

 hammer

 v6.2.1

 Table of contents

 	Changelog

 	Readme

 	Overview

 	Tutorial

 	Creating Backends

 	Modules

 	Hammer

 	Hammer.Application

 	Hammer.Backend

 	Hammer.Backend.ETS

 	Hammer.Supervisor

Changelog

 Unreleased

 6.2.1 - 2024-02-23

	Fix issue in OTP 26 and Elixir 1.15 by not using to_existing_atom in configuration

 Changed

 6.2.0 - 2024-01-31

	Ensure Elixir version is ~> 1.13 https://github.com/ExHammer/hammer/pull/79.

 6.1.0 - 2022-06-13

 Changed

	Updgrade dependency packages
	Merged https://github.com/ExHammer/hammer/pull/41 resulting in ETC without GenServer (and therefore better performance)
	Merged https://github.com/ExHammer/hammer/pull/46 remove additional whitespace
	Updated Docs based on https://github.com/ExHammer/hammer/pull/45
	Adds CREDITS.md

 6.0.0 - 2018-10-12

 Changed

	Change the ETS backend to throw an error if either expiry_ms or
cleanup_interval_ms config values are missing. This should have been fixed
ages ago.
	Default :pool_max_overflow changed to 0. It's a better default, given
that some users have seen weird errors when using a higher overflow.
In general, capacity should be increased by using a higher :pool_size instead
	Changed how the ETS backend does cleanups of data, should be more performant.

 5.0.0 - 2018-05-18

 Added

	A new check_rate_inc function, which allows the caller to specify the
integer with which to increment the bucket by. This is useful for limiting
APIs which have some notion of "cost" per call.

 4.0.0 - 2018-04-23

 Changed

	Use a worker-pool for the backend (via poolboy),
this avoids bottle-necking all traffic through a single hammer
process, thus improving throughput for the system overall

 Added

	New configuration options for backends:	:pool_size, determines the number of workers in the pool (default 4)
	:pool_max_overflow, maximum extra workers to be spawned when the
system is under pressure (default 4)

	Multiple instances of the same backend! You can now have two ETS backends,
fifteen Redis's, whatever you want

 3.0.0 - 2018-02-20

 Changed

	Require elixir >= 1.6
	Use a more sane supervision tree structure

 2.1.0 2017-11-25

 Changed

	Add option to use more than one backend
	Add option to suppress all logging

 2.0.0 - 2017-09-24

 Changed

	New, simpler API	No longer need to start backend processes manually
	Call Hammer.check_rate directly, rather than useing a macro

	Hammer is now an OTP application, configured via Mix.Config

 1.0.0 - 2017-08-22

 Added

	Formalise backend API in Hammer.Backend behaviour

 0.2.1 - 2017-08-10

 Changed

	Minor fixes

Readme

[image: hammer]Hammer
[image: Build Status] [image: Hex.pm] [image: Documentation]
[image: Total Download]
[image: License]
A rate-limiter for Elixir, with pluggable storage backends.

 Hammer-Plug

We have a helper-library to make adding rate-limiting to your Phoenix
(or other plug-based) application even easier: Hammer.Plug.

 Installation

Hammer is available in Hex, the package can be installed
by adding :hammer to your list of dependencies in mix.exs:
def deps do
 [
 {:hammer, "~> 6.1"}
]
end

 Documentation

On HexDocs: https://hexdocs.pm/hammer/frontpage.html
The Tutorial is an especially good place to start.

 Usage

Example:
defmodule MyApp.VideoUpload do

 def upload(video_data, user_id) do
 case Hammer.check_rate("upload_video:#{user_id}", 60_000, 5) do
 {:allow, _count} ->
 # upload the video, somehow
 {:deny, _limit} ->
 # deny the request
 end
 end

end
The Hammer module provides the following functions:
	check_rate(id, scale_ms, limit)
	check_rate_inc(id, scale_ms, limit, increment)
	inspect_bucket(id, scale_ms, limit)
	delete_buckets(id)

Backends are configured via Mix.Config:
config :hammer,
 backend: {Hammer.Backend.ETS, [expiry_ms: 60_000 * 60 * 4,
 cleanup_interval_ms: 60_000 * 10]}
See the Tutorial for more.
See the Hammer Testbed app for an example of
using Hammer in a Phoenix application.

