

 Guardian.DB

 v3.0.0

 Table of contents

 	Guardian.DB

 	Modules

 	Guardian.DB

 	Guardian.DB.Adapter

 	Guardian.DB.ETSAdapter

 	Guardian.DB.EctoAdapter

 	Guardian.DB.Sweeper

 	Guardian.DB.Token

 	Mix Tasks

 	mix guardian.db.gen.migration

Guardian.DB

[image: Hex.pm]
[image: Build Status]
[image: Codecov]
[image: Inline docs]
Guardian.DB is an extension to Guardian that tracks tokens in your
application's database to prevent playback.

 Installation

Guardian.DB assumes that you are using the Guardian framework for
authentication.
To install Guardian.DB, first add it to your mix.exs file:
defp deps do
 [
 {:guardian_db, "~> 2.0"}
]
end
Then run mix deps.get on your terminal.
Configure your application as seen in the Configuration section below prior to attempting to generate the migration or you will get an application was not loaded/started error.
Following configuration add the Guardian migration:
run mix guardian.db.gen.migration to generate a migration.
Do not run the migration yet, we need to complete our setup first.

 Configuration

config :guardian, Guardian.DB,
 repo: MyApp.Repo, # Add your repository module
 schema_name: "guardian_tokens", # default
 token_types: ["refresh_token"], # store all token types if not set
 sweep_interval: 60 # default: 60 minutes
To sweep expired tokens from your db you should add
Guardian.DB.Token.SweeperServer to your supervision tree.
children = [
 {Guardian.DB.Token.SweeperServer, []}
]
Guardian.DB works by hooking into the lifecycle of your Guardian module.
You'll need to add it to:
	after_encode_and_sign
	on_verify
	on_refresh
	on_revoke

For example:
defmodule MyApp.AuthTokens do
 use Guardian, otp_app: :my_app

 # snip...

 def after_encode_and_sign(resource, claims, token, _options) do
 with {:ok, _} <- Guardian.DB.after_encode_and_sign(resource, claims["typ"], claims, token) do
 {:ok, token}
 end
 end

 def on_verify(claims, token, _options) do
 with {:ok, _} <- Guardian.DB.on_verify(claims, token) do
 {:ok, claims}
 end
 end

 def on_refresh({old_token, old_claims}, {new_token, new_claims}, _options) do
 with {:ok, _, _} <- Guardian.DB.on_refresh({old_token, old_claims}, {new_token, new_claims}) do
 {:ok, {old_token, old_claims}, {new_token, new_claims}}
 end
 end

 def on_revoke(claims, token, _options) do
 with {:ok, _} <- Guardian.DB.on_revoke(claims, token) do
 {:ok, claims}
 end
 end
end
Now run the migration and you'll be good to go.

 Custom schema name

Guardian.DB allows custom schema name in migrations, based on following
configuration:
config :guardian, Guardian.DB,
 schema_name: "my_custom_schema"
And when you run the migration, it'll generate the following migration:
 create table(:my_custom_schema, primary_key: false) do
 add(:jti, :string, primary_key: true)
 add(:typ, :string)
 add(:aud, :string)
 add(:iss, :string)
 add(:sub, :string)
 add(:exp, :bigint)
 add(:jwt, :text)
 add(:claims, :map)
 timestamps()
 end
Then, run the migration and you'll be good to go.

 Considerations

Guardian is already a very robust JWT solution. However, if your
application needs the ability to immediately revoke and invalidate tokens that
have already been generated, you need something like Guardian.DB to build upon
Guardian.
In Guardian, you as a systems administrator have no way of revoking
tokens that have already been generated, you can call Guardian.revoke, but in
Guardian that function does not actually do anything - it just provides
hooks for other libraries, such as this one, to define more specific behavior.
Discarding the token after something like a log out action is left up to the
client application. If the client application does not discard the token, or
does not log out, or the token gets stolen by a malicious script (because the
client application stores it in localStorage, for instance), the only thing you
can do is wait until the token expires. Depending on the scenario, this may not
be acceptable.
With Guardian.DB, records of all generated tokens are kept in your
application's database. During each request, the Guardian.Plug.VerifyHeader
and Guardian.Plug.VerifySession plugs check the database to make sure the
token is there. If it is not, the server returns a 401 Unauthorized response to
the client. Furthermore, Guardian.revoke! behavior becomes enhanced, as it
actually removes the token from the database. This means that if the user logs
out, or you revoke their token (e.g. after noticing suspicious activity on the
account), they will need to re-authenticate.

