

 gRPC

 v0.11.5

 Table of contents

 	Changelog

 	Getting Started

 	Quickstart

 	Streaming

 	Error Handling

 	Client

 	Codegen

 	Advanced

 	Transcoding

 	Load Balancing

 	CORS

 	Telemetry

 	Pooling

 	Cheatsheets

 	Stream Operators

 	
 Modules

 	GRPC

 	GRPC.Message

 	GRPC.Protoc.CLI

 	GRPC.Server.Interceptor

 	Server

 	GRPC.Endpoint

 	GRPC.Server

 	GRPC.Server.Adapter

 	GRPC.Server.Adapters.Cowboy

 	GRPC.Server.Adapters.Cowboy.Handler

 	GRPC.Server.Interceptors.CORS

 	GRPC.Server.Interceptors.Logger

 	GRPC.Server.Router

 	GRPC.Server.Stream

 	GRPC.Server.Supervisor

 	GRPC.Service

 	GRPC.Status

 	Stream

 	GRPC.Stream

 	GRPC.Stream.Operators

 	Client

 	GRPC.Channel

 	GRPC.Client.Adapter

 	GRPC.Client.Adapters.Gun

 	GRPC.Client.Adapters.Mint

 	GRPC.Client.Connection

 	GRPC.Client.Interceptor

 	GRPC.Client.Interceptors.Logger

 	GRPC.Client.LoadBalancing

 	GRPC.Client.LoadBalancing.PickFirst

 	GRPC.Client.LoadBalancing.RoundRobin

 	GRPC.Client.Resolver

 	GRPC.Client.Resolver.DNS

 	GRPC.Client.Resolver.DNS.Adapter

 	GRPC.Client.Resolver.IPv4

 	GRPC.Client.Resolver.IPv6

 	GRPC.Client.Resolver.Unix

 	GRPC.Client.ServiceConfig

 	GRPC.Client.Stream

 	GRPC.Client.Supervisor

 	GRPC.Credential

 	GRPC.Stub

 	Telemetry

 	GRPC.Telemetry

 	Codecs

 	GRPC.Codec

 	GRPC.Codec.Erlpack

 	GRPC.Codec.JSON

 	GRPC.Codec.Proto

 	GRPC.Codec.WebText

 	Compressors

 	GRPC.Compressor

 	GRPC.Compressor.Gzip

 	Error Handling

 	GRPC.Logger

 	GRPC.RPCError

 	GRPC.Server.Adapters.ReportException

 	Deprecated

 	GRPC.ClientInterceptor

 	GRPC.ServerInterceptor

 Changelog

v0.11.5 (2025-11-14)
Enhancements
	Feat add exception_log_filter option to server

Bug fixes
	Fix ensure thers is only one GRPC.Client.Supervisor.
	Fix report GRPC.Errors as normal shutdowns

v0.11.4 (2025-11-07)
Enhancements
	Feat added new function to handle side-effects.
	Feat added error handler for unary and stream pipelines.
	Docs adds a better explanation of the different types of input.
	Docs improvements to module documentation.
	Docs livebooks added directly to the documentation.

Bug fixes
	Fix refresh error spam on direct_state (no lb).
	Fix correct return type in doc.

 Quickstart

GRPC is a fully featured Elixir implementation of the gRPC protocol (grpc.io),
enabling efficient communication between services through a unified and
stream-oriented API. It supports all RPC types, friendly error handling, TLS,
interceptors, reflection, and optional HTTP transcoding.
Suitable for both server and client development in pure Elixir, enabling
scalable, efficient and type-safe distributed systems.
Main features:
	Unary, Server Streaming, Client Streaming, Bi-directional Streaming RPCs;
	Streaming-first API for every call;
	Interceptors (auth, logging, rate limiting, tracing);
	Error handling with predictable propagation;
	TLS authentication and message compression;
	Connection load balancing strategies (Round Robin, Pick First);
	gRPC Reflection;
	HTTP Transcoding for REST ↔ gRPC compatibility;

Setup
app_root = Path.join(__DIR__, "..")

Mix.install(
 [
 {:grpc, path: app_root, env: :dev},
 {:protobuf, "~> 0.14"}, # optional for importing well-known Google gRPC types
 {:grpc_reflection, "~> 0.2"}, # optional for enabling gRPC reflection
 {:protobuf_generate, "~> 0.1", only: :dev} # optional for Protobuf code generation with plugins
],
 config_path: Path.join(app_root, "config/config.exs"),
 lockfile: Path.join(app_root, "mix.lock")
)

Protobuf Service and Messages
defmodule Helloworld.HelloRequest do
 use Protobuf, syntax: :proto3
 field :name, 1, type: :string
end

defmodule Helloworld.HelloReply do
 use Protobuf, syntax: :proto3
 field :message, 1, type: :string
end

defmodule Helloworld.Greeter.Service do
 use GRPC.Service, name: "helloworld.Greeter"
 rpc :SayHello, Helloworld.HelloRequest, Helloworld.HelloReply
end

defmodule Helloworld.Greeter.Stub do
 use GRPC.Stub, service: Helloworld.Greeter.Service
end

Logging Interceptor
We create a basic interceptor to log incoming RPC calls.
defmodule LoggingInterceptor do
 @behaviour GRPC.Server.Interceptor
 require Logger

 def init(options), do: options

 def call(%GRPC.Server.Stream{} = stream, req, next, _opts) do
 Logger.info("RPC: #{stream.service_name}/#{stream.method_name} received request")
 next.(stream, req)
 end
end

gRPC Server Implementation
defmodule HelloServer do
 use GRPC.Server, service: Helloworld.Greeter.Service

 def say_hello(%{name: name}, _stream) do
 Helloworld.HelloReply.new(message: "Hello, #{name}!")
 end
end

Endpoint with Interceptor
defmodule HelloEndpoint do
 use GRPC.Endpoint

 intercept(LoggingInterceptor)
 run(HelloServer)
end

Starting the Server
Here we start the GRPC server under supervision at port 50051.
{:ok, _pid} =
 GRPC.Server.Supervisor.start_link(endpoint: HelloEndpoint, port: 50051)

IO.puts("gRPC Server running on port 50051")

Create a Client and Test the RPC
{:ok, _} = GRPC.Client.Supervisor.start_link()
{:ok, channel} = GRPC.Stub.connect("localhost:50051")

request = Helloworld.HelloRequest.new(name: "Hello gRPC Livebook")
{:ok, reply} = Helloworld.Greeter.Stub.say_hello(channel, request)

IO.inspect(reply, label: "Received reply")

 Streaming

gRPC streaming in Elixir introduces a fully composable way to process data as it flows
between client and server. Instead of treating each request as an isolated transaction,
streaming allows messages to be transformed incrementally, combined with other streams
and enriched through side-effects while still in transit.
The objective here is to demonstrate how GRPC.Stream enables functional composition
applied over live data, allowing pipelines to evolve, react and continue processing
even under constant input.
By exploring unary, server streaming and bidirectional streaming examples, this
document highlights how state, concurrency and data transformation can interact
seamlessly in an event-driven communication model.

Setup
app_root = Path.join(__DIR__, "..")

Mix.install(
 [
 {:grpc, path: app_root, env: :dev}
],
 config_path: Path.join(app_root, "config/config.exs"),
 lockfile: Path.join(app_root, "mix.lock")
)

Proto Messages & Service
For simplicity, all proto definitions are inline.
defmodule Stream.HelloRequest do
 use Protobuf, syntax: :proto3
 field :name, 1, type: :string
end

defmodule Stream.HelloReply do
 use Protobuf, syntax: :proto3
 field :message, 1, type: :string
end

defmodule Stream.EchoServer.Service do
 use GRPC.Service, name: "stream.EchoServer"

 rpc :SayUnaryHello, Stream.HelloRequest, Stream.HelloReply
 rpc :SayServerHello, Stream.HelloRequest, stream(Stream.HelloReply)
 rpc :SayBidStreamHello, stream(Stream.HelloRequest), stream(Stream.HelloReply)
end

defmodule Stream.EchoServer.Stub do
 use GRPC.Stub, service: Stream.EchoServer.Service
end

Transformer (Helper Process)
Used for unary example composition.
defmodule Transformer do
 use GenServer

 alias Stream.HelloRequest
 alias Stream.HelloReply

 def start_link(_) do
 GenServer.start_link(__MODULE__, nil, name: __MODULE__)
 end

 def init(_), do: {:ok, %{}}

 def handle_info({:request, %HelloRequest{} = value, from}, state) do
 Process.send(from, {:response, %HelloReply{message: "Hello #{value.name}"}}, [])
 {:noreply, state}
 end
end

{:ok, _} = Transformer.start_link(nil)

Server Implementation
defmodule EchoStreamServer do
 use GRPC.Server, service: Stream.EchoServer.Service

 alias GRPC.Stream, as: GRPCStream
 alias Stream.HelloRequest
 alias Stream.HelloReply

 # Unary example
 def say_unary_hello(%HelloRequest{name: name}, _stream) do
 GRPCStream.unary(request)
 |> GRPCStream.ask(Transformer)
 |> GRPCStream.map(fn
 %HelloReply{} = reply ->
 %HelloReply{message: "[Reply] #{reply.message}"}

 {:error, reason} ->
 {:error, GRPC.RPCError.exception(message: "[Error] #{inspect(reason)}")}
 end)
 |> GRPCStream.run()
 end

 # Server‑Side streaming
 def say_server_hello(%HelloRequest{name: name} = _req, stream) do
 Stream.repeatedly(fn ->
 %HelloReply{message: "Hello from server → #{name}"}
 end)
 |> Stream.take(5)
 |> GRPCStream.from()
 |> GRPCStream.run_with(stream)
 end

 # Bidirectional streaming
 def say_bid_stream_hello(request_stream, stream) do
 GRPCStream.from(request_stream, join_with: output_join_stream())
 |> GRPCStream.map(fn
 %HelloRequest{name: name} ->
 %HelloReply{message: "Welcome #{name}!"}
 msg ->
 msg
 end)
 |> GRPCStream.run_with(stream)
 end

 defp output_join_stream() do
 Stream.repeatedly(fn ->
 %Stream.HelloReply{message: "↔ Server heartbeat"}
 end)
 end
end

Endpoint + Supervisor
defmodule StreamingEndpoint do
 use GRPC.Endpoint
 intercept(GRPC.Server.Interceptors.Logger)
 run(EchoStreamServer)
end

{:ok, _pid} =
 GRPC.Server.Supervisor.start_link(
 endpoint: StreamingEndpoint,
 port: 50054,
 start_server: true
)

IO.puts("Streaming gRPC Server running on :50054")

Client Tests
Unary
{:ok, _} = GRPC.Client.Supervisor.start_link()
{:ok, channel} = GRPC.Stub.connect("localhost:50054")

{:ok, reply} =
 Stream.EchoServer.Stub.say_unary_hello(
 channel,
 %Stream.HelloRequest{name: "Unary Test"}
)

IO.inspect(reply, label: "Unary reply")

Server Streaming
{:ok, stream} =
 Stream.EchoServer.Stub.say_server_hello(
 channel,
 %Stream.HelloRequest{name: "Server Stream"}
)

Enum.each(stream, fn msg ->
 IO.inspect(msg, label: "◀ Server message")
end)

Bidirectional Streaming
{:ok, bidi_stream} =
 Stream.EchoServer.Stub.say_bid_stream_hello(channel)

Send 3 input messages
Enum.each(~w(Alice Bob Carol)a, fn name ->
 GRPC.Stub.send_request(
 bidi_stream,
 %Stream.HelloRequest{name: name}
)
 Process.sleep(150)
end)

Close input stream
GRPC.Stub.end_stream(bidi_stream)

Receive responses
{:ok, ex_stream} = GRPC.Stub.recv(bidi_stream)
Enum.each(ex_stream, fn msg ->
 IO.inspect(msg, label: "↔ Stream reply")
end)
The Stream API supports composable stream transformations via ask, map, run and others functions, enabling clean and declarative stream pipelines. For a complete list of available operators see here.

 Error Handling

Effective error management is essential for maintaining reliability in gRPC streaming pipelines. In Elixir gRPC, all stream operators participate in a unified error propagation model, ensuring that failures — whether returned as {:error, reason} tuples or raised unexpectedly — are captured and translated consistently throughout the dataflow.
Developers can intercept, transform, and recover from errors using dedicated operators such as map_error/2, enabling graceful degradation, domain-specific responses, and seamless conversion into GRPC.RPCError formats that propagate correctly to clients.
This document explains how streaming error handling works, how exceptions interact with the pipeline, and how to design resilient services that continue processing even when individual elements fail.

Recovery from errors
The map_error/2 operator intercepts and transforms errors or exceptions emitted by previous stages in a stream pipeline.
It provides a unified mechanism for handling:
	Expected errors, such as validation or domain failures ({:error, reason})
	Unexpected runtime errors, including raised or thrown exceptions inside other operators.

iex> GRPC.Stream.from([1, 2])
...> |> GRPC.Stream.map(fn
...> 2 -> raise "boom"
...> x -> x
...> end)
...> |> GRPC.Stream.map_error(fn
...> {:error, {:exception, _reason}} ->
...> {:error, GRPC.RPCError.exception(message: "Booomm")}
...> end)
In this example:
	The function inside map/2 raises an exception for the value 2.
	map_error/2 captures and transforms that error into a structured GRPC.RPCError response.
	The stream continues processing without being interrupted.

This makes map_error/2 suitable for input validation, runtime fault recovery, and user-facing error translation within gRPC pipelines.

Unified Error Matching and Propagation
All stream operators share a unified error propagation model that guarantees consistent handling of exceptions and failures across the pipeline.
This ensures that user-defined functions within the stream — whether pure transformations, side effects, or external calls — always produce a predictable and recoverable result, maintaining the integrity of the dataflow even in the presence of unexpected errors.
def say_unary_hello(request, _materializer) do
 GRPCStream.unary(request)
 |> GRPCStream.ask(Transformer)
 |> GRPCStream.map(fn
 %HelloReply{} = reply ->
 %HelloReply{message: "[Reply] #{reply.message}"}

 {:error, reason} ->
 {:error, GRPC.RPCError.exception(message: "error calling external process: #{inspect(reason)}")}

 error ->
 Logger.error("Unknown error")
 error
 end)
 |> GRPCStream.run()
end
By normalizing all possible outcomes, GRPC.Stream ensures fault-tolerant, exception-safe pipelines where operators can freely raise, throw, or return tuples without breaking the flow execution.
This unified model allows developers to build composable and reliable streaming pipelines that gracefully recover from both domain and runtime errors.
Note: In the example above, we could use map_error/2 instead of map/2 to handle error cases explicitly. However, since the function also performs a transformation on successful values, map/2 remains appropriate and useful in this context.

 Client

This section demonstrates how to establish client connections and perform RPC calls using the Elixir gRPC client.

Basic Connection and RPC
Typically, you start this client supervisor as part of your application's supervision tree:
children = [
 GRPC.Client.Supervisor
]

opts = [strategy: :one_for_one, name: MyApp.Supervisor]
Supervisor.start_link(children, opts)
You can also start it manually in scripts or test environments:
{:ok, _pid} = GRPC.Client.Supervisor.start_link()
Then connect with gRPC server:
iex> {:ok, channel} = GRPC.Stub.connect("localhost:50051")
iex> request = Helloworld.HelloRequest.new(name: "grpc-elixir")
iex> {:ok, reply} = channel |> Helloworld.GreetingServer.Stub.say_unary_hello(request)

Using Interceptors
Client interceptors allow you to add logic to the request/response lifecycle, such as logging, tracing, or authentication.
iex> {:ok, channel} =
...> GRPC.Stub.connect("localhost:50051",
...> interceptors: [GRPC.Client.Interceptors.Logger]
...>)
iex> request = Helloworld.HelloRequest.new(name: "Alice")
iex> {:ok, reply} = channel |> Helloworld.GreetingServer.Stub.say_unary_hello(request)

Compression and Metadata
You can specify message compression and attach default headers to all requests.
iex> {:ok, channel} =
...> GRPC.Stub.connect("localhost:50051",
...> compressor: GRPC.Compressor.Gzip,
...> headers: [{"authorization", "Bearer my-token"}]
...>)

Client Adapters
By default, GRPC.Stub.connect/2 uses the Gun adapter.
You can switch to Mint (pure Elixir HTTP/2) or other adapters as needed.
Using Mint Adapter
iex> GRPC.Stub.connect("localhost:50051",
...> adapter: GRPC.Client.Adapters.Mint
...>)
You can configure adapter options globally via your application’s config:
File: config/config.exs
config :grpc, GRPC.Client.Adapters.Mint,
 timeout: 10_000,
 transport_opts: [cacertfile: "/etc/ssl/certs/ca-certificates.crt"]
The accepted options are the same as Mint.HTTP.connect/4.

 Codegen

Use protoc with protobuf elixir plugin or using protobuf_generate hex package to generate the necessary files.