 Available Backends

	Hammer.Backend.ETS (provided with Hammer for testing and dev purposes, not very good for production use)
	Hammer.Backend.Redis
	Hammer.Backend.Mnesia (beta)

 Getting Help

If you're having trouble, either open an issue on this repo

 Acknowledgements

Hammer was inspired by the ExRated library, by grempe.

 License

Copyright (c) 2023 June Kelly
This library is MIT licensed. See the LICENSE for details.

Hammer, a Rate-Limiter for Elixir

Hammer is a rate-limiter for the Elixir language.
It's killer feature is a pluggable backend system, allowing you to use whichever
storage suits your needs. Currently, backends for ETS,
Redis, and Mnesia are available.
 case Hammer.check_rate("file_upload:#{user_id}", 60_000, 10) do
 {:allow, _count} ->
 Upload.file(data)
 {:deny, _limit} ->
 render_error_page()
 end
To get started with Hammer, read the Tutorial.
See the Hammer.Application module for full
documentation of configuration options.
A primary goal of the Hammer project is to make it easy to implement new storage
backends. See the documentation on creating
backends for more details.

 New! Hammer-Plug

We've just released a new helper-library to make adding rate-limiting to your Phoenix
(or other plug-based) application even easier: Hammer.Plug.

Tutorial

 Installation

Add Hammer as a dependency in mix.exs:
def deps do
 [{:hammer, "~> 6.0"}]
end

 Core Concepts

When we want to rate-limit some action, we want to ensure that the number of
actions permitted is limited within a specified time-period. For example, a
maximum of five times within on minute. Usually the limit is enforced per-user,
per-client, or per some other unique-ish value, such as IP address. It's much
rarer, but not unheard-of, to limit the action globally without taking the
identity of the user or client into account.
In the Hammer API, the maximum number of actions is the limit, and the
timespan (in milliseconds) is the scale_ms. The combination of the name of the
action with some unique identifier is the id.
Hammer uses a Token Bucket
algorithm to count the number of actions occurring in a "bucket". If the count
within the bucket is lower than the limit, then the action is allowed, otherwise
it is denied.

 Usage

To use Hammer, you need to do two things:
	Configure the :hammer application
	Use the functions in the Hammer module

In this example, we will use the ETS backend, which stores data in an
in-memory ETS table.

 Configuring Hammer

The Hammer OTP application is configured the usual way, using Mix.Config.
Your project probably has a config/config.exs file, in which you should
configure Hammer, like so:
config :hammer,
 backend: {Hammer.Backend.ETS,
 [expiry_ms: 60_000 * 60 * 4,
 cleanup_interval_ms: 60_000 * 10]}
The only configuration key (so far) is :backend, and its value is a tuple/pair
of the backend module name, and a backend-specific keyword list of configuration
options.
Because expiry of stale buckets is so essential to the smooth operation of a
rate-limiter, all backends will accept an :expiry_ms option, and many will
also accept :cleanup_interval_ms, depending on how expiry is implemented
internally.
(For example, Redis supports native data expiry, and so doesn't require
:cleanup_interval_ms.)
The :expiry_ms value should be configured to be longer than the life of the
longest bucket you will be using, as otherwise the bucket could be deleted while
it is still counting up hits for its time period.
The size of the backend worker pool can be tweaked with the :pool_size and
:pool_max_overflow options, (which are then supplied to poolboy). :pool_size
determines the size of the pool, and :pool_max_overflow determines how many extra
workers can be spawned when the system is under pressure. The default for both is 0,
which will be fine for most systems. (Note: we've seen some weird errors sometimes when using a :pool_max_overflow higher than zero. Always check how this works for you in production, and consider setting a higher :pool_size instead).
Luckily, even if you don't configure :hammer at all, the application will
default to the ETS backend anyway, with some sensible defaults.

