

 hackney

 v3.0.1

 Table of contents

 	Overview

 	Getting Started

 	HTTP Guide

 	HTTP/2 Guide

 	HTTP/3 Guide

 	WebSocket Guide

 	Design Guide

 	Migration Guide

 	Changelog

 	Contributing

 	Development

 	License

 	Notice

 	
 Modules

 	hackney

 	hackney_altsvc

 	hackney_app

 	hackney_bstr

 	hackney_cidr

 	hackney_conn

 	hackney_conn_sup

 	hackney_cookie

 	hackney_cow_deflate

 	hackney_cow_hpack

 	hackney_cow_http2

 	hackney_cow_http2_machine

 	hackney_cow_ws

 	hackney_date

 	hackney_h3

 	hackney_happy

 	hackney_headers

 	hackney_http

 	hackney_http_connect

 	hackney_load_regulation

 	hackney_local_tcp

 	hackney_manager

 	hackney_metrics

 	hackney_metrics_backend

 	hackney_metrics_dummy

 	hackney_metrics_prometheus

 	hackney_multipart

 	hackney_pool

 	hackney_pool_sup

 	hackney_pools_sup

 	hackney_quic

 	hackney_socks5

 	hackney_ssl

 	hackney_sup

 	hackney_tcp

 	hackney_trace

 	hackney_url

 	hackney_util

 	hackney_ws

 hackney

An HTTP client for Erlang. Simple, reliable, fast.
[image: Build Status]
[image: Hex pm]
Why hackney?
	HTTP/3 support - Experimental QUIC/HTTP3 via lsquic. Opt-in with {protocols, [http3, http2, http1]}.
	HTTP/2 support - Automatic protocol negotiation via ALPN. Multiplexing, header compression, flow control.
	Process per connection - Each connection runs in its own gen_statem process. Clean isolation, automatic cleanup on crashes.
	Connection pooling - Reuse connections automatically. Configure pools per host or globally.
	Streaming - Stream request bodies, response bodies, or both. Handle large files without loading them in memory.
	Async responses - Get response chunks as messages. Process other work while waiting.
	WebSocket support - Full WebSocket client with the same process-per-connection model.
	IPv6 first - Happy Eyeballs algorithm tries IPv6 before IPv4 for faster connections on modern networks.
	SSL by default - Secure connections with certificate verification using Mozilla's CA bundle.
	Automatic decompression - Transparently decompress gzip/deflate responses with {auto_decompress, true}.

Quick Start
%% Start hackney
application:ensure_all_started(hackney).

%% Simple GET
{ok, 200, _Headers, Body} = hackney:get(<<"https://httpbin.org/get">>, [], <<>>, [with_body]).

%% POST JSON
Headers = [{<<"content-type">>, <<"application/json">>}],
Payload = <<"{\"key\": \"value\"}">>,
{ok, 201, _, _} = hackney:post(<<"https://httpbin.org/post">>, Headers, Payload, [with_body]).

%% Stream large response
{ok, 200, _, Ref} = hackney:get(<<"https://example.com/large-file">>),
stream_body(Ref).

stream_body(Ref) ->
 case hackney:stream_body(Ref) of
 {ok, Chunk} -> io:format("~p bytes~n", [byte_size(Chunk)]), stream_body(Ref);
 done -> ok
 end.
Installation
Rebar3
{deps, [hackney]}.
Mix
{:hackney, "~> 3.0"}
Documentation
	Guide	Description
	Getting Started	Installation, first requests, basic patterns
	HTTP Guide	Requests, responses, streaming, async, pools
	HTTP/2 Guide	HTTP/2 protocol, ALPN, multiplexing, server push
	HTTP/3 Guide	HTTP/3 over QUIC, opt-in configuration, Alt-Svc
	WebSocket Guide	Connect, send, receive, active mode
	Design Guide	Architecture, pooling, load regulation internals
	Migration Guide	Upgrading from hackney 1.x
	API Reference	Full module documentation
	Changelog	Version history

Features
HTTP Methods
All standard HTTP methods as convenient functions:
hackney:get(URL).
hackney:post(URL, Headers, Body).
hackney:put(URL, Headers, Body).
hackney:delete(URL).
hackney:head(URL).
hackney:options(URL).
hackney:patch(URL, Headers, Body).
Connection Pooling
Connections are pooled by default. Configure pools for different use cases:
%% Use default pool
hackney:get(URL).

%% Named pool with custom settings
hackney_pool:start_pool(api_pool, [{max_connections, 100}]),
hackney:get(URL, [], <<>>, [{pool, api_pool}]).

%% No pooling for one-off requests
hackney:get(URL, [], <<>>, [{pool, false}]).
Streaming
Stream request bodies for uploads:
{ok, Ref} = hackney:post(URL, Headers, stream),
hackney:send_body(Ref, <<"chunk 1">>),
hackney:send_body(Ref, <<"chunk 2">>),
hackney:finish_send_body(Ref),
{ok, Status, _, Ref} = hackney:start_response(Ref).
Stream response bodies for downloads:
{ok, 200, _, Ref} = hackney:get(URL),
read_chunks(Ref).

read_chunks(Ref) ->
 case hackney:stream_body(Ref) of
 {ok, Data} -> process(Data), read_chunks(Ref);
 done -> ok
 end.
Async Responses
Receive response data as messages:
{ok, Ref} = hackney:get(URL, [], <<>>, [async]),
receive
 {hackney_response, Ref, {status, 200, _}} -> ok
end,
receive
 {hackney_response, Ref, {headers, Headers}} -> ok
end,
receive_body(Ref).

receive_body(Ref) ->
 receive
 {hackney_response, Ref, done} -> ok;
 {hackney_response, Ref, Bin} -> receive_body(Ref)
 end.
WebSocket
{ok, Conn} = hackney:ws_connect(<<"wss://echo.websocket.org">>),
ok = hackney:ws_send(Conn, {text, <<"hello">>}),
{ok, {text, <<"hello">>}} = hackney:ws_recv(Conn),
hackney:ws_close(Conn).
HTTP/2
HTTP/2 is used automatically when the server supports it:
%% Automatic HTTP/2 via ALPN negotiation
{ok, 200, Headers, Body} = hackney:get(<<"https://nghttp2.org/">>, [], <<>>, [with_body]).

%% Force HTTP/1.1 only
hackney:get(URL, [], <<>>, [{protocols, [http1]}]).

%% Force HTTP/2 only
hackney:get(URL, [], <<>>, [{protocols, [http2]}]).
HTTP/3 (Experimental)
HTTP/3 support is opt-in. Enable it per-request or globally:
%% Enable HTTP/3 for a single request
hackney:get(URL, [], <<>>, [{protocols, [http3, http2, http1]}]).

%% Enable HTTP/3 globally (application-wide)
application:set_env(hackney, default_protocols, [http3, http2, http1]).
Note: HTTP/3 uses QUIC (UDP transport). Some networks may block UDP traffic.
Multipart
Upload files and form data:
Multipart = {multipart, [
 {<<"field">>, <<"value">>},
 {file, <<"/path/to/file.txt">>},
 {file, <<"/path/to/image.png">>, <<"image.png">>, [{<<"content-type">>, <<"image/png">>}]}
]},
hackney:post(URL, [], Multipart).
Proxy Support
%% HTTP proxy
hackney:get(URL, [], <<>>, [{proxy, <<"http://proxy:8080">>}]).

%% With authentication
hackney:get(URL, [], <<>>, [{proxy, <<"http://user:pass@proxy:8080">>}]).

%% Environment variables work automatically
%% HTTP_PROXY, HTTPS_PROXY, NO_PROXY
Redirects
%% Follow redirects automatically
hackney:get(URL, [], <<>>, [{follow_redirect, true}, {max_redirect, 5}]).
Timeouts
hackney:get(URL, [], <<>>, [
 {connect_timeout, 5000}, %% Connection timeout
 {recv_timeout, 30000} %% Response timeout
]).
Automatic Decompression
%% Automatically decompress gzip/deflate responses
hackney:get(URL, [], <<>>, [{auto_decompress, true}, with_body]).
SSL Options
%% Custom CA certificate
hackney:get(URL, [], <<>>, [
 {ssl_options, [{cacertfile, "/path/to/ca.pem"}]}
]).

%% Skip verification (development only)
hackney:get(URL, [], <<>>, [insecure]).
Modules
	Module	Purpose
	hackney	Main API - requests, connections, WebSocket
	hackney_pool	Connection pool management
	hackney_url	URL parsing and encoding
	hackney_headers	Header manipulation
	hackney_multipart	Multipart encoding
	hackney_cookie	Cookie parsing
	hackney_http	HTTP protocol parser

Requirements
Erlang/OTP 27+
Contributing
See CONTRIBUTING.md for guidelines on pull requests and development setup.
Issues and pull requests welcome at https://github.com/benoitc/hackney
Support
Professional support is available via Enki Multimedia. Contact sales@enki-multimedia.eu.
License
Apache 2.0 - See LICENSE and NOTICE
Copyright (c) 2012-2026 Benoit Chesneau

 Getting Started with hackney

This guide walks you through installing hackney and making your first HTTP requests.
Installation
Rebar3 (Erlang)
Add hackney to your rebar.config:
{deps, [hackney]}.
Mix (Elixir)
Add to your mix.exs:
{:hackney, "~> 3.0"}
Starting hackney
hackney is an OTP application. Start it before making requests:
application:ensure_all_started(hackney).
Your First Request
Simple GET
{ok, 200, Headers, Ref} = hackney:get(<<"https://httpbin.org/get">>).
Reading the Body
{ok, Body} = hackney:body(Ref).
One-Step Request with Body
Use with_body to get the body directly:
{ok, 200, Headers, Body} = hackney:get(URL, [], <<>>, [with_body]).
POST Requests
Simple POST
URL = <<"https://httpbin.org/post">>,
Headers = [{<<"content-type">>, <<"application/json">>}],
Body = <<"{\"name\": \"hackney\"}">>,
{ok, 200, _, Ref} = hackney:post(URL, Headers, Body).
Form Data
hackney:post(URL, [], {form, [{<<"key">>, <<"value">>}]}).
Multipart / File Upload
hackney:post(URL, [], {multipart, [
 {<<"field">>, <<"value">>},
 {file, <<"/path/to/file.txt">>}
]}).
Request Options
	Option	Description
	with_body	Return body in response tuple
	{pool, Name}	Use named connection pool
	{pool, false}	Don't use pooling
	{connect_timeout, Ms}	Connection timeout (default: 8000)
	{recv_timeout, Ms}	Response timeout (default: 5000)
	async	Receive response as messages
	{follow_redirect, true}	Follow redirects
	insecure	Skip SSL verification

Connection Pooling
hackney pools connections by default:
%% Create a pool
hackney_pool:start_pool(api_pool, [{max_connections, 50}]).

%% Use the pool
hackney:get(URL, [], <<>>, [{pool, api_pool}]).

%% Disable pooling
hackney:get(URL, [], <<>>, [{pool, false}]).
Error Handling
case hackney:get(URL) of
 {ok, Status, Headers, Ref} ->
 {ok, Body} = hackney:body(Ref);
 {error, timeout} ->
 handle_timeout();
 {error, Reason} ->
 handle_error(Reason)
end.
Next Steps
	HTTP Guide - Streaming, async responses, advanced features
	WebSocket Guide - Real-time bidirectional communication
	Migration Guide - Upgrading from hackney 1.x

 HTTP Guide

This guide covers hackney's HTTP features in depth.
Request Anatomy
hackney:request(Method, URL, Headers, Body, Options) ->
 {ok, StatusCode, RespHeaders, Body} | {error, Reason}
Body is always returned directly in the response for consistent behavior across HTTP/1.1, HTTP/2, and HTTP/3.
Request Bodies
Binary Body
hackney:post(URL,
 [{<<"content-type">>, <<"application/json">>}],
 <<"{\"key\": \"value\"}">>
).
Form-Encoded Body
hackney:post(URL, [], {form, [{<<"key">>, <<"value">>}]}).
Multipart Body
Multipart requests are used to upload files and send form data together.
Basic File Upload
hackney:post(URL, [], {multipart, [
 {<<"field">>, <<"value">>},
 {file, <<"/path/to/file.txt">>}
]}).
File Upload with Custom Field Name
Use {file, Path, FieldName, ExtraHeaders} to specify the form field name:
%% Upload file to "attachment" field instead of default "file"
hackney:post(URL, [], {multipart, [
 {file, <<"/path/to/document.pdf">>, <<"attachment">>, []}
]}).
File Upload with Full Control
For complete control over the Content-Disposition header:
Path = <<"/path/to/photo.jpg">>,
FName = hackney_bstr:to_binary(filename:basename(Path)),
Disposition = {<<"form-data">>,
 [{<<"name">>, <<"photo">>},
 {<<"filename">>, FName}]},
hackney:post(URL, [], {multipart, [
 {file, Path, Disposition, []}
]}).
Mixed File and Text Fields
Combine file uploads with text fields:
hackney:post(URL, [], {multipart, [
 {file, <<"/path/to/image.jpg">>, <<"image">>, []},
 {<<"title">>, <<"My Photo">>},
 {<<"description">>, <<"A nice picture">>}
]}).
Text Fields with Explicit Content-Type
Some servers require explicit content-type for text fields:
hackney:post(URL, [], {multipart, [
 {file, <<"/path/to/doc.pdf">>, <<"document">>, []},
 {<<"name">>, <<"Report">>, [{<<"content-type">>, <<"text/plain">>}]}
]}).
Supported Part Formats
	Format	Description
	{file, Path}	File with auto-generated field name
	{file, Path, ExtraHeaders}	File with extra headers
	{file, Path, FieldName, ExtraHeaders}	File with custom field name
	{file, Path, {Disposition, Params}, ExtraHeaders}	Full control
	{Name, Data}	Text field (Data must be binary)
	{Name, Data, ExtraHeaders}	Text field with headers
	{Name, Data, Disposition, ExtraHeaders}	Text field with full control

Streaming Body
{ok, Ref} = hackney:post(URL, Headers, stream),
ok = hackney:send_body(Ref, <<"chunk1">>),
ok = hackney:send_body(Ref, <<"chunk2">>),
ok = hackney:finish_send_body(Ref),
{ok, Status, RespHeaders, Ref} = hackney:start_response(Ref).
Response Handling
Read Full Body
%% Body is returned directly
{ok, 200, Headers, Body} = hackney:get(URL).
Automatic Decompression
Hackney can automatically decompress gzip and deflate encoded responses:
{ok, 200, Headers, Body} = hackney:get(URL, [], <<>>, [
 {auto_decompress, true}
]).
When auto_decompress is enabled:
	Adds Accept-Encoding: gzip, deflate header to requests
	Automatically decompresses the response body based on Content-Encoding
	Supports gzip, deflate, and x-gzip encodings
	Non-compressed responses are returned unchanged

Stream Response Body (Async Mode)
For incremental body streaming, use async mode:
{ok, Ref} = hackney:get(URL, [], <<>>, [async]),
stream_loop(Ref).

stream_loop(Ref) ->
 receive
 {hackney_response, Ref, {status, Status, _}} ->
 io:format("Status: ~p~n", [Status]),
 stream_loop(Ref);
 {hackney_response, Ref, {headers, Headers}} ->
 io:format("Headers: ~p~n", [Headers]),
 stream_loop(Ref);
 {hackney_response, Ref, done} ->
 ok;
 {hackney_response, Ref, Chunk} when is_binary(Chunk) ->
 process_chunk(Chunk),
 stream_loop(Ref)
 end.
HTTP/2 Support
Hackney automatically negotiates HTTP/2 for HTTPS connections via ALPN.
Response format is consistent across all protocols - body is always returned directly.
Automatic HTTP/2
%% HTTP/2 used automatically when server supports it
{ok, 200, Headers, Body} = hackney:get(<<"https://nghttp2.org/">>).
Force Protocol
%% HTTP/2 only
hackney:get(URL, [], <<>>, [{protocols, [http2]}]).

%% HTTP/1.1 only
hackney:get(URL, [], <<>>, [{protocols, [http1]}]).
Detect Protocol
HTTP/2 responses have lowercase header names:
case hd(Headers) of
 {<<"date">>, _} -> http2;
 {<<"Date">>, _} -> http1
end.
For details on multiplexing, server push, and architecture, see the HTTP/2 Guide.
Async Responses
{ok, Ref} = hackney:get(URL, [], <<>>, [async]),
receive
 {hackney_response, Ref, {status, Status, _}} -> ok
end,
receive
 {hackney_response, Ref, {headers, Headers}} -> ok
end,
receive
 {hackney_response, Ref, done} -> ok;
 {hackney_response, Ref, Bin} -> ok
end.
Async Once
{ok, Ref} = hackney:get(URL, [], <<>>, [{async, once}]),
receive {hackney_response, Ref, Msg} -> ok end,
hackney:stream_next(Ref). %% Request next message
Stream to Another Process
Use stream_to to send async messages to a different process:
Receiver = spawn(fun() -> receive_loop() end),
{ok, Ref} = hackney:get(URL, [], <<>>, [
 async,
 {stream_to, Receiver}
]).
When stream_to is specified:
	The connection is owned by the stream_to process, not the caller
	If stream_to dies, the connection terminates
	If the original caller dies, the connection continues as long as stream_to is alive
	This ensures proper cleanup when the message recipient terminates

Connection Pooling
Default Pool
hackney:get(URL). %% Uses default pool
Named Pools
hackney_pool:start_pool(my_api, [
 {max_connections, 100},
 {timeout, 150000}
]),
hackney:get(URL, [], <<>>, [{pool, my_api}]).
Manual Connection Management
For fine-grained control, you can create a connection and reuse it for multiple requests. This works for both HTTP/1.1 and HTTP/2.
Get a Connection
%% Connect to a host (returns a connection PID)
{ok, ConnPid} = hackney:connect(hackney_ssl, "example.com", 443, []).

%% Or from a URL
{ok, ConnPid} = hackney:connect(<<"https://example.com">>).
Check the Protocol
%% See which protocol was negotiated
Protocol = hackney_conn:get_protocol(ConnPid). %% http1 | http2 | http3
Send Requests on the Connection
%% Send multiple requests on the same connection
{ok, 200, Headers1, Body1} = hackney:send_request(ConnPid, {get, <<"/api/users">>, [], <<>>}).
{ok, 201, Headers2, Body2} = hackney:send_request(ConnPid, {post, <<"/api/users">>,
 [{<<"content-type">>, <<"application/json">>}],
 <<"{\"name\": \"Alice\"}">>}).
{ok, 200, Headers3, Body3} = hackney:send_request(ConnPid, {get, <<"/api/users/1">>, [], <<>>}).
Close the Connection
hackney:close(ConnPid).
Complete Example
%% Reuse a connection for multiple API calls
{ok, Conn} = hackney:connect(hackney_ssl, "api.example.com", 443, []),

%% Check protocol (optional)
case hackney_conn:get_protocol(Conn) of
 http2 -> io:format("Using HTTP/2 multiplexing~n");
 http1 -> io:format("Using HTTP/1.1 keep-alive~n")
end,

%% Make requests
{ok, 200, _, Token} = hackney:send_request(Conn, {post, <<"/auth">>, [], Credentials}),
{ok, 200, _, Users} = hackney:send_request(Conn, {get, <<"/users">>, AuthHeaders, <<>>}),
{ok, 200, _, Data} = hackney:send_request(Conn, {get, <<"/data">>, AuthHeaders, <<>>}),

%% Clean up
hackney:close(Conn).
HTTP/1.1 vs HTTP/2 Behavior
	Aspect	HTTP/1.1	HTTP/2
	Requests	Sequential (one at a time)	Multiplexed (concurrent)
	Connection	Keep-alive between requests	Single connection, multiple streams
	Use case	Simple sequential calls	High-throughput parallel calls

For HTTP/2 multiplexing (parallel requests on one connection), see the HTTP/2 Guide.
Redirects
{ok, 200, Headers, Body} = hackney:get(URL, [], <<>>, [
 {follow_redirect, true},
 {max_redirect, 5}
]).
Proxies
HTTP Proxy
hackney:get(URL, [], <<>>, [
 {proxy, <<"http://proxy:8080">>}
]).
Environment Variables
hackney reads HTTP_PROXY, HTTPS_PROXY, NO_PROXY automatically.
SSL/TLS
Custom CA Certificate
hackney:get(URL, [], <<>>, [
 {ssl_options, [{cacertfile, "/path/to/ca.crt"}]}
]).
Skip Verification
hackney:get(URL, [], <<>>, [insecure]).
Timeouts
hackney:get(URL, [], <<>>, [
 {connect_timeout, 5000},
 {recv_timeout, 30000}
]).
Cookies
hackney:get(URL, [], <<>>, [{cookie, <<"session=abc">>}]).

%% Parse response cookies
{ok, 200, Headers, _} = hackney:get(URL),
Cookies = hackney:cookies(Headers).
Basic Authentication
hackney:get(URL, [], <<>>, [
 {basic_auth, {<<"user">>, <<"pass">>}}
]).
Next Steps
	HTTP/2 Guide - Multiplexing, server push, architecture
	WebSocket Guide
	Migration Guide

 HTTP/2 Guide

This guide covers hackney's HTTP/2 support.
Overview
Hackney supports HTTP/2 with automatic protocol negotiation via ALPN (Application-Layer Protocol Negotiation). When connecting to an HTTPS server that supports HTTP/2, hackney will automatically use it.
Key Features
	Automatic negotiation - HTTP/2 is negotiated during TLS handshake via ALPN
	Transparent API - Same hackney:get/post/request functions work for both HTTP/1.1 and HTTP/2
	Multiplexing - Multiple requests share a single connection
	Header compression - HPACK compression reduces overhead
	Flow control - Automatic window management
	Server push - Optional support for server-initiated streams

Quick Start
%% HTTP/2 is used automatically for HTTPS when server supports it
{ok, 200, Headers, Body} = hackney:get(<<"https://nghttp2.org/">>).

%% Headers are lowercase in HTTP/2
{<<"server">>, Server} = lists:keyfind(<<"server">>, 1, Headers).
Protocol Selection
Default Behavior
By default, hackney advertises both HTTP/2 and HTTP/1.1 via ALPN, preferring HTTP/2:
%% Server chooses protocol (usually HTTP/2 if supported)
hackney:get(<<"https://example.com/">>).
Force HTTP/2 Only
hackney:get(URL, [], <<>>, [{protocols, [http2]}]).
Force HTTP/1.1 Only
hackney:get(URL, [], <<>>, [{protocols, [http1]}]).
Specify Preference Order
%% Prefer HTTP/1.1, fall back to HTTP/2
hackney:get(URL, [], <<>>, [{protocols, [http1, http2]}]).
Detecting the Protocol
HTTP/2 responses have lowercase header names, while HTTP/1.1 preserves the original case:
{ok, 200, Headers, Body} = hackney:get(URL),

%% Check first header's key
case hd(Headers) of
 {<<"date">>, _} -> io:format("HTTP/2~n");
 {<<"Date">>, _} -> io:format("HTTP/1.1~n")
end.
For low-level access, use hackney_conn directly:
{ok, Conn} = hackney_conn:start_link(#{
 host => "nghttp2.org",
 port => 443,
 transport => hackney_ssl
}),
ok = hackney_conn:connect(Conn, 10000),
Protocol = hackney_conn:get_protocol(Conn). %% http2 | http1
HTTP/2 vs HTTP/1.1 Differences
Header Names
	HTTP/2	HTTP/1.1
	<<"content-type">>	<<"Content-Type">>
	<<"cache-control">>	<<"Cache-Control">>

Always use case-insensitive header lookups:
find_header(Name, Headers) ->
 NameLower = hackney_bstr:to_lower(Name),
 case lists:filter(
 fun({K, _}) -> hackney_bstr:to_lower(K) =:= NameLower end,
 Headers
) of
 [{_, V} | _] -> V;
 [] -> undefined
 end.
Response Format
Response format is now consistent across all protocols (HTTP/1.1, HTTP/2, and HTTP/3):
%% All protocols return the same format
{ok, Status, Headers, Body} = hackney:get(URL).
For incremental body streaming, use async mode:
{ok, Ref} = hackney:get(URL, [], <<>>, [async]),
receive
 {hackney_response, Ref, {status, Status, _}} -> ok
end,
receive
 {hackney_response, Ref, {headers, Headers}} -> ok
end,
receive
 {hackney_response, Ref, done} -> ok;
 {hackney_response, Ref, Chunk} -> process(Chunk)
end.
Connection Multiplexing
HTTP/2 allows multiple concurrent requests on a single connection. Unlike HTTP/1.1 where each request needs its own connection, HTTP/2 multiplexes requests as independent "streams" on a shared connection.
Automatic Multiplexing
When using the high-level API, hackney automatically reuses HTTP/2 connections:
%% All three requests share ONE TCP connection
{ok, _, _, _} = hackney:get(<<"https://nghttp2.org/">>).
{ok, _, _, _} = hackney:get(<<"https://nghttp2.org/blog/">>).
{ok, _, _, _} = hackney:get(<<"https://nghttp2.org/documentation/">>).
You can verify this:
{ok, Conn1} = hackney:connect(hackney_ssl, "nghttp2.org", 443, []).
{ok, Conn2} = hackney:connect(hackney_ssl, "nghttp2.org", 443, []).
{ok, Conn3} = hackney:connect(hackney_ssl, "nghttp2.org", 443, []).

Conn1 =:= Conn2. %% true - same PID
Conn2 =:= Conn3. %% true - same PID
Explicit Connection Reuse
For more control, get a connection and reuse it directly:
%% 1. Get a connection
{ok, Conn} = hackney:connect(hackney_ssl, "nghttp2.org", 443, []).

%% 2. Verify HTTP/2
http2 = hackney_conn:get_protocol(Conn).

%% 3. Make multiple requests on same connection
{ok, 200, _, _} = hackney:send_request(Conn, {get, <<"/">>, [], <<>>}).
{ok, 200, _, _} = hackney:send_request(Conn, {get, <<"/blog/">>, [], <<>>}).
{ok, 200, _, _} = hackney:send_request(Conn, {get, <<"/">>, [], <<>>}).

%% 4. Close when done
hackney:close(Conn).
Concurrent Requests
Fire multiple requests in parallel on the same connection:
{ok, Conn} = hackney:connect(hackney_ssl, "nghttp2.org", 443, []).

%% Spawn 3 concurrent requests
Self = self(),
Paths = [<<"/">>, <<"/blog/">>, <<"/documentation/">>],
[spawn(fun() ->
 Result = hackney:send_request(Conn, {get, Path, [], <<>>}),
 Self ! {Path, Result}
end) || Path <- Paths].

%% Collect responses (may arrive out of order due to multiplexing)
[receive {Path, {ok, Status, _, _}} -> {Path, Status} end || _ <- Paths].
How It Works (Architecture)
┌───┐
│ hackney_pool │
│ │
│ h2_connections = #{ {Host, Port, Transport} => Pid } │
│ │
│ checkout_h2(Host, Port, ...) -> │
│ case maps:get(Key, h2_connections) of │
│ Pid -> {ok, Pid}; %% Reuse existing │
│ undefined -> none %% Create new │
│ end │
│ │
│ register_h2(Host, Port, ..., Pid) -> │
│ h2_connections#{Key => Pid} %% Store for reuse │
└───┘
 │
 ▼
┌───┐
│ hackney_conn (gen_statem process) │
│ │
│ h2_machine = <HTTP/2 state machine> │
│ │
│ h2_streams = #{ │
│ 1 => {CallerA, waiting_response}, │
│ 3 => {CallerB, waiting_response}, │
│ 5 => {CallerC, waiting_response} │
│ } │
│ │
│ Request from CallerA → init_stream() → StreamId=1 │
│ Request from CallerB → init_stream() → StreamId=3 │
│ Request from CallerC → init_stream() → StreamId=5 │
│ │
│ Response for StreamId=3 arrives: │
│ → lookup h2_streams[3] → CallerB │
│ → gen_statem:reply(CallerB, {ok, Status, Headers, Body}) │
└───┘
Key points:
	One connection per host - The pool stores at most one HTTP/2 connection per {Host, Port, Transport} tuple
	Connection sharing - Unlike HTTP/1.1, HTTP/2 connections are not "checked out" exclusively; multiple callers share the same connection
	Stream isolation - Each request gets a unique StreamId; responses are routed back to the correct caller via the h2_streams map
	Automatic registration - When a new SSL connection negotiates HTTP/2, it's automatically registered in the pool for future reuse

Server Push
Server push allows the server to send resources before the client requests them. By default, hackney rejects server pushes. To handle them:
%% Using low-level API with push handler
{ok, Conn} = hackney_conn:start_link(#{
 host => "example.com",
 port => 443,
 transport => hackney_ssl,
 enable_push => self() %% Receive push notifications
}),

%% Push notifications arrive as messages:
%% {hackney_push, ConnPid, {PromisedStreamId, Method, Scheme, Authority, Path, Headers}}
Flow Control
HTTP/2 has built-in flow control to prevent fast senders from overwhelming slow receivers. Hackney handles this automatically:
	Sends WINDOW_UPDATE frames as data is consumed
	Respects server's flow control windows when sending

No configuration is needed for most use cases.
Error Handling
HTTP/2 specific errors:
case hackney:get(URL) of
 {ok, Status, Headers, Body} ->
 ok;
 {error, {h2_connection_error, ErrorCode}} ->
 %% HTTP/2 connection-level error
 io:format("HTTP/2 error: ~p~n", [ErrorCode]);
 {error, closed} ->
 %% Connection closed (GOAWAY received)
 ok;
 {error, Reason} ->
 io:format("Error: ~p~n", [Reason])
end.
Performance Tips
Reuse Connections
HTTP/2's multiplexing works best with connection reuse:
%% Good: connections are reused
[hackney:get(URL, [], <<>>, [{pool, default}]) || _ <- lists:seq(1, 100)].

%% Bad: new connection each time
[hackney:get(URL, [], <<>>, [{pool, false}]) || _ <- lists:seq(1, 100)].
Concurrent Requests
Take advantage of multiplexing for parallel requests:
Parent = self(),
URLs = [<<"https://api.example.com/1">>, <<"https://api.example.com/2">>],
Pids = [spawn_link(fun() ->
 Result = hackney:get(URL),
 Parent ! {self(), Result}
end) || URL <- URLs],
Results = [receive {Pid, R} -> R end || Pid <- Pids].
Compatibility
Server Requirements
HTTP/2 requires:
	TLS 1.2 or higher
	ALPN support
	Server HTTP/2 support

Plain HTTP/2 (h2c) is not currently supported.
Fallback
If the server doesn't support HTTP/2, hackney automatically falls back to HTTP/1.1:
%% Works regardless of server HTTP/2 support
{ok, _, _, _} = hackney:get(<<"https://example.com/">>).
Examples
Elixir
Start hackney
Application.ensure_all_started(:hackney)

HTTP/2 request - body is returned directly
{:ok, status, headers, body} = :hackney.get("https://nghttp2.org/")

Check protocol via header case
case headers do
 [{"date", _} | _] -> IO.puts("HTTP/2")
 [{"Date", _} | _] -> IO.puts("HTTP/1.1")
end
Force Protocol
%% HTTP/2 only - fails if server doesn't support it
{ok, _, _, _} = hackney:get(URL, [], <<>>, [{protocols, [http2]}]).

%% HTTP/1.1 only - never uses HTTP/2
{ok, _, _, _} = hackney:get(URL, [], <<>>, [{protocols, [http1]}]).
Troubleshooting
HTTP/2 Not Being Used
	Check if server supports HTTP/2:
curl -v --http2 https://example.com/ 2>&1 | grep -i alpn

	Verify TLS is being used (HTTP/2 requires HTTPS)

	Check for explicit {protocols, [http1]} in options

Connection Errors
If you see {error, closed} immediately after connect:
	Server may have sent GOAWAY frame
	TLS handshake may have failed
	Check server logs for details

Next Steps
	HTTP Guide - General HTTP features
	WebSocket Guide - WebSocket support
	Design Guide - Architecture details

 HTTP/3 Guide

This guide covers hackney's HTTP/3 support via QUIC.
Overview
Hackney supports HTTP/3, the latest version of HTTP built on QUIC (UDP-based transport). HTTP/3 offers improved performance, especially on lossy networks, with features like connection migration and zero round-trip connection establishment.
Key Features
	QUIC transport - UDP-based, encrypted by default with TLS 1.3
	Transparent API - Same hackney:get/post/request functions work for HTTP/3
	Multiplexing - Multiple streams without head-of-line blocking
	Alt-Svc discovery - Automatic HTTP/3 endpoint detection from Alt-Svc headers
	Connection pooling - HTTP/3 connections shared across callers
	Negative caching - Failed H3 attempts cached to avoid repeated failures

Requirements
HTTP/3 support requires the QUIC NIF to be built. Check availability:
hackney_quic:is_available(). %% true | false
The NIF is built automatically with rebar3 compile if dependencies (cmake, zlib) are available.
Quick Start
%% HTTP/3 request with explicit protocol selection
{ok, 200, Headers, Body} = hackney:get(
 <<"https://cloudflare.com/cdn-cgi/trace">>,
 [],
 <<>>,
 [{protocols, [http3]}, with_body]
).

