

 hammer

 v7.0.0-rc.3

 Table of contents

 	Changelog

 	Hammer

 	Tutorial

 	Distributed Rate Limiter with ETS Backend

 	Upgrading to Hammer V7

 	

 	Modules

 	Hammer

 	Hammer.Atomic

 	Hammer.Atomic.FixWindow

 	Hammer.Atomic.LeakyBucket

 	Hammer.Atomic.TokenBucket

 	Hammer.ETS

 	Hammer.ETS.FixWindow

 	Hammer.ETS.LeakyBucket

 	Hammer.ETS.SlidingWindow

 	Hammer.ETS.TokenBucket

Changelog

 7.0.0-rc.3 - 2024-12-18

	Fix regression to support other backends

 7.0.0-rc.2 - 2024-12-17

	Fix type specs for ETS backends
	Adds Atomic backends and possible algorithms
	Added :algorithm option to the Atomic backend with support for:	:fix_window (default) - Fixed time window rate limiting
	:leaky_bucket - Constant rate limiting with burst capacity
	:token_bucket - Token-based rate limiting with burst capacity

	Add benchmarks file and run them with bench

 7.0.0-rc.1 - 2024-12-13

	Improved API a little more. Should be compatibe with previous RC	Made ETS backend more flexible with :algorithm option
	Added :key_older_than option to the ETS backend

	Added :algorithm option to the ETS backend with support for:	:fix_window (default) - Fixed time window rate limiting
	:sliding_window - Sliding time window for smoother rate limiting
	:leaky_bucket - Constant rate limiting with burst capacity
	:token_bucket - Token-based rate limiting with burst capacity

 7.0.0-rc.0 - 2024-12-13

	Breaking change. Completely new API. Consider upgrading if you are experiencing performance or usability problems with Hammer v6. See [./guides/upgrade-v7.md] for upgrade instructions. https://github.com/ExHammer/hammer/pull/104
	Hammer.Plug has been removed. See documentation for using Hammer as a plug in Phoenix.

 6.2.1 - 2024-02-23

	Fix issue in OTP 26 and Elixir 1.15 by not using to_existing_atom in configuration

 Changed

 6.2.0 - 2024-01-31

	Ensure Elixir version is ~> 1.13 https://github.com/ExHammer/hammer/pull/79.

 6.1.0 - 2022-06-13

 Changed

	Updgrade dependency packages
	Merged https://github.com/ExHammer/hammer/pull/41 resulting in ETC without GenServer (and therefore better performance)
	Merged https://github.com/ExHammer/hammer/pull/46 remove additional whitespace
	Updated Docs based on https://github.com/ExHammer/hammer/pull/45
	Adds CREDITS.md

 6.0.0 - 2018-10-12

 Changed

	Change the ETS backend to throw an error if either expiry_ms or
cleanup_interval_ms config values are missing. This should have been fixed
ages ago.
	Default :pool_max_overflow changed to 0. It's a better default, given
that some users have seen weird errors when using a higher overflow.
In general, capacity should be increased by using a higher :pool_size instead
	Changed how the ETS backend does cleanups of data, should be more performant.

 5.0.0 - 2018-05-18

 Added

	A new check_rate_inc function, which allows the caller to specify the
integer with which to increment the bucket by. This is useful for limiting
APIs which have some notion of "cost" per call.

 4.0.0 - 2018-04-23

 Changed

	Use a worker-pool for the backend (via poolboy),
this avoids bottle-necking all traffic through a single hammer
process, thus improving throughput for the system overall

 Added

	New configuration options for backends:	:pool_size, determines the number of workers in the pool (default 4)
	:pool_max_overflow, maximum extra workers to be spawned when the
system is under pressure (default 4)

	Multiple instances of the same backend! You can now have two ETS backends,
fifteen Redis's, whatever you want

 3.0.0 - 2018-02-20

 Changed

	Require elixir >= 1.6
	Use a more sane supervision tree structure

 2.1.0 2017-11-25

 Changed

	Add option to use more than one backend
	Add option to suppress all logging

 2.0.0 - 2017-09-24

 Changed

	New, simpler API	No longer need to start backend processes manually
	Call Hammer.check_rate directly, rather than useing a macro

	Hammer is now an OTP application, configured via Mix.Config

 1.0.0 - 2017-08-22

 Added

	Formalise backend API in Hammer.Backend behaviour

 0.2.1 - 2017-08-10

 Changed

	Minor fixes

Hammer

[image: Build Status]
[image: Hex.pm]
[image: Documentation]
[image: Total Download]
[image: License]
Hammer is a rate-limiter for Elixir with pluggable storage backends. Hammer enables users to set limits on actions performed within specified time intervals, applying per-user or global limits on API requests, file uploads, and more.