 The Hammer Module

Once the Hammer application is running (and it should just start automatically
when your system starts), All you need to do is use the various functions in the
Hammer module:
	check_rate(id::string, scale_ms::integer, limit::integer)
	check_rate_inc(id::string, scale_ms::integer, limit::integer, increment::integer)
	inspect_bucket(id::string, scale_ms::integer, limit::integer)
	delete_buckets(id::string)
	make_rate_checker(id_prefix, scale_ms, limit)

The most interesting is check_rate, which checks if the rate-limit for the
given id has been exceeded in the specified time-scale.
Ideally, the id should be a combination of some action-specific, descriptive
prefix with some data which uniquely identifies the user or client performing
the action.
Example:
limit file uploads to 10 per minute per user
user_id = get_user_id_somehow()
case Hammer.check_rate("upload_file:#{user_id}", 60_000, 10) do
 {:allow, _count} ->
 # upload the file
 {:deny, _limit} ->
 # deny the request
end

 Custom increments

The Hammer module also includes a check_rate_inc function, which allows you
to specify the number by which to increment the current bucket. This is useful
for rate-limiting APIs which have some idea of "cost", where the cost of a given
operation can be determined and expressed as an integer.
Example:
Bulk file upload
user_id = get_user_id_somehow()
n = get_number_of_files()
case Hammer.check_rate_inc("upload_file_bulk:#{user_id}", 60_000, 10, n) do
 {:allow, _count} ->
 # upload all of the files
 {:deny, _limit} ->
 # deny the request
end

 Switching to Redis

There may come a time when ETS just doesn't cut it, for example if we end up
load-balancing across many nodes and want to keep our rate-limiter state in one
central store. Redis is ideal for this use-case, and
fortunately Hammer supports
a Redis backend.
To change our application to use the Redis backend, we only need to install the
redis backend package, and change the :backend tuple that is used to configure
the :hammer application:
config :hammer,
backend: {Hammer.Backend.ETS, []}

config :hammer,
 backend: {Hammer.Backend.Redis, [expiry_ms: 60_000 * 60 * 2,
 redix_config: [host: "localhost",
 port: 6379],
 pool_size: 4,
 pool_max_overflow: 2]}
Then it should all Just Work™.

 (Advanced) using multiple backends at the same time

Hammer can be configured to start multiple backends, which can then be referred
to separately when checking a rate-limit. In this example we configure both and
ETS backend under the key :in_memory, and a Redis backend under the key
:redis...

config :hammer,
 backend: [
 in_memory: {Hammer.Backend.ETS, [expiry_ms: 60_000 * 60 * 2]},
 redis: {Hammer.Backend.Redis, [expiry_ms: 60_000 * 60 * 2,
 redix_config: [host: "localhost",
 port: 6379]]}
]
We can then refer to these backends separately:
Hammer.check_rate(:in_memory, "upload:#{user_id}", 60_000, 5)
Hammer.check_rate(:redis, "upload:#{user_id}", 60_000, 5)
When using multiple backends the backend specifier key is mandatory, there is no
notion of a default backend.
In version 4.0 and up, it is even possible to have multiple instances of the same
backend type, like so:
config :hammer,
 backend: [
 redis_one: {Hammer.Backend.Redis, [expiry_ms: 60_000 * 60 * 2,
 redix_config: [host: "localhost",
 port: 6666]]}
 redis_two: {Hammer.Backend.Redis, [expiry_ms: 60_000 * 60 * 5,
 redix_config: [host: "localhost",
 port: 7777]]}
]

 Further Reading

See the docs for the Hammer module for full documentation
on all the functions created by use Hammer.
See the Hammer.Application for all
configuration options.
Also, consult the documentation for the backend you are using, for any extra
configuration options that may be relevant.
See the Creating Backends for information on
creating new backends for Hammer.

Creating Backends

See Hammer.Backend.ETS for a realistic example of a Hammer Backend module.
Backends for Hammer are expected to implement the
Hammer.Backend behaviour, and be named something
like Hammer.Backend.Foo. Several instances of the backend worker will be
started as a worker pool (using the poolboy library), and so backend processes
should not assume that there is only one instance of this server process.

 The Hammer.Backend behaviour

The expected backend api is as follows:

 start_link(args)

	args: Keyword list of configuration.