%% Body contains: http=http/3
Protocol Selection
Default Behavior
By default, hackney uses HTTP/2 and HTTP/1.1 (not HTTP/3):
%% Default: [http2, http1]
hackney:get(<<"https://example.com/">>).
Enable HTTP/3
Add http3 to the protocols list:
%% Try HTTP/3 first, fall back to HTTP/2, then HTTP/1.1
hackney:get(URL, [], <<>>, [{protocols, [http3, http2, http1]}]).
Force HTTP/3 Only
%% HTTP/3 only - fails if H3 unavailable
hackney:get(URL, [], <<>>, [{protocols, [http3]}]).
Force HTTP/2 Only
hackney:get(URL, [], <<>>, [{protocols, [http2]}]).
Force HTTP/1.1 Only
hackney:get(URL, [], <<>>, [{protocols, [http1]}]).
Detecting the Protocol
Check the negotiated protocol on a connection:
{ok, Conn} = hackney:connect(hackney_ssl, "cloudflare.com", 443,
 [{protocols, [http3]}]),
Protocol = hackney_conn:get_protocol(Conn). %% http3 | http2 | http1
hackney:close(Conn).
Or verify via Cloudflare's trace endpoint:
{ok, 200, _, Body} = hackney:get(
 <<"https://cloudflare.com/cdn-cgi/trace">>,
 [], <<>>,
 [{protocols, [http3]}, with_body]
),
%% Body contains "http=http/3" if using HTTP/3
Alt-Svc Discovery
Servers advertise HTTP/3 support via the Alt-Svc response header:
Alt-Svc: h3=":443"; ma=86400
Hackney automatically caches these and uses HTTP/3 on subsequent requests:
%% First request uses HTTP/2 or HTTP/1.1
%% Server returns Alt-Svc: h3=":443"; ma=86400
{ok, _, Headers1, _} = hackney:get(URL, [], <<>>, [{protocols, [http3, http2, http1]}]).

%% Alt-Svc is now cached, second request uses HTTP/3
{ok, _, Headers2, _} = hackney:get(URL, [], <<>>, [{protocols, [http3, http2, http1]}]).
Manual Alt-Svc Cache Management
%% Check if HTTP/3 is cached for a host
hackney_altsvc:lookup(<<"example.com">>, 443).
%% {ok, h3, 443} | none

%% Manually cache HTTP/3 endpoint
hackney_altsvc:cache(<<"example.com">>, 443, 443, 86400).

%% Clear cached entry
hackney_altsvc:clear(<<"example.com">>, 443).

%% Clear all cached entries
hackney_altsvc:clear_all().
Connection Multiplexing
Like HTTP/2, HTTP/3 multiplexes requests as streams on a single QUIC connection:
%% All requests share ONE QUIC connection
{ok, _, _, _} = hackney:get(<<"https://cloudflare.com/">>,
 [], <<>>, [{protocols, [http3]}]).
{ok, _, _, _} = hackney:get(<<"https://cloudflare.com/cdn-cgi/trace">>,
 [], <<>>, [{protocols, [http3]}]).
Architecture
┌───┐
│ hackney_pool │
│ │
│ h3_connections = #{ {Host, Port, Transport} => Pid } │
│ │
│ checkout_h3(Host, Port, ...) -> │
│ case maps:get(Key, h3_connections) of │
│ Pid -> {ok, Pid}; %% Reuse existing │
│ undefined -> none %% Create new │
│ end │
│ │
│ register_h3(Host, Port, ..., Pid) -> │
│ h3_connections#{Key => Pid} %% Store for reuse │
└───┘
 │
 ▼
┌───┐
│ hackney_conn (gen_statem process) │
│ │
│ h3_conn = <QUIC connection reference> │
│ │
│ h3_streams = #{ │
│ 0 => {CallerA, waiting_headers, <<>>}, │
│ 4 => {CallerB, waiting_headers, <<>>}, │
│ 8 => {CallerC, waiting_headers, <<>>} │
│ } │
│ │
│ Request from CallerA → open_stream() → StreamId=0 │
│ Request from CallerB → open_stream() → StreamId=4 │
│ Request from CallerC → open_stream() → StreamId=8 │
│ │
│ Response for StreamId=4 arrives: │
│ → lookup h3_streams[4] → CallerB │
│ → gen_statem:reply(CallerB, {ok, Status, Headers, Body}) │
└───┘
UDP Blocking and Fallback
Some networks block UDP traffic, which prevents HTTP/3 from working. Hackney handles this with negative caching:
%% If HTTP/3 fails, host is marked as blocked for 5 minutes
%% Subsequent requests skip HTTP/3 and use HTTP/2 or HTTP/1.1

%% Check if host is marked as H3-blocked
hackney_altsvc:is_h3_blocked(<<"example.com">>, 443). %% true | false

%% Manually mark as blocked (e.g., for testing)
hackney_altsvc:mark_h3_blocked(<<"example.com">>, 443).
HTTP/3 vs HTTP/2 Differences
	Feature	HTTP/3	HTTP/2
	Transport	QUIC (UDP)	TCP
	TLS	Built-in (TLS 1.3)	Separate layer
	Head-of-line blocking	Per-stream only	Connection-wide
	Connection migration	Supported	Not supported
	0-RTT resumption	Supported	Not supported

Header Format
Both HTTP/2 and HTTP/3 use lowercase header names:
%% HTTP/3 headers (same as HTTP/2)
[{<<":status">>, <<"200">>},
 {<<"content-type">>, <<"text/html">>},
 {<<"server">>, <<"cloudflare">>}]
Error Handling
case hackney:get(URL, [], <<>>, [{protocols, [http3]}]) of
 {ok, Status, Headers, Body} ->
 ok;
 {error, {quic_error, Code, Reason}} ->
 %% QUIC-level error
 io:format("QUIC error ~p: ~s~n", [Code, Reason]);
 {error, timeout} ->
 %% Connection timeout (possibly UDP blocked)
 io:format("Timeout - UDP may be blocked~n");
 {error, Reason} ->
 io:format("Error: ~p~n", [Reason])
end.
Performance Tips
Use HTTP/3 for Unreliable Networks
HTTP/3's per-stream flow control and connection migration work well on mobile or lossy networks:
%% Good for mobile apps
Opts = [{protocols, [http3, http2, http1]}, {connect_timeout, 10000}].
Connection Reuse
HTTP/3 connections are expensive to establish. Use pooling:
%% Good: connections are reused via pool
[hackney:get(URL, [], <<>>, [{pool, default}, {protocols, [http3]}])
 || _ <- lists:seq(1, 100)].

%% Bad: new QUIC handshake each time
[hackney:get(URL, [], <<>>, [{pool, false}, {protocols, [http3]}])
 || _ <- lists:seq(1, 100)].
Compatibility
Server Requirements
HTTP/3 requires servers that support:
	QUIC (RFC 9000)
	HTTP/3 (RFC 9114)

Major CDNs with HTTP/3 support:
	Cloudflare
	Google
	Fastly
	Akamai

Checking Server Support
Using curl
curl -v --http3 https://cloudflare.com/ 2>&1 | grep -i http/3

Check Alt-Svc header
curl -v https://cloudflare.com/ 2>&1 | grep -i alt-svc

Fallback
If HTTP/3 is unavailable, hackney falls back to HTTP/2 or HTTP/1.1:
%% Works regardless of H3 support (if http2/http1 in protocols)
{ok, _, _, _} = hackney:get(URL, [], <<>>,
 [{protocols, [http3, http2, http1]}]).
Examples
Elixir
Start hackney
Application.ensure_all_started(:hackney)

HTTP/3 request
{:ok, status, headers, body} = :hackney.get(
 "https://cloudflare.com/cdn-cgi/trace",
 [],
 "",
 [{:protocols, [:http3]}, :with_body]
)

Verify HTTP/3
String.contains?(body, "http=http/3") # true
Force Protocol
%% HTTP/3 only - fails if server doesn't support it or UDP blocked
{ok, _, _, _} = hackney:get(URL, [], <<>>, [
 with_body,
 {protocols, [http3]}
]).

%% HTTP/2 only - never uses HTTP/3
{ok, _, _, _} = hackney:get(URL, [], <<>>, [
 with_body,
 {protocols, [http2]}
]).
Troubleshooting
HTTP/3 Not Being Used
	Check if QUIC NIF is loaded:
hackney_quic:is_available(). %% Should be true

	Check if http3 is in protocols list

	Check if host is marked as blocked:
hackney_altsvc:is_h3_blocked(Host, Port).

	Verify server supports HTTP/3:
curl -v --http3 https://example.com/

Connection Timeouts
UDP may be blocked by firewalls. Try:
	Use fallback protocols: {protocols, [http3, http2, http1]}
	Check if other HTTP/3 sites work (e.g., cloudflare.com)
	Check firewall/network settings for UDP port 443

Build Issues
If QUIC NIF fails to build:
	Ensure cmake is installed
	Ensure zlib development headers are available
	Check build output for errors:rebar3 compile 2>&1 | grep -i error

Next Steps
	HTTP/2 Guide - HTTP/2 features
	HTTP Guide - General HTTP features
	Design Guide - Architecture details

 WebSocket Guide

hackney provides a WebSocket client with process-per-connection architecture.
Quick Start
{ok, Conn} = hackney:ws_connect(<<"wss://echo.websocket.org">>),
ok = hackney:ws_send(Conn, {text, <<"Hello!">>}),
{ok, {text, <<"Hello!">>}} = hackney:ws_recv(Conn),
hackney:ws_close(Conn).
Connecting
Simple Connection
{ok, Conn} = hackney:ws_connect(<<"wss://example.com/socket">>).
Connection with Options
{ok, Conn} = hackney:ws_connect(<<"wss://example.com/socket">>, [
 {connect_timeout, 5000},
 {recv_timeout, 30000},
 {headers, [{<<"authorization">>, <<"Bearer token">>}]},
 {protocols, [<<"graphql-ws">>]}
]).
Available Options
	Option	Default	Description
	connect_timeout	8000	TCP connection timeout (ms)
	recv_timeout	infinity	Receive timeout (ms)
	headers	[]	Extra headers for upgrade
	protocols	[]	Sec-WebSocket-Protocol values
	active	false	Active mode: false, true, once
	ssl_options	[]	SSL options for wss://

Sending Messages
Text Messages
ok = hackney:ws_send(Conn, {text, <<"Hello">>}).
Binary Messages
ok = hackney:ws_send(Conn, {binary, <<1, 2, 3>>}).
Ping/Pong
ok = hackney:ws_send(Conn, ping).
ok = hackney:ws_send(Conn, {ping, <<"heartbeat">>}).
Receiving Messages
Passive Mode (Default)
{ok, Frame} = hackney:ws_recv(Conn).
{ok, Frame} = hackney:ws_recv(Conn, 5000). %% With timeout
Frame Types
case hackney:ws_recv(Conn) of
 {ok, {text, Text}} -> handle_text(Text);
 {ok, {binary, Data}} -> handle_binary(Data);
 {ok, ping} -> ok; %% Auto-responded
 {ok, pong} -> ok;
 {error, {closed, Code, Reason}} -> handle_close(Code)
end.
Active Mode
Enable Active Mode
{ok, Conn} = hackney:ws_connect(URL, [{active, true}]).
%% Or later:
hackney:ws_setopts(Conn, [{active, true}]).
Receive Messages
receive
 {hackney_ws, Conn, {text, Text}} -> handle(Text);
 {hackney_ws, Conn, closed} -> done;
 {hackney_ws_error, Conn, Reason} -> error
end.
Active Once
{ok, Conn} = hackney:ws_connect(URL, [{active, once}]),
receive {hackney_ws, Conn, Frame} -> ok end,
hackney:ws_setopts(Conn, [{active, once}]). %% Get next
Closing Connections
hackney:ws_close(Conn).
hackney:ws_close(Conn, {1000, <<"Goodbye">>}).
Close Codes
	Code	Meaning
	1000	Normal closure
	1001	Going away
	1002	Protocol error

Example: Chat Client
-module(chat).
-export([start/1, send/2]).

start(URL) ->
 {ok, Conn} = hackney:ws_connect(URL, [{active, true}]),
 spawn(fun() -> loop(Conn) end),
 Conn.

send(Conn, Msg) ->
 hackney:ws_send(Conn, {text, Msg}).

loop(Conn) ->
 receive
 {hackney_ws, Conn, {text, Text}} ->
 io:format("~s~n", [Text]),
 loop(Conn);
 {hackney_ws, Conn, closed} ->
 ok
 end.
Error Handling
case hackney:ws_connect(URL) of
 {ok, Conn} -> use(Conn);
 {error, {http_error, 401}} -> unauthorized;
 {error, timeout} -> timeout;
 {error, Reason} -> {error, Reason}
end.
Next Steps
	HTTP Guide
	Getting Started

 Hackney Architecture

This document describes the internal architecture of hackney 3.x, including the process-per-connection model, connection pooling, load regulation, and SSL handling.
Overview
Hackney uses a process-per-connection architecture where each HTTP connection runs in its own gen_statem process. This design provides:
	Clean isolation - Each connection has its own state, no shared mutable state
	Automatic cleanup - Process crashes clean up sockets automatically
	Simple ownership - Socket always owned by connection process
	OTP supervision - Standard supervisor tree for fault tolerance

hackney_sup
├── hackney_manager (connection registry)
├── hackney_conn_sup (connection supervisor)
│ └── hackney_conn [1..N] (connection processes for HTTP/1.1, HTTP/2)
├── hackney_pools_sup (pool supervisor)
│ └── hackney_pool [1..N] (pool processes)
└── hackney_altsvc (Alt-Svc cache for HTTP/3 discovery)

QUIC connections (HTTP/3):
├── hackney_quic.erl (Erlang interface to NIF)
└── hackney_quic NIF (lsquic + BoringSSL, no supervision needed)
 └── QuicConn resources (GC-managed, one per QUIC connection)
Connection Process (hackney_conn)
Each connection is a gen_statem process that manages:
	TCP/SSL socket
	HTTP protocol state (request/response phases)
	Streaming state (chunked encoding, content-length tracking)
	Owner process monitoring

State Machine
 ┌─────────────┐
 │ created │
 └──────┬──────┘
 │ connect
 ▼
 ┌─────────────┐
 ┌─────│ connected │─────┐
 │ └─────────────┘ │
 │ │ │
 send_request │ upgrade_to_ssl
 │ │ │
 ▼ │ ▼
 ┌────────────┐ │ ┌────────────┐
 │ on_body │ │ │ connected │ (SSL)
 └─────┬──────┘ │ └────────────┘
 │ │
 finish_send_body │
 │ │
 ▼ │
 ┌─────────────────┐ │
 │ waiting_response│ │
 └────────┬────────┘ │
 │ │
 start_response │
 │ │
 ▼ │
 ┌────────────┐ │
 │ on_status │ │
 └─────┬──────┘ │
 │ │
 ▼ │
 ┌────────────┐ │
 │ on_headers │───────┤
 └─────┬──────┘ │
 │ │
 ▼ │
 ┌──────────────┐ │
 │ on_resp_body │ │
 └───────┬──────┘ │
 │ │
 │ body done │
 └──────────────┘
 │
 ▼
 ┌────────────┐
 │ closing │
 └─────┬──────┘
 │
 ▼
 [exit]
Owner Monitoring
The connection process monitors its owner (the process that checked out the connection). If the owner crashes, the connection terminates automatically, preventing socket leaks.
%% When connection is checked out
MonitorRef = monitor(process, Owner),
%% If owner dies
{'DOWN', MonitorRef, process, Owner, _} -> terminate
Connection Pool (hackney_pool)
The pool stores TCP connections only for reuse. SSL connections are never pooled for security reasons (they close after use).
Why TCP-Only Pooling?
	Security - SSL session state should not be shared across requests
	Simplicity - No need to validate SSL session freshness
	Flexibility - TCP connections can be upgraded to SSL when needed

Pool State
-record(state, {
 name, %% Pool name
 max_connections, %% Global max (legacy, per-host preferred)
 keepalive_timeout, %% Max idle time (default 2000ms, max 2000ms)
 prewarm_count, %% Connections to maintain per host (default 4)
 available = #{}, %% #{Key => [Pid]} - idle TCP connections
 in_use = #{}, %% #{Pid => Key} - checked out connections
 pid_monitors = #{}, %% #{Pid => MonitorRef}
 activated_hosts %% Hosts with prewarm enabled
}).
Pool Operations
Checkout: Get an available TCP connection or none
hackney_pool:checkout(Host, Port, Transport, Opts)
%% Returns: {ok, PoolInfo, Pid} | {error, no_pool}
Checkin: Return a connection to the pool
hackney_pool:checkin(PoolInfo, Pid)
%% TCP connections are stored, SSL connections are closed
Keepalive Timeout
Idle connections are closed after keepalive_timeout (default and max: 2 seconds). This prevents:
	Stale connections that the server has closed
	Resource accumulation from unused connections
	Issues with server-side connection limits

Load Regulation (hackney_load_regulation)
Per-host connection limits prevent overwhelming individual servers. This uses an ETS counting semaphore pattern for lock-free concurrent access.
How It Works
%% ETS table: hackney_host_limits
%% Key: {Host, Port} -> Value: current_count

%% Acquire a slot (blocks with backoff until available or timeout)
acquire(Host, Port, MaxPerHost, Timeout) ->
 Count = ets:update_counter(Table, Key, {2, 1}, {Key, 0}),
 case Count =< MaxPerHost of
 true -> ok;
 false ->
 ets:update_counter(Table, Key, {2, -1}),
 %% Backoff and retry until timeout
 end.

%% Release a slot
release(Host, Port) ->
 ets:update_counter(Table, Key, {2, -1, 0, 0}).
Why ETS Counting Semaphore?
	Lock-free - ets:update_counter is atomic
	Per-host isolation - Different hosts don't block each other
	No process bottleneck - No gen_server call for every request
	Backpressure - Requests wait when limit reached

Configuration
%% Default: 50 concurrent connections per host
hackney:get(URL, [], <<>>, [{max_per_host, 100}]).

%% Per-request timeout for acquiring a slot
hackney:get(URL, [], <<>>, [{checkout_timeout, 5000}]).
SSL Upgrade Strategy
HTTPS requests use TCP connection upgrade rather than direct SSL connections:
1. Get TCP connection (from pool or new)
2. Upgrade to SSL in-place: ssl:connect(Socket, SslOpts)
3. Use SSL connection for request
4. Close connection (SSL connections not pooled)
5. Trigger TCP prewarm for next HTTPS request
Benefits
	Connection reuse - Pooled TCP connections can serve HTTP or HTTPS
	Prewarm works for HTTPS - TCP connections ready to upgrade
	Security - SSL state never shared between requests

Code Flow
%% In hackney.erl
connect_pool(Host, Port, Transport, Opts) ->
 %% Always checkout as TCP
 case hackney_pool:checkout(Host, Port, hackney_tcp, Opts) of
 {ok, PoolInfo, Pid} ->
 %% Upgrade if HTTPS
 case Transport of
 hackney_ssl ->
 ok = hackney_conn:upgrade_to_ssl(Pid, SslOpts),
 {ok, PoolInfo, Pid};
 _ ->
 {ok, PoolInfo, Pid}
 end;
 ...
 end.
Protocol Selection
Hackney supports three HTTP protocols: HTTP/1.1, HTTP/2, and HTTP/3 (experimental). The protocol selection is controlled via the protocols option.
Default Protocols
By default, hackney uses [http2, http1]:
%% Default behavior - HTTP/2 preferred, HTTP/1.1 fallback
hackney:get("https://example.com/")
The default can be changed via application environment:
%% In sys.config or at runtime
application:set_env(hackney, default_protocols, [http2, http1]).
Enabling HTTP/3 (Experimental)
HTTP/3 uses QUIC (UDP transport). To enable HTTP/3:
%% Per-request: opt-in to HTTP/3
hackney:get("https://example.com/", [], <<>>, [
 {protocols, [http3, http2, http1]}
]).

%% Application-wide: enable HTTP/3 by default
application:set_env(hackney, default_protocols, [http3, http2, http1]).
Important considerations for HTTP/3:
	Experimental - QUIC support is still maturing
	UDP may be blocked - Corporate firewalls often block UDP

Protocol Priority
Protocols are tried in order. With [http3, http2, http1]:
	If QUIC NIF is available and server supports HTTP/3: use HTTP/3
	Otherwise, ALPN negotiates HTTP/2 or HTTP/1.1 over TLS
	Server chooses the highest protocol it supports

Forcing a Single Protocol
%% Force HTTP/1.1 only (no HTTP/2 negotiation)
hackney:get(URL, [], <<>>, [{protocols, [http1]}]).

%% Force HTTP/2 only
hackney:get(URL, [], <<>>, [{protocols, [http2]}]).

%% HTTP/3 only (will fail if QUIC unavailable or server doesn't support it)
hackney:get(URL, [], <<>>, [{protocols, [http3]}]).
HTTP/3 and QUIC Architecture
HTTP/3 connections use QUIC (UDP-based transport) via a NIF implementation built on lsquic and BoringSSL.
Event-Driven Architecture
Unlike TCP connections which use one process per connection, QUIC uses an event-driven architecture with Erlang's dirty schedulers:
┌───┐
│ Owner Process (Erlang) │
│ │
│ 1. connect() → Creates QUIC connection, arms enif_select() │
│ │
│ 2. Receives {select, Resource, Ref, ready_input} │
│ └── Socket has data ready │
│ │
│ 3. Calls hackney_quic:process(ConnRef) │
│ └── Runs on dirty I/O scheduler │
│ └── Receives UDP packets │
│ └── Processes lsquic engine │
│ └── Triggers callbacks (headers, data, etc.) │
│ └── Returns next timeout in ms │
│ │
│ 4. Receives {quic, ConnRef, Event} │
│ └── {connected, Info} │
│ └── {stream_headers, StreamId, Headers, Fin} │
│ └── {stream_data, StreamId, Data, Fin} │
│ └── {closed, Reason} │
│ │
│ 5. Schedules timer: erlang:send_after(TimeoutMs, self(), ...) │
│ └── Calls process() again when timer fires │
└───┘
Why Event-Driven (Not Thread-Per-Connection)?
The QUIC NIF originally used a dedicated I/O thread per connection, but this caused race conditions between thread shutdown and Erlang GC. The event-driven approach eliminates this:
	Aspect	Thread-per-Connection	Event-Driven (Current)
	Synchronization	Complex (atomics, mutexes)	None needed
	Race conditions	Possible at shutdown	Eliminated
	GC interaction	Thread must be joined	Resource auto-cleanup
	Scheduling	OS thread scheduler	Erlang dirty scheduler
	Resource usage	One thread per conn	Shared dirty schedulers

NIF Components
┌───┐
│ hackney_quic.erl │
│ - connect/4: Start QUIC connection │
│ - process/1: Process pending I/O (dirty NIF) │
│ - open_stream/1: Create new HTTP/3 stream │
│ - send_headers/4: Send HTTP/3 request headers │
│ - send_data/4: Send request body │
│ - close/2: Close connection │
└───┘
 │
 ▼
┌───┐
│ hackney_quic_nif.c │
│ - nif_connect: Creates QuicConn resource, arms enif_select() │
│ - nif_process: Dirty NIF, calls quic_conn_process() │
│ - nif_open_stream: Opens bidirectional stream │
│ - nif_send_headers: Encodes and sends QPACK headers │
│ - nif_send_data: Sends DATA frames on stream │
│ - nif_close: Initiates graceful shutdown │
└───┘
 │
 ▼
┌───┐
│ quic_conn.c │
│ QuicConn resource: │
│ - lsquic_engine_t *engine (one engine per connection) │
│ - lsquic_conn_t *conn (QUIC connection handle) │
│ - SSL_CTX *ssl_ctx (BoringSSL TLS context) │
│ - int sockfd (UDP socket) │
│ - QuicStream *streams (linked list of active streams) │
│ - ErlNifMutex *mutex (protects engine access) │
│ │
│ quic_conn_process(): │
│ 1. recvfrom() all pending packets │
│ 2. lsquic_engine_packet_in() feeds to lsquic │
│ 3. lsquic_engine_process_conns() triggers callbacks │
│ 4. lsquic_engine_send_unsent_packets() sends responses │
│ 5. Returns next timeout from lsquic_engine_earliest_adv_tick() │
└───┘
 │
 ▼
┌───┐
│ lsquic (C library) │
│ - QUIC protocol implementation (RFC 9000) │
│ - HTTP/3 framing (RFC 9114) │
│ - QPACK header compression (RFC 9204) │
│ - Uses BoringSSL for TLS 1.3 │
└───┘
Connection Lifecycle
Owner Process NIF/lsquic
 │ │
 │ hackney_quic:connect(...) │
 ├────────────────────────────────────►│ Create UDP socket
 │ │ Create SSL_CTX
 │ │ Create lsquic engine
 │ │ lsquic_engine_connect()
 │ │ lsquic_engine_process_conns()
 │ │ enif_select(READ)
 │◄────────────────────────────────────┤ {ok, ConnRef}
 │ │
 │ {select, _, _, ready_input} │
 │◄────────────────────────────────────┤ UDP packet received
 │ │
 │ hackney_quic:process(ConnRef) │
 ├────────────────────────────────────►│ [dirty scheduler]
 │ │ recvfrom() packets
 │ │ lsquic_engine_packet_in()
 │ │ lsquic_engine_process_conns()
 │ │ └─► on_hsk_done callback
 │ {quic, ConnRef, {connected, Info}} │ └─► enif_send()
 │◄────────────────────────────────────┤
 │ │ enif_select(READ)
 │◄────────────────────────────────────┤ TimeoutMs
 │ │
 │ erlang:send_after(TimeoutMs, ...) │
 │ │
 │ ... (request/response cycle) ... │
 │ │
 │ hackney_quic:close(ConnRef, ...) │
 ├────────────────────────────────────►│ lsquic_conn_close()
 │ │ enif_select(STOP)
 │ {quic, ConnRef, {closed, normal}} │
 │◄────────────────────────────────────┤
 │ │
 │ (ConnRef garbage collected) │
 │ │ quic_conn_destroy()
 │ │ lsquic_engine_destroy()
 │ │ SSL_CTX_free()
 │ │ close(sockfd)
 │ │
Thread Safety
The QUIC NIF uses minimal synchronization:
	Component	Protection	Reason
	conn->engine	Mutex	lsquic is not thread-safe
	conn->destroyed	Atomic CAS	Prevent double-free
	conn->streams	Mutex (via engine)	Modified in callbacks
	Socket I/O	None	Single caller via dirty scheduler

The key insight is that process() is always called from the same Erlang process (the owner), and runs on a dirty scheduler. This serializes access naturally.
Resource Cleanup
When the owner process dies or the connection is closed:
	Erlang GC detects no more references to ConnRef
	quic_conn_resource_dtor() is called
	quic_conn_destroy() closes lsquic and frees resources
	No thread joining needed (no I/O thread)

This automatic cleanup prevents resource leaks even if the owner crashes.
HTTP/2 Multiplexing
HTTP/2 connections are handled differently from HTTP/1.1. A single HTTP/2 connection can handle multiple concurrent requests via stream multiplexing.
HTTP/2 Pool Design
The pool maintains a separate map for HTTP/2 connections:
-record(state, {
 %% ... existing fields ...

 %% HTTP/2 connections: one per host, shared across callers
 h2_connections = #{} %% #{Key => Pid}
}).
Key differences from HTTP/1.1 pooling:
	Aspect	HTTP/1.1	HTTP/2
	Connections per host	Multiple (pool)	One (shared)
	Checkout behavior	Exclusive access	Shared access
	Checkin behavior	Return to pool	Keep in pool
	Request handling	Sequential	Multiplexed streams

HTTP/2 Connection Flow
hackney:get("https://api.example.com/data")
 │
 ▼
┌─────────────────────────────────────┐
│ 1. Check for existing HTTP/2 conn │
│ checkout_h2(Host, Port, ...) │
│ → Returns {ok, Pid} or none │
└─────────────────┬───────────────────┘
 │
 ┌─────────┴─────────┐
 │ │
 {ok, Pid} none
 (reuse!) │
 │ ▼
 │ ┌─────────────────────┐
 │ │ 2. Normal TCP flow │
 │ │ checkout → new │
 │ │ → upgrade SSL │
 │ └──────────┬──────────┘
 │ │
 │ ▼
 │ ┌─────────────────────┐
 │ │ 3. Check protocol │
 │ │ get_protocol() │
 │ │ → http2 | http1 │
 │ └──────────┬──────────┘
 │ │
 │ ┌─────┴─────┐
 │ │ │
 │ http2 http1
 │ │ │
 │ ▼ │
 │ ┌─────────────────┐ │
 │ │ 4. Register H2 │ │
 │ │ register_h2()│ │
 │ └────────┬────────┘ │
 │ │ │
 └──────┬──────┘ │
 │ │
 ▼ │
┌─────────────────────────────────────┐
│ 5. Send request │
│ HTTP/2: assign StreamId │
│ HTTP/1.1: send directly │
└─────────────────────────────────────┘
Stream Multiplexing in hackney_conn
Each hackney_conn process maintains a map of active HTTP/2 streams:
-record(conn_data, {
 %% HTTP/2 state machine (from cowlib)
 h2_machine :: tuple(),

 %% Active streams: #{StreamId => {Caller, State}}
 h2_streams = #{} :: #{
 pos_integer() => {gen_statem:from(), atom()}
 }
}).
When a request arrives:
%% In hackney_conn.erl
do_h2_request(From, Method, Path, Headers, Body, Data) ->
 %% 1. Get next stream ID from h2_machine
 {ok, StreamId, H2Machine1} = hackney_cow_http2_machine:init_stream(...),

 %% 2. Track caller for this stream
 Streams = maps:put(StreamId, {From, waiting_response}, Data#conn_data.h2_streams),

 %% 3. Send HEADERS frame (and DATA if body present)
 HeadersFrame = hackney_cow_http2:headers(StreamId, ...),
 Transport:send(Socket, HeadersFrame),

 %% 4. Return updated state (caller will receive reply when response arrives)
 {keep_state, Data#conn_data{h2_streams = Streams}}.
When a response arrives:
%% Response for StreamId received
handle_h2_frame({headers, StreamId, ...}, Data) ->
 %% Lookup caller from h2_streams
 {From, _State} = maps:get(StreamId, Data#conn_data.h2_streams),

 %% Reply to the correct caller
 gen_statem:reply(From, {ok, Status, Headers, Body}),

 %% Remove completed stream
 Streams = maps:remove(StreamId, Data#conn_data.h2_streams),
 {ok, Data#conn_data{h2_streams = Streams}}.
Benefits of HTTP/2 Multiplexing
	Reduced latency - No connection setup for subsequent requests
	Better resource usage - One TCP connection instead of many
	Head-of-line blocking avoided - Responses can arrive out of order
	Server efficiency - Servers prefer fewer connections with more streams

ALPN Protocol Negotiation
HTTP/2 is negotiated during TLS handshake via ALPN:
%% In hackney_ssl.erl
alpn_opts(Opts) ->
 Protocols = proplists:get_value(protocols, Opts, [http2, http1]),
 AlpnProtos = [proto_to_alpn(P) || P <- Protocols],
 [{alpn_advertised_protocols, AlpnProtos}].

proto_to_alpn(http2) -> <<"h2">>;
proto_to_alpn(http1) -> <<"http/1.1">>.

%% After connection
get_negotiated_protocol(SslSocket) ->
 case ssl:negotiated_protocol(SslSocket) of
 {ok, <<"h2">>} -> http2;
 _ -> http1
 end.
Connection Prewarm
After first use of a host, the pool maintains warm TCP connections ready for immediate use.
How It Works
	First request to api.example.com:443 completes
	On checkin, pool marks host as "activated"
	Pool creates prewarm_count (default 4) TCP connections
	Next request gets connection immediately (no connect latency)

Configuration
%% Global default
application:set_env(hackney, prewarm_count, 4).