[!NOTE]
This README is for the unreleased master branch, please reference the official documentation on hexdocs for the latest stable release.

 Installation

Hammer is available in Hex. Install by adding :hammer to your list of dependencies in mix.exs:
def deps do
 [
 {:hammer, "~> 7.0"}
]
end

 Available Backends

Atomic backends are single-node rate limiting but will be the fastest option.
	Hammer.ETS (default, can be distributed)
	Hammer.Atomic
	Hammer.Redis
	Hammer.Mnesia

 Available Algorithms:

Each backend supports multiple algorithms. Not all of them are available for all backends. The following table shows which algorithms are available for which backends.
	Algorithm	Backend
	Hammer.Atomic.FixWindow	Hammer.Atomic
	Hammer.Atomic.LeakyBucket	Hammer.Atomic
	Hammer.Atomic.TokenBucket	Hammer.Atomic
	Hammer.ETS.FixWindow	Hammer.ETS
	Hammer.ETS.LeakyBucket	Hammer.ETS
	Hammer.ETS.TokenBucket	Hammer.ETS
	Hammer.ETS.SlidingWindow	Hammer.Redis
	Hammer.Redis.FixedWindow	Hammer.Redis

 Default Algorithm

By default, Hammer backends use the fixed window counter to track actions within set time windows, resetting the count at the start of each new window. For example, with a limit of 10 uploads per minute, a user could upload up to 10 files between 12:00:00 and 12:00:59, and up to 10 more between 12:01:00 and 12:01:59. Notice that the user can upload 20 videos in a second if the uploads are timed at the window edges. If this is an issue, it can be worked around with a "bursty" counter which can be implemented with the current API by making two checks, one for the original interval with the total limit, and one for a shorter interval with a fraction of the limit. That would smooth out the number of requests allowed.

 Algorithm Comparison

Here's a comparison of the different rate limiting algorithms to help you choose:

 Fixed Window

	Simplest implementation with lowest overhead
	Good for basic rate limiting with clear time boundaries
	Potential edge case: Up to 2x requests possible at window boundaries
	Best for: Basic API limits where occasional bursts are acceptable

 Leaky Bucket

	Provides smooth, consistent request rate
	Requests "leak" out at constant rate
	Good for traffic shaping and steady throughput
	Best for: Network traffic control, queue processing

 Token Bucket

	Allows controlled bursts while maintaining average rate
	Tokens regenerate at fixed rate
	More flexible than fixed windows
	Best for: APIs needing burst tolerance, gaming mechanics

 Sliding Window

	Most precise rate limiting
	No boundary conditions like fixed windows
	Higher overhead than other algorithms
	Best for: Strict rate enforcement, critical systems

Selection Guide:
	Need simple implementation? → Fixed Window
	Need smooth output rate? → Leaky Bucket
	Need burst tolerance? → Token Bucket
	Need precise limits? → Sliding Window

 Creating a Rate Limiter

	Limit: Maximum number of actions allowed in a window.
	Scale: Duration of the time window (in milliseconds).
	Key: Unique identifier (e.g., user ID) to scope the rate limiting.

 Example Usage

defmodule MyApp.RateLimit do
 use Hammer, backend: :ets
end

MyApp.RateLimit.start_link()

user_id = 42
key = "upload_video:#{user_id}"
scale = :timer.minutes(1)
limit = 3

case MyApp.RateLimit.hit(key, scale, limit) do
 {:allow, _count} ->
 # upload the video
 :ok

 {:deny, retry_after} ->
 # deny the request
 {:error, :rate_limit, _message = "try again in #{retry_after}ms"}
end

 Benchmarks

See the BENCHMARKS.md for more details.

 Acknowledgements

Hammer was originally inspired by the ExRated library, by grempe.

 License

Copyright (c) 2023 June Kelly
Copyright (c) 2023-2024 See CONTRIBUTORS.md
This library is MIT licensed. See the LICENSE for details.

Tutorial

Hammer is a rate limiting library for Elixir that can help you control the frequency of specific actions in your application, such as limiting API requests, login attempts, or file uploads. This tutorial will guide you through setting up Hammer, defining a rate limiter, and applying rate limiting in your app.