Write your protobuf file
syntax = "proto3";

package helloworld;

// The request message containing the user's name.
message HelloRequest {
 string name = 1;
}

// The response message containing the greeting
message HelloReply {
 string message = 1;
}

// The greeting service definition.
service GreetingServer {
 rpc SayUnaryHello (HelloRequest) returns (HelloReply) {}
 rpc SayServerHello (HelloRequest) returns (stream HelloReply) {}
 rpc SayBidStreamHello (stream HelloRequest) returns (stream HelloReply) {}
}
Compile protos (protoc + elixir plugin)
The most basic way to compile protobuf files is by using the elixir plugin for the protoc compiler:
protoc --elixir_out=plugins=grpc:./lib -I./priv/protos helloworld.proto

See more detailed explanation here.
But you can also benefit from more advanced options if you use the protobuf_generator. This is especially useful for use with HTTP Transcoding:
mix protobuf.generate \
 --include-path=priv/proto \
 --include-path=deps/googleapis \
 --generate-descriptors=true \
 --output-path=./lib \
 --plugins=ProtobufGenerate.Plugins.GRPCWithOptions \
 google/api/annotations.proto google/api/http.proto helloworld.proto

See more detailed explanation here.

 Transcoding

The goal of transcoding is to allow HTTP/JSON calls to be automatically converted into gRPC protobuf calls
without external gateways.

Setup
app_root = Path.join(__DIR__, "..")

Mix.install(
 [
 {:grpc, path: app_root, env: :dev}
],
 config_path: Path.join(app_root, "config/config.exs"),
 lockfile: Path.join(app_root, "mix.lock")
)
Protobuf Service and Messages
defmodule Helloworld.HelloRequest do
 @moduledoc false
 use Protobuf, protoc_gen_elixir_version: "0.14.1", syntax: :proto3

 field :name, 1, type: :string
end

defmodule Helloworld.HelloRequestFrom do
 @moduledoc false
 use Protobuf, protoc_gen_elixir_version: "0.14.1", syntax: :proto3

 field :name, 1, type: :string
 field :from, 2, type: :string
end

defmodule Helloworld.HelloReply do
 @moduledoc false
 use Protobuf, protoc_gen_elixir_version: "0.14.1", syntax: :proto3

 field :message, 1, type: :string
 field :today, 2, type: Google.Protobuf.Timestamp
end

defmodule Helloworld.Greeter.Service do
 @moduledoc false
 use GRPC.Service, name: "helloworld.Greeter", protoc_gen_elixir_version: "0.14.1"

 rpc(:SayHello, Helloworld.HelloRequest, Helloworld.HelloReply, %{
 http: %{
 type: Google.Api.PbExtension,
 value: %Google.Api.HttpRule{
 selector: "",
 body: "",
 additional_bindings: [],
 response_body: "",
 pattern: {:get, "/v1/greeter/{name}"},
 __unknown_fields__: []
 }
 }
 })

 rpc(:SayHelloFrom, Helloworld.HelloRequestFrom, Helloworld.HelloReply, %{
 http: %{
 type: Google.Api.PbExtension,
 value: %Google.Api.HttpRule{
 selector: "",
 body: "*",
 additional_bindings: [],
 response_body: "",
 pattern: {:post, "/v1/greeter"},
 __unknown_fields__: []
 }
 }
 })
end
In a real-world application, this would be generated from your project's .proto files. You would have to annotate your protobuf in the following way:
import "google/api/annotations.proto";
import "google/protobuf/timestamp.proto";

package helloworld;

service Greeter {
 rpc SayHello (HelloRequest) returns (HelloReply) {
 option (google.api.http) = {
 get: "/v1/greeter/{name}"
 };
 }

 rpc SayHelloFrom (HelloRequestFrom) returns (HelloReply) {
 option (google.api.http) = {
 post: "/v1/greeter"
 body: "*"
 };
 }
}
The compilation itself would be something like:
mix protobuf.generate --include-path=priv/proto --include-path=deps/googleapis --generate-descriptors=true --output-path=./lib --plugins=ProtobufGenerate.Plugins.GRPCWithOptions google/api/annotations.proto google/api/http.proto helloworld.proto

Enable transcoding on the Elixir side.
defmodule Helloworld.Greeter.Server do
 use GRPC.Server,
 service: Helloworld.Greeter.Service,
 http_transcode: true

 alias GRPC.Stream, as: GRPCStream
 alias Helloworld.HelloRequest
 alias Helloworld.HelloReply

 def say_hello(request, stream) do
 GRPCStream.unary(request, materializer: stream)
 |> GRPCStream.map(fn
 %HelloRequest{} = reply ->
 %HelloReply{
 message: "Hello #{request.name}",
 today: today()
 }

 {:error, reason} ->
 {:error, GRPC.RPCError.exception(message: "[Error] #{inspect(reason)}")}
 end)
 |> GRPCStream.run()
 end

 def say_hello_from(request, _stream) do
 GRPCStream.unary(request, materializer: stream)
 |> GRPCStream.map(fn
 %HelloFromRequest{} = reply ->
 %HelloReply{
 message: "Hello #{request.name}. From #{request.from}",
 today: today()
 }

 _ ->
 GRPC.RPCError.exception(message: "[Error] something bad happened")
 end)
 |> GRPCStream.run()
 end

 defp today() do
 nanos_epoch = System.system_time() |> System.convert_time_unit(:native, :nanosecond)
 seconds = div(nanos_epoch, 1_000_000_000)
 nanos = nanos_epoch - seconds * 1_000_000_000

 %Google.Protobuf.Timestamp{seconds: seconds, nanos: nanos}
 end
end

Endpoint + Supervisor
defmodule TranscodeEndpoint do
 use GRPC.Endpoint
 intercept(GRPC.Server.Interceptors.Logger)
 run(Helloworld.Greeter.Server)
end

{:ok, _pid} =
 GRPC.Server.Supervisor.start_link(
 endpoint: TranscodeEndpoint,
 port: 50054,
 start_server: true
)

IO.puts("Transcoded gRPC Server running on :50054")
This automatically activates HTTP endpoints based on the annotations.

Testing with curl
Say hello
$ curl -H 'accept: application/json' http://localhost:50054/v1/greeter/test

Say hello from
$ curl -XPOST -H 'Content-type: application/json' -d '{"name": "test", "from": "anon"}' http://localhost:50054/v1/greeter

Important notes
	Feature	Status
	CORS	Not enabled by default. See CORS section.
	Server Streaming	Supported.
	Query params → fields	Supported. See note below.

Note: gRPC Transcode HttpRule https://docs.cloud.google.com/endpoints/docs/grpc-service-config/reference/rpc/google.api#google.api.HttpRule

 Load Balancing

Load balancing is a core capability of modern distributed gRPC systems. Instead of connecting directly to a single static address, the Elixir gRPC client can dynamically resolve multiple backend endpoints using pluggable target schemes (DNS, Unix sockets, xDS, and more). This allows clients to automatically distribute traffic across services and benefit from infrastructure-level routing — whether running on Kubernetes, service meshes like Istio, or traditional on-prem deployments.
The implementation in this library follows the official gRPC Client Load Balancing specification, ensuring compatibility with ecosystem tooling such as Envoy, xDS control planes (see note below), and DNS-based service discovery.
This guide explains how to define target URIs and how the built-in resolver discovers and continuously refreshes backend servers. Once configured, your load-balancing strategy becomes part of the connection string, no additional code required.
Target Schemes and Resolvers
The connect/2 function supports URI-like targets that are resolved via the internal gRPC Resolver.
You can connect using DNS, Unix Domain sockets, and IPv4/IPv6 for now.
Supported formats:
	Scheme	Example	Description
	dns://	"dns://example.com:50051"	Resolves via DNS A/AAAA records
	ipv4:	"ipv4:10.0.0.5:50051"	Connects directly to an IPv4 address
	unix:	"unix:/tmp/service.sock"	Connects via a Unix domain socket
	none	"127.0.0.1:50051"	Implicit DNS (default port 50051)

Examples:
DNS
iex> {:ok, _pid} = GRPC.Client.Supervisor.start_link()
iex> {:ok, channel} = GRPC.Stub.connect("dns://orders.prod.svc.cluster.local:50051")
iex> request = Orders.GetOrderRequest.new(id: "123")
iex> {:ok, reply} = channel |> Orders.OrderService.Stub.get_order(request)
Unix Domain Sockets
iex> {:ok, channel} = GRPC.Stub.connect("unix:/tmp/my.sock")
Note: When using DNS target, the connection layer periodically refreshes endpoints.

 CORS

When accessing gRPC from a browser via HTTP transcoding or gRPC-Web, CORS headers may be required for the browser to allow access to the gRPC endpoint. Adding CORS headers can be done by using GRPC.Server.Interceptors.CORS as an interceptor in your GRPC.Endpoint module, configuring it as described in the module documentation:
Example:
Define your endpoint
defmodule Helloworld.Endpoint do
 use GRPC.Endpoint

 intercept GRPC.Server.Interceptors.Logger
 intercept GRPC.Server.Interceptors.CORS, allow_origin: "mydomain.io"
 run Helloworld.Greeter.Server
end

 Telemetry

app_root = Path.join(__DIR__, "..")

Mix.install(
 [
 {:grpc, path: app_root, env: :dev},
 {:telemetry_metrics, "~> 0.7"},
 {:telemetry_metrics_prometheus, "~> 1.1"},
 {:req, "~> 0.3"}
],
 config_path: Path.join(app_root, "config/config.exs"),
 lockfile: Path.join(app_root, "mix.lock")
)
Telemetry Events
We know from the documentation GRPC.Telemetry that some server-side events and some client-side events are published. We can use those events to build a Prometheus metrics export through Telemetry.Metrics and TelemetryMetricsPrometheus that's retrocompatible to the deprecated :grpc_prometheus library.
First, let's create a mock server and client that we can use.
GRPC Server and Client
This whole code block is taken from test/support/proto/helloword.pb.ex
Normally, this would be autogenerated from a valid protobuf file,
but we're using this hardcoded version so that this Livebook is self-contained.

defmodule Helloworld.HelloRequest do
 @moduledoc false
 use Protobuf, protoc_gen_elixir_version: "0.11.0", syntax: :proto3

 field(:name, 1, type: :string)
 field(:duration, 2, proto3_optional: true, type: :int32)
end

defmodule Helloworld.HelloReply do
 @moduledoc false
 use Protobuf, protoc_gen_elixir_version: "0.11.0", syntax: :proto3

 field(:message, 1, type: :string)
end

defmodule Helloworld.HeaderRequest do
 @moduledoc false
 use Protobuf, protoc_gen_elixir_version: "0.11.0", syntax: :proto3
end

defmodule Helloworld.HeaderReply do
 @moduledoc false
 use Protobuf, protoc_gen_elixir_version: "0.11.0", syntax: :proto3

 field(:authorization, 1, type: :string)
end

defmodule Helloworld.Greeter.Service do
 @moduledoc false
 use GRPC.Service, name: "helloworld.Greeter", protoc_gen_elixir_version: "0.11.0"

 rpc(:SayHello, Helloworld.HelloRequest, Helloworld.HelloReply)

 rpc(:CheckHeaders, Helloworld.HeaderRequest, Helloworld.HeaderReply)
end

defmodule Helloworld.Greeter.Stub do
 @moduledoc false
 use GRPC.Stub, service: Helloworld.Greeter.Service
end
defmodule HelloServer do
 use GRPC.Server, service: Helloworld.Greeter.Service

 def say_hello(%{name: "raise", duration: duration}, _stream) do
 Process.sleep(duration)
 raise ArgumentError, "exception raised"
 end

 def say_hello(%{name: "ok", duration: duration}, _stream) do
 Process.sleep(duration)
 Helloworld.HelloReply.new(message: "Hello")
 end

 def say_hello(%{name: "not_found", duration: duration}, _stream) do
 Process.sleep(duration)
 raise GRPC.RPCError, status: GRPC.Status.not_found()
 end

 def check_headers(_req, stream) do
 token = GRPC.Stream.get_headers(stream)["authorization"]
 Helloworld.HeaderReply.new(authorization: token)
 end
end
defmodule MetricsSupervisor do
 use Supervisor
 import Telemetry.Metrics

 def start_link(arg) do
 Supervisor.start_link(__MODULE__, arg, name: __MODULE__)
 end

 def init(_arg) do
 # We attach to these events to combine them into a single published metric
 # This can actually be done directly in Prometheus through Recording Rules,
 # but this shows how to build a drop-in replacement for :grpc_prometheus
 :telemetry.attach_many(
 "handler-#{__MODULE__}",
 [
 GRPC.Telemetry.server_rpc_prefix() ++ [:stop],
 GRPC.Telemetry.server_rpc_prefix() ++ [:exception],
 GRPC.Telemetry.client_rpc_prefix() ++ [:stop],
 GRPC.Telemetry.client_rpc_prefix() ++ [:exception]
],
 fn [:grpc, server_or_client, :rpc, event_kind],
 %{duration: duration},
 %{stream: stream} = metadata,
 _opts ->
 code =
 case {event_kind, metadata[:result], metadata[:reason]} do
 {:stop, {:ok, _}, _} -> GRPC.Status.code_name(0)
 {:stop, {:ok, _, _}, _} -> GRPC.Status.code_name(0)
 {:stop, {:error, %GRPC.RPCError{status: status}}, _} -> GRPC.Status.code_name(status)
 {:exception, _, %GRPC.RPCError{status: status}} -> GRPC.Status.code_name(status)
 _ -> GRPC.Status.code_name(GRPC.Status.unknown())
 end

 metadata = %{
 grpc_service: stream.service_name,
 grpc_method: stream.method_name,
 grpc_type: stream.grpc_type,
 grpc_code: code
 }

 if is_message(stream) do
 :telemetry.execute(
 [:custom_grpc, :"#{server_or_client}_rpc", :sent],
 %{duration: duration},
 metadata
)
 end

 :telemetry.execute(
 [:custom_grpc, :"#{server_or_client}_rpc", :handled],
 %{duration: duration},
 metadata
)
 end,
 nil
)

 # This can also be achieved through some clever use of tags+tag_values,
 # without having to attach and publish a new event. However, that would
 # end up leaking an extraneous tag to Prometheus.
 # This is cleaner in that sense.
 :telemetry.attach_many(
 "handler-#{__MODULE__}-start",
 [
 GRPC.Telemetry.server_rpc_prefix() ++ [:start],
 GRPC.Telemetry.client_rpc_prefix() ++ [:start]
],
 fn _event, _, %{stream: stream}, _opts ->
 if is_message(stream) do
 :telemetry.execute([:custom_grpc, :server_rpc, :message_received], %{count: 1})
 end
 end,
 nil
)

 children = [
 {TelemetryMetricsPrometheus, [metrics: metrics(), port: 9568]}
]

 Supervisor.init(children, strategy: :one_for_one)
 end

 defp is_message(stream) do
 stream.grpc_type in [:client_stream, :bidirectional_stream]
 end

 @histogram_buckets_seconds [5.0e-3, 10.0e-3, 25.0e-3, 50.0e-3, 0.1, 0.25, 0.5, 1, 2.5, 5, 10]

 @tags [:grpc_service, :grpc_method, :grpc_type]
 @tags_with_code [:grpc_code | @tags]

 defp metrics do
 [
 # Server Metrics
 counter(
 "grpc_server_started_total",
 event_name: "grpc.server.rpc.start",
 measurement: :count,
 tags: @tags,
 tag_values: &extract_tags_from_stream/1,
 description: "Total number of RPCs started on the server"
),
 counter(
 "grpc_server_msg_received_total",
 event_name: "custom_grpc.server_rpc.message_received",
 measurement: :count,
 tags: @tags,
 tag_values: &extract_tags_from_stream/1,
 description: "Total number of RPC stream messages received on the server"
),
 counter(
 "grpc_server_msg_sent_total",
 event_name: "custom_grpc.server_rpc.sent",
 measurement: :duration,
 tags: @tags,
 description: "Total number of gRPC stream messages sent by the server."
),
 counter(
 "grpc_server_handled_total",
 event_name: "custom_grpc.server_rpc.handled",
 measurement: :duration,
 tags: @tags_with_code,
 description:
 "Total number of RPCs completed on the server, regardless of success or failure."
),
 distribution(
 "grpc_server_handled_latency_seconds",
 event_name: "custom_grpc.server_rpc.handled",
 description: "Histogram of response latency of rpcs handled by the server, in seconds.",
 measurement: :duration,
 tags: @tags_with_code,
 unit: {:native, :second},
 reporter_options: [
 buckets: @histogram_buckets_seconds
]
),

 # Client Metrics
 counter(
 "grpc_client_started_total",
 event_name: "grpc.client.rpc.start",
 measurement: :count,
 tags: @tags,
 tag_values: &extract_tags_from_stream/1,
 description: "Total number of RPCs started on the client"
),
 counter(
 "grpc_client_msg_received_total",
 event_name: "custom_grpc.client_rpc.message_received",
 measurement: :count,
 tags: @tags,
 tag_values: &extract_tags_from_stream/1,
 description: "Total number of RPC stream messages received on the client"
),
 counter(
 "grpc_client_msg_sent_total",
 event_name: "custom_grpc.client_rpc.sent",
 measurement: :duration,
 tags: @tags,
 description: "Total number of gRPC stream messages sent by the client."
),
 counter(
 "grpc_client_handled_total",
 event_name: "custom_grpc.client_rpc.handled",
 measurement: :duration,
 tags: @tags_with_code,
 description:
 "Total number of RPCs completed on the client, regardless of success or failure."
),
 distribution(
 "grpc_client_handled_latency_seconds",
 event_name: "custom_grpc.client_rpc.handled",
 description: "Histogram of response latency of rpcs handled by the client, in seconds.",
 measurement: :duration,
 tags: @tags_with_code,
 unit: {:native, :second},
 reporter_options: [
 buckets: @histogram_buckets_seconds
]
)
]
 end

 defp extract_tags_from_stream(%{
 stream: %{
 service_name: service_name,
 method_name: method_name,
 grpc_type: grpc_type
 }
 }) do
 %{
 grpc_service: service_name,
 grpc_method: method_name,
 grpc_type: grpc_type
 }
 end

 defp extract_tags_from_stream(_) do
 %{grpc_service: nil, grpc_method: nil, grpc_type: nil}
 end
end
MetricsSupervisor.start_link([])
GRPC.Server.start([HelloServer], 1337, [])
{:ok, channel} = GRPC.Stub.connect("localhost:1337")

the requests take some time internally, so we might not get _exactly_
the bucket distribution we expect
for duration <- [0, 6, 101, 101, 501, 1001] do
 success_request = Helloworld.HelloRequest.new(name: "ok", duration: duration)
 exception_request = Helloworld.HelloRequest.new(name: "raise", duration: duration)
 not_found_request = Helloworld.HelloRequest.new(name: "not_found", duration: duration)

 {:ok, _} = Helloworld.Greeter.Stub.say_hello(channel, success_request)

 {:error, %GRPC.RPCError{status: 2}} =
 Helloworld.Greeter.Stub.say_hello(channel, exception_request)

 {:error, %GRPC.RPCError{status: 5}} =
 Helloworld.Greeter.Stub.say_hello(channel, not_found_request)
end
Checking which metrics our endpoint returns
TO-DO: replace this by actual server calls

{:ok, %Req.Response{status: 200, body: body}} = Req.request(url: "http://localhost:9568/metrics")

Print the output in a readable format
IO.puts(body)
nil

 Pooling

When managing large numbers of gRPC HTTP/2 connections, you may benefit from pooling of some sort.
Currently elixir-grpc does not offer pooling functionality, but here is an excellent guide on using Elixir's Registry module to create your own resource pools.
It's also worth noting that if using the Mint adapter for HTTP/2, you can choose which connection to use by checking the value of each connection's open request count with open_request_count/1 .
If you'd prefer to use an existing pool implementation, check out conn_grpc on Hex!