%% Per-pool
hackney_pool:start_pool(mypool, [{prewarm_count, 8}]).

%% Explicit prewarm
hackney_pool:prewarm(default, "api.example.com", 443, 10).
Prewarm for HTTPS
When an SSL connection is checked in (and closed), the pool still triggers TCP prewarm. This ensures TCP connections are ready for the next HTTPS request to upgrade.
Request Flow
Complete flow for an HTTPS request with pooling:
hackney:get("https://api.example.com/data")
 │
 ▼
┌─────────────────────────────────────┐
│ 1. Load Regulation │
│ acquire("api.example.com", 443, │
│ MaxPerHost, Timeout) │
│ → Blocks if at limit │
└─────────────────┬───────────────────┘
 │ ok
 ▼
┌─────────────────────────────────────┐
│ 2. Pool Checkout │
│ checkout(Host, 443, hackney_tcp) │
│ → Returns Pid or none │
└─────────────────┬───────────────────┘
 │
 ┌─────────┴─────────┐
 │ │
 {ok, Pid} none
 │ │
 │ ▼
 │ ┌─────────────────┐
 │ │ Create new conn │
 │ │ hackney_conn_sup│
 │ └────────┬────────┘
 │ │
 └────────┬─────────┘
 │
 ▼
┌─────────────────────────────────────┐
│ 3. SSL Upgrade │
│ upgrade_to_ssl(Pid, SslOpts) │
│ → TCP socket becomes SSL │
└─────────────────┬───────────────────┘
 │
 ▼
┌─────────────────────────────────────┐
│ 4. HTTP Request │
│ send_request(Pid, Method, ...) │
│ recv_response(Pid) │
└─────────────────┬───────────────────┘
 │
 ▼
┌─────────────────────────────────────┐
│ 5. Checkin (async) │
│ Connection closed (SSL) │
│ TCP prewarm triggered │
└─────────────────┬───────────────────┘
 │
 ▼
┌─────────────────────────────────────┐
│ 6. Load Regulation Release │
│ release("api.example.com", 443) │
│ → Slot available for next req │
└─────────────────────────────────────┘
Monitoring and Stats
Pool Stats
hackney_pool:get_stats(PoolName).
%% Returns:
%% [{name, PoolName},
%% {max, MaxConnections},
%% {in_use_count, InUse},
%% {free_count, Free},
%% {queue_count, 0}] %% Always 0, load regulation handles queuing
Per-Host Stats
hackney_pool:host_stats(PoolName, Host, Port).
%% Returns:
%% [{active, N}, %% Currently in use (from load_regulation)
%% {in_use, N}, %% Checked out from pool
%% {free, N}] %% Available in pool
Load Regulation Stats
hackney_load_regulation:current(Host, Port).
%% Returns: integer() - current concurrent connections to host
Advantages of This Architecture
vs. hackney 1.x
	Aspect	1.x	2.x
	State storage	ETS tables	Process state
	Socket ownership	Transferred between processes	Always connection process
	Error cleanup	Manual via manager	Automatic via process exit
	SSL pooling	Yes (security risk)	No (TCP only)
	Connection limits	Global pool size	Per-host limits
	Prewarm	No	Yes

vs. Other HTTP Clients
Process isolation: Each connection is independent. A slow response on one connection doesn't block others. A crash in one connection doesn't affect others.
Backpressure: Load regulation naturally applies backpressure when a server is overwhelmed. Requests wait rather than creating unbounded connections.
Resource control: Per-host limits prevent a single slow host from consuming all connections. Different hosts are isolated.
SSL security: SSL connections are never reused, preventing session confusion attacks and ensuring fresh handshakes.
Prewarm efficiency: Frequently-used hosts have warm connections ready, eliminating connection latency for subsequent requests.
Configuration Reference
Pool Options
	Option	Default	Description
	pool_size / max_connections	50	Max connections in pool
	timeout / keepalive_timeout	2000	Idle timeout (max 2000ms)
	prewarm_count	4	Connections to maintain per host

Request Options
	Option	Default	Description
	pool	default	Pool name, or false for no pooling
	max_per_host	50	Max concurrent connections to host
	checkout_timeout	8000	Timeout to acquire connection slot
	connect_timeout	8000	TCP connect timeout
	recv_timeout	5000	Response receive timeout

Application Environment
%% In sys.config or application:set_env
{hackney, [
 {pool_handler, hackney_pool},
 {max_connections, 50},
 {timeout, 2000},
 {prewarm_count, 4}
]}.

 Migration Guide

Migrating from hackney 2.x to 3.x
Quick Summary
	Response format: Body is now always returned directly in the response
	with_body option: Deprecated and ignored
	hackney:body/1,2 and hackney:stream_body/1: Deprecated - use async mode for streaming
	Async mode: Now works consistently across HTTP/1.1, HTTP/2, and HTTP/3

Breaking Changes
Response Format
The most significant change is that the response body is now always returned directly in the response tuple, regardless of protocol:
%% Before (2.x) - HTTP/1.1
{ok, 200, Headers, ConnPid} = hackney:get(URL),
{ok, Body} = hackney:body(ConnPid).

%% Before (2.x) - HTTP/2
{ok, 200, Headers, Body} = hackney:get(URL). %% Already returned body

%% After (3.x) - All protocols
{ok, 200, Headers, Body} = hackney:get(URL). %% Consistent!
Deprecated Options and Functions
	Deprecated	Replacement
	{with_body, true/false}	Option ignored - body always returned
	hackney:body/1	Body in response tuple
	hackney:body/2	Body in response tuple
	hackney:stream_body/1	Use async mode

Streaming Response Bodies
For incremental body streaming, use async mode instead of stream_body/1:
%% Before (2.x) - sync streaming
{ok, 200, Headers, Pid} = hackney:get(URL),
{ok, Chunk1} = hackney:stream_body(Pid),
{ok, Chunk2} = hackney:stream_body(Pid),
done = hackney:stream_body(Pid).

%% After (3.x) - async streaming
{ok, Ref} = hackney:get(URL, [], <<>>, [async]),
receive {hackney_response, Ref, {status, 200, _}} -> ok end,
receive {hackney_response, Ref, {headers, Headers}} -> ok end,
stream_loop(Ref).

stream_loop(Ref) ->
 receive
 {hackney_response, Ref, done} -> ok;
 {hackney_response, Ref, Chunk} ->
 process_chunk(Chunk),
 stream_loop(Ref)
 end.
For on-demand streaming (pull-based), use {async, once}:
{ok, Ref} = hackney:get(URL, [], <<>>, [{async, once}]),
receive {hackney_response, Ref, {status, 200, _}} -> ok end,
hackney:stream_next(Ref),
receive {hackney_response, Ref, {headers, Headers}} -> ok end,
hackney:stream_next(Ref),
receive {hackney_response, Ref, Chunk} -> process(Chunk) end,
hackney:stream_next(Ref),
%% ... continue until done
HTTP/2 Async Mode
HTTP/2 async mode now works correctly. Previously, async requests over HTTP/2 would fail or behave incorrectly. Now the same async API works for all protocols:
%% Works for HTTP/1.1, HTTP/2, and HTTP/3
{ok, Ref} = hackney:get(<<"https://nghttp2.org/">>, [], <<>>, [async]),
receive
 {hackney_response, Ref, {status, Status, _}} ->
 io:format("Status: ~p~n", [Status])
end,
receive
 {hackney_response, Ref, {headers, Headers}} ->
 io:format("Headers: ~p~n", [Headers])
end,
receive
 {hackney_response, Ref, done} -> ok;
 {hackney_response, Ref, Chunk} -> io:format("Chunk: ~p~n", [Chunk])
end.

Migrating from hackney 1.x to 2.x
Quick Summary
	Simple requests: No changes needed
	Streaming/async: Same API, ClientRef is now a PID
	Pool: Per-host limits replace global pool size, SSL not pooled
	Proxy: URL-based config, env vars work automatically

Architecture: Before and After
1.x Design
- State stored in ETS tables
- Multiple modules coordinate via hackney_manager
- Socket ownership transferred between processes
- Complex cleanup on errors
- Global pool with max_connections limit
- SSL connections pooled
2.x Design
- One gen_statem process per connection
- Process owns its socket and state
- Clean OTP supervision
- Automatic cleanup on process exit
- Per-host connection limits via load regulation
- TCP-only pooling (SSL connections never pooled)
- Connection prewarm for low-latency reuse
See Design Guide for detailed architecture documentation.
HTTP/2 Support (2.x only)
Hackney 2.x adds transparent HTTP/2 support:
- Automatic ALPN negotiation on HTTPS connections
- Connection multiplexing (single connection, multiple streams)
- Header compression (HPACK)
- Server push support
- Same API for both HTTP/1.1 and HTTP/2
See HTTP/2 Guide for details.
Key Differences
	Aspect	1.x	2.x
	State storage	ETS tables	Process state
	Connection handle	Opaque reference	PID
	Socket ownership	Transferred between processes	Owned by connection process
	Error cleanup	Manual via manager	Automatic via process exit
	Supervision	Custom tracking	OTP supervisor
	Pool scope	Global max_connections	Per-host limits
	SSL pooling	Yes	No (security)
	Prewarm	No	Yes (default 4 per host)
	HTTP/2	No	Yes (automatic via ALPN)

What Changed
Connection Handle and Response Format
%% 1.x - opaque reference, body read separately
{ok, StatusCode, Headers, Ref} = hackney:get(URL),
{ok, Body} = hackney:body(Ref).

%% 2.x/3.x - body returned directly
{ok, StatusCode, Headers, Body} = hackney:get(URL).
In 3.x, body is always returned directly in the response tuple for consistency across all protocols.
Pool Behavior
The most significant change is how connection pooling works:
1.x: Single global pool with max_connections limit shared across all hosts.
2.x: Per-host connection limits. Each host gets up to max_per_host concurrent connections (default 50). TCP connections are pooled; SSL connections are never pooled.
%% 1.x - global pool limit
hackney_pool:start_pool(mypool, [{max_connections, 100}]). %% 100 total

%% 2.x - per-host limit (100 connections per host)
hackney_pool:start_pool(mypool, [{max_connections, 100}]).
%% Plus request option:
hackney:get(URL, [], <<>>, [{pool, mypool}, {max_per_host, 100}]).
SSL Connections
1.x: SSL connections were pooled and reused.
2.x: SSL connections are never pooled. Each HTTPS request either:
	Gets a TCP connection from pool and upgrades to SSL
	Creates a new connection with SSL

This is a security improvement - SSL session state is never shared.
Connection Prewarm
2.x only: After first use of a host, the pool maintains warm TCP connections:
%% Automatic after first request to host
%% Or explicit:
hackney_pool:prewarm(default, "api.example.com", 443, 4).
Load Regulation
2.x only: Per-host backpressure when connection limit reached:
%% Request waits if api.example.com has 50 active connections
hackney:get("https://api.example.com/data", [], <<>>, [
 {max_per_host, 50},
 {checkout_timeout, 5000} %% Wait up to 5s for slot
]).

%% Returns {error, checkout_timeout} if slot not available in time
Removed Functions
	1.x	2.x
	hackney:cancel_request/1	hackney:close/1
	hackney:controlling_process/2	Not needed
	hackney:send_multipart_body/2	hackney:send_body/2

Removed Modules
Merged into hackney_conn:
	hackney_connect
	hackney_connection
	hackney_request
	hackney_response
	hackney_stream

Migration Patterns
Simple Request
Body is now returned directly (no need to call hackney:body/1):
%% 1.x
{ok, 200, Headers, Ref} = hackney:get(URL),
{ok, Body} = hackney:body(Ref).

%% 2.x/3.x - simpler!
{ok, 200, Headers, Body} = hackney:get(URL).
Streaming Request Body
The streaming body API allows you to send the request body in chunks. This is useful for uploading large files or data that is generated incrementally.
Basic usage:
%% 1. Start request with body = stream
{ok, ConnPid} = hackney:request(post, URL, Headers, stream, []),

%% 2. Send body chunks (can be called multiple times)
ok = hackney:send_body(ConnPid, <<"first chunk">>),
ok = hackney:send_body(ConnPid, <<"second chunk">>),

%% 3. Signal end of body
ok = hackney:finish_send_body(ConnPid),

%% 4. Get response headers
{ok, Status, RespHeaders, ConnPid} = hackney:start_response(ConnPid),

%% 5. Read response body
{ok, RespBody} = hackney:body(ConnPid),

%% 6. Close connection when done
hackney:close(ConnPid).
With chunked transfer encoding:
When the body size is unknown, use chunked transfer encoding:
Headers = [{<<"Transfer-Encoding">>, <<"chunked">>},
 {<<"Content-Type">>, <<"application/octet-stream">>}],
{ok, ConnPid} = hackney:post(URL, Headers, stream),

%% Send chunks as they become available
lists:foreach(fun(Chunk) ->
 ok = hackney:send_body(ConnPid, Chunk)
end, generate_chunks()),

ok = hackney:finish_send_body(ConnPid),
{ok, Status, RespHeaders, ConnPid} = hackney:start_response(ConnPid),
{ok, RespBody} = hackney:body(ConnPid),
hackney:close(ConnPid).
With known Content-Length:
Data = <<"my large data">>,
Headers = [{<<"Content-Length">>, integer_to_binary(byte_size(Data))},
 {<<"Content-Type">>, <<"application/octet-stream">>}],
{ok, ConnPid} = hackney:post(URL, Headers, stream),

%% Send data in smaller chunks
ok = hackney:send_body(ConnPid, binary:part(Data, 0, 5)),
ok = hackney:send_body(ConnPid, binary:part(Data, 5, byte_size(Data) - 5)),

ok = hackney:finish_send_body(ConnPid),
{ok, Status, RespHeaders, ConnPid} = hackney:start_response(ConnPid),
{ok, RespBody} = hackney:body(ConnPid),
hackney:close(ConnPid).
Note: The hackney:body/1 function is deprecated for regular requests (where body is returned directly), but is still used after start_response/1 in streaming body mode to read the response.
Async Response
No changes:
{ok, Ref} = hackney:get(URL, [], <<>>, [async]),
receive
 {hackney_response, Ref, {status, Status, _}} -> ok
end.
Cancel Request
%% 1.x
hackney:cancel_request(Ref).

%% 2.x
hackney:close(Ref).
Pool Configuration
%% 1.x - global pool limit
hackney_pool:start_pool(mypool, [{max_connections, 50}]),
hackney:get(URL, [], <<>>, [{pool, mypool}]).

%% 2.x - same API works, but behavior differs:
%% - max_connections is now per pool, not global limit
%% - Add max_per_host for per-host limiting
hackney_pool:start_pool(mypool, [
 {max_connections, 100}, %% Pool capacity
 {prewarm_count, 4}, %% Warm connections per host
 {timeout, 2000} %% Keepalive timeout (max 2s)
]),
hackney:get(URL, [], <<>>, [
 {pool, mypool},
 {max_per_host, 50}, %% Per-host limit
 {checkout_timeout, 5000} %% Wait time for slot
]).
High-Concurrency Scenarios
If you were using a large global pool for high concurrency:
%% 1.x - 1000 connections shared across all hosts
hackney_pool:start_pool(bigpool, [{max_connections, 1000}]).

%% 2.x - 100 connections per host (better isolation)
hackney_pool:start_pool(bigpool, [{max_connections, 1000}]),
hackney:get(URL, [], <<>>, [
 {pool, bigpool},
 {max_per_host, 100} %% Each host gets up to 100
]).
Monitoring Pool Stats
%% 1.x
hackney_pool:get_stats(mypool).

%% 2.x - same, plus per-host stats
hackney_pool:get_stats(mypool).
hackney_pool:host_stats(mypool, "api.example.com", 443).
%% Returns: [{active, N}, {in_use, N}, {free, N}]
Configuration Changes
Application Environment
%% 1.x
{hackney, [
 {max_connections, 50},
 {timeout, 150000} %% Could be any value
]}.

%% 2.x
{hackney, [
 {max_connections, 50},
 {timeout, 2000}, %% Capped at 2000ms
 {prewarm_count, 4} %% New option
]}.
Timeout Capping
Keepalive timeout is now capped at 2000ms (2 seconds). This prevents issues with stale connections and aligns with common server defaults.
%% 1.x - any timeout value
hackney_pool:start_pool(p, [{timeout, 300000}]). %% 5 minutes

%% 2.x - capped at 2000ms
hackney_pool:start_pool(p, [{timeout, 300000}]). %% Becomes 2000ms
Requirements
Erlang/OTP 27+
Help
https://github.com/benoitc/hackney/issues

 NEWS

3.0.1 - 2026-01-28
Bug Fixes
	Fix dialyzer warning in follow_redirect by removing dead code branch that checked is_pid() on a value that was always binary
	Store final redirect location in connection process state so it can be retrieved via hackney:location/1
	Clean up request_ret() type spec to accurately reflect return values

3.0.0 - 2026-01-27
BREAKING CHANGES
This is a major release with breaking changes to the high-level API. See Migration Guide for detailed upgrade instructions.
Response Format Change
The high-level API now returns the response body directly in the tuple, consistent across all protocols (HTTP/1.1, HTTP/2, HTTP/3):
%% Before (2.x) - HTTP/1.1
{ok, 200, Headers, ConnPid} = hackney:get(URL),
{ok, Body} = hackney:body(ConnPid).

%% After (3.x) - All protocols
{ok, 200, Headers, Body} = hackney:get(URL).
Removed Functions
The following deprecated functions have been removed:
	Function	Replacement
	hackney:body/1	Body returned directly in response tuple
	hackney:body/2	Body returned directly in response tuple
	hackney:stream_body/1	Use async mode with [async] or [{async, once}]
	hackney:skip_body/1	Not needed - body always consumed

Security: Cross-Host Redirect Behavior (CVE-2018-1000007)
Authorization headers and credentials are no longer forwarded when following redirects to a different host. This prevents credential leakage when a server redirects to an untrusted host.
To restore the previous behavior (not recommended), use the location_trusted option:
hackney:get(URL, [], <<>>, [{location_trusted, true}]).
New Features
	HTTP/3 enhancements: Added peername/1, sockname/1, peercert/1, and setopts/2 support for HTTP/3 connections
	HTTP 1xx informational responses: Support for handling 103 Early Hints and other informational responses
	Native metrics with Prometheus: Pluggable metrics backend with built-in Prometheus support

Migration
For streaming responses, migrate to async mode:
%% Async streaming (push-based)
{ok, Ref} = hackney:get(URL, [], <<>>, [async]),
receive {hackney_response, Ref, {status, 200, _}} -> ok end,
receive {hackney_response, Ref, {headers, Headers}} -> ok end,
%% Receive body chunks until done

%% On-demand streaming (pull-based)
{ok, Ref} = hackney:get(URL, [], <<>>, [{async, once}]),
%% Call hackney:stream_next(Ref) to receive each chunk
See Migration Guide for complete migration instructions.

2.0.1 - 2026-01-21
Dependencies
	Remove unicode_util_compat dependency (stdlib has unicode_util since OTP 20)
	Bump idna to 7.1.0
	Replace string_compat calls with stdlib string module functions

2.0.0 - 2026-01-20
This release finalizes the 2.0 architecture with many bug fixes and new features since beta.1.
See Migration Guide and Design Guide for details.
New Features
	HTTP 1xx informational responses (#631) - Support for handling 103 Early Hints and other informational responses
	HTTPS proxy support (#795) - Full support for proxying through HTTPS proxies
	Proxy authentication callback (#799) - New proxy_auth_fun option for custom proxy authentication logic
	CONNECT response callback (#798) - New on_connect_response callback to inspect CONNECT proxy response headers
	SSL peer certificate (#599) - New hackney:peercert/1 function to get the peer's SSL certificate

New Options
	auto_decompress - When true, automatically decompresses gzip/deflate responses (#155):{ok, Status, Headers, Body} = hackney:request(get, URL, [], [],
 [{with_body, true}, {auto_decompress, true}]).

	stream_to - For async requests, the stream_to process is now set as the connection owner (#646). If stream_to dies, the connection terminates; if the original caller dies, the connection continues as long as stream_to is alive.
	proxy_auth_fun - Callback function for custom proxy authentication
	on_connect_response - Callback to receive CONNECT proxy response headers

New Functions
	hackney:peercert/1 - Get the peer's SSL certificate from a connection

Bug Fixes
	fix: handle non-HTTP URL schemes properly (#468)
	fix: force connection close for 204/304 responses (#434)
	fix: sanitize header values to prevent HTTP header injection (#506)
	fix: filter Host header for HTTP/2 requests (send as :authority pseudo-header)
	fix: handle non-standard decimal status codes (#697)
	fix: remove parse_trans from runtime dependencies (#714)
	fix: handle race condition in get_protocol calls
	fix: strip auth credentials on cross-host redirects (#701)
	fix: tolerate trailing semicolons in parameter parsing (#618)
	fix: handle @ symbols in URL credentials per RFC 3986 (#657)
	fix: properly resolve relative redirect URLs per RFC 3986 (#711)
	fix: detect server-initiated closes on idle pooled connections (#544)
	fix: respect recv_timeout during proxy CONNECT handshake
	fix: prevent SOCKS5 and HTTP CONNECT tunnels from being pooled (#797)
	fix: auto-release connections to pool when body reading completes (connection leak fix)

Security
	Header injection prevention (#506) - Header values are now sanitized to prevent CRLF injection attacks
	Auth credential stripping (#701) - Authorization headers and credentials are stripped when redirecting to a different host

2.0.0-beta.1 - 2026-01-07
Process-per-connection architecture. Each connection is a gen_statem process.
See Migration Guide and Design Guide for details.
HTTP/3 Support
Full HTTP/3 support via QUIC (requires QUIC NIF to be built):
	QUIC transport - UDP-based, encrypted by default with TLS 1.3
	Transparent API - Same hackney:get/post/request functions work for HTTP/3
	Multiplexing - Multiple streams without head-of-line blocking
	Alt-Svc discovery - Automatic HTTP/3 endpoint detection from Alt-Svc headers
	Connection pooling - HTTP/3 connections shared across callers
	Negative caching - Failed H3 attempts cached to avoid repeated failures
	Async streaming - {async, true/once} for push-based streaming
	Pull-based streaming - hackney:stream_body/1 for chunked reads
	Streaming uploads - send_body/2 for chunked uploads
	Protocol selection - Use {protocols, [http3]} to force HTTP/3

Check availability with hackney_quic:is_available().
See HTTP/3 Guide for details.
HTTP/2 Support
Full HTTP/2 support with automatic protocol negotiation:
	ALPN negotiation - HTTP/2 is automatically negotiated during TLS handshake
	Transparent API - Same hackney:get/post/request functions work for both protocols
	Multiplexing - Multiple requests share a single HTTP/2 connection
	Header compression - HPACK compression for reduced overhead
	Flow control - Automatic window management with WINDOW_UPDATE frames
	Server push - Optional support for server-initiated streams
	Protocol selection - Use {protocols, [http2]} or {protocols, [http1]} to force protocol

See HTTP/2 Guide for details.
Architecture Changes
	Connection handle is now a PID (was opaque reference)
	hackney_conn manages connections (replaces hackney_connect, hackney_connection, hackney_request, hackney_response, hackney_stream)
	hackney_headers renamed from hackney_headers_new
	Clean OTP supervision tree with hackney_conn_sup

Pool Redesign
The connection pool has been completely redesigned:
	Per-host connection limits - Each host gets up to max_per_host concurrent connections (default 50), replacing the global pool limit
	TCP-only pooling - SSL connections are never pooled (security improvement). HTTPS requests upgrade pooled TCP connections to SSL
	Connection prewarm - Pool maintains warm TCP connections per host (default 4) after first use
	Load regulation - New hackney_load_regulation module provides lock-free per-host backpressure using ETS counting semaphore
	Keepalive timeout capped - Maximum 2 seconds idle time to prevent stale connections
	Host stats API - New hackney_pool:host_stats/3 for per-host monitoring

New Options
	default_protocols - Default protocol preference order (default: [http3, http2, http1]). Set via application env to change globally:application:set_env(hackney, default_protocols, [http2, http1]).

	max_per_host - Maximum concurrent connections per host (default 50)
	checkout_timeout - Timeout to acquire connection slot (default 8000ms)
	prewarm_count - Warm connections per host (default 4)

New Functions
	hackney_util:default_protocols/0 - Get the default protocol preference list
	hackney:get_version/0 - Get hackney version
	hackney_pool:host_stats/3 - Get per-host connection stats
	hackney_pool:prewarm/3,4 - Explicitly prewarm connections to a host
	hackney_load_regulation:current/2 - Get current connection count for host

Removed
	cancel_request/1 - use close/1
	controlling_process/2 - not needed
	send_multipart_body/2 - use send_body/2
	SOCKS5 and HTTP CONNECT proxy (planned 2.1.0)

Security
	BREAKING: Authorization credentials and cookies are no longer sent on cross-host redirects by default (CVE-2018-1000007). This prevents credential leakage when a server redirects to a different host (e.g., API redirecting to S3). To restore the old behavior, use {location_trusted, true} option (similar to curl's --location-trusted).

Bug Fixes
	fix: validate connection state on pool checkout for HTTP/2 and HTTP/3. On FreeBSD + OTP 28, pooled connections could be in closed state when checked out due to SSL timing differences, causing {error, invalid_state} errors. Now connections are verified to be in connected state after checkout.

Metrics
Native metrics system with pluggable backends, replacing the external metrics library dependency:
	Pluggable backends - hackney_metrics_backend behaviour for custom implementations
	Dummy backend (default) - Zero-overhead no-op backend when metrics not needed
	Prometheus backend (opt-in) - Full Prometheus integration when enabled
	Correct metric types - Pool counts now use gauges instead of histograms (#560)

Prometheus Metrics
When enabled, the following metrics are exported:
	Metric	Type	Labels	Description
	hackney_requests_total	Counter	host	Total requests started
	hackney_requests_active	Gauge	host	Currently active requests
	hackney_requests_finished_total	Counter	host	Completed requests
	hackney_request_duration_seconds	Histogram	host	Request duration in seconds
	hackney_pool_free_count	Gauge	pool	Available connections in pool
	hackney_pool_in_use_count	Gauge	pool	Connections currently in use
	hackney_pool_checkouts_total	Counter	pool	Total connection checkouts

Configuration
%% Default: dummy backend (zero overhead)
%% To enable Prometheus metrics:
{hackney, [{metrics_backend, prometheus}]}
Requirements
	Erlang/OTP 27+

1.25.0 - 2025-07-24
 IMPORTANT CHANGE
	change: insecure_basic_auth now defaults to true instead of falseThis restores backward compatibility with pre-1.24.0 behavior where basic auth
was allowed over HTTP connections. If you need strict HTTPS-only basic auth:	Set globally: application:set_env(hackney, insecure_basic_auth, false)
	Or per-request: {insecure_basic_auth, false} in options

1.24.1 - 2025-05-26
	fix: remove unused variable warning in hackney.erl

1.24.0 - 2025-05-26
	security: fix basic auth credential exposure vulnerability
	security: add application variable support for insecure_basic_auth
	fix: NXDOMAIN error in Docker Compose environments (issue #764)
	fix: stream_body timeout after first chunk (issue #762)
	fix: SSL hostname verification with custom ssl_options and SSL message leak in async streaming
	fix: pool connections not freed on 307 redirects and multiple pool/timer race conditions
	fix: socket leaks, process deadlocks, ETS memory leaks, and infinite gen_server calls
	fix: controlling_process error handling in happy eyeballs and connection pool return
	improvement: update GitHub Actions to ubuntu-22.04 and bump certifi/mimerl dependencies

1.23.0 - 2025-02-25
	fix: happy eyeball use correct timeout during connection
	fix: don't wrap connection error
	improvement: only spawn ipv6 worker when needed

1.22.0 - 2025-02-20
	feature: prefer to connect using IPv6. happy eyeball strategy
	improvement: fully support no_proxy environment variable
	doc: migrated to ex_doc

1.21.0 - 2025-02-20
	fix: remove SSL options incompatible with tls 1.3
	fix: url parsing handle "/" path correctly
	fix: simplify integration test suite
	fix: handle chunked response in redirect responses
	fix: handle http & https proxies separately
	fix: skip junk lines in 1.xx response

 security fixes *
	fix URL parsing to prevent SSRF . (related to CVE-2025-1211)
	use latest SSL certificate bundle

1.20.1 - 2023-10-11
	fix multipart: handle case where Length is undefined

1.20.0 - 2023-10-10
	handle * in path encoding
	Support LF separators: since rfc7230-3.5 allows for LF-only
	fix recv stream fix fetching trailers during streaming
	fix CI
	Improve documentation

1.19.1 - 2023-09-21
	feature: add no_proxy_env option to bypass proxy environment settings

1.19.0 - 2023-09-20
	fix: recv: if expected size < BufSize fallback to old behaviour. Fix issue with negative length
	feature: add support for proxy environment setting

1.18.2 - 2023-08-29
	security: update default CA bundles

1.18.1 - 2022-02-03
	security: update default CA bundles
	doc: fix typos

1.18.0 - 2021-09-28
	security: update default CA bundle
	fix pool: make checkout synchronous (remove unwanted messages)

1.17.4 - 2021-03-18
	fix checking when socket is put back in the pool when the requester died.

1.17.3 - 2021-03-17
	fix: ensure we release a socket in the pool when the requester died before being monitored.