 Installation

Add Hammer as a dependency in mix.exs:
def deps do
 [{:hammer, "~> 7.0.0"}]
end
Then, run:
$ mix deps.get

 Core Concepts

When rate-limiting an action, you specify a maximum number of allowed occurrences (the limit) within a certain time frame (the scale). For example, you might allow only 5 login attempts per minute for each user. The limit is typically enforced based on a unique identifier (like a user ID or IP address) but can also be applied globally.
In Hammer:
	limit is the maximum number of actions permitted.
	scale is the time period (in milliseconds) for that limit.
	key is a unique identifier for the rate limit, combining the action name with a user identifier (like "login_attempt:42" for user 42) is a common approach.

Hammer uses a fixed window counter approach. It divides time into fixed-size windows of scale size and counts the number of requests in each window, blocking any requests that exceed the limit.

 Usage

To use Hammer, you need to:
	Define a rate limiter module.
	Add the Hammer backend to your application's supervision tree.

In this example, we'll use the Hammer.ETS backend, which stores data in an in-memory ETS table.

 Step 1: Define a Rate Limiter

First, define a rate limiter module in your application. Use the Hammer module with your chosen backend and configure options as needed:
defmodule MyApp.RateLimit do
 use Hammer, backend: :ets
end
Here:
	:backend specifies the storage backend (:ets for in-memory storage, Hammer.Redis for Redis, etc.).

 Step 2: Start the Rate Limiter

Add the rate limiter to your application's supervision tree or start it manually by calling MyApp.RateLimit.start_link/1 with any runtime options:
MyApp.RateLimit.start_link(clean_period: :timer.minutes(1))
	:clean_period is an optional parameter for :ets backend that specifies how often to clean expired buckets in the ETS table.

 Using the Rate Limiter

With the rate limiter running, you can use hit/3 or hit/4 to enforce rate limits.

 Example: Basic Rate Limit Check

Suppose you want to limit file uploads to 10 per minute per user.
user_id = 42
key = "upload_file:#{user_id}"
scale = :timer.minutes(1)
limit = 10

case MyApp.RateLimit.hit(key, scale, limit) do
 {:allow, _current_count} -> # proceed with file upload
 {:deny, _ms_until_next_window} -> # deny the request
end

 Customizing Rate Increments

If you want to specify a custom increment—useful when each action has a "cost"—you can use hit/4. Here's an example for a bulk upload scenario:
user_id = 42
key = "upload_file:#{user_id}"
scale = :timer.minutes(1)
limit = 10
number_of_files = 3

case MyApp.RateLimit.hit(key, scale, limit, number_of_files) do
 {:allow, _current_count} -> # upload all files
 {:deny, _ms_until_next_window} -> # deny the request
end

 Using Hammer as a Plug in Phoenix

you can easily use Hammer as a plug by using the controller plug in Phoenix:
plug :rate_limit_videos when action in ...

defp rate_limit_videos(conn, _opts) do
 user_id = conn.assigns.current_user.id
 key = "videos:#{user_id}"
 scale = :timer.minutes(1)
 limit = 10

 case MyApp.RateLimit.hit(key, scale, limit) do
 {:allow, _count} ->
 conn

 {:deny, retry_after} ->
 conn
 |> put_resp_header("retry-after", Integer.to_string(div(retry_after, 1000)))
 |> send_resp(429, [])
 |> halt()
 end
end
Or you could add it to your endpoint:
defmodule MyAppWeb.Endpoint do
 use Phoenix.Endpoint

 plug RemoteIP
 plug :rate_limit

 # ...

 defp rate_limit(conn, _opts) do
 key = "web_requests:#{:inet.ntoa(conn.remote_ip)}"
 scale = :timer.minutes(1)
 limit = 1000

 case MyApp.RateLimit.hit(key, scale, limit) do
 {:allow, _count} ->
 conn

 {:deny, retry_after} ->
 retry_after_seconds = div(retry_after, 1000)

 conn
 |> put_resp_header("retry-after", Integer.to_string(retry_after_seconds))
 |> send_resp(429, [])
 |> halt()
 end
 end
end

 Using Hammer with Redis

To persist rate-limiting data across multiple nodes, you can use the Redis backend. Install the Hammer.Redis backend and update your rate limiter configuration:
defmodule MyApp.RateLimit do
 use Hammer, backend: Hammer.Redis
end
Then, start the rate limiter pool with Redis configuration:
MyApp.RateLimit.start_link(host: "redix.myapp.com")
Configuration options are the same as Redix, except for :name, which comes from the module definition.

Distributed Rate Limiter with ETS Backend

This example implements a distributed, eventually consistent rate limiter using Phoenix.PubSub for broadcasting each hit across nodes and a local ETS backend to manage rate-limiting counters. This setup is useful when you need to limit the number of actions (e.g., requests) across multiple nodes in a cluster.
Based on HexpmWeb.RateLimitPubSub.
defmodule MyApp.RateLimit do
 @moduledoc """
 Distributed, eventually consistent rate limiter using `Phoenix.PubSub` and `Hammer`.

