into the zipgateway runtime.

 v0.6.4

	Enhancements	Validation of UserCode arguments to help ensure usage of Grizzly
follows the Z-Wave specification

 v0.6.3

	Enhancements	Supports AssociationGroupInformation Command Class

 v0.6.2

	Enhancements	Remove the dependence on pidof allowing grizzly to work on any nerves
device without the need of busybox

 v0.6.1

	Enhancements	Update commands IntervalGet and ManufacturerSpecificGet to be more
consistent
	Better handling of invalid ManufacturerSpecific info received from
devices

 v0.6.0

Changed Grizzly.CommandClass.CommandClassVersion to Grizzly.CommandClass.Version
and changed Grizzly.ComamndClass.CommandClassVersion.Get to
Grizzly.CommandClass.Version.CommandClassGet as these names reflect the Z-Wave
specification better.
If you only have used Grizzly.get_command_class_version/2 and the related function
in Grizzly.Node module this change should not effect you.
	Enhancements	Add support for:	MultiChannelAssociation Command Class
	WakeUp Command Class NoMoreInformation command
	Complete Association Command Class
	ZwaveplusInfo Command Class
	Version Get Command

	Clean up docs
	Renamed Grizzly.CommandClass.CommandClassVersion to Grizzly.CommandClass.Version
	Renamed Grizzly.CommandClass.CommandClassVersion.Get to
Grizzly.CommandClass.Version.CommandClassGet

 v0.5.0

Introduces Grizzly.Command.EncodeError exception and updates encoding and
decoding functions to return tagged tuples. We now use these things when trying
to send a command via Grizzly.send_command/3 so if you have invalid command
arguments we can provide useful error handling with
{:error, Grizzly.Command.EncodeError.t()}. The EncodeError.t() implements
Elixir's exception behaviour so you can leverage the standard library to
work with the exception.
Unless you have implemented custom commands or used one of the many command
encoders or decodes explicitly this update should not affect you too much. If
you have used the encoder/decoders explicitly please see the documentation for
the ones you have used to see the updated API. If you have written a command we
encourage you to validate the arguments and return the {:error, EncodeError.t()}
to improve the usability of and robustness your command. The new
Grizzly.Command.Encoding module provides some useful functionality for
validating specs for command arguments.
	Enhancements	Provide command argument validation and error handling via
Grizzly.Command.EncodeError.()
	Update all the command arg encoder/decoder to use tagged
tuples for better handling of invalid command arguments
	Introduces new Grizzly.Command.Encoding modules for helping
validate command arugment specifications

	Fixes	Crashes when providing invalid command arguments

 v0.4.3

	Enhancements	Support Powerlevel command class
	Doc clean up
	Grizzly.send_command/2 and Grizzly.send_command/3
can be passed a node id instead of a node.

 v0.4.2

	Enhancements	Support NoOperation command class

 v0.4.1

	Enhancements	Add support for Network Management Installation Maintenance
	Updates to docs and examples

 v0.4.0

Changed how configuration works.
Grizzly now requires the serial port to be configured:
config :grizzly,
 serial_port: "/dev/ttyACM0"
Also added the pidof_bin configuration option to allow official
Nerves systems to work with some of the Grizzly scripts the call
that utility by using the busybox package and
pointing to the executable of pidof that is compiled with busybox.
If you are using a custom system you can add that utility to the
busybox config, and not need to use this configuration option.
config :grizzly,
 pidof_bin: "/srv/erlang/lib/busybox-0.1.2/priv/bin/pidof"
Double check the version of busybox you are using and make sure that
version matches the version in the pidof_bin path.
Changed run_grizzly_bin to run_zipgateway_bin.

 v0.3.1

	Enhancements	Implement multilevel sensor command to get supported sensor types

 v0.3.0

The big change here is removing the in memory
cache for devices on the network. Most common
use cases will be for a consuming application to
hold on to the network device information and apply
some costume logic to now that is managed.
Also, we would have to keep both the external
and internal cache in sync, which is really hard
and was creating an odd event based system, which
also lends itself to complexity.

