

 Harness

 v0.8.3

 Table of contents

 	Harness

 	Changelog

 	Guides

 	Welcome

 	About Harness

 	Getting Started

 	Manifests

 	Modules

 	Harness

 	Harness.Manifest

 	Harness.Pkg

 	Harness.Renderer.Helpers

 	Harness.Tree

 	Mix Tasks

 	mix harness

 	mix harness.check

 	mix harness.clean

 	mix harness.compile

 	mix harness.get

 	mix harness.loadpaths

 	mix harness.update

Harness

[image: Actions CI]
A command line tool for harnessing Elixir boilerplate.
See the hex guides
for detail documentation.
Looking for an example package? harness_dotfiles
should serve as a minimal example to get you going.
Development
Interested in developing harness? Currently it's in a tight spot because it
doesn't have any test cases. Your best bet for blessing harness is to build
and install harness archives locally and use the local installation to harness
packages like harness_micro_controller.
mix archive.uninstall harness --force
MIX_ENV=prod mix archive.build
mix archive.install harness-0.0.0.ez --force
Installation
Harness is installed as an archive:
mix archive.install hex harness --force
Harness depends on elixir 1.9+. If you use asdf:
asdf install erlang 22.3
asdf install elixir 1.10.4-otp-22
asdf global erlang 22.3
asdf global elixir 1.10.4-otp-22
mix archive.install hex harness --force

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a
Changelog, and this project adheres to
Semantic Versioning.
0.8.3 - 2024-09-25
Fixed
	Makes sure all harness archive tasks are loaded and available to use

0.8.2 - 2024-03-18
Changed
	Updated actions/checkout@ from v3 to v4 in GH actions
	Updated actions/cache@ from v3 to v4 in GH actions
	Updated NFIBrokerage/create-release@ from v3 to v4 in GH actions

0.8.1 - 2023-08-24
Changed
	Updated actions/checkout@ from v1 to v3 in GH actions
	Updated actions/cache@ from v1 to v3 in GH actions
	Updated NFIBrokerage/create-release@ from v2 to v3 in GH actions
	Change release_name to name field in NFIBrokerage/create-release@v3
action in GH actions
	Fixed credo warnings

0.8.0 - 2023-08-09
Fixed
	This version fixes warnings and errors encountered when using harness with
Elixir 1.15	added harness archive ebin path to VM path list because Elixir 1.15
prunes code paths before compiling
	EEx.eval_string/3 is now used instead of EEx.eval_file/3 when
rendering templates with import of Harness.Renderer.Helpers functions
being appended to every template binary because passing :functions in
options is deprecated since Elixir 1.13

0.7.3 - 2023-04-05
Changed
	Updated hackney from 1.16 to 1.18.1
	Pinned ubuntu runner to ubuntu-20.04 in workflows because of OTP 22.3

0.7.2 - 2021-11-29
Fixed
	Fixed compatibility with older elixir versions

0.7.1 - 2021-11-29
Fixed
	Eliminated raise when harness packages were not yet compiled when calling mix harness

0.7.0 - 2021-11-26
Added
	Added a mix harness.loadpaths Mix Task that mirrors mix deps.loadpaths	this task loads, compiles, and checks harness packages to ensure that
they are up to date and can be installed

	Added --no-compile and --no-deps-check flags to mix harness task

0.6.2 - 2021-03-17
Fixed
	Trimmed strings in the inspect_or_interpolate/1 helper	this prevents formatting failures when a template does not expect a
newline and a manifest declares a value with triple-quotes

0.6.1 - 2021-03-08
Fixed
	Replaced usages of Keyword.pop!/2 with Keyword.pop/3	This fixes compilation on Elixir 1.9

0.6.0 - 2021-03-03
Added
	Added a mix harness.check task which checks that the harnessed files are
up to date

0.5.0 - 2021-02-24
Added
	Added support for hard linking to files in .harness
	Updated the Harness.Pkg behaviour to declare links with a tuple that
includes the link type :sym or :hard	e.g. {"mix.exs", :sym} or {".github/workflows/ci.yml", :hard}