 Disadvantages

In Guardian, token verification is very light-weight. The only thing
Guardian does is decode incoming tokens and make sure they are valid. This can
make it much easier to horizontally scale your application, since there is no
need to centrally store sessions and make them available to load balancers or
other servers.
With Guardian.DB, every request requires a trip to the database, as Guardian
now needs to ensure that a record of the token exists. In large scale
applications this can be fairly costly, and can arguably eliminate the main
advantage of using a JWT authentication solution, which is statelessness.
Furthermore, session authentication already works this way, and in most cases
there isn't a good enough reason to reinvent that wheel using JWTs.
In other words, once you have reached a point where you think you need
Guardian.DB, it may be time to take a step back and reconsider your whole
approach to authentication!

 Create your own Repo

We created Guardian.DB.Adapter behaviour to allow creating other repositories for persisting JWT tokens.
You need to implement the Guardian.DB.Adapter behavior working with your preferred storage.

 Adapters

	Redis adapter - guardian_redis

Feel free to create your adapters using Guardian.DB.Adapter behavior and you are welcome to add them here.

Guardian.DB

Guardian.DB is a simple module that hooks into Guardian to prevent
playback of tokens.
In Guardian, tokens aren't tracked so the main mechanism that exists to
make a token inactive is to set the expiry and wait until it arrives.
Guardian.DB takes an active role and stores each token in the database
verifying it's presence (based on it's jti) when Guardian verifies the
token.
If the token is not present in the DB, the Guardian token cannot be
verified.
Provides a simple database storage and check for Guardian tokens.
	When generating a token, the token is stored in a database.
	When tokens are verified (channel, session or header) the database is
checked for an entry that matches. If none is found, verification results in
an error.
	When logout, or revoking the token, the corresponding entry is removed

Setup

 Config

Add your configuration to your environment files. You need to specify
	repo

You may also configure
	prefix - The schema prefix to use.
	schema_name - The name of the schema to use. Default "guardian_tokens".
	sweep_interval - The interval between db sweeps to remove old tokens.
Default 60 (minutes).

 Sweeper

In order to sweep your expired tokens from the db, you'll need to add
Guardian.DB.Sweeper to your supervision tree.
In your supervisor add it as a worker
worker(Guardian.DB.Sweeper, [interval: 60])
Migration
Guardian.DB requires a table in your database. Create a migration like the
following:
 create table(:guardian_tokens, primary_key: false) do
 add(:jti, :string, primary_key: true)
 add(:typ, :string)
 add(:aud, :string)
 add(:iss, :string)
 add(:sub, :string)
 add(:exp, :bigint)
 add(:jwt, :text)
 add(:claims, :map)
 timestamps()
 end
Guardian.DB allow to use a custom schema name when creating the migration.
You can configure the schema name from config like the following:
config :guardian, Guardian.DB,
 schema_name: "my_custom_schema
And when you run mix guardian.db.gen.migration it'll generate the following
migration:
 create table(:my_custom_schema, primary_key: false) do
 add(:jti, :string, primary_key: true)
 add(:typ, :string)
 add(:aud, :string)
 add(:iss, :string)
 add(:sub, :string)
 add(:exp, :bigint)
 add(:jwt, :text)
 add(:claims, :map)
 timestamps()
 end
Guardian.DB works by hooking into the lifecycle of your token module.
You'll need to add it to
	after_encode_and_sign
	on_verify
	on_revoke

For example:
defmodule MyApp.AuthTokens do
 use Guardian, otp_app: :my_app

 # snip...

 def after_encode_and_sign(resource, claims, token, _options) do
 with {:ok, _} <- Guardian.DB.after_encode_and_sign(resource, claims["typ"], claims, token) do
 {:ok, token}
 end
 end

 def on_verify(claims, token, _options) do
 with {:ok, _} <- Guardian.DB.on_verify(claims, token) do
 {:ok, claims}
 end
 end

 def on_revoke(claims, token, _options) do
 with {:ok, _} <- Guardian.DB.on_revoke(claims, token) do
 {:ok, claims}
 end
 end
end

 Summary

 Functions

 after_encode_and_sign(resource, type, claims, jwt)

 After the JWT is generated, stores the various fields of it in the DB for
tracking. If the token type does not match the configured types to be stored,
the claims are passed through.

 on_refresh(arg1, arg2)

 When a token is refreshed, we invalidate the old token and add the new token
in the DB.

 on_revoke(claims, jwt)

 When logging out, or revoking a token, removes from the database so the
token may no longer be used.

 on_verify(claims, jwt)

 When a token is verified, check to make sure that it is present in the DB.
If the token is found, the verification continues, if not an error is
returned.
If the type of the token does not match the configured token storage types,
the claims are passed through.

 revoke_all(sub)

 Revoke all tokens of a given subject. Returns the amount of tokens revoked.

Functions

 Link to this function

 after_encode_and_sign(resource, type, claims, jwt)

 View Source

After the JWT is generated, stores the various fields of it in the DB for
tracking. If the token type does not match the configured types to be stored,
the claims are passed through.