 Breaking Changes

Grizzly.list_nodes() -> Grizzly.get_nodes()
This is mostly because before we were listing nodes
from a cache, and now we are getting nodes from the
Z-Wave network.
Also with get_nodes we don't automatically connect
to the nodes. So getting and connecting to all nodes
on the Z-Wave network might look something like this:
def get_and_connect() do
 case Grizzly.get_nodes() do
 {:ok, nodes} -> Enum.map(nodes, &Grizzly.Node.connect/1)
 error -> error
 end
end
Grizzly.update_command_class_versions/2 -> Grizzly.update_command_class_versions/1
Before we would pass if the update would be async or not
after reviewing how this gets used it made sense to
always do it sync. Also it returns a Node.t() now
with the command classes updated with the version.
This is the same change found in Grizzly.Node.update_command_class_versions
Grizzly.command_class_version/3 -> Grizzly.get_command_class_version/2
Removed the use_cache param as there is no longer a cache.
Same change found in Grizzly.Node.get_command_class_version
	Enhancements	Support Grizzly.CommandClass.Time command class
	Support Grizzly.CommandClass.TimeParameters GET and SET commands
	Support Grizzly.CommandClass.ScheduleEntryLock command class
	Grizzly.Notifications.subscribe_all/1 - subscribe to many notifications at once
	Grizzly.CommandClass.name/1 - get the name of the command class
	Grizzly.CommandClass.version/1 - get the version of the command class
	Grizzly.Network.get_nodes/0 - get the nodes on the network
	Grizzly.Network.get_node/1 - get a node by node id from the network
	Grizzly.Network.get_node_info/1 - get node information about a node via node id
	Grizzly.Node.get_ip/1 - can now take either a Node.t() or a node id

	Updates	Docs and type clean up

	Fixes	Timeout when getting command class versions

 v0.2.1

	Updates	Support for the time command class

	Fixes	Time-boxing of getting a command class version

 v0.2.0

	Fixes	Logging with old ZipGateway label is now Grizzly
	Fix queued API from {ZipGateway, :queued_response, ref, response}
to {Grizzly, :queued_response, ref, response}
	Fix timeout error when waiting for DTLS server from the
zipgateway side

 Grizzly Cookbook - grizzly v8.6.6

Grizzly Cookbook

Below are short notes about using Grizzly.
	Starting Grizzly
	Docker Local Development
	Add Devices
	Remove Devices
	Factory Reset Controller
	Command Basics
	Binary Switches
	Door Locks
	DSK
	Indicator Light
	Firmware Information
	Network Update

 Starting Grizzly

If you using Grizzly you will need to start the supervision tree manually.
Grizzly.Supervisor.start_link(opts)
or add the supervisor to your supervision tree:
children = [
 ... other processes ...
 {Grizzly.Supervisor, grizzly_opts},
 ... other processes ...
]

Supervisor.init(children, supervisor_opts)

 Docker Local Development

Getting the zipgateway binary compiled and running can be hard. Due to
licenses we cannot redistribute a pre-compiled version either. However, the
zipgateway-env project has is
a docker based environment that is setup to compile zipgateway from source and
provides a CLI for running the binary.
After getting zipgateway-env setup and working you can use grizzly locally.
You will need to pass the :run_zipgateway option when you start Grizzly
setting it to false:
iex> Grizzly.Supervisor.start_link(run_zipgateway: false)
children = [
 ... other processes ...
 {Grizzly.Supervisor, [run_zipgateway: false]},
 ... other processes ...
]

Supervisor.init(children, supervisor_opts)

 Add Devices

There are 3 security schemas a device can be included with:
	No Security
	S0
	[S2]