 Stream Operators

GRPC.Stream provides a functional and composable API for building
fault-tolerant pipelines for unary and streaming gRPC calls in Elixir.
This cheatsheet summarizes the main operators available today.
Creating Streams
unary/1
Wraps a single request into a stream (unary RPC type).
iex> GRPC.Stream.unary(request)
from/1
Creates a stream from an stream RPC.
iex> GRPC.Stream.from(request)
Transforming Streams
map/2
Transforms each element in the stream.
iex> stream |> GRPC.Stream.map(&process/1)
flat_map/2
Transforms each element in the stream.
iex> GRPC.Stream.from([1, 2])
iex> |> GRPC.Stream.flat_map(&[&1, &1])
iex> |> GRPC.Stream.to_flow()
iex> |> Enum.to_list()
ask/3
Performs an external call using a Materializer.
iex> pid =
iex> spawn(fn ->
iex> receive do
iex> {:request, :hello, test_pid} ->
iex> send(test_pid, {:response, :world})
iex> end
iex> end)
iex>
iex> GRPC.Stream.from([:hello])
iex> |> GRPC.Stream.ask(pid)
iex> |> GRPC.Stream.to_flow()
iex> |> Enum.to_list()
Filtering, grouping, and reduce Streams
filter/2
Filters the stream using the given predicate function.
iex> GRPC.Stream.from([1, 2, 3, 4])
iex> |> GRPC.Stream.filter(&(rem(&1, 2) == 0))
iex> |> GRPC.Stream.to_flow()
iex> |> Enum.to_list()
Effects
effect/2
Applies a side-effect function to each element of the stream without altering its values.
iex> parent = self()
iex> stream =
...> GRPC.Stream.from(request)
...> |> GRPC.Stream.effect(fn x -> send(parent, {:seen, x*2}) end)
...> |> GRPC.Stream.to_flow()
...> |> Enum.to_list()
iex> flush()
iex> stream
[1, 2, 3]
Error Handling
map_error/2
Intercepts and transforms errors & exceptions.
iex> GRPC.Stream.from([1, 2])
iex> |> GRPC.Stream.map(fn
iex> 2 -> raise "boom"
iex> x -> x
iex> end)
iex> |> GRPC.Stream.map_error(fn
iex> {:error, %RuntimeError{message: "boom"}} ->
iex> GRPC.RPCError.exception(message: "Validation or runtime error")
iex>
iex> msg ->
iex> msg
iex> end)
Running Streams
run/1
Executes the pipeline for unary RPC.
iex> stream |> GRPC.Stream.run()
run_with/2
Executes the pipeline for stream RPC's.
iex> stream |> GRPC.Stream.run_with(materializer)

GRPC

GRPC is a fully featured Elixir implementation of the gRPC protocol (grpc.io),
enabling efficient communication between services through a unified and
stream-oriented API. It supports all RPC types, friendly error handling, TLS,
interceptors, reflection, and optional HTTP transcoding.
Suitable for both server and client development in pure Elixir, enabling
scalable, efficient and type-safe distributed systems.
Main features:
	Unary, Server Streaming, Client Streaming, Bi-directional Streaming RPCs;
	Streaming-first API for every call;
	Interceptors;
	Error handling with predictable propagation;
	TLS authentication and message compression;
	Connection load balancing strategies (Round Robin, Pick First);
	gRPC Reflection;
	HTTP Transcoding for REST ↔ gRPC compatibility;

Installation:
def deps do
 [
 {:grpc, "~> 0.11"},
 {:protobuf, "~> 0.14"},
 {:grpc_reflection, "~> 0.2"}
]
end
Protobuf code generation:
protoc --elixir_out=plugins=grpc:./lib -I./priv/protos helloworld.proto
Basic Server Example
defmodule MyApp.Greeter.Server do
 use GRPC.Server, service: MyApp.Greeter.Service
 alias MyApp.{HelloRequest, HelloReply}

 def say_hello(request, stream) do
 request
 |> GRPC.Stream.unary(materializer: stream)
 |> GRPC.Stream.map(fn %HelloRequest{name: name} ->
 %HelloReply{message: "Hello"}
 end)
 |> GRPC.Stream.run()
 end
end

defmodule MyApp.Endpoint do
 use GRPC.Endpoint
 run MyApp.Greeter.Server
end

children = [
 {GRPC.Server.Supervisor, endpoint: MyApp.Endpoint, port: 50051}
]
Server-side streaming:
def say_hi_stream(request, stream) do
 Stream.repeatedly(fn ->
 %HelloReply{message: "Hi!"}
 end)
 |> Stream.take(5)
 |> GRPC.Stream.from()
 |> GRPC.Stream.run_with(stream)
end
Bidirectional streaming:
def chat(request_enum, stream) do
 GRPC.Stream.from(request_enum)
 |> GRPC.Stream.map(fn req ->
 %HelloReply{message: "I'm the Server ;)"}
 end)
 |> GRPC.Stream.run_with(stream)
end
See GRPC.Stream for more Server examples.
Basic Client Example
{:ok, _} = GRPC.Client.Supervisor.start_link()
{:ok, channel} = GRPC.Stub.connect("localhost:50051")

req = MyApp.HelloRequest.new(name: "Elixir")
{:ok, reply} = MyApp.Greeter.Stub.say_hello(channel, req)
See GRPC.Stub for more Client examples.
HTTP Transcoding (optional)
Enable REST-to-gRPC mapping:
use GRPC.Server,
 service: MyApp.Greeter.Service,
 http_transcode: true
Useful when interacting with gRPC from browsers or REST clients.
CORS Support (optional)
defmodule MyApp.Endpoint do
 use GRPC.Endpoint
 intercept GRPC.Server.Interceptors.CORS, allow_origin: "*"
 run MyApp.Greeter.Server
end

 Summary

 Functions

 version()

 Returns version of this project.

 Functions

 version()

Returns version of this project.

GRPC.Message

Transform data between encoded protobuf and HTTP/2 body of gRPC.
gRPC body format is:
 http://www.grpc.io/docs/guides/wire.html
 Delimited-Message -> Compressed-Flag Message-Length Message
 Compressed-Flag -> 0 / 1 # encoded as 1 byte unsigned integer
 Message-Length -> {length of Message} # encoded as 4 byte unsigned integer
 Message -> *{binary octet}

 Summary

 Functions

 complete?(arg1)

 from_data(data)

 Transforms gRPC body into Protobuf data.

 from_data(map, data)

 Transform gRPC body into Protobuf data with compression.

 from_frame(bin)

 from_frame(arg, acc)

 get_message(arg1)

 Get message data from data buffer.

 get_message(data, compressor)

 message_length(data)

 to_data(message, opts \\ [])

 Transforms Protobuf data into a gRPC body binary.

 Functions

 complete?(arg1)

 from_data(data)

 @spec from_data(binary()) :: binary()

Transforms gRPC body into Protobuf data.
Examples
iex> GRPC.Message.from_data(<<0, 0, 0, 0, 8, 1, 2, 3, 4, 5, 6, 7, 8>>)
<<1, 2, 3, 4, 5, 6, 7, 8>>

 from_data(map, data)

 @spec from_data(map(), binary()) :: {:ok, binary()} | {:error, GRPC.RPCError.t()}

Transform gRPC body into Protobuf data with compression.
Examples
iex> GRPC.Message.from_data(%{compressor: nil}, <<0, 0, 0, 0, 8, 1, 2, 3, 4, 5, 6, 7, 8>>)
{:ok, <<1, 2, 3, 4, 5, 6, 7, 8>>}

 from_frame(bin)

 from_frame(arg, acc)

 get_message(arg1)

Get message data from data buffer.
Examples
iex> GRPC.Message.get_message(<<0, 0, 0, 0, 8, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0>>)
{{0, <<1, 2, 3, 4, 5, 6, 7, 8>>}, <<0, 0, 0>>}
iex> GRPC.Message.get_message(<<1, 0, 0, 0, 8, 1, 2, 3, 4, 5, 6, 7, 8>>)
{{1, <<1, 2, 3, 4, 5, 6, 7, 8>>}, <<>>}
iex> GRPC.Message.get_message(<<0, 0, 0, 0, 8, 1, 2, 3, 4, 5, 6, 7>>)
false

 get_message(data, compressor)

 message_length(data)

 to_data(message, opts \\ [])

 @spec to_data(
 iodata(),
 keyword()
) :: {:ok, iodata(), non_neg_integer()} | {:error, String.t()}

Transforms Protobuf data into a gRPC body binary.
Options
	:compressor - the optional GRPC.Compressor to be used.
	:iolist - if true, encodes the data as an t:iolist() instead of a t:binary()
	:max_message_length - the maximum number of bytes for the encoded message.

Examples
iex> message = ["m", [["es", "sa"], "ge"]]
iex> GRPC.Message.to_data(message)
{:ok, <<0, 0, 0, 0, 7, "message">>, 12}
iex> GRPC.Message.to_data(message, iolist: true)
{:ok, [0, <<0, 0, 0, 7>>, ["m", [["es", "sa"], "ge"]]], 12}
Error cases:
iex> message = <<1, 2, 3, 4, 5, 6, 7, 8, 9>>
iex> GRPC.Message.to_data(message, %{max_message_length: 8})
{:error, "Encoded message is too large (9 bytes)"}

GRPC.Protoc.CLI

protoc plugin for generating Elixir code.
protoc-gen-elixir (this name is important) must be in $PATH. You are not supposed
to call it directly, but only through protoc.
Examples
$ protoc --elixir_out=./lib your.proto
$ protoc --elixir_out=plugins=grpc:./lib/ *.proto
$ protoc -I protos --elixir_out=./lib protos/namespace/*.proto

Options:
	--version Print version of protobuf-elixir
	--help (-h) Print this help

 Summary

 Functions

 supported_features()

 Functions

 supported_features()

GRPC.Server.Interceptor behaviour

Interceptor on server side. See GRPC.Endpoint.

 Summary

 Types

 next()

 options()

 rpc_return()

 Callbacks

 call(rpc_req, stream, next, options)

 init(options)

 Types

 next()

 @type next() :: (GRPC.Server.rpc_req(), GRPC.Server.Stream.t() -> rpc_return())

 options()

 @type options() :: any()

 rpc_return()

 @type rpc_return() ::
 {:ok, GRPC.Server.Stream.t(), struct()}
 | {:ok, GRPC.Server.Stream.t()}
 | {:error, GRPC.RPCError.t()}

 Callbacks

 call(rpc_req, stream, next, options)

 @callback call(GRPC.Server.rpc_req(), stream :: GRPC.Server.Stream.t(), next(), options()) ::
 rpc_return()

 init(options)

 @callback init(options()) :: options()

GRPC.Endpoint

GRPC endpoint for multiple servers and interceptors.
Usage
defmodule Your.Endpoint do
 use GRPC.Endpoint

 intercept GRPC.Server.Interceptors.Logger, level: :info
 intercept Other.Interceptor
 run HelloServer, interceptors: [HelloHaltInterceptor]
 run FeatureServer
end
Interceptors will be run around your rpc calls from top to bottom. And you can even set
interceptors for some of servers. In the above example, [GRPC.Server.Interceptors.Logger, Other.Interceptor, HelloHaltInterceptor] will be run for HelloServer, and [GRPC.Server.Interceptors.Logger, Other.Interceptor]
will be run for FeatureServer.

 Summary

 Functions

 intercept(name)

 intercept(name, opts)

 run(servers, opts \\ [])

 Functions

 intercept(name)

 (macro)

 intercept(name, opts)

 (macro)

Options
opts keyword will be passed to Interceptor's init/1

 run(servers, opts \\ [])

 (macro)

Options
	:interceptors - custom interceptors for these servers

GRPC.Server

A gRPC server which handles requests by calling user-defined functions.
You should pass a GRPC.Service in when use the module:
defmodule Greeter.Service do
 use GRPC.Service, name: "ping"

 rpc :SayHello, Request, Reply
 rpc :SayGoodbye, stream(Request), stream(Reply)
end

defmodule Greeter.Server do
 use GRPC.Server, service: Greeter.Service

 def say_hello(request, _stream) do
 Reply.new(message: "Hello")
 end

 def say_goodbye(request_enum, stream) do
 requests = Enum.map request_enum, &(&1)
 GRPC.Server.send_reply(stream, reply1)
 GRPC.Server.send_reply(stream, reply2)
 end
end
Your functions should accept a client request and a GRPC.Server.Stream.
The request will be a Enumerable.t(created by Elixir's Stream) of requests
if it's streaming. If a reply is streaming, you need to call send_reply/2 to send
replies one by one instead of returning reply in the end.
gRPC HTTP/JSON transcoding
Transcoding can be enabled by using the option http_transcode: true:
defmodule Greeter.Service do
 use GRPC.Service, name: "ping"

 rpc :SayHello, Request, Reply
 rpc :SayGoodbye, stream(Request), stream(Reply)
end

defmodule Greeter.Server do
 use GRPC.Server, service: Greeter.Service, http_transcode: true

 def say_hello(request, _stream) do
 Reply.new(message: "Hello" <> request.name)
 end

 def say_goodbye(request_enum, stream) do
 requests = Enum.map request_enum, &(&1)
 GRPC.Server.send_reply(stream, reply1)
 GRPC.Server.send_reply(stream, reply2)
 end
end
With transcoding enabled gRPC methods can be used over HTTP/1 with JSON i.e
POST localhost/helloworld.Greeter/SayHello`
Content-Type: application/json
{
 "message": "gRPC"
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "message": "Hello gRPC"
}
By using option (google.api.http) annotations in the .proto file the mapping between
HTTP/JSON to gRPC methods and parameters can be customized:
syntax = "proto3";

import "google/api/annotations.proto";
import "google/protobuf/timestamp.proto";

package helloworld;

service Greeter {
 rpc SayHello (HelloRequest) returns (HelloReply) {
 option (google.api.http) = {
 get: "/v1/greeter/{name}"
 };
 }
}

message HelloRequest {
 string name = 1;
}

message HelloReply {
 string message = 1;
}
In addition to the POST localhost/helloworld.Greeter/SayHello route in the previous examples
this creates an additional route: GET localhost/v1/greeter/:name
GET localhost/v1/greeter/gRPC
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
{
 "message": "Hello gRPC"
}
For more comprehensive documentation on annotation usage in .proto files see

 Summary

 Types

 rpc()

 rpc_req()

 rpc_return()

 Functions

 send_headers(stream, headers)

 Send custom metadata(headers).

 send_reply(stream, reply, opts \\ [])

 Send streaming reply.

 set_compressor(stream, compressor)

 Set compressor to compress responses. An accepted compressor will be set if clients use one,
even if set_compressor is not called. But this can be called to override the chosen.

 set_headers(stream, headers)

 Set custom metadata(headers).

 set_trailers(stream, trailers)

 Set custom trailers, which will be sent in the end.

 Types

 rpc()

 @type rpc() :: (rpc_req(), GRPC.Server.Stream.t() -> rpc_return())

 rpc_req()

 @type rpc_req() :: struct() | Enumerable.t()

 rpc_return()

 @type rpc_return() :: struct() | any()

 Functions

 send_headers(stream, headers)

 @spec send_headers(GRPC.Server.Stream.t(), map()) :: GRPC.Server.Stream.t()

Send custom metadata(headers).
You can send headers only once, before that you can set headers using set_headers/2.

 send_reply(stream, reply, opts \\ [])

Send streaming reply.
Examples
iex> GRPC.Server.send_reply(stream, reply)

 set_compressor(stream, compressor)

 @spec set_compressor(GRPC.Server.Stream.t(), module()) :: GRPC.Server.Stream.t()

Set compressor to compress responses. An accepted compressor will be set if clients use one,
even if set_compressor is not called. But this can be called to override the chosen.

 set_headers(stream, headers)

 @spec set_headers(GRPC.Server.Stream.t(), map()) :: GRPC.Server.Stream.t()

Set custom metadata(headers).
You can set headers more than once.

 set_trailers(stream, trailers)

 @spec set_trailers(GRPC.Server.Stream.t(), map()) :: GRPC.Server.Stream.t()

Set custom trailers, which will be sent in the end.

