

 hackney

 v1.23.0

 Table of contents

 	Overview

 	Changelog

 	License

 	Notice

 	

 	Modules

 	hackney

 	hackney_app

 	hackney_bstr

 	hackney_cidr

 	hackney_connect

 	hackney_connection

 	hackney_connections

 	hackney_cookie

 	hackney_date

 	hackney_happy

 	hackney_headers

 	hackney_headers_new

 	hackney_http

 	hackney_http_connect

 	hackney_local_tcp

 	hackney_manager

 	hackney_metrics

 	hackney_multipart

 	hackney_pool

 	hackney_pool_handler

 	hackney_request

 	hackney_response

 	hackney_socks5

 	hackney_ssl

 	hackney_stream

 	hackney_sup

 	hackney_tcp

 	hackney_trace

 	hackney_url

 	hackney_util

hackney - HTTP client library in Erlang

Copyright (c) 2012-2025 Benoît Chesneau.
Version: 1.23.0
hackney
hackney is an HTTP client library for Erlang.
[image: Build Status]
[image: Hex pm]

 Main features:

	no message passing (except for asynchronous responses): response is
directly streamed to the current process and state is kept in a #client{} record.
	binary streams
	SSL support
	Keepalive handling
	basic authentication
	stream the response and the requests
	fetch a response asynchronously
	multipart support (streamed or not)
	chunked encoding support
	Can send files using the sendfile API
	Optional socket pool
	REST syntax: hackney:Method(URL) (where a method can be get, post, put, delete, ...)

Supported versions of Erlang are 22.3 and above. It is
reported to work with version from 19.3 to 21.3.
Note: This is a work in progress, see the
TODO for more
information on what still needs to be done.

Useful modules are:
	hackney: main module. It contains all HTTP client functions.

	hackney_http: HTTP parser in pure Erlang. This parser is able
to parse HTTP responses and requests in a streaming fashion. If not set
it will be autodetected if it's a request or a response that's needed.

	hackney_headers Module to manipulate HTTP headers.

	hackney_cookie: Module to manipulate cookies.

	hackney_multipart: Module to encode/decode multipart.

	hackney_url: Module to parse and create URIs.

	hackney_date: Module to parse HTTP dates.

Read the NEWS file
to get the last changelog.

 Installation

Download the sources from our Github
repository
To build the application simply run 'rebar3 compile'.
To run tests run 'rebar3 eunit'.
To generate doc, run 'rebar3 edoc'.
Or add it to your rebar config

{deps, [

 {hackney, ".*", {git, "git://github.com/benoitc/hackney.git", {branch, "master"}}}
]}.

 Basic usage

The basic usage of hackney is:

 Start hackney

hackney is an
OTP
application. You have to start it first before using any of the functions.
The hackney application will start the default socket pool for you.
To start in the console run:

$./rebar3 shell

It is suggested that you install rebar3 user-wide as described here.
This fixes zsh (and maybe other shells) escript-related bugs. Also this should speed things up.

> application:ensure_all_started(hackney).
ok
It will start hackney and all of the application it depends on:

application:start(crypto),
application:start(public_key),
application:start(ssl),
application:start(hackney).
Or add hackney to the applications property of your .app in a release

 Simple request

Do a simple request that will return a client state:

Method = get,
URL = <<"https://friendpaste.com">>,
Headers = [],
Payload = <<>>,
Options = [],
{ok, StatusCode, RespHeaders, ClientRef} = hackney:request(Method, URL,
 Headers, Payload,
 Options).
The request method returns the tuple {ok, StatusCode, Headers, ClientRef}
or {error, Reason}. A ClientRef is simply a reference to the current
request that you can reuse.
If you prefer the REST syntax, you can also do:
hackney:Method(URL, Headers, Payload, Options)
where Method, can be any HTTP method in lowercase.

 Read the body

{ok, Body} = hackney:body(ClientRef).
hackney:body/1 fetch the body. To fetch it by chunk you can use the
hackney:stream_body/1 function:

read_body(MaxLength, Ref, Acc) when MaxLength > byte_size(Acc) ->
	case hackney:stream_body(Ref) of
		{ok, Data} ->
			read_body(MaxLength, Ref, << Acc/binary, Data/binary >>);
		done ->
			{ok, Acc};
		{error, Reason} ->
			{error, Reason}
	end.
Note: you can also fetch a multipart response using the functions
hackney:stream_multipart/1 and hackney:skip_multipart/1.

Note 2: using the with_body option will return the body directly instead of a reference.

 Reuse a connection

By default all connections are created and closed dynamically by
hackney but sometimes you may want to reuse the same reference for your
connections. It's especially useful if you just want to handle serially a
couple of requests.
A closed connection will automatically be reconnected.

To create a connection:

Transport = hackney_ssl,
Host = << "friendpaste.com" >>,
Port = 443,
Options = [],
{ok, ConnRef} = hackney:connect(Transport, Host, Port, Options).
To create a connection that will use an HTTP proxy use
hackney_http_proxy:connect_proxy/5 instead.