When adding a device you will need to put the device into inclusion mode. How to
do this is normally found in the device's user manual. So, be sure to read that
to learn how to add the device to the Z-Wave network.
Also, you will need to put the controller into inclusion mode:
Grizzly.Inclusions.add_node()
After an inclusion is done the calling process will receive this message:
{:grizzly, :report, %Grizzly.Report{}}
Where the Grizzly.Report will have the command field contain the
NodeAddStatus
command.
That command's param :status will tell you if inclusion failed or not:
alias Grizzly.ZWave.Command

#... code ...

def handle_info({:grizzly, :report, report}, state) do
 case report.command.name do
 :node_add_status ->
 handle_node_add_status(report.command, state)
 end
end

defp handle_node_status(command, state) do
 case Command.param!(command, :status) do
 :done -> Logger.info("YAY!")
 :failed -> Logger.info("Sad!")
 end

 {:noreply, state}
end
If you want to check the security schema that was used you can check the
NodeAddStatus command param :granted_keys:
def get_security(node_add_status_command) do
 node_add_status_command
 |> Command.param!(:granted_keys)
 |> Grizzly.ZWave.Security.get_highest_level()
end

 No Security

No security is done in these 3 steps
	Put the controller in inclusion mode
	Put the device in inclusion mode
	Wait until NodeAddStatus command is received

 S0

S0 inclusion is done the same way as No Security. The only
difference the :granted_keys param will be [:s0].

 Remove Devices

To remove a device you can call:
Grizzly.Inclusions.remove_device()
By default you will get a message sent to the calling process that looks like:
{:grizzly, :report, %Grizzly.Report{}}
Where the report command that is received is
Grizzly.ZWave.Commands.NodeRemoveStatus.
You can also provide an Inclusion handler which is explained in Add Devices.

 Factory Reset Controller

If you have been doing development and adding and removing devices or testing
some Z-Wave Network functionally that has lead to the network getting in a
broken state and you just want to start over again you can reset your controller
by doing this:
Grizzly.Network.reset_controller()
This will make the controller forget any devices that are paired with it and
delete all node provisioning entries from the SmartStart node provisioning list.
For devices that thought they were included on the newly reset controller you
will to excluded them by going through the remove devices
steps before you are able to re-include them back into the controller's
network.

 Command Basics

In Z-Wave everything that is sent and received is a command. The controller
will send commands to a device and the device will send commands back. However,
there is lifecycle these command go through within Grizzly so the abstraction
Grizzly presents is you send a command and receive a report.
The reason for a report is because normally when you send a command and the
device answers to that command it will send a command who's name normally ends
with Report.

 When you get command reports back

The most common case you get a command report back is when you send a GET
based command. That is you want to read some value from the device. Common
commands that expect a report are:
	Grizzly.ZWave.Commands.SwitchBinaryGet
	Grizzly.ZWave.Commands.DoorLockOperationGet
	Grizzly.ZWave.Commands.UserCodesGet
	Grizzly.ZWave.Commands.ThermostatSetpointGet

Just to highlight a few.
There is common pattern here: If the command name ends with Get it probably
will receive a report command back.

 When you get ack responses back

The other main report you will receive is an :ack_response. This report just
says the communication to the device was successful. That does not mean the
device will perform what you sent, but that is was received. This is common when
you want to set a value on the device.
Commands ending with Set will normally be these commands.
But the Get and the Set commands can have exceptions to the normal so please
read the module documentation for the command your are using.