0.4.0 - 2021-02-19
Added
	Added a config :harness, :version key which checks the version of harness
and ensures that a manifest is only rendered if the harness version matches

0.3.0 - 2021-02-17
Added
	Added a :skip_files key to the configuration of a manifest, allowing one
to provide a list of regex which will be checked against while sourcing files.
Any files found to match any of the regex will be excluded from generation.	this allows a service author to 'take the reins' for that file

0.2.9 - 2020-11-02
Fixed
	Fixed a broken link to the Getting Started guide from the About guide

0.2.8 - 2020-10-15
Added
	Added a mix harness.update task that mimics mix deps.update

0.2.7 - 2020-10-15
Fixed
	Misc. documentation fixes including:	a broken link to the Getting Started guide
	addition of GitHub and Changelog links to hex page
	default documentation page is set to the README

0.2.6 - 2020-10-12
Fixed
	Fixed a bug present when running mix harness.compile in Elixir 1.11+

0.2.5 - 2020-10-06
Changed
	Harness now explicitly depends on :eex as an extra_application	this resolves compilation warnings on elixir 1.11+

0.2.4 - 2020-10-05
Changed
	Generated files are now formatted to a column width of 80

0.2.3 - 2020-09-22
Changed
	Harness is now published to public hex

0.2.2 - 2020-08-30
Added
	Kernel functions are now imported for templates by default.	e.g. ==/2 or inspect/2

0.2.1 - 2020-08-27
Fixed
	Fixed a bug where multiple copies of the same directory would show if the
directory contained multiple files to be linked

0.2.0 - 2020-08-26
Changed
	Manifests are now written with the Config
API	therefore the manifest version has increased to v2.0.0

	As a result of the above, harness now requires at least Elixir 1.9 for
compatibility

0.1.2 - 2020-08-25
Added
	A function to interpolate or inspect items into a template

0.1.1 - 2020-08-25
Added
	Elixir LS files are now ignored from generation

0.1.0 - 2020-08-25
Added
	Improvements to display. First stable-ish release

0.0.1 - 2020-08-24
Added
	Vim swap files are now ignored from template directories

Fixed
	The harness project is reloaded after mix harness.compile when running mix harness	this fixes an issue where otp app atoms could not be determined on clean
harness runs, as in CI

Removed
	The Harness.Cache module has been removed	now harness caches packages by downloading them to the deps/ directory
	this behaviour mimics mix

0.0.0 - 2020-08-24
Added
	Initial dependency management and generation abilities

initial commit - 2020-08-19
Added
	This project was generated by Gaas

Welcome

Welcome to the harness documentation. As in the notorious Captain Underpants
novels, you may choose your own adventure:
	What is harness?
	Let's Get Started!

About Harness

There are many ways to describe harness. Harness:
	simplifies writing tiny isolated services by dynamically generating
unecessary boilerplate files
	makes it easy to version your practices
	lets you make a library out of anything!

But overall, harness is really about one thing: service chassis (plural).
Services Chassis
What's a service chassis? A service
chassis is a
collection of tooling that sets the bar for what makes one of your services one
of your services. For example, in our Elixir
shoppe, we have a service chassis that includes:
	asdf for language version management
	excoveralls for testing coverage
	credo for linting
	distillery for release building
	Appsignal for error reporting and metrics