GRPC.Server.Adapter behaviour

HTTP server adapter for GRPC.

 Summary

 Types

 state()

 Callbacks

 send_headers(state, headers)

 send_reply(state, content, opts)

 start(atom, map, port, opts)

 stop(atom, map)

 Types

 state()

 @type state() :: %{
 pid: pid(),
 handling_timer: reference() | nil,
 resp_trailers: map(),
 compressor: atom() | nil,
 pending_reader: nil
}

 Callbacks

 send_headers(state, headers)

 @callback send_headers(state(), headers :: map()) :: any()

 send_reply(state, content, opts)

 @callback send_reply(state(), content :: binary(), opts :: keyword()) :: any()

 start(atom, map, port, opts)

 @callback start(
 atom(),
 %{required(String.t()) => [module()]},
 port :: non_neg_integer(),
 opts :: keyword()
) :: {atom(), any(), non_neg_integer()}

 stop(atom, map)

 @callback stop(atom(), %{required(String.t()) => [module()]}) ::
 :ok | {:error, :not_found}

GRPC.Server.Adapters.Cowboy

A server (b:GRPC.Server.Adapter) adapter using :cowboy.
Cowboy requests will be stored in the :payload field of the GRPC.Server.Stream.

 Summary

 Functions

 child_spec(endpoint, servers, port, opts)

 Return a child_spec to start server. See GRPC.Server.Adapters.Cowboy.start/4 for a list of supported options.

 get_bindings(map)

 get_cert(map)

 get_headers(map)

 get_peer(map)

 get_qs(map)

 read_body(map)

 reading_stream(map)

 send_trailers(map, trailers)

 set_compressor(map, compressor)

 set_headers(map, headers)

 set_resp_trailers(map, trailers)

 start(endpoint, servers, port, opts)

 Starts a Cowboy server. Only used in starting a server manually using GRPC.Server.start(servers). Otherwise GRPC.Server.Adapters.Cowboy.child_spec/4 is used.

 start_link(scheme, endpoint, servers, arg)

 Functions

 child_spec(endpoint, servers, port, opts)

 @spec child_spec(
 atom(),
 %{required(String.t()) => [module()]},
 non_neg_integer(),
 Keyword.t()
) ::
 Supervisor.child_spec()

Return a child_spec to start server. See GRPC.Server.Adapters.Cowboy.start/4 for a list of supported options.

 get_bindings(map)

 get_cert(map)

 get_headers(map)

 get_peer(map)

 get_qs(map)

 read_body(map)

 @spec read_body(GRPC.Server.Adapter.state()) :: {:ok, binary()}

 reading_stream(map)

 @spec reading_stream(GRPC.Server.Adapter.state()) :: Enumerable.t()

 send_trailers(map, trailers)

 set_compressor(map, compressor)

 set_headers(map, headers)

 set_resp_trailers(map, trailers)

 start(endpoint, servers, port, opts)

Starts a Cowboy server. Only used in starting a server manually using GRPC.Server.start(servers). Otherwise GRPC.Server.Adapters.Cowboy.child_spec/4 is used.
The available options below are a subset of ranch_tcp's options.
Options
	:net - If using :inet (IPv4 only - the default) or :inet6 (IPv6)
	:ip - The IP to bind the server to.
Must be either a tuple in the format {a, b, c, d} with each value in 0..255 for IPv4,
or a tuple in the format {a, b, c, d, e, f, g, h} with each value in 0..65535 for IPv6,
or a tuple in the format {:local, path} for a unix socket at the given path.
If both :net and :ip options are given, make sure they are compatible
(i.e. give a IPv4 for :inet and IPv6 for :inet6). The default is to listen on all interfaces.
	:ipv6_v6only - If true, only bind on IPv6 addresses (default: false).

 start_link(scheme, endpoint, servers, arg)

 @spec start_link(atom(), atom(), %{required(String.t()) => [module()]}, any()) ::
 {:ok, pid()} | {:error, any()}

GRPC.Server.Adapters.Cowboy.Handler

A cowboy handler accepting all requests and calls corresponding functions defined by users.

 Summary

 Types

 exception_log_filter()

 headers()

 init_result()

 init_state()

 is_fin()

 pending_reader()

 stream_body_opts()

 stream_state()

 Functions

 call_rpc(server, path, stream)

 exit_handler(pid, reason)

 get_bindings(pid)

 Return all bindings of a given request.

 get_cert(pid)

 Return the client TLS certificate. :undefined is returned if no certificate was specified
when establishing the connection.

 get_headers(pid)

 Return all request headers.

 get_peer(pid)

 Return the peer IP address and port number

 get_qs(pid)

 Return the query string for the request URI.

 info(arg, req, state)

 Callback implementation for :cowboy_loop.info/3.

 init(req, state)

 This function is meant to be called whenever a new request arrives to an existing connection.
This handler works mainly with two linked processes.
One of them is the process started by cowboy which internally we'll refer to it as stream_pid,
this process is responsible to interface the interactions with the open socket.
The second process is the one we start in this function, we'll refer to it as server_rpc_pid,
which is the point where we call the functions implemented by users (aka the modules who use
the GRPC.Server macro)

 read_body(pid)

 Synchronously reads a chunk of body content of a given request.
Raise in case of a timeout.

 read_full_body(pid)

 Synchronously reads the whole body content of a given request.
Raise in case of a timeout.

 set_compressor(pid, compressor)

 Asynchronously set the compressor algorithm to be used for compress the responses. This checks if
the grpc-accept-encoding header is present on the original request, otherwise no compression
is applied.

 set_resp_headers(pid, headers)

 Asynchronously set the headers for a given request. This function does not send any
data back to the client. It simply appends the headers to be used in the response.

 set_resp_trailers(pid, trailers)

 Asynchronously set the trailer headers for a given request. This function does not send any
data back to the client. It simply appends the trailer headers to be used in the response.

 stream_body(pid, data, opts, is_fin, http_transcode? \\ false)

 Asynchronously send back to client a chunk of data, when http_transcode? is true, the
data is sent back as it's, with no transformation of protobuf binaries to http2 data frames.

 stream_reply(pid, status, headers)

 Asynchronously send back to the client the http status and the headers for a given request.

 stream_trailers(pid, trailers)

 Asynchronously stream the given trailers of request back to client.

 terminate(reason, req, arg3)

 Callback implementation for :cowboy_loop.terminate/3.

 Types

 exception_log_filter()

 @type exception_log_filter() :: {module(), atom()} | nil

 headers()

 @type headers() :: %{required(binary()) => binary()}

 init_result()

 @type init_result() ::
 {:cowboy_loop, :cowboy_req.req(), stream_state()}
 | {:ok, :cowboy_req.req(), init_state()}

 init_state()

 @type init_state() ::
 {endpoint :: atom(), server :: {name :: String.t(), module()},
 route :: String.t(), opts :: keyword()}

 is_fin()

 @type is_fin() :: :fin | :nofin

 pending_reader()

 @type pending_reader() ::
 {cowboy_read_ref :: reference(), server_rpc_pid :: pid(),
 server_rpc_reader_reference :: reference()}

 stream_body_opts()

 @type stream_body_opts() :: {:code, module()} | {:compress, boolean()}

 stream_state()

 @type stream_state() :: %{
 pid: server_rpc_pid :: pid(),
 handling_timer: timeout_timer_ref :: reference(),
 pending_reader: nil | pending_reader(),
 access_mode: GRPC.Server.Stream.access_mode(),
 exception_log_filter: exception_log_filter()
}

 Functions

 call_rpc(server, path, stream)

 exit_handler(pid, reason)

 get_bindings(pid)

 @spec get_bindings(stream_pid :: pid()) :: :cowboy_router.bindings()

Return all bindings of a given request.

 get_cert(pid)

 @spec get_cert(stream_pid :: pid()) :: binary() | :undefined

Return the client TLS certificate. :undefined is returned if no certificate was specified
when establishing the connection.

 get_headers(pid)

 @spec get_headers(stream_pid :: pid()) :: :cowboy.http_headers()

Return all request headers.

 get_peer(pid)

 @spec get_peer(stream_pid :: pid()) :: {:inet.ip_address(), :inet.port_number()}

Return the peer IP address and port number

 get_qs(pid)

 @spec get_qs(stream_pid :: pid()) :: binary()

Return the query string for the request URI.

 info(arg, req, state)

Callback implementation for :cowboy_loop.info/3.

 init(req, state)

 @spec init(:cowboy_req.req(), state :: init_state()) :: init_result()

This function is meant to be called whenever a new request arrives to an existing connection.
This handler works mainly with two linked processes.
One of them is the process started by cowboy which internally we'll refer to it as stream_pid,
this process is responsible to interface the interactions with the open socket.
The second process is the one we start in this function, we'll refer to it as server_rpc_pid,
which is the point where we call the functions implemented by users (aka the modules who use
the GRPC.Server macro)

 read_body(pid)

 @spec read_body(stream_pid :: pid()) :: binary()

Synchronously reads a chunk of body content of a given request.
Raise in case of a timeout.

 read_full_body(pid)

 @spec read_full_body(stream_pid :: pid()) :: binary()

Synchronously reads the whole body content of a given request.
Raise in case of a timeout.

 set_compressor(pid, compressor)

 @spec set_compressor(stream_pid :: pid(), compressor :: module()) :: :ok

Asynchronously set the compressor algorithm to be used for compress the responses. This checks if
the grpc-accept-encoding header is present on the original request, otherwise no compression
is applied.

 set_resp_headers(pid, headers)

 @spec set_resp_headers(stream_pid :: pid(), headers :: headers()) :: :ok

Asynchronously set the headers for a given request. This function does not send any
data back to the client. It simply appends the headers to be used in the response.

 set_resp_trailers(pid, trailers)

 @spec set_resp_trailers(stream_pid :: pid(), trailers :: headers()) :: :ok

Asynchronously set the trailer headers for a given request. This function does not send any
data back to the client. It simply appends the trailer headers to be used in the response.

 stream_body(pid, data, opts, is_fin, http_transcode? \\ false)

 @spec stream_body(
 stream_pid :: pid(),
 data :: iodata(),
 opts :: [stream_body_opts()],
 is_fin(),
 http_transcode? :: boolean()
) :: :ok

Asynchronously send back to client a chunk of data, when http_transcode? is true, the
data is sent back as it's, with no transformation of protobuf binaries to http2 data frames.

 stream_reply(pid, status, headers)

 @spec stream_reply(
 stream_pid :: pid(),
 status :: non_neg_integer(),
 headers :: headers()
) :: :ok

Asynchronously send back to the client the http status and the headers for a given request.

 stream_trailers(pid, trailers)

 @spec stream_trailers(stream_pid :: pid(), trailers :: headers()) :: :ok

Asynchronously stream the given trailers of request back to client.

 terminate(reason, req, arg3)

Callback implementation for :cowboy_loop.terminate/3.

GRPC.Server.Interceptors.CORS

Sends CORS headers when the client is using RPC via Web transcoding or gRPC-web.
Options
	:allow_origin - Required. A string containing the allowed origin, or a function capture (e.g. &MyApp.MyModule.function/2)) which takes a req and a stream and returns a string.
	:allow_headers - A string containing the allowed headers, or a function capture
(e.g. &MyApp.MyModule.function/2)) which takes a req and a stream and returns a string. Defaults to nil.
If defined as nil, the value of the "access-control-request-headers" request header from the client will be used in the response.

Usage
defmodule Your.Endpoint do
 use GRPC.Endpoint

 intercept GRPC.Server.Interceptors.CORS
end

defmodule Your.Endpoint do
 use GRPC.Endpoint

 intercept GRPC.Server.Interceptors.CORS, allow_origin: "some.origin"
end

defmodule Your.Endpoint do
 use GRPC.Endpoint

 def allow_origin(req, stream), do: "calculated.origin"
 intercept GRPC.Server.Interceptors.CORS, allow: &Your.Endpoint.allow_origin/2
end

GRPC.Server.Interceptors.Logger

Print log around server rpc calls, like:
17:18:45.151 [info] Handled by HelloServer.say_hello
17:18:45.151 [info] Response :ok in 11µs
Options
	:level - the desired log level. Defaults to :info

Usage
defmodule Your.Endpoint do
 use GRPC.Endpoint

 intercept GRPC.Server.Interceptors.Logger, level: :info
end

 Summary

 Functions

 formatted_diff(diff)

 Functions

 formatted_diff(diff)

GRPC.Server.Router

 Summary

 Types

 http_method()

 route()

 Functions

 build_route(path)

 build_route(method, path)

 Builds a t:route/0 from a URL path or Google.Api.Http.t/0.

 match(path, match)

 Matches a URL path or URL segements against a compiled route matcher. Matched bindings from the segments are extracted
into a map. If the same variable name is used in multiple bindings, the value must match otherwise the route is not considered a match.

 match(path, match, bindings)

 split_path(bin)

 Split URL path into segments, removing the leading and trailing slash.

 Types

 http_method()

 @type http_method() :: :get | :put | :post | :patch | :delete

 route()

 @type route() :: {http_method(), String.t(), GRPC.Server.Router.Template.matchers()}

 Functions

 build_route(path)

 @spec build_route(binary() | map()) :: route()

 build_route(method, path)

 @spec build_route(atom(), binary()) :: route()

Builds a t:route/0 from a URL path or Google.Api.Http.t/0.
The matcher part in the route can be used in match/3 to match on a URL path or a list of segments.
Examples
{:get, "/v1/messages/{message_id}", match} = GRPC.Server.Router.build_route(:get, "/v1/messages/{message_id}")

{:get, path, match} = GRPC.Server.Router.build_route(:get, "/v1/{book.location=shelves/*}/books/{book.name=*}")
{true, %{"book.location": "shelves/example-shelf", "book.name": "example-book"}} = GRPC.Server.Router.match("/v1/shelves/example-shelf/books/example-book", match, [])

 match(path, match)

 @spec match(String.t() | [String.t()], GRPC.Server.Router.Template.matchers()) ::
 {true, map()} | false

Matches a URL path or URL segements against a compiled route matcher. Matched bindings from the segments are extracted
into a map. If the same variable name is used in multiple bindings, the value must match otherwise the route is not considered a match.
Examples
{_, _, match} = GRPC.Server.Router.build_route(:get, "/v1/{name=messages}")
{true, %{name: "messages"}} = GRPC.Server.Router.match("/v1/messages", match)
false = GRPC.Server.Router.match("/v1/messages/foobar", match)

{_, _, match} = GRPC.Server.Router.build_route(:get, "/v1/{name=shelves/*/books/*)
{true, %{name: "shelves/books/book"}} = GRPC.Server.Router.match("/v1/shelves/example-shelf/books/book", match)

false = GRPC.Server.Router.match("/v1/shelves/example-shelf/something-els/books/book", match)

 match(path, match, bindings)

 @spec match(String.t() | [String.t()], GRPC.Server.Router.Template.matchers(), map()) ::
 {true, map()} | false

 split_path(bin)

 @spec split_path(String.t()) :: iolist()

Split URL path into segments, removing the leading and trailing slash.
Examples
 ["v1", "messages"] = GRPC.Server.Router.split_path("/v1/messages")

GRPC.Server.Stream

A struct as an argument that servers get in rpc function definitions and use to handle headers,
send streaming replies.
Notice that you MUST use new stream returned by GRPC.Server as an argument to invoke next
functions defined by GRPC.Server.
Fields
	:server - user defined gRPC server module
	:adapter - a server adapter module, like GRPC.Server.Adapters.Cowboy
	request_mod - the request module, or nil for untyped protocols
	response_mod - the response module, or nil for untyped protocols
	:codec - the codec
	:payload - the payload needed by the adapter
	:local - local data initialized by user

 Summary

 Types

 access_mode()

 t()

 Functions

 send_reply(stream, reply, opts)

 Types

 access_mode()

 @type access_mode() :: :grpc | :grpcweb | :http_transcoding

 t()

 @type t() :: %GRPC.Server.Stream{
 __interface__: map(),
 access_mode: access_mode(),
 adapter: atom(),
 codec: atom(),
 compressor: module() | nil,
 endpoint: atom(),
 grpc_type: atom(),
 http_method: GRPC.Server.Router.http_method(),
 http_request_headers: map(),
 http_transcode: boolean(),
 is_preflight?: boolean(),
 local: any(),
 method_name: String.t(),
 payload: any(),
 request_id: String.t() | nil,
 request_mod: atom(),
 response_mod: atom(),
 rpc: tuple(),
 server: atom(),
 service_name: String.t()
}

 Functions

 send_reply(stream, reply, opts)

GRPC.Server.Supervisor

A simple supervisor to start your servers.
You can add it to your OTP tree as below.
To start the server, you can pass start_server: true and an option
defmodule Your.App do
 use Application

 def start(_type, _args) do
 children = [
 {GRPC.Server.Supervisor, endpoint: Your.Endpoint, port: 50051, start_server: true, adapter_opts: [ip: {0, 0, 0, 0}], ...}]

 Supervisor.start_link(children, strategy: :one_for_one, name: __MODULE__)
 end
end

 Summary

 Types

 sup_flags()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 child_spec(endpoint_or_servers, port, opts \\ [])

 Return a child_spec to start server.

 init(opts)

 start_link(endpoint)

 Types

 sup_flags()

 @type sup_flags() :: %{
 strategy: Supervisor.strategy(),
 intensity: non_neg_integer(),
 period: pos_integer(),
 auto_shutdown: Supervisor.auto_shutdown()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 child_spec(endpoint_or_servers, port, opts \\ [])

 @spec child_spec(
 endpoint_or_servers :: atom() | [atom()],
 port :: integer(),
 opts :: keyword()
) ::
 Supervisor.Spec.spec()

Return a child_spec to start server.
Options
	:cred - a credential created by functions of GRPC.Credential,
an insecure server will be created without this option
	:start_server - determines if the server will be started.
If present, has more precedence then the config :gprc, :start_server
config value (i.e. start_server: false will not start the server in any case).

 init(opts)

 @spec init(tuple()) :: no_return()

 @spec init(keyword()) :: {:ok, {sup_flags(), [Supervisor.child_spec()]}} | :ignore

Options
	:endpoint - defines the endpoint module that will be started.
	:port - the HTTP port for the endpoint.
	:servers - the list of servers that will be be started.
	:exception_log_filter - a {module, function :: atom} tuple that refers to a filter function of arity 1.
This function will be called with a GRPC.Server.Adapters.ReportException struct and must return a boolean
indicating whether or not a given exception should be logged or dropped. Defaults to nil, which means all exceptions will be logged.
	:adapter_opts - options for the adapter.