 Binary Switches

Binary switches are your basic on-off switch. Z-Wave commands to control these
are:
Commands:
	Grizzly.ZWave.Commands.SwitchBinaryGet
	Grizzly.ZWave.Commands.SwitchBinarySet

Report:
	Grizzly.ZWave.Commands.SwitchBinaryReport

Usage:
iex> {ok, report} = Grizzly.send_command(switch_id, :switch_binary_get)
iex> Command.param!(report.command, :target_value)
:on
iex> {:ok, %Grizzly.Report{type: :ack_response}} =
 Grizzly.send_command(switch_id, :switch_binary_set, value: :off)
{:ok, %Grizzly.Report{}}

 Door Locks

Commands:
	Grizzly.ZWave.Commands.DockLockOperationGet
	Grizzly.ZWave.Commands.DockLockOperationSet

Reports:
	Grizzly.ZWave.Commands.DockLockOperationReport

Usage:
iex> {:ok, report} = Grizzly.send_command(lock_id, :door_lock_operation_get)
iex> Command.param!(report.command, :mode)
:secured
iex> {:ok, %Grizzly.Report{type: :ack_response}} =
 Grizzly.send_command(lock_id, :dock_lock_operation_set, mode: :unsecured)
{:ok, %Grizzly.Report{}}

 DSK

This returns this node's DSK. This is normally printed on a label as a QRCode or
a UUID and is what will show up on a hub if you include this node into a Z-Wave
network.
iex> Grizzly.Node.get_dsk(1, :learn)
{:ok,
 %Grizzly.Report{
 command: %Grizzly.ZWave.Command{
 command_byte: 9,
 command_class: Grizzly.ZWave.CommandClasses.NetworkManagementBasicNode,
 impl: Grizzly.ZWave.Commands.DSKReport,
 name: :dsk_report,
 params: [
 seq_number: 58,
 add_mode: :learn,
 dsk: "12345-12345-12345-12345-12345-12345-12345-12345"
]
 },
 command_ref: #Reference<0.2080011265.2613837825.149583>,
 node_id: 1,
 queued: false,
 queued_delay: 0,
 status: :complete,
 transmission_stats: [],
 type: :command
 }}

 Indicator Light

Z-Wave requires that devices be able to identify themselves. Here's how to test
this:
Turn the indicator on
iex> Grizzly.send_command(1, :indicator_set,
 resources: [
 [indicator_id: :node_identify, property_id: :toggling_periods, value: 1],
 [indicator_id: :node_identify, property_id: :toggling_cycles, value: 1]
]
)

Turn off
iex> Grizzly.send_command(1, :indicator_set,
 resources: [
 [indicator_id: :node_identify, property_id: :toggling_periods, value: 0],
 [indicator_id: :node_identify, property_id: :toggling_cycles, value: 0]
]
)

 Firmware Information

To check firmware version information
iex> Grizzly.send_command(node_id, :version_get)
{:ok,
 %Grizzly.Report{
 command: %Grizzly.ZWave.Command{
 command_byte: 2,
 command_class: Grizzly.ZWave.CommandClasses.FirmwareUpdateMD,
 impl: Grizzly.ZWave.Commands.FirmwareMDReport,
 name: :firmware_md_report,
 params: [
 manufacturer_id: 297,
 firmware_id: 769,
 checksum: 16143,
 firmware_upgradable?: true,
 max_fragment_size: 40,
 other_firmware_ids: [32778]
]
 },
 command_ref: #Reference<0.1607448711.4278714369.34043>,
 node_id: 10,
 queued: false,
 queued_delay: 0,
 status: :complete,
 transmission_stats: [],
 type: :command
 }}
To check what firmware version is running on a node:
iex> Grizzly.send_command(node_id, :firmware_md_get)
{:ok,
 %Grizzly.Report{
 command: %Grizzly.ZWave.Command{
 command_byte: 18,
 command_class: Grizzly.ZWave.CommandClasses.Version,
 impl: Grizzly.ZWave.Commands.VersionReport,
 name: :version_report,
 params: [
 library_type: :enhanced_end_node,
 protocol_version: "4.24",
 firmware_version: "1.78",
 hardware_version: 255,
 other_firmware_versions: ["24.0"]
]
 },
 command_ref: #Reference<0.1607448711.4278714369.35718>,
 node_id: 10,
 queued: false,
 queued_delay: 0,
 status: :complete,
 transmission_stats: [],
 type: :command
 }}

 Network Update

Sometimes the Z-Wave can get into a funny state and devices stop communicating
with the controller. One thing that could help fix this issue is running:
Grizzly.Network.request_network_update()

 Grizzly.Commands.Table - grizzly v8.6.6

Grizzly.Commands.Table

Lookup table for sendable Z-Wave commands.