And more (I can't give all our secrets away, can I? ;).
For these, we need a .tool-versions, a .credo.exs, a coveralls.json, a
rel/config.exs and rel/.formatter.exs, and configuration and
in-application-space code changes for Appsignal. Seems like a lot? Imagine all
the other configuration I'm not even mentioning like private tooling and
Dockerfiles!
If you have one service running your business, this isn't too big of a deal.
One times the aforementioned number of configuration files isn't too bad. It's
manageable. But what about if you have 10 services? 50? 100?
Enter static code generation tooling
If your organization employs a micro-service architecture and you've developed
more than 20 services, you have probably used a static code generation tool.
They're great! Plug in X Y and Z like the repository name, application name,
and secret key-base, and you can have a fresh phoenix app up and running in no
time!
In our organization, we have a centralized static code generation tool called
GaaS (Git as a Service). A LiveView front-end plus a DSL for easy templates
equals a very nice user experience for generating new code. GitHub
templates
are a free and ready-to-use alternative.
mix_generator is another good
tool for Elixir projects in specific.
We used static code generation tools alone for a long time with great effect.
Where static code generation tools fall short
So what's the big deal then if static code generation tools work so well? The
problem lies in how your organization adopts and alters practices over time.
Consider this scenario: in an app, you add a new way of doing something that
may be useful for all apps, like using the (shameless plug)
bless library for running the gambit on
your testing/linting suite. It's a great practice, so let's add it to all our
services! To do so, we first modify our mix.exs generator(s) to depend on
and/or configure bless. Then we can either run the updated generator(s) over
existing codebases or manually change those services. With 10 or so services
either way is fine, but over 20 or 50 or 100 services? Even small changes start
to hurt.
Enter Harness
Harness takes a different approach. Harness is more like a package manager
(think the mix+hex relationship or npm/yarn or cargo crates). Imagine if
you checked in all the node_modules/ stuff from npm? Gross. Like red wine
in a white carpet. Finding any specific file in that mess? Impossible. Changing
that directory across hundreds of repositories? Herculean.
Instead, the harness approach is to describe everything a static code
generation tool does with a manifest, and then never check in the generated
files.
Manifests
Manifests describe a plan. They don't detail the specifics like which
versions of dependencies we'll use exactly (think a mix.lock) but rather a
set of rules or guidelines to use to form a project.
For harness, this is the harness.exs.
Enough of the theory though, let's Get Started!

Getting Started

Let's get going!
First, you need a recent version of elixir (~> 1.9). Consider trying
asdf as a language version management
tool. Now install harness:
mix archive.install hex harness --force

Run mix help harness to verify installation.
Making a harness project
There are a few components that make up a harnessed repository.
Like a regular mix project, a harness project typically has:
	lib/ containing your application-space code
	test/ unit tests for application-space code in lib/
	config/ configuration

But none of these are requirements for harness. For a harness project, all you
really need is a harness manifest.
Once you have a manifest, a run of mix harness.get in that directory will
fetch harness packages (think dependencies), and then a run of mix harness
will render the project.
Example: a micro controller
Say that we have a tiny service in our stack called a micro (µ) controller.
It's a single phoenix controller (in reality, just a plug) that handles a
request and performs some action. Setting up a whole service chassis for a
service this small might be annoying, but with a well-groomed harness micro
controller package, it can be quite simple.
Say you have a git repo for a µ controller that looks like this:
$ tree -a -I '.git'
.
├── .github
│ ├── settings.yml
│ ├── stale.yml
│ └── workflows
│ └── ci.yml
├── .gitignore
├── README.md
├── config
│ ├── config.exs
│ ├── dev.exs
│ ├── prod.exs
│ └── test.exs
├── harness.exs
├── lib
│ ├── access_token_controller.ex
│ ├── access_token_fetcher.ex
│ └── access_token_verifier.ex
├── mix.lock
└── test
 ├── access_token_controller_test.exs
 └── support
 └── mocks.ex