Either :endpoint or :servers must be present, but not both.

 start_link(endpoint)

GRPC.Service

Define gRPC service used by Stub and Server. You should use Protobuf to
to generate code instead of using this module directly.
It imports DSL functions like rpc/4 and stream/1 for defining the RPC
functions easily:
defmodule Greeter.Service do
 use GRPC.Service, name: "helloworld.Greeter"

 rpc :SayHello, HelloRequest, stream(HelloReply)
end
option (google.api.http) annotations are supported for gRPC http/json transcoding. Once generated the 4th argument to rpc/4 contains
the Google.Api.HttpRule option.
defmodule Greeter.Service do
 use GRPC.Service, name: "helloworld.Greeter"

 rpc(:SayHello, Helloworld.HelloRequest, Helloworld.HelloReply, %{
 http: %{
 type: Google.Api.PbExtension,
 value: %Google.Api.HttpRule{
 __unknown_fields__: [],
 additional_bindings: [],
 body: "",
 pattern: {:get, "/v1/greeter/{name}"},
 response_body: "",
 selector: ""
 }
 }
 })
end

 Summary

 Functions

 grpc_type(arg)

 rpc(name, request, reply, options \\ quote do
 %{}
end)

 rpc_options(arg)

 rpc_options(arg, type)

 stream(param)

 Specify if the request/reply is streaming.

 Functions

 grpc_type(arg)

 rpc(name, request, reply, options \\ quote do
 %{}
end)

 (macro)

 rpc_options(arg)

 rpc_options(arg, type)

 stream(param)

Specify if the request/reply is streaming.

GRPC.Status

A collection of gRPC statuses.
	Code	Status	Status Message
	0	:ok	Success
	1	:cancelled	The operation was cancelled (typically by the caller)
	2	:unknown	Unknown error
	3	:invalid_argument	Client specified an invalid argument
	4	:deadline_exceeded	Deadline expired before operation could complete
	5	:not_found	Some requested entity (e.g., file or directory) was not found
	6	:already_exists	Some entity that we attempted to create (e.g., file or directory) already exists
	7	:permission_denied	The caller does not have permission to execute the specified operation
	8	:resource_exhausted	Some resource has been exhausted
	9	:failed_precondition	Operation was rejected because the system is not in a state required for the operation's execution
	10	:aborted	The operation was aborted
	11	:out_of_range	Operation was attempted past the valid range
	12	:unimplemented	Operation is not implemented or not supported/enabled in this service
	13	:internal	Internal errors
	14	:unavailable	The service is currently unavailable
	15	:data_loss	Unrecoverable data loss or corruption
	16	:unauthenticated	The request does not have valid authentication credentials for the operation

For more details, please refer to the official gRPC docs

 Summary

 Types

 t()

 Functions

 aborted()

 The operation was aborted.

 already_exists()

 Some entity that we attempted to create (e.g., file or directory) already exists.

 cancelled()

 The operation was cancelled (typically by the caller).

 code_name(int)

 data_loss()

 Unrecoverable data loss or corruption.

 deadline_exceeded()

 Deadline expired before operation could complete.

 failed_precondition()

 Operation was rejected because the system is not in a state
required for the operation's execution.

 http_code(int)

 internal()

 Internal errors.

 invalid_argument()

 Client specified an invalid argument.

 not_found()

 Some requested entity (e.g., file or directory) was not found.

 ok()

 Not an error; returned on success.

 out_of_range()

 Operation was attempted past the valid range.

 permission_denied()

 The caller does not have permission to execute the specified
operation.

 resource_exhausted()

 Some resource has been exhausted, perhaps a per-user quota, or
perhaps the entire file system is out of space.

 status_message(int)

 unauthenticated()

 The request does not have valid authentication credentials for the operation.

 unavailable()

 The service is currently unavailable.

 unimplemented()

 Operation is not implemented or not supported/enabled in this service.

 unknown()

 Unknown error.

 Types

 t()

 @type t() :: non_neg_integer()

 Functions

 aborted()

 @spec aborted() :: t()

The operation was aborted.
Typically due to a concurrency issue like sequencer check failures,
transaction aborts, etc.

 already_exists()

 @spec already_exists() :: t()

Some entity that we attempted to create (e.g., file or directory) already exists.

 cancelled()

 @spec cancelled() :: t()

The operation was cancelled (typically by the caller).

 code_name(int)

 @spec code_name(t()) :: binary()

 data_loss()

 @spec data_loss() :: t()

Unrecoverable data loss or corruption.

 deadline_exceeded()

 @spec deadline_exceeded() :: t()

Deadline expired before operation could complete.
For operations that change the state of the system, this error may be returned
even if the operation has completed successfully. For example, a
successful response from a server could have been delayed long
enough for the deadline to expire.

 failed_precondition()

 @spec failed_precondition() :: t()

Operation was rejected because the system is not in a state
required for the operation's execution.
For example, directory to be deleted may be non-empty,
an rmdir operation is applied to a non-directory, etc.

 http_code(int)

 @spec http_code(t()) :: t()

 internal()

 @spec internal() :: t()

Internal errors.
Means some invariants expected by underlying system has been broken.
If you see one of these errors, something is very broken.

 invalid_argument()

 @spec invalid_argument() :: t()

Client specified an invalid argument.
Note that this differs from FAILED_PRECONDITION.
INVALID_ARGUMENT indicates arguments that are problematic regardless of
the state of the system (e.g., a malformed file name).

 not_found()

 @spec not_found() :: t()

Some requested entity (e.g., file or directory) was not found.

 ok()

 @spec ok() :: t()

Not an error; returned on success.

 out_of_range()

 @spec out_of_range() :: t()

Operation was attempted past the valid range.
E.g., seeking or reading past end of file.

 permission_denied()

 @spec permission_denied() :: t()

The caller does not have permission to execute the specified
operation.
PERMISSION_DENIED must not be used for rejections
caused by exhausting some resource (use RESOURCE_EXHAUSTED
instead for those errors). PERMISSION_DENIED must not be
used if the caller can not be identified (use UNAUTHENTICATED
instead for those errors).

 resource_exhausted()

 @spec resource_exhausted() :: t()

Some resource has been exhausted, perhaps a per-user quota, or
perhaps the entire file system is out of space.

 status_message(int)

 @spec status_message(t()) :: String.t() | nil

 unauthenticated()

 @spec unauthenticated() :: t()

The request does not have valid authentication credentials for the operation.

 unavailable()

 @spec unavailable() :: t()

The service is currently unavailable.
This is a most likely a transient condition and may be corrected by retrying with
a backoff.

 unimplemented()

 @spec unimplemented() :: t()

Operation is not implemented or not supported/enabled in this service.

 unknown()

 @spec unknown() :: t()

Unknown error.
An example of where this error may be returned is
if a Status value received from another address space belongs to
an error-space that is not known in this address space. Also
errors raised by APIs that do not return enough error information
may be converted to this error.

GRPC.Stream

Provides a Flow-based abstraction layer for building gRPC streaming pipelines in Elixir.
This module allows you to consume gRPC request streams as Flow pipelines with support for
backpressure via GenStage. You can also produce gRPC responses by materializing a Flow
back into the gRPC stream.
Capabilities
	Transforms an incoming gRPC request stream into a Flow with backpressure.
	Emits messages back into the gRPC response stream using run_with/3.
	Supports joining with external producers (e.g., RabbitMQ, Kafka) for unbounded or fan-in stream sources.
	Offers composable functional operators (map/2, filter/2, flat_map/2, etc.) on the stream.

Example: Bidirectional Streaming
defmodule MyGRPCService do
 use GRPC.Server, service: MyService.Service

 def route_chat(input, materializer) do
 GRPC.Stream.from(input, max_demand: 10)
 |> GRPC.Stream.map(fn note -> process_note(note) end)
 |> GRPC.Stream.run_with(materializer)
 end

 defp process_note(note), do: %Response{message: "Received"}
end
Example: Joining with an External Producer
When integrating with external unbounded sources (e.g., message queues),
you can pass a running GenStage producer using the :join_with option:
defmodule MyGRPCService do
 use GRPC.Server, service: MyService.Service

 def stream_events(input, materializer) do
 {:ok, pid} = MyApp.RabbitMQ.Producer.start_link([])

 GRPC.Stream.from(input, join_with: pid, max_demand: 10)
 |> GRPC.Stream.map(&handle_event/1)
 |> GRPC.Stream.run_with(materializer)
 end

 defp handle_event({_, msg}), do: msg
 defp handle_event(event), do: %MyGRPC.Event{data: inspect(event)}
end

 Summary

 Functions: Creation

 from(input, opts \\ [])

 Converts a gRPC input into a Flow pipeline with backpressure support.

 unary(input, opts \\ [])

 Converts a single gRPC request into a Flow pipeline with support for backpressure.
This is useful for unary gRPC requests where you want to use the Flow API.

 Functions: Materializers

 run(stream)

 Executes the underlying Flow for a unary stream.

 run_with(stream, from, opts \\ [])

 Executes the flow and emits responses into the provided gRPC server stream.

 Functions: Transformers

 filter(stream, filter)

 Filters the stream using the given predicate function.

 flat_map(stream, flat_mapper)

 Applies a function to each entry and concatenates the resulting lists.

 map(stream, mapper)

 Applies a function to each stream item.

 map_error(stream, func)

 Intercepts and transforms error tuples or unexpected exceptions that occur
within a gRPC stream pipeline.

 map_with_context(stream, mapper)

 Applies a transformation function to each stream item, passing the context as an additional argument.
This is useful for operations that require access to the stream's headers.

 partition(stream, options \\ [])

 Partitions the stream to allow grouping of items by key or condition.

 reduce(stream, acc_fun, reducer_fun)

 Reduces items in the stream using an accumulator.

 to_flow(stream)

 Extracts the underlying Flow pipeline from a GRPC.Stream.

 uniq(stream)

 Emits only distinct items from the stream. See uniq_by/2 for more information.

 uniq_by(stream, fun)

 Emits only unique items as determined by the result of the given function.

 Functions: Actions

 ask(stream, target, timeout \\ 5000)

 Sends a request to an external process and awaits a response.

 ask!(stream, target, timeout \\ 5000)

 Same as ask/3, but raises an exception on failure.

 effect(stream, effect_fun)

 Applies a side-effect function to each element of the stream without altering its values.

 Types

 item()

 reason()

 t()

 Functions

 get_headers(stream)

 Retrieves HTTP/2 headers from a GRPC.Server.Stream.

 Functions: Creation

 from(input, opts \\ [])

 @spec from(any(), Keyword.t()) :: t()

Converts a gRPC input into a Flow pipeline with backpressure support.
Parameters
	input: A gRPC request stream (struct, enumerable, or Elixir Stream).

Options
	:join_with — An optional external GenStage producer to merge with the gRPC input.
	:dispatcher — Specifies the Flow dispatcher (defaults to GenStage.DemandDispatcher).
	:propagate_context - If true, the context from the materializer is propagated to the Flow.
	:materializer - The %GRPC.Server.Stream{} struct representing the current gRPC stream context.

And any other options supported by Flow.
Returns
 A GRPC.Stream struct that represents the transformed stream.
Example
flow = GRPC.Stream.from(request, max_demand: 50)

 unary(input, opts \\ [])

 @spec unary(any(), Keyword.t()) :: t()

Converts a single gRPC request into a Flow pipeline with support for backpressure.
This is useful for unary gRPC requests where you want to use the Flow API.
Parameters
	input: The single gRPC message to convert into a Flow.

Options
	:join_with - An optional additional producer stage PID to include in the Flow.
	:dispatcher - An optional GenStage dispatcher to use in the underlying Flow. Defaults to GenStage.DemandDispatcher.
	:propagate_context - If true, the context from the materializer is propagated to the Flow.
	:materializer - The %GRPC.Server.Stream{} struct representing the current gRPC stream context.

And any other options supported by Flow.
Returns
	A GRPC.Stream that emits the single gRPC message under demand.

Example
flow = GRPC.Stream.unary(request, max_demand: 5)

 Functions: Materializers

 run(stream)

 @spec run(stream :: t()) :: :noreply

Executes the underlying Flow for a unary stream.
The response will be emitted automatically to the provided
:materializer (set to a GRPC.Server.Stream) for the single resulting
item in the materialized enumerable.
The stream argument must be initialized as a :unary stream with
a :materializer set.
Example
def say_unary_hello(request, mat) do
 GRPC.Stream.unary(request, materializer: mat)
 |> GRPC.Stream.map(fn
 %HelloReply{} = reply ->
 %HelloReply{message: "[Reply] message"}

 {:error, _reason} ->
 GRPC.RPCError.exception(message: "[Error] Something bad happened")
 end)
 |> GRPC.Stream.run()
end

 run_with(stream, from, opts \\ [])

 @spec run_with(t(), Stream.t(), Keyword.t()) :: :ok

Executes the flow and emits responses into the provided gRPC server stream.
Parameters
	flow: A GRPC.Stream struct containing the flow to be executed.
	stream: A GRPC.Server.Stream to which responses are sent.

Options
	:dry_run — If true, responses are not sent (used for testing or inspection).

Returns
	:ok if the stream was processed successfully.

Example
def say_bid_stream_hello(request, materializer) do
 output_stream =
 Stream.repeatedly(fn ->
 %HelloReply{message: "I'm the Server ;)"}
 end)

 GRPC.Stream.from(request, join_with: output_stream)
 |> GRPC.Stream.map(fn
 %HelloRequest{} = _hello ->
 %HelloReply{message: "Welcome Sr!"}

 {:error, _reason} ->
 GRPC.RPCError.exception(message: "[Error] Something bad happened")
 end)
 |> GRPC.Stream.run_with(materializer)
end

 Functions: Transformers

 filter(stream, filter)

 @spec filter(t(), (term() -> term())) :: t()

Filters the stream using the given predicate function.
The filter function is applied concurrently to the stream entries, so it shouldn't rely on execution order.

 flat_map(stream, flat_mapper)

 @spec flat_map(t(), (term() -> Enumerable.t())) :: t()

Applies a function to each entry and concatenates the resulting lists.
Useful for emitting multiple messages for each input.

 map(stream, mapper)

 @spec map(t(), (term() -> term())) :: t()

Applies a function to each stream item.

 map_error(stream, func)

Intercepts and transforms error tuples or unexpected exceptions that occur
within a gRPC stream pipeline.
map_error/3 allows graceful handling or recovery from errors produced by previous
operators (e.g. map/2, flat_map/2) or from validation logic applied to incoming data.
The provided handler/1 function receives the error reason (or the exception struct) like:
{:error, reason} -> failure
{:error, {:exception, exception}} -> failure due to exception
{:error, {kind, reason}} -> failure due to throw or exit
And can either:
	Return a new error tuple — e.g. {:error, new_reason} — to re-emit a modified error.
	Return any other value to recover from the failure and continue the pipeline.

This makes it suitable for both input validation and capturing unexpected runtime errors
in stream transformations.
Parameters
	stream — The input stream or Flow pipeline.
	func — A function that takes an error reason or exception and returns either a new value or an error tuple.

Returns
	A new stream where all error tuples and raised exceptions are processed by func/1.

Examples
iex> GRPC.Stream.from([1, 2])
...> |> GRPC.Stream.map(fn
...> 2 -> raise "boom"
...> x -> x
...> end)
...> |> GRPC.Stream.map_error(fn
...> {:error, {:exception, _reason}} ->
...> {:error, GRPC.RPCError.exception(message: "Validation or runtime error")}
...> end)
In this example:
	The call to GRPC.Stream.map/2 raises an exception for value 2.
	map_error/3 catches the error and wraps it in a GRPC.RPCError struct with a custom message.
	The pipeline continues execution, transforming errors into structured responses.