The expiry_ms key is considered essential, as the backend process should
delete expired buckets somehow. Depending on how the backend implements cleanup,
the cleanup_interval_ms key may be required. Other keys are for the backend
developer to choose, but for example, if the backend were using a database
called FooDB to store buckets, then an appropriate key would be
foodb_config.
Example:
 Hammer.Backend.Foo.start_link(expiry_ms: 60_000 * 60,
 cleanup_interval_ms: 60_000 * 10,
 foodb_config: [host: "localhost"])

 count_hit(pid, key, timestamp)

	pid: pid of the backend process being called
	key: The key of the current bucket, in the form of a tuple {bucket::integer, id::String}.
	timestamp: The current timestamp (integer)

This function should increment the count in the bucket by 1.
Returns: Either a Tuple of {:ok, count} where count is the current count of the bucket,
or {:error, reason}.

 count_hit(pid, key, timestamp, increment)

	pid: pid of the backend process being called
	key: The key of the current bucket, in the form of a tuple {bucket::integer, id::String}.
	timestamp: The current timestamp (integer)
	increment: The number by which to increment the bucket

This function should increment the count in the bucket by the specified increment.
Returns: Either a Tuple of {:ok, count} where count is the current count of the bucket,
or {:error, reason}.

 get_bucket(pid, key)

	pid: pid of the backend process being called
	key: The key of the current bucket, in the form of a tuple {bucket::integer, id::String}.

Returns: Either a tuple of {:ok, bucket}, where bucket is a tuple of
{key, count, created_at, updated_at}, key is, as usual, a tuple of {bucket_number, id},
count is the count of hits in the bucket, created_at and updated_at are integer timestamps,
or {:error, reason}

 delete_buckets(pid, id)

	pid: pid of the backend process being called
	id: rate-limit id (string) to delete

This should delete all existing buckets associated with the supplied id.
Returns: Either {:ok, count}, or {:error, reason}

Hammer

Documentation for Hammer module.
This is the main API for the Hammer rate-limiter. This module assumes a
backend pool has been started, most likely by the Hammer application.

 Summary

 Functions

 check_rate(id, scale_ms, limit)

 Check if the action you wish to perform is within the bounds of the rate-limit.

 check_rate(backend, id, scale_ms, limit)

 Same as check_rate/3, but allows specifying a backend.

 check_rate_inc(id, scale_ms, limit, increment)

 Same as check_rate/3, but allows the increment number to be specified.
This is useful for limiting apis which have some idea of 'cost', where the cost
of each hit can be specified.

 check_rate_inc(backend, id, scale_ms, limit, increment)

 Same as check_rate_inc/4, but allows specifying a backend.

 delete_buckets(id)

 Delete all buckets belonging to the provided id, including the current one.
Effectively resets the rate-limit for the id.

 delete_buckets(backend, id)

 Same as delete_buckets/1, but allows specifying a backend

 inspect_bucket(id, scale_ms, limit)

 Inspect bucket to get count, count_remaining, ms_to_next_bucket, created_at,
updated_at. This function is free of side-effects and should be called with
the same arguments you would use for check_rate if you intended to increment
and check the bucket counter.

 inspect_bucket(backend, id, scale_ms, limit)

 Same as inspect_bucket/3, but allows specifying a backend

 make_rate_checker(id_prefix, scale_ms, limit)

 Make a rate-checker function, with the given id prefix, scale_ms and limit.

 make_rate_checker(backend, id_prefix, scale_ms, limit)

 Functions

 Link to this function

 check_rate(id, scale_ms, limit)

 View Source

 @spec check_rate(id :: String.t(), scale_ms :: integer(), limit :: integer()) ::
 {:allow, count :: integer()}
 | {:deny, limit :: integer()}
 | {:error, reason :: any()}

Check if the action you wish to perform is within the bounds of the rate-limit.
Args:
	id: String name of the bucket. Usually the bucket name is comprised of
some fixed prefix, with some dynamic string appended, such as an IP address or
user id.
	scale_ms: Integer indicating size of bucket in milliseconds
	limit: Integer maximum count of actions within the bucket

Returns either {:allow, count}, {:deny, limit} or {:error, reason}
Example:
user_id = 42076
case check_rate("file_upload:#{user_id}", 60_000, 5) do
 {:allow, _count} ->
 # do the file upload
 {:deny, _limit} ->
 # render an error page or something
end

 Link to this function

 check_rate(backend, id, scale_ms, limit)

 View Source

 @spec check_rate(
 backend :: atom(),
 id :: String.t(),
 scale_ms :: integer(),
 limit :: integer()
) ::
 {:allow, count :: integer()}
 | {:deny, limit :: integer()}
 | {:error, reason :: any()}

Same as check_rate/3, but allows specifying a backend.