 Summary

 Functions

 Grizzly - grizzly v8.6.6

Grizzly

Send commands, subscribe to unsolicited events, and other helpers.

 Unsolicited Events

In order to receive unsolicited events from the Z-Wave network you must subscribe to the
corresponding command (e.g. :battery_report, :alarm_report, etc.).
Whenever an unsolicited event is received from a device, subscribers will receive messages
in the following format:
{:grizzly, :event, %Grizzly.Report{}}
The Grizzly.Report struct will contain the id of the sending node, a Grizzly.ZWave.Command
struct with the command name and arguments, and any additional metadata. Refer to Grizzly.Report
and Grizzly.ZWave.Command for details.

 Telemetry

	[:grizzly, :zip_gateway, :crash]
	Description: Emitted when the Z/IP Gateway process exits abnormally.
	Measurements: N/A
	Metadata: N/A

	[:grizzly, :zwave, :s2_resynchronization]
	Description: Emitted when an S2 resynchronization event occurs.
	Measurements: %{system_time: non_neg_integer()}
	Metadata: %{node_id: non_neg_integer(), reason: non_neg_integer()}

 Summary

 Types

 Grizzly.Autocomplete - grizzly v8.6.6

Grizzly.Autocomplete

Adds command completion to the default IEx autocomplete.
This module augments the IEx autocompletion logic to complete Grizzly
command names inside of Grizzly.send_command/4 calls.
Call Grizzly.Autocomplete.set_expand_fun() (or put it in your .iex.exs) to
enable this feature.

 Summary

 Functions

 Grizzly.FirmwareUpdates - grizzly v8.6.6

Grizzly.FirmwareUpdates

Module for upgrading firmware on target devices.
Required options:
	manufacturer_id - The unique id indentifying the manufacturer of the target device
	firmware_id - The id of the current firmware

Other options:
	device_id - Node id of the device to be updated. Defaults to 1 (controller)
	firmware_target - The firwmare target id. Defaults to 0 (the ZWave chip)
	max_fragment_size - The maximum number of bytes that will be transmitted at a time. Defaults to 2048.
	hardware_version - The current hardware version of the device to be updated. Defaults to 0.
	activation_may_be_delayed? - Whether it is permitted for the device may delay the actual firmware update. Defaults to false.
	handler - The process that will receive callbacks. Defaults to the caller.any()

The firmware update process is as follows:
	Grizzly sends a firmware_md_get command to the target device to get the manufacturer_id, hardware_id, max_fragment size,
among other info needed to specify a firmware update request. The info is returned via a firmware_md_report command.

	Grizzly uses this info to send a firmware_update_md_request command to the target device, telling it to initiate the image
uploading process. The checksum of the entire firmware image is added to the request. The target device says yeah or nay via a
firmware_update_md_request_report command.

	If the target device agrees to have its firmware updated, it next sends a first firmware_update_md_get command to Grizzly asking
for a number_of_reports (a bunch of firmware image fragment uploads) starting at fragment report_number.

	Grizzly responds by sending the requested series of firmware_update_md_report commands to the target device, each one containing
a firmware image fragment, with a checksum for the command.

	Once a series of uploads is completed, the target device either asks for more fragments via another firmware_update_md_get command,
or it sends a firmware_update_md_status_report command either to cancel the yet incomplete upload (bad command checksums!),
or to announce that the update has completed either successfully (with some info about what happens next) or in failure
(invalid overall image checksum!).

	As part of a successful firmware_update_md_status_report command, the target device tells Grizzly whether the new firmware
needs to be activated. If it does, Grizzly would then be expected to send a firmware_update_activation_set command which success
is reported by the target device via a firmware_update_activation_report command.