1.17.2 - 2021-03-16
	use parse_trans 3.3.1 only (fix compatibility with Erlang < 21)
	bump certifi version
	Allow merging of SSL opts

1.17.1 - 2021-03-15
	fix: Avoid parse_trans warning when using hackney as a dependency
	fix: Link checkout process to fix dangling aborted request

1.17.0 - 2020-12-19
	fix SSL compatibility with erlang OTP 23
	handle empty trailers
	fix race condition in connection pool
	fix memory leak in connection pool
	IDNA update to unicode 13.0.0
	fix build on macosx with OTP >= 20.1
	fix network Location on redirect
	produce uppercase hexadecimal in URLS
	pool queue count metric is now named queue_count
	miscellaneous fixes in documentation

 possible breaking change
	pool queue count metric is now named queue_count. You should update your dashboard to reflect it.

	possible breaking changes when producing uppercase hexadecimal in urls

This change the behaviour of urlencode and pathencode to produce
uppercase hexadecimal to comply to the RFC3986 which may affect
systems using URL as signature or in an hash.
1.16.0 - 2020-05-25
	pool: cache connection IDs
	pool: make sure to reuse a connection if the options match the one given in the request. fix usage with proxy and ssl
connections
	url: handle fragment correctly, a fragment is parsed first to not be mistaken with an URL
	ssl: fix validation with Erlang 19 & Erlang 20
	ssl: handle tlsv1.3 on Erlang OTP 23
	ssl: increase validation depth to match openssl default
	ssl: optimiaz partial chain handling
	ssl: fix hostname checking and correctly handle SNI
	ssl: fix ciphers
	request: fix regression with fully fqdn
	ssl: fix usage with OTP 23
	url: decode username/password for basic auth parameters
	request: do not normalize when converting relative redirect to absolute
	ssl: update to certifi 2.5.2
	request: handle Connection: close response header for stteam
	http: handle leading new lines in HTTP messages
	http: handle trailers in persistent connection
	pool: update pool timeout documentation
	url: fix urlencode

1.15.2 - 2019-09-25
	doc: fix test run example in readme
	fix: hackney stream, send hackney_response before calling handle_error
	fix: error remove ssl honor_cipher_order option
	doc: document self-signed certificate usage
	bump ssl_verify_fun to 1.1.5
	fix: don't use default pool if set to false
	fix: hackney_headers:store/3 fix value appending to a list
	fix: miscellaneous specs
	doc: miscellaneous improvements

1.15.1 - 2019-02-26
	fix: don't try to encode to IDN with full ASCII names.

this behaviour is similar to curl and fix errors some people had with docker
creating domain names containing a _

	doc: clarify recv_timeout usage
	fix: don't try to encode hostname IPs to IDN
	fix: path encoding to support () characters
	bump mimerl to 1.2
	bump certifi to 2.5.1

1.15.0 - 2019-01-04
	improve multipart: send form with a field names for files
	fix pool checkout_cancel: reduce the number of pending requests

1.14.3 - 2018-09-29
	idna: don't try to encode a unix socket path

1.14.2 - 2018-09-28
	fix: don't IDNA encode the host with unix scheme
	doc: document basic_auth setting

1.14.0 - 2018-09-12
	bump to certifi 2.4.2
	bump to idna 0.6.0
	fix support of rebar2
	fix specs
	add hackney:sockname/1 and hackney:peername/1 functions
	add new checkout_timeout option for clarity
	improve hackney_url:parse_qs/1 to trim leading and trailing empty values

1.13.0 - 2018-06-22
	fix compatibility with Erlang/OTP 21
	fix parsing query parameters on url without path (#512)
	bump idna to 1.5.2: fix compatibility with rebar2 (#509)
	fix accessing HTTPS sites with an IP address (#494)

1.12.1 - 2018-04-03
	fix terminate_async_response (#498)

1.12.0 - 2018-04-03
	fix socks5 badarg error when an IP is given
	upgrade IDNA to 5.1.1
	upgrade certifi to 2.3.1
	fix handling of requests with content-length or transfer-encoding given (#475)
	improvements: send SNI in socks5 SSL
	fix: Allow trailing spaces at the end of chunk sizes (#489)
	fix: set once the metrics engine
	fix leak in the socket pool (#462)
	fix doc

1.11.0 - 2018-01-23
	add: send SNI for Erlang >= 17
	fix: better handling of stream exits in hackney_manager
	improvement: remove high priority flag from the pool process
	fix: change when hackney loads the hackney metric module (speed improvement)
	fix: return value from the function del_from_queue in connection pool
	fix: handle empty or invalid content-length
	fix: documentation on removed method

1.10.1 - 2017-10-20
	improvement: ignore port empty values on redirect (#444)
	fix: fix reference leak introduced in latest version (#445)
	fix: stream termination, don't raise an error on normal exit

1.10.0 - 2017-10-18
	fix owner tracking (#443)
	fix: fix deadlock in hackney_pool during request timeout (#420)
	fix: set PoolHandler on connect (#427)
	fix: fix unicode in include file (#426)

1.9.0 - 2017-07-30
	security: certifi 2.0.0
	dependency: update idna 5.1.0 (fix windows build and usage with elixir)
	doc: fix typo hackney_multipart doc (#422)

1.8.6 - 2017-06-09
	fix: cleanup socket in async request (#411)

1.8.5 - 2017-05-30
	fix: dialyzer

1.8.4 - 2017-05-28
	fix: tests
	dependency: update idna 5.0.2 (fix compatibility with erlang R20)

1.8.3 - 2017-05-22
	security: certifi 1.2.1
	dependency: update idna 5.0.1

1.8.2 - 2017-05-20
	fix: race condition in controlling process (#407)
	fix: spec of #hackney_url{} (#404)
	fix: make sure to not lost a message during hibernation in async request
	security: certifi 1.2.0
	dependency: update idna 5.0.0

1.8.0 - 2017-04-20
	fix: undefined function (#393)
	fix: close connection if proxy handshake failed (#392)
	fix: handle all headers with the new datastructure introduced in 1.7.0 (#395)
	fix: host header when redirect (#400)
	fix: use connect timeout when retrieving from the pool (#402)
	security: new certifi version

1.7.1 - 2017-03-02
	fix: regression in headers handling (handle different key types)

1.7.0 - 2017-03-01
	fix: new datastructure to handle headers (#390)
	security: new certifi version

1.6.6 - 2017-02-26
	fix: fix header appending
	fix: Url encode host header for unix domain sockets (#382)
	security: new certifi version
	doc: fix few typos

1.6.4 - 2016-12-22
	add: optional urlencode options to qs (#368)
	fix: handle continuation lines in HTTP headers correctly (#366)
	doc: Fix a few documentation typos

1.6.3 - 2016-10-27
	fix: handle trailing whitespace in header values

1.6.2 - 2016-10-22
	add: unix sockets support on Erlang > 19
	fix: hackney_multiprart for Erlang < 17
	add: new socks5_resolver function
	fix: hackney_util:merge_opts/2
	improvements: inet6 support in socks5 sockets
	doc: miscellaneous docs fixes
	security: being more strict in ssl support
	security: bump to certifi 0.7

1.6.1 - 2016-07-10
	fix: close socket on error (#308)
	improvement: handle errors in hackney_response:wait_status (#313)
	improvement: make pathencode faster (#317)
	fix: typo (#321)
	fix: elixir 1.4 warnings (#325)

1.6.0 - 2016-03-25
	add path_encode_fun option to request.
	add: allow force non-POST 303 redirects
	use ssl_verif_fun dependency to replace ssl_verify_hostname
	fix: move included_applications to applications
	fix: mix packaging

1.5.4 - 2016-03-18
	fix support of rebar 3 stable
	add mix package

1.5.0 - 2016-03-02
	refactor: one flat source
	replace hackneymetrics* by metrics library
	fix: hackney_pool (#286)
	security: bump to erlang-certifi 0.4.0

1.4.10 - 2016/02/27
	bump to idna 1.1.0
	fix: don't encode @ in urls
	fix: header stream multipart

1.4.7 - 2015/12/07
	bump to mimerl 1.0.2

1.4.6 - 2015/11/24
	fix build with mix

1.4.5 - 2015/11/23
	fix multipart/form parsing (#258)
	TRAVIS-CI build with rebar3

1.4.4 - 2015/11/04
	fix rebar3 detection

1.4.3 - 2015/11/04
	fix header value parsing (#256)

1.4.2 - 2015/11/03
	fix build with rebar2 and Erlang < 17

1.4.1 - 2015/11/03
	fix build with mix (#255)

1.4.0 - 2015/10/27
	build using hex.pm & small refactoring
	fix multipart (#245)
	fix redirection (#237)
	fix url parsing (#236)
	close connection when max body length is reached (#248)

1.3.2 - 2015/08/27
	fix connect_time metric (#227)
	fix redirection when with_body is enabled (#228)
	close half-closed socket to avoid leak (#231)
	fix unexpected message in hackney_stream (#223)
	fix receive/error in hackney_manager (#232)

1.3.1 - 2015/07/28
	fix: set default recv_timeout to 5s. (#219)
	fix: socks5 fix auth: handle not required case (#218)

1.3.0 - 2015/07/23
	new add max_body setting
	fix: handle partial chains during handshake in HTTPS (#196)

1.2.0 - 2015/06/25
	new: add with_body option to return the body directly (#184)
	fix: rely on ssl version to validate certificates securely using hostname
verification
	fix: fix redirection when transport change (#177)
	new: build is now using rebar3
	new: updated root certificates
	fix: ignore comma in set-cookie attributes (#193)
	fix: status line parsing when reason phrase is missing entirely (#190)
	fix: make sure the response is done during async streaming (#186)
	fix metrics (#186)
	new: bump latest version of ssl_verify_hostname (#175)
	fix: parse server headers
	fix: really honor max redirection (#170)
	fix: handle path parameters in URL (#176)

1.1.1 - 2015/03/20
	fix: fix max redirection (#170)
	fix: don't encode path parameters and unreserved chars. (#176)

1.1.0 - 2015/03/04
	fix: honor max_redirect.
	fix: socket checkout in the pool: close the socket if something happen while
passing the control to the client
	fix: put back the waiter in the queue of the pool if no socket can be
delivered
	fix: make sure we don't release a closed typo
	add: shutdown method to transports
	add: hackney_trace module to trace a request
	add: reuse/new connection metrics
	fix: guard binary in hackney_multipart:len_mp_stream/2
	improvement: pass the socket to hackney:request_info/1
	dependency: update ssl_verify_hostname
	fix: make sure to pass the Host header to the request
	fix: HTTP basic authentication
	fix content-type case
	improvement: tests

1.0.6 - 2015/01/21
	improvement: handle {error, closed} for HTTP 1.1 when no content-length is given.
	improvement: handle 204 and 304 status
	fix keep-alive handling
	remove expm package
	build under R18

1.0.5 - 2014/12/12
	improvement: Do not wait to cancel a request
	improvement: do not control the request preemptively

1.0.4 - 2014/12/8
	fix client leaks on error
	fix monitor counters

1.0.3 - 2014/12/5
	fix SSL validation under R15 and R14 Erlang versions.
	Apply SSL certificate validation to SOCKS5 and HTTP proxies.

1.0.2 - 2014/12/02
	fix redirection: rewrite Host header

1.0.1 - 2014/12/01
	update default certification authority file. Make sure we can validate all SSL
connections even on the AWS platform.
	fix typo

1.0.0 - 2014/11/30
hackney 1.0.0 has been released. This is the first stable and long term
supported release of hackney.
	add metrics
	add SSL certificate verification by default.
	fix: Pool handling

0.15.2 - 2014/11/27
	fix: handle strings in headers
	fix; convert User/Password as string if needed
	fix: handle body given as an empty list

0.15.1 - 2014/11/26
	export find_pool/1 and allows any poolname.

0.15.0 - 2014/11/11
	improve hackney performance and concurrency
	fix pool handling: make sure to reuse the connections

0.14.3 - 2014/10/28
	fix hackney:stop_async/1

0.14.2 - 2014/10/27
	fix memory leak (#77): some requests were not cleaned correctly in
hackney_manager.
	fix ssl race condition (#130)
	fix: check if relative url contains a forward slash
	refactor integration tests and add more tests
	fix socket pool: make sure to close all sockets when the pool is terminated,
and do not store closed sockets if we know it.

0.14.1 - 2014/09/24
	fix redirect location: make sure we use absolute urls
	fix redirection: make sure to follow redirections
	fix hackney_response:read_body/3 spec
	trim response headers when needed
	add redirection basic tests

0.14.0 - 2014/09/18
	fix: validate if the redirection url is absolute.
	fix: return location from headers when possible in
hackney:location/1.
	fix HEAD request. Remove the need to call the body method
	fix: remove undefined function references
	tests: start to handle tests with httpbin

Breaking change:
When doing an HEAD request, the signature of the response when it
succeeded is now {ok, Status, ResponseHeaders} and do not contain a
client reference anymore.
0.13.0 - 2014/07/08
	put hackney_lib back in the source code and refactor the source repository
	fix: handle bad socks5 proxy response
#113
	fix: handle timeout in hackney_socks4:connect/5
#112
	fix: Accept inet6 tcp option for ssl
	fix redirection
	fix: add versions option for ssl

0.12.1 - 2014/04/18
	fix: return the full body on closed connections.
	fix: make sure to always pass the Host header.

0.12.0 - 2014/04/18
	improvement: URI encoding is now fully normalized.
	improvement: TCP_NODELAY is now available by default for all transports
	improvements: IDNA parsing is only done during the normalization which
makes all the connections faster.
	fix: connections options are now correctly passed to the transports.
	fix: HTTP proxying. make sure we reuse the connection
	fix: HTTP proxying, only resolve the proxy domain.
	bump hackney_lib to 0.3.0

Breaking change:
the mimetypes has been
replaced by the
hackney_mimetypes
module. It makes content-type detection a little more efficient. In the
process the functions hackney_util:content_type/1 and
hackney_bstr:content_type/1 have been removed. You should now use the
function hackney_mimetypes:filename/1 .
0.11.2 - 2014/04/15
	new improved and more performant IDNA support
	make sure the socket is closed when we skip the body if needed
	fix multipart EOF parsing
	make sure we finish a multipart stream
	bump hackney_lib to 0.2.5
	enable TCP_NODELAY by default. (To disable, pass the option
{nodelay, false} to connect_options).

0.11.1 - 2014/03/03
	improvement: speed IDNA domains handing
	fix http proxy via CONNECT
	fix: encode the path
	bump to hackney_lib 0.2.4

0.11.0 - 2014/03/02
	add hackney:location/1 to get the final location
	make hackney_request:send/2 more efficient
	fix socket removing in the pool
	fix HTTP proxying
	support IDNA hostnames

0.10.1 - 2013/12/30
	fix multipart file header
	improve the performance when sending a {multipart, Parts} body. Send
it as a stream.
	bump hackney_lib version to 0.2.2

0.10.0 - 2013/12/29
	improve multipart handling: With this change, we can now calculate the
full multipart stream content-length using hackney_multipart:len_mp_stream/2 .
	add hackney:setopts/2 to set options to a request when reusing it.
	add hackney:send_reques/3 to pass new options to a request.
	add the {stream_to, Pid} setting to a request to send the messages
from an asynchronous response to another PID.
	fix Host header: some server do not comply well with the spec and
fail to parse the port when they are listening on 80 or 443. This
change fix it.
	fix: make sure we are re-using connections with asynchronous
responses.

Breaking changes:
	All messages from an async response are now under the
format {hackney_response, Ref, ... } to distinct hackney messages
from others in a process easily.
	You can only make an async response at a time. Ie if you are doing
a persistent request (reusing the same reference) you will need to
pass the async option again to the request. For that purpose the
functions hackney:send_request/3 and hackney:setopts/2 have been
added.
	multipart messages have changed. See the documentation for more
information.

0.9.1 - 2013/12/20
	fix response multipart processing

0.9.0 - 2013/12/19
	add support for multipart responses
	add support for cookies: There is now a cookie
option that can be passed to the request. It can be a single cookie or a
list of cookies. To parse cookies from the response a function hackney:cookies/1 has
been added. It returns all the cookies as a list of [{Key, Value}].
	breaking change: use hackney_lib a web toolkit to handle the HTTP protocol and other manipulations.
	optimization: send body and headers together when it is possible
	fix release handling

0.8.3 - 2013/12/07
	add: support redirection in async responses
	improve
hackney_url:make_url/3
	fix: handle case where the response is already done in async responses

0.8.2 - 2013/12/05
	fix: trap exits in hackney_manager

0.8.1 - 2013/12/04
service release with a new feature and some minor improvements
	added the support for socks5
proxies
	improvement: integer and atom can now be passed in url params or forms
values.
	breaking change: differentiate connect/recv timeout, now connect
timeout return {error, connect_timeout}

0.8.0 - 2013/12/02
major release. With this release the API will not evolve much until the
1.0 release sometimes in january.
	breaking change: hackney now return a reference instead of an opaque record. The
information is maintained in an ETS table. The same reference is now
used for async response requests.
	breaking change: stream_body_request/2 and stream_multipart_request/2 functions has
been renamed to send_body/2 and send_multipart_body/2 .
	breaking change: remove hackney:close_stream/1 function. You only need to
use hackney:close/1 now.
	breaking change: rename hackney:raw/1 function to
hackney:cancel_request/1.
	breaking change: the hackney pool handler based on dispcount is now
available in its own repository so hackney doe not depends on dispcount.
	fix: canceling and closing a request now make sure the async response
process is killed.
	fix: make sure we pass a Transfer-Encoding: chunked header when we
send a body without content-length.
	fix: make sure the client is correctly reconnected when we reuse a
reference.

0.7.0 - 2013/11/22
	add new Loadbalance pool handler based on dispcount
	allows to set the pool handler
	breaking change: remove hackney:start_pool/2 and
hackney:stop_pool/1, use instead hackney_pool:start_pool/2 and
hackney_pool:stop_pool/1
	breaking change: A pool is now used by default
	breaking change: The hackney_form module has been removed. You can
now encode/parse a form using the functions in the hackney_url module.
	deprecate pool_size and replace it by max_connections
	fix: apply applications defaults to the pool

0.6.1 - 2013/11/21
	doc: Fix the asynchronous response example in the readme
	add hackney_url:make_url/3, hackney_url:qs/1, hackney_url:parse_qs/1 functions

0.6.0 - 2013/11/21
	add the possibility to get an asynchronous response
	add support for the "Expect: 100-continue" header
	add hackney:controlling_process/2 to pass the control of an hackney context to another process

0.5.0 - 2013/11/06
	fix: proxied connections
	fix: correct the path passed to a request
	fix: multipart forms
	fix: Make sure that the controller process of the socket is the pool process when the socket is in the pool
	fix: auth header when the user is not given

0.4.4 - 2013/08/25
	fix: doc typos
	fix: dialyzer errors
	fix: add mimetypes to the list of loaded applications
	fix: test.ebin example

0.4.3 - 2013/08/04
	removed parse_transform, the REST API is now available at the compilation.
fix: fix file upload content type
	doc: fix typos

0.4.2 - 2013/06/10
	handle identity transfer encoding. When the connection close return
latest buffer.

0.4.1 - 2013/06/10
	Body can be passed as a
function
	Add recv_timeout option
	Fix HEAD request (don't stream the body)
	Don't pass the Port to the Host header if it's default (http, https)
	Set the connection timeout
	Make sure sendfile correctly handle chunked encoding
	Add support for partial file uploads
	Return received buffer when no content length is given (http 1.0)
	Instead of returning {error, closed}, return {error, {closed, Buffer}} when you receive the body, so you can figure what happened
and maybe use the partial body.

0.4.0 - 2012/10/26
	Allows to stream a multipart request
	Add insecure option to connect via ssl without verifying an SSL
certificate
	Handle empty headers values
	Add force_redirect option
	Add expm support
	Fix body streaming
	Fix SSL handling
	Fix hackney:request/3 (no more loop)

0.3.0 - 2012/09/26
	Add Multipart support
	Add HTTP Proxy tunneling support
	Fix Chunked Response decoding

0.2.0 - 2012/07/18
	Allows the user to use a custom function to stream the body
	Add the possibility to send chunked requests
	Add an option to automatically follow a redirection
	Allows the user to force hackney to use the default pool

0.1.0 - 2012/07/16
	initial release

 Contributing to hackney

Thank you for your interest in contributing to hackney!
Getting Started
	Fork the repository
	Clone your fork: git clone https://github.com/YOUR_USERNAME/hackney.git
	Create a branch: git checkout -b my-feature
	Make your changes
	Run tests: rebar3 eunit
	Push and open a pull request

Pull Request Guidelines
Title Format
We use Conventional Commits for PR titles:
<type>: <description>
Types:
	Type	Description
	feat	New feature
	fix	Bug fix
	docs	Documentation only
	refactor	Code change that neither fixes a bug nor adds a feature
	perf	Performance improvement
	test	Adding or updating tests
	chore	Maintenance tasks, dependencies
	security	Security fix

Examples:
	feat: add HTTP/3 connection pooling
	fix: handle timeout in async responses
	docs: update WebSocket guide
	refactor: simplify connection state machine
	perf: reduce memory allocation in header parsing
	security: update SSL certificate bundle

Description
Include in your PR description:
	What the change does
	Why the change is needed
	How to test it (if applicable)

Development Setup
Requirements
	Erlang/OTP 27+
	rebar3

Building
rebar3 compile

Building with QUIC support
QUIC/HTTP3 requires lsquic and BoringSSL (vendored in c_src/):
HACKNEY_QUIC_OPTS="-DCMAKE_BUILD_TYPE=Release" rebar3 compile

Running Tests
All tests
rebar3 eunit

Specific test module
rebar3 eunit --module=hackney_conn_tests

With verbose output
rebar3 eunit --verbose

Running Dialyzer
rebar3 dialyzer

Code Style
	Follow existing code conventions
	Keep functions short and focused
	Add specs for exported functions
	Update documentation for API changes

Reporting Issues
When reporting bugs, include:
	Erlang/OTP version (erl -version)
	hackney version
	Minimal reproduction case
	Expected vs actual behavior

Questions?
Open an issue or reach out to the maintainers.

 Hackney Development Guide

This guide covers development setup, testing, and contributing to hackney.
Prerequisites
	Erlang/OTP 27 or later
	rebar3 3.24.0 or later
	CMake 3.14 or later
	Go (for building BoringSSL)
	zlib development headers

Platform-specific requirements
macOS:
brew install erlang cmake go zlib

Ubuntu/Debian:
sudo apt-get install erlang cmake golang zlib1g-dev build-essential

FreeBSD:
pkg install erlang-runtime28 rebar3 cmake git gmake go llvm18

Building
Clone the repository with submodules:
git clone --recursive https://github.com/benoitc/hackney.git
cd hackney

Build the project:
rebar3 compile

This will:
	Compile all Erlang source files
	Build the QUIC NIF (BoringSSL + lsquic + hackney_quic)

Running Tests
Run all tests:
rebar3 eunit

Run specific test modules:
rebar3 eunit --module=hackney_quic_tests
rebar3 eunit --module=hackney_http3_tests

Running tests with httpbin
Some tests require the httpbin server. Start it before running tests:
pip3 install httpbin gunicorn
gunicorn -b 127.0.0.1:8000 httpbin:app &
rebar3 eunit

Local Docker Testing
A Dockerfile is provided for testing on Linux locally, which mirrors the GitHub CI environment.
Building the Docker image
docker build -f Dockerfile.test -t hackney-test .

Running tests in Docker
Run all tests:
docker run --rm hackney-test

Run specific test modules:
docker run --rm hackney-test bash -c "rebar3 eunit --module=hackney_quic_tests"

Interactive debugging in Docker
Start an interactive shell:
docker run --rm -it hackney-test bash

Then you can:
	Run tests manually: rebar3 eunit
	Start an Erlang shell: rebar3 shell
	Inspect the build: ls -la priv/

Debugging with core dumps
Enable core dumps for debugging segfaults:
docker run --rm --ulimit core=-1 hackney-test bash -c "
 ulimit -c unlimited
 rebar3 eunit || (ls -la core* 2>/dev/null; gdb -batch -ex bt /usr/local/bin/erl core*)
"

QUIC/HTTP3 Development
The QUIC implementation uses:
	BoringSSL - Google's fork of OpenSSL (required for QUIC TLS 1.3)
	lsquic - LiteSpeed QUIC library

NIF Source Files
	c_src/hackney_quic_nif.c - NIF entry points
	c_src/quic_conn.c - Connection management
	c_src/quic_conn.h - Connection structures and declarations
	c_src/atoms.h - Atom definitions

Building the NIF
The NIF is built automatically by rebar3 using CMake. To rebuild from scratch:
rm -rf _build/cmake priv/*.so
rebar3 compile

CMake Configuration
The CMake build is configured in c_src/CMakeLists.txt. Key options:
	CMAKE_BUILD_TYPE - Release (default) or Debug
	CMAKE_POSITION_INDEPENDENT_CODE - Always ON for NIF shared library

Debugging the NIF
Build with debug symbols:
rm -rf _build/cmake
CMAKE_BUILD_TYPE=Debug rebar3 compile

Use LLDB/GDB to debug:
lldb -- erl -pa _build/default/lib/*/ebin

Code Style
Erlang
	Follow standard Erlang conventions
	Use edoc for function documentation
	Keep lines under 100 characters

C
	Use C17 standard
	Use enif_alloc/enif_free for memory allocation (not malloc/free)
	Always check return values
	Use atomic operations for thread-safe flags

Submitting Changes
	Fork the repository
	Create a feature branch: git checkout -b feature/my-feature
	Make your changes
	Run tests locally and in Docker
	Commit with clear messages
	Push and create a pull request

Commit Message Format
type: short description

Longer description if needed.
Types: fix, feat, docs, test, refactor, ci, chore
Continuous Integration
CI runs on:
	Linux x86_64 (OTP 27.2, 28.0)
	Linux ARM64 (OTP 27.2)
	macOS ARM64 (OTP 27)
	FreeBSD 14.2 (OTP 28)

All CI jobs must pass before merging.

 License

2012-2025 (c) Benoît Chesneau <benoitc@enki-multimedia.eu>

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Notice

hackney

2012-2025 (c) Benoît Chesneau <bchesneau@pm.me>

hackney is released under the Apache 2 license. See the LICENSE file for
the complete license.

Third parties

*) Some part of the code from the cowboy project under ISC license:
Copyright (c) 2011-2012, Loicïc Hoguin <essen@ninenines.eu>

*) hackney_pool is based on lhttpc_manager code from the lhttpc project
under BSD.
Copyright (c) 2009, Erlang Training and Consulting Ltd.

*) mk-ca-bundle.pl from the curl project. under BSD license
Copyright (C) 1998 - 2014, Daniel Stenberg, <daniel@haxx.se>, et al.

*) hackney_trace (C) 2015 under the Erlang Public License

*) hackney_cidr is based on inet_cidr 1.2.1. vendored for customer purpose.
Copyright (c) 2024, Enki Multimedia , MIT License

*) hackney_cow_ws and hackney_cow_deflate are vendored from cowlib
(https://github.com/ninenines/cowlib) under ISC license.
Copyright (c) Loïc Hoguin <essen@ninenines.eu>
Copyright (c) jdamanalo <joshuadavid.agustin@manalo.ph> (cow_deflate)

*) hackney_cow_http2, hackney_cow_hpack, hackney_cow_hpack_dec_huffman_lookup.hrl,
and hackney_cow_http2_machine are vendored from cowlib
(https://github.com/ninenines/cowlib) under ISC license.
Copyright (c) 2015-2024, Loïc Hoguin <essen@ninenines.eu>

*) lsquic (c_src/lsquic) - QUIC and HTTP/3 library
(https://github.com/litespeedtech/lsquic) under MIT license.
Copyright (c) 2017-2024 LiteSpeed Technologies Inc

*) BoringSSL (c_src/boringssl) - OpenSSL fork used by lsquic
(https://github.com/google/boringssl) under OpenSSL/ISC license.
Copyright (c) 1998-2011 The OpenSSL Project
Copyright (c) 2014 Google Inc

hackney

 Summary

 Types

 conn/0

 request_ret/0

 url/0

 Functions

 checkout(URL)

 checkout(URL, Headers)

 checkout(URL, Headers, Body)

 checkout(URL, Headers, Body, Options)

 close(ConnPid)

 Close a connection.

 connect(URL)

 connect(Hackney_url, Options)

 connect(Transport, Host, Port)

 Connect to a host and return a connection handle (hackney_conn PID).

 connect(Transport, Host, Port, Options)

 cookies(Headers)

 Parse cookies from response headers.

 copy(URL)

 copy(URL, Headers)

 copy(URL, Headers, Body)

 copy(URL, Headers, Body, Options)

 default_ua()

 delete(URL)

 delete(URL, Headers)

 delete(URL, Headers, Body)

 delete(URL, Headers, Body, Options)

 finish_send_body(ConnPid)

 Finish sending the streaming request body.

 get(URL)

 get(URL, Headers)

 get(URL, Headers, Body)

 get(URL, Headers, Body, Options)

 get_version()

 head(URL)

 head(URL, Headers)

 head(URL, Headers, Body)

 head(URL, Headers, Body, Options)

 location(ConnPid)

 Get the final URL after following redirects. First checks the stored location (set after redirects), then falls back to the Location header from the last response.

 lock(URL)

 lock(URL, Headers)

 lock(URL, Headers, Body)

 lock(URL, Headers, Body, Options)

 merge(URL)

 merge(URL, Headers)

 merge(URL, Headers, Body)

 merge(URL, Headers, Body, Options)

 mkactivity(URL)

 mkactivity(URL, Headers)

 mkactivity(URL, Headers, Body)

 mkactivity(URL, Headers, Body, Options)

 mkcol(URL)

 mkcol(URL, Headers)

 mkcol(URL, Headers, Body)

 mkcol(URL, Headers, Body, Options)

 move(URL)

 move(URL, Headers)

 move(URL, Headers, Body)

 move(URL, Headers, Body, Options)

 msearch(URL)

 msearch(URL, Headers)

 msearch(URL, Headers, Body)

 msearch(URL, Headers, Body, Options)

 notify(URL)

 notify(URL, Headers)

 notify(URL, Headers, Body)

 notify(URL, Headers, Body, Options)

 options(URL)

 options(URL, Headers)

 options(URL, Headers, Body)

 options(URL, Headers, Body, Options)

 parse_proxy_url(Url)

 Parse a proxy URL and extract host, port, and optional credentials. Supports URLs like: - "http://proxy.example.com:8080" - "http://user:pass@proxy.example.com:8080" - "https://admin:secret@secure-proxy.example.com:443" - "socks5://socks.example.com:1080" - "socks5://user:pass@socks.example.com:1080"

 patch(URL)

 patch(URL, Headers)

 patch(URL, Headers, Body)

 patch(URL, Headers, Body, Options)

 pause_stream(ConnPid)

 Pause async streaming.

 peercert(ConnPid)

 Get the peer SSL certificate. Returns the DER-encoded certificate of the peer, or an error if the connection is not SSL or the certificate is unavailable.

 peername(ConnPid)

 Get the remote address and port.

 post(URL)

 post(URL, Headers)

 post(URL, Headers, Body)

 post(URL, Headers, Body, Options)

 propfind(URL)

 propfind(URL, Headers)

 propfind(URL, Headers, Body)

 propfind(URL, Headers, Body, Options)

 proppatch(URL)

 proppatch(URL, Headers)

 proppatch(URL, Headers, Body)

 proppatch(URL, Headers, Body, Options)

 purge(URL)

 purge(URL, Headers)

 purge(URL, Headers, Body)

 purge(URL, Headers, Body, Options)

 put(URL)

 put(URL, Headers)

 put(URL, Headers, Body)

 put(URL, Headers, Body, Options)

 redirect_location(Headers)

 Get redirect location from headers.

 report(URL)

 report(URL, Headers)

 report(URL, Headers, Body)

 report(URL, Headers, Body, Options)

 request(URL)

 Make a request.

 request(Method, URL)

 request(Method, URL, Headers)

 request(Method, URL, Headers, Body)

 request(Method, URL, Headers, Body, Options)

 Make a request.

 resume_stream(ConnPid)

 Resume async streaming.

 search(URL)

 search(URL, Headers)

 search(URL, Headers, Body)

 search(URL, Headers, Body, Options)

 send_body(ConnPid, Data)

 Send a chunk of the request body. Used when request was initiated with body = stream.

 send_request(ConnPid, _)

 Send a request on an existing connection.

 setopts(ConnPid, Options)

 Set socket options.

 sockname(ConnPid)

 Get the local address and port.

 start_response(ConnPid)

 Start receiving the response after sending the full body. Returns {ok, Status, Headers, ConnPid}.

 stop_async(ConnPid)

 Stop async mode and return to sync mode.

 stream_next(ConnPid)

 Request next chunk in {async, once} mode.

 subscribe(URL)

 subscribe(URL, Headers)

 subscribe(URL, Headers, Body)

 subscribe(URL, Headers, Body, Options)

 trace(URL)

 trace(URL, Headers)

 trace(URL, Headers, Body)

 trace(URL, Headers, Body, Options)

 unlock(URL)

 unlock(URL, Headers)

 unlock(URL, Headers, Body)

 unlock(URL, Headers, Body, Options)

 unsubscribe(URL)

 unsubscribe(URL, Headers)

 unsubscribe(URL, Headers, Body)

 unsubscribe(URL, Headers, Body, Options)

 ws_close(WsPid)

 Close WebSocket connection gracefully.

 ws_close(WsPid, _)

 ws_connect(URL)

 Connect to a WebSocket server. URL should use ws:// or wss:// scheme.

 ws_connect(URL, Options)

 ws_recv(WsPid)

 Receive a WebSocket frame (passive mode only). Blocks until a frame is received or timeout. Returns {ok, Frame} or {error, Reason}.

 ws_recv(WsPid, Timeout)

 ws_send(WsPid, Frame)

 Send a WebSocket frame. Frame types: - {text, Data} - Text message - {binary, Data} - Binary message - ping | {ping, Data} - Ping frame - pong | {pong, Data} - Pong frame - close | {close, Code, Reason} - Close frame

 ws_setopts(WsPid, Opts)

 Set WebSocket options. Supported options: [{active, true | false | once}]

 Types

 conn/0

 -type conn() :: pid().

 request_ret/0

 -type request_ret() ::
 {ok, integer(), list(), binary()} |
 {ok, integer(), list()} |
 {ok, reference()} |
 {error, term()}.

 url/0

 -type url() ::
 #hackney_url{transport :: atom(),
 scheme :: atom(),
 netloc :: binary(),
 raw_path :: binary() | undefined,
 path :: binary() | undefined | nil,
 qs :: binary(),
 fragment :: binary(),
 host :: string(),
 port :: integer() | undefined,
 user :: binary(),
 password :: binary()} |
 binary().

 Functions

 checkout(URL)

 checkout(URL, Headers)

 checkout(URL, Headers, Body)

 checkout(URL, Headers, Body, Options)

 close(ConnPid)

 -spec close(conn()) -> ok.

Close a connection.

 connect(URL)

 connect(Hackney_url, Options)

 connect(Transport, Host, Port)

 -spec connect(module(), string(), inet:port_number()) -> {ok, conn()} | {error, term()}.