 Link to this function

 check_rate_inc(id, scale_ms, limit, increment)

 View Source

 @spec check_rate_inc(
 id :: String.t(),
 scale_ms :: integer(),
 limit :: integer(),
 increment :: integer()
) ::
 {:allow, count :: integer()}
 | {:deny, limit :: integer()}
 | {:error, reason :: any()}

Same as check_rate/3, but allows the increment number to be specified.
This is useful for limiting apis which have some idea of 'cost', where the cost
of each hit can be specified.

 Link to this function

 check_rate_inc(backend, id, scale_ms, limit, increment)

 View Source

 @spec check_rate_inc(
 backend :: atom(),
 id :: String.t(),
 scale_ms :: integer(),
 limit :: integer(),
 increment :: integer()
) ::
 {:allow, count :: integer()}
 | {:deny, limit :: integer()}
 | {:error, reason :: any()}

Same as check_rate_inc/4, but allows specifying a backend.

 Link to this function

 delete_buckets(id)

 View Source

 @spec delete_buckets(id :: String.t()) ::
 {:ok, count :: integer()} | {:error, reason :: any()}

Delete all buckets belonging to the provided id, including the current one.
Effectively resets the rate-limit for the id.
Arguments:
	id: String name of the bucket

Returns either {:ok, count} where count is the number of buckets deleted,
or {:error, reason}.
Example:
user_id = 2406
{:ok, _count} = delete_buckets("file_uploads:#{user_id}")

 Link to this function

 delete_buckets(backend, id)

 View Source

 @spec delete_buckets(backend :: atom(), id :: String.t()) ::
 {:ok, count :: integer()} | {:error, reason :: any()}

Same as delete_buckets/1, but allows specifying a backend

 Link to this function

 inspect_bucket(id, scale_ms, limit)

 View Source

 @spec inspect_bucket(id :: String.t(), scale_ms :: integer(), limit :: integer()) ::
 {:ok,
 {count :: integer(), count_remaining :: integer(),
 ms_to_next_bucket :: integer(), created_at :: integer() | nil,
 updated_at :: integer() | nil}}
 | {:error, reason :: any()}

Inspect bucket to get count, count_remaining, ms_to_next_bucket, created_at,
updated_at. This function is free of side-effects and should be called with
the same arguments you would use for check_rate if you intended to increment
and check the bucket counter.
Arguments:
	id: String name of the bucket. Usually the bucket name is comprised of
some fixed prefix,with some dynamic string appended, such as an IP address
or user id.
	scale_ms: Integer indicating size of bucket in milliseconds
	limit: Integer maximum count of actions within the bucket

Returns either
{:ok, {count, count_remaining, ms_to_next_bucket, created_at, updated_at},
or {:error, reason}.
Example:
inspect_bucket("file_upload:2042", 60_000, 5)
{:ok, {1, 2499, 29381612, 1450281014468, 1450281014468}}

 Link to this function

 inspect_bucket(backend, id, scale_ms, limit)

 View Source

 @spec inspect_bucket(
 backend :: atom(),
 id :: String.t(),
 scale_ms :: integer(),
 limit :: integer()
) ::
 {:ok,
 {count :: integer(), count_remaining :: integer(),
 ms_to_next_bucket :: integer(), created_at :: integer() | nil,
 updated_at :: integer() | nil}}
 | {:error, reason :: any()}

Same as inspect_bucket/3, but allows specifying a backend

 Link to this function

 make_rate_checker(id_prefix, scale_ms, limit)

 View Source

 @spec make_rate_checker(
 id_prefix :: String.t(),
 scale_ms :: integer(),
 limit :: integer()
) ::
 (id :: String.t() ->
 {:allow, count :: integer()}
 | {:deny, limit :: integer()}
 | {:error, reason :: any()})

