

 hc_sr_501_occupation

 v0.1.3

 Table of contents

 	HcSr501 Occupation

 	Changelog

 	Modules

 	HcSr501Occupation.MovementSensor

HcSr501 Occupation

Nerves, or similar, Elixir library for interfacing with a HC-SR501 passive infra-red motion sensor.
It broadcasts to subscribing processes when movement is detected, no longer detected. Additionally it will broadcast when its operational area has not seen movement in long enough period for it to decide that the area has become occupied. Similarly it will broadcast when an area deemed unoccupied becomes occupied.
Installation
def deps do
 [
 {:hc_sr_501_occupation, "~> 0.1.0"}
]
end

Usage
Define the sensor in your project.
An example is below: the HC-SR501 out pin is attached to GPIO pin 17; we deem the area monitored to be unoccupied after 3 minutes of no movement detection.
defmodule Movement.Sensor do
 use HcSr501Occupation.MovementSensor

 @impl HcSr501Occupation.MovementSensor
 def pin, do: 17

 @impl HcSr501Occupation.MovementSensor
 def occupation_timeout, do: :timer.seconds(180)
end
In your application (or other supervisor) include your module as a child:
defmodule Movement.Application do
 use Application

 @impl true
 def start(_type, _args) do
 children = [
 Movement.Sensor
]

 opts = [strategy: :one_for_one, name: Movement.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
Note that the module's pin/0 and occoupation_timeout/0 are read at start; modifying the values after that point will have no impact without going in and killing processes.
A processes can subscribe to receive a message when a movement event has occurred, with the subscribe/0 function that has been added to your module, eg
MovementSensor.subscribe()
On subscription your process will receive an occupation message with its current state. If movement has been detected since startup, then the last movement detection will also be sent.
Subsequent occupation and movement detection messages will also be sent to subscribed processes. Each message is a tuple, the first element of which is the name of your module - in our example Movement.Sensor
The following messages can be received:
Movement detected
The HC-SR501 has detected movement and will send a message like
{Movement.Sensor, :movement_detected, ~U[2023-02-01 12:34:40.883973Z]}
The last element is the DateTime at which movement was detected.
Movement stopped
When the HC-SR501 stops detecting movement the following type of message will be sent to subscribers.
{Movement.Sensor, :movement_stopped, ~U[2023-02-01 12:34:40.883973Z]}
The last element is the DateTime at which the movement stopped signal was received.
Occupied
When we determine that a previously unoccupied are has become occupied, by detecting any movement, then the following form of message will be sent to subscribers
{Movement.Sensor, :occupied, ~U[2023-02-01 12:34:40.883973Z]}
By its nature this will always be preceeded by a :movement_detected message, with the same timestamp as in this message.
Unoccupied
An area is deemed unoccupied either at startup (of the process monitoring for occupation) or after no movement has been detected for the configured time when the area is deemed to have previously been occupied.
When we determine that an area is unoccupied then subscribers will receive messages of the form
{Movement.Sensor, :unoccupied, ~U[2023-02-01 12:34:40.883973Z]}
The DateTime in a message received when starting up will be the startup time. The DateTime in a message caused by an occupied area being deemed to have become unoccupied, will be the time at which the last :unoccupied message was received.
Setting the occupation status
Should your project persist the occupation status, you might want to set it on startup with HcSr501Occupation.MovementSensor.set_occupied/2.

Changelog

v0.1.0
Initial
v0.1.1
Occupation status and time is writeable, so that this can be updated on boot.
v0.1.2
Occupation status directly readable.
v0.1.3
Fix for v0.1.2. Ensure occupation timeout is started when it is explicitly set to occupied with HcSr501Occupation.MovementSensor.set_occupied/2

HcSr501Occupation.MovementSensor behaviour

Creates an instance of the movement and occupation sensor.
Usage:
defmodule MyApp.MySensor do
 use HcSr501Occupation.MovementSensor

 @impl HcSr501Occupation.MovementSensor
 def pin, do: 17

 @impl HcSr501Occupation.MovementSensor
 def occupation_timeout, do: :timer.seconds(180)
end
Add to the supervision tree, eg
defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 MyApp.MySensor
]
 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
See README for full usage.

 Anchor for this section

 Summary

 Callbacks

 occupation()

 Implemented by the __using__ macro.

 occupation_timeout()

 In milliseconds, how long after movement is no longer detected do we flip the state to unoccupied

 pin()

 GPIO Pin to which the sensor is attached

 set_occupied(occupied?, timestamp)

 Implemented by the __using__ macro.

 Anchor for this section

Callbacks

 Link to this callback

 occupation()

 @callback occupation() :: {occupied? :: boolean(), timestamp :: DateTime.t()}

Implemented by the __using__ macro.
The current occupation status: occupied or not and the last occupation event.

 Link to this callback

 occupation_timeout()

 @callback occupation_timeout() :: pos_integer()

In milliseconds, how long after movement is no longer detected do we flip the state to unoccupied

 Link to this callback

 pin()

 @callback pin() :: pos_integer()

GPIO Pin to which the sensor is attached

 Link to this callback

 set_occupied(occupied?, timestamp)

 @callback set_occupied(occupied? :: boolean(), timestamp :: DateTime.t()) :: :ok

Implemented by the __using__ macro.
Sets the occupation status. Provided for setting on reboot if the client has persisted the status
somewhere. The status will be broadcast to all subscribers

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