 Summary

 Types

 Grizzly.Inclusions - grizzly v8.6.6

Grizzly.Inclusions

Module for adding and removing Z-Wave nodes
In Z-Wave the term "inclusions" means two things:
	Adding a new Z-Wave device to the Z-Wave Network
	Removing a Z-Wave device to the Z-Wave Network

In practice though it is more common to speak about adding a Z-Wave node in
the context of "including" and removing an Z-Wave mode in the context of
"excluding." This module provides functionality for working will all contexts
of inclusion, both adding and removing.

 Adding a Z-Wave Node (including)

When adding a device that does not required any security authentication is
as simple as calling Grizzly.Inclusions.add_node/0.
iex> Grizzly.Inclusions.add_node()
:ok
After starting the inclusion on the controller, which the above function
does, you can then put your device into inclusion as well. From here the new
device and your controller will communicate and if all goes well you should
receive a message in the form of
{:grizzly, :inclusion, NodeAddStatus} where the the NodeAddStatus is a
Z-Wave command the contains information about the inclusion status (status,
node id, supported command classes, security levels, etc.). See
Grizzly.ZWave.Commands.NodeAddStatus for more information about the values
in that command. For example:
defmodule MyInclusionServer do
 use GenServer

 require Logger

 alias Grizzly.Inclusions
 alias Grizzly.ZWave.Command

 def start_link(_) do
 GenServer.start_link(__MODULE__, nil)
 end

 def add_node(pid) do
 GenServer.call(pid, :add_node)
 end

 def init(_) do
 {:ok, nil}
 end

 def handle_call(:add_node, _from, state) do
 :ok = Inclusions.add_node()
 {:reply, :ok, state}
 end

 def handle_info({:grizzly, :inclusion, report}, state) do
 case Command.param!(report.command, :status) do
 :done ->
 node_id = Command.param!(report.command, :node_id)
 Logger.info("Node added with id: " <> node_id)

 :failed ->
 Logger.warning("Adding node failed :(")

 :security_failed ->
 node_id = Command.param!(report.command, :node_id)
 Logger.warning("Node added with id: " <> node_id <> "but the security failed")
 end

 {:noreply, state}
 end
end

 Stop Adding a Node

If you need you need to stop trying to add a node to the Z-Wave network you
can use the Grizzly.Inclusions.remove_node/0 function.
This should stop the controller from trying to add a node and return it to
a normal functions state.

 Security

There are five security levels in Z-Wave: unsecured, S0, S2 unauthenticated,
S2 authenticated, and S2 access control. The first 2 requires nothing
special from the calling process to able to use, as the controller and the
including node will figure out which security scheme to use.
S2
The process of adding an S2 device is a little more involved. The process is
the same up until right after you put the including node into the inclusion
mode. At that point including will request security keys, which really means
it tells you which S2 security scheme it supports. You then use the
Grizzly.Inclusions.grant_keys/1 function to pass a list of allowed security
schemes.
After that the node will response with a NodeAddDSKReport where it reports
the DSK and something called the :dsk_input_length. If the input length is
0, that means it is trying to do S2 unauthenticated inclusion. You can
just call Grizzly.Inclusions.set_input_dsk/0 function and the rest of the
inclusion process should continue until complete.
If the :dsk_input_length has number, normally will be 2 that means the
including device is requesting a 5 digit digit pin that is normally found on
a label somewhere on the physical device it.
From here you can call Grizzly.Inclusions.set_input_dsk/1 with the 5 digit
integer as the argument. The inclusion process should continue until complete.

 Removing a Z-Wave Node (excluding)

To remove a Z-Wave node from the network the
Grizzly.Inclusions.remove_node/0 will start an inclusion process for removing
a Z-Wave node. After calling this function you can place your device into the
inclusion (normally the same way you included the device is the way the device
is excluded) mode. At the end of the exclusion the NodeRemoveStatus command
is received and can be inspected for success of failure.