 Link to this function

 on_refresh(arg1, arg2)

 View Source

When a token is refreshed, we invalidate the old token and add the new token
in the DB.

 Link to this function

 on_revoke(claims, jwt)

 View Source

When logging out, or revoking a token, removes from the database so the
token may no longer be used.

 Link to this function

 on_verify(claims, jwt)

 View Source

When a token is verified, check to make sure that it is present in the DB.
If the token is found, the verification continues, if not an error is
returned.
If the type of the token does not match the configured token storage types,
the claims are passed through.

 Link to this function

 revoke_all(sub)

 View Source

Revoke all tokens of a given subject. Returns the amount of tokens revoked.

 Usage

Add to your Guardian module.
defmodule MyApp.AuthTokens do
 use Guardian, otp_app: :my_app

 # snip...

 def revoke_all(resource, claims) do
 with {:ok, sub} <- subject_for_token(resource, claims) do
 Guardian.DB.revoke_all(resource)
 end
 end
end
Then you revoke all tokens of a resource.
MyApp.AuthTokens.revoke_all(resource, %{})

Guardian.DB.Adapter behaviour

The Guardian DB Adapter.
This behaviour allows to use any storage system
for Guardian Tokens.

 Summary

 Callbacks

 delete(schema_or_changeset, opts)

 Deletes JWT token
Used in Guardian.DB.Token.destroy_token/3

 delete_by_sub(sub, opts)

 Purges all JWT tokens for a given subject.

 insert(schema_or_changeset, opts)

 Persists JWT token
Used in Guardian.DB.Token.create/2

 one(claims, opts)

 Retrieves JWT token
Used in Guardian.DB.Token.find_by_claims/1

 purge_expired_tokens(exp, opts)

 Purges all expired JWT tokens.

Callbacks

 Link to this callback

 delete(schema_or_changeset, opts)

 View Source

 @callback delete(schema_or_changeset(), opts()) :: {:ok, schema()} | {:error, changeset()}

Deletes JWT token
Used in Guardian.DB.Token.destroy_token/3

 Link to this callback

 delete_by_sub(sub, opts)

 View Source

 @callback delete_by_sub(sub(), opts()) :: {integer(), nil | [term()]}

Purges all JWT tokens for a given subject.
Returns a tuple containing the number of entries and any returned result as second element.

 Link to this callback

 insert(schema_or_changeset, opts)

 View Source

 @callback insert(schema_or_changeset(), opts()) :: {:ok, schema()} | {:error, changeset()}

Persists JWT token
Used in Guardian.DB.Token.create/2

 Link to this callback

 one(claims, opts)

 View Source

 @callback one(claims(), opts()) :: schema() | nil

Retrieves JWT token
Used in Guardian.DB.Token.find_by_claims/1

 Link to this callback

 purge_expired_tokens(exp, opts)

 View Source

 @callback purge_expired_tokens(exp(), opts()) :: {integer(), nil | [term()]}

Purges all expired JWT tokens.
Returns a tuple containing the number of entries and any returned result as second element.

Guardian.DB.ETSAdapter

Implement the Guardian.DB.Adapter for ETS

Guardian.DB.EctoAdapter

Implement the Guardian.DB.Adapter for Ecto.Repo

Guardian.DB.Sweeper

A GenServer that periodically checks for, and expires, tokens from storage.
To leverage the automated Sweeper functionality update your project's Application
file to include the following child in your supervision tree:

 Example

 worker(Guardian.DB.Sweeper, [interval: 60])

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 purge()

 Manually trigger a database purge of expired tokens. Also resets the current
scheduled work.

 reset_timer()

 Reset the purge timer.

 start_link(opts)

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 purge()

 View Source

Manually trigger a database purge of expired tokens. Also resets the current
scheduled work.

 Link to this function

 reset_timer()

 View Source

Reset the purge timer.

 Link to this function

 start_link(opts)

 View Source

Guardian.DB.Token

A very simple model for storing tokens generated by Guardian.

 Summary

 Functions

 create(claims, jwt)

 Create a new token based on the JWT and decoded claims.

 find_by_claims(claims)

 Find one token by matching jti and aud.

 purge_expired_tokens()

 Purge any tokens that are expired. This should be done periodically to keep
your DB table clean of clutter.

Functions

 Link to this function

 create(claims, jwt)

 View Source

Create a new token based on the JWT and decoded claims.

 Link to this function

 find_by_claims(claims)

 View Source

Find one token by matching jti and aud.

 Link to this function

 purge_expired_tokens()

 View Source

Purge any tokens that are expired. This should be done periodically to keep
your DB table clean of clutter.

mix guardian.db.gen.migration

Generates the required GuardianDb's database migration.
It allows custom schema name, using the config
entry schema_name.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