Make a rate-checker function, with the given id prefix, scale_ms and limit.
Arguments:
	id_prefix: String prefix to the id
	scale_ms: Integer indicating size of bucket in milliseconds
	limit: Integer maximum count of actions within the bucket

Returns a function which accepts an id suffix, which will be combined with
the id_prefix. Calling this returned function is equivalent to:
Hammer.check_rate("#{id_prefix}#{id}", scale_ms, limit)
Example:
chat_rate_limiter = make_rate_checker("send_chat_message:", 60_000, 20)
user_id = 203517
case chat_rate_limiter.(user_id) do
 {:allow, _count} ->
 # allow chat message
 {:deny, _limit} ->
 # deny
end

 Link to this function

 make_rate_checker(backend, id_prefix, scale_ms, limit)

 View Source

 @spec make_rate_checker(
 backend :: atom(),
 id_prefix :: String.t(),
 scale_ms :: integer(),
 limit :: integer()
) ::
 (id :: String.t() ->
 {:allow, count :: integer()}
 | {:deny, limit :: integer()}
 | {:error, reason :: any()})

Hammer.Application

Hammer application, responsible for starting the backend worker pools.
Configured with the :hammer environment key:
	:backend, Either a tuple of {module, config}, or a keyword-list
of separate, named backends. Examples:
{Hammer.Backend.ETS, []}, [ets: {Hammer.Backend.ETS, []}, ...]
	:suppress_logs, if set to true, stops all log messages from Hammer

 General Backend Options

Different backends take different options, but all will accept the following
options, and with the same effect:
	:expiry_ms (int): expiry time in milliseconds, after which a bucket will
be deleted. The exact mechanism for cleanup will vary by backend. This configuration
option is mandatory
	:pool_size (int): size of the backend worker pool (default=2)
	:pool_max_overflow int(): number of extra workers the pool is permitted
to spawn when under pressure. The worker pool (managed by the poolboy library)
will automatically create and destroy workers up to the max-overflow limit
(default=0)

Example of a single backend:
config :hammer,
 backend: {Hammer.Backend.ETS, [expiry_ms: 60_000 * 60 * 2]}
Example of config for multiple-backends:
config :hammer,
 backend: [
 ets: {
 Hammer.Backend.ETS,
 [
 ets_table_name: :hammer_backend_ets_buckets,
 expiry_ms: 60_000 * 60 * 2,
 cleanup_interval_ms: 60_000 * 2,
]
 },
 redis: {
 Hammer.Backend.Redis,
 [
 expiry_ms: 60_000 * 60 * 2,
 redix_config: [host: "localhost", port: 6379],
 pool_size: 4,
]
 }
]

 Summary

 Functions

 start(type, args)

 Callback implementation for Application.start/2.

 Functions

 Link to this function

 start(type, args)

 View Source

Callback implementation for Application.start/2.

Hammer.Backend behaviour

The backend Behaviour module.

 Summary

 Types

 bucket_info()

 bucket_key()

 Callbacks

 count_hit(pid, key, now)

 count_hit(pid, key, now, increment)

 delete_buckets(pid, id)

 get_bucket(pid, key)

 Types

 Link to this type

 bucket_info()

 View Source

 @type bucket_info() ::
 {key :: bucket_key(), count :: integer(), created :: integer(),
 updated :: integer()}

 Link to this type

 bucket_key()

 View Source

 @type bucket_key() :: {bucket :: integer(), id :: String.t()}

 Callbacks

 Link to this callback

 count_hit(pid, key, now)

 View Source

 @callback count_hit(
 pid :: pid(),
 key :: bucket_key(),
 now :: integer()
) :: {:ok, count :: integer()} | {:error, reason :: any()}

 Link to this callback

 count_hit(pid, key, now, increment)

 View Source

 @callback count_hit(
 pid :: pid(),
 key :: bucket_key(),
 now :: integer(),
 increment :: integer()
) :: {:ok, count :: integer()} | {:error, reason :: any()}

 Link to this callback

 delete_buckets(pid, id)