Connect to a host and return a connection handle (hackney_conn PID).

 connect(Transport, Host, Port, Options)

 -spec connect(module(), string(), inet:port_number(), list()) -> {ok, conn()} | {error, term()}.

 cookies(Headers)

 -spec cookies(list()) -> list().

Parse cookies from response headers.

 copy(URL)

 copy(URL, Headers)

 copy(URL, Headers, Body)

 copy(URL, Headers, Body, Options)

 default_ua()

 delete(URL)

 delete(URL, Headers)

 delete(URL, Headers, Body)

 delete(URL, Headers, Body, Options)

 finish_send_body(ConnPid)

 -spec finish_send_body(conn()) -> ok | {error, term()}.

Finish sending the streaming request body.

 get(URL)

 get(URL, Headers)

 get(URL, Headers, Body)

 get(URL, Headers, Body, Options)

 get_version()

 head(URL)

 head(URL, Headers)

 head(URL, Headers, Body)

 head(URL, Headers, Body, Options)

 location(ConnPid)

 -spec location(conn()) -> binary() | undefined.

Get the final URL after following redirects. First checks the stored location (set after redirects), then falls back to the Location header from the last response.

 lock(URL)

 lock(URL, Headers)

 lock(URL, Headers, Body)

 lock(URL, Headers, Body, Options)

 merge(URL)

 merge(URL, Headers)

 merge(URL, Headers, Body)

 merge(URL, Headers, Body, Options)

 mkactivity(URL)

 mkactivity(URL, Headers)

 mkactivity(URL, Headers, Body)

 mkactivity(URL, Headers, Body, Options)

 mkcol(URL)

 mkcol(URL, Headers)

 mkcol(URL, Headers, Body)

 mkcol(URL, Headers, Body, Options)

 move(URL)

 move(URL, Headers)

 move(URL, Headers, Body)

 move(URL, Headers, Body, Options)

 msearch(URL)

 msearch(URL, Headers)

 msearch(URL, Headers, Body)

 msearch(URL, Headers, Body, Options)

 notify(URL)

 notify(URL, Headers)

 notify(URL, Headers, Body)

 notify(URL, Headers, Body, Options)

 options(URL)

 options(URL, Headers)

 options(URL, Headers, Body)

 options(URL, Headers, Body, Options)

 parse_proxy_url(Url)

 -spec parse_proxy_url(binary() | string()) ->
 {ok,
 #{scheme := atom(),
 host := string(),
 port := inet:port_number(),
 user := binary() | undefined,
 password := binary() | undefined}} |
 {error, invalid_proxy_url}.

Parse a proxy URL and extract host, port, and optional credentials. Supports URLs like: - "http://proxy.example.com:8080" - "http://user:pass@proxy.example.com:8080" - "https://admin:secret@secure-proxy.example.com:443" - "socks5://socks.example.com:1080" - "socks5://user:pass@socks.example.com:1080"
Returns a map with keys: scheme, host, port, user, password Fixes issue #741: Extract proxy basic auth from URL

 patch(URL)

 patch(URL, Headers)

 patch(URL, Headers, Body)

 patch(URL, Headers, Body, Options)

 pause_stream(ConnPid)

 -spec pause_stream(conn()) -> ok.

Pause async streaming.

 peercert(ConnPid)

 -spec peercert(conn()) -> {ok, binary()} | {error, term()}.

Get the peer SSL certificate. Returns the DER-encoded certificate of the peer, or an error if the connection is not SSL or the certificate is unavailable.

 peername(ConnPid)

 -spec peername(conn()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, term()}.

Get the remote address and port.

 post(URL)

 post(URL, Headers)

 post(URL, Headers, Body)

 post(URL, Headers, Body, Options)

 propfind(URL)

 propfind(URL, Headers)

 propfind(URL, Headers, Body)

 propfind(URL, Headers, Body, Options)

 proppatch(URL)

 proppatch(URL, Headers)

 proppatch(URL, Headers, Body)

 proppatch(URL, Headers, Body, Options)

 purge(URL)

 purge(URL, Headers)

 purge(URL, Headers, Body)

 purge(URL, Headers, Body, Options)

 put(URL)

 put(URL, Headers)

 put(URL, Headers, Body)

 put(URL, Headers, Body, Options)

 redirect_location(Headers)

Get redirect location from headers.

 report(URL)

 report(URL, Headers)

 report(URL, Headers, Body)

 report(URL, Headers, Body, Options)

 request(URL)

 -spec request(url()) -> request_ret().

Make a request.

 request(Method, URL)

 -spec request(atom() | binary(), url()) -> request_ret().

 request(Method, URL, Headers)

 -spec request(atom() | binary(), url(), list()) -> request_ret().

 request(Method, URL, Headers, Body)

 -spec request(atom() | binary(), url(), list(), term()) -> request_ret().

 request(Method, URL, Headers, Body, Options)

 -spec request(atom() | binary(), url(), list(), term(), list()) -> request_ret().

Make a request.
Args: - Method: HTTP method (get, post, put, delete, etc.) - URL: Full URL or parsed hackney_url record - Headers: List of headers - Body: Request body (binary, iolist, {form, KVs}, {file, Path}, etc.) - Options: Request options
Options: - async: true | once - Receive response asynchronously - stream_to: PID to receive async messages - follow_redirect: Follow redirects automatically - max_redirect: Maximum number of redirects (default 5) - location_trusted: If true, forward auth credentials on cross-host redirects (default false) - pool: Pool name or false for no pooling - connect_timeout: Connection timeout in ms (default 8000) - recv_timeout: Receive timeout in ms (default 5000)
Returns: - {ok, Status, Headers, Body}: Success with response body - {ok, Status, Headers}: HEAD request - {ok, Ref}: Async mode - use stream_next/1 to receive messages - {ok, ConnPid}: Streaming body mode (body = stream) - use send_body/2, finish_send_body/1 - {error, Reason}: Error
Note: The with_body option is deprecated and ignored. Body is always returned directly.

 resume_stream(ConnPid)

 -spec resume_stream(conn()) -> ok.

Resume async streaming.

 search(URL)

 search(URL, Headers)

 search(URL, Headers, Body)

 search(URL, Headers, Body, Options)

 send_body(ConnPid, Data)

 -spec send_body(conn(), iodata()) -> ok | {error, term()}.

Send a chunk of the request body. Used when request was initiated with body = stream.

 send_request(ConnPid, _)

 -spec send_request(conn(), {atom(), binary(), list(), term()}) ->
 {ok, integer(), list(), conn()} | {ok, integer(), list()} | {error, term()}.

Send a request on an existing connection.

 setopts(ConnPid, Options)

 -spec setopts(conn(), list()) -> ok | {error, term()}.

Set socket options.

 sockname(ConnPid)

 -spec sockname(conn()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, term()}.

Get the local address and port.

 start_response(ConnPid)

 -spec start_response(conn()) -> {ok, integer(), list(), conn()} | {error, term()}.

Start receiving the response after sending the full body. Returns {ok, Status, Headers, ConnPid}.

 stop_async(ConnPid)

 -spec stop_async(conn()) -> ok | {error, term()}.

Stop async mode and return to sync mode.

 stream_next(ConnPid)

 -spec stream_next(conn()) -> ok.

Request next chunk in {async, once} mode.

 subscribe(URL)

 subscribe(URL, Headers)

 subscribe(URL, Headers, Body)

 subscribe(URL, Headers, Body, Options)

 trace(URL)

 trace(URL, Headers)

 trace(URL, Headers, Body)

 trace(URL, Headers, Body, Options)

 unlock(URL)

 unlock(URL, Headers)

 unlock(URL, Headers, Body)

 unlock(URL, Headers, Body, Options)

 unsubscribe(URL)

 unsubscribe(URL, Headers)

 unsubscribe(URL, Headers, Body)

 unsubscribe(URL, Headers, Body, Options)

 ws_close(WsPid)

 -spec ws_close(pid()) -> ok.

Close WebSocket connection gracefully.

 ws_close(WsPid, _)

 -spec ws_close(pid(), {integer(), binary()}) -> ok.

 ws_connect(URL)

 -spec ws_connect(binary() | string()) -> {ok, pid()} | {error, term()}.

Connect to a WebSocket server. URL should use ws:// or wss:// scheme.
Options:
	active: false | true | once (default false)
	headers: Extra headers for upgrade request
	protocols: Sec-WebSocket-Protocol values
	connect_timeout: Connection timeout in ms (default 8000)
	recv_timeout: Receive timeout in ms (default infinity)
	connect_options: Options passed to transport connect
	ssl_options: Additional SSL options

Returns {ok, WsPid} on success, where WsPid is the hackney_ws process.

 ws_connect(URL, Options)

 -spec ws_connect(binary() | string(), list()) -> {ok, pid()} | {error, term()}.

 ws_recv(WsPid)

 -spec ws_recv(pid()) -> {ok, hackney_ws:ws_frame()} | {error, term()}.

Receive a WebSocket frame (passive mode only). Blocks until a frame is received or timeout. Returns {ok, Frame} or {error, Reason}.

 ws_recv(WsPid, Timeout)

 -spec ws_recv(pid(), timeout()) -> {ok, hackney_ws:ws_frame()} | {error, term()}.

 ws_send(WsPid, Frame)

 -spec ws_send(pid(), hackney_ws:ws_frame()) -> ok | {error, term()}.

Send a WebSocket frame. Frame types: - {text, Data} - Text message - {binary, Data} - Binary message - ping | {ping, Data} - Ping frame - pong | {pong, Data} - Pong frame - close | {close, Code, Reason} - Close frame

 ws_setopts(WsPid, Opts)

 -spec ws_setopts(pid(), list()) -> ok | {error, term()}.

Set WebSocket options. Supported options: [{active, true | false | once}]

hackney_altsvc

Alt-Svc header parsing and caching for HTTP/3 discovery.
This module parses Alt-Svc response headers to discover HTTP/3 endpoints and caches them for future requests.
[bookmark: Alt-Svc_Header_Format]Alt-Svc Header Format
 Alt-Svc: h3=":443"; ma=86400, h3-29=":443"
 Alt-Svc: clear
[bookmark: Usage]Usage
After receiving an HTTP/1.1 or HTTP/2 response, check for Alt-Svc:
 case hackney_altsvc:parse_and_cache(Host, Headers) of
 {ok, h3, Port} -> %% HTTP/3 available on Port
 none -> %% No HTTP/3 advertised
 end
Before connecting, check the cache:
 case hackney_altsvc:lookup(Host, Port) of
 {ok, h3, H3Port} -> %% Try HTTP/3 on H3Port
 none -> %% No cached Alt-Svc
 end

 Summary

 Functions

 cache(Host, OrigPort, H3Port, MaxAge)

 Cache an Alt-Svc entry.

 clear(Host, Port)

 Clear cached Alt-Svc for a host/port.

 clear_all()

 Clear all cached Alt-Svc entries.

 init()

 Initialize the Alt-Svc cache. Called at application start.

 is_h3_blocked(Host, Port)

 Check if HTTP/3 is blocked for a host (negative cache).

 lookup(Host, Port)

 Lookup cached Alt-Svc for a host/port. Returns {ok, h3, H3Port} if HTTP/3 is available and not expired.

 mark_h3_blocked(Host, Port)

 Mark HTTP/3 as blocked for a host (negative cache for 5 min).

 parse(Header)

 Parse an Alt-Svc header value. Returns list of {Protocol, Host, Port, MaxAge} tuples. Protocol is h3 atom for HTTP/3 variants, or binary for other protocols. Host is 'same' if not specified (use origin host).

 parse_and_cache(Host, Port, Headers)

 Parse Alt-Svc header from response headers and cache if h3 found. Returns {ok, h3, Port} if HTTP/3 is available, or none.

 Functions

 cache(Host, OrigPort, H3Port, MaxAge)

 -spec cache(Host :: binary() | string(),
 OrigPort :: inet:port_number(),
 H3Port :: inet:port_number(),
 MaxAge :: non_neg_integer()) ->
 ok.

Cache an Alt-Svc entry.

 clear(Host, Port)

 -spec clear(Host :: binary() | string(), Port :: inet:port_number()) -> ok.

Clear cached Alt-Svc for a host/port.

 clear_all()

 -spec clear_all() -> ok.

Clear all cached Alt-Svc entries.

 init()

 -spec init() -> ok.

Initialize the Alt-Svc cache. Called at application start.

 is_h3_blocked(Host, Port)

 -spec is_h3_blocked(Host :: binary() | string(), Port :: inet:port_number()) -> boolean().

Check if HTTP/3 is blocked for a host (negative cache).

 lookup(Host, Port)

 -spec lookup(Host :: binary() | string(), Port :: inet:port_number()) ->
 {ok, h3, inet:port_number()} | none.

Lookup cached Alt-Svc for a host/port. Returns {ok, h3, H3Port} if HTTP/3 is available and not expired.

 mark_h3_blocked(Host, Port)

 -spec mark_h3_blocked(Host :: binary() | string(), Port :: inet:port_number()) -> ok.

Mark HTTP/3 as blocked for a host (negative cache for 5 min).

 parse(Header)

 -spec parse(binary() | string()) ->
 [{h3 | binary(), same | binary(), inet:port_number(), non_neg_integer()}].

Parse an Alt-Svc header value. Returns list of {Protocol, Host, Port, MaxAge} tuples. Protocol is h3 atom for HTTP/3 variants, or binary for other protocols. Host is 'same' if not specified (use origin host).

 parse_and_cache(Host, Port, Headers)

 -spec parse_and_cache(Host :: binary() | string(),
 Port :: inet:port_number(),
 Headers :: [{binary(), binary()}]) ->
 {ok, h3, inet:port_number()} | none.

Parse Alt-Svc header from response headers and cache if h3 found. Returns {ok, h3, Port} if HTTP/3 is available, or none.

hackney_app

 Summary

 Functions

 get_app_env(Key)

 return a config value

 get_app_env(Key, Default)

 return a config value

 start(StartType, StartArgs)

 stop(State)

 Functions

 get_app_env(Key)

return a config value

 get_app_env(Key, Default)

return a config value

 start(StartType, StartArgs)

 stop(State)

hackney_bstr

 Summary

 Types

 cp/0

 part/0

 END: Remove when OTP 17 not officially supported

 Functions

 alpha(Data, Fun)

 Parse a list of case-insensitive alpha characters.

 char_to_lower(Ch)

 Convert [A-Z] characters to lowercase.

 char_to_upper(Ch)

 Convert [a-z] characters to uppercase.

 digits(Data)

 Parse a list of digits as a non negative integer.

 digits(Data, Fun)

 digits(Data, Fun, Acc)

 join(L, Separator)

 list(Data, Fun)

 Parse a list of the given type.

 nonempty_list(Data, Fun)

 Parse a non-empty list of the given type.

 parameterized_tokens(Data)

 Parse a non empty list of tokens followed with optional parameters.

 params(Data, Fun)

 Parse a list of parameters (a=b;c=d).

 quoted_string(_, Fun)

 split(Subject, Pattern, Options)

 to_binary(V)

 to_hex(Bin)

 to_lower(L)

 Convert a binary string to lowercase.

 to_upper(U)

 token(Data, Fun)

 Parse a token.

 token_ci(Data, Fun)

 Parse a case-insensitive token.

 trim(Data)

 whitespace(Data, Fun)

 Skip whitespace.

 word(Data, Fun)

 Parse either a token or a quoted string.

 Types

 cp/0

 -opaque cp()

 part/0

 -type part() :: {Start :: non_neg_integer(), Length :: integer()}.

END: Remove when OTP 17 not officially supported

 Functions

 alpha(Data, Fun)

 -spec alpha(binary(), fun()) -> any().

Parse a list of case-insensitive alpha characters.
Changes all characters to lowercase.

 char_to_lower(Ch)

 -spec char_to_lower(char()) -> char().

Convert [A-Z] characters to lowercase.

 char_to_upper(Ch)

 -spec char_to_upper(char()) -> char().

Convert [a-z] characters to uppercase.

 digits(Data)

 -spec digits(binary()) -> non_neg_integer() | {error, badarg}.

Parse a list of digits as a non negative integer.

 digits(Data, Fun)

 -spec digits(binary(), fun()) -> any().

 digits(Data, Fun, Acc)

 -spec digits(binary(), fun(), non_neg_integer()) -> any().

 join(L, Separator)

 list(Data, Fun)

 -spec list(binary(), fun()) -> list() | {error, badarg}.

Parse a list of the given type.

 nonempty_list(Data, Fun)

 -spec nonempty_list(binary(), fun()) -> [any(), ...] | {error, badarg}.

Parse a non-empty list of the given type.

 parameterized_tokens(Data)

 -spec parameterized_tokens(binary()) -> any().

Parse a non empty list of tokens followed with optional parameters.

 params(Data, Fun)

 -spec params(binary(), fun()) -> any().

Parse a list of parameters (a=b;c=d).

 quoted_string(_, Fun)

 -spec quoted_string(binary(), fun()) -> any().

 split(Subject, Pattern, Options)

 -spec split(Subject, Pattern, Options) -> Parts
 when
 Subject :: binary(),
 Pattern :: binary() | [binary()] | cp(),
 Options :: [Option],
 Option :: {scope, part()} | trim | global | trim_all,
 Parts :: [binary()].

 to_binary(V)

 to_hex(Bin)

 to_lower(L)

 -spec to_lower(binary() | atom() | list()) -> binary().

Convert a binary string to lowercase.

 to_upper(U)

 -spec to_upper(binary() | atom() | list()) -> binary().

 token(Data, Fun)

 -spec token(binary(), fun()) -> any().

Parse a token.

 token_ci(Data, Fun)

 -spec token_ci(binary(), fun()) -> any().

Parse a case-insensitive token.
Changes all characters to lowercase.

 trim(Data)

 -spec trim(binary()) -> binary().

 whitespace(Data, Fun)

 -spec whitespace(binary(), fun()) -> any().

Skip whitespace.

 word(Data, Fun)

 -spec word(binary(), fun()) -> any().

Parse either a token or a quoted string.

hackney_cidr

 Summary

 Types

 cidr/0

 Functions

 address_count(IP, MaskLen)

 return the number of IP addresses included in the CIDR block

 contains(_, Addr)

 return true if the CIDR block contains the IP address or CIDR block, false otherwise.

 ip_gte(_, _)

 ip_lte(_, _)

 is_ipv4(_)

 return true if the value is an ipv4 address

 is_ipv6(_)

 return true if the value is an ipv6 address

 merge_cidrs(CIDRs)

 Unique sort and merge a list of CIDR blocks, ordering IPv4 ranges before IPv6 ranges. For merging, CIDR blocks that are contained by other CIDR blocks are removed and adjacent CIDR blocks are merged into larger ones.

 parse(S)

 parses S as a CIDR notation IP address and mask

 parse(B, Adjust)

 parses S as a CIDR notation IP address and mask. If Adjust = true, allow the IP to contain values beyond the mask and silently ignore them. Otherwise, enforce that the IP address is fully inside the specified mask (the default behavior of parse/1).

 to_binary(_)

 return a CIDR block as a binary string.

 to_string(_)

 return a CIDR block as a string.

 usort_cidrs(CIDRs)

 Unique sort a list of CIDR blocks, ordering IPv4 ranges before IPv6 ranges

 Types

 cidr/0

 -type cidr() ::
 {Start :: inet:ip4_address(), End :: inet:ip4_address(), MaskLen :: 0..32} |
 {Start :: inet:ip6_address(), End :: inet:ip6_address(), MaskLen :: 0..128}.

 Functions

 address_count(IP, MaskLen)

 -spec address_count(inet:ip4_address(), MaskLen :: 0..32) -> pos_integer();
 (inet:ip6_address(), MaskLen :: 0..128) -> pos_integer().

return the number of IP addresses included in the CIDR block

 contains(_, Addr)

 -spec contains(cidr(), inet:ip_address() | cidr()) -> boolean().

return true if the CIDR block contains the IP address or CIDR block, false otherwise.

 ip_gte(_, _)

 ip_lte(_, _)

 is_ipv4(_)

 -spec is_ipv4(inet:ip_address()) -> boolean().

return true if the value is an ipv4 address

 is_ipv6(_)

 -spec is_ipv6(inet:ip_address()) -> boolean().

return true if the value is an ipv6 address

 merge_cidrs(CIDRs)

 -spec merge_cidrs([cidr()]) -> [cidr()].

Unique sort and merge a list of CIDR blocks, ordering IPv4 ranges before IPv6 ranges. For merging, CIDR blocks that are contained by other CIDR blocks are removed and adjacent CIDR blocks are merged into larger ones.

 parse(S)

 -spec parse(string() | binary()) -> cidr().

parses S as a CIDR notation IP address and mask

 parse(B, Adjust)

 -spec parse(string() | binary(), Adjust :: boolean()) -> cidr().

parses S as a CIDR notation IP address and mask. If Adjust = true, allow the IP to contain values beyond the mask and silently ignore them. Otherwise, enforce that the IP address is fully inside the specified mask (the default behavior of parse/1).

 to_binary(_)

 -spec to_binary(cidr()) -> binary().

return a CIDR block as a binary string.

 to_string(_)

 -spec to_string(cidr()) -> string().

return a CIDR block as a string.

 usort_cidrs(CIDRs)

 -spec usort_cidrs([cidr()]) -> [cidr()].

Unique sort a list of CIDR blocks, ordering IPv4 ranges before IPv6 ranges

hackney_conn

gen_statem process for managing a single HTTP connection.
This module implements a state machine for HTTP connections, handling connection establishment, request/response cycles, and connection reuse.
States: - idle: Process started, not connected - connecting: TCP/SSL handshake in progress - connected: Ready for requests - sending: Sending request data - receiving: Awaiting/streaming response - closed: Connection terminated

 Summary

 Functions

 body(Pid)

 Get the full response body.

 body(Pid, Timeout)

 callback_mode()

 close(Pid)

 Close the connection. This is a low-level function that closes the socket but keeps the process.

 closed(EventType, OldState, Conn_data)

 code_change(OldVsn, State, Data, Extra)

 connect(Pid)

 Connect to the target host. Blocks until connected or timeout.

 connect(Pid, Timeout)

 connected(EventType, OldState, Conn_data)

 connecting(EventType, OldState, Data)

 finish_send_body(Pid)

 Finish sending the request body.

 get_location(Pid)

 Get the stored location (final URL after redirects).

 get_protocol(Pid)

 Get the negotiated protocol for this connection. Returns http1, http2, or http3 based on ALPN negotiation (SSL connections), QUIC (HTTP/3), or http1 for plain TCP connections.

 get_state(Pid)

 Get current state name for debugging.

 idle(EventType, OldState, Data)

 init(_)

 is_no_reuse(Pid)

 Check if this connection should not be reused/pooled. SOCKS5 proxy connections set this flag since each establishes a unique tunnel.

 is_ready(Pid)

 Check if the connection is ready for a new request. Returns {ok, connected} if ready, or error/closed status. This combines state check and socket verification in one call.

 is_upgraded_ssl(Pid)

 Check if this connection was upgraded from TCP to SSL. Upgraded connections should be closed after use, not returned to pool.

 pause_stream(Pid)

 Pause async streaming (hibernate the stream).

 peercert(Pid)

 Get the peer SSL certificate. Returns {ok, Cert} where Cert is the DER-encoded certificate binary, or {error, Reason} if the connection is not SSL or the certificate is unavailable.

 peername(Pid)

 Get the remote address and port.

 receiving(EventType, Event, Data)

 recv(Pid, Timeout)

 Receive data from the connection process. This is a low-level function used by hackney_response.

 recv(Pid, Length, Timeout)

 release_to_pool(Pid)

 Release the connection back to the pool. This notifies the pool that the connection is available for reuse. Uses a synchronous call to ensure the pool has processed the checkin.

 request(Pid, Method, Path, Headers, Body)

 Send an HTTP request and wait for the response status and headers. Returns {ok, Status, Headers} for HTTP/1.1 or {ok, Status, Headers, Body} for HTTP/2. For HTTP/1.1, use body/1 or stream_body/1 to get the response body.

 request(Pid, Method, Path, Headers, Body, Timeout)

 request(Pid, Method, Path, Headers, Body, Timeout, ReqOpts)

 Make an HTTP request with additional request options. Options: - inform_fun: fun(Status, Reason, Headers) - callback for 1xx responses

 request_async(Pid, Method, Path, Headers, Body, AsyncMode)

 Send an HTTP request asynchronously. Returns {ok, Ref} immediately. Response is sent as messages: - {hackney_response, Ref, {status, Status, Reason}} - {hackney_response, Ref, {headers, Headers}} - {hackney_response, Ref, Data} (body chunks) - {hackney_response, Ref, done} - {hackney_response, Ref, {error, Reason}} When follow_redirect is true and response is a redirect: - {hackney_response, Ref, {redirect, Location, Headers}} for 301,302,307,308 - {hackney_response, Ref, {see_other, Location, Headers}} for 303 with POST AsyncMode: true (continuous) or once (one message at a time, use stream_next/1)

 request_async(Pid, Method, Path, Headers, Body, AsyncMode, StreamTo)

 request_async(Pid, Method, Path, Headers, Body, AsyncMode, StreamTo, FollowRedirect)

 request_streaming(Pid, Method, Path, Headers, Body)

 Send an HTTP/3 request and return headers immediately. Returns {ok, Status, Headers} and allows subsequent stream_body/1 calls. This is for pull-based body streaming over HTTP/3.

 response_headers(Pid)

 Get the last response headers.

 resume_stream(Pid)

 Resume paused async streaming.

 send(Pid, Data)

 Send data through the connection process. This is a low-level function used by hackney_request.

 send_body_chunk(Pid, Data)

 Send a chunk of the request body.

 send_request_headers(Pid, Method, Path, Headers)

 Send only the request headers (for streaming body mode). After this, use send_body_chunk/2 and finish_send_body/1 to send the body, then start_response/1 to receive the response.

 sending(EventType, Event, Conn_data)

 set_location(Pid, Location)

 Set the location (used after following redirects).

 set_owner(Pid, NewOwner)

 Set a new owner for this connection (sync). This updates the process being monitored - if the new owner crashes, the connection will terminate. Used by the pool when checking out a connection to a new requester.

 set_owner_async(Pid, NewOwner)

 Set a new owner for this connection (async). Same as set_owner/2 but non-blocking. Used when the caller cannot block (e.g., during pool checkin to avoid deadlock).

 setopts(Pid, Opts)

 Set socket options on the underlying socket.

 sockname(Pid)

 Get the local address and port.

 start_link(Opts)

 Start a connection process. Options: - host: Target host (string) - port: Target port (integer) - transport: hackney_tcp or hackney_ssl - connect_timeout: Connection timeout (default 8000ms) - recv_timeout: Receive timeout (default 5000ms) - idle_timeout: Idle timeout before closing (default infinity) - connect_options: Options passed to transport connect - ssl_options: Additional SSL options

 start_response(Pid)

 Start receiving the response after sending the full body.

 stop(Pid)

 Stop the connection process. Returns ok even if the process has already terminated.

 stop_async(Pid)

 Stop async mode and return to sync mode.

 stream_body(Pid)

 Stream the response body in chunks. Returns {ok, Data} for each chunk, {done, Pid} when complete.

 stream_next(Pid)

 Request the next message in {async, once} mode.

 streaming(EventType, Event, Data)

 streaming_body(EventType, Event, Conn_data)

 streaming_once(EventType, OldState, Data)

 terminate(Reason, State, Conn_data)

 upgrade_to_ssl(Pid, SslOpts)

 Upgrade a TCP connection to SSL. This performs an SSL handshake on the existing TCP socket. After upgrade, the connection is marked as upgraded_ssl and should NOT be returned to the pool (SSL connections are not pooled for security).

 verify_socket(Pid)

 Check if the connection's socket is still healthy. Returns ok if socket is open, {error, closed} otherwise.

 Functions

 body(Pid)

 -spec body(pid()) -> {ok, binary()} | {error, term()}.

Get the full response body.

 body(Pid, Timeout)

 -spec body(pid(), timeout()) -> {ok, binary()} | {error, term()}.

 callback_mode()

 close(Pid)

 -spec close(pid()) -> ok.

Close the connection. This is a low-level function that closes the socket but keeps the process.

 closed(EventType, OldState, Conn_data)

 code_change(OldVsn, State, Data, Extra)

 connect(Pid)

 -spec connect(pid()) -> ok | {error, term()}.

Connect to the target host. Blocks until connected or timeout.

 connect(Pid, Timeout)

 -spec connect(pid(), timeout()) -> ok | {error, term()}.

 connected(EventType, OldState, Conn_data)

 connecting(EventType, OldState, Data)

 finish_send_body(Pid)

 -spec finish_send_body(pid()) -> ok | {error, term()}.

Finish sending the request body.

 get_location(Pid)

 -spec get_location(pid()) -> binary() | undefined.

Get the stored location (final URL after redirects).

 get_protocol(Pid)

 -spec get_protocol(pid()) -> http1 | http2 | http3.

Get the negotiated protocol for this connection. Returns http1, http2, or http3 based on ALPN negotiation (SSL connections), QUIC (HTTP/3), or http1 for plain TCP connections.

 get_state(Pid)

 -spec get_state(pid()) -> {ok, atom()} | {error, term()}.

Get current state name for debugging.

 idle(EventType, OldState, Data)

 init(_)

 is_no_reuse(Pid)

 -spec is_no_reuse(pid()) -> boolean().

Check if this connection should not be reused/pooled. SOCKS5 proxy connections set this flag since each establishes a unique tunnel.

 is_ready(Pid)

 -spec is_ready(pid()) -> {ok, connected} | {ok, closed} | {error, term()}.

Check if the connection is ready for a new request. Returns {ok, connected} if ready, or error/closed status. This combines state check and socket verification in one call.

 is_upgraded_ssl(Pid)

 -spec is_upgraded_ssl(pid()) -> boolean().

Check if this connection was upgraded from TCP to SSL. Upgraded connections should be closed after use, not returned to pool.

 pause_stream(Pid)

 -spec pause_stream(pid()) -> ok | {error, term()}.

Pause async streaming (hibernate the stream).

 peercert(Pid)

 -spec peercert(pid()) -> {ok, binary()} | {error, term()}.

Get the peer SSL certificate. Returns {ok, Cert} where Cert is the DER-encoded certificate binary, or {error, Reason} if the connection is not SSL or the certificate is unavailable.

 peername(Pid)

 -spec peername(pid()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, term()}.

Get the remote address and port.

 receiving(EventType, Event, Data)

 recv(Pid, Timeout)

 -spec recv(pid(), timeout()) -> {ok, binary()} | {error, term()}.

Receive data from the connection process. This is a low-level function used by hackney_response.

 recv(Pid, Length, Timeout)

 -spec recv(pid(), non_neg_integer(), timeout()) -> {ok, binary()} | {error, term()}.

 release_to_pool(Pid)

 -spec release_to_pool(pid()) -> ok.

Release the connection back to the pool. This notifies the pool that the connection is available for reuse. Uses a synchronous call to ensure the pool has processed the checkin.

 request(Pid, Method, Path, Headers, Body)

 -spec request(pid(), binary(), binary(), list(), binary() | iolist()) ->
 {ok, integer(), list()} | {ok, integer(), list(), binary()} | {error, term()}.

Send an HTTP request and wait for the response status and headers. Returns {ok, Status, Headers} for HTTP/1.1 or {ok, Status, Headers, Body} for HTTP/2. For HTTP/1.1, use body/1 or stream_body/1 to get the response body.

 request(Pid, Method, Path, Headers, Body, Timeout)

 -spec request(pid(), binary(), binary(), list(), binary() | iolist(), timeout()) ->
 {ok, integer(), list()} | {ok, integer(), list(), binary()} | {error, term()}.

 request(Pid, Method, Path, Headers, Body, Timeout, ReqOpts)

 -spec request(pid(), binary(), binary(), list(), binary() | iolist(), timeout(), list()) ->
 {ok, integer(), list()} | {ok, integer(), list(), binary()} | {error, term()}.

Make an HTTP request with additional request options. Options: - inform_fun: fun(Status, Reason, Headers) - callback for 1xx responses

 request_async(Pid, Method, Path, Headers, Body, AsyncMode)

 -spec request_async(pid(), binary(), binary(), list(), binary() | iolist(), true | once) ->
 {ok, reference()} | {error, term()}.