Notes
	map_error/3 is lazy and only executes when the stream is materialized
(via GRPC.Stream.run/1 or GRPC.Stream.run_with/3).

	Use this operator to implement robust error recovery, input validation, or
to normalize exceptions from downstream Flow stages into well-defined gRPC errors.

 map_with_context(stream, mapper)

 @spec map_with_context(t(), (map(), term() -> term())) :: t()

Applies a transformation function to each stream item, passing the context as an additional argument.
This is useful for operations that require access to the stream's headers.

 partition(stream, options \\ [])

 @spec partition(
 t(),
 keyword()
) :: t()

Partitions the stream to allow grouping of items by key or condition.
Use this before stateful operations such as reduce/3.
Note
Excessive use of partitioning can impact performance and memory usage.
Only partition when required for correctness or performance.
See https://hexdocs.pm/flow/Flow.html#module-partitioning for more details.

 reduce(stream, acc_fun, reducer_fun)

 @spec reduce(t(), (-> acc), (term(), acc -> acc)) :: t() when acc: term()

Reduces items in the stream using an accumulator.
Parameters
	acc_fun initializes the accumulator,
	reducer_fun updates it for each input.

Note
See https://hexdocs.pm/flow/Flow.html#reduce/3 for more details.

 to_flow(stream)

 @spec to_flow(t()) :: Flow.t()

Extracts the underlying Flow pipeline from a GRPC.Stream.
Raises an ArgumentError if the Flow has not been initialized.
Returns
 A Flow pipeline.

 uniq(stream)

 @spec uniq(t()) :: t()

Emits only distinct items from the stream. See uniq_by/2 for more information.

 uniq_by(stream, fun)

 @spec uniq_by(t(), (term() -> term())) :: t()

Emits only unique items as determined by the result of the given function.
Note
This function requires care when used for unbounded flows. For more information see https://hexdocs.pm/flow/Flow.html#uniq_by/2

 Functions: Actions

 ask(stream, target, timeout \\ 5000)

 @spec ask(t(), pid() | atom(), non_neg_integer()) ::
 t() | {:error, :timeout | :process_not_alive}

Sends a request to an external process and awaits a response.
If target is a PID, a message in the format {:request, item, from} is sent, and a reply
in the format {:response, msg} is expected.
If target is an atom we will try to locate the process through Process.whereis/1.
Parameters
	stream: The GRPC.Stream pipeline.
	target: Target process PID or atom name.
	timeout: Timeout in milliseconds (defaults to 5000).

 ask!(stream, target, timeout \\ 5000)

 @spec ask!(t(), pid() | atom(), non_neg_integer()) :: t()

Same as ask/3, but raises an exception on failure.
Caution
This version propagates errors via raised exceptions, which can crash the Flow worker and halt the pipeline.
Prefer ask/3 for production usage unless failure should abort the stream.

 effect(stream, effect_fun)

 @spec effect(t(), (term() -> any())) :: t()

Applies a side-effect function to each element of the stream without altering its values.
The effect/2 function is useful for performing imperative or external actions
(such as logging, sending messages, collecting metrics, or debugging)
while preserving the original stream data.
It behaves like Enum.each/2, but returns the stream itself so it can continue in the pipeline.
Examples
iex> parent = self()
iex> stream =
...> GRPC.Stream.from([1, 2, 3])
...> |> GRPC.Stream.effect(fn x -> send(parent, {:seen, x*2}) end)
...> |> GRPC.Stream.to_flow()
...> |> Enum.to_list()
iex> assert_receive {:seen, 2}
iex> assert_receive {:seen, 4}
iex> assert_receive {:seen, 6}
iex> stream
[1, 2, 3]
In this example, the effect/2 function sends a message to the current process
for each element in the stream, but the resulting stream values remain unchanged.
Parameters
	stream — The input GRPC.Stream.
	effect_fun — A function that receives each item and performs a side effect
(e.g. IO.inspect/1, Logger.info/1, send/2, etc.).

Notes
	This function is lazy — the effect_fun will only run once the stream is materialized
(e.g. via GRPC.Stream.run/1 or GRPC.Stream.run_with/3).
	The use of effect/2 ensures that the original item is returned unchanged,
enabling seamless continuation of the pipeline.

 Types

 item()

 @type item() :: any()

 reason()

 @type reason() :: any()

 t()

 @type t() :: %GRPC.Stream{flow: Flow.t(), metadata: map(), options: Keyword.t()}

 Functions

 get_headers(stream)

 @spec get_headers(GRPC.Server.Stream.t()) :: map()

Retrieves HTTP/2 headers from a GRPC.Server.Stream.
Client Note
To receive headers on the client side, use the :return_headers option. See GRPC.Stub.

GRPC.Stream.Operators

Useful and internal functions for manipulating streams.

 Summary

 Types

 item()

 reason()

 Functions

 ask(stream, target, timeout \\ 5000)

 ask!(stream, target, timeout \\ 5000)

 effect(stream, effect_fun)

 filter(stream, filter)

 flat_map(stream, flat_mapper)

 map(stream, mapper)

 map_error(stream, func)

 map_with_context(stream, mapper)

 partition(stream, options \\ [])

 reduce(stream, acc_fun, reducer_fun)

 reject(stream, filter)

 uniq(stream)

 uniq_by(stream, fun)

 Types

 item()

 @type item() :: any()

 reason()

 @type reason() :: any()

 Functions

 ask(stream, target, timeout \\ 5000)

 @spec ask(GRPC.Stream.t(), pid() | atom(), non_neg_integer()) ::
 GRPC.Stream.t() | {:error, :timeout | :process_not_alive}

 ask!(stream, target, timeout \\ 5000)

 @spec ask!(GRPC.Stream.t(), pid() | atom(), non_neg_integer()) :: GRPC.Stream.t()

 effect(stream, effect_fun)

 @spec effect(GRPC.Stream.t(), (term() -> term())) :: GRPC.Stream.t()

 filter(stream, filter)

 @spec filter(GRPC.Stream.t(), (term() -> term())) :: GRPC.Stream.t()

 flat_map(stream, flat_mapper)

 @spec flat_map(GRPC.Stream.t(), (term() -> Enumerable.GRPCStream.t())) ::
 GRPC.Stream.t()

 map(stream, mapper)

 @spec map(GRPC.Stream.t(), (term() -> term())) :: GRPC.Stream.t()

 map_error(stream, func)

 @spec map_error(GRPC.Stream.t(), (reason() -> term())) :: GRPC.Stream.t()

 map_with_context(stream, mapper)

 @spec map_with_context(GRPC.Stream.t(), (map(), term() -> term())) :: GRPC.Stream.t()

 partition(stream, options \\ [])

 @spec partition(
 GRPC.Stream.t(),
 keyword()
) :: GRPC.Stream.t()

 reduce(stream, acc_fun, reducer_fun)

 @spec reduce(GRPC.Stream.t(), (-> acc), (term(), acc -> acc)) :: GRPC.Stream.t()
when acc: term()

 reject(stream, filter)

 @spec reject(GRPC.Stream.t(), (term() -> term())) :: GRPC.Stream.t()

 uniq(stream)

 @spec uniq(GRPC.Stream.t()) :: GRPC.Stream.t()

 uniq_by(stream, fun)

 @spec uniq_by(GRPC.Stream.t(), (term() -> term())) :: GRPC.Stream.t()

GRPC.Channel

A struct to store the connection data, which should be passed to
RPC functions as the first argument:
Greeter.Stub.say_hello(channel, request)
Fields
	:host - server's host to connect
	:port - server's port to connect
	:scheme - scheme of connection, like http
	:cred - credentials used for authentication
	:adapter - a client adapter module, like GRPC.Client.Adapters.Gun
	:codec - a default codec for this channel
	:adapter_payload - payload the adapter uses

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %GRPC.Channel{
 accepted_compressors: [module()],
 adapter: atom(),
 adapter_payload: any(),
 codec: module(),
 compressor: module(),
 cred: GRPC.Credential.t(),
 headers: list(),
 host: String.t(),
 interceptors: [],
 port: non_neg_integer(),
 ref: reference() | nil,
 scheme: String.t()
}

GRPC.Client.Adapter behaviour

HTTP client adapter for GRPC.

 Summary

 Types

 fin()

 Determines if the headers have finished being read.

 Callbacks

 cancel(stream)

 Cancel a stream in a streaming client.

 connect(channel, opts)

 disconnect(channel)

 end_stream(stream)

 Similarly to the option sent on send_data/2 - :send_end_stream -
this callback will end request stream

 receive_data(stream, opts)

 Check GRPC.Stub.recv/2 for more context about the return types

 send_data(stream, message, opts)

 This callback will be responsible to send data to the server on a stream
request is open using send_headers/2
 Opts

 send_headers(stream, opts)

 This callback is used to open a stream connection to the server.
Mostly used when the payload for this request is streamed.
To send data using the open stream request, you should use send_data/3

 send_request(stream, contents, opts)

 Types

 fin()

 @type fin() :: :fin | :nofin

Determines if the headers have finished being read.

 Callbacks

 cancel(stream)

 @callback cancel(stream :: GRPC.Client.Stream.t()) :: :ok | {:error, any()}

Cancel a stream in a streaming client.

 connect(channel, opts)

 @callback connect(channel :: GRPC.Channel.t(), opts :: keyword()) ::
 {:ok, GRPC.Channel.t()} | {:error, any()}

 disconnect(channel)

 @callback disconnect(channel :: GRPC.Channel.t()) ::
 {:ok, GRPC.Channel.t()} | {:error, any()}

 end_stream(stream)

 @callback end_stream(stream :: GRPC.Client.Stream.t()) :: GRPC.Client.Stream.t()

Similarly to the option sent on send_data/2 - :send_end_stream -
this callback will end request stream

 receive_data(stream, opts)

 @callback receive_data(stream :: GRPC.Client.Stream.t(), opts :: keyword()) ::
 GRPC.Stub.receive_data_return() | {:error, any()}

Check GRPC.Stub.recv/2 for more context about the return types

 send_data(stream, message, opts)

 @callback send_data(
 stream :: GRPC.Client.Stream.t(),
 message :: iodata(),
 opts :: keyword()
) ::
 GRPC.Client.Stream.t()

This callback will be responsible to send data to the server on a stream
request is open using send_headers/2
 Opts:
- :send_end_stream (optional) - ends the request stream

 send_headers(stream, opts)

 @callback send_headers(stream :: GRPC.Client.Stream.t(), opts :: keyword()) ::
 GRPC.Client.Stream.t()

This callback is used to open a stream connection to the server.
Mostly used when the payload for this request is streamed.
To send data using the open stream request, you should use send_data/3

 send_request(stream, contents, opts)

 @callback send_request(
 stream :: GRPC.Client.Stream.t(),
 contents :: iodata(),
 opts :: keyword()
) ::
 GRPC.Client.Stream.t()

GRPC.Client.Adapters.Gun

A client adapter using Gun
conn_pid and stream_ref are stored in GRPC.Server.Stream.

 Summary

 Functions

 retry_fun(retries, opts)

 Functions

 retry_fun(retries, opts)

GRPC.Client.Adapters.Mint

A client adapter using Mint.

 Summary

 Functions

 check_for_error(responses)

 connect(channel, opts \\ [])

 Connects using Mint based on the provided configs. Options

 handle_errors_receive_data(stream, opts)

 Functions

 check_for_error(responses)

 connect(channel, opts \\ [])

Connects using Mint based on the provided configs. Options
	:transport_opts: Defaults to [timeout: :infinity], given the nature of H2 connections (with support to
long-lived streams) this default is set to avoid timeouts while waiting for server streams to complete. The other
options may vary based on the transport used for this connection (tcp or ssl). Check Mint.HTTP.connect/4
	:client_settings: Defaults to [initial_window_size: 8_000_000, max_frame_size: 8_000_000], a larger default
window size ensures that the number of packages exchanges is smaller, thus speeding up the requests by reducing the
amount of networks round trip, with the cost of having larger packages reaching the server per connection.
Check Mint.HTTP2.setting() type for additional configs.

 handle_errors_receive_data(stream, opts)

GRPC.Client.Connection

Connection manager for gRPC client channels, with optional load balancing
and name resolution support.
A Conn process manages one or more underlying gRPC connections
(GRPC.Channel structs) and exposes a virtual channel to be used by
client stubs. The orchestration process runs as a GenServer registered
globally (via :global), so only one orchestrator exists per connection
in a BEAM node.
Overview
	connect/2 – establishes a client connection (single or multi-channel).
	pick/2 – chooses a channel according to the active load-balancing policy.
	disconnect/1 – gracefully closes a connection and frees resources.

Under the hood:
	The target string is resolved using a Resolver.
	Depending on the target and service config, a load-balancing module is chosen
(e.g. PickFirst, RoundRobin).
	The orchestrator periodically refreshes the LB decision to adapt to changes.

Target syntax
The target argument to connect/2 accepts URI-like strings that are resolved
via the configured Resolver (default GRPC.Client.Resolver).
Examples of supported formats:
	"dns://example.com:50051"
	"ipv4:10.0.0.5:50051"
	"unix:/tmp/my.sock"
	"xds:///my-service"
	"127.0.0.1:50051" (implicit DNS / fallback to IPv4)

See GRPC.Client.Resolver for the full specification.
Examples
Basic connect and RPC
iex> opts = [adapter: GRPC.Client.Adapters.Gun]
iex> {:ok, ch} = GRPC.Client.Connection.connect("127.0.0.1:50051", opts)
iex> req = %Grpc.Testing.SimpleRequest{response_size: 42}
iex> {:ok, resp} = Grpc.Testing.TestService.Stub.unary_call(ch, req)
iex> resp.response_size
42
Using interceptors and custom adapter
iex> opts = [interceptors: [GRPC.Client.Interceptors.Logger],
...> adapter: GRPC.Client.Adapters.Mint]
iex> {:ok, ch} = GRPC.Client.Connection.connect("dns://my-service.local:50051", opts)
iex> {:ok, channel} = GRPC.Client.Connection.pick(ch)
iex> channel.host
"127.0.0.1"
Unix socket target
iex> {:ok, ch} = GRPC.Client.Connection.connect("unix:/tmp/service.sock")
iex> Grpc.Testing.TestService.Stub.empty_call(ch, %{})
Disconnect
iex> {:ok, ch} = GRPC.Client.Connection.connect("127.0.0.1:50051")
iex> GRPC.Client.Connection.disconnect(ch)
{:ok, %GRPC.Channel{...}}
Notes
	The orchestrator refreshes the LB pick every 15 seconds.

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 connect(target, opts \\ [])

 Establishes a new client connection to a gRPC server or set of servers.

 disconnect(channel)

 Disconnects a channel previously returned by connect/2.

 pick_channel(channel, opts \\ [])

 Picks a channel from the orchestrator according to the active
load-balancing policy.

 Types

 t()

 @type t() :: %GRPC.Client.Connection{
 adapter: module(),
 lb_mod: module() | nil,
 lb_state: term() | nil,
 real_channels: %{required(String.t()) => GRPC.Channel.t()},
 resolver: module() | nil,
 virtual_channel: GRPC.Channel.t()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 connect(target, opts \\ [])

 @spec connect(
 String.t(),
 keyword()
) :: {:ok, GRPC.Channel.t()} | {:error, any()}

Establishes a new client connection to a gRPC server or set of servers.
The target string determines how the endpoints are resolved
(see Resolver).
Options:
	:adapter – transport adapter module (default: GRPC.Client.Adapters.Gun)
	:adapter_opts – options passed to the adapter
	:resolver – resolver module (default: GRPC.Client.Resolver)
	:lb_policy – load-balancing policy (:pick_first, :round_robin)
	:interceptors – list of client interceptors
	:codec – request/response codec (default: GRPC.Codec.Proto)
	:compressor / :accepted_compressors – message compression
	:headers – default metadata headers

Returns:
	{:ok, channel} – a GRPC.Channel usable with stubs
	{:error, reason} – if connection fails

Examples
iex> {:ok, ch} = GRPC.Client.Connection.connect("127.0.0.1:50051")
iex> Grpc.Testing.TestService.Stub.empty_call(ch, %{})

 disconnect(channel)

 @spec disconnect(GRPC.Channel.t()) :: {:ok, GRPC.Channel.t()} | {:error, any()}

Disconnects a channel previously returned by connect/2.
This will close all underlying real connections for the orchestrator
and stop its process.
Returns {:ok, channel} on success.
Example
iex> {:ok, ch} = GRPC.Client.Connection.connect("127.0.0.1:50051")
iex> GRPC.Client.Connection.disconnect(ch)
{:ok, %GRPC.Channel{}}

 pick_channel(channel, opts \\ [])

 @spec pick_channel(
 GRPC.Channel.t(),
 keyword()
) :: {:ok, GRPC.Channel.t()} | {:error, term()}

Picks a channel from the orchestrator according to the active
load-balancing policy.
Normally, you don’t need to call pick/2 directly – client stubs do this
automatically – but it can be useful when debugging or testing.
Returns:
	{:ok, channel} – the chosen GRPC.Channel
	{:error, :no_connection} – if the orchestrator is not available

Example
iex> {:ok, ch} = GRPC.Client.Connection.connect("dns://my-service.local:50051")
iex> GRPC.Client.Connection.pick(ch)
{:ok, %GRPC.Channel{host: "192.168.1.1", port: 50051}}

GRPC.Client.Interceptor behaviour

Interceptor on client side. See GRPC.Stub.connect/2.