6 directories, 16 files

In a directory with a harness-file (harness.exs), a run of mix harness will
generate a .harness/ directory containing generated boilerplate, with the
necessary symlinking and path adjusting to make the project run like a normal
phoenix project.
For example, the above repository would expand to something like:
$ mix harness
$ tree -a -I '.git|_build|deps|.elixir_ls|cover'
.
├── .credo.exs -> .harness/.credo.exs
├── .dockerignore -> .harness/.dockerignore
├── .formatter.exs -> .harness/.formatter.exs
├── .github
│ ├── settings.yml
│ ├── stale.yml
│ └── workflows
│ └── ci.yml
├── .gitignore
├── .harness
│ ├── .credo.exs
│ ├── .dockerignore
│ ├── .formatter.exs
│ ├── .tool-versions
│ ├── Dockerfile
│ ├── config
│ │ ├── config.exs
│ │ ├── dev.exs
│ │ ├── prod.exs
│ │ └── test.exs
│ ├── coveralls.json
│ ├── lib
│ │ ├── authentication_service_access_token_controller
│ │ │ └── application.ex
│ │ ├── authentication_service_access_token_controller_web
│ │ │ ├── channels
│ │ │ ├── controllers
│ │ │ │ └── version_controller.ex
│ │ │ ├── endpoint.ex
│ │ │ ├── gettext.ex
│ │ │ ├── router.ex
│ │ │ └── views
│ │ │ ├── error_helpers.ex
│ │ │ └── error_view.ex
│ │ └── authentication_service_access_token_controller_web.ex
│ ├── mix.exs
│ ├── rel
│ │ └── config.exs
│ └── test
│ ├── authentication_service_access_token_controller_web
│ │ ├── controllers
│ │ │ └── version_controller_test.exs
│ │ ├── live
│ │ └── views
│ │ └── error_view_test.exs
│ ├── support
│ │ ├── conn_case.ex
│ │ └── mock_release_handler.ex
│ └── test_helper.exs
├── .tool-versions -> .harness/.tool-versions
├── README.md
├── config
│ ├── config.exs
│ ├── dev.exs
│ ├── prod.exs
│ └── test.exs
├── coveralls.json -> .harness/coveralls.json
├── harness.exs
├── lib
│ ├── access_token_controller.ex
│ ├── access_token_fetcher.ex
│ └── access_token_verifier.ex
├── mix.exs -> .harness/mix.exs
├── mix.lock
└── test
 ├── access_token_controller_test.exs
 ├── support
 │ └── mocks.ex
 └── test_helper.exs -> ../.harness/test/test_helper.exs

21 directories, 48 files

Generally the workflow for a run of mix harness is
	read the configuration in harness.exs
	determine a data structure that satisfies the configuration
	run that configuration through template generators
	store the generated files in .harness/
	create any necessary symlinks from .harness/ to ./

Manifests

TL;DR: harness.exs describes how a harness project should be rendered.
What's a manifest anyways? A manifest typically describes a plan. A mix.exs
is a kind of manifest. It describes which dependencies a project relies on,
how it should be compiled, configured, tested, documented, and published.
Notice, though, what a mix.exs doesn't describe:
	an exact list of files to compile, test, or document
	an exact specification on dependency versions

For that information, you might have other more specific manifests or
lockfiles: files which lock exact information into place.
Manifest Configuration
The harness manifest API piggy-backs off the elixir 1.9+ Config
API.
A minimal harness.exs looks like so:
import Config

config :harness,
 manifest_version: "2.0.0",
 generators: [],
 deps: []

Harness

harness the boilerplate!

 Summary

 Functions

 ignore_patterns()

 version()

Functions

 Link to this function

 ignore_patterns()

 View Source

 (since 0.1.0)

 Link to this function

 version()

 View Source

 (since 0.4.0)

Harness.Manifest

A local project's harness configuration

 Summary

 Functions

 archive_path()

 gets the path of the archive itself

 load(path)

 Loads the manifest onto the project stack and loads dependencies

 read(path)

 reads the manifest file from the path

 verify(path)

 Verifies that the generated files in .harness match the configuration of
the harness.exs

Functions

 Link to this function

 archive_path()

 View Source

gets the path of the archive itself

 Link to this function

 load(path)

 View Source

Loads the manifest onto the project stack and loads dependencies
By clearing and pushing a fake project onto the Mix.ProjectStack, we can
utilize large parts of the Mix codebase without much hacking or rewriting.
This function clears the existing stack and pushes a configuration onto it.
Most of the configuration follows the defaults, but the dependencies are
read from the harness manifest (harness.exs) and the dependency versions
are locked to harness.lock.