Send an HTTP request asynchronously. Returns {ok, Ref} immediately. Response is sent as messages: - {hackney_response, Ref, {status, Status, Reason}} - {hackney_response, Ref, {headers, Headers}} - {hackney_response, Ref, Data} (body chunks) - {hackney_response, Ref, done} - {hackney_response, Ref, {error, Reason}} When follow_redirect is true and response is a redirect: - {hackney_response, Ref, {redirect, Location, Headers}} for 301,302,307,308 - {hackney_response, Ref, {see_other, Location, Headers}} for 303 with POST AsyncMode: true (continuous) or once (one message at a time, use stream_next/1)

 request_async(Pid, Method, Path, Headers, Body, AsyncMode, StreamTo)

 -spec request_async(pid(), binary(), binary(), list(), binary() | iolist(), true | once, pid()) ->
 {ok, reference()} | {error, term()}.

 request_async(Pid, Method, Path, Headers, Body, AsyncMode, StreamTo, FollowRedirect)

 -spec request_async(pid(),
 binary(),
 binary(),
 list(),
 binary() | iolist(),
 true | once,
 pid(),
 boolean()) ->
 {ok, reference()} | {error, term()}.

 request_streaming(Pid, Method, Path, Headers, Body)

 -spec request_streaming(pid(), binary(), binary(), list(), binary() | iolist()) ->
 {ok, integer(), list()} | {error, term()}.

Send an HTTP/3 request and return headers immediately. Returns {ok, Status, Headers} and allows subsequent stream_body/1 calls. This is for pull-based body streaming over HTTP/3.

 response_headers(Pid)

 -spec response_headers(pid()) -> list() | undefined.

Get the last response headers.

 resume_stream(Pid)

 -spec resume_stream(pid()) -> ok | {error, term()}.

Resume paused async streaming.

 send(Pid, Data)

 -spec send(pid(), iodata()) -> ok | {error, term()}.

Send data through the connection process. This is a low-level function used by hackney_request.

 send_body_chunk(Pid, Data)

 -spec send_body_chunk(pid(), iodata()) -> ok | {error, term()}.

Send a chunk of the request body.

 send_request_headers(Pid, Method, Path, Headers)

 -spec send_request_headers(pid(), binary(), binary(), list()) -> ok | {error, term()}.

Send only the request headers (for streaming body mode). After this, use send_body_chunk/2 and finish_send_body/1 to send the body, then start_response/1 to receive the response.

 sending(EventType, Event, Conn_data)

 set_location(Pid, Location)

 -spec set_location(pid(), binary()) -> ok.

Set the location (used after following redirects).

 set_owner(Pid, NewOwner)

 -spec set_owner(pid(), pid()) -> ok.

Set a new owner for this connection (sync). This updates the process being monitored - if the new owner crashes, the connection will terminate. Used by the pool when checking out a connection to a new requester.

 set_owner_async(Pid, NewOwner)

 -spec set_owner_async(pid(), pid()) -> ok.

Set a new owner for this connection (async). Same as set_owner/2 but non-blocking. Used when the caller cannot block (e.g., during pool checkin to avoid deadlock).

 setopts(Pid, Opts)

 -spec setopts(pid(), list()) -> ok | {error, term()}.

Set socket options on the underlying socket.

 sockname(Pid)

 -spec sockname(pid()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, term()}.

Get the local address and port.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start a connection process. Options: - host: Target host (string) - port: Target port (integer) - transport: hackney_tcp or hackney_ssl - connect_timeout: Connection timeout (default 8000ms) - recv_timeout: Receive timeout (default 5000ms) - idle_timeout: Idle timeout before closing (default infinity) - connect_options: Options passed to transport connect - ssl_options: Additional SSL options

 start_response(Pid)

 -spec start_response(pid()) -> {ok, integer(), list(), pid()} | {error, term()}.

Start receiving the response after sending the full body.

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop the connection process. Returns ok even if the process has already terminated.

 stop_async(Pid)

 -spec stop_async(pid()) -> ok | {error, term()}.

Stop async mode and return to sync mode.

 stream_body(Pid)

 -spec stream_body(pid()) -> {ok, binary()} | done | {error, term()}.

Stream the response body in chunks. Returns {ok, Data} for each chunk, {done, Pid} when complete.

 stream_next(Pid)

 -spec stream_next(pid()) -> ok | {error, term()}.

Request the next message in {async, once} mode.

 streaming(EventType, Event, Data)

 streaming_body(EventType, Event, Conn_data)

 streaming_once(EventType, OldState, Data)

 terminate(Reason, State, Conn_data)

 upgrade_to_ssl(Pid, SslOpts)

 -spec upgrade_to_ssl(pid(), list()) -> ok | {error, term()}.

Upgrade a TCP connection to SSL. This performs an SSL handshake on the existing TCP socket. After upgrade, the connection is marked as upgraded_ssl and should NOT be returned to the pool (SSL connections are not pooled for security).

 verify_socket(Pid)

 -spec verify_socket(pid()) -> ok | {error, closed | term()}.

Check if the connection's socket is still healthy. Returns ok if socket is open, {error, closed} otherwise.

hackney_conn_sup

Supervisor for hackney_conn connection processes.
This is a simple_one_for_one supervisor that dynamically starts hackney_conn gen_statem processes for each connection.

 Summary

 Functions

 init(_)

 start_conn(Opts)

 Start a new connection process. Opts is a map with at least host, port, and transport.

 start_link()

 Start the supervisor.

 stop_all()

 Stop all connection processes gracefully. Useful for test cleanup.

 stop_conn(Pid)

 Stop a connection process gracefully.

 Functions

 init(_)

 start_conn(Opts)

 -spec start_conn(map()) -> {ok, pid()} | {error, term()}.

Start a new connection process. Opts is a map with at least host, port, and transport.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the supervisor.

 stop_all()

 -spec stop_all() -> ok.

Stop all connection processes gracefully. Useful for test cleanup.

 stop_conn(Pid)

 -spec stop_conn(pid()) -> ok.

Stop a connection process gracefully.

hackney_cookie

 Summary

 Types

 cookie_option/0

 cookie_opts/0

 Functions

 parse_cookie(Cookie)

 Parse a cookie header string and return a list of key/values.

 setcookie(Name, Value, Opts)

 Convert a cookie name, value and options to its iodata form.

 Types

 cookie_option/0

 -type cookie_option() ::
 {max_age, non_neg_integer()} |
 {domain, binary()} |
 {path, binary()} |
 {secure, boolean()} |
 {http_only, boolean()}.

 cookie_opts/0

 -type cookie_opts() :: [cookie_option()].

 Functions

 parse_cookie(Cookie)

 -spec parse_cookie(binary()) -> [{binary(), binary()}] | {error, badarg}.

Parse a cookie header string and return a list of key/values.

 setcookie(Name, Value, Opts)

 -spec setcookie(iodata(), iodata(), cookie_opts()) -> binary().

Convert a cookie name, value and options to its iodata form.

hackney_cow_deflate

 Summary

 Functions

 inflate(Z, Data, Limit)

 Functions

 inflate(Z, Data, Limit)

 -spec inflate(zlib:zstream(), iodata(), non_neg_integer() | infinity) ->
 {ok, binary()} | {error, data_error | size_error}.

hackney_cow_hpack

 Summary

 Types

 headers/0

 opts/0

 state/0

 Functions

 decode(Data)

 decode(Data, State)

 encode(Headers)

 encode(Headers, State)

 encode(Headers, State, Opts)

 init()

 init(MaxSize)

 set_max_size(MaxSize, State)

 Types

 headers/0

 -type headers() :: [{binary(), binary()}].

 opts/0

 -type opts() :: map().

 state/0

 -opaque state()

 Functions

 decode(Data)

 -spec decode(binary()) -> {headers(), state()}.

 decode(Data, State)

 -spec decode(binary(), State) -> {headers(), State} when State :: state().

 encode(Headers)

 -spec encode(headers()) -> {iodata(), state()}.

 encode(Headers, State)

 -spec encode(headers(), State) -> {iodata(), State} when State :: state().

 encode(Headers, State, Opts)

 -spec encode(headers(), State, opts()) -> {iodata(), State} when State :: state().

 init()

 -spec init() -> state().

 init(MaxSize)

 -spec init(non_neg_integer()) -> state().

 set_max_size(MaxSize, State)

 -spec set_max_size(non_neg_integer(), State) -> State when State :: state().

hackney_cow_http2

 Summary

 Types

 error/0

 exclusive/0

 fin/0

 frame/0

 head_fin/0

 settings/0

 streamid/0

 weight/0

 Functions

 data(StreamID, IsFin, Data)

 data_header(StreamID, IsFin, Len)

 goaway(LastStreamID, Reason, DebugData)

 headers(StreamID, IsFin, HeaderBlock)

 parse(_)

 parse(Data, MaxFrameSize)

 parse_sequence(Data)

 parse_settings_payload(SettingsPayload)

 ping(Opaque)

 ping_ack(Opaque)

 priority(StreamID, E, DepStreamID, Weight)

 push_promise(StreamID, PromisedStreamID, HeaderBlock)

 rst_stream(StreamID, Reason)

 settings(Settings)

 settings_ack()

 settings_payload(Settings)

 window_update(Increment)

 window_update(StreamID, Increment)

 Types

 error/0

 -type error() ::
 no_error | protocol_error | internal_error | flow_control_error | settings_timeout |
 stream_closed | frame_size_error | refused_stream | cancel | compression_error |
 connect_error | enhance_your_calm | inadequate_security | http_1_1_required | unknown_error.

 exclusive/0

 -type exclusive() :: exclusive | shared.

 fin/0

 -type fin() :: fin | nofin.

 frame/0

 -type frame() ::
 {data, streamid(), fin(), binary()} |
 {headers, streamid(), fin(), head_fin(), binary()} |
 {headers, streamid(), fin(), head_fin(), exclusive(), streamid(), weight(), binary()} |
 {priority, streamid(), exclusive(), streamid(), weight()} |
 {rst_stream, streamid(), error()} |
 {settings, settings()} |
 settings_ack |
 {push_promise, streamid(), head_fin(), streamid(), binary()} |
 {ping, integer()} |
 {ping_ack, integer()} |
 {goaway, streamid(), error(), binary()} |
 {window_update, non_neg_integer()} |
 {window_update, streamid(), non_neg_integer()} |
 {continuation, streamid(), head_fin(), binary()}.

 head_fin/0

 -type head_fin() :: head_fin | head_nofin.

 settings/0

 -type settings() :: map().

 streamid/0

 -type streamid() :: pos_integer().

 weight/0

 -type weight() :: 1..256.

 Functions

 data(StreamID, IsFin, Data)

 data_header(StreamID, IsFin, Len)

 goaway(LastStreamID, Reason, DebugData)

 headers(StreamID, IsFin, HeaderBlock)

 parse(_)

 parse(Data, MaxFrameSize)

 parse_sequence(Data)

 -spec parse_sequence(binary()) -> {ok, binary()} | more | {connection_error, error(), atom()}.

 parse_settings_payload(SettingsPayload)

 ping(Opaque)

 ping_ack(Opaque)

 priority(StreamID, E, DepStreamID, Weight)

 push_promise(StreamID, PromisedStreamID, HeaderBlock)

 rst_stream(StreamID, Reason)

 settings(Settings)

 settings_ack()

 settings_payload(Settings)

 window_update(Increment)

 window_update(StreamID, Increment)

hackney_cow_http2_machine

 Summary

 Types

 continued_frame/0

 headers/0

 http2_machine/0

 opts/0

 pseudo_headers/0

 status/0

 stream/0

 Functions

 ensure_window(Size, State)

 ensure_window(StreamID, Size, State)

 frame(Frame, State)

 get_connection_local_buffer_size(Http2_machine)

 get_last_streamid(Http2_machine)

 get_local_setting(Key, Http2_machine)

 get_remote_settings(Http2_machine)

 get_stream_local_buffer_size(StreamID, State)

 get_stream_local_state(StreamID, State)

 get_stream_remote_state(StreamID, State)

 ignored_frame(State)

 init(_, Opts)

 init_stream(Method, State)

 init_upgrade_stream(Method, State)

 is_lingering_stream(StreamID, Http2_machine)

 prepare_headers(StreamID, State, IsFin0, PseudoHeaders, Headers0)

 prepare_push_promise(StreamID, State, PseudoHeaders, Headers0)

 prepare_trailers(StreamID, State, Trailers)

 reset_stream(StreamID, State)

 send_or_queue_data(StreamID, State, IsFin0, DataOrFileOrTrailers)

 set_last_streamid(State)

 timeout(_, TRef, State)

 update_window(Size, State)

 update_window(StreamID, Size, State)

 Types

 continued_frame/0

 -type continued_frame() ::
 {headers,
 hackney_cow_http2:streamid(),
 hackney_cow_http2:fin(),
 hackney_cow_http2:head_fin(),
 binary()} |
 {push_promise,
 hackney_cow_http2:streamid(),
 hackney_cow_http2:head_fin(),
 hackney_cow_http2:streamid(),
 binary()}.

 headers/0

 -type headers() :: [{binary(), iodata()}].

 http2_machine/0

 -type http2_machine() ::
 #http2_machine{mode :: client | server,
 opts :: opts(),
 state ::
 settings | normal |
 {continuation,
 request | response | trailers | push_promise,
 continued_frame()},
 preface_timer :: undefined | reference(),
 settings_timer :: undefined | reference(),
 local_settings :: map(),
 next_settings :: undefined | map(),
 remote_settings :: map(),
 local_window :: integer(),
 remote_window :: integer(),
 local_streamid :: pos_integer(),
 remote_streamid :: non_neg_integer(),
 last_remote_streamid :: non_neg_integer(),
 streams :: #{hackney_cow_http2:streamid() => stream()},
 local_lingering_streams :: [hackney_cow_http2:streamid()],
 remote_lingering_streams :: [hackney_cow_http2:streamid()],
 decode_state :: hackney_cow_hpack:state(),
 encode_state :: hackney_cow_hpack:state()}.

 opts/0

 -type opts() ::
 #{connection_window_margin_size => 0..2147483647,
 connection_window_update_threshold => 0..2147483647,
 enable_connect_protocol => boolean(),
 initial_connection_window_size => 65535..2147483647,
 initial_stream_window_size => 0..2147483647,
 max_connection_window_size => 0..2147483647,
 max_concurrent_streams => non_neg_integer() | infinity,
 max_decode_table_size => non_neg_integer(),
 max_encode_table_size => non_neg_integer(),
 max_fragmented_header_block_size => 16384..2147483647,
 max_frame_size_received => 16384..16777215,
 max_frame_size_sent => 16384..16777215 | infinity,
 max_stream_window_size => 0..2147483647,
 message_tag => any(),
 preface_timeout => timeout(),
 settings_timeout => timeout(),
 stream_window_data_threshold => 0..2147483647,
 stream_window_margin_size => 0..2147483647,
 stream_window_update_threshold => 0..2147483647}.

 pseudo_headers/0

 -type pseudo_headers() ::
 #{} |
 #{status := status()} |
 #{method := binary(), authority := binary()} |
 #{method := binary(),
 scheme := binary(),
 authority := binary(),
 path := binary(),
 protocol => binary()}.

 status/0

 -type status() :: 100..999.

 stream/0

 -type stream() ::
 #stream{id :: hackney_cow_http2:streamid(),
 method :: binary(),
 local :: idle | hackney_cow_http2:fin(),
 local_window :: integer(),
 local_buffer ::
 queue:queue({hackney_cow_http2:fin(),
 non_neg_integer(),
 {data, iodata()} |
 #sendfile{offset :: non_neg_integer(),
 bytes :: pos_integer(),
 path :: file:name_all()}}),
 local_buffer_size :: non_neg_integer(),
 local_trailers :: undefined | headers(),
 remote :: idle | hackney_cow_http2:fin(),
 remote_window :: integer(),
 remote_expected_size :: undefined | non_neg_integer(),
 remote_read_size :: non_neg_integer(),
 te :: undefined | binary()}.

 Functions

 ensure_window(Size, State)

 -spec ensure_window(non_neg_integer(), State) -> ok | {ok, pos_integer(), State}
 when State :: http2_machine().

 ensure_window(StreamID, Size, State)

 -spec ensure_window(hackney_cow_http2:streamid(), non_neg_integer(), State) ->
 ok | {ok, pos_integer(), State}
 when State :: http2_machine().

 frame(Frame, State)

 -spec frame(hackney_cow_http2:frame(), State) ->
 {ok, State} |
 {ok, {data, hackney_cow_http2:streamid(), hackney_cow_http2:fin(), binary()}, State} |
 {ok,
 {headers,
 hackney_cow_http2:streamid(),
 hackney_cow_http2:fin(),
 headers(),
 pseudo_headers(),
 non_neg_integer() | undefined},
 State} |
 {ok, {trailers, hackney_cow_http2:streamid(), headers()}, State} |
 {ok, {rst_stream, hackney_cow_http2:streamid(), hackney_cow_http2:error()}, State} |
 {ok,
 {push_promise,
 hackney_cow_http2:streamid(),
 hackney_cow_http2:streamid(),
 headers(),
 pseudo_headers()},
 State} |
 {ok, {goaway, hackney_cow_http2:streamid(), hackney_cow_http2:error(), binary()}, State} |
 {send,
 [{hackney_cow_http2:streamid(),
 hackney_cow_http2:fin(),
 [{data, iodata()} |
 #sendfile{offset :: non_neg_integer(),
 bytes :: pos_integer(),
 path :: file:name_all()} |
 {trailers, headers()}]}],
 State} |
 {error,
 {stream_error, hackney_cow_http2:streamid(), hackney_cow_http2:error(), atom()},
 State} |
 {error, {connection_error, hackney_cow_http2:error(), atom()}, State}
 when State :: http2_machine().

 get_connection_local_buffer_size(Http2_machine)

 -spec get_connection_local_buffer_size(http2_machine()) -> non_neg_integer().

 get_last_streamid(Http2_machine)

 -spec get_last_streamid(http2_machine()) -> hackney_cow_http2:streamid().

 get_local_setting(Key, Http2_machine)

 -spec get_local_setting(atom(), http2_machine()) -> atom() | integer().

 get_remote_settings(Http2_machine)

 -spec get_remote_settings(http2_machine()) -> map().

 get_stream_local_buffer_size(StreamID, State)

 -spec get_stream_local_buffer_size(hackney_cow_http2:streamid(), http2_machine()) ->
 {ok, non_neg_integer()} | {error, not_found | closed}.

 get_stream_local_state(StreamID, State)

 -spec get_stream_local_state(hackney_cow_http2:streamid(), http2_machine()) ->
 {ok, idle | hackney_cow_http2:fin(), empty | nofin | fin} |
 {error, not_found | closed}.

 get_stream_remote_state(StreamID, State)

 -spec get_stream_remote_state(hackney_cow_http2:streamid(), http2_machine()) ->
 {ok, idle | hackney_cow_http2:fin()} | {error, not_found | closed}.

 ignored_frame(State)

 -spec ignored_frame(State) -> {ok, State} | {error, {connection_error, protocol_error, atom()}, State}
 when State :: http2_machine().

 init(_, Opts)

 -spec init(client | server, opts()) -> {ok, iodata(), http2_machine()}.

 init_stream(Method, State)

 -spec init_stream(binary(), State) -> {ok, hackney_cow_http2:streamid(), State}
 when State :: http2_machine().

 init_upgrade_stream(Method, State)

 -spec init_upgrade_stream(binary(), State) -> {ok, hackney_cow_http2:streamid(), State}
 when State :: http2_machine().

 is_lingering_stream(StreamID, Http2_machine)

 -spec is_lingering_stream(hackney_cow_http2:streamid(), http2_machine()) -> boolean().

 prepare_headers(StreamID, State, IsFin0, PseudoHeaders, Headers0)

 -spec prepare_headers(hackney_cow_http2:streamid(),
 State,
 idle | hackney_cow_http2:fin(),
 pseudo_headers(),
 headers()) ->
 {ok, hackney_cow_http2:fin(), iodata(), State}
 when State :: http2_machine().

 prepare_push_promise(StreamID, State, PseudoHeaders, Headers0)

 -spec prepare_push_promise(hackney_cow_http2:streamid(), State, pseudo_headers(), headers()) ->
 {ok, hackney_cow_http2:streamid(), iodata(), State} | {error, no_push}
 when State :: http2_machine().

 prepare_trailers(StreamID, State, Trailers)

 -spec prepare_trailers(hackney_cow_http2:streamid(), State, headers()) -> {ok, iodata(), State}
 when State :: http2_machine().

 reset_stream(StreamID, State)

 -spec reset_stream(hackney_cow_http2:streamid(), State) -> {ok, State} | {error, not_found}
 when State :: http2_machine().

 send_or_queue_data(StreamID, State, IsFin0, DataOrFileOrTrailers)

 -spec send_or_queue_data(hackney_cow_http2:streamid(),
 State,
 hackney_cow_http2:fin(),
 DataOrFileOrTrailers) ->
 {ok, State} |
 {send,
 [{hackney_cow_http2:streamid(),
 hackney_cow_http2:fin(),
 [DataOrFileOrTrailers]}],
 State}
 when
 State :: http2_machine(),
 DataOrFileOrTrailers ::
 {data, iodata()} |
 #sendfile{offset :: non_neg_integer(),
 bytes :: pos_integer(),
 path :: file:name_all()} |
 {trailers, headers()}.

 set_last_streamid(State)

 -spec set_last_streamid(http2_machine()) -> {hackney_cow_http2:streamid(), http2_machine()}.

 timeout(_, TRef, State)

 -spec timeout(preface_timeout | settings_timeout, reference(), State) ->
 {ok, State} | {error, {connection_error, hackney_cow_http2:error(), atom()}, State}
 when State :: http2_machine().

 update_window(Size, State)

 -spec update_window(1..2147483647, State) -> State when State :: http2_machine().

 update_window(StreamID, Size, State)

 -spec update_window(hackney_cow_http2:streamid(), 1..2147483647, State) -> State
 when State :: http2_machine().

hackney_cow_ws

 Summary

 Types

 close_code/0

 deflate_opts/0

 extensions/0

 frag_state/0

 frame/0

 frame_type/0

 mask_key/0

 rsv/0

 utf8_state/0

 Functions

 encode_key(Key)

 Encode the key into the accept value for the Websocket handshake response.

 frame(_, Extensions)

 Construct an unmasked Websocket frame.

 key()

 Generate a key for the Websocket handshake request.

 make_frame(_, Payload, CloseCode, _)

 Return a frame tuple from parsed state and data.

 masked_frame(_, Extensions)

 Construct a masked Websocket frame.

 negotiate_permessage_deflate(Params, Exts, Opts)

 Negotiate the permessage-deflate extension.

 negotiate_x_webkit_deflate_frame(Params, Exts, Opts)

 Negotiate the x-webkit-deflate-frame extension.

 parse_header(Data, Extensions, FragState)

 Parse and validate the Websocket frame header.

 parse_payload(Data, MaskKey, Utf8State, ParsedLen, Type, Len, FragState, Exts, _)

 Parse and validate the frame's payload.

 validate_permessage_deflate(Params, Extensions, Opts)

 Validate the negotiated permessage-deflate extension.

 Types

 close_code/0

 -type close_code() :: 1000..1003 | 1006..1011 | 3000..4999.

 deflate_opts/0

 -type deflate_opts() ::
 #{level => zlib:zlevel(),
 mem_level => zlib:zmemlevel(),
 strategy => zlib:zstrategy(),
 server_context_takeover => takeover | no_takeover,
 client_context_takeover => takeover | no_takeover,
 server_max_window_bits => 8..15,
 client_max_window_bits => 8..15}.

 extensions/0

 -type extensions() :: map().

 frag_state/0

 -type frag_state() :: undefined | {fin | nofin, text | binary, rsv()}.

 frame/0

 -type frame() ::
 close | ping | pong |
 {text | binary | close | ping | pong, iodata()} |
 {close, close_code(), iodata()} |
 {fragment, fin | nofin, text | binary | continuation, iodata()}.

 frame_type/0

 -type frame_type() :: fragment | text | binary | close | ping | pong.

 mask_key/0

 -type mask_key() :: undefined | 0..4294967295.

 rsv/0

 -type rsv() ::

 hackney_date - hackney v3.0.1

hackney_date

 Summary

 Functions

 asctime_to_date(Data)

 Parse an asctime date.

 date_to_rfc2109(_)

 Return the date formatted according to RFC2109.

 parse_http_date(Data)

 Parse an HTTP date (RFC1123, RFC850 or asctime date).

 rfc850_to_date(Data)

 Parse an RFC850 date.

 rfc1123_to_date(Data)

 Parse an RFC1123 date.

 rfc2109_to_date(Data)

 Parse an RFC2109 date.

 Functions

 asctime_to_date(Data)

 -spec asctime_to_date(binary()) -> any().

Parse an asctime date.

 date_to_rfc2109(_)

 -spec date_to_rfc2109(calendar:datetime()) -> binary().

Return the date formatted according to RFC2109.

 parse_http_date(Data)

 -spec parse_http_date(binary()) -> any().

Parse an HTTP date (RFC1123, RFC850 or asctime date).

 rfc850_to_date(Data)

 -spec rfc850_to_date(binary()) -> any().

Parse an RFC850 date.

 rfc1123_to_date(Data)

 -spec rfc1123_to_date(binary()) -> any().

Parse an RFC1123 date.

 rfc2109_to_date(Data)

 -spec rfc2109_to_date(binary()) -> any().

Parse an RFC2109 date.

 hackney_h3 - hackney v3.0.1

hackney_h3

HTTP/3 support for hackney.
This module provides HTTP/3 functionality using the QUIC NIF. It handles stream management, header encoding, and request/response handling for HTTP/3 connections over QUIC.
[bookmark: Usage]Usage
 %% Check if HTTP/3 is available
 hackney_h3:is_available() -> boolean()

 %% Make a simple GET request
 {ok, Status, Headers, Body} = hackney_h3:request(get, "https://cloudflare.com/")

 %% Make a request with options
 {ok, Status, Headers, Body} = hackney_h3:request(get, "https://example.com/",
 [{<<"user-agent">>, <<"hackney/2.0">>}], <<>>, #{timeout => 30000})

 Summary

 Types

 body/0

 h3_conn/0

 headers/0

 method/0

 response/0

 stream_id/0

 stream_state/0

 streams_map/0

 url/0

 Functions

 await_response(ConnRef, StreamId)

 Wait for an HTTP/3 response.

 close(ConnRef)

 Close the HTTP/3 connection.

 close(ConnRef, Reason)

 Close the HTTP/3 connection with a reason.

 close_stream(ConnRef, StreamId)

 Close a specific stream.

 connect(Host, Port)

 Connect to an HTTP/3 server.

 connect(Host, Port, Opts)

 Connect to an HTTP/3 server with options. lsquic handles its own UDP socket creation and DNS resolution.

 finish_send_body(ConnRef, StreamId, Streams)

 Finish sending body (close stream for writing).

 get_stream_state(StreamId, Streams)

 Get the state of a specific stream.

 is_available()

 Check if HTTP/3/QUIC support is available.

 new_stream(ConnRef)

 Open a new stream for a request.

 parse_response_headers(Headers)

 Parse response headers from a QUIC stream_headers event. Returns {ok, Status, ResponseHeaders} or {error, Reason}.

 request(Method, Url)

 Make an HTTP/3 request with default options.

 request(Method, Url, Headers)

 Make an HTTP/3 request with headers.

 request(Method, Url, Headers, Body)

 Make an HTTP/3 request with headers and body.

 request(Method, Url, Headers, Body, Opts)

 Make an HTTP/3 request with all options.

 send_body_chunk(ConnRef, StreamId, Data, Fin)

 Send a chunk of body data on a stream.

 send_request(ConnRef, Method, Host, Path, Headers, Body)

 Send a complete HTTP/3 request (headers + body). Returns {ok, StreamId, UpdatedStreams} or {error, Reason}.

 send_request_headers(ConnRef, Method, Host, Path, Headers)

 Send HTTP/3 request headers only (for streaming body). Returns {ok, StreamId, UpdatedStreams} or {error, Reason}.

 update_stream_state(StreamId, State, Streams)

 Update the state of a stream.

 Types

 body/0

 -type body() :: binary() | iodata().

 h3_conn/0

 -type h3_conn() :: reference().

 headers/0

 -type headers() :: [{binary(), binary()}].

 method/0

 -type method() :: get | post | put | delete | head | options | patch | atom() | binary().

 response/0

 -type response() :: {ok, integer(), headers(), binary()} | {error, term()}.

 stream_id/0

 -type stream_id() :: non_neg_integer().

 stream_state/0

 -type stream_state() :: waiting_headers | {receiving_body, integer(), headers(), binary()} | done.

 streams_map/0

 -type streams_map() :: #{stream_id() => {term(), stream_state()}}.

 url/0

 -type url() :: binary() | string().

 Functions

 await_response(ConnRef, StreamId)

 -spec await_response(reference(), non_neg_integer()) ->
 {ok, integer(), headers(), binary()} | {error, term()}.

Wait for an HTTP/3 response.

 close(ConnRef)

 -spec close(h3_conn()) -> ok.

Close the HTTP/3 connection.

 close(ConnRef, Reason)

 -spec close(h3_conn(), term()) -> ok.

Close the HTTP/3 connection with a reason.

 close_stream(ConnRef, StreamId)

 -spec close_stream(h3_conn(), stream_id()) -> ok.

Close a specific stream.

 connect(Host, Port)

 -spec connect(binary() | string(), inet:port_number()) -> {ok, reference()} | {error, term()}.

Connect to an HTTP/3 server.

 connect(Host, Port, Opts)

 -spec connect(binary() | string(), inet:port_number(), map()) -> {ok, reference()} | {error, term()}.

Connect to an HTTP/3 server with options. lsquic handles its own UDP socket creation and DNS resolution.

 finish_send_body(ConnRef, StreamId, Streams)

 -spec finish_send_body(h3_conn(), stream_id(), streams_map()) -> {ok, streams_map()} | {error, term()}.

Finish sending body (close stream for writing).

 get_stream_state(StreamId, Streams)

 -spec get_stream_state(stream_id(), streams_map()) ->
 {ok, {term(), stream_state()}} | {error, not_found}.

Get the state of a specific stream.

 is_available()

 -spec is_available() -> boolean().

Check if HTTP/3/QUIC support is available.

 new_stream(ConnRef)

 -spec new_stream(h3_conn()) -> {ok, stream_id()} | {error, term()}.

Open a new stream for a request.

 parse_response_headers(Headers)

 -spec parse_response_headers(headers()) -> {ok, integer(), headers()} | {error, term()}.

Parse response headers from a QUIC stream_headers event. Returns {ok, Status, ResponseHeaders} or {error, Reason}.

 request(Method, Url)

 -spec request(method(), url()) -> response().

Make an HTTP/3 request with default options.

 request(Method, Url, Headers)

 -spec request(method(), url(), headers()) -> response().

Make an HTTP/3 request with headers.

 request(Method, Url, Headers, Body)

 -spec request(method(), url(), headers(), body()) -> response().

Make an HTTP/3 request with headers and body.

 request(Method, Url, Headers, Body, Opts)

 -spec request(method(), url(), headers(), body(), map()) -> response().

Make an HTTP/3 request with all options.
Options: - timeout: Request timeout in milliseconds (default: 30000) - recv_timeout: Response receive timeout (default: 30000)

 send_body_chunk(ConnRef, StreamId, Data, Fin)

 -spec send_body_chunk(h3_conn(), stream_id(), binary(), boolean()) -> ok | {error, term()}.

Send a chunk of body data on a stream.

 send_request(ConnRef, Method, Host, Path, Headers, Body)

 -spec send_request(h3_conn(), method(), binary(), binary(), headers(), binary()) ->
 {ok, stream_id(), streams_map()} | {error, term()}.

Send a complete HTTP/3 request (headers + body). Returns {ok, StreamId, UpdatedStreams} or {error, Reason}.

 send_request_headers(ConnRef, Method, Host, Path, Headers)

 -spec send_request_headers(h3_conn(), method(), binary(), binary(), headers()) ->
 {ok, stream_id(), streams_map()} | {error, term()}.

Send HTTP/3 request headers only (for streaming body). Returns {ok, StreamId, UpdatedStreams} or {error, Reason}.

 update_stream_state(StreamId, State, Streams)

 -spec update_stream_state(stream_id(), {term(), stream_state()}, streams_map()) -> streams_map().