 Summary

 Types

 next()

 options()

 req()

 Callbacks

 call(stream, req, next, options)

 init(options)

 Types

 next()

 @type next() :: (GRPC.Client.Stream.t(), req() -> GRPC.Stub.rpc_return())

 options()

 @type options() :: any()

 req()

 @type req() :: struct() | nil

 Callbacks

 call(stream, req, next, options)

 @callback call(stream :: GRPC.Client.Stream.t(), req(), next(), options()) ::
 GRPC.Stub.rpc_return()

 init(options)

 @callback init(options()) :: options()

GRPC.Client.Interceptors.Logger

Print log around client rpc calls, like
17:13:33.021 [info] Call helloworld.Greeter.say_hello -> :ok (58 ms)
17:13:33.021 [error] Call helloworld.Greeter.say_hello -> %GRPC.RPCError{status: 3, message: "Invalid argument"} (58 ms)
Options
	:level - the desired log level. Defaults to :info

Usage
{:ok, channel} = GRPC.Stub.connect("localhost:50051", interceptors: [GRPC.Client.Interceptors.Logger])
Usage with custom level
{:ok, channel} = GRPC.Stub.connect("localhost:50051", interceptors: [{GRPC.Client.Interceptors.Logger, level: :warning}])

 Summary

 Functions

 formatted_diff(diff)

 Functions

 formatted_diff(diff)

GRPC.Client.LoadBalancing behaviour

Load balancing behaviour for gRPC clients.
This module defines the behaviour that load balancing strategies must implement.

 Summary

 Callbacks

 init(opts)

 pick(state)

 Callbacks

 init(opts)

 @callback init(opts :: keyword()) :: {:ok, state :: any()} | {:error, reason :: any()}

 pick(state)

 @callback pick(state :: any()) ::
 {:ok, {host :: String.t(), port :: non_neg_integer()}, new_state :: any()}
 | {:error, reason :: any()}

GRPC.Client.LoadBalancing.PickFirst

GRPC.Client.LoadBalancing.RoundRobin

GRPC.Client.Resolver behaviour

Behaviour for gRPC client resolvers.
A gRPC resolver is responsible for translating a target string into
a list of connection endpoints (addresses) and an optional GRPC.Client.ServiceConfig.
gRPC supports multiple naming schemes, allowing clients to connect
to servers via DNS, fixed IPs, Unix domain sockets, or through
service discovery/control planes like xDS.
Target Syntax
The gRPC target string uses URI-like syntax:
<scheme>://<authority>/<path> or <scheme>:<path>
Supported schemes
	dns://[authority/]host[:port] – resolves via DNS, including:	A/AAAA records for IP addresses
	Optional TXT record _grpc_config.<host> containing JSON ServiceConfig

	ipv4:addr[:port][,addr[:port],...] – fixed list of IPv4 addresses
	ipv6:[addr][:port][,[addr][:port],...] – fixed list of IPv6 addresses
	unix:/absolute_path – Unix domain socket
	unix-abstract:name – abstract Unix socket (Linux only)
	vsock:cid:port – VSOCK endpoint (Linux only)
	xds:///name – resolve via xDS control plane (Envoy/Istio/Traffic Director)

If no scheme is specified, dns is assumed.
Default ports
	dns, ipv4, ipv6 → 50051
	xds → 443

Resolver Output
Returns:
	{:ok, %{addresses: list(map()), service_config: GRPC.Client.ServiceConfig.t() | nil}}
	addresses – list of endpoint maps containing the keys:	:address – host, IP, or socket path
	:port – TCP port (if applicable)
	may include additional scheme-specific fields, e.g., :cid for vsock

	service_config – optional ServiceConfig parsed from DNS TXT or xDS

	{:error, reason} on failure

Purpose
The resolver abstracts the underlying naming and service discovery mechanisms,
allowing the gRPC client to obtain endpoints and service configuration consistently,
regardless of whether the target is DNS, static IPs, a socket, or xDS.
Reference
For the official gRPC naming and resolver specification, see:
gRPC Naming Documentation

 Summary

 Types

 service_config()

 Callbacks

 resolve(t)

 Functions

 resolve(target)

 Resolves a gRPC target string into a list of connection endpoints and an optional ServiceConfig.

 Types

 service_config()

 @type service_config() :: GRPC.Client.ServiceConfig.t() | nil

 Callbacks

 resolve(t)

 @callback resolve(String.t()) ::
 {:ok, %{addresses: [map()], service_config: service_config()}}
 | {:error, term()}

 Functions

 resolve(target)

 @spec resolve(String.t()) ::
 {:ok, %{addresses: [map()], service_config: GRPC.Client.ServiceConfig.t()}}
 | {:error, term()}

Resolves a gRPC target string into a list of connection endpoints and an optional ServiceConfig.
The target string can use one of the supported URI schemes:
	dns://[authority/]host[:port] – resolves via DNS; looks up both A/AAAA records and optional _grpc_config.<host> TXT record.
	ipv4:addr[:port][,addr[:port],...] – uses a fixed list of IPv4 addresses.
	ipv6:[addr][:port][,[addr][:port],...] – uses a fixed list of IPv6 addresses.
	unix:/absolute_path – connects via Unix domain socket.
	unix-abstract:name – connects via abstract Unix socket (Linux only).
	vsock:cid:port – connects via VSOCK (Linux only).
	xds:///name – resolves via xDS control plane (Envoy/Istio/Traffic Director).

If no scheme is specified, dns is assumed. Default ports:
	dns, ipv4, ipv6 → 50051
	xds → 443

Returns:
	{:ok, %{addresses: list(map()), service_config: GRPC.Client.ServiceConfig.t() | nil}} on success

	{:error, reason} on failure

Each address map includes at least:
	:address – host, IP, or socket path
	:port – TCP port (if applicable)
	additional fields may be present depending on the scheme (e.g., :socket, :cid for vsock).

This function abstracts the resolution mechanism, allowing the gRPC client to obtain endpoints and service configuration regardless of the underlying target type.

GRPC.Client.Resolver.DNS

DNS Resolver for gRPC targets, supporting dynamic updates via a GenServer.
Resolves dns://host[:port] targets. Fetches A/AAAA records and optional
_grpc_config.<host> TXT records for ServiceConfig.
This implementation maintains an internal cache of addresses and service config,
and refreshes them periodically.

GRPC.Client.Resolver.DNS.Adapter behaviour

Adapter to resolve DNS (A and TXT).

 Summary

 Callbacks

 lookup(t, arg2)

 Functions

 lookup(name, type)

 Callbacks

 lookup(t, arg2)

 @callback lookup(String.t(), :a | :txt) ::
 {:ok, [tuple() | String.t()]} | {:error, term()}

 Functions

 lookup(name, type)

GRPC.Client.Resolver.IPv4

Resolver for gRPC clients connecting to one or more IPv4 addresses.
This resolver handles target strings using the ipv4 URI scheme, which
allows specifying one or multiple IPv4 addresses with explicit ports.
Target format
ipv4:addr:port[,addr:port,...]
	IPv4 addresses must include a port.
	Multiple addresses can be comma-separated.
	service_config is always nil as literal IPv4 addresses do not support DNS TXT or xDS.

Examples
Single IPv4
target = "ipv4:10.0.0.1:50051"
{:ok, %{addresses: addresses, service_config: nil}} =
 GRPC.Client.Resolver.IPv4.resolve(target)
addresses
=> [%{address: "10.0.0.1", port: 50051}]

Multiple IPv4 addresses
target = "ipv4:10.0.0.1:50051,10.0.0.2:50052"
{:ok, %{addresses: addresses, service_config: nil}} =
 GRPC.Client.Resolver.IPv4.resolve(target)
addresses
=> [
%{address: "10.0.0.1", port: 50051},
%{address: "10.0.0.2", port: 50052}
]
See the gRPC naming documentation for more information:
https://github.com/grpc/grpc/blob/master/doc/naming.md

GRPC.Client.Resolver.IPv6

Resolver for gRPC clients connecting to one or more IPv6 addresses.
This resolver handles target strings using the ipv6 URI scheme, which
allows specifying one or multiple IPv6 addresses with optional ports.
Target format
ipv6:[addr][:port][,[addr][:port],...]
	IPv6 addresses must be enclosed in square brackets ([...]).
	The port is optional; if not provided, the default port is 443.
	Multiple addresses can be comma-separated.
	service_config is always nil as IPv6 literals do not support DNS TXT or xDS.

GRPC.Client.Resolver.Unix

Resolver for gRPC clients connecting via Unix Domain Sockets (UDS).
This resolver handles target strings using the unix URI scheme, which
allows a gRPC client to connect to a server via a Unix socket path. Unix
domain sockets are supported on Unix systems only.
Target format
unix:///absolute/path/to/socket
	The scheme must be unix.
	The path must be absolute (/var/run/my.sock).
	The port is not used in Unix sockets; :port will be nil.
	The socket type is indicated via :socket => :unix.

Example
target = "unix:///var/run/my_grpc.sock"

{:ok, %{addresses: addresses, service_config: nil}} =
 GRPC.Client.Resolver.Unix.resolve(target)

addresses
=> [%{address: "/var/run/my_grpc.sock", port: nil, socket: :unix}]
This resolver always returns nil for the service config, as Unix
sockets do not provide DNS TXT records or xDS configuration.
See the gRPC naming documentation for more information on URI-based
resolution: https://github.com/grpc/grpc/blob/master/doc/naming.md

GRPC.Client.ServiceConfig

Represents the gRPC ServiceConfig parsed from JSON, which can come from DNS TXT records or xDS.
The gRPC ServiceConfig allows a client to configure per-service and per-method
behaviors such as load balancing, timeouts, and retry policies.
Spec
According to the gRPC specification (service_config.md):
	loadBalancingConfig: a list of load balancing policies.
The client should pick the first policy it supports. Common values are:
	"pick_first": always pick the first server.
	"round_robin": distribute calls across servers in round-robin.

	methodConfig: a list of configurations applied to specific methods or services.
Each entry can include:
	"name": a list of { "service": "<service_name>", "method": "<method_name>" }
or { "service": "<service_name>" } to match all methods in the service.
	"timeout": RPC timeout as a string (e.g., "1.000000001s").
	"retryPolicy": optional retry policy map.
	Other optional method-level settings.

Example TXT record
A DNS TXT record for a service my-service.local might look like this:
_grpc_config.my-service.local 3600 TXT
"grpc_config={
 "loadBalancingConfig":[{"round_robin":{}}],
 "methodConfig":[
 {
 "name":[
 {"service":"foo","method":"bar"},
 {"service":"baz"}
],
 "timeout":"1.000000001s"
 }
]
}"
This JSON will be parsed into a %GRPC.Client.ServiceConfig{} struct with:
%GRPC.Client.ServiceConfig{
 load_balancing_policy: :round_robin,
 method_configs: [
 %{
 "name" => [
 %{"service" => "foo", "method" => "bar"},
 %{"service" => "baz"}
],
 "timeout" => "1.000000001s"
 }
],
 raw: <original JSON map>
}
Usage
{:ok, config} = GRPC.Client.ServiceConfig.parse(txt_json)
IO.inspect(config.load_balancing_policy)
IO.inspect(config.method_configs)

 Summary

 Types

 t()

 Functions

 parse(json)

 Types

 t()

 @type t() :: %GRPC.Client.ServiceConfig{
 load_balancing_policy: atom(),
 method_configs: list(),
 raw: map()
}

 Functions

 parse(json)

GRPC.Client.Stream

A struct that streaming clients get from rpc function calls and use to send further requests.
Fields
	:channel - GRPC.Channel, the channel established by client
	:payload - data used by adapter in a request
	:path - the request path to sent
	:request_mod - the request module, or nil for untyped protocols
	:response_mod - the response module, or nil for untyped protocols
	:codec - the codec
	:req_stream - indicates if request is streaming
	:res_stream - indicates if reply is streaming

 Summary

 Types

 t()

 Functions

 put_headers(stream, headers)

 receive_data(stream, opts)

 Types

 t()

 @type t() :: %GRPC.Client.Stream{
 __interface__: map(),
 accepted_compressors: [module()],
 canceled: boolean(),
 channel: GRPC.Channel.t(),
 codec: atom(),
 compressor: module(),
 grpc_type: atom(),
 headers: map(),
 method_name: String.t(),
 path: String.t(),
 payload: stream_payload(),
 request_mod: atom(),
 response_mod: atom(),
 rpc: tuple(),
 server_stream: boolean(),
 service_name: String.t()
}

 Functions

 put_headers(stream, headers)

 receive_data(stream, opts)

GRPC.Client.Supervisor

A DynamicSupervisor responsible for managing gRPC client connections (GRPC.Client.Connection).
This supervisor allows you to dynamically start and stop gRPC client connections at runtime.
Each connection is run as a separate GenServer under this supervisor, which ensures proper
supervision and isolation between connections.
Starting the Supervisor
Typically, you start this supervisor as part of your application's supervision tree:
children = [
 {GRPC.Client.Supervisor, []}
]

opts = [strategy: :one_for_one, name: MyApp.Supervisor]
Supervisor.start_link(children, opts)
You can also start it manually in scripts or test environments:
{:ok, _pid} = DynamicSupervisor.start_link(strategy: :one_for_one, name: GRPC.Client.Supervisor)
Supervision Strategy
This supervisor uses :one_for_one strategy:
	If a connection process crashes, only that process is restarted.
	Other running connections remain unaffected.

Establishing a gRPC Connection
To create a new gRPC connection, you typically use the GRPC.Stub.connect/1 function,
which internally starts a GRPC.Client.Connection process under this supervisor. For example:
iex> {:ok, ch} = GRPC.Stub.connect("127.0.0.1:50051")
iex> Grpc.Testing.TestService.Stub.empty_call(ch, %{})
Notes
	You can dynamically start multiple connections under the supervisor for different targets.
	Each connection runs in isolation as its own GenServer.

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts)

GRPC.Credential

Stores credentials for authentication.
It can be used to establish secure connections
by passed to GRPC.Stub.connect/2 as an argument.
Some client and server adapter implementations may
choose to let request options override some of the
configuration here, but this is left as a choice
for each adapter.
Examples
iex> cred = GRPC.Credential.new(ssl: [cacertfile: ca_path])
iex> GRPC.Stub.connect("localhost:10000", cred: cred)

 Summary

 Types

 t()

 Functions

 new(opts)

 Creates credential.

 Types

 t()

 @type t() :: %GRPC.Credential{ssl: [:ssl.tls_option()]}

 Functions

 new(opts)

Creates credential.

GRPC.Stub

A module acting as the interface for gRPC client.
You can do everything in the client side via GRPC.Stub, including connecting,
sending/receiving streaming or non-streaming requests, canceling calls and so on.
A service is needed to define a stub:
defmodule Greeter.Service do
 use GRPC.Service, name: "ping"

 rpc :SayHello, Request, Reply
 rpc :SayGoodbye, stream(Request), stream(Reply)
end

defmodule Greeter.Stub do
 use GRPC.Stub, service: Greeter.Service
end
so that functions say_hello/2 and say_goodbye/1 will be generated for you:
Unary call
{:ok, reply} = Greeter.Stub.say_hello(channel, request)

Streaming call
stream = Greeter.Stub.say_goodbye(channel)
GRPC.Stub.send_request(stream, request, end_stream: true)
{:ok, reply_enum} = GRPC.Stub.recv(stream)
replies = Enum.map(reply_enum, fn({:ok, reply}) -> reply end)
Note that streaming calls are very different with unary calls. If request is
streaming, the RPC function only accepts channel as argument and returns a
GRPC.Client.Stream. You can send streaming requests one by one via send_request/3,
then use recv/1 to receive the reply. And if the reply is streaming, recv/1
returns a Stream.
You can refer to call/6 for doc of your RPC functions.

 Summary

 Types

 receive_data_return()

 rpc_return()

 Functions

 cancel(stream)

 Cancel a stream in a streaming client.

 connect(addr, opts \\ [])

 Establishes a connection with a gRPC server and returns a GRPC.Channel required
for sending requests. Supports advanced connection resolution via the gRPC GRPC.Client.Resolver
and various target schemes (dns, unix, xds, host:port, etc).

 connect(host, port, opts)

 deprecated

 disconnect(channel)

 Disconnects the adapter and frees any resources the adapter is consuming

 end_stream(stream)

 Send END_STREAM frame to end the stream.

 recv(stream, opts \\ [])

 Receive replies when requests are streaming.

 retry_timeout(curr)

 send_request(stream, request, opts \\ [])

 Send streaming requests.