To get local and remote ip and port information of a connection:

> hackney:peername(ConnRef).
> hackney:sockname(ConnRef).
Make a request
Once you created a connection use the hackney:send_request/2 function
to make a request:

ReqBody = << "{	\"snippet\": \"some snippet\" }" >>,
ReqHeaders = [{<<"Content-Type">>, <<"application/json">>}],
NextPath = <<"/">>,
NextMethod = post,
NextReq = {NextMethod, NextPath, ReqHeaders, ReqBody},
{ok, _, _, ConnRef} = hackney:send_request(ConnRef, NextReq),
{ok, Body1} = hackney:body(ConnRef).
Here we are posting a JSON payload to '/' on the friendpaste service to
create a paste. Then we close the client connection.
If your connection supports keepalive the connection will be kept open until you close it exclusively.

 Send a body

hackney helps you send different payloads by passing different terms as
the request body:
	{form, PropList} : To send a form
	{multipart, Parts} : to send your body using the multipart API. Parts
follow this format:	eof: end the multipart request
	{file, Path}: to stream a file
	{file, Path, ExtraHeaders}: to stream a file
	{file, Path, Name, ExtraHeaders} : to send a file with DOM element name and extra headers
	{Name, Content}: to send a full part
	{Name, Content, ExtraHeaders}: to send a full part
	{mp_mixed, Name, MixedBoundary}: To notify we start a part with
a mixed multipart content
	{mp_mixed_eof, MixedBoundary}: To notify we end a part with a
mixed multipart content

	{file, File} : To send a file
	Bin: To send a binary or an iolist

Note: to send a chunked request, just add the Transfer-Encoding: chunked
header to your headers. Binary and Iolist bodies will be then sent using
the chunked encoding.

Send the body by yourself
While the default is to directly send the request and fetch the status
and headers, if the body is set as the atom stream the request and
send_request function will return {ok, Client}. Then you can use the
function hackney:send_body/2 to stream the request body and
hackney:start_response/1 to initialize the response.
Note: The function hackney:start_response/1 will only accept
a Client that is waiting for a response (with a response state
equal to the atom waiting).

Ex:

ReqBody = << "{
 \"id\": \"some_paste_id2\",
 \"rev\": \"some_revision_id\",
 \"changeset\": \"changeset in unidiff format\"
}" >>,
ReqHeaders = [{<<"Content-Type">>, <<"application/json">>}],
Path = <<"https://friendpaste.com/">>,
Method = post,
{ok, ClientRef} = hackney:request(Method, Path, ReqHeaders, stream, []),
ok = hackney:send_body(ClientRef, ReqBody),
{ok, _Status, _Headers, ClientRef} = hackney:start_response(ClientRef),
{ok, Body} = hackney:body(ClientRef),
Note: to send a multipart body in a streaming fashion use the
hackney:send_multipart_body/2 function.

 Get a response asynchronously

Since the 0.6 version, hackney is able to fetch the response
asynchronously using the async option:

Url = <<"https://friendpaste.com/_all_languages">>,
Opts = [async],
LoopFun = fun(Loop, Ref) ->
 receive
 {hackney_response, Ref, {status, StatusInt, Reason}} ->
 io:format("got status: ~p with reason ~p~n", [StatusInt,
 Reason]),
 Loop(Loop, Ref);
 {hackney_response, Ref, {headers, Headers}} ->
 io:format("got headers: ~p~n", [Headers]),
 Loop(Loop, Ref);
 {hackney_response, Ref, done} ->
 ok;
 {hackney_response, Ref, Bin} ->
 io:format("got chunk: ~p~n", [Bin]),
 Loop(Loop, Ref);

 Else ->
 io:format("else ~p~n", [Else]),
 ok
 end
 end.

{ok, ClientRef} = hackney:get(Url, [], <<>>, Opts),
LoopFun(LoopFun, ClientRef).
Note 1: When {async, once} is used the socket will receive only once.
To receive the other messages use the function hackney:stream_next/1.

Note 2: Asynchronous responses automatically checkout the socket at the end.

Note 3: At any time you can go back and receive your response
synchronously using the function hackney:stop_async/1 See the
example test_async_once2 for the usage.

Note 4: When the option {follow_redirect, true} is passed to
the request, you will receive the following messages on valid
redirection:
	{redirect, To, Headers}
	{see_other, To, Headers} for status 303 and POST requests.

Note 5: You can send the messages to another process by using the
option {stream_to, Pid} .