 Removed Node ID 0?

Any Z-Wave controller can excluded a device from another controller. In
practice this means your Z-Wave controller can make a device "forget" the
controller it is currently attached to. Most the time Z-Wave products will
have you excluded your device and then included just to make sure the
including node isn't connected to another Z-Wave controller.
When this happens you will a successful NodeRemoveStatusReport but the node
id will be 0. This is consider successful and most the time intend.

 Stopping Remove Node Process

To stop the removal inclusion process on your controller you can call the
Grizzly.Inclusions.remove_node_stop/0 function.

 Inclusion Handler

To tie into the inclusion process we default to sending messages to the
calling process. However, there is a better way to tie into this system.
When starting any inclusion process you can pass the :handler option
which can be either another pid or a module that implements the
Grizzly.InclusionHandler behaviour, or a tuple with the module and callback arguments.
A basic implementation might look like:
defmodule MyApp.InclusionHandler do
 @behaviour Grizzly.InclusionHandler

 require Logger

 def handle_report(report, opts) do
 Logger.info("Got command: " <> report.command.name <> " with callback arguments " <> inspect opts)
 :ok
 end
end
This is recommended for applications using Grizzly over a GenServer that
wraps Grizzly.Inclusions.

 Summary

 Types

 Grizzly.Indicator - grizzly v8.6.6

Grizzly.Indicator

Indicator handling for Grizzly when an indicator event is triggered
See Grizzly.Supervisor for configuring the dispatcher that Grizzly should
use during runtime.

 Summary

 Types

 Grizzly.Network - grizzly v8.6.6

Grizzly.Network

Module for working with the Z-Wave network

 Summary

 Types

 Grizzly.Node - grizzly v8.6.6

Grizzly.Node

Functions for working directly with a Z-Wave node

 Summary

 Types

 Grizzly.Options - grizzly v8.6.6

Grizzly.Options

Grizzly config options.

 Summary

 Types

 Grizzly.Report - grizzly v8.6.6

Grizzly.Report

Reports from Z-Wave commands
When you send a command in Z-Wave you will receive a report back.

 When Things Go Well

There are two primary reports that are returned when sending a command.
The first is :command report and the second is an :ack_response report.
These both will have a status of :complete.
Normally, an :ack_response report is returned when you set a value on a
device. This means the device received the command and is processing it,
not that the device has already processed it. You might have to go read the
value back after setting it if you want to make the device ran the set
based command.
A :command report type is returned often after reading a value from a
device. This report will have its :command field filled with a Z-Wave
command.
case Grizzly.send_command(node_id, command, command_args, command_opts) do
 {:ok, %Grizzly.Report{status: :complete, type: :command} = report} ->
 # do something withe report.command
 {:ok, %Grizzly.Report{status: :complete, type: :ack_response}} ->
 # do whatever
end

 Queued Commands

When sending a command to a device that sleeping, normally battery powered
devices, the command will be queued internally. The command will still be
considered :inflight as it has not reached the device yet. You know when
a command has been queued when the report's :status field is :inflight
and the :type field is :queued_delayed. Fields to help you manage queued
commands are :command_ref, :queued_delay, and :node_id
During the command's queued lifetime the system sends pings back to the
caller to ensure that the low level connection is still established. This
also provides an updated delayed time before the device wakes up.
case Grizzly.send_command(node_id, command, command_args, command_opts) do
 {:ok, %Grizzly.Report{status: :inflight, type: :queued_delay}} ->
 # the command was just queued
end
Once the command has been queued the calling process will receive messages
about the queued command like so:
{:grizzly, :report, %Report{}}
This report can take two forms. One for a completed queued command and one
for a queued ping.
def handle_info({:grizzly, :report, report}, state) do
 case report do
 %Grizzly.Report{status: :inflight, type: :queued_ping} ->
 # handle the ping if you want
 # an updated queue delay will be found in the :queued_delay
 # field of the report
 %Grizzly.Report{status: :complete, type: :command, queued: true} ->
 # here if the :queued field is marked has true and the report is
 # complete that will indicate a command has made it to the sleeping
 # device and the device has received the command
 %Grizzly.Report{status: :complete, type: :timeout, queued: true} ->
 # The woke up and the controller sent the command but for reason
 # the command's processing timed out
 end
end