 This module provides a rate-limiting mechanism for requests using a distributed,
 eventually consistent approach. It combines local in-memory counting with a
 broadcasting mechanism to keep counters in sync across nodes in a cluster.
 """

 # Checks rate locally and broadcasts the hit to other nodes to synchronize.
 def hit(key, scale, limit, increment \\ 1) do
 :ok = broadcast({:inc, key, scale, increment})
 Local.hit(key, scale, limit, increment)
 end

 defmodule Local do
 @moduledoc false
 use Hammer, backend: :ets
 # This inner module handles local hit counting via Hammer with ETS as a backend.
 end

 defmodule Listener do
 @moduledoc false
 use GenServer

 # Starts the listener process, subscribing to the specified PubSub topic.
 # This process will listen for `:inc` messages to keep local counters in sync.

 @doc false
 def start_link(opts) do
 pubsub = Keyword.fetch!(opts, :pubsub)
 topic = Keyword.fetch!(opts, :topic)
 GenServer.start_link(__MODULE__, {pubsub, topic})
 end

 @impl true
 def init({pubsub, topic}) do
 :ok = Phoenix.PubSub.subscribe(pubsub, topic)
 {:ok, []}
 end

 # Handles remote `:inc` messages by updating the local counter.

 @impl true
 def handle_info({:inc, key, scale, increment}, state) do
 _count = Local.inc(key, scale, increment)
 {:noreply, state}
 end
 end

 @pubsub MyApp.PubSub
 @topic "__ratelimit"

 # Sends a message to other nodes in the cluster to synchronize rate-limiting information.
 defp broadcast(message) do
 {:ok, {Phoenix.PubSub.PG2, adapter_name}} = Registry.meta(@pubsub, :pubsub)
 adapter_name.broadcast(adapter_name, @topic, message)
 end

 def child_spec(opts) do
 %{
 id: __MODULE__,
 start: {__MODULE__, :start_link, [opts]},
 type: :supervisor
 }
 end

 # Wraps the local Hammer counter and the listener processes under a single supervisor.
 def start_link(opts) do
 children = [{Local, opts}, {Listener, pubsub: @pubsub, topic: @topic}]
 Supervisor.start_link(children, strategy: :one_for_one)
 end
end
To be covered:
	new nodes joining have empty counters
	net split recovery
	dns_cluster

Upgrading to Hammer V7

 Elixir and Erlang/OTP Compatibility

	Hammer v7 requires Elixir 1.14 and Erlang/OTP 25 at a minimum.
	We recommend using the latest Elixir and Erlang/OTP versions.

 Changes to your Project

	Update your mix.exs to depend on version 7.0.0 of Hammer.

def deps do
 [
 ...
 {:hammer, "~> 7.0.0"}
 ...
]
end

 Define a Rate Limiter

First, define a rate limiter module in your application. Use the Hammer module with your chosen backend and configure options as needed:
defmodule MyApp.RateLimit do
 use Hammer, backend: :ets
end
This would setup the rate limiter using the Hammer.ETS backend. See the Tutorial guide for more information on other backends.

 Update your Application Supervisor

	Pick up the value in your config file for cleanup_interval_ms.
	remove the config lines for Hammer as they are no longer needed in all of the config/*.exs files.
	In your application.ex file, add the following line to start the rate limiter:

def start(_type, _args) do

 children = [
 ...
 {MyApp.RateLimit, [clean_period: 60_000]}
 ...
]

 Supervisor.start_link(children, strategy: :one_for_one)
end

 Change to Backend Configuration

We have simplified the backend API. Hammer.inc/4 combines the functionality of Hammer.check_rate and Hammer.check_rate_inc now.
	Remapped all the Hammer.check_rate/3 and Hammer.check_rate/4 to Hammer.inc/4.
	Remapped all the Hammer.check_rate_inc/4 and Hammer.check_rate_inc/5 to Hammer.inc/4.
	for the Hammer.delete_buckets, you need to remove them as there no true replacement. You could potentially use Hammer.ETS.set/1 to reset specific key
	for the Hammer.make_rate_checker, you need to remove them as there no replacement.

 Changes to the Hammer.Plug

	The Hammer.Plug has been removed. Remove any references to it in your code.
	Migrate it by using regular Phoenix plugs in either a controller plug or an endpoint plug. See the Tutorial guide for some examples.