 Use the default pool

Hackney uses socket pools to reuse connections globally. By default,
hackney uses a pool named default. You may want to use different
pools in your application which allows you to maintain a group of
connections. To use a different pool, do the following:

Method = get,
URL = <<"https://friendpaste.com">>,
Headers = [],
Payload = <<>>,
Options = [{pool, mypool}],
{ok, StatusCode, RespHeaders, ClientRef} = hackney:request(Method, URL, Headers,
 Payload, Options).
By adding the tuple {pool, mypool} to the options, hackney will use
the connections stored in that pool. The pool gets started automatically
the first time it is used. You can also explicitly configure and start
the pool like this:

PoolName = mypool,
Options = [{timeout, 150000}, {max_connections, 100}],
ok = hackney_pool:start_pool(PoolName, Options),
timeout is the time we keep the connection alive in the pool,
max_connections is the number of connections maintained in the pool. Each
connection in a pool is monitored and closed connections are removed
automatically.
To close a pool do:
hackney_pool:stop_pool(PoolName).
Note: Sometimes you want to disable the default pool in your app
without having to set the client option each time. You can now do this
by setting the hackney application environment key use_default_pool
to false. This means that hackney will not use socket pools unless
specifically requested using the pool option as described above.
To disable socket pools for a single request, specify the option
{pool, false}.

 Use a custom pool handler.

Since the version 0.8 it is now possible to use your own Pool to
maintain the connections in hackney.
A pool handler is a module that handles the hackney_pool_handler
behaviour.
See for example the
hackney_disp a load-balanced
Pool dispatcher based on dispcount.
Note: for now you can`t force the pool handler / client.

 Automatically follow a redirection

If the option {follow_redirect, true} is given to the request, the
client will be able to automatically follow the redirection and
retrieve the body. The maximum number of connections can be set using the
{max_redirect, Max} option. Default is 5.
The client will follow redirects on 301, 302 & 307 if the method is
get or head. If another method is used the tuple
{ok, maybe_redirect, Status, Headers, Client} will be returned. It will
only follow 303 redirects (see other) if the method is a POST.
Last Location is stored in the location property of the client state.
ex:

Method = get,
URL = "http://friendpaste.com/",
ReqHeaders = [{<<"accept-encoding">>, <<"identity">>}],
ReqBody = <<>>,
Options = [{follow_redirect, true}, {max_redirect, 5}],
{ok, S, H, Ref} = hackney:request(Method, URL, ReqHeaders,
 ReqBody, Options),
{ok, Body1} = hackney:body(Ref).

 Use SSL/TLS with self signed certificates

Hackney uses CA bundles adapted from Mozilla by
certifi.
Recognising an organisation specific (self signed) certificates is possible
by providing the necessary ssl_options. Note that ssl_options overrides all
options passed to the ssl module.
ex (>= Erlang 21):

CACertFile = <path_to_self_signed_ca_bundle>,
CrlCheckTimeout = 5000,
SSLOptions = [
{verify, verify_peer},
{versions, ['tlsv1.2']},
{cacertfile, CACertFile},
{crl_check, peer},
{crl_cache, {ssl_crl_cache, {internal, [{http, CrlCheckTimeout}]}}},
{customize_hostname_check,
 [{match_fun, public_key:pkix_verify_hostname_match_fun(https)}]}],

Method = get,
URL = "http://my-organisation/",
ReqHeaders = [],
ReqBody = <<>>,
Options = [{ssl_options, SSLoptions}],
{ok, S, H, Ref} = hackney:request(Method, URL, ReqHeaders,
 ReqBody, Options),

%% To provide client certificate:

CertFile = <path_to_client_certificate>,
KeyFile = <path_to_client_private_key>,
SSLOptions1 = SSLoptions ++ [
{certfile, CertFile},
{keyfile, KeyFile}
],
Options1 = [{ssl_options, SSLoptions1}],
{ok, S1, H1, Ref1} = hackney:request(Method, URL, ReqHeaders,
 ReqBody, Options1).

 Proxy a connection

HTTP Proxy
To use an HTTP tunnel add the option {proxy, ProxyUrl} where
ProxyUrl can be a simple url or an {Host, Port} tuple. If you need
to authenticate set the option {proxy_auth, {User, Password}}.
SOCKS5 proxy
Hackney supports the connection via a socks5 proxy. To set a socks5
proxy, use the following settings:
	{proxy, {socks5, ProxyHost, ProxyPort}}: to set the host and port of
the proxy to connect.
	{socks5_user, Username}: to set the user used to connect to the proxy
	{socks5_pass, Password}: to set the password used to connect to the proxy

SSL and TCP connections can be forwarded via a socks5 proxy. hackney is
automatically upgrading to an SSL connection if needed.

 Metrics

Hackney offers the following metrics
You can enable metrics collection by adding a mod_metrics entry to hackney's
app config. Metrics are disabled by default. The module specified must have an
API matching that of the hackney metrics module.
To use folsom, specify {mod_metrics, folsom}, or if you want to use
exometer, specify{mod_metrics, exometer} and ensure that folsom or exometer is in your code path and has
been started.
Generic Hackney metrics
	Name	Type	Description
	hackney.nb_requests	counter	Number of running requests
	hackney.total_requests	counter	Total number of requests
	hackney.finished_requests	counter	Total number of requests finished

Metrics per Hosts
	Name	Type	Description
	hackney.HOST.nb_requests	counter	Number of running requests
	hackney.HOST.request_time	histogram	Request time
	hackney.HOST.connect_time	histogram	Connect time
	hackney.HOST.response_time	histogram	Response time
	hackney.HOST.connect_timeout	counter	Number of connect timeout
	hackney.HOST.connect_error	counter	Number of timeout errors
	hackney_pool.HOST.new_connection	counter	Number of new pool connections per host
	hackney_pool.HOST.reuse_connection	counter	Number of reused pool connections per host

Metrics per Pool
	Name	Type	Description
	hackney_pool.POOLNAME.take_rate	meter	meter recording rate at which a connection is retrieved from the pool
	hackney_pool.POOLNAME.no_socket	counter	Count of new connections
	hackney_pool.POOLNAME.in_use_count	histogram	How many connections from the pool are used
	hackney_pool.POOLNAME.free_count	histogram	Number of free sockets in the pool
	hackney_pool.POOLNAME.queue_count	histogram	queued clients

 Contribute

For issues, comments or feedback please create an
issue.

 Notes for developers

If you want to contribute patches or improve the docs, you will need to
build hackney using the rebar_dev.config file. It can also be built
using the Makefile:

$ rebar3 update
$ rebar3 compile

For successfully running the hackney test suite locally it is necessary to
install httpbin.
An example installation using virtualenv::

$ mkvirtualenv hackney
$ pip install gunicorn httpbin

Running the tests:
$ gunicorn --daemon --pid httpbin.pid httpbin:app
$ rebar3 eunit
$ kill `cat httpbin.pid`

NEWS

 1.23.0 - 2025-02-25

	fix: happy eyeball use correct timeout during connectino
	fix: don't wrap conection error
	improvement: eyeballonly spawn ipv6 worker when needed

 1.22.0 - 2025-02-20

	feature: prefer to connect using IPv6. happy eyeball strategy
	improvement: fully support no_proxy environment variable
	doc: migrated to ex_doc

 1.21.0 - 2025-02-20

	fix: remove SSL options incompatible with tls 1.3
	fix: url parsing handle "/" path correctly
	fix: simplify integration test suite
	fix: handle chunked response in redirect responses
	fix: handle http & https proxies separately
	fix: skip junk lines in 1.xx response

 security fixes *
	fix URL parsing to prevent SSRF . (related to CVE-2025-1211)
	use latest SSL certificate bundle

 1.20.1 - 2023-10-11

	fix multipart: handle case where Length is undefined

 1.20.0 - 2023-10-10

	handle * in path encoding
	Support LF separators: since rfc7230-3.5 allows for LF-only
	fix recv stream fix fetching trailers during streaming
	fix CI
	Improve documentation

 1.19.1 - 2023-09-21

	feature: add no_proxy_env option to bypass proxy environment settings

 1.19.0 - 2023-09-20

	fix: recv: if expected size < BufSize fallback to old behaviour. Fix issue with negative length
	feature: add support for proxy environment setting

 1.18.2 - 2023-08-29

	security: update default CA bundles

 1.18.1 - 2022-02-03

	security: update default CA bundles
	doc: fix typos

 1.18.0 - 2021-09-28

	security: update default CA bundle
	fix pool: make checkout synchronous (remove unwanted messages)

 1.17.4 - 2021-03-18

	fix checking when socket is put back in the pool when the requester died.

 1.17.3 - 2021-03-17

	fix: ensure we release a socket in the pool when the requester died before being monitored.

 1.17.2 - 2021-03-16

	use parse_trans 3.3.1 only (fix compatibility with Erlang < 21)
	bump certifi version
	Allow merging of SSL opts

 1.17.1 - 2021-03-15

	fix: Avoid parse_trans warning when using hackney as a dependency
	fix: Link checkout process to fix dangling aborted request

 1.17.0 - 2020-12-19

	fix SSL compatibility with erlang OTP 23
	handle empty trailers
	fix race condition in connection pool
	fix memory leak in connection pool
	IDNA update to unicode 13.0.0
	fix build on macosx with OTP >= 20.1
	fix network Location on redirect
	produce uppercase hexadecimal in URLS
	pool queue count metric is now named queue_count
	miscellaneous fixes in documentation

 possible breaking change
	pool queue count metric is now named queue_count. You should update your dashboard to reflect it.

	possible breaking changes when producing uppercase hexadecimal in urls

This change the behaviour of urlencode and pathencode to produce
uppercase hexadecimal to comply to the RFC3986 which may affect
systems using URL as signature or in an hash.

 1.16.0 - 2020-05-25

	pool: cache connection IDs
	pool: make sure to reuse a connection if the options match the one given in the request. fix usage with proxy and ssl
connections
	url: handle fragment correctly, a fragment is parsed first to not be mistaken with an URL
	ssl: fix validation with Erlang 19 & Erlang 20
	ssl: handle tlsv1.3 on Erlang OTP 23
	ssl: increase validation depth to match openssl default
	ssl: optimiaz partial chain handling
	ssl: fix hostname checking and correctly handle SNI
	ssl: fix ciphers
	request: fix regression with fully fqdn
	ssl: fix usage with OTP 23
	url: decode username/password for basic auth parameters
	request: do not normalize when converting relative redirect to absolute
	ssl: update to certifi 2.5.2
	request: handle Connection: close response header for stteam
	http: handle leading new lines in HTTP messages
	http: handle trailers in persistent connection
	pool: update pool timeout documentation
	url: fix urlencode

 1.15.2 - 2019-09-25

	doc: fix test run example in readme
	fix: hackney stream, send hackney_response before calling handle_error
	fix: error remove ssl honor_cipher_order option
	doc: document self-signed certificate usage
	bump ssl_verify_fun to 1.1.5
	fix: don't use default pool if set to false
	fix: hackney_headers_new:store/3 fix value appending to a list
	fix: miscellaneous specs
	doc: miscellaneous improvements

 1.15.1 - 2019-02-26

	fix: don't try to encode to IDN with full ASCII names.

this behaviour is similar to curl and fix errors some people had with docker
creating domain names containing a _

	doc: clarify recv_timeout usage
	fix: don't try to encode hostname IPs to IDN
	fix: path encoding to support () characters
	bump mimerl to 1.2
	bump certifi to 2.5.1

 1.15.0 - 2019-01-04

	improve multipart: send form with a field names for files
	fix pool checkout_cancel: reduce the number of pending requests

 1.14.3 - 2018-09-29

	idna: don't try to encode a unix socket path

 1.14.2 - 2018-09-28

	fix: don't IDNA encode the host with unix scheme
	doc: document basic_auth setting

 1.14.0 - 2018-09-12

	bump to certifi 2.4.2
	bump to idna 0.6.0
	fix support of rebar2
	fix specs
	add hackney:sockname/1 and hackney:peername/1 functions
	add new checkout_timeout option for clarity
	improve hackney_url:parse_qs/1 to trim leading and trailing empty values

 1.13.0 - 2018-06-22

	fix compatibility with Erlang/OTP 21
	fix parsing query parameters on url without path (#512)
	bump idna to 1.5.2: fix compatibility with rebar2 (#509)
	fix accessing HTTPS sites with an IP address (#494)

 1.12.1 - 2018-04-03

	fix terminate_async_response (#498)

 1.12.0 - 2018-04-03

	fix socks5 badarg error when an IP is given
	upgrade IDNA to 5.1.1
	upgrade certifi to 2.3.1
	fix handling of requests with content-length or transfer-encoding given (#475)
	improvements: send SNI in socks5 SSL
	fix: Allow trailing spaces at the end of chunk sizes (#489)
	fix: set once the metrics engine
	fix leak in the socket pool (#462)
	fix doc

 1.11.0 - 2018-01-23

	add: send SNI for Erlang >= 17
	fix: better handling of stream exits in hackney_manager
	improvement: remove high priority flag from the pool process
	fix: change when hackney loads the hackney metric module (speed improvement)
	fix: return value from the function del_from_queue in connection pool
	fix: handle empty or invalid content-length
	fix: documentation on removed method

 1.10.1 - 2017-10-20

	improvement: ignore port empty values on redirect (#444)
	fix: fix reference leak introduced in latest version (#445)
	fix: stream termination, don't raise an error on normal exit

 1.10.0 - 2017-10-18

	fix owner tracking (#443)
	fix: fix deadlock in hackney_pool during request timeout (#420)
	fix: set PoolHandler on connect (#427)
	fix: fix unicode in include file (#426)

 1.9.0 - 2017-07-30

	security: certifi 2.0.0
	dependency: update idna 5.1.0 (fix windows build and usage with elixir)
	doc: fix typo hackney_multipart doc (#422)

 1.8.6 - 2017-06-09

	fix: cleanup socket in async request (#411)

 1.8.5 - 2017-05-30

	fix: dialyzer

 1.8.4 - 2017-05-28

	fix: tests
	dependency: update idna 5.0.2 (fix compatibility with erlang R20)

 1.8.3 - 2017-05-22

	security: certifi 1.2.1
	dependency: update idna 5.0.1

 1.8.2 - 2017-05-20

	fix: race condition in controlling process (#407)
	fix: spec of #hackney_url{} (#404)
	fix: make sure to not lost a message during hibernation in async request
	security: certifi 1.2.0
	dependency: update idna 5.0.0

 1.8.0 - 2017-04-20

	fix: undefined function (#393)
	fix: close connection if proxy handshake failed (#392)
	fix: handle all headers with the new datastructure introduced in 1.7.0 (#395)
	fix: host header when redirect (#400)
	fix: use connect timeout when retrieving from the pool (#402)
	security: new certifi version