 Link to this function

 read(path)

 View Source

reads the manifest file from the path

 Link to this function

 verify(path)

 View Source

 (since 0.6.0)

Verifies that the generated files in .harness match the configuration of
the harness.exs

Harness.Pkg behaviour

A behaviour for defining harness package modules.
Harness packages should add a pkg.exs to their root directory which
describes a single module which implements this behaviour.

 Summary

 Types

 t()

 A package module's struct

 Callbacks

 cast(opts)

 A function to transform incoming opts (in keyword format) into a package's
struct (t/0).

 links(t)

 A list of links to create from the .harness directory to project root.

 Functions

 otp_app(generator)

 path(generator)

Types

 Link to this type

 t()

 View Source

 @type t() :: struct()

A package module's struct

Callbacks

 Link to this callback

 cast(opts)

 View Source

 @callback cast(opts :: Keyword.t()) :: t()

A function to transform incoming opts (in keyword format) into a package's
struct (t/0).
The simplest cast/1 is like so:
def cast(opts), do: struct(__MODULE__, opts)

 Link to this callback

 links(t)

 View Source

 (optional)

 @callback links(t()) :: [Path.t() | {Path.t(), :sym | :hard}]

A list of links to create from the .harness directory to project root.
The link can be a string path which will be created as a symlink or the
link can be a tuple with the path and an atom declaring the type of link as
:sym or :hard.

Functions

 Link to this function

 otp_app(generator)

 View Source

 Link to this function

 path(generator)

 View Source

Harness.Renderer.Helpers

Helper functions for renders
These functions are accessible inside templates.

 Summary

 Functions

 inspect_or_interpolate(item)

 Either inspects an item or interpolates it.

 pascal(item)

 Converts a string or atom into PascalCase

Functions

 Link to this function

 inspect_or_interpolate(item)

 View Source

Either inspects an item or interpolates it.
If the item is a binary, it is interpolated. Else, it is inspected with
Kernel.inspect/2 and then interpolated.

 Link to this function

 pascal(item)

 View Source

Converts a string or atom into PascalCase
Makes use of the Macro.camelize/1 function underneath.

Harness.Tree

Renders things as a tree
See the original implementation in Mix
here.
The original implementation has an optimization for dependency trees which
prevents showing the same dependency tree twice. That's great for printing
small dependency trees, but for file trees, we want to see the entire tree
every time, even if a file or directory name is present many times.
The changes to the original implementation are shown as comments below:

 Summary

 Functions

 print_tree(nodes, callback, opts \\ [])

 Prints the given tree according to the callback.
The callback will be invoked for each node and it
must return a {printed, children} tuple.

Functions

 Link to this function

 print_tree(nodes, callback, opts \\ [])

 View Source

Prints the given tree according to the callback.
The callback will be invoked for each node and it
must return a {printed, children} tuple.

mix harness

Renders harness packages into the current directory
Configuration of which files to generate and link is according to the current
directory's harness manifest (harness.exs).
Command line options
	--no-compile - skips the compilation of harness packages
	--no-deps-check - skips a check for out of date dependencies

mix harness.check

Checks that the .harness directory is up-to-date with the manifest

mix harness.clean

Removes links, files, and directories generated by harness

mix harness.compile

Compiles harness package dependencies
Loads the current harness manifest, checks to ensure dependencies have been
feteched, and then compiles harness package files.

mix harness.get

Fetches harness dependencies according to a harness.exs
Harness dependencies follow the same format and rules as mix dependencies:
you may use (public/private) hex, git, or local paths, and dependencies may
be semantically versioned when fetched via hex.

mix harness.loadpaths

Checks, compiles, and loads all harness packages
Command line options
	--no-compile - skips the compilation of harness packages
	--no-deps-check - skips a check for out of date dependencies

mix harness.update

Updates harness dependencies according to a harness.exs
This task mimics mix deps.update (and uses it for the implementation).
Any options are passed directly to the invocation of mix deps.update

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