Hammer behaviour

Hammer is a rate-limiting library for Elixir.
It provides a simple way for creating rate limiters, and comes with a built-in ETS backend.
defmodule MyApp.RateLimit do
 use Hammer, backend: :ets
end

Start the rate limiter, in case of ETS it will create the ETS table and schedule cleanups
MyApp.RateLimit.start_link(clean_period: :timer.minutes(10))

Check the rate limit allowing 10 requests per second
MyApp.RateLimit.hit("some-key", _scale = :timer.seconds(1), _limit = 10)

 Summary

 Types

 Hammer.Atomic - hammer v7.0.0-rc.3

Hammer.Atomic

A rate limiter implementation using Erlang's :atomics module for atomic counters.
This provides fast, atomic counter operations without the overhead of ETS or process messaging.
Requires Erlang/OTP 21.2 or later.

 Summary

 Types

 Hammer.Atomic.FixWindow - hammer v7.0.0-rc.3

Hammer.Atomic.FixWindow

This module implements the Fix Window algorithm.
The fixed window algorithm works by dividing time into fixed intervals or "windows"
of a specified duration (scale). Each window tracks request counts independently.
For example, with a 60 second window:
	Window 1: 0-60 seconds
	Window 2: 60-120 seconds
	And so on...

The algorithm:
	When a request comes in, we:	Calculate which window it belongs to based on current time
	Increment the counter for that window
	Store expiration time as end of window

	To check if rate limit is exceeded:	If count <= limit: allow request
	If count > limit: deny and return time until window expires

	Old windows are automatically cleaned up after expiration

This provides simple rate limiting but has edge cases where a burst of requests
spanning a window boundary could allow up to 2x the limit in a short period.
For more precise limiting, consider using the sliding window algorithm instead.
The fixed window algorithm is a good choice when:
	You need simple, predictable rate limiting with clear time boundaries
	The exact precision of the rate limit is not critical
	You want efficient implementation with minimal storage overhead
	Your use case can tolerate potential bursts at window boundaries

Common use cases include:
	Basic API rate limiting where occasional bursts are acceptable
	Protecting backend services from excessive load
	Implementing fair usage policies
	Scenarios where clear time-based quotas are desired (e.g. "100 requests per minute")

The main tradeoff is that requests near window boundaries can allow up to 2x the
intended limit in a short period. For example with a limit of 100 per minute:
	100 requests at 11:59:59
	Another 100 requests at 12:00:01

This results in 200 requests in 2 seconds, while still being within limits.
If this behavior is problematic, consider using the sliding window algorithm instead.
The fixed window algorithm supports the following options:
	:clean_period - How often to run the cleanup process (in milliseconds)
Defaults to 1 minute. The cleanup process removes expired window entries.

Example configuration:
MyApp.RateLimit.start_link(
 clean_period: :timer.minutes(5),
)
This would run cleanup every 5 minutes and clean up old windows.

 Summary

 Functions

 Hammer.Atomic.LeakyBucket - hammer v7.0.0-rc.3

Hammer.Atomic.LeakyBucket

This module implements the Leaky Bucket algorithm.
The leaky bucket algorithm works by modeling a bucket that:
	Fills up with requests at the input rate
	"Leaks" requests at a constant rate
	Has a maximum capacity (the bucket size)

For example, with a leak rate of 10 requests/second and bucket size of 100:
	Requests add to the bucket's current level
	The bucket leaks 10 requests per second steadily
	If bucket reaches capacity (100), new requests are denied
	Once bucket level drops, new requests are allowed again

The algorithm:
	When a request comes in, we:	Calculate how much has leaked since last request
	Subtract leaked amount from current bucket level
	Try to add new request to bucket
	Store new bucket level and timestamp

	To check if rate limit is exceeded:	If new bucket level <= capacity: allow request
	If new bucket level > capacity: deny and return time until enough leaks

	Old entries are automatically cleaned up after expiration

This provides smooth rate limiting with ability to handle bursts up to bucket size.
The leaky bucket is a good choice when:
	You need to enforce a constant processing rate
	Want to allow temporary bursts within bucket capacity
	Need to smooth out traffic spikes
	Want to prevent resource exhaustion

Common use cases include:
	API rate limiting needing consistent throughput
	Network traffic shaping
	Service protection from sudden load spikes
	Queue processing rate control
	Scenarios needing both burst tolerance and steady-state limits

The main advantages are:
	Smooth, predictable output rate
	Configurable burst tolerance
	Natural queueing behavior

The tradeoffs are:
	More complex implementation than fixed windows
	Need to track last request time and current bucket level
	May need tuning of bucket size and leak rate parameters

For example, with 100 requests/sec limit and 500 bucket size:
	Can handle bursts of up to 500 requests
	But long-term average rate won't exceed 100/sec
	Provides smoother traffic than fixed windows

The leaky bucket algorithm supports the following options:
	:clean_period - How often to run the cleanup process (in milliseconds)
Defaults to 1 minute. The cleanup process removes expired bucket entries.