 1.7.1 - 2017-03-02

	fix: regression in headers handling (handle different key types)

 1.7.0 - 2017-03-01

	fix: new datastructure to handle headers (#390)
	security: new certifi version

 1.6.6 - 2017-02-26

	fix: fix header appending
	fix: Url encode host header for unix domain sockets (#382)
	security: new certifi version
	doc: fix few typos

 1.6.4 - 2016-12-22

	add: optional urlencode options to qs (#368)
	fix: handle continuation lines in HTTP headers correctly (#366)
	doc: Fix a few documentation typos

 1.6.3 - 2016-10-27

	fix: handle trailing whitespace in header values

 1.6.2 - 2016-10-22

	add: unix sockets support on Erlang > 19
	fix: hackney_multiprart for Erlang < 17
	add: new socks5_resolver function
	fix: hackney_util:merge_opts/2
	improvements: inet6 support in socks5 sockets
	doc: miscellaneous docs fixes
	security: being more strict in ssl support
	security: bump to certifi 0.7

 1.6.1 - 2016-07-10

	fix: close socket on error (#308)
	improvement: handle errors in hackney_response:wait_status (#313)
	improvement: make pathencode faster (#317)
	fix: typo (#321)
	fix: elixir 1.4 warnings (#325)

 1.6.0 - 2016-03-25

	add path_encode_fun option to request.
	add: allow force non-POST 303 redirects
	use ssl_verif_fun dependency to replace ssl_verify_hostname
	fix: move included_applications to applications
	fix: mix packaging

 1.5.4 - 2016-03-18

	fix support of rebar 3 stable
	add mix package

 1.5.0 - 2016-03-02

	refactor: one flat source
	replace hackneymetrics* by metrics library
	fix: hackney_pool (#286)
	security: bump to erlang-certifi 0.4.0

 1.4.10 - 2016/02/27

	bump to idna 1.1.0
	fix: don't encode @ in urls
	fix: header stream multipart

 1.4.7 - 2015/12/07

	bump to mimerl 1.0.2

 1.4.6 - 2015/11/24

	fix build with mix

 1.4.5 - 2015/11/23

	fix multipart/form parsing (#258)
	TRAVIS-CI build with rebar3

 1.4.4 - 2015/11/04

	fix rebar3 detection

 1.4.3 - 2015/11/04

	fix header value parsing (#256)

 1.4.2 - 2015/11/03

	fix build with rebar2 and Erlang < 17

 1.4.1 - 2015/11/03

	fix build with mix (#255)

 1.4.0 - 2015/10/27

	build using hex.pm & small refactoring
	fix multipart (#245)
	fix redirection (#237)
	fix url parsing (#236)
	close connection when max body length is reached (#248)

 1.3.2 - 2015/08/27

	fix connect_time metric (#227)
	fix redirection when with_body is enabled (#228)
	close half-closed socket to avoid leak (#231)
	fix unexpected message in hackney_stream (#223)
	fix receive/error in hackney_manager (#232)

 1.3.1 - 2015/07/28

	fix: set default recv_timeout to 5s. (#219)
	fix: socks5 fix auth: handle not required case (#218)

 1.3.0 - 2015/07/23

	new add max_body setting
	fix: handle partial chains during handshake in HTTPS (#196)

 1.2.0 - 2015/06/25

	new: add with_body option to return the body directly (#184)
	fix: rely on ssl version to validate certificates securely using hostname
verification
	fix: fix redirection when transport change (#177)
	new: build is now using rebar3
	new: updated root certificates
	fix: ignore comma in set-cookie attributes (#193)
	fix: status line parsing when reason phrase is missing entirely (#190)
	fix: make sure the response is done during async streaming (#186)
	fix metrics (#186)
	new: bump latest version of ssl_verify_hostname (#175)
	fix: parse server headers
	fix: really honor max redirection (#170)
	

 fix: handle path parameters in URL (#176)

 1.1.1 - 2015/03/20

	fix: fix max redirection (#170)
	fix: don't encode path parameters and unreserved chars. (#176)

 1.1.0 - 2015/03/04

	fix: honor max_redirect.
	fix: socket checkout in the pool: close the socket if something happen while
passing the control to the client
	fix: put back the waiter in the queue of the pool if no socket can be
delivered
	fix: make sure we don't release a closed typo
	add: shutdown method to transports
	add: hackney_trace module to trace a request
	add: reuse/new connection metrics
	fix: guard binary in hackney_multipart:len_mp_stream/2
	improvement: pass the socket to hackney:request_info/1
	dependency: update ssl_verify_hostname
	fix: make sure to pass the Host header to the request
	fix: HTTP basic authentication
	fix content-type case
	improvement: tests

 1.0.6 - 2015/01/21

	improvement: handle {error, closed} for HTTP 1.1 when no content-length is given.
	improvement: handle 204 and 304 status
	fix keep-alive handling
	remove expm package
	build under R18

 1.0.5 - 2014/12/12

	improvement: Do not wait to cancel a request
	improvement: do not control the request preemptively

 1.0.4 - 2014/12/8

	fix client leaks on error
	fix monitor counters

 1.0.3 - 2014/12/5

	fix SSL validation under R15 and R14 Erlang versions.
	Apply SSL certificate validation to SOCKS5 and HTTP proxies.

 1.0.2 - 2014/12/02

	fix redirection: rewrite Host header

 1.0.1 - 2014/12/01

	update default certification authority file. Make sure we can validate all SSL
connections even on the AWS platform.
	fix typo

 1.0.0 - 2014/11/30

hackney 1.0.0 has been released. This is the first stable and long term
supported release of hackney.
	add metrics
	add SSL certificate verification by default.
	fix: Pool handling

 0.15.2 - 2014/11/27

	fix: handle strings in headers
	fix; convert User/Password as string if needed
	fix: handle body given as an empty list

 0.15.1 - 2014/11/26

	export find_pool/1 and allows any poolname.

 0.15.0 - 2014/11/11

	improve hackney performance and concurrency
	fix pool handling: make sure to reuse the connections

 0.14.3 - 2014/10/28

	fix hackney:stop_async/1

 0.14.2 - 2014/10/27

	fix memory leak (#77): some requests were not cleaned correctly in
hackney_manager.
	fix ssl race condition (#130)
	fix: check if relative url contains a forward slash
	refactor integration tests and add more tests
	fix socket pool: make sure to close all sockets when the pool is terminated,
and do not store closed sockets if we know it.

 0.14.1 - 2014/09/24

	fix redirect location: make sure we use absolute urls
	fix redirection: make sure to follow redirections
	fix hackney_response:read_body/3 spec
	trim response headers when needed
	add redirection basic tests

 0.14.0 - 2014/09/18

	fix: validate if the redirection url is absolute.
	fix: return location from headers when possible in
hackney:location/1.
	fix HEAD request. Remove the need to call the body method
	fix: remove undefined function references
	tests: start to handle tests with httpbin

 Breaking change:

When doing an HEAD request, the signature of the response when it
succeeded is now {ok, Status, ResponseHeaders} and do not contain a
client reference anymore.

 0.13.0 - 2014/07/08

	put hackney_lib back in the source code and refactor the source repository
	fix: handle bad socks5 proxy response
#113
	fix: handle timeout in hackney_socks4:connect/5
#112
	fix: Accept inet6 tcp option for ssl
	fix redirection
	fix: add versions option for ssl

 0.12.1 - 2014/04/18

	fix: return the full body on closed connections.
	fix: make sure to always pass the Host header.

 0.12.0 - 2014/04/18

	improvement: URI encoding is now fully normalized.
	improvement: TCP_NODELAY is now available by default for all transports
	improvements: IDNA parsing is only done during the normalization which
makes all the connections faster.
	fix: connections options are now correctly passed to the transports.
	fix: HTTP proxying. make sure we reuse the connection
	fix: HTTP proxying, only resolve the proxy domain.
	bump hackney_lib to 0.3.0

 Breaking change:

the mimetypes has been
replaced by the
hackney_mimetypes
module. It makes content-type detection a little more efficient. In the
process the functions hackney_util:content_type/1 and
hackney_bstr:content_type/1 has been removed. You should now use the
function hackney_mimetypes:filename/1 .

 0.11.2 - 2014/04/15

	new improved and more performant IDNA support
	make sure the socket is closed when we skip the body if needed
	fix multipart EOF parsing
	make sure we finish a multipart stream
	bump hackney_lib to 0.2.5
	enable TCP_NODELAY by default. (To disable, pass the option
{nodelay, false} toconnect_options). 0.11.1 - 2014/03/03 ------------------- - improvement: speed IDNA domains handing - fix http proxy via CONNECT - fix: encode the path - bump to [hackney_lib 0.2.4](https://github.com/benoitc/hackney_lib/releases/tag/0.2.4) 0.11.0 - 2014/03/02 ------------------- - addhackney:location/1to get the final location - makehackney_request:send/2more efficient - fix socket removing in the pool - fix [HTTP proxying](https://github.com/benoitc/hackney/commit/a21e8802e1dc91c25d863ac6fc5b23a79196efcd) - support IDNA hostnames 0.10.1 - 2013/12/30 ------------------- - fix multipart file header - improve the performance when sending a{multipart, Parts}body. Send it as a stream. - bump hackney_lib version to 0.2.2 0.10.0 - 2013/12/29 ------------------- - improve multipart handling: With this change, we can now calculate the full multipart stream content-length usinghackney_multipart:len_mp_stream/2. - addhackney:setopts/2to set options to a request when reusing it. - addhackney:send_reques/3to pass new options to a request. - add the{stream_to, Pid}setting to a request to send the messages from an asynchronous response to another PID. - fixHostheader: some server do not comply well with the spec and fail to parse the port when they are listening on 80 or 443. This change fix it. - fix: make sure we are re-using connections with asynchronous responses. ### Breaking changes: - All messages from an async response are now under the format{hackney_response, Ref, ... }to distinct hackney messages from others in a process easily. - You can only make an async response at a time. Ie if you are doing a persistent request (reusing the same reference) you will need to pass the async option again to the request. For that purpose the functions hackney:send_request/3 and hackney:setopts/2 have been added. - multipart messages have changed. See the documentation for more information. 0.9.1 - 2013/12/20 ------------------ - fix response multipart processing 0.9.0 - 2013/12/19 ------------------ - add support for multipart responses - add support for cookies: There is now acookieoption that can be passed to the request. It can be a single cookie or a list of cookies. To parse cookies from the response a functionhackney:cookies/1has been added. It returns all the cookies as a list of [{Key, Value}]. - breaking change: use [hackney_lib](http://github.com/benoitc/hackney_lib) a web toolkit to handle the HTTP protocol and other manipulations. - optimization: send body and headers together when it is possible - fix release handling 0.8.3 - 2013/12/07 ------------------ - add: support redirection in async responses - improve [hackney_url:make_url/3](https://github.com/benoitc/hackney/commit/a545d266106c0557374a8b9b13caa63ce89e86f2) - fix: handle case where the response is already done in async responses 0.8.2 - 2013/12/05 ------------------ - fix: trap exits in hackney_manager 0.8.1 - 2013/12/04 ------------------ service release with a new feature and some minor improvements - added the support for [socks5 proxies](https://github.com/benoitc/hackney#socks5-proxy) - improvement: integer and atom can now be passed in url params or forms values. - breaking change: differentiate connect/recv timeout, now connect timeout return{error, connect_timeout}0.8.0 - 2013/12/02 ------------------ major release. With this release the API will not evolve much until the 1.0 release sometimes in january. - breaking change: hackney now return a reference instead of an opaque record. The information is maintained in an ETS table. The same reference is now used for async response requests. - breaking change:stream_body_request/2andstream_multipart_request/2functions has been renamed tosend_body/2andsend_multipart_body/2. - breaking change: removehackney:close_stream/1function. You only need to usehackney:close/1now. - breaking change: renamehackney:raw/1function tohackney:cancel_request/1. - breaking change: the hackney pool handler based on dispcount is now available in its [own repository](https://github.com/benoitc/hackney_disp) so hackney doe not depends on dispcount. - fix: canceling and closing a request now make sure the async response process is killed. - fix: make sure we pass aTransfer-Encoding: chunkedheader when we send a body without content-length. - fix: make sure the client is correctly reconnected when we reuse a reference. 0.7.0 - 2013/11/22 ------------------ - add new Loadbalance pool handler based on dispcount - allows to set the pool handler - breaking change: removehackney:start_pool/2andhackney:stop_pool/1, use insteadhackney_pool:start_pool/2andhackney_pool:stop_pool/1- breaking change: A pool is now used by default - breaking change: Thehackney_formmodule has been removed. You can now encode/parse a form using the functions in thehackney_urlmodule. - deprecatepool_sizeand replace it bymax_connections- fix: apply applications defaults to the pool 0.6.1 - 2013/11/21 ------------------ - doc: Fix the asynchronous response example in the readme - add hackney_url:make_url/3, hackney_url:qs/1, hackney_url:parse_qs/1 functions 0.6.0 - 2013/11/21 ------------------ - add the possibility to get an asynchronous response - add support for the "Expect: 100-continue" header - add hackney:controlling_process/2 to pass the control of an hackney context to another process 0.5.0 - 2013/11/06 ------------------ - fix: proxied connections - fix: correct the path passed to a request - fix: multipart forms - fix: Make sure that the controller process of the socket is the pool process when the socket is in the pool - fix: auth header when the user is not given 0.4.4 - 2013/08/25 ------------------ - fix: doc typos - fix: dialyzer errors - fix: add mimetypes to the list of loaded applications - fix: test.ebin example 0.4.3 - 2013/08/04 ------------------ - removed parse_transform, the REST API is now available at the compilation. fix: fix file upload content type - doc: fix typos 0.4.2 - 2013/06/10 ------------------ - handleidentitytransfer encoding. When the connection close return latest buffer. 0.4.1 - 2013/06/10 ------------------ - Body can be passed as a [function](https://github.com/benoitc/hackney/commit/efd877f52733ccecf0ba1b5ed10783fe29d49b74) - Add recv_timeout option - Fix HEAD request (don't stream the body) - Don't pass the Port to the Host header if it's default (http, https) - Set the connection timeout - Make sure sendfile correctly handle chunked encoding - Add support for partial file uploads - Return received buffer when no content length is given (http 1.0) - Instead of returning{error, closed}, return{error, {closed,
Buffer}}when you receive the body, so you can figure what happened and maybe use the