 Timeouts

If sending the command times out you will get a command with the :type of
:timeout
case Grizzly.send_command(node_id, command, command_args, command_opts) do
 {:ok, %Grizzly.Report{status: :complete, type: :timeout}} ->
 # handle the timeout
end
The reason why this is considered okay is because the command that was sent
was valid and we were able to establish a connect to the desired device but
it just did not provide any report back.

 Full Example

The below example shows the various ways one might match after calling
Grizzly.send_command/4.
case Grizzly.send_command(node_id, command, command_args, command_opts) do
 {:ok, %Grizzly.Report{status: :complete, type: :command} = report} ->
 handle_complete_report(report)
 {:ok, %Grizzly.Report{status: :complete, type: :ack_response} = report} ->
 handle_complete_report(report)
 {:ok, %Grizzly.Report{status: :complete, type: :timeout} = report} ->
 handle_timeout(report)
 {:ok, %Grizzly.Report{status: :inflight, type: :queued} = report} ->
 handle_queued_command(report)
end
note: the handle_* functions will need to implemented and are only used in
the example for illustration purposes

 Summary

 Types

 Grizzly.StatusReporter - grizzly v8.6.6

Grizzly.StatusReporter behaviour

A behaviour that is used to report the status of various parts of the Grizzly
runtime

 Summary

 Types

 Grizzly.StatusReporter.Console - grizzly v8.6.6

Grizzly.StatusReporter.Console

A console status logger which is used by default

 Grizzly.Supervisor - grizzly v8.6.6

Grizzly.Supervisor

Supervisor for running the Grizzly runtime.
The Grizzly runtime handles command processing, command error isolation,
management of adding and removing devices, management of firmware updates,
and managing the underlining zipgateway binary.
If you are just using all the default options you can add the supervisor to
your application's supervision tree like so:
children = [
 Grizzly.Supervisor
]
The default configuration will look for the Z-Wave controller on the serial
device /dev/ttyUSB0, however if you are using a different serial device
you can configure this.
children = [
 {Grizzly.Supervisor, [serial_port: <serial_port>]}
]
Grizzly will try to run and manage the zipgateway binary for you. If
don't want Grizzly to do this you can configure Grizzly to not run
zipgateway.
children = [
 {Grizzly.Supervisor, [run_zipgateway: false]}
]
See the type docs for Grizzly.Supervisor.arg() to learn more about the
various configuration options.

 Summary

 Types

 Grizzly.Trace - grizzly v8.6.6

Grizzly.Trace

Module that tracks the commands that are sent and received by Grizzly
The trace will hold in memory the last 300 messages. If you want to generate
a log file of the trace records you use Grizzly.Trace.dump/1.
The log format is:
timestamp source destination sequence_number command_name command_parameters
If you want to list the records that are currently being held in memory you
can use Grizzly.Trace.list/0.
If you want to start traces from a fresh start you can call
Grizzly.Trace.clear/0.

 Summary

 Types

 Grizzly.Trace.Record - grizzly v8.6.6

Grizzly.Trace.Record

Data structure for a single item in the trace log

 Summary

 Types

 Grizzly.CommandHandlers.AckResponse - grizzly v8.6.6

Grizzly.CommandHandlers.AckResponse

This handler is useful for most set commands that only needs to be
acknowledged

 Grizzly.CommandHandlers.AggregateReport - grizzly v8.6.6

Grizzly.CommandHandlers