	:key_older_than - Optional maximum age for bucket entries (in milliseconds)
If set, entries older than this will be removed during cleanup.
This helps prevent memory growth from abandoned buckets.

Example configuration:
MyApp.RateLimit.start_link(
 clean_period: :timer.minutes(5),
 key_older_than: :timer.hours(24)
)
This would run cleanup every 5 minutes and remove buckets not used in 24 hours.

 Summary

 Functions

 Hammer.Atomic.TokenBucket - hammer v7.0.0-rc.3

Hammer.Atomic.TokenBucket

This module implements the Token Bucket algorithm.
The token bucket algorithm works by modeling a bucket that:
	Fills with tokens at a constant rate (the refill rate)
	Has a maximum capacity of tokens (the bucket size)
	Each request consumes one or more tokens
	If there are enough tokens, the request is allowed
	If not enough tokens, the request is denied

For example, with a refill rate of 10 tokens/second and bucket size of 100:
	Tokens are added at 10 per second up to max of 100
	Each request needs tokens to proceed
	If bucket has enough tokens, request allowed and tokens consumed
	If not enough tokens, request denied until bucket refills

The algorithm:
	When a request comes in, we:	Calculate tokens added since last request based on time elapsed
	Add new tokens to bucket (up to max capacity)
	Try to consume tokens for the request
	Store new token count and timestamp

	To check if rate limit is exceeded:	If enough tokens: allow request and consume tokens
	If not enough: deny and return time until enough tokens refill

	Old entries are automatically cleaned up after expiration

This provides smooth rate limiting with ability to handle bursts up to bucket size.
The token bucket is a good choice when:
	You need to allow temporary bursts of traffic
	Want to enforce an average rate limit
	Need to support different costs for different operations
	Want to avoid the sharp edges of fixed windows

Common use cases include:
	API rate limiting with burst tolerance
	Network traffic shaping
	Resource allocation control
	Gaming systems with "energy" mechanics
	Scenarios needing flexible rate limits

The main advantages are:
	Natural handling of bursts
	Flexible token costs for different operations
	Smooth rate limiting behavior
	Simple to reason about

The tradeoffs are:
	Need to track token count and last update time
	May need tuning of bucket size and refill rate
	More complex than fixed windows

For example with 100 tokens/minute limit and 500 bucket size:
	Can handle bursts using saved up tokens
	Automatically smooths out over time
	Different operations can cost different amounts
	More flexible than fixed request counts

The token bucket algorithm supports the following options:
	:clean_period - How often to run the cleanup process (in milliseconds)
Defaults to 1 minute. The cleanup process removes expired bucket entries.

	:key_older_than - Optional maximum age for bucket entries (in milliseconds)
If set, entries older than this will be removed during cleanup.
This helps prevent memory growth from abandoned buckets.

Example configuration:
MyApp.RateLimit.start_link(
 clean_period: :timer.minutes(5),
 key_older_than: :timer.hours(24)
)
This would run cleanup every 5 minutes and remove buckets not used in 24 hours.

 Summary

 Functions

 Hammer.ETS - hammer v7.0.0-rc.3

Hammer.ETS

An ETS backend for Hammer.
To use the ETS backend, you need to start the process that creates and cleans the ETS table. The table is named after the module.
defmodule MyApp.RateLimit do
 use Hammer, backend: :ets
end

MyApp.RateLimit.start_link(clean_period: :timer.minutes(1))
Runtime configuration:
	:clean_period - (in milliseconds) period to clean up expired entries, defaults to 1 minute
	:key_older_than - (in milliseconds) maximum age for entries before they are cleaned up, defaults to 1 hour
	:algorithm - the rate limiting algorithm to use, one of: :fix_window, :sliding_window, :leaky_bucket, :token_bucket. Defaults to :fix_window

 Summary

 Types

 Hammer.ETS.FixWindow - hammer v7.0.0-rc.3

Hammer.ETS.FixWindow

This module implements the Fix Window algorithm.
The fixed window algorithm works by dividing time into fixed intervals or "windows"
of a specified duration (scale). Each window tracks request counts independently.
For example, with a 60 second window:
	Window 1: 0-60 seconds
	Window 2: 60-120 seconds
	And so on...