Update the state of a stream.

 hackney_happy - hackney v3.0.1

hackney_happy

 Summary

 Functions

 connect(Hostname, Port, Opts)

 connect(Hostname, Port, Opts, Timeout)

 connect_udp(Hostname, Port, Opts)

 Connect via UDP using happy eyeballs algorithm. Returns {ok, Socket, RemoteAddr} where RemoteAddr is {IP, Port}.

 connect_udp(Hostname, Port, Opts, Timeout)

 Functions

 connect(Hostname, Port, Opts)

 connect(Hostname, Port, Opts, Timeout)

 connect_udp(Hostname, Port, Opts)

Connect via UDP using happy eyeballs algorithm. Returns {ok, Socket, RemoteAddr} where RemoteAddr is {IP, Port}.

 connect_udp(Hostname, Port, Opts, Timeout)

 hackney_headers - hackney v3.0.1

hackney_headers

 Summary

 Types

 headers/0

 headers_list/0

 key/0

 value/0

 Functions

 append(Key, Value, _)

 append a new value to the list of value for the the header field if the key has not been recorded the list will be created with the value as the first item.

 delete(Key, H)

 delete a field from headers.

 fold(Fun, Acc, _)

 from_list(HeadersList)

 create headers from a list

 get_value(Key, Headers)

 get the first value of an headers or return undefined

 get_value(Key, Headers, Default)

 get the first value of an headers or return the default

 is_key(Key, _)

 is the header field exists or no

 lookup(Key, _)

 merge(Headers1, _)

 merge 2 headers objects. If a key is already existing in HEader1, it will be kept.

 new()

 initialize an empty headers objecy

 new(H)

 parse_content_type(Data)

 parse_media_type(Data, Fun)

 Parse a media type.

 size(_)

 return the number of headers fields

 store(KVs, Headers)

 store a list of headers. Replacing oldest

 store(Key, Values, _)

 replace the content of the header field with the value or the list of values.

 store_new(Key, Value, Headers)

 only store a value if the key exist.

 to_binary(Headers)

 transform headers to a binary that can be used to construct a request

 to_iolist(Headers)

 convert headers to an iolist. Useful to send them over the wire. Header values are sanitized to prevent HTTP header injection (issue #506).

 to_list(Headers)

 convert headers to a list

 Types

 headers/0

 -type headers() :: term().

 headers_list/0

 -type headers_list() :: [{key(), value()}].

 key/0

 -type key() :: binary() | string().

 value/0

 -type value() :: binary() | {binary(), [{binary(), binary()} | binary()]}.

 Functions

 append(Key, Value, _)

 -spec append(key(), value(), headers()) -> headers().

append a new value to the list of value for the the header field if the key has not been recorded the list will be created with the value as the first item.

 delete(Key, H)

 -spec delete(key(), headers()) -> headers().

delete a field from headers.

 fold(Fun, Acc, _)

 from_list(HeadersList)

 -spec from_list(headers_list()) -> headers().

create headers from a list

 get_value(Key, Headers)

 -spec get_value(key(), headers()) -> value() | undefined.

get the first value of an headers or return undefined

 get_value(Key, Headers, Default)

 -spec get_value(key(), headers(), any()) -> value() | any().

get the first value of an headers or return the default

 is_key(Key, _)

 -spec is_key(key(), headers()) -> true | false.

is the header field exists or no

 lookup(Key, _)

 merge(Headers1, _)

 -spec merge(headers(), headers()) -> headers().

merge 2 headers objects. If a key is already existing in HEader1, it will be kept.

 new()

 -spec new() -> headers().

initialize an empty headers objecy

 new(H)

 -spec new(headers_list() | headers()) -> headers().

 parse_content_type(Data)

 -spec parse_content_type(binary()) -> any().

 parse_media_type(Data, Fun)

 -spec parse_media_type(binary(), fun()) -> any().

Parse a media type.

 size(_)

 -spec size(headers()) -> non_neg_integer().

return the number of headers fields

 store(KVs, Headers)

 -spec store(headers_list(), headers()) -> headers().

store a list of headers. Replacing oldest

 store(Key, Values, _)

 -spec store(key(), value() | [value()], headers()) -> headers().

replace the content of the header field with the value or the list of values.

 store_new(Key, Value, Headers)

 -spec store_new(key(), value(), headers()) -> {boolean(), headers()}.

only store a value if the key exist.

 to_binary(Headers)

 -spec to_binary(headers()) -> binary().

transform headers to a binary that can be used to construct a request

 to_iolist(Headers)

 -spec to_iolist(headers()) -> iolist().

convert headers to an iolist. Useful to send them over the wire. Header values are sanitized to prevent HTTP header injection (issue #506).

 to_list(Headers)

 -spec to_list(headers()) -> headers_list().

convert headers to a list

 hackney_http - hackney v3.0.1

hackney_http

HTTP parser in pure Erlang This parser is able to parse HTTP responses and requests in a streaming fashion. If not set it will be autodetect the type of binary parsed, if it's a request or a response.
Internally it is keeping a buffer for intermediary steps but don't keep any state in memory.
The first time you initialise a parser using hackney_http:parser/0 or hackney_http:parser/1 you will receive an opaque record You can then process it using the function hackney_http:execute/2.
Each steps will return the status, some data and the new parser that you can process later with hackney_http:execute/2 when {more, ...} is returnned or hackney_http:execute/1 in other cases:
	{response, http_version(), status(), http_reason(), parser()}: when the first line of a response is parsed
	{request, http_version(), http_method(), uri(), parser()}: when the first line of a request (on servers) is parsed
	{more, parser()}: when the parser need more data. The new data should be passed to hackney_http:execute/2 with the new parser() state received.
	{header, {Name :: binary(), Value :: binary()}, parser()}: when an header has been parsed. To continue the parsing you must call the given parser() with hackney_http:execute/1.
	{headers_complete, parser()} : when all headers have been parsed. To continue the parsing you must call the given parser() state with hackney_http:execute/1.
	{more, parser(), binary()}: on body, when the parser need more data. The new data should be passed to hackney_http:execute/2 (with parser()) when received. The binary at the end of the tuple correspond to the actual buffer of the parser. It may be used for other purpose, like start to parse a new request on pipeline connections, for a proxy...
	{ok, binary(), parser()}: on body, when a chunk has been parsed. To continue the parsing you must call hackney_http:execute/1 with the given parser().
	{done, binary()}: when the parsing is done. The binary given correpond to the non parsed part of the internal buffer.
	{error, term{}}: when an error happen

 Summary

 Types

 body_result/0

 header_result/0

 http_method/0

 http_reason/0

 http_version/0

 parser/0

 parser_option/0

 parser_options/0

 parser_result/0

 status/0

 uri/0

 Functions

 execute(Hparser)

 Execute the parser with the current buffer.

 execute(Hparser, Bin)

 Execute the parser with the new buffer

 get(Parser, Props)

 retrieve a parser property. Properties are

 parse_response_version(_, St)

 parser()

 Create a new HTTP parser. The parser will autodetect if the parded binary is a response or a request.

 parser(Options)

 create a new HTTP parser with options. By default the type of parsed binary will be detected.

 Types

 body_result/0

 -type body_result() :: {more, parser(), binary()} | {ok, binary(), parser()} | {done, binary()} | done.

 header_result/0

 -type header_result() :: {headers_complete, parser()} | {header, {binary(), binary()}, parser()}.

 http_method/0

 -type http_method() :: binary().

 http_reason/0

 -type http_reason() :: binary().

 http_version/0

 -type http_version() :: {integer(), integer()}.

 parser/0

 -type parser() ::
 #hparser{type :: atom(),
 max_line_length :: integer(),
 max_empty_lines :: integer(),
 empty_lines :: integer(),
 state :: atom(),
 buffer :: binary(),
 version :: {integer(), integer()} | undefined,
 method :: binary(),
 partial_headers :: list(),
 clen :: integer() | undefined | bad_int,
 te :: binary(),
 connection :: binary(),
 ctype :: binary(),
 location :: binary(),
 content_encoding :: binary(),
 body_state :: atom() | tuple()}.

 parser_option/0

 -type parser_option() ::
 request | response | auto | {max_empty_lines, integer()} | {max_line_length, integer()}.

 parser_options/0

 -type parser_options() :: [parser_option()].

 parser_result/0

 -type parser_result() ::
 {response, http_version(), status(), http_reason(), parser()} |
 {request, http_method(), uri(), http_version(), parser()} |
 {more, parser()} |
 header_result() |
 body_result() |
 {error, term()}.

 status/0

 -type status() :: integer().

 uri/0

 -type uri() :: binary().

 Functions

 execute(Hparser)

 -spec execute(#hparser{type :: atom(),
 max_line_length :: integer(),
 max_empty_lines :: integer(),
 empty_lines :: integer(),
 state :: atom(),
 buffer :: binary(),
 version :: {integer(), integer()} | undefined,
 method :: binary(),
 partial_headers :: list(),
 clen :: integer() | undefined | bad_int,
 te :: binary(),
 connection :: binary(),
 ctype :: binary(),
 location :: binary(),
 content_encoding :: binary(),
 body_state :: atom() | tuple()}) ->
 parser_result().

Execute the parser with the current buffer.

 execute(Hparser, Bin)

 -spec execute(#hparser{type :: atom(),
 max_line_length :: integer(),
 max_empty_lines :: integer(),
 empty_lines :: integer(),
 state :: atom(),
 buffer :: binary(),
 version :: {integer(), integer()} | undefined,
 method :: binary(),
 partial_headers :: list(),
 clen :: integer() | undefined | bad_int,
 te :: binary(),
 connection :: binary(),
 ctype :: binary(),
 location :: binary(),
 content_encoding :: binary(),
 body_state :: atom() | tuple()},
 binary()) ->
 parser_result().

Execute the parser with the new buffer

 get(Parser, Props)

 -spec get(parser(), atom() | [atom()]) -> any().

retrieve a parser property. Properties are:
	buffer: internal buffer of the parser (non parsed)
	state: the current state (on_status, on_header, on_body, done)
	version: HTTP version
	content_length: content length header if any
	transfer_encoding: transfer encoding header if any
	content_type: content type header if any
	location: location header if any
	connection: connection header if any.

 parse_response_version(_, St)

 parser()

 -spec parser() -> parser().

Create a new HTTP parser. The parser will autodetect if the parded binary is a response or a request.

 parser(Options)

 -spec parser(parser_options()) -> parser().

create a new HTTP parser with options. By default the type of parsed binary will be detected.
Available options:
	auto : autodetect if the binary parsed is a response or a request (default).
	response: set the parser to parse a response
	request: set the parser to parse a request (server)
	{max_line_lenght, Max}: set the maximum size of a line parsed before we give up.
	{max_lines_empty, Max}: the maximum number of empty line we accept before the first line happen

 hackney_http_connect - hackney v3.0.1

hackney_http_connect

 Summary

 Types

 http_socket/0

 Functions

 close(_)

 Close a socks5 socket.

 connect(ProxyHost, ProxyPort, Opts)

 connect(ProxyHost, ProxyPort, Opts, Timeout)

 controlling_process(_, Pid)

 Assign a new controlling process Pid to Socket.

 messages(_)

 Atoms used to identify messages in {active, once | true} mode.

 peername(_)

 Return the address and port for the other end of a connection.

 recv(Socket, Length)

 recv(_, Length, Timeout)

 Receive a packet from a socket in passive mode.

 send(_, Packet)

 Send a packet on a socket.

 setopts(_, Opts)

 Set one or more options for a socket.

 shutdown(_, How)

 Immediately close a socket in one or two directions.

 sockname(_)

 Get the local address and port of a socket

 Types

 http_socket/0

 -type http_socket() :: {atom(), inet:socket()}.

 Functions

 close(_)

 -spec close(http_socket()) -> ok.

Close a socks5 socket.
See also: gen_tcp:close/1.

 connect(ProxyHost, ProxyPort, Opts)

 connect(ProxyHost, ProxyPort, Opts, Timeout)

 controlling_process(_, Pid)

 -spec controlling_process(http_socket(), pid()) -> ok | {error, closed | not_owner | atom()}.

Assign a new controlling process Pid to Socket.
See also: gen_tcp:controlling_process/2.

 messages(_)

Atoms used to identify messages in {active, once | true} mode.

 peername(_)

 -spec peername(http_socket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Return the address and port for the other end of a connection.
See also: inet:peername/1.

 recv(Socket, Length)

 recv(_, Length, Timeout)

 -spec recv(http_socket(), non_neg_integer(), timeout()) -> {ok, any()} | {error, closed | atom()}.

Receive a packet from a socket in passive mode.
See also: gen_tcp:recv/3.

 send(_, Packet)

 -spec send(http_socket(), iolist()) -> ok | {error, atom()}.

Send a packet on a socket.
See also: gen_tcp:send/2.

 setopts(_, Opts)

 -spec setopts(http_socket(), list()) -> ok | {error, atom()}.

Set one or more options for a socket.
See also: inet:setopts/2.

 shutdown(_, How)

 -spec shutdown(http_socket(), read | write | read_write) -> ok.

Immediately close a socket in one or two directions.
See also: gen_tcp:shutdown/2.

 sockname(_)

 -spec sockname(http_socket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Get the local address and port of a socket
See also: inet:sockname/1.

 hackney_load_regulation - hackney v3.0.1

hackney_load_regulation

Per-host connection load regulation using ETS counting semaphore.
This module provides per-host connection limits using an atomic counting semaphore pattern. It tracks the number of active connections per {Host, Port} and blocks new requests when the limit is reached.
Usage:
 case hackney_load_regulation:acquire(Host, Port, MaxPerHost, Timeout) of
 ok ->
 try
 %% Do work with connection
 after
 hackney_load_regulation:release(Host, Port)
 end;
 {error, timeout} ->
 {error, checkout_timeout}
 end.

 Summary

 Functions

 acquire(Host, Port, MaxPerHost, Timeout)

 Acquire a slot for the given host. Blocks with exponential backoff until a slot is available or timeout. Returns ok if slot acquired, {error, timeout} otherwise.

 current(Host, Port)

 Get the current number of active connections for a host.

 init()

 Initialize the load regulation ETS table. Should be called once during application startup.

 release(Host, Port)

 Release a slot for the given host. Should always be called after acquire, typically in an after block.

 reset(Host, Port)

 Reset the counter for a host (for testing).

 Functions

 acquire(Host, Port, MaxPerHost, Timeout)

 -spec acquire(Host :: string() | binary(),
 Port :: inet:port_number(),
 MaxPerHost :: pos_integer(),
 Timeout :: timeout()) ->
 ok | {error, timeout}.

Acquire a slot for the given host. Blocks with exponential backoff until a slot is available or timeout. Returns ok if slot acquired, {error, timeout} otherwise.

 current(Host, Port)

 -spec current(Host :: string() | binary(), Port :: inet:port_number()) -> non_neg_integer().

Get the current number of active connections for a host.

 init()

 -spec init() -> ok.

Initialize the load regulation ETS table. Should be called once during application startup.

 release(Host, Port)

 -spec release(Host :: string() | binary(), Port :: inet:port_number()) -> ok.

Release a slot for the given host. Should always be called after acquire, typically in an after block.

 reset(Host, Port)

 -spec reset(Host :: string() | binary(), Port :: inet:port_number()) -> ok.

Reset the counter for a host (for testing).

 hackney_local_tcp - hackney v3.0.1

hackney_local_tcp

 Summary

 Functions

 close(Socket)

 Close a TCP socket.

 connect(Host, Port, Opts)

 connect(Host, Port, Opts, Timeout)

 controlling_process(Socket, Pid)

 Assign a new controlling process Pid to Socket.

 messages(_)

 Atoms used to identify messages in {active, once | true} mode.

 peername(Socket)

 Return the address and port for the other end of a connection.

 recv(Socket, Length)

 recv(Socket, Length, Timeout)

 Receive a packet from a socket in passive mode.

 send(Socket, Packet)

 Send a packet on a socket.

 setopts(Socket, Opts)

 Set one or more options for a socket.

 shutdown(Socket, How)

 Immediately close a socket in one or two directions.

 sockname(Socket)

 Get the local address and port of a socket

 Functions

 close(Socket)

 -spec close(inet:socket()) -> ok.

Close a TCP socket.
See also: gen_tcp:close/1.

 connect(Host, Port, Opts)

 connect(Host, Port, Opts, Timeout)

 controlling_process(Socket, Pid)

 -spec controlling_process(inet:socket(), pid()) -> ok | {error, closed | not_owner | atom()}.

Assign a new controlling process Pid to Socket.
See also: gen_tcp:controlling_process/2.

 messages(_)

Atoms used to identify messages in {active, once | true} mode.

 peername(Socket)

 -spec peername(inet:socket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Return the address and port for the other end of a connection.
See also: inet:peername/1.

 recv(Socket, Length)

 recv(Socket, Length, Timeout)

 -spec recv(inet:socket(), non_neg_integer(), timeout()) -> {ok, any()} | {error, closed | atom()}.

Receive a packet from a socket in passive mode.
See also: gen_tcp:recv/3.

 send(Socket, Packet)

 -spec send(inet:socket(), iolist()) -> ok | {error, atom()}.

Send a packet on a socket.
See also: gen_tcp:send/2.

 setopts(Socket, Opts)

 -spec setopts(inet:socket(), list()) -> ok | {error, atom()}.

Set one or more options for a socket.
See also: inet:setopts/2.

 shutdown(Socket, How)

 -spec shutdown(inet:socket(), read | write | read_write) -> ok.

Immediately close a socket in one or two directions.
See also: gen_tcp:shutdown/2.

 sockname(Socket)

 -spec sockname(inet:socket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Get the local address and port of a socket
See also: inet:sockname/1.

 hackney_manager - hackney v3.0.1

hackney_manager

 Summary

 Functions

 async_response_pid(Ref)

 Get the async response pid (backward compatibility). In the new architecture, all streaming connections are considered "async".

 code_change(OldVsn, State, Extra)

 finish_request(Host, StartTime)

 Called when a request finishes. Updates metrics.

 get_state(ConnPid)

 Check the state of a connection (backward compatibility). In the old architecture, this tracked request state. In the new architecture, we simply check if the connection process is alive. Returns req_not_found if the process is dead, or the connection state name.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 start_link()

 start_request(Host)

 Called when a new request starts. Updates request counters.

 terminate(Reason, State)

 Functions

 async_response_pid(Ref)

 -spec async_response_pid(pid()) -> {ok, pid()} | {error, req_not_found | req_not_async}.

Get the async response pid (backward compatibility). In the new architecture, all streaming connections are considered "async".

 code_change(OldVsn, State, Extra)

 finish_request(Host, StartTime)

 -spec finish_request(Host :: string() | binary(), StartTime :: erlang:timestamp()) -> ok.

Called when a request finishes. Updates metrics.

 get_state(ConnPid)

 -spec get_state(pid() | term()) -> req_not_found | atom().

Check the state of a connection (backward compatibility). In the old architecture, this tracked request state. In the new architecture, we simply check if the connection process is alive. Returns req_not_found if the process is dead, or the connection state name.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 start_link()

 start_request(Host)

 -spec start_request(Host :: string() | binary()) -> ok.

Called when a new request starts. Updates request counters.

 terminate(Reason, State)

 hackney_metrics - hackney v3.0.1

hackney_metrics

 Summary

 Functions

 counter_inc(Name, Labels)

 Increment a counter by 1.

 counter_inc(Name, Labels, Value)

 Increment a counter by a value.

 declare_counter(Name, Help, LabelKeys)

 Declare a counter metric.

 declare_gauge(Name, Help, LabelKeys)

 Declare a gauge metric.

 declare_histogram(Name, Help, LabelKeys)

 Declare a histogram metric with default buckets.

 declare_histogram(Name, Help, LabelKeys, Buckets)

 Declare a histogram metric with custom buckets.

 declare_pool_metrics(PoolName)

 Declare pool-specific metrics. Called when a new pool is created.

 gauge_dec(Name, Labels)

 Decrement a gauge by 1.

 gauge_inc(Name, Labels)

 Increment a gauge by 1.

 gauge_set(Name, Labels, Value)

 Set a gauge to a value.

 get_backend()

 Get the current metrics backend module.

 histogram_observe(Name, Labels, Value)

 Observe a value for a histogram.

 init()

 Initialize the metrics system. Determines the backend to use and declares all hackney metrics.

 Functions

 counter_inc(Name, Labels)

Increment a counter by 1.

 counter_inc(Name, Labels, Value)

Increment a counter by a value.

 declare_counter(Name, Help, LabelKeys)

Declare a counter metric.

 declare_gauge(Name, Help, LabelKeys)

Declare a gauge metric.

 declare_histogram(Name, Help, LabelKeys)

Declare a histogram metric with default buckets.

 declare_histogram(Name, Help, LabelKeys, Buckets)

Declare a histogram metric with custom buckets.

 declare_pool_metrics(PoolName)

Declare pool-specific metrics. Called when a new pool is created.

 gauge_dec(Name, Labels)

Decrement a gauge by 1.

 gauge_inc(Name, Labels)

Increment a gauge by 1.

 gauge_set(Name, Labels, Value)

Set a gauge to a value.

 get_backend()

Get the current metrics backend module.

 histogram_observe(Name, Labels, Value)

Observe a value for a histogram.

 init()

Initialize the metrics system. Determines the backend to use and declares all hackney metrics.

 hackney_metrics_backend - hackney v3.0.1

hackney_metrics_backend behaviour

 Summary

 Callbacks

 counter_inc/2

 counter_inc/3

 declare_counter/3

 declare_gauge/3

 declare_histogram/3

 declare_histogram/4

 gauge_dec/2

 gauge_inc/2

 gauge_set/3

 histogram_observe/3

 Callbacks

 counter_inc/2

 -callback counter_inc(Name :: atom(), Labels :: map()) -> ok.

 counter_inc/3

 -callback counter_inc(Name :: atom(), Labels :: map(), Value :: number()) -> ok.

 declare_counter/3

 -callback declare_counter(Name :: atom(), Help :: binary(), LabelKeys :: [atom()]) -> ok.

 declare_gauge/3

 -callback declare_gauge(Name :: atom(), Help :: binary(), LabelKeys :: [atom()]) -> ok.

 declare_histogram/3

 -callback declare_histogram(Name :: atom(), Help :: binary(), LabelKeys :: [atom()]) -> ok.

 declare_histogram/4

 -callback declare_histogram(Name :: atom(), Help :: binary(), LabelKeys :: [atom()], Buckets :: [number()]) ->
 ok.

 gauge_dec/2

 -callback gauge_dec(Name :: atom(), Labels :: map()) -> ok.

 gauge_inc/2

 -callback gauge_inc(Name :: atom(), Labels :: map()) -> ok.

 gauge_set/3

 -callback gauge_set(Name :: atom(), Labels :: map(), Value :: number()) -> ok.

 histogram_observe/3

 -callback histogram_observe(Name :: atom(), Labels :: map(), Value :: number()) -> ok.

 hackney_metrics_dummy - hackney v3.0.1

hackney_metrics_dummy

 Summary

 Functions

 counter_inc(Name, Labels)

 counter_inc(Name, Labels, Value)

 declare_counter(Name, Help, LabelKeys)

 declare_gauge(Name, Help, LabelKeys)

 declare_histogram(Name, Help, LabelKeys)

 declare_histogram(Name, Help, LabelKeys, Buckets)

 gauge_dec(Name, Labels)

 gauge_inc(Name, Labels)

 gauge_set(Name, Labels, Value)

 histogram_observe(Name, Labels, Value)

 Functions

 counter_inc(Name, Labels)

 counter_inc(Name, Labels, Value)

 declare_counter(Name, Help, LabelKeys)

 declare_gauge(Name, Help, LabelKeys)

 declare_histogram(Name, Help, LabelKeys)

 declare_histogram(Name, Help, LabelKeys, Buckets)

 gauge_dec(Name, Labels)

 gauge_inc(Name, Labels)

 gauge_set(Name, Labels, Value)

 histogram_observe(Name, Labels, Value)

 hackney_metrics_prometheus - hackney v3.0.1

hackney_metrics_prometheus

 Summary

 Functions

 counter_inc(Name, Labels)

 counter_inc(Name, Labels, Value)

 declare_counter(Name, Help, LabelKeys)

 declare_gauge(Name, Help, LabelKeys)

 declare_histogram(Name, Help, LabelKeys)

 declare_histogram(Name, Help, LabelKeys, Buckets)

 gauge_dec(Name, Labels)

 gauge_inc(Name, Labels)

 gauge_set(Name, Labels, Value)

 histogram_observe(Name, Labels, Value)

 Functions

 counter_inc(Name, Labels)

 counter_inc(Name, Labels, Value)

 declare_counter(Name, Help, LabelKeys)

 declare_gauge(Name, Help, LabelKeys)

 declare_histogram(Name, Help, LabelKeys)

 declare_histogram(Name, Help, LabelKeys, Buckets)

 gauge_dec(Name, Labels)

 gauge_inc(Name, Labels)

 gauge_set(Name, Labels, Value)

 histogram_observe(Name, Labels, Value)

 hackney_multipart - hackney v3.0.1

hackney_multipart

module to encode/decode multipart

 Summary

 Types

 body_cont/0

 body_result/0

 cont/1

 end_of_part/0

 headers/0

 http_headers/0

 more/1

 parser/1

 part_parser/0

 part_result/0

 pattern/0

 patterns/0

 Functions

 boundary()

 decode_form(Boundary, Body)

 decode a multipart form.

 encode_form(Parts)

 encode a list of parts a multipart form. Parts can be under the form

 encode_form(Parts, Boundary)

 len_mp_stream(Parts, Boundary)

 get the size of a mp stream. Useful to calculate the content-length of a full multipart stream and send it as an identity transfer-encoding instead of chunked so any server can handle it.

 mp_data_header(_, Boundary)

 return the multipart header for a data

 mp_eof(Boundary)

 return the boundary ending a multipart

 mp_file_header(_, Boundary)

 return the multipart header for a file that will be sent later

 mp_header(Headers, Boundary)

 create a generic multipart header

 mp_mixed_header(_, Boundary)

 return the mixed multipart header

 parser(Boundary)

 Return a multipart parser for the given boundary.

 part(Content, Headers, Boundary)

 create a part

 Types

 body_cont/0

 -type body_cont() :: cont(more(body_result())).

 body_result/0

 -type body_result() :: {body, binary(), body_cont()} | end_of_part().

 cont/1

 -type cont(T) :: fun(() -> T).

 end_of_part/0

 -type end_of_part() :: {end_of_part, cont(more(part_result()))}.

 headers/0

 -type headers() :: {headers, http_headers(), body_cont()}.

 http_headers/0

 -type http_headers() :: [{binary(), binary()}].

 more/1

 -type more(T) :: T | {more, parser(T)}.

 parser/1

 -type parser(T) :: fun((binary()) -> T).

 part_parser/0

 -type part_parser() :: parser(more(part_result())).

 part_result/0

 -type part_result() :: headers() | eof.

 pattern/0

 -type pattern() :: {binary:cp(), non_neg_integer()}.

 patterns/0

 -type patterns() :: {pattern(), pattern()}.

 Functions

 boundary()

 -spec boundary() -> binary().

 decode_form(Boundary, Body)

 -spec decode_form(binary(), binary()) -> {ok, list()} | {error, term()}.

decode a multipart form.

 encode_form(Parts)

encode a list of parts a multipart form. Parts can be under the form:
	{file, Path} : to send a file
	{file, Path, ExtraHeaders} : to send a file with extra headers
	{file, Path, Name, ExtraHeaders}: to send a file with DOM element name and extra headers
	{mp_mixed, Name, Boundary} to send a mixed multipart.
	{mp_mixed_eof, Boundary}: to signal the end of the mixed multipart boundary.
	{Name, Data}: to send a custom content as a part
	{Name, Data, ExtraHeaders}: the same as above but with extra headers.

 encode_form(Parts, Boundary)

 -spec encode_form(list(), binary()) -> {binary(), integer()}.

 len_mp_stream(Parts, Boundary)

get the size of a mp stream. Useful to calculate the content-length of a full multipart stream and send it as an identity transfer-encoding instead of chunked so any server can handle it.
Calculated Parts can be under the form:
	{file, Path} : to send a file
	{file, Path, ExtraHeaders} : to send a file with extra headers
	{file, Path, Name, ExtraHeaders} : to send a file with DOM element name and extra headers
	{mp_mixed, Name, Boundary} to send a mixed multipart. multipart boundary.
	{Name, DataLen}: to send a custom content as a part
	{Name, DataLen, ExtraHeaders}: the same as above but with extra headers.

 mp_data_header(_, Boundary)

 -spec mp_data_header({Name :: binary(), DataLen :: integer()} |
 {Name :: binary(), DataLen :: integer(), ExtraHeaders :: [{binary(), binary()}]} |
 {Name :: binary(),
 DataLen :: integer(),
 {Disposition :: binary(), Params :: [{binary(), binary()}]},
 ExtraHeaders :: [{binary(), binary()}]},
 Boundary :: binary()) ->
 {binary(), DataLen :: integer()}.

return the multipart header for a data

 mp_eof(Boundary)

return the boundary ending a multipart

 mp_file_header(_, Boundary)

 -spec mp_file_header({file, Path :: binary()} |
 {file, Path :: binary(), ExtraHeaders :: [{binary(), binary()}]} |
 {file, Path :: binary(), Name :: binary(), ExtraHeaders :: [{binary(), binary()}]} |
 {file,
 Path :: binary(),
 {Disposition :: binary(), Params :: [{binary(), binary()}]},
 ExtraHeaders :: [{binary(), binary()}]},
 Boundary :: binary()) ->
 {binary(), FileSize :: integer()}.

return the multipart header for a file that will be sent later

 mp_header(Headers, Boundary)

create a generic multipart header

 mp_mixed_header(_, Boundary)

 -spec mp_mixed_header({Name :: binary(), MixedBoundary :: binary()}, Boundary :: binary()) ->
 {binary(), 0}.

return the mixed multipart header

 parser(Boundary)

 -spec parser(binary()) -> part_parser().

Return a multipart parser for the given boundary.

 part(Content, Headers, Boundary)

create a part

 hackney_pool - hackney v3.0.1

hackney_pool

Pool of connection processes.
This module manages hackney_conn processes in a pool. Instead of storing raw sockets, it tracks connection process pids. Idle timeout is handled by the connection processes themselves (gen_statem state_timeout).

 Summary

 Functions

 checkin(PoolInfo, Pid)

 Return a connection process to the pool.

 checkout(Host, Port, Transport, Options)

 Checkout a connection process from the pool. Returns {ok, PoolInfo, Pid} where Pid is a hackney_conn process.

 checkout_h2(Host, Port, Transport, Options)

 Get an existing HTTP/2 connection for a host/port, or 'none' if not available. HTTP/2 connections are shared (multiplexed) across callers.

 checkout_h3(Host, Port, Transport, Options)

 Get an existing HTTP/3 connection for a host/port, or 'none' if not available. HTTP/3 connections are shared (multiplexed) across callers via QUIC streams.

 child_spec(Name, Options0)

 return a child spec suitable for embedding your pool in the supervisor

 code_change(OldVsn, State, Extra)

 count(Name)

 get the number of connections in the pool

 count(Name, Key)

 get the number of connections in the pool for {Host, Port, Transport}

 find_pool(Name)

 get_stats(Pool)

 handle_call(_, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 host_stats(PoolName, Host, Port)

 Get per-host connection statistics. Returns a proplist with: - active: number of active requests (from load_regulation) - in_use: connections checked out from pool - free: connections available in pool

 init(_)

 max_connections(Name)

 get max pool size

 notify(Pool, Msg)

 prewarm(PoolName, Host, Port)

 Prewarm connections to a host (default count from pool settings) Starts the pool if it doesn't exist.

 prewarm(PoolName, Host, Port, Count)

 Prewarm a specific number of connections to a host Starts the pool if it doesn't exist.

 register_h2(Host, Port, Transport, Pid, Options)

 Register an HTTP/2 connection in the pool for sharing. Called after ALPN negotiation confirms HTTP/2.

 register_h3(Host, Port, Transport, Pid, Options)

 Register an HTTP/3 connection in the pool for sharing. Called after QUIC connection is established with HTTP/3.

 set_max_connections(Name, NewSize)

 change the pool size

 set_timeout(Name, NewTimeout)

 change the connection timeout

 start()

 start_link(Name, Options0)

 start_pool(Name, Options)

 start a pool

 stop_pool(Name)

 stop a pool

 terminate(Reason, State)

 timeout(Name)

 get timeout

 to_pool_name(Name)

 unregister_h2(Pid, Options)

 Remove an HTTP/2 connection from the pool (e.g., on GOAWAY).

 unregister_h2_all()

 Remove all HTTP/2 connections from the default pool. Used for testing to ensure clean state between tests.

 unregister_h3(Pid, Options)

 Remove an HTTP/3 connection from the pool (e.g., on connection close).

 Functions

 checkin(PoolInfo, Pid)

 -spec checkin(PoolInfo :: term(), Pid :: pid()) -> ok.

Return a connection process to the pool.

 checkout(Host, Port, Transport, Options)

 -spec checkout(Host :: string(), Port :: non_neg_integer(), Transport :: module(), Options :: list()) ->
 {ok, term(), pid()} | {error, term()}.

Checkout a connection process from the pool. Returns {ok, PoolInfo, Pid} where Pid is a hackney_conn process.

 checkout_h2(Host, Port, Transport, Options)

 -spec checkout_h2(Host :: string(), Port :: non_neg_integer(), Transport :: module(), Options :: list()) ->
 {ok, pid()} | none.

Get an existing HTTP/2 connection for a host/port, or 'none' if not available. HTTP/2 connections are shared (multiplexed) across callers.

 checkout_h3(Host, Port, Transport, Options)

 -spec checkout_h3(Host :: string(), Port :: non_neg_integer(), Transport :: module(), Options :: list()) ->
 {ok, pid()} | none.

Get an existing HTTP/3 connection for a host/port, or 'none' if not available. HTTP/3 connections are shared (multiplexed) across callers via QUIC streams.

 child_spec(Name, Options0)

return a child spec suitable for embedding your pool in the supervisor

 code_change(OldVsn, State, Extra)

 count(Name)

get the number of connections in the pool

 count(Name, Key)

get the number of connections in the pool for {Host, Port, Transport}

 find_pool(Name)

 get_stats(Pool)

 handle_call(_, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 host_stats(PoolName, Host, Port)

 -spec host_stats(atom(), string() | binary(), inet:port_number()) -> [{atom(), non_neg_integer()}].

Get per-host connection statistics. Returns a proplist with: - active: number of active requests (from load_regulation) - in_use: connections checked out from pool - free: connections available in pool

 init(_)

 max_connections(Name)

get max pool size

 notify(Pool, Msg)

 prewarm(PoolName, Host, Port)

 -spec prewarm(atom(), string() | binary(), inet:port_number()) -> ok.

Prewarm connections to a host (default count from pool settings) Starts the pool if it doesn't exist.

 prewarm(PoolName, Host, Port, Count)

 -spec prewarm(atom(), string() | binary(), inet:port_number(), non_neg_integer()) -> ok.

Prewarm a specific number of connections to a host Starts the pool if it doesn't exist.

 register_h2(Host, Port, Transport, Pid, Options)

 -spec register_h2(Host :: string(),
 Port :: non_neg_integer(),
 Transport :: module(),
 Pid :: pid(),
 Options :: list()) ->
 ok.

Register an HTTP/2 connection in the pool for sharing. Called after ALPN negotiation confirms HTTP/2.

 register_h3(Host, Port, Transport, Pid, Options)

 -spec register_h3(Host :: string(),
 Port :: non_neg_integer(),
 Transport :: module(),
 Pid :: pid(),
 Options :: list()) ->
 ok.

Register an HTTP/3 connection in the pool for sharing. Called after QUIC connection is established with HTTP/3.

 set_max_connections(Name, NewSize)

change the pool size

 set_timeout(Name, NewTimeout)

change the connection timeout

 start()

 start_link(Name, Options0)

 start_pool(Name, Options)

start a pool

 stop_pool(Name)

stop a pool

 terminate(Reason, State)

 timeout(Name)

get timeout

 to_pool_name(Name)

 unregister_h2(Pid, Options)

 -spec unregister_h2(Pid :: pid(), Options :: list()) -> ok.

Remove an HTTP/2 connection from the pool (e.g., on GOAWAY).

 unregister_h2_all()

 -spec unregister_h2_all() -> ok.

Remove all HTTP/2 connections from the default pool. Used for testing to ensure clean state between tests.

 unregister_h3(Pid, Options)

 -spec unregister_h3(Pid :: pid(), Options :: list()) -> ok.

Remove an HTTP/3 connection from the pool (e.g., on connection close).

 hackney_pool_sup - hackney v3.0.1

hackney_pool_sup

 Summary

 Functions

 init(_)

 start_link(Name)

 Functions

 init(_)

 start_link(Name)

 hackney_pools_sup - hackney v3.0.1

hackney_pools_sup

 Summary

 Functions

 init(_)

 start_link()

 start_pool(Name)

 stop_pool(Name)

 Functions

 init(_)

 start_link()

 start_pool(Name)

 stop_pool(Name)

 hackney_quic - hackney v3.0.1

hackney_quic

QUIC NIF wrapper for HTTP/3 support.
This module provides the Erlang interface to the QUIC NIF. The NIF handles QUIC transport and HTTP/3 using lsquic.
[bookmark: Connection_Options]Connection Options
The Opts map passed to connect/4 may contain:
	socket_fd - An existing UDP socket file descriptor (integer). If provided, the NIF will use this socket instead of creating a new one. This allows pre-warming connections and H3 detection in Erlang before handing off to the NIF. Use get_fd/1 to extract the FD from a gen_udp socket.
	verify - Boolean indicating whether to verify server certificate (default: false)

[bookmark: Messages]Messages
Messages sent from NIF to owner process:
	{quic, ConnRef, {connected, Info}} - Connection established
	{quic, ConnRef, {stream_opened, StreamId}} - Stream opened
	{quic, ConnRef, {closed, Reason}} - Connection closed
	{quic, ConnRef, {transport_error, Code, Reason}} - Transport error
	{quic, ConnRef, {stream_headers, StreamId, Headers, Fin}} - Headers received
	{quic, ConnRef, {stream_data, StreamId, Bin, Fin}} - Data received
	{quic, ConnRef, {stream_reset, StreamId, ErrorCode}} - Stream reset
	{quic, ConnRef, {stop_sending, StreamId, ErrorCode}} - Stop sending
	{quic, ConnRef, {goaway, LastStreamId, ErrorCode, Debug}} - GoAway received
	{quic, ConnRef, {session_ticket, Ticket}} - Session ticket for 0-RTT
	{quic, ConnRef, {send_ready, StreamId}} - Stream ready to write
	{quic, ConnRef, {timer, NextTimeoutMs}} - Timer notification

 Summary

 Functions

 close(ConnRef, Reason)

 Close a QUIC connection.

 connect(Host, Port, Opts, Owner)

 Connect to a QUIC server. Returns {ok, ConnRef} on success. The owner process will receive {quic, ConnRef, {connected, Info}} when the connection is established.

 get_fd(Socket)

 Get the file descriptor from a gen_udp socket. This can be used to pass an existing UDP socket to the QUIC NIF via the socket_fd option.

 handle_timeout(ConnRef, NowMs)

 Handle connection timeout. Should be called when timer expires. Returns next timeout in ms or 'infinity'.

 is_available()

 Check if QUIC/HTTP3 support is available. Returns true if the NIF is loaded and ready.

 open_stream(ConnRef)

 Open a new bidirectional stream. Returns {ok, StreamId} on success. The StreamId may be 0 if the stream creation is pending; the actual stream ID will be provided via the on_new_stream callback message.

 peername(ConnRef)

 Get the remote address of the connection.

 process(ConnRef)

 Process pending QUIC events. This should be called when

 reset_stream(ConnRef, StreamId, ErrorCode)

 Reset a stream with an error code.

 send_data(ConnRef, StreamId, Data, Fin)

 Send data on a stream. Fin indicates if this is the final frame on the stream.

 send_headers(ConnRef, StreamId, Headers, Fin)

 Send HTTP/3 headers on a stream. Headers should be [{Name, Value}] with binary keys/values. Fin indicates if this is the final frame on the stream.

 setopts(ConnRef, Opts)

 Set connection options.

 sockname(ConnRef)

 Get the local address of the connection.

 Functions

 close(ConnRef, Reason)

 -spec close(ConnRef, Reason) -> ok when ConnRef :: reference(), Reason :: term().

Close a QUIC connection.

 connect(Host, Port, Opts, Owner)

 -spec connect(Host, Port, Opts, Owner) -> {ok, reference()} | {error, term()}
 when
 Host :: binary() | string(),
 Port :: inet:port_number(),
 Opts :: map(),
 Owner :: pid().

Connect to a QUIC server. Returns {ok, ConnRef} on success. The owner process will receive {quic, ConnRef, {connected, Info}} when the connection is established.
Options:
	socket_fd - Use an existing UDP socket FD (see get_fd/1)
	verify - Verify server certificate (default: false)

 get_fd(Socket)

 -spec get_fd(gen_udp:socket()) -> {ok, integer()} | {error, term()}.

Get the file descriptor from a gen_udp socket. This can be used to pass an existing UDP socket to the QUIC NIF via the socket_fd option.
Example:
 {ok, Socket} = gen_udp:open(0, [binary, {active, false}]),
 {ok, Fd} = hackney_quic:get_fd(Socket),
 {ok, ConnRef} = hackney_quic:connect(Host, Port, #{socket_fd => Fd}, self()).
Note: After passing the FD to the NIF, do NOT close the gen_udp socket as the NIF now owns the file descriptor. The socket will be closed when the QUIC connection is closed.

 handle_timeout(ConnRef, NowMs)

 -spec handle_timeout(ConnRef, NowMs) -> non_neg_integer() | infinity
 when ConnRef :: reference(), NowMs :: non_neg_integer().

Handle connection timeout. Should be called when timer expires. Returns next timeout in ms or 'infinity'.

 is_available()

 -spec is_available() -> boolean().

Check if QUIC/HTTP3 support is available. Returns true if the NIF is loaded and ready.

 open_stream(ConnRef)

 -spec open_stream(ConnRef) -> {ok, non_neg_integer()} | {error, term()} when ConnRef :: reference().

Open a new bidirectional stream. Returns {ok, StreamId} on success. The StreamId may be 0 if the stream creation is pending; the actual stream ID will be provided via the on_new_stream callback message.

 peername(ConnRef)

 -spec peername(ConnRef) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, term()}
 when ConnRef :: reference().

Get the remote address of the connection.

 process(ConnRef)

 -spec process(ConnRef) -> non_neg_integer() | infinity when ConnRef :: reference().

Process pending QUIC events. This should be called when:
	The socket has data ready (after receiving {select, _, _, ready_input})
	A timer has expired

Returns the next timeout in milliseconds, or 'infinity' if no timeout needed. The caller should use erlang:send_after/3 to schedule the next call.
Example usage:
 receive
 {select, _Resource, _Ref, ready_input} ->
 NextTimeout = hackney_quic:process(ConnRef),
 schedule_timer(NextTimeout)
 end

 reset_stream(ConnRef, StreamId, ErrorCode)

 -spec reset_stream(ConnRef, StreamId, ErrorCode) -> ok | {error, term()}
 when
 ConnRef :: reference(),
 StreamId :: non_neg_integer(),
 ErrorCode :: non_neg_integer().

Reset a stream with an error code.

 send_data(ConnRef, StreamId, Data, Fin)

 -spec send_data(ConnRef, StreamId, Data, Fin) -> ok | {error, term()}
 when
 ConnRef :: reference(),
 StreamId :: non_neg_integer(),
 Data :: iodata(),
 Fin :: boolean().

Send data on a stream. Fin indicates if this is the final frame on the stream.

 send_headers(ConnRef, StreamId, Headers, Fin)

 -spec send_headers(ConnRef, StreamId, Headers, Fin) -> ok | {error, term()}
 when
 ConnRef :: reference(),
 StreamId :: non_neg_integer(),
 Headers :: [{binary(), binary()}],
 Fin :: boolean().

Send HTTP/3 headers on a stream. Headers should be [{Name, Value}] with binary keys/values. Fin indicates if this is the final frame on the stream.

 setopts(ConnRef, Opts)

 -spec setopts(ConnRef, Opts) -> ok | {error, term()}
 when ConnRef :: reference(), Opts :: [{atom(), term()}].

Set connection options.

 sockname(ConnRef)

 -spec sockname(ConnRef) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, term()}
 when ConnRef :: reference().

Get the local address of the connection.

 hackney_socks5 - hackney v3.0.1

hackney_socks5

socks 5 transport

 Summary

 Types

 socks5_socket/0

 Functions

 close(_)

 Close a socks5 socket.

 connect(Host, Port, Opts)

 connect(Host, Port, Opts, Timeout)

 controlling_process(_, Pid)

 Assign a new controlling process Pid to Socket.

 messages(_)

 Atoms used to identify messages in {active, once | true} mode.

 peername(_)

 Return the address and port for the other end of a connection.

 recv(Socket, Length)

 recv(_, Length, Timeout)

 Receive a packet from a socket in passive mode.

 send(_, Packet)

 Send a packet on a socket.

 setopts(_, Opts)

 Set one or more options for a socket.

 shutdown(_, How)

 Immediately close a socket in one or two directions.

 sockname(_)

 Get the local address and port of a socket

 Types

 socks5_socket/0

 -type socks5_socket() :: {atom(), inet:socket()}.

 Functions

 close(_)

 -spec close(socks5_socket()) -> ok.

Close a socks5 socket.
See also: gen_tcp:close/1.

 connect(Host, Port, Opts)

 connect(Host, Port, Opts, Timeout)

 controlling_process(_, Pid)

 -spec controlling_process(socks5_socket(), pid()) -> ok | {error, closed | not_owner | atom()}.

Assign a new controlling process Pid to Socket.
See also: gen_tcp:controlling_process/2.

 messages(_)

Atoms used to identify messages in {active, once | true} mode.

 peername(_)

 -spec peername(socks5_socket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Return the address and port for the other end of a connection.
See also: inet:peername/1.

 recv(Socket, Length)

 recv(_, Length, Timeout)

 -spec recv(socks5_socket(), non_neg_integer(), timeout()) -> {ok, any()} | {error, closed | atom()}.

Receive a packet from a socket in passive mode.
See also: gen_tcp:recv/3.

 send(_, Packet)

 -spec send(socks5_socket(), iolist()) -> ok | {error, atom()}.

Send a packet on a socket.
See also: gen_tcp:send/2.

 setopts(_, Opts)

 -spec setopts(socks5_socket(), list()) -> ok | {error, atom()}.

Set one or more options for a socket.
See also: inet:setopts/2.

 shutdown(_, How)

 -spec shutdown(socks5_socket(), read | write | read_write) -> ok.

Immediately close a socket in one or two directions.
See also: gen_tcp:shutdown/2.

 sockname(_)

 -spec sockname(socks5_socket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Get the local address and port of a socket
See also: inet:sockname/1.

 hackney_ssl - hackney v3.0.1

hackney_ssl

 Summary

 Functions

 alpn_opts(Opts)

 Generate ALPN options for SSL connection. Returns a list containing alpn_advertised_protocols option based on the protocols specified in Options.

 check_hostname_opts(Host0)

 cipher_opts()

 close(Socket)

 Close a TCP socket.

 connect(Host, Port, Opts)

 connect(Host, Port, Opts0, Timeout)

 controlling_process(Socket, Pid)

 Assign a new controlling process Pid to Socket.

 get_negotiated_protocol(SslSocket)

 Get the negotiated protocol after SSL handshake. Returns http2 if HTTP/2 was negotiated, http1 otherwise. Note: HTTP/3 is not returned here as it uses QUIC, not TLS.

 messages(_)

 Atoms used to identify messages in {active, once | true} mode.

 peercert(Socket)

 Return the peer certificate of an SSL connection.

 peername(Socket)

 Return the address and port for the other end of a connection.

 recv(Socket, Length)

 recv(Socket, Length, Timeout)

 Receive a packet from a socket in passive mode.

 send(Socket, Packet)

 Send a packet on a socket.

 setopts(Socket, Opts)

 Set one or more options for a socket.

 shutdown(Socket, How)

 Immediately close a socket in one or two directions.

 sockname(Socket)

 Get the local address and port of a socket

 ssl_opts(Host, Options)

 Build SSL options for a connection. Used by proxy modules for SSL upgrade after tunnel establishment.

 Functions

 alpn_opts(Opts)

 -spec alpn_opts(list()) -> list().

Generate ALPN options for SSL connection. Returns a list containing alpn_advertised_protocols option based on the protocols specified in Options.
Options: - protocols: list of atoms [http3, http2, http1] (default: [http2, http1]) Order matters - first protocol is preferred Note: http3 is only used for informational purposes here - HTTP/3 uses QUIC which has its own ALPN negotiation handled by hackney_http3.
Example:
 alpn_opts([{protocols, [http2, http1]}]) ->
 [{alpn_advertised_protocols, [<<"h2">>, <<"http/1.1">>]}]

 check_hostname_opts(Host0)

 cipher_opts()

 close(Socket)

 -spec close(ssl:sslsocket()) -> ok.

Close a TCP socket.
See also: ssl:close/1.

 connect(Host, Port, Opts)

 connect(Host, Port, Opts0, Timeout)

 controlling_process(Socket, Pid)

 -spec controlling_process(ssl:sslsocket(), pid()) -> ok | {error, closed | not_owner | atom()}.

Assign a new controlling process Pid to Socket.
See also: ssl:controlling_process/2.

 get_negotiated_protocol(SslSocket)

 -spec get_negotiated_protocol(ssl:sslsocket()) -> http2 | http1.

Get the negotiated protocol after SSL handshake. Returns http2 if HTTP/2 was negotiated, http1 otherwise. Note: HTTP/3 is not returned here as it uses QUIC, not TLS.
See also: ssl:negotiated_protocol/1.

 messages(_)

Atoms used to identify messages in {active, once | true} mode.

 peercert(Socket)

 -spec peercert(ssl:sslsocket()) -> {ok, binary()} | {error, atom()}.

Return the peer certificate of an SSL connection.
See also: ssl:peercert/1.

 peername(Socket)

 -spec peername(ssl:sslsocket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Return the address and port for the other end of a connection.
See also: ssl:peername/1.

 recv(Socket, Length)

 recv(Socket, Length, Timeout)

 -spec recv(ssl:sslsocket(), non_neg_integer(), timeout()) -> {ok, any()} | {error, closed | atom()}.

Receive a packet from a socket in passive mode.
See also: ssl:recv/3.

 send(Socket, Packet)

 -spec send(ssl:sslsocket(), iolist()) -> ok | {error, atom()}.

Send a packet on a socket.
See also: ssl:send/2.

 setopts(Socket, Opts)

 -spec setopts(ssl:sslsocket(), list()) -> ok | {error, atom()}.

Set one or more options for a socket.
See also: ssl:setopts/2.

 shutdown(Socket, How)

 -spec shutdown(ssl:sslsocket(), read | write | read_write) -> ok | {error, any()}.

Immediately close a socket in one or two directions.
See also: ssl:shutdown/2.

 sockname(Socket)

 -spec sockname(ssl:sslsocket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Get the local address and port of a socket
See also: ssl:sockname/1.

 ssl_opts(Host, Options)

Build SSL options for a connection. Used by proxy modules for SSL upgrade after tunnel establishment.

 hackney_sup - hackney v3.0.1

hackney_sup

 Summary

 Functions

 init(_)

 start_link()

 Functions

 init(_)

 start_link()

 hackney_tcp - hackney v3.0.1

hackney_tcp

 Summary

 Functions

 close(Socket)

 Close a TCP socket.

 connect(Host, Port, Opts)

 connect(Host, Port, Opts, Timeout)

 controlling_process(Socket, Pid)

 Assign a new controlling process Pid to Socket.

 messages(_)

 Atoms used to identify messages in {active, once | true} mode.

 peername(Socket)

 Return the address and port for the other end of a connection.

 recv(Socket, Length)

 recv(Socket, Length, Timeout)

 Receive a packet from a socket in passive mode.

 send(Socket, Packet)

 Send a packet on a socket.

 setopts(Socket, Opts)

 Set one or more options for a socket.

 shutdown(Socket, How)

 Immediately close a socket in one or two directions.

 sockname(Socket)

 Get the local address and port of a socket

 Functions

 close(Socket)

 -spec close(inet:socket()) -> ok.

Close a TCP socket.
See also: gen_tcp:close/1.

 connect(Host, Port, Opts)

 connect(Host, Port, Opts, Timeout)

 controlling_process(Socket, Pid)

 -spec controlling_process(inet:socket(), pid()) -> ok | {error, closed | not_owner | atom()}.

Assign a new controlling process Pid to Socket.
See also: gen_tcp:controlling_process/2.

 messages(_)

Atoms used to identify messages in {active, once | true} mode.

 peername(Socket)

 -spec peername(inet:socket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Return the address and port for the other end of a connection.
See also: inet:peername/1.

 recv(Socket, Length)

 recv(Socket, Length, Timeout)

 -spec recv(inet:socket(), non_neg_integer(), timeout()) -> {ok, any()} | {error, closed | atom()}.

Receive a packet from a socket in passive mode.
See also: gen_tcp:recv/3.

 send(Socket, Packet)

 -spec send(inet:socket(), iolist()) -> ok | {error, atom()}.

Send a packet on a socket.
See also: gen_tcp:send/2.

 setopts(Socket, Opts)

 -spec setopts(inet:socket(), list()) -> ok | {error, atom()}.

Set one or more options for a socket.
See also: inet:setopts/2.

 shutdown(Socket, How)

 -spec shutdown(inet:socket(), read | write | read_write) -> ok.

Immediately close a socket in one or two directions.
See also: gen_tcp:shutdown/2.

 sockname(Socket)

 -spec sockname(inet:socket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Get the local address and port of a socket
See also: inet:sockname/1.

 hackney_trace - hackney v3.0.1

hackney_trace

 Summary

 Types

 filename/0

 trace_level/0

 trace_type/0

 Functions

 disable()

 stop tracing

 enable(Level, File)

 start tracing start tracing at level Level and send the result either to the file File, the port Port or to a trace handler.

 report_event(Severity, Label, Service, Content)

 set_level(Level)

 change the trace level when tracing has already started.

 Types

 filename/0

 -type filename() :: string().

 trace_level/0

 -type trace_level() :: max | min | integer().

 trace_type/0

 -type trace_type() :: io | filename() | port() | {fun(), any()}.

 Functions

 disable()

 -spec disable() -> ok.

stop tracing

 enable(Level, File)

 -spec enable(trace_level(), trace_type()) -> ok.

start tracing start tracing at level Level and send the result either to the file File, the port Port or to a trace handler.
Note: that it starts a tracer server. When Destination is the atom io (or the tuple {io, Verbosity}), %% all (printable) inets trace events (trace_ts events which has %% Severity within Limit) will be written to stdout using io:format.

 report_event(Severity, Label, Service, Content)

 set_level(Level)

 -spec set_level(trace_level()) -> ok | {error, term()}.

change the trace level when tracing has already started.

 hackney_url - hackney v3.0.1

hackney_url

module to manage URLs.

 Summary

 Types

 hackney_url/0

 qs_opt/0

 qs_vals/0

 Functions

 fix_path(Path)

 idnconvert_hostname(Host)

 make_url(Url, Path, Query)

 Construct an URL from a base URL, a path and a list of properties to give to the URL.

 normalize(URL)

 Normalizes the encoding of an URL. Use the hackney_url:pathencode/1 to encode an URL.

 normalize(URL, Fun)

 Normalizes the encoding of an URL.

 parse_qs(Bin)

 parse_url(URL)

 Parse an URL and return a #hackney_url record.

 pathencode(Path)

 Encode an URL path.

 property(_, URL)

 qs(KVs)

 Encode query properties to binary.

 qs(KVs, Opts)

 Encode query properties to binary. Opts are passed to urlencode/2

 transport_scheme(_)

 unparse_url(Hackney_url)

 urldecode(Bin)

 Equivalent to urldecode(Bin, crash).

 urldecode(Bin, OnError)

 Decode an URL encoded binary. The second argument specifies how to handle percent characters that are not followed by two valid hex characters. Use skip to ignore such errors, if crash is used the function will fail with the reason badarg.

 urlencode(Bin)

 URL encode a string binary.

 urlencode(Bin, Opts)

 URL encode a string binary. The noplus option disables the default behaviour of quoting space characters, \s, as +. The lower option overrides the default behaviour of writing hex numbers using uppercase letters to using lowercase letters instead.

 Types

 hackney_url/0

 -type hackney_url() ::
 #hackney_url{transport :: atom(),
 scheme :: atom(),
 netloc :: binary(),
 raw_path :: binary() | undefined,
 path :: binary() | undefined | nil,
 qs :: binary(),
 fragment :: binary(),
 host :: string(),
 port :: integer() | undefined,
 user :: binary(),
 password :: binary()}.

 qs_opt/0

 -type qs_opt() :: noplus | upper.

 qs_vals/0

 -type qs_vals() :: [{binary() | atom() | list() | integer(), binary() | true}].

 Functions

 fix_path(Path)

 idnconvert_hostname(Host)

 make_url(Url, Path, Query)

 -spec make_url(binary(), binary() | [binary()], binary() | qs_vals()) -> binary().

Construct an URL from a base URL, a path and a list of properties to give to the URL.

 normalize(URL)

 -spec normalize(URL) -> NormalizedUrl
 when URL :: binary() | list() | hackney_url(), NormalizedUrl :: hackney_url().

Normalizes the encoding of an URL. Use the hackney_url:pathencode/1 to encode an URL.

 normalize(URL, Fun)

 -spec normalize(URL, Fun) -> NormalizedUrl
 when
 URL :: binary() | list() | hackney_url(),
 Fun :: fun(),
 NormalizedUrl :: hackney_url().

Normalizes the encoding of an URL.

 parse_qs(Bin)

 -spec parse_qs(binary()) -> qs_vals().

 parse_url(URL)

 -spec parse_url(URL :: binary() | list()) -> hackney_url().

Parse an URL and return a #hackney_url record.

 pathencode(Path)

 -spec pathencode(binary() | list()) -> binary().

Encode an URL path.

 property(_, URL)

 qs(KVs)

 -spec qs(qs_vals()) -> binary().

Encode query properties to binary.

 qs(KVs, Opts)

 -spec qs(qs_vals(), [qs_opt()]) -> binary().

Encode query properties to binary. Opts are passed to urlencode/2

 transport_scheme(_)

 unparse_url(Hackney_url)

 urldecode(Bin)

 -spec urldecode(binary()) -> binary().

Equivalent to urldecode(Bin, crash).
Decode an URL encoded binary.

 urldecode(Bin, OnError)

 -spec urldecode(binary(), crash | skip) -> binary().

Decode an URL encoded binary. The second argument specifies how to handle percent characters that are not followed by two valid hex characters. Use skip to ignore such errors, if crash is used the function will fail with the reason badarg.

 urlencode(Bin)

 -spec urlencode(binary() | string()) -> binary().

URL encode a string binary.

 urlencode(Bin, Opts)

 -spec urlencode(binary() | string(), [qs_opt()]) -> binary().

URL encode a string binary. The noplus option disables the default behaviour of quoting space characters, \s, as +. The lower option overrides the default behaviour of writing hex numbers using uppercase letters to using lowercase letters instead.

 hackney_util - hackney v3.0.1

hackney_util

 Summary

 Functions

 default_protocols()

 Get the default protocols for HTTP connections. Returns the value of the default_protocols` application env, or `[http2, http1] if not set.

 filter_options(Tail, AllowedKeys, Acc)

 filter a proplists and only keep allowed keys

 is_ipv6(Host)

 maybe_apply_defaults(Rest, Options)

 merge_opts(Rest, Options)

 mod_metrics()

 privdir()

 require(Rest)

 Start the given applications if they were not already started.

 set_option_default(Opts, Key, Value)

 set the default options in a proplists if not defined

 to_atom(V)

 to_int(S)

 Functions

 default_protocols()

 -spec default_protocols() -> [http3 | http2 | http1].

Get the default protocols for HTTP connections. Returns the value of the default_protocols` application env, or `[http2, http1] if not set.
The order determines preference: HTTP/2 is preferred, then HTTP/1.1.
To enable HTTP/3 (experimental):
 application:set_env(hackney, default_protocols, [http3, http2, http1]).

 filter_options(Tail, AllowedKeys, Acc)

 -spec filter_options([{atom(), any()} | {raw, any(), any(), any()}], [atom()], Acc) -> Acc
 when Acc :: [any()].

filter a proplists and only keep allowed keys

 is_ipv6(Host)

 maybe_apply_defaults(Rest, Options)

 merge_opts(Rest, Options)

 mod_metrics()

 privdir()

 require(Rest)

 -spec require([module()]) -> ok.

Start the given applications if they were not already started.

 set_option_default(Opts, Key, Value)

 -spec set_option_default(Opts, atom(), any()) -> Opts when Opts :: [{atom(), any()}].

set the default options in a proplists if not defined

 to_atom(V)

 to_int(S)

 hackney_ws - hackney v3.0.1

hackney_ws

gen_statem process for WebSocket connections.
This module implements a state machine for WebSocket connections, handling HTTP upgrade handshake and WebSocket frame exchange.
States: - idle: Process started, not connected - upgrading: HTTP upgrade in progress - connected: WebSocket ready for messages - closing: Close handshake in progress - closed: Connection terminated

 Summary

 Types

 ws_frame/0

 Functions

 close(Pid)

 Close the WebSocket connection gracefully.

 close(Pid, _)

 closed(_, OldState, Data)

 closing(_, OldState, Data)

 connect(Pid)

 Initiate WebSocket connection. Blocks until upgrade completes.

 connect(Pid, Timeout)

 connected(_, OldState, Ws_data)

 controlling_process(Pid, NewOwner)

 Assign a new controlling process.

 idle(_, OldState, Data)

 peername(Pid)

 Return the address and port for the other end of connection.

 recv(Pid)

 Receive a WebSocket frame (passive mode only).

 recv(Pid, Timeout)

 send(Pid, Frame)

 Send a WebSocket frame. Frame types: {text, Data}, {binary, Data}, ping, {ping, Data}, pong, {pong, Data}, close, {close, Code, Reason}

 setopts(Pid, Opts)

 Set socket options. Supported: [{active, true|false|once}]

 sockname(Pid)

 Get the local address and port of the socket.

 start_link(Opts)

 Start a WebSocket connection process. Options

 upgrading(_, OldState, Data)

 Types

 ws_frame/0

 -type ws_frame() ::
 {text, binary()} |
 {binary, binary()} |
 ping |
 {ping, binary()} |
 pong |
 {pong, binary()} |
 close |
 {close, integer(), binary()}.

 Functions

 close(Pid)

 -spec close(pid()) -> ok.

Close the WebSocket connection gracefully.

 close(Pid, _)

 -spec close(pid(), {integer(), binary()}) -> ok.

 closed(_, OldState, Data)

 closing(_, OldState, Data)

 connect(Pid)

 -spec connect(pid()) -> ok | {error, term()}.

Initiate WebSocket connection. Blocks until upgrade completes.

 connect(Pid, Timeout)

 -spec connect(pid(), timeout()) -> ok | {error, term()}.

 connected(_, OldState, Ws_data)

 controlling_process(Pid, NewOwner)

 -spec controlling_process(pid(), pid()) -> ok | {error, term()}.

Assign a new controlling process.

 idle(_, OldState, Data)

 peername(Pid)

 -spec peername(pid()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, term()}.

Return the address and port for the other end of connection.

 recv(Pid)

 -spec recv(pid()) -> {ok, ws_frame()} | {error, term()}.

Receive a WebSocket frame (passive mode only).

 recv(Pid, Timeout)

 -spec recv(pid(), timeout()) -> {ok, ws_frame()} | {error, term()}.

 send(Pid, Frame)

 -spec send(pid(), ws_frame()) -> ok | {error, term()}.

Send a WebSocket frame. Frame types: {text, Data}, {binary, Data}, ping, {ping, Data}, pong, {pong, Data}, close, {close, Code, Reason}

 setopts(Pid, Opts)

 -spec setopts(pid(), list()) -> ok | {error, term()}.

Set socket options. Supported: [{active, true|false|once}]

 sockname(Pid)

 -spec sockname(pid()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, term()}.

Get the local address and port of the socket.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start a WebSocket connection process. Options:
	host: Target host (string or binary)
	port: Target port (integer)
	transport: hackney_tcp or hackney_ssl
	path: WebSocket path (binary, default "/")
	connect_timeout: Connection timeout (default 8000ms)
	recv_timeout: Receive timeout (default infinity)
	connect_options: Options passed to transport connect
	ssl_options: Additional SSL options
	active: false | true | once (default false)
	headers: Extra headers for upgrade request
	protocols: Sec-WebSocket-Protocol values