 Types

 receive_data_return()

 @type receive_data_return() ::
 {:ok, struct()}
 | {:ok, struct(), map()}
 | {:ok, Enumerable.t()}
 | {:ok, Enumerable.t(), map()}

 rpc_return()

 @type rpc_return() ::
 GRPC.Client.Stream.t() | {:error, GRPC.RPCError.t()} | receive_data_return()

 Functions

 cancel(stream)

Cancel a stream in a streaming client.
After that, callings to recv/2 will return a CANCEL error.

 connect(addr, opts \\ [])

 @spec connect(
 String.t(),
 keyword()
) :: {:ok, GRPC.Channel.t()} | {:error, any()}

Establishes a connection with a gRPC server and returns a GRPC.Channel required
for sending requests. Supports advanced connection resolution via the gRPC GRPC.Client.Resolver
and various target schemes (dns, unix, xds, host:port, etc).
This function is part of the connection orchestration layer, which manages
connection setup, name resolution, and optional load balancing.
Target Syntax
The target argument to connect/2 accepts URI-like strings that are resolved
using the configured Resolver.
Supported formats:
	"dns://example.com:50051" — resolves via DNS (A/AAAA records and _grpc_config TXT)
	"ipv4:10.0.0.5:50051" — fixed IPv4 address
	"unix:/tmp/my.sock" — Unix domain socket
	"xds:///my-service" — resolves via xDS control plane (Envoy/Istio/Traffic Director)
	"127.0.0.1:50051" — implicit DNS (default port 50051)

If no scheme is provided, the resolver assumes dns by default.
Options
	:cred - a GRPC.Credential used to indicate it's a secure connection.
An insecure connection will be created without this option.
	:adapter - custom client adapter
	:interceptors - client interceptors
	:codec - client will use this to encode and decode binary message
	:compressor - the client will use this to compress requests and decompress responses.
If this is set, accepted_compressors will be appended also, so this can be used safely
without :accepted_compressors.
	:accepted_compressors - tell servers accepted compressors, this can be used without :compressor
	:headers - headers to attach to each request

Examples
Basic Connection
iex> GRPC.Stub.connect("localhost:50051")
{:ok, channel}

iex> GRPC.Stub.connect("localhost:50051", accepted_compressors: [GRPC.Compressor.Gzip])
{:ok, channel}
DNS Target
iex> {:ok, ch} = GRPC.Client.Connection.connect("dns://my-service.local:50051")
Unix Socket
iex> GRPC.Stub.connect("/path/to/unix.sock")
{:ok, channel}
Notes
	When using DNS or xDS targets, the connection layer periodically refreshes endpoints.

 connect(host, port, opts)

 This function is deprecated. Use connect/2 instead.

 @spec connect(
 String.t() | {:local, String.t()},
 binary() | non_neg_integer(),
 keyword()
) :: {:ok, GRPC.Channel.t()} | {:error, any()}

 disconnect(channel)

 @spec disconnect(GRPC.Channel.t()) :: {:ok, GRPC.Channel.t()} | {:error, any()}

Disconnects the adapter and frees any resources the adapter is consuming

 end_stream(stream)

 @spec end_stream(GRPC.Client.Stream.t()) :: GRPC.Client.Stream.t()

Send END_STREAM frame to end the stream.
The stream will be in half_closed state after this is called.
Examples
iex> stream = GRPC.Stub.send_request(stream, request)
iex> GRPC.Stub.end_stream(stream)

 recv(stream, opts \\ [])

 @spec recv(
 GRPC.Client.Stream.t(),
 keyword()
) ::
 {:ok, struct()}
 | {:ok, struct(), map()}
 | {:ok, Enumerable.t()}
 | {:ok, Enumerable.t(), map()}
 | {:error, any()}

Receive replies when requests are streaming.
	If the reply is not streaming, a normal reply struct will be returned
	If the reply is streaming, a enumerable Stream will be returned.
You can use Enum to fetch further replies or Stream to manipulate it.
Each item in the Enumerable is a tuple {:ok, reply} or {:error, error}.
When :return_headers is true, the last item in the Enumerable will be
{:trailers, map}

Examples
Reply is not streaming
{:ok, reply} = GRPC.Stub.recv(stream)

Reply is streaming
{:ok, ex_stream} = GRPC.Stub.recv(stream)
replies = Enum.map(ex_stream, fn({:ok, reply}) -> reply end)
Options
	:timeout - request timeout
	:deadline - when the request is timeout, will override timeout
	:return_headers - when true, headers will be returned.

Stream behavior
We build the Stream struct using Stream.unfold/2.
The unfold function is built in such a way that - for both adapters - the accumulator is a map used to find the
connection_streamprocess and the next_fun argument is a function that reads directly from the connection_stream
that is producing data.
Every time we execute next_fun we read a chunk of data. This means that next_fun will have the side effect of updating the state of the connection_stream process, removing the chunk of data that's being read from the underlying GenServer's state.
Examples
iex> ex_stream |> Stream.take(1) |> Enum.to_list()
[1]
iex> ex_stream |> Enum.to_list()
[2, 3]
iex> ex_stream |> Enum.to_list()
[]

 retry_timeout(curr)

 send_request(stream, request, opts \\ [])

 @spec send_request(GRPC.Client.Stream.t(), struct(), keyword()) ::
 GRPC.Client.Stream.t()

Send streaming requests.
The last request can be sent with :end_stream option, or you can call end_stream/1
to send a frame with END_STREAM flag to end the stream.
Options
	:end_stream - indicates it's the last one request, then the stream will be in
half_closed state. Default is false.

GRPC.Telemetry

Events published by GRPC
These can be divided in client-side events and server-side events.
Client-side Events
	[:grpc, :client, :rpc, :start] - Published before all interceptors are executed.
	[:grpc, :client, :rpc, :stop] - Published after all interceptors executed successfully.	:duration - the duration as measured through System.monotonic_time()
for the whole interceptor pipeline.

	[:grpc, :client, :rpc, :exception] - Published if any exception occurs while receiving a message.	:duration - the duration as measured through System.monotonic_time()
for the execution since the start of the pipeline until the exception happened.

	event	measurements	metadata
	[:rpc, :start]	:count	:stream
	[:rpc, :stop]	:duration	:stream
	[:rpc, :exception]	:duration	:stream, :kind, :reason, :stacktrace

Metadata
	:stream - the %GRPC.Server.Stream{} for the request
	:function_name - the name of the function called
	:server - the server module name
	:endpoint - the endpoint module name
	:request - the client request
	:result - the result returned from the interceptor pipeline.

:exception events also include some error metadata:
	:reason is the error value in case of catch or the actual exception in case of rescue.
	:kind can be one of:	:error — from an {:error, error} return value. Some Erlang functions may also throw an
:error tuple, which will be reported as :error.
	:exit — from a caught process exit.
	:throw — from a caught value, this doesn't necessarily mean that an error occurred.

Server-side Events
	[:grpc, :server, :rpc, :start] - Published before all interceptors are executed.
	[:grpc, :server, :rpc, :stop] - Published after all interceptors executed successfully.	:duration - the duration as measured through System.monotonic_time()
for the whole interceptor pipeline.

	[:grpc, :server, :rpc, :exception] - Published if any exception occurs while receiving a message.	:duration - the duration as measured through System.monotonic_time()
for the execution since the start of the pipeline until the exception happened.

	event	measurements	metadata
	[:rpc, :start]	:count	:stream, :server, :endpoint, :function_name
	[:rpc, :stop]	:duration	:stream, :server, :endpoint, :function_name , :result
	[:rpc, :exception]	:duration	:stream, :server, :endpoint, :function_name, :kind, :reason, :stacktrace

Metadata
	:stream - the %GRPC.Server.Stream{} for the request.
	:function_name - the name of the function called.
	:server - the server module name.
	:endpoint - the endpoint module name.
	:result - the result returned from the interceptor pipeline.

:exception events also include some error metadata:
	:reason is the error value in case of catch or the actual exception in case of rescue.
	:kind can be one of:	:error — from an {:error, error} return value. Some Erlang functions may also throw an
:error tuple, which will be reported as :error.
	:exit — from a caught process exit.
	:throw — from a caught value, this doesn't necessarily mean that an error occurred.

 Summary

 Functions

 client_rpc_prefix()

 The client telemetry event prefix.

 server_rpc_prefix()

 The server telemetry event prefix.

 Functions

 client_rpc_prefix()

The client telemetry event prefix.

 server_rpc_prefix()

The server telemetry event prefix.

GRPC.Codec behaviour

Contains code to serialize a deserialize the message.

 Summary

 Callbacks

 decode(any, module)

 encode(any)

 name()

 Name is identity of the codec, which will be suffix after content-type "application/grpc+" such as "proto".

 pack_for_channel(iodata)

 This function is invoked whenever it is defined after the protobuf message has been transformed into a gRPC payload.

 unpack_from_channel(binary)

 This function is invoked before the gRPC payload is transformed into a protobuf message whenever it is defined.

 Callbacks

 decode(any, module)

 @callback decode(any(), module :: atom()) :: any()

 encode(any)

 @callback encode(any()) :: iodata()

 name()

 @callback name() :: String.t()

Name is identity of the codec, which will be suffix after content-type "application/grpc+" such as "proto".

 pack_for_channel(iodata)

 (optional)

 @callback pack_for_channel(iodata()) :: binary()

This function is invoked whenever it is defined after the protobuf message has been transformed into a gRPC payload.
This can be used to apply a transform over the gRPC message before sending it.
For instance grpc-web using the application/grpc-web-text content type requires the message to be Base64-encoded, so a server sending messages using grpc-web-text will be required to
do a Base64 encode on the payload before sending the gRPC message.

 unpack_from_channel(binary)

 (optional)

 @callback unpack_from_channel(binary()) :: binary()

This function is invoked before the gRPC payload is transformed into a protobuf message whenever it is defined.
This can be used to apply a transform over the gRPC message before decoding it. For instance grpc-web using the application/grpc-web-text
content type requires the message to be Base64-encoded, so a server receving messages using grpc-web-text will be required to
do a Base64 decode on the payload before decoding the gRPC message.

GRPC.Codec.Erlpack

 Summary

 Functions

 decode(binary, module)

 Callback implementation for GRPC.Codec.decode/2.

 encode(struct)

 Callback implementation for GRPC.Codec.encode/1.

 name()

 Callback implementation for GRPC.Codec.name/0.

 Functions

 decode(binary, module)

Callback implementation for GRPC.Codec.decode/2.

 encode(struct)

Callback implementation for GRPC.Codec.encode/1.

 name()

Callback implementation for GRPC.Codec.name/0.

GRPC.Codec.JSON

JSON Codec for gRPC communication.
This module implements the GRPC.Codec behaviour, providing encoding and decoding functions
for JSON serialization in the context of gRPC communication.
Behavior Functions
	name/0: Returns the name of the codec, which is "json".
	encode/1: Encodes a struct using the Protobuf.JSON.encode!/1 function.
	decode/2: Decodes binary data into a map using the Jason library.

This module requires the Jason dependency.

 Summary

 Functions

 decode(binary, module)

 Decodes binary data into a map using the Jason library.
Parameters

 encode(struct)

 Encodes a struct using the Protobuf.JSON.encode!/1 function.

 name()

 Callback implementation for GRPC.Codec.name/0.

 Functions

 decode(binary, module)

Decodes binary data into a map using the Jason library.
Parameters:
binary - The binary data to be decoded.
module - Module to be created.
Returns:
A map representing the decoded data.
Raises:
Raises an error if the Jason library is not loaded.
Example:
binary_data |> GRPC.Codec.JSON.decode(__MODULE__)

 encode(struct)

Encodes a struct using the Protobuf.JSON.encode!/1 function.
Parameters:
	struct - The struct to be encoded.

Returns:
The encoded binary data.
Example:
%MyStruct{id: 1, name: "John"} |> GRPC.Codec.JSON.encode()

 name()

Callback implementation for GRPC.Codec.name/0.

GRPC.Codec.Proto

 Summary

 Functions

 decode(binary, module)

 Callback implementation for GRPC.Codec.decode/2.

 encode(struct)

 Callback implementation for GRPC.Codec.encode/1.

 name()

 Callback implementation for GRPC.Codec.name/0.

 Functions

 decode(binary, module)

Callback implementation for GRPC.Codec.decode/2.

 encode(struct)

Callback implementation for GRPC.Codec.encode/1.

 name()

Callback implementation for GRPC.Codec.name/0.

GRPC.Codec.WebText

 Summary

 Functions

 decode(binary, module)

 Callback implementation for GRPC.Codec.decode/2.

 encode(struct)

 Callback implementation for GRPC.Codec.encode/1.

 name()

 Callback implementation for GRPC.Codec.name/0.

 pack_for_channel(data)

 Callback implementation for GRPC.Codec.pack_for_channel/1.

 unpack_from_channel(binary)

 Callback implementation for GRPC.Codec.unpack_from_channel/1.

 Functions

 decode(binary, module)

Callback implementation for GRPC.Codec.decode/2.

 encode(struct)

Callback implementation for GRPC.Codec.encode/1.

 name()

Callback implementation for GRPC.Codec.name/0.

 pack_for_channel(data)

Callback implementation for GRPC.Codec.pack_for_channel/1.

 unpack_from_channel(binary)

Callback implementation for GRPC.Codec.unpack_from_channel/1.

GRPC.Compressor behaviour

 Summary

 Callbacks

 compress(iodata)

 decompress(binary)

 name()

 Callbacks

 compress(iodata)

 @callback compress(iodata()) :: binary()

 decompress(binary)

 @callback decompress(binary()) :: binary()

 name()

 @callback name() :: String.t()

GRPC.Compressor.Gzip

 Summary

 Functions

 compress(data)

 Callback implementation for GRPC.Compressor.compress/1.

 decompress(data)

 Callback implementation for GRPC.Compressor.decompress/1.

 name()

 Callback implementation for GRPC.Compressor.name/0.

 Functions

 compress(data)

Callback implementation for GRPC.Compressor.compress/1.

 decompress(data)

Callback implementation for GRPC.Compressor.decompress/1.

 name()

Callback implementation for GRPC.Compressor.name/0.

GRPC.Logger

 Summary

 Functions

 crash_reason(atom, reason, stacktrace)

 Normalizes the exception and stacktrace inputs by its kind to match the format specified for crash_report metadata
in Logger

 Functions

 crash_reason(atom, reason, stacktrace)

Normalizes the exception and stacktrace inputs by its kind to match the format specified for crash_report metadata
in Logger

GRPC.RPCError exception

The RPC error raised in server side and got in client side.
server side
raise GRPC.RPCError, status: :unknown # preferred
raise GRPC.RPCError, status: GRPC.Status.unknown, message: "error message"

client side
{:error, error} = Your.Stub.unary_call(channel, request)
Error handling can be done with the is_rpc_error/2 guard.
Expanding on the code above, the first option is for the guard to
be used in a cond or case, as follows:
cond do
 is_rpc_error(error, GRPC.Status.not_found()) ->
 do_something_when_not_found()

 is_rpc_error(error, GRPC.Status.out_of_range()) ->
 do_something_when_out_of_range()

 true ->
 fallback_code()
end
Another option is for the error handling to be written into a multi-clause function.
In such case we must define module attributes for each of the errors we want because
the functions in GRPC.Status can't be called directly inside the guard.
...
handle_error(error)
...

@not_found GRPC.Status.not_found()
@out_of_range GRPC.Status.out_of_range()

defp handle_error(error) when is_rpc_error(error, @not_found) do
 # not found
end

defp handle_error(error) when is_rpc_error(error, @out_of_range) do
 # out of range
end

defp handle_error(error) do
 # fallback
end
See GRPC.Status for more details on possible statuses.

 Summary

 Types

 t()

 Functions

 exception(status, message)

 is_rpc_error(e, status)

 new(status)

 Types

 t()

 @type t() :: %GRPC.RPCError{
 __exception__: true,
 details: [Google.Protobuf.Any.t()],
 message: String.t(),
 status: GRPC.Status.t()
}

 Functions

 exception(status, message)

 @spec exception(status :: GRPC.Status.t() | atom(), message :: String.t()) :: t()

 is_rpc_error(e, status)

 (macro)

 new(status)

 @spec new(status :: atom()) :: t()

GRPC.Server.Adapters.ReportException exception

Exception raised by server adapter, meant to be used as part of metadata crash_report

 Summary

 Functions

 message(report_exception)

 Callback implementation for Exception.message/1.

 new(adapter_extra, exception, stack \\ [], kind \\ :error)

 Functions

 message(report_exception)

Callback implementation for Exception.message/1.

 new(adapter_extra, exception, stack \\ [], kind \\ :error)

GRPC.ClientInterceptor behaviour

 This behaviour is deprecated. Use `GRPC.Client.Interceptor` instead.

Interceptor on client side. See GRPC.Stub.connect/2.

 Summary

 Types

 next()

 options()

 req()

 Callbacks

 call(stream, req, next, options)

 init(options)

 Types

 next()

 @type next() :: (GRPC.Client.Stream.t(), req() -> GRPC.Stub.rpc_return())

 options()

 @type options() :: any()

 req()

 @type req() :: struct() | nil

 Callbacks

 call(stream, req, next, options)

 @callback call(stream :: GRPC.Client.Stream.t(), req(), next(), options()) ::
 GRPC.Stub.rpc_return()

 init(options)

 @callback init(options()) :: options()

GRPC.ServerInterceptor behaviour

 This behaviour is deprecated. Use `GRPC.Server.Interceptor` instead.

Interceptor on server side. See GRPC.Endpoint.

 Summary

 Types

 next()

 options()

 rpc_return()

 Callbacks

 call(rpc_req, stream, next, options)

 init(options)

 Types

 next()

 @type next() :: (GRPC.Server.rpc_req(), GRPC.Server.Stream.t() -> rpc_return())

 options()

 @type options() :: any()

 rpc_return()

 @type rpc_return() ::
 {:ok, GRPC.Server.Stream.t(), struct()}
 | {:ok, GRPC.Server.Stream.t()}
 | {:error, GRPC.RPCError.t()}

 Callbacks

 call(rpc_req, stream, next, options)

 @callback call(GRPC.Server.rpc_req(), stream :: GRPC.Server.Stream.t(), next(), options()) ::
 rpc_return()

 init(options)

 @callback init(options()) :: options()

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