The algorithm:
	When a request comes in, we:	Calculate which window it belongs to based on current time
	Increment the counter for that window
	Store expiration time as end of window

	To check if rate limit is exceeded:	If count <= limit: allow request
	If count > limit: deny and return time until window expires

	Old windows are automatically cleaned up after expiration

This provides simple rate limiting but has edge cases where a burst of requests
spanning a window boundary could allow up to 2x the limit in a short period.
For more precise limiting, consider using the sliding window algorithm instead.
The fixed window algorithm is a good choice when:
	You need simple, predictable rate limiting with clear time boundaries
	The exact precision of the rate limit is not critical
	You want efficient implementation with minimal storage overhead
	Your use case can tolerate potential bursts at window boundaries

Common use cases include:
	Basic API rate limiting where occasional bursts are acceptable
	Protecting backend services from excessive load
	Implementing fair usage policies
	Scenarios where clear time-based quotas are desired (e.g. "100 requests per minute")

The main tradeoff is that requests near window boundaries can allow up to 2x the
intended limit in a short period. For example with a limit of 100 per minute:
	100 requests at 11:59:59
	Another 100 requests at 12:00:01

This results in 200 requests in 2 seconds, while still being within limits.
If this behavior is problematic, consider using the sliding window algorithm instead.
The fixed window algorithm supports the following options:
	:clean_period - How often to run the cleanup process (in milliseconds)
Defaults to 1 minute. The cleanup process removes expired window entries.

Example configuration:
MyApp.RateLimit.start_link(
 clean_period: :timer.minutes(5),
)
This would run cleanup every 5 minutes and clean up old windows.

 Summary

 Functions

 Hammer.ETS.LeakyBucket - hammer v7.0.0-rc.3

Hammer.ETS.LeakyBucket

This module implements the Leaky Bucket algorithm.
The leaky bucket algorithm works by modeling a bucket that:
	Fills up with requests at the input rate
	"Leaks" requests at a constant rate
	Has a maximum capacity (the bucket size)

For example, with a leak rate of 10 requests/second and bucket size of 100:
	Requests add to the bucket's current level
	The bucket leaks 10 requests per second steadily
	If bucket reaches capacity (100), new requests are denied
	Once bucket level drops, new requests are allowed again

The algorithm:
	When a request comes in, we:	Calculate how much has leaked since last request
	Subtract leaked amount from current bucket level
	Try to add new request to bucket
	Store new bucket level and timestamp

	To check if rate limit is exceeded:	If new bucket level <= capacity: allow request
	If new bucket level > capacity: deny and return time until enough leaks

	Old entries are automatically cleaned up after expiration

This provides smooth rate limiting with ability to handle bursts up to bucket size.
The leaky bucket is a good choice when:
	You need to enforce a constant processing rate
	Want to allow temporary bursts within bucket capacity
	Need to smooth out traffic spikes
	Want to prevent resource exhaustion

Common use cases include:
	API rate limiting needing consistent throughput
	Network traffic shaping
	Service protection from sudden load spikes
	Queue processing rate control
	Scenarios needing both burst tolerance and steady-state limits

The main advantages are:
	Smooth, predictable output rate
	Configurable burst tolerance
	Natural queueing behavior

The tradeoffs are:
	More complex implementation than fixed windows
	Need to track last request time and current bucket level
	May need tuning of bucket size and leak rate parameters

For example, with 100 requests/sec limit and 500 bucket size:
	Can handle bursts of up to 500 requests
	But long-term average rate won't exceed 100/sec
	Provides smoother traffic than fixed windows

The leaky bucket algorithm supports the following options:
	:clean_period - How often to run the cleanup process (in milliseconds)
Defaults to 1 minute. The cleanup process removes expired bucket entries.

	:key_older_than - Optional maximum age for bucket entries (in milliseconds)
If set, entries older than this will be removed during cleanup.
This helps prevent memory growth from abandoned buckets.

Example configuration:
MyApp.RateLimit.start_link(
 clean_period: :timer.minutes(5),
 key_older_than: :timer.hours(24)
)
This would run cleanup every 5 minutes and remove buckets not used in 24 hours.