 View Source

 @callback delete_buckets(
 pid :: pid(),
 id :: String.t()
) :: {:ok, count_deleted :: integer()} | {:error, reason :: any()}

 Link to this callback

 get_bucket(pid, key)

 View Source

 @callback get_bucket(
 pid :: pid(),
 key :: bucket_key()
) :: {:ok, info :: bucket_info()} | {:ok, nil} | {:error, reason :: any()}

Hammer.Backend.ETS

An ETS backend for Hammer.
The public API of this module is used by Hammer to store information about
rate-limit 'buckets'. A bucket is identified by a key, which is a tuple
{bucket_number, id}. The essential schema of a bucket is:
{key, count, created_at, updated_at}, although backends are free to
store and retrieve this data in whichever way they wish.
Use start or start_link to start the server:
{:ok, pid} = Hammer.Backend.ETS.start_link(args)
args is a keyword list:
	expiry_ms: (integer) time in ms before a bucket is auto-deleted,
should be larger than the expected largest size/duration of a bucket
	cleanup_interval_ms: (integer) time between cleanup runs,
	ets_table_type: (atom) type of ETS table, defaults to :set, and can be
either :set or :ordered_set

Example:
Hammer.Backend.ETS.start_link(
 expiry_ms: 1000 * 60 * 60,
 cleanup_interval_ms: 1000 * 60 * 10
)

 Summary

 Types

 bucket_info()

 bucket_key()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 count_hit(pid, key, now)

 Record a hit in the bucket identified by key

 count_hit(pid, key, now, increment)

 Record a hit in the bucket identified by key, with a custom increment

 delete_buckets(pid, id)

 Delete all buckets associated with id.

 get_bucket(pid, key)

 Retrieve information about the bucket identified by key

 init(args)

 Callback implementation for GenServer.init/1.

 start()

 start(args)

 start_link()

 start_link(args)

 stop()

 Types

 Link to this type

 bucket_info()

 View Source

 @type bucket_info() ::
 {key :: bucket_key(), count :: integer(), created :: integer(),
 updated :: integer()}

 Link to this type

 bucket_key()

 View Source

 @type bucket_key() :: {bucket :: integer(), id :: String.t()}

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 count_hit(pid, key, now)

 View Source

 @spec count_hit(
 pid :: pid(),
 key :: bucket_key(),
 now :: integer()
) :: {:ok, count :: integer()} | {:error, reason :: any()}

Record a hit in the bucket identified by key

 Link to this function

 count_hit(pid, key, now, increment)

 View Source

 @spec count_hit(
 pid :: pid(),
 key :: bucket_key(),
 now :: integer(),
 increment :: integer()
) :: {:ok, count :: integer()} | {:error, reason :: any()}

Record a hit in the bucket identified by key, with a custom increment

 Link to this function

 delete_buckets(pid, id)

 View Source

 @spec delete_buckets(
 pid :: pid(),
 id :: String.t()
) :: {:ok, count_deleted :: integer()} | {:error, reason :: any()}

Delete all buckets associated with id.

 Link to this function

 get_bucket(pid, key)

 View Source

 @spec get_bucket(
 pid :: pid(),
 key :: bucket_key()
) :: {:ok, info :: bucket_info()} | {:ok, nil} | {:error, reason :: any()}

Retrieve information about the bucket identified by key

 Link to this function

 init(args)

 View Source

Callback implementation for GenServer.init/1.

 Link to this function

 start()

 View Source

 Link to this function

 start(args)

 View Source

 Link to this function

 start_link()

 View Source

 Link to this function

 start_link(args)

 View Source

 Link to this function

 stop()

 View Source

Hammer.Supervisor

Top-level Supervisor for the Hammer application.
Starts a set of poolboy pools based on provided configuration,
which are latter called to by the Hammer module.
See the Application module for configuration examples.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 init(config)

 Callback implementation for Supervisor.init/1.

 start_link(config, opts)

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 init(config)

 View Source

Callback implementation for Supervisor.init/1.

 Link to this function

 start_link(config, opts)

 View Source

 OEBPS/assets/horizontal.png
i
Rammer

OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

OEBPS/assets/logo.png