 Summary

 Functions

 Hammer.ETS.SlidingWindow - hammer v7.0.0-rc.3

Hammer.ETS.SlidingWindow

This module implements the Rate Limiting Sliding Window algorithm.
The sliding window algorithm works by tracking requests within a moving time window.
Unlike a fixed window that resets at specific intervals, the sliding window
provides a smoother rate limiting experience by considering the most recent
window of time.
For example, with a 60 second window:
	At time t, we look back 60 seconds and count all requests in that period
	At time t+1, we look back 60 seconds from t+1, dropping any requests older than that
	This creates a "sliding" effect where the window gradually moves forward in time

The algorithm:
	When a request comes in, we store it with the current timestamp
	To check if rate limit is exceeded, we:	Count all requests within the last <scale> seconds
	If count <= limit: allow the request
	If count > limit: deny and return time until oldest request expires

	Old entries outside the window are automatically cleaned up

This provides more precise rate limiting compared to fixed windows, avoiding
the edge case where a burst of requests spans a fixed window boundary.
The sliding window algorithm is a good choice when:
	You need precise rate limiting without allowing bursts at window boundaries
	Accuracy of the rate limit is critical for your application
	You can accept slightly higher storage overhead compared to fixed windows
	You want to avoid sudden changes in allowed request rates

Common use cases include:
	API rate limiting where consistent request rates are important
	Financial transaction rate limiting
	User action throttling requiring precise control
	Gaming or real-time applications needing smooth rate control
	Security-sensitive rate limiting scenarios

The main advantages over fixed windows are:
	No possibility of 2x burst at window boundaries
	Smoother rate limiting behavior
	More predictable request patterns

The tradeoffs are:
	Slightly more complex implementation
	Higher storage requirements (need to store individual request timestamps)
	More computation required to check limits (need to count requests in window)

For example, with a limit of 100 requests per minute:
	Fixed window might allow 200 requests across a boundary (100 at 11:59, 100 at 12:00)
	Sliding window ensures no more than 100 requests in ANY 60 second period

The sliding window algorithm supports the following options:
	:clean_period - How often to run the cleanup process (in milliseconds)
Defaults to 1 minute. The cleanup process removes expired window entries.

Example configuration:
MyApp.RateLimit.start_link(
 clean_period: :timer.minutes(5),
)
This would run cleanup every 5 minutes and clean up old windows.

 Summary

 Functions

 Hammer.ETS.TokenBucket - hammer v7.0.0-rc.3

Hammer.ETS.TokenBucket

This module implements the Token Bucket algorithm.
The token bucket algorithm works by modeling a bucket that:
	Fills with tokens at a constant rate (the refill rate)
	Has a maximum capacity of tokens (the bucket size)
	Each request consumes one or more tokens
	If there are enough tokens, the request is allowed
	If not enough tokens, the request is denied

For example, with a refill rate of 10 tokens/second and bucket size of 100:
	Tokens are added at 10 per second up to max of 100
	Each request needs tokens to proceed
	If bucket has enough tokens, request allowed and tokens consumed
	If not enough tokens, request denied until bucket refills

The algorithm:
	When a request comes in, we:	Calculate tokens added since last request based on time elapsed
	Add new tokens to bucket (up to max capacity)
	Try to consume tokens for the request
	Store new token count and timestamp

	To check if rate limit is exceeded:	If enough tokens: allow request and consume tokens
	If not enough: deny and return time until enough tokens refill

	Old entries are automatically cleaned up after expiration

This provides smooth rate limiting with ability to handle bursts up to bucket size.
The token bucket is a good choice when:
	You need to allow temporary bursts of traffic
	Want to enforce an average rate limit
	Need to support different costs for different operations
	Want to avoid the sharp edges of fixed windows

Common use cases include:
	API rate limiting with burst tolerance
	Network traffic shaping
	Resource allocation control
	Gaming systems with "energy" mechanics
	Scenarios needing flexible rate limits

The main advantages are:
	Natural handling of bursts
	Flexible token costs for different operations
	Smooth rate limiting behavior
	Simple to reason about

The tradeoffs are:
	Need to track token count and last update time
	May need tuning of bucket size and refill rate
	More complex than fixed windows

For example with 100 tokens/minute limit and 500 bucket size:
	Can handle bursts using saved up tokens
	Automatically smooths out over time
	Different operations can cost different amounts
	More flexible than fixed request counts

The token bucket algorithm supports the following options:
	:clean_period - How often to run the cleanup process (in milliseconds)
Defaults to 1 minute. The cleanup process removes expired bucket entries.

	:key_older_than - Optional maximum age for bucket entries (in milliseconds)
If set, entries older than this will be removed during cleanup.
This helps prevent memory growth from abandoned buckets.

Example configuration:
MyApp.RateLimit.start_link(
 clean_period: :timer.minutes(5),
 key_older_than: :timer.hours(24)
)
This would run cleanup every 5 minutes and remove buckets not used in 24 hours.

 Summary

 Functions

 OEBPS/assets/horizontal.png
i
Rammer

OEBPS/dist/epub-CB7BJMUW.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(l);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(l,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisa