

 HfHub

 v0.2.0

 [image: Logo]

 Table of contents

 	Documentation

 	README

 	HfHub Roadmap

 	Changelog

 	Changelog

 	License

 	LICENSE

 	
 Modules

 	HfHub

 	HfHub.AccessRequests

 	HfHub.AccessRequests.AccessRequest

 	HfHub.Cards

 	HfHub.Cards.DatasetCard

 	HfHub.Cards.DatasetCardData

 	HfHub.Cards.EvalResult

 	HfHub.Cards.ModelCard

 	HfHub.Cards.ModelCardData

 	HfHub.Collections

 	HfHub.Collections.Collection

 	HfHub.Collections.CollectionItem

 	HfHub.Commit

 	HfHub.Commit.CommitInfo

 	HfHub.Commit.LfsUpload

 	HfHub.Commit.Operation

 	HfHub.Commit.Operation.Add

 	HfHub.Commit.Operation.Copy

 	HfHub.Commit.Operation.Delete

 	HfHub.Constants

 	HfHub.Discussions

 	HfHub.Discussions.Comment

 	HfHub.Discussions.Discussion

 	HfHub.Discussions.DiscussionDetails

 	HfHub.Discussions.StatusChange

 	HfHub.Discussions.TitleChange

 	HfHub.Errors

 	HfHub.Git

 	HfHub.Git.BranchInfo

 	HfHub.Git.CommitInfo

 	HfHub.Git.GitRefs

 	HfHub.Git.TagInfo

 	HfHub.Hub

 	HfHub.InferenceEndpoints

 	HfHub.InferenceEndpoints.ComputeConfig

 	HfHub.InferenceEndpoints.Endpoint

 	HfHub.InferenceEndpoints.ModelConfig

 	HfHub.InferenceEndpoints.ProviderConfig

 	HfHub.InferenceEndpoints.ScalingConfig

 	HfHub.LFS

 	HfHub.LFS.UploadInfo

 	HfHub.Organizations

 	HfHub.Repo

 	HfHub.Repo.RepoUrl

 	HfHub.RepoFiles

 	HfHub.Repository

 	HfHub.Spaces

 	HfHub.Spaces.SpaceRuntime

 	HfHub.Spaces.SpaceVariable

 	HfHub.Users

 	HfHub.Users.Organization

 	HfHub.Users.User

 	HfHub.Webhooks

 	HfHub.Webhooks.WatchedItem

 	HfHub.Webhooks.WebhookInfo

 	Core API

 	HfHub.Api

 	HfHub.Auth

 	HfHub.Cache

 	HfHub.DatasetFiles

 	HfHub.Download

 	HfHub.Extract

 	HfHub.FS

 	Internal

 	HfHub.Cache.Server

 	HfHub.Config

 	HfHub.HTTP

 	Exceptions

 	HfHub.Errors.BadRequest

 	HfHub.Errors.CacheNotFound

 	HfHub.Errors.CorruptedCache

 	HfHub.Errors.DDUFCorruptedFile

 	HfHub.Errors.DDUFError

 	HfHub.Errors.DDUFExport

 	HfHub.Errors.DDUFInvalidEntryName

 	HfHub.Errors.DisabledRepo

 	HfHub.Errors.DryRun

 	HfHub.Errors.EntryNotFound

 	HfHub.Errors.FileMetadata

 	HfHub.Errors.GatedRepo

 	HfHub.Errors.HFValidation

 	HfHub.Errors.HTTPError

 	HfHub.Errors.InferenceEndpointError

 	HfHub.Errors.InferenceEndpointTimeout

 	HfHub.Errors.InferenceTimeout

 	HfHub.Errors.LocalEntryNotFound

 	HfHub.Errors.LocalTokenNotFound

 	HfHub.Errors.NotASafetensorsRepo

 	HfHub.Errors.OfflineMode

 	HfHub.Errors.RemoteEntryNotFound

 	HfHub.Errors.RepositoryNotFound

 	HfHub.Errors.RevisionNotFound

 	HfHub.Errors.SafetensorsParsing

 	HfHub.Errors.TextGeneration

 	HfHub.Errors.TextGenerationIncomplete

 	HfHub.Errors.TextGenerationOverloaded

 	HfHub.Errors.TextGenerationValidation

 	HfHub.Errors.XetAuthorization

 	HfHub.Errors.XetDownload

 	HfHub.Errors.XetError

 	HfHub.Errors.XetRefreshToken

HfHub

Elixir client for HuggingFace Hub.
HfHub provides a comprehensive interface to the HuggingFace Hub API,
enabling Elixir applications to access models, datasets, and spaces.
Features
	Hub API Client — Fetch metadata for models, datasets, and spaces
	File Downloads — Stream files from HuggingFace repositories with resume support
	Smart Caching — Local file caching with LRU eviction and integrity checks
	Filesystem Utilities — Manage local HuggingFace cache directory structure
	Authentication — Token-based authentication for private repositories

Quick Start
Get model information
{:ok, model_info} = HfHub.Api.model_info("bert-base-uncased")

Download a model file
{:ok, path} = HfHub.Download.hf_hub_download(
 repo_id: "bert-base-uncased",
 filename: "config.json",
 repo_type: :model
)

Check cache
cached? = HfHub.Cache.cached?(
 repo_id: "bert-base-uncased",
 filename: "config.json"
)
Configuration
Configure in config/config.exs:
config :hf_hub,
 token: System.get_env("HF_TOKEN"),
 cache_dir: Path.expand("~/.cache/huggingface"),
 endpoint: "https://huggingface.co"
Modules
	HfHub.Api — Hub API client (models, datasets, spaces)
	HfHub.Download — File download with caching
	HfHub.Cache — Cache management and statistics
	HfHub.FS — Filesystem utilities for cache
	HfHub.Auth — Authentication and authorization
	HfHub.Hub — Bumblebee-compatible ETag-based caching
	HfHub.Repository — Repository reference types
	HfHub.RepoFiles — Repository file listing with ETags

 Summary

 Types

 filename()

 repo_id()

 repo_type()

 repository()

 A repository reference (Bumblebee-compatible).

 revision()

 Functions

 cached_download(url, opts \\ [])

 See HfHub.Hub.cached_download/2.

 file_listing_url(repository_id, subdir, revision)

 See HfHub.Hub.file_listing_url/3.

 file_url(repository_id, filename, revision)

 See HfHub.Hub.file_url/3.

 get_repo_files(repository)

 See HfHub.RepoFiles.get_repo_files/1.

 is_offline_mode()

 deprecated

 Alias for offline_mode?/0 for Python compatibility.

 offline_mode?()

 Check if offline mode is enabled.

 try_to_load_from_cache(repo_id, filename, opts \\ [])

 Try to load a file from cache without network access.

 Types

 filename()

 @type filename() :: String.t()

 repo_id()

 @type repo_id() :: String.t()

 repo_type()

 @type repo_type() :: :model | :dataset | :space

 repository()

 @type repository() :: HfHub.Repository.t()

A repository reference (Bumblebee-compatible).
Can be either:
	{:hf, repository_id} - HuggingFace repository
	{:hf, repository_id, opts} - HuggingFace repository with options
	{:local, directory} - Local directory

 revision()

 @type revision() :: String.t()

 Functions

 cached_download(url, opts \\ [])

See HfHub.Hub.cached_download/2.

 file_listing_url(repository_id, subdir, revision)

See HfHub.Hub.file_listing_url/3.

 file_url(repository_id, filename, revision)

See HfHub.Hub.file_url/3.

 get_repo_files(repository)

See HfHub.RepoFiles.get_repo_files/1.

 is_offline_mode()

 This function is deprecated. Use offline_mode?/0 instead.

 @spec is_offline_mode() :: boolean()

Alias for offline_mode?/0 for Python compatibility.
Deprecated: Use offline_mode?/0 instead.

 offline_mode?()

 @spec offline_mode?() :: boolean()

Check if offline mode is enabled.
Offline mode can be enabled via:
	HF_HUB_OFFLINE=1 environment variable
	Application.put_env(:hf_hub, :offline, true)

When offline mode is enabled, no network requests are made and only
cached files are used.
Examples
if HfHub.offline_mode?() do
 IO.puts("Running in offline mode")
end

 try_to_load_from_cache(repo_id, filename, opts \\ [])

 @spec try_to_load_from_cache(repo_id(), filename(), keyword()) ::
 {:ok, Path.t()} | {:error, :not_cached}

Try to load a file from cache without network access.
Returns {:ok, path} if the file exists in cache, {:error, :not_cached} otherwise.
Does not attempt any network requests, even if offline mode is not enabled.
This is useful when you want to check if a file is available locally
before deciding whether to download it.
Arguments
	repo_id - Repository ID (e.g., "bert-base-uncased")
	filename - Name of the file to look up
	opts - Options

Options
	:revision - Git revision. Defaults to "main".
	:repo_type - Type of repository (:model, :dataset, or :space). Defaults to :model.

Examples
case HfHub.try_to_load_from_cache("bert-base-uncased", "config.json") do
 {:ok, path} ->
 # File is cached, use it
 File.read!(path)
 {:error, :not_cached} ->
 # File not cached, need to download
 {:ok, path} = HfHub.Download.hf_hub_download(
 repo_id: "bert-base-uncased",
 filename: "config.json"
)
 File.read!(path)
end

HfHub.AccessRequests

Access request management for gated repositories.
This module provides functions to manage user access requests for gated
models, datasets, and spaces on HuggingFace Hub.
Examples
List pending access requests
{:ok, requests} = HfHub.AccessRequests.list_pending("my-gated-model")

Accept a request
:ok = HfHub.AccessRequests.accept("my-gated-model", "username")

Grant access directly (without prior request)
:ok = HfHub.AccessRequests.grant("my-gated-model", "username")

 Summary

 Types

 repo_type()

 status()

 Functions

 accept(repo_id, user, opts \\ [])

 Accepts a pending access request.

 cancel(repo_id, user, opts \\ [])

 Cancels/revokes an access request or grant.

 grant(repo_id, user, opts \\ [])

 Grants access directly without a prior request.

 list_accepted(repo_id, opts \\ [])

 Lists accepted access requests for a repository.

 list_pending(repo_id, opts \\ [])

 Lists pending access requests for a repository.

 list_rejected(repo_id, opts \\ [])

 Lists rejected access requests for a repository.

 reject(repo_id, user, opts \\ [])

 Rejects a pending access request.

 Types

 repo_type()

 @type repo_type() :: :model | :dataset | :space

 status()

 @type status() :: :pending | :accepted | :rejected

 Functions

 accept(repo_id, user, opts \\ [])

 @spec accept(String.t(), String.t(), keyword()) :: :ok | {:error, term()}

Accepts a pending access request.
Options
	:token - Authentication token (required)
	:repo_type - Repository type (default: :model)

Examples
:ok = HfHub.AccessRequests.accept("my-gated-model", "username")

 cancel(repo_id, user, opts \\ [])

 @spec cancel(String.t(), String.t(), keyword()) :: :ok | {:error, term()}

Cancels/revokes an access request or grant.
This removes the user's access completely.
Options
	:token - Authentication token (required)
	:repo_type - Repository type (default: :model)

Examples
:ok = HfHub.AccessRequests.cancel("my-gated-model", "username")

 grant(repo_id, user, opts \\ [])

 @spec grant(String.t(), String.t(), keyword()) :: :ok | {:error, term()}

Grants access directly without a prior request.
Use for proactive access grants to specific users.
Options
	:token - Authentication token (required)
	:repo_type - Repository type (default: :model)

Examples
:ok = HfHub.AccessRequests.grant("my-gated-model", "username")

 list_accepted(repo_id, opts \\ [])

 @spec list_accepted(
 String.t(),
 keyword()
) :: {:ok, [HfHub.AccessRequests.AccessRequest.t()]} | {:error, term()}

Lists accepted access requests for a repository.
Options
	:token - Authentication token
	:repo_type - Repository type (default: :model)

Examples
{:ok, requests} = HfHub.AccessRequests.list_accepted("my-gated-model")

 list_pending(repo_id, opts \\ [])

 @spec list_pending(
 String.t(),
 keyword()
) :: {:ok, [HfHub.AccessRequests.AccessRequest.t()]} | {:error, term()}

Lists pending access requests for a repository.
Options
	:token - Authentication token
	:repo_type - Repository type (default: :model)

Examples
{:ok, requests} = HfHub.AccessRequests.list_pending("my-gated-model")

 list_rejected(repo_id, opts \\ [])

 @spec list_rejected(
 String.t(),
 keyword()
) :: {:ok, [HfHub.AccessRequests.AccessRequest.t()]} | {:error, term()}

Lists rejected access requests for a repository.
Options
	:token - Authentication token
	:repo_type - Repository type (default: :model)

Examples
{:ok, requests} = HfHub.AccessRequests.list_rejected("my-gated-model")

 reject(repo_id, user, opts \\ [])

 @spec reject(String.t(), String.t(), keyword()) :: :ok | {:error, term()}

Rejects a pending access request.
Options
	:token - Authentication token (required)
	:repo_type - Repository type (default: :model)

Examples
:ok = HfHub.AccessRequests.reject("my-gated-model", "username")

HfHub.AccessRequests.AccessRequest

Represents an access request for a gated repository.
This struct contains information about a user's request to access
a gated model, dataset, or space.

 Summary

 Types

 status()

 t()

 Functions

 from_response(response, status)

 Creates an AccessRequest from API response.

 Types

 status()

 @type status() :: :pending | :accepted | :rejected

 t()

 @type t() :: %HfHub.AccessRequests.AccessRequest{
 email: String.t() | nil,
 fields: map(),
 fullname: String.t() | nil,
 status: status(),
 timestamp: DateTime.t() | nil,
 user: String.t()
}

 Functions

 from_response(response, status)

 @spec from_response(map(), status()) :: t()

Creates an AccessRequest from API response.

HfHub.Cards

Model and Dataset card parsing and creation.
Cards are structured documentation files (README.md) that contain YAML frontmatter
with metadata and markdown content for documentation.
Examples
Load and parse cards from repositories
{:ok, card} = HfHub.Cards.load_model_card("bert-base-uncased")
card.data.license # "apache-2.0"

Parse from content
{:ok, card} = HfHub.Cards.parse_model_card(readme_content)

Create and render cards
card = HfHub.Cards.create_model_card(%{
 language: "en",
 license: "mit",
 tags: ["text-classification"]
})
markdown = HfHub.Cards.render(card)

 Summary

 Functions

 create_dataset_card(data)

 Creates a dataset card from data.

 create_model_card(data)

 Creates a model card from data.

 load_dataset_card(repo_id, opts \\ [])

 Loads a dataset card from a repository.

 load_model_card(repo_id, opts \\ [])

 Loads a model card from a repository.

 parse_dataset_card(content)

 Parses a dataset card from markdown content.

 parse_model_card(content)

 Parses a model card from markdown content.

 render(map)

 Renders a card to markdown string with YAML frontmatter.

 Functions

 create_dataset_card(data)

 @spec create_dataset_card(map() | keyword()) :: HfHub.Cards.DatasetCard.t()

Creates a dataset card from data.
Arguments
	data - Map or keyword list with card data fields

Examples
card = HfHub.Cards.create_dataset_card(%{
 language: "en",
 license: "cc-by-4.0",
 task_categories: ["question-answering"]
})

 create_model_card(data)

 @spec create_model_card(map() | keyword()) :: HfHub.Cards.ModelCard.t()

Creates a model card from data.
Arguments
	data - Map or keyword list with card data fields

Examples
card = HfHub.Cards.create_model_card(%{
 language: "en",
 license: "mit",
 tags: ["text-classification"]
})

 load_dataset_card(repo_id, opts \\ [])

 @spec load_dataset_card(
 String.t(),
 keyword()
) :: {:ok, HfHub.Cards.DatasetCard.t()} | {:error, term()}

Loads a dataset card from a repository.
Downloads the README.md file and parses its frontmatter and content.
Arguments
	repo_id - Dataset repository ID (e.g., "squad")

Options
	:revision - Git revision. Defaults to "main".
	:token - Authentication token.
	:cache_dir - Local cache directory.

Examples
{:ok, card} = HfHub.Cards.load_dataset_card("squad")
card.data.task_categories # ["question-answering"]

 load_model_card(repo_id, opts \\ [])

 @spec load_model_card(
 String.t(),
 keyword()
) :: {:ok, HfHub.Cards.ModelCard.t()} | {:error, term()}

Loads a model card from a repository.
Downloads the README.md file and parses its frontmatter and content.
Arguments
	repo_id - Repository ID (e.g., "bert-base-uncased")

Options
	:revision - Git revision. Defaults to "main".
	:token - Authentication token.
	:cache_dir - Local cache directory.

Examples
{:ok, card} = HfHub.Cards.load_model_card("bert-base-uncased")
card.data.license # "apache-2.0"
card.data.tags # ["pytorch", "bert", "fill-mask"]

 parse_dataset_card(content)

 @spec parse_dataset_card(String.t()) ::
 {:ok, HfHub.Cards.DatasetCard.t()} | {:error, term()}

Parses a dataset card from markdown content.
Extracts YAML frontmatter and remaining markdown content.
Arguments
	content - Raw markdown content with optional YAML frontmatter

Examples
{:ok, card} = HfHub.Cards.parse_dataset_card(content)
card.data.task_categories # ["question-answering"]

 parse_model_card(content)

 @spec parse_model_card(String.t()) ::
 {:ok, HfHub.Cards.ModelCard.t()} | {:error, term()}

Parses a model card from markdown content.
Extracts YAML frontmatter and remaining markdown content.
Arguments
	content - Raw markdown content with optional YAML frontmatter

Examples
content = """

license: mit
tags:
 - bert

My Model
"""

{:ok, card} = HfHub.Cards.parse_model_card(content)
card.data.license # "mit"
card.content # "# My Model"

 render(map)

 @spec render(HfHub.Cards.ModelCard.t() | HfHub.Cards.DatasetCard.t()) :: String.t()

Renders a card to markdown string with YAML frontmatter.
Arguments
	card - A ModelCard or DatasetCard struct

Examples
card = HfHub.Cards.create_model_card(%{license: "mit"})
markdown = HfHub.Cards.render(card)
=> """

license: "mit"

#
"""

HfHub.Cards.DatasetCard

Represents a Dataset Card from a HuggingFace Hub repository.
A Dataset Card consists of YAML frontmatter (metadata) and markdown content.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %HfHub.Cards.DatasetCard{
 content: String.t(),
 data: HfHub.Cards.DatasetCardData.t()
}

HfHub.Cards.DatasetCardData

Structured metadata for Dataset Cards.
Contains fields from the YAML frontmatter of a dataset's README.md.

 Summary

 Types

 t()

 Functions

 from_map(map)

 Creates a DatasetCardData struct from a parsed YAML frontmatter map.

 Types

 t()

 @type t() :: %HfHub.Cards.DatasetCardData{
 annotations_creators: [String.t()] | nil,
 configs: [map()] | nil,
 extra: map(),
 language: String.t() | [String.t()] | nil,
 language_creators: [String.t()] | nil,
 license: String.t() | nil,
 multilinguality: String.t() | nil,
 pretty_name: String.t() | nil,
 size_categories: [String.t()] | nil,
 source_datasets: [String.t()] | nil,
 tags: [String.t()] | nil,
 task_categories: [String.t()] | nil,
 task_ids: [String.t()] | nil
}

 Functions

 from_map(map)

 @spec from_map(map()) :: t()

Creates a DatasetCardData struct from a parsed YAML frontmatter map.

HfHub.Cards.EvalResult

Represents an evaluation result from a Model Card.

 Summary

 Types

 t()

 Functions

 from_map(map)

 Creates an EvalResult struct from a parsed map.

 Types

 t()

 @type t() :: %HfHub.Cards.EvalResult{
 dataset_config: String.t() | nil,
 dataset_name: String.t(),
 dataset_split: String.t() | nil,
 dataset_type: String.t(),
 metric_name: String.t() | nil,
 metric_type: String.t(),
 metric_value: number(),
 task_name: String.t() | nil,
 task_type: String.t(),
 verified: boolean()
}

 Functions

 from_map(map)

 @spec from_map(map()) :: t()

Creates an EvalResult struct from a parsed map.

HfHub.Cards.ModelCard

Represents a Model Card from a HuggingFace Hub repository.
A Model Card consists of YAML frontmatter (metadata) and markdown content.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %HfHub.Cards.ModelCard{
 content: String.t(),
 data: HfHub.Cards.ModelCardData.t()
}

HfHub.Cards.ModelCardData

Structured metadata for Model Cards.
Contains fields from the YAML frontmatter of a model's README.md.

 Summary

 Types

 t()

 Functions

 from_map(map)

 Creates a ModelCardData struct from a parsed YAML frontmatter map.

 Types

 t()

 @type t() :: %HfHub.Cards.ModelCardData{
 base_model: String.t() | [String.t()] | nil,
 co2_eq_emissions: map() | nil,
 datasets: [String.t()] | nil,
 eval_results: [HfHub.Cards.EvalResult.t()] | nil,
 extra: map(),
 inference: boolean() | map() | nil,
 language: String.t() | [String.t()] | nil,
 library_name: String.t() | nil,
 license: String.t() | nil,
 license_link: String.t() | nil,
 license_name: String.t() | nil,
 metrics: [String.t()] | nil,
 model_name: String.t() | nil,
 pipeline_tag: String.t() | nil,
 tags: [String.t()] | nil,
 widget: [map()] | nil
}

 Functions

 from_map(map)

 @spec from_map(map()) :: t()

Creates a ModelCardData struct from a parsed YAML frontmatter map.

HfHub.Collections

Collections API for organizing models, datasets, and spaces on HuggingFace Hub.
Collections enable users to curate lists of repositories and papers.
Examples
List all collections
{:ok, collections} = HfHub.Collections.list()

List collections by owner
{:ok, collections} = HfHub.Collections.list(owner: "huggingface")

Get a specific collection
{:ok, collection} = HfHub.Collections.get("user/my-llm-collection-123abc")

Create a new collection
{:ok, collection} = HfHub.Collections.create("My LLM Collection",
 description: "Best open-source LLMs", token: "hf_xxx")

Add an item to a collection
{:ok, item} = HfHub.Collections.add_item("user/collection-123",
 "bert-base-uncased", :model, note: "Best BERT model")

 Summary

 Types

 item_type()

 sort()

 Functions

 add_item(slug, item_id, item_type, opts \\ [])

 Adds an item to a collection.

 create(title, opts \\ [])

 Creates a new collection.

 delete(slug, opts \\ [])

 Deletes a collection.

 delete_item(slug, item_object_id, opts \\ [])

 Removes an item from a collection.

 get(slug, opts \\ [])

 Gets a collection by slug.

 list(opts \\ [])

 Lists collections with optional filters.

 update(slug, opts \\ [])

 Updates collection metadata.

 update_item(slug, item_object_id, opts \\ [])

 Updates a collection item.

 Types

 item_type()

 @type item_type() :: :model | :dataset | :space | :paper

 sort()

 @type sort() :: :last_modified | :trending | :upvotes

 Functions

 add_item(slug, item_id, item_type, opts \\ [])

 @spec add_item(String.t(), String.t(), item_type(), keyword()) ::
 {:ok, HfHub.Collections.CollectionItem.t()} | {:error, term()}

Adds an item to a collection.
Arguments
	slug - Collection slug
	item_id - Item identifier (e.g., "bert-base-uncased")
	item_type - Type of item (:model, :dataset, :space, or :paper)

Options
	:note - Optional note about the item
	:exists_ok - Don't error if item already in collection (default: false)
	:token - Authentication token (required)

Examples
{:ok, item} = HfHub.Collections.add_item("user/collection-123",
 "bert-base-uncased", :model, note: "Best BERT model")

{:ok, item} = HfHub.Collections.add_item("user/collection-123",
 "squad", :dataset)

 create(title, opts \\ [])

 @spec create(
 String.t(),
 keyword()
) :: {:ok, HfHub.Collections.Collection.t()} | {:error, term()}

Creates a new collection.
Options
	:namespace - Organization namespace (default: current user)
	:description - Collection description
	:private - Make collection private (default: false)
	:exists_ok - Don't error if collection exists (default: false)
	:token - Authentication token (required)

Examples
{:ok, collection} = HfHub.Collections.create("My LLM Collection",
 description: "Best open-source LLMs", token: "hf_xxx")

{:ok, collection} = HfHub.Collections.create("Private Collection",
 private: true, namespace: "my-org", token: "hf_xxx")

 delete(slug, opts \\ [])

 @spec delete(
 String.t(),
 keyword()
) :: :ok | {:error, term()}

Deletes a collection.
Options
	:missing_ok - Don't error if collection doesn't exist (default: false)
	:token - Authentication token (required)

Examples
:ok = HfHub.Collections.delete("user/my-collection-123")
:ok = HfHub.Collections.delete("user/maybe-exists", missing_ok: true)

 delete_item(slug, item_object_id, opts \\ [])

 @spec delete_item(String.t(), String.t(), keyword()) :: :ok | {:error, term()}

Removes an item from a collection.
Options
	:missing_ok - Don't error if item doesn't exist (default: false)
	:token - Authentication token (required)

Examples
:ok = HfHub.Collections.delete_item("user/collection-123", "item-object-id")

 get(slug, opts \\ [])

 @spec get(
 String.t(),
 keyword()
) :: {:ok, HfHub.Collections.Collection.t()} | {:error, term()}

Gets a collection by slug.
Options
	:token - Authentication token

Examples
{:ok, collection} = HfHub.Collections.get("user/my-llm-collection-123abc")

 list(opts \\ [])

 @spec list(keyword()) :: {:ok, [HfHub.Collections.Collection.t()]} | {:error, term()}

Lists collections with optional filters.
Options
	:owner - Filter by owner username
	:item - Filter by item (e.g., "bert-base-uncased")
	:sort - Sort by :last_modified, :trending, or :upvotes
	:token - Authentication token

Examples
{:ok, collections} = HfHub.Collections.list()
{:ok, collections} = HfHub.Collections.list(owner: "huggingface")
{:ok, collections} = HfHub.Collections.list(sort: :trending)

 update(slug, opts \\ [])

 @spec update(
 String.t(),
 keyword()
) :: {:ok, HfHub.Collections.Collection.t()} | {:error, term()}

Updates collection metadata.
Options
	:title - New title
	:description - New description
	:private - Change visibility
	:position - Reorder position
	:theme - Collection theme
	:token - Authentication token (required)

Examples
{:ok, collection} = HfHub.Collections.update("user/my-collection-123",
 title: "Updated Title", description: "New description")

 update_item(slug, item_object_id, opts \\ [])

 @spec update_item(String.t(), String.t(), keyword()) ::
 {:ok, HfHub.Collections.CollectionItem.t()} | {:error, term()}

Updates a collection item.
Options
	:note - New note for the item
	:position - New position in the collection
	:token - Authentication token (required)

Examples
{:ok, item} = HfHub.Collections.update_item("user/collection-123", "item-object-id",
 note: "Updated note", position: 0)

HfHub.Collections.Collection

Represents a collection on HuggingFace Hub.
Collections enable organizing and curating lists of models, datasets, and spaces.

 Summary

 Types

 t()

 Functions

 from_response(response)

 Creates a Collection from API response.

 Types

 t()

 @type t() :: %HfHub.Collections.Collection{
 created_at: DateTime.t() | nil,
 description: String.t() | nil,
 items: [HfHub.Collections.CollectionItem.t()],
 owner: String.t(),
 position: non_neg_integer() | nil,
 private: boolean(),
 slug: String.t(),
 theme: String.t() | nil,
 title: String.t(),
 updated_at: DateTime.t() | nil,
 upvotes: non_neg_integer()
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a Collection from API response.

HfHub.Collections.CollectionItem

Represents an item within a collection.
Items can be models, datasets, spaces, or papers.

 Summary

 Types

 item_type()

 t()

 Functions

 from_response(response)

 Creates a CollectionItem from API response.

 Types

 item_type()

 @type item_type() :: :model | :dataset | :space | :paper

 t()

 @type t() :: %HfHub.Collections.CollectionItem{
 added_at: DateTime.t() | nil,
 id: String.t(),
 item_id: String.t(),
 item_type: item_type(),
 note: String.t() | nil,
 position: non_neg_integer()
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a CollectionItem from API response.

HfHub.Commit

Commit operations for uploading files to HuggingFace Hub.
This module provides functions to create commits that add, delete,
or copy files in a repository.
Upload Modes
Files are uploaded in one of two modes:
	Regular: Base64-encoded in commit payload (for files < 10MB)
	LFS: Git Large File Storage protocol (for files >= 10MB)

The upload mode is automatically determined based on file size.
Examples
Upload a single file
{:ok, info} = HfHub.Commit.upload_file(
 "/path/to/model.bin",
 "model.bin",
 "my-org/my-model",
 token: token,
 commit_message: "Add model weights"
)

Create a commit with multiple operations
{:ok, info} = HfHub.Commit.create("my-model", [
 Operation.add("model.safetensors", "/path/to/model"),
 Operation.add("config.json", config_content),
 Operation.delete("old_model.bin")
], token: token, commit_message: "Update model")

 Summary

 Types

 commit_opts()

 Functions

 create(repo_id, operations, opts \\ [])

 Creates a commit with one or more operations.

 delete_file(path_in_repo, repo_id, opts \\ [])

 Deletes a file from a repository.

 delete_folder(path_in_repo, repo_id, opts \\ [])

 Deletes a folder and all its contents from a repository.

 lfs_threshold()

 Returns the LFS size threshold in bytes (10MB).

 matches_pattern?(file, pattern)

 Checks if a file path matches a gitignore-style pattern.

 needs_lfs?(add)

 Determines if a file needs LFS upload based on its size.

 upload_file(path_or_data, path_in_repo, repo_id, opts \\ [])

 Uploads a single file to a repository.

 upload_folder(folder_path, repo_id, opts \\ [])

 Uploads an entire folder to a repository.

 upload_large_folder(folder_path, repo_id, opts \\ [])

 Uploads a large folder using multiple commits if needed.

 Types

 commit_opts()

 @type commit_opts() :: [
 token: String.t(),
 repo_type: :model | :dataset | :space,
 revision: String.t(),
 commit_message: String.t(),
 commit_description: String.t(),
 create_pr: boolean(),
 parent_commit: String.t()
]

 Functions

 create(repo_id, operations, opts \\ [])

 @spec create(String.t(), [HfHub.Commit.Operation.t()], commit_opts()) ::
 {:ok, HfHub.Commit.CommitInfo.t()} | {:error, term()}

Creates a commit with one or more operations.
This is the primary function for making changes to a repository.
Operations can include adding files, deleting files, or copying
existing LFS files.
Options
	:token - Authentication token (required)
	:repo_type - Repository type: :model, :dataset, :space (default: :model)
	:revision - Target branch (default: "main")
	:commit_message - Commit message (required)
	:commit_description - Extended commit description
	:create_pr - Create a pull request instead of direct commit
	:parent_commit - Parent commit SHA for atomic operations

Examples
alias HfHub.Commit.Operation

{:ok, info} = HfHub.Commit.create("my-model", [
 Operation.add("config.json", ~s({"hidden_size": 768})),
 Operation.delete("old_config.json")
], token: token, commit_message: "Update config")

 delete_file(path_in_repo, repo_id, opts \\ [])

 @spec delete_file(String.t(), String.t(), commit_opts()) ::
 {:ok, HfHub.Commit.CommitInfo.t()} | {:error, term()}

Deletes a file from a repository.
Examples
{:ok, info} = HfHub.Commit.delete_file(
 "old_model.bin",
 "my-model",
 token: token,
 commit_message: "Remove old weights"
)

 delete_folder(path_in_repo, repo_id, opts \\ [])

 @spec delete_folder(String.t(), String.t(), commit_opts()) ::
 {:ok, HfHub.Commit.CommitInfo.t()} | {:error, term()}

Deletes a folder and all its contents from a repository.

 lfs_threshold()

 @spec lfs_threshold() :: non_neg_integer()

Returns the LFS size threshold in bytes (10MB).

 matches_pattern?(file, pattern)

 @spec matches_pattern?(String.t(), String.t()) :: boolean()

Checks if a file path matches a gitignore-style pattern.
Pattern Syntax
	* matches any sequence except /
	** matches any sequence including /
	? matches single character
	[abc] matches character class

Examples
iex> HfHub.Commit.matches_pattern?("file.json", "*.json")
true

iex> HfHub.Commit.matches_pattern?("path/to/file.json", "**/*.json")
true

iex> HfHub.Commit.matches_pattern?("__pycache__/cache.pyc", "__pycache__/**")
true

 needs_lfs?(add)

 @spec needs_lfs?(HfHub.Commit.Operation.Add.t()) :: boolean()

Determines if a file needs LFS upload based on its size.

 upload_file(path_or_data, path_in_repo, repo_id, opts \\ [])

 @spec upload_file(binary() | Path.t(), String.t(), String.t(), commit_opts()) ::
 {:ok, HfHub.Commit.CommitInfo.t()} | {:error, term()}

Uploads a single file to a repository.
Convenience wrapper around create/3 for single-file uploads.
Examples
From file path
{:ok, info} = HfHub.Commit.upload_file(
 "/path/to/model.bin",
 "model.bin",
 "my-model",
 token: token
)

From binary content
{:ok, info} = HfHub.Commit.upload_file(
 config_json,
 "config.json",
 "my-model",
 token: token,
 commit_message: "Update config"
)

 upload_folder(folder_path, repo_id, opts \\ [])

 @spec upload_folder(Path.t(), String.t(), commit_opts()) ::
 {:ok, HfHub.Commit.CommitInfo.t()} | {:error, term()}

Uploads an entire folder to a repository.
Files are uploaded in batch with automatic LFS detection.
Use patterns to filter which files to include or exclude.
Options
	:token - Authentication token (required)
	:repo_type - Repository type (default: :model)
	:revision - Target branch (default: "main")
	:commit_message - Commit message (default: "Upload folder")
	:commit_description - Extended description
	:create_pr - Create pull request (default: false)
	:allow_patterns - Only include files matching patterns
	:ignore_patterns - Exclude files matching patterns
	:delete_patterns - Delete remote files matching patterns

Pattern Syntax
Patterns use gitignore-style matching:
	* matches any sequence except /
	** matches any sequence including /
	? matches single character
	[abc] matches character class

Examples
Upload entire folder
{:ok, info} = HfHub.Commit.upload_folder(
 "/path/to/model_dir",
 "my-org/my-model",
 token: token
)

With pattern filtering
{:ok, info} = HfHub.Commit.upload_folder(
 "/path/to/model_dir",
 "my-model",
 token: token,
 ignore_patterns: ["*.pyc", "__pycache__/**", ".git/**"],
 allow_patterns: ["*.safetensors", "*.json"]
)

Delete old files matching pattern
{:ok, info} = HfHub.Commit.upload_folder(
 "/path/to/model_dir",
 "my-model",
 token: token,
 delete_patterns: ["*.bin"] # Delete old .bin files, upload new
)

 upload_large_folder(folder_path, repo_id, opts \\ [])

 @spec upload_large_folder(Path.t(), String.t(), commit_opts()) ::
 {:ok, [HfHub.Commit.CommitInfo.t()]} | {:error, term()}

Uploads a large folder using multiple commits if needed.
For folders with many files or large total size, this function
automatically splits the upload into multiple commits.
Options
Same as upload_folder/3, plus:
	:multi_commits - Enable automatic splitting (default: false)
	:multi_commits_verbose - Log progress (default: false)

Examples
{:ok, infos} = HfHub.Commit.upload_large_folder(
 "/path/to/huge_model",
 "my-model",
 token: token,
 multi_commits: true
)

HfHub.Commit.CommitInfo

Information about a completed commit.
Returned after successfully committing changes to a repository.

 Summary

 Types

 t()

 Functions

 from_response(response)

 Creates CommitInfo from API response.

 Types

 t()

 @type t() :: %HfHub.Commit.CommitInfo{
 commit_description: String.t() | nil,
 commit_message: String.t(),
 commit_url: String.t(),
 oid: String.t(),
 pr_num: non_neg_integer() | nil,
 pr_revision: String.t() | nil,
 pr_url: String.t() | nil,
 repo_url: String.t()
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates CommitInfo from API response.

HfHub.Commit.LfsUpload

Git LFS upload protocol implementation.
Handles uploading large files (>= 10MB) using the Git LFS batch API.
Supports both single-part and multipart uploads based on server response.

 Summary

 Functions

 request_batch_info(repo_id, upload_infos, token, opts \\ [])

 Requests upload instructions from the LFS batch endpoint.

 upload_batch(repo_id, operations, token, opts \\ [])

 Uploads multiple LFS files in batch.

 Functions

 request_batch_info(repo_id, upload_infos, token, opts \\ [])

 @spec request_batch_info(
 String.t(),
 [HfHub.LFS.UploadInfo.t()],
 String.t(),
 keyword()
) ::
 {:ok, map()} | {:error, term()}

Requests upload instructions from the LFS batch endpoint.
Sends file info (OID and size) to the server and receives
upload URLs and headers for each file.

 upload_batch(repo_id, operations, token, opts \\ [])

 @spec upload_batch(
 String.t(),
 [HfHub.Commit.Operation.Add.t()],
 String.t(),
 keyword()
) ::
 {:ok, [HfHub.Commit.Operation.Add.t()]} | {:error, term()}

Uploads multiple LFS files in batch.
Requests batch upload info from the server, uploads each file that
needs uploading, and verifies uploads if required.
Options
	:repo_type - Repository type: :model, :dataset, :space (default: :model)
	:max_workers - Maximum concurrent uploads (default: 4)

Returns
Returns {:ok, operations} where operations have is_uploaded: true,
or {:error, reason} on failure.

HfHub.Commit.Operation

Commit operation types for file manipulation.
Operations represent changes to be made in a single commit:
	Add - Upload or update a file
	Delete - Remove a file or folder
	Copy - Copy an existing LFS file (efficient, no re-upload)

Examples
Add a file from disk
add_op = HfHub.Commit.Operation.add("model.bin", "/path/to/model.bin")

Add from binary content
add_op = HfHub.Commit.Operation.add("config.json", ~s({"hidden_size": 768}))

Delete a file
del_op = HfHub.Commit.Operation.delete("old_model.bin")

Delete a folder
del_op = HfHub.Commit.Operation.delete("old_weights/", is_folder: true)

Copy an LFS file
copy_op = HfHub.Commit.Operation.copy("v1/model.bin", "v2/model.bin")

 Summary

 Types

 add()

 copy()

 delete()

 t()

 Functions

 add(path_in_repo, content, opts \\ [])

 Creates an add operation from a file path or binary content.

 base64_content(add_op)

 Gets base64-encoded content (for regular uploads).

 copy(src_path, dst_path, opts \\ [])

 Creates a copy operation for an existing LFS file.

 delete(path_in_repo, opts \\ [])

 Creates a delete operation.

 file_path?(add)

 Checks if content is from a file path vs binary data.

 get_content(add_op)

 Gets the content as binary (reads file if path).

 Types

 add()

 @type add() :: %HfHub.Commit.Operation.Add{
 content: term(),
 is_committed: term(),
 is_uploaded: term(),
 path_in_repo: term(),
 upload_info: term(),
 upload_mode: term()
}

 copy()

 @type copy() :: %HfHub.Commit.Operation.Copy{
 dst_path: term(),
 src_path: term(),
 src_revision: term()
}

 delete()

 @type delete() :: %HfHub.Commit.Operation.Delete{
 is_folder: term(),
 path_in_repo: term()
}

 t()

 @type t() :: add() | delete() | copy()

 Functions

 add(path_in_repo, content, opts \\ [])

 @spec add(String.t(), binary() | Path.t(), keyword()) ::
 HfHub.Commit.Operation.Add.t()

Creates an add operation from a file path or binary content.
Automatically computes UploadInfo (SHA256, size, sample) for the content.
Options
	:upload_info - Pre-computed upload info (skips computation)

Examples
From file path
op = Operation.add("model.safetensors", "/path/to/model.safetensors")

From binary
op = Operation.add("config.json", Jason.encode!(%{hidden_size: 768}))

 base64_content(add_op)

 @spec base64_content(HfHub.Commit.Operation.Add.t()) ::
 {:ok, String.t()} | {:error, term()}

Gets base64-encoded content (for regular uploads).

 copy(src_path, dst_path, opts \\ [])

 @spec copy(String.t(), String.t(), keyword()) :: HfHub.Commit.Operation.Copy.t()

Creates a copy operation for an existing LFS file.
Copy operations are efficient because they don't re-upload the file content.
The file must already exist in the repository (or at src_revision).
Options
	:src_revision - Source revision (default: current HEAD)

Examples
Operation.copy("v1/model.bin", "v2/model.bin")
Operation.copy("model.bin", "archive/model.bin", src_revision: "v1.0")

 delete(path_in_repo, opts \\ [])

 @spec delete(
 String.t(),
 keyword()
) :: HfHub.Commit.Operation.Delete.t()

Creates a delete operation.
Options
	:is_folder - Set to true to delete a folder and contents

Examples
Operation.delete("old_model.bin")
Operation.delete("old_weights/", is_folder: true)

 file_path?(add)

 @spec file_path?(HfHub.Commit.Operation.Add.t()) :: boolean()

Checks if content is from a file path vs binary data.

 get_content(add_op)

 @spec get_content(HfHub.Commit.Operation.Add.t()) ::
 {:ok, binary()} | {:error, term()}

Gets the content as binary (reads file if path).

HfHub.Commit.Operation.Add

Operation to add or update a file.

 Summary

 Types

 content_source()

 t()

 upload_mode()

 Types

 content_source()

 @type content_source() :: binary() | Path.t()

 t()

 @type t() :: %HfHub.Commit.Operation.Add{
 content: content_source(),
 is_committed: boolean(),
 is_uploaded: boolean(),
 path_in_repo: String.t(),
 upload_info: HfHub.LFS.UploadInfo.t() | nil,
 upload_mode: upload_mode()
}

 upload_mode()

 @type upload_mode() :: :regular | :lfs | nil

HfHub.Commit.Operation.Copy

Operation to copy an existing LFS file.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %HfHub.Commit.Operation.Copy{
 dst_path: String.t(),
 src_path: String.t(),
 src_revision: String.t() | nil
}

HfHub.Commit.Operation.Delete

Operation to delete a file or folder.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %HfHub.Commit.Operation.Delete{
 is_folder: boolean(),
 path_in_repo: String.t()
}

HfHub.Constants

Constants for HuggingFace Hub operations.
Provides file names, headers, timeouts, and other constants matching
Python's huggingface_hub.constants module.

 Summary

 Functions

 config_name()

 Model configuration filename

 default_download_timeout()

 Default timeout for downloads

 default_endpoint()

 Default HuggingFace Hub endpoint

 default_etag_timeout()

 Default timeout for ETag requests

 default_request_timeout()

 Default timeout for general requests

 default_revision()

 Default git revision

 download_chunk_size()

 Download chunk size (10 MB)

 flax_weights_name()

 Flax/JAX model weights filename

 header_x_linked_etag()

 Header for linked ETag

 header_x_linked_size()

 Header for linked file size

 header_x_repo_commit()

 Header for commit hash in responses

 pytorch_weights_name()

 PyTorch model weights filename

 repo_id_separator()

 Separator used in repo IDs for cache directories

 repo_type_dataset()

 Dataset repository type

 repo_type_model()

 Model repository type

 repo_type_space()

 Space repository type

 repo_type_url_prefix(atom)

 Returns the URL prefix for a repository type.

 repo_types()

 All supported repository types

 repocard_name()

 Repository README card filename

 safetensors_index_file()

 Safetensors index file for sharded models

 safetensors_max_header_length()

 Maximum safetensors header length (25 MB)

 safetensors_single_file()

 Safetensors single file model

 tf2_weights_name()

 TensorFlow 2.x model weights filename

 Functions

 config_name()

 @spec config_name() :: String.t()

Model configuration filename

 default_download_timeout()

 @spec default_download_timeout() :: pos_integer()

Default timeout for downloads

 default_endpoint()

 @spec default_endpoint() :: String.t()

Default HuggingFace Hub endpoint

 default_etag_timeout()

 @spec default_etag_timeout() :: pos_integer()

Default timeout for ETag requests

 default_request_timeout()

 @spec default_request_timeout() :: pos_integer()

Default timeout for general requests

 default_revision()

 @spec default_revision() :: String.t()

Default git revision

 download_chunk_size()

 @spec download_chunk_size() :: pos_integer()

Download chunk size (10 MB)

 flax_weights_name()

 @spec flax_weights_name() :: String.t()

Flax/JAX model weights filename

 header_x_linked_etag()

 @spec header_x_linked_etag() :: String.t()

Header for linked ETag

 header_x_linked_size()

 @spec header_x_linked_size() :: String.t()

Header for linked file size

 header_x_repo_commit()

 @spec header_x_repo_commit() :: String.t()

Header for commit hash in responses

 pytorch_weights_name()

 @spec pytorch_weights_name() :: String.t()

PyTorch model weights filename

 repo_id_separator()

 @spec repo_id_separator() :: String.t()

Separator used in repo IDs for cache directories

 repo_type_dataset()

 @spec repo_type_dataset() :: String.t()

Dataset repository type

 repo_type_model()

 @spec repo_type_model() :: String.t()

Model repository type

 repo_type_space()

 @spec repo_type_space() :: String.t()

Space repository type

 repo_type_url_prefix(atom)

 @spec repo_type_url_prefix(:model | :dataset | :space) :: String.t()

Returns the URL prefix for a repository type.
Models have no prefix; datasets use "datasets/"; spaces use "spaces/".

 repo_types()

 @spec repo_types() :: [:model | :dataset | :space]

All supported repository types

 repocard_name()

 @spec repocard_name() :: String.t()

Repository README card filename

 safetensors_index_file()

 @spec safetensors_index_file() :: String.t()

Safetensors index file for sharded models

 safetensors_max_header_length()

 @spec safetensors_max_header_length() :: pos_integer()

Maximum safetensors header length (25 MB)

 safetensors_single_file()

 @spec safetensors_single_file() :: String.t()

Safetensors single file model

 tf2_weights_name()

 @spec tf2_weights_name() :: String.t()

TensorFlow 2.x model weights filename

HfHub.Discussions

Discussions and Pull Requests API for HuggingFace Hub.
This module provides functions to interact with discussions and pull requests
on HuggingFace Hub repositories.
Examples
List discussions for a model
{:ok, discussions} = HfHub.Discussions.list("bert-base-uncased")

Get details for a specific discussion
{:ok, details} = HfHub.Discussions.get("my-model", 42)

Create a new discussion
{:ok, disc} = HfHub.Discussions.create("my-model", "Feature request",
 description: "Please add support for...", token: "hf_xxx")

Add a comment
{:ok, comment} = HfHub.Discussions.comment("my-model", 42, "Thanks!")

 Summary

 Types

 repo_type()

 status()

 Functions

 change_status(repo_id, discussion_num, new_status, opts \\ [])

 Changes the status of a discussion.

 close(repo_id, discussion_num, opts \\ [])

 Closes a discussion.

 comment(repo_id, discussion_num, content, opts \\ [])

 Adds a comment to a discussion.

 create(repo_id, title, opts \\ [])

 Creates a new discussion.

 create_pr(repo_id, title, opts \\ [])

 Creates a new pull request.

 edit_comment(repo_id, discussion_num, comment_id, new_content, opts \\ [])

 Edits an existing comment.

 get(repo_id, discussion_num, opts \\ [])

 Gets details for a specific discussion.

 hide_comment(repo_id, discussion_num, comment_id, opts \\ [])

 Hides a comment from view.

 list(repo_id, opts \\ [])

 Lists discussions for a repository.

 merge_pr(repo_id, discussion_num, opts \\ [])

 Merges a pull request.

 rename(repo_id, discussion_num, new_title, opts \\ [])

 Renames a discussion.

 reopen(repo_id, discussion_num, opts \\ [])

 Reopens a closed discussion.

 Types

 repo_type()

 @type repo_type() :: :model | :dataset | :space

 status()

 @type status() :: :open | :closed | :merged | :draft | :all

 Functions

 change_status(repo_id, discussion_num, new_status, opts \\ [])

 @spec change_status(String.t(), non_neg_integer(), status(), keyword()) ::
 {:ok, HfHub.Discussions.Discussion.t()} | {:error, term()}

Changes the status of a discussion.
Options
	:token - Authentication token (required)
	:repo_type - Repository type (default: :model)
	:comment - Optional comment explaining the status change

Examples
{:ok, disc} = HfHub.Discussions.change_status("my-model", 42, :closed, comment: "Resolved")

 close(repo_id, discussion_num, opts \\ [])

 @spec close(String.t(), non_neg_integer(), keyword()) ::
 {:ok, HfHub.Discussions.Discussion.t()} | {:error, term()}

Closes a discussion.
Options
	:token - Authentication token (required)
	:repo_type - Repository type (default: :model)
	:comment - Optional comment explaining the status change

Examples
{:ok, disc} = HfHub.Discussions.close("my-model", 42, comment: "Fixed in v2.0")

 comment(repo_id, discussion_num, content, opts \\ [])

 @spec comment(String.t(), non_neg_integer(), String.t(), keyword()) ::
 {:ok, HfHub.Discussions.Comment.t()} | {:error, term()}

Adds a comment to a discussion.
Options
	:token - Authentication token (required)
	:repo_type - Repository type (default: :model)

Examples
{:ok, comment} = HfHub.Discussions.comment("my-model", 42, "Thanks for reporting!")

 create(repo_id, title, opts \\ [])

 @spec create(String.t(), String.t(), keyword()) ::
 {:ok, HfHub.Discussions.DiscussionDetails.t()} | {:error, term()}

Creates a new discussion.
Options
	:token - Authentication token (required)
	:description - Discussion body/description
	:repo_type - Repository type (default: :model)

Examples
{:ok, disc} = HfHub.Discussions.create("my-model", "Feature request",
 description: "Please add support for...")

 create_pr(repo_id, title, opts \\ [])

 @spec create_pr(String.t(), String.t(), keyword()) ::
 {:ok, HfHub.Discussions.DiscussionDetails.t()} | {:error, term()}

Creates a new pull request.
Options
	:token - Authentication token (required)
	:description - Pull request body/description
	:repo_type - Repository type (default: :model)

Examples
{:ok, pr} = HfHub.Discussions.create_pr("my-model", "Add new feature",
 description: "This PR adds...")

 edit_comment(repo_id, discussion_num, comment_id, new_content, opts \\ [])

 @spec edit_comment(String.t(), non_neg_integer(), String.t(), String.t(), keyword()) ::
 {:ok, HfHub.Discussions.Comment.t()} | {:error, term()}

Edits an existing comment.
Options
	:token - Authentication token (required)
	:repo_type - Repository type (default: :model)

Examples
{:ok, comment} = HfHub.Discussions.edit_comment("my-model", 42, "abc123", "Updated content")

 get(repo_id, discussion_num, opts \\ [])

 @spec get(String.t(), non_neg_integer(), keyword()) ::
 {:ok, HfHub.Discussions.DiscussionDetails.t()} | {:error, term()}

Gets details for a specific discussion.
Includes full content and all comments/events.
Options
	:token - Authentication token
	:repo_type - Repository type (default: :model)

Examples
{:ok, details} = HfHub.Discussions.get("my-model", 42)
details.events # List of comments, status changes, etc.

 hide_comment(repo_id, discussion_num, comment_id, opts \\ [])

 @spec hide_comment(String.t(), non_neg_integer(), String.t(), keyword()) ::
 {:ok, HfHub.Discussions.Comment.t()} | {:error, term()}

Hides a comment from view.
Options
	:token - Authentication token (required)
	:repo_type - Repository type (default: :model)

Examples
{:ok, comment} = HfHub.Discussions.hide_comment("my-model", 42, "abc123")

 list(repo_id, opts \\ [])

 @spec list(
 String.t(),
 keyword()
) :: {:ok, [HfHub.Discussions.Discussion.t()]} | {:error, term()}

Lists discussions for a repository.
Options
	:token - Authentication token
	:repo_type - Repository type (default: :model)
	:author - Filter by author username
	:status - Filter by status (:open, :closed, :merged, :draft, :all)

Examples
{:ok, discussions} = HfHub.Discussions.list("bert-base-uncased")
{:ok, open} = HfHub.Discussions.list("my-model", status: :open)

 merge_pr(repo_id, discussion_num, opts \\ [])

 @spec merge_pr(String.t(), non_neg_integer(), keyword()) ::
 {:ok, HfHub.Discussions.Discussion.t()} | {:error, term()}

Merges a pull request.
Options
	:token - Authentication token (required)
	:repo_type - Repository type (default: :model)
	:comment - Optional merge comment

Examples
{:ok, pr} = HfHub.Discussions.merge_pr("my-model", 42)

 rename(repo_id, discussion_num, new_title, opts \\ [])

 @spec rename(String.t(), non_neg_integer(), String.t(), keyword()) ::
 {:ok, HfHub.Discussions.Discussion.t()} | {:error, term()}

Renames a discussion.
Options
	:token - Authentication token (required)
	:repo_type - Repository type (default: :model)

Examples
{:ok, disc} = HfHub.Discussions.rename("my-model", 42, "New Title")

 reopen(repo_id, discussion_num, opts \\ [])

 @spec reopen(String.t(), non_neg_integer(), keyword()) ::
 {:ok, HfHub.Discussions.Discussion.t()} | {:error, term()}

Reopens a closed discussion.
Options
	:token - Authentication token (required)
	:repo_type - Repository type (default: :model)
	:comment - Optional comment explaining the status change

Examples
{:ok, disc} = HfHub.Discussions.reopen("my-model", 42)

HfHub.Discussions.Comment

Represents a comment on a discussion or pull request.

 Summary

 Types

 t()

 Functions

 from_response(response)

 Creates a Comment from API response.

 Types

 t()

 @type t() :: %HfHub.Discussions.Comment{
 author: String.t(),
 content: String.t(),
 created_at: DateTime.t() | nil,
 edited: boolean(),
 hidden: boolean(),
 id: String.t(),
 updated_at: DateTime.t() | nil
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a Comment from API response.

HfHub.Discussions.Discussion

Represents a discussion or pull request summary.
This struct contains basic information about a discussion as returned
from the list endpoint.

 Summary

 Types

 status()

 t()

 Functions

 from_response(response)

 Creates a Discussion from API response.

 Types

 status()

 @type status() :: :open | :closed | :merged | :draft

 t()

 @type t() :: %HfHub.Discussions.Discussion{
 author: String.t(),
 created_at: DateTime.t() | nil,
 is_pull_request: boolean(),
 num: non_neg_integer(),
 num_comments: non_neg_integer(),
 status: status(),
 title: String.t(),
 updated_at: DateTime.t() | nil
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a Discussion from API response.

HfHub.Discussions.DiscussionDetails

Detailed information about a discussion or pull request.
Includes the full event history (comments, status changes, title changes).

 Summary

 Types

 event()

 status()

 t()

 Functions

 from_response(response)

 Creates DiscussionDetails from API response.

 Types

 event()

 @type event() ::
 HfHub.Discussions.Comment.t()
 | HfHub.Discussions.StatusChange.t()
 | HfHub.Discussions.TitleChange.t()

 status()

 @type status() :: :open | :closed | :merged | :draft

 t()

 @type t() :: %HfHub.Discussions.DiscussionDetails{
 author: String.t(),
 created_at: DateTime.t() | nil,
 events: [event()],
 head_sha: String.t() | nil,
 is_pull_request: boolean(),
 merge_commit_oid: String.t() | nil,
 num: non_neg_integer(),
 status: status(),
 target_branch: String.t() | nil,
 title: String.t(),
 updated_at: DateTime.t() | nil
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates DiscussionDetails from API response.

HfHub.Discussions.StatusChange

Represents a status change event in a discussion's history.

 Summary

 Types

 status()

 t()

 Functions

 from_response(response)

 Creates a StatusChange from API response.

 Types

 status()

 @type status() :: :open | :closed | :merged

 t()

 @type t() :: %HfHub.Discussions.StatusChange{
 author: String.t(),
 comment: String.t() | nil,
 created_at: DateTime.t() | nil,
 id: String.t(),
 status: status()
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a StatusChange from API response.

HfHub.Discussions.TitleChange

Represents a title change event in a discussion's history.

 Summary

 Types

 t()

 Functions

 from_response(response)

 Creates a TitleChange from API response.

 Types

 t()

 @type t() :: %HfHub.Discussions.TitleChange{
 author: String.t(),
 created_at: DateTime.t() | nil,
 id: String.t(),
 new_title: String.t(),
 old_title: String.t()
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a TitleChange from API response.

HfHub.Errors

Custom error types for HuggingFace Hub operations.
Provides structured exceptions matching Python's huggingface_hub.errors module.
Each exception includes relevant context fields for debugging.

HfHub.Git

Git operations for HuggingFace Hub repositories.
Provides branch, tag, and commit management.
Examples
Create a branch
{:ok, info} = HfHub.Git.create_branch("my-org/my-model", "feature-branch")

Create a tag with a message
{:ok, info} = HfHub.Git.create_tag("my-model", "v1.0", message: "Release v1.0")

List all refs
{:ok, refs} = HfHub.Git.list_refs("bert-base-uncased")

List commits
{:ok, commits} = HfHub.Git.list_commits("bert-base-uncased")

Super squash (destructive)
:ok = HfHub.Git.super_squash("my-model", message: "Squashed history")

 Summary

 Types

 repo_type()

 Functions

 create_branch(repo_id, branch, opts \\ [])

 Creates a new branch in a repository.

 create_tag(repo_id, tag, opts \\ [])

 Creates a new tag in a repository.

 delete_branch(repo_id, branch, opts \\ [])

 Deletes a branch from a repository.

 delete_tag(repo_id, tag, opts \\ [])

 Deletes a tag from a repository.

 list_commits(repo_id, opts \\ [])

 Lists commits in a repository.

 list_refs(repo_id, opts \\ [])

 Lists all refs (branches, tags) in a repository.

 super_squash(repo_id, opts \\ [])

 Squashes all commits into a single commit.

 Types

 repo_type()

 @type repo_type() :: :model | :dataset | :space

 Functions

 create_branch(repo_id, branch, opts \\ [])

 @spec create_branch(String.t(), String.t(), keyword()) ::
 {:ok, HfHub.Git.BranchInfo.t()} | {:error, term()}

Creates a new branch in a repository.
Options
	:token - Authentication token
	:repo_type - Repository type (:model, :dataset, :space). Defaults to :model.
	:revision - Source revision to branch from. Defaults to "main".
	:exist_ok - Don't error if branch exists. Defaults to false.

Examples
{:ok, info} = HfHub.Git.create_branch("my-model", "feature-branch")
{:ok, info} = HfHub.Git.create_branch("my-model", "hotfix", revision: "v1.0")
{:ok, info} = HfHub.Git.create_branch("my-model", "dev", exist_ok: true)

 create_tag(repo_id, tag, opts \\ [])

 @spec create_tag(String.t(), String.t(), keyword()) ::
 {:ok, HfHub.Git.TagInfo.t()} | {:error, term()}

Creates a new tag in a repository.
Options
	:token - Authentication token
	:repo_type - Repository type. Defaults to :model.
	:revision - Revision to tag. Defaults to "main".
	:message - Optional tag message (creates annotated tag).
	:exist_ok - Don't error if tag exists. Defaults to false.

Examples
{:ok, info} = HfHub.Git.create_tag("my-model", "v1.0")
{:ok, info} = HfHub.Git.create_tag("my-model", "v2.0",
 revision: "abc123", message: "Release v2.0")

 delete_branch(repo_id, branch, opts \\ [])

 @spec delete_branch(String.t(), String.t(), keyword()) :: :ok | {:error, term()}

Deletes a branch from a repository.
Options
	:token - Authentication token
	:repo_type - Repository type. Defaults to :model.

Examples
:ok = HfHub.Git.delete_branch("my-model", "old-branch")

 delete_tag(repo_id, tag, opts \\ [])

 @spec delete_tag(String.t(), String.t(), keyword()) :: :ok | {:error, term()}

Deletes a tag from a repository.
Options
	:token - Authentication token
	:repo_type - Repository type. Defaults to :model.

Examples
:ok = HfHub.Git.delete_tag("my-model", "old-tag")

 list_commits(repo_id, opts \\ [])

 @spec list_commits(
 String.t(),
 keyword()
) :: {:ok, [HfHub.Git.CommitInfo.t()]} | {:error, term()}

Lists commits in a repository.
Options
	:token - Authentication token
	:repo_type - Repository type. Defaults to :model.
	:revision - Branch/tag/commit to list from. Defaults to "main".

Examples
{:ok, commits} = HfHub.Git.list_commits("bert-base-uncased")
Enum.take(commits, 10) # First 10 commits

 list_refs(repo_id, opts \\ [])

 @spec list_refs(
 String.t(),
 keyword()
) :: {:ok, HfHub.Git.GitRefs.t()} | {:error, term()}

Lists all refs (branches, tags) in a repository.
Options
	:token - Authentication token
	:repo_type - Repository type. Defaults to :model.
	:include_pull_requests - Include PR refs. Defaults to false.

Examples
{:ok, refs} = HfHub.Git.list_refs("bert-base-uncased")
refs.branches # [%BranchInfo{name: "main", ...}]
refs.tags # [%TagInfo{name: "v1.0", ...}]

 super_squash(repo_id, opts \\ [])

 @spec super_squash(
 String.t(),
 keyword()
) :: :ok | {:error, term()}

Squashes all commits into a single commit.
WARNING: This is a destructive operation. Use with caution.
Options
	:token - Authentication token (required)
	:repo_type - Repository type. Defaults to :model.
	:branch - Branch to squash. Defaults to "main".
	:message - Commit message for squashed commit.

Examples
:ok = HfHub.Git.super_squash("my-model", message: "Squashed history")

HfHub.Git.BranchInfo

Information about a Git branch in a HuggingFace repository.

 Summary

 Types

 t()

 Functions

 from_response(response)

 Creates a BranchInfo struct from an API response.

 Types

 t()

 @type t() :: %HfHub.Git.BranchInfo{
 name: String.t(),
 ref: String.t() | nil,
 target_commit: String.t() | nil
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a BranchInfo struct from an API response.

HfHub.Git.CommitInfo

Information about a Git commit in a HuggingFace repository.

 Summary

 Types

 author()

 t()

 Functions

 from_response(response)

 Creates a CommitInfo struct from an API response.

 Types

 author()

 @type author() :: %{name: String.t(), email: String.t()}

 t()

 @type t() :: %HfHub.Git.CommitInfo{
 authors: [author()],
 date: DateTime.t() | nil,
 id: String.t(),
 message: String.t() | nil,
 title: String.t() | nil
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a CommitInfo struct from an API response.

HfHub.Git.GitRefs

Collection of Git refs (branches, tags, converts, pull requests) in a repository.

 Summary

 Types

 t()

 Functions

 from_response(response)

 Creates a GitRefs struct from an API response.

 Types

 t()

 @type t() :: %HfHub.Git.GitRefs{
 branches: [HfHub.Git.BranchInfo.t()],
 converts: [map()],
 pull_requests: [map()],
 tags: [HfHub.Git.TagInfo.t()]
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a GitRefs struct from an API response.

HfHub.Git.TagInfo

Information about a Git tag in a HuggingFace repository.

 Summary

 Types

 t()

 Functions

 from_response(response)

 Creates a TagInfo struct from an API response.

 Types

 t()

 @type t() :: %HfHub.Git.TagInfo{
 message: String.t() | nil,
 name: String.t(),
 ref: String.t() | nil,
 target_commit: String.t() | nil
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a TagInfo struct from an API response.

HfHub.Hub

Bumblebee-compatible Hub interface for HuggingFace.
Provides ETag-based caching compatible with Bumblebee's Bumblebee.HuggingFace.Hub.
This module uses URL-based caching with ETag validation, while the existing
HfHub.Download module uses revision-based path caching.
Examples
Download with ETag-based caching
{:ok, path} = HfHub.Hub.cached_download(
 "https://huggingface.co/bert-base-uncased/resolve/main/config.json"
)

With options
{:ok, path} = HfHub.Hub.cached_download(url,
 cache_dir: "/custom/cache",
 auth_token: "hf_xxx",
 offline: true
)

 Summary

 Functions

 cached_download(url, opts \\ [])

 Downloads a file from a URL with ETag-based caching.

 file_listing_url(repository_id, subdir, revision)

 Returns a URL to list the contents of a HuggingFace repository.

 file_url(repository_id, filename, revision)

 Returns a URL pointing to a file in a HuggingFace repository.

 Functions

 cached_download(url, opts \\ [])

 @spec cached_download(
 String.t(),
 keyword()
) :: {:ok, String.t()} | {:error, String.t()}

Downloads a file from a URL with ETag-based caching.
The file is cached based on the received ETag. Subsequent requests
for the same URL validate the ETag and return a file from the cache
if there is a match.
Options
	:cache_dir - Override the default cache directory
	:offline - If true, only return cached files (no network requests)
	:auth_token - Authentication token for private repositories
	:etag - If known, skip the HEAD request to fetch ETag
	:cache_scope - Namespace for organizing cached files

Examples
{:ok, path} = HfHub.Hub.cached_download(
 "https://huggingface.co/bert-base-uncased/resolve/main/config.json"
)

 file_listing_url(repository_id, subdir, revision)

 @spec file_listing_url(String.t(), String.t() | nil, String.t() | nil) :: String.t()

Returns a URL to list the contents of a HuggingFace repository.
Examples
iex> HfHub.Hub.file_listing_url("bert-base-uncased", nil, nil)
"https://huggingface.co/api/models/bert-base-uncased/tree/main"

iex> HfHub.Hub.file_listing_url("bert-base-uncased", "tokenizer", "v1.0")
"https://huggingface.co/api/models/bert-base-uncased/tree/v1.0/tokenizer"

 file_url(repository_id, filename, revision)

 @spec file_url(String.t(), String.t(), String.t() | nil) :: String.t()

Returns a URL pointing to a file in a HuggingFace repository.
Examples
iex> HfHub.Hub.file_url("bert-base-uncased", "config.json", nil)
"https://huggingface.co/bert-base-uncased/resolve/main/config.json"

iex> HfHub.Hub.file_url("bert-base-uncased", "config.json", "v1.0")
"https://huggingface.co/bert-base-uncased/resolve/v1.0/config.json"

HfHub.InferenceEndpoints

Inference Endpoints API for dedicated model hosting.
Provides management of HuggingFace Inference Endpoints - dedicated infrastructure
for model inference with auto-scaling and GPU support.
Accelerator Options
	:cpu - CPU-based inference
	:gpu - GPU-based inference

Instance Sizes
	:x1 - 1x resources
	:x2 - 2x resources
	:x4 - 4x resources
	:x8 - 8x resources

Cloud Vendors
	:aws - Amazon Web Services
	:azure - Microsoft Azure
	:gcp - Google Cloud Platform

Endpoint Types
	:public - Publicly accessible
	:protected - Requires authentication (default)
	:private - Private VPC endpoint

Examples
List all endpoints
{:ok, endpoints} = HfHub.InferenceEndpoints.list()

Create a GPU endpoint
{:ok, endpoint} = HfHub.InferenceEndpoints.create("my-endpoint",
 repository: "bert-base-uncased",
 accelerator: :gpu,
 instance_size: :x1,
 instance_type: "g5.xlarge",
 region: "us-east-1",
 vendor: :aws,
 task: "text-classification"
)

Pause endpoint to save costs
{:ok, endpoint} = HfHub.InferenceEndpoints.pause("my-endpoint")

Resume when needed
{:ok, endpoint} = HfHub.InferenceEndpoints.resume("my-endpoint")

 Summary

 Types

 accelerator()

 endpoint_type()

 instance_size()

 vendor()

 Functions

 create(name, opts)

 Creates a new inference endpoint.

 delete(name, opts \\ [])

 Deletes an endpoint.

 get(name, opts \\ [])

 Gets an endpoint by name.

 list(opts \\ [])

 Lists all inference endpoints.

 pause(name, opts \\ [])

 Pauses an endpoint.

 resume(name, opts \\ [])

 Resumes a paused endpoint.

 scale_to_zero(name, opts \\ [])

 Scales endpoint to zero replicas.

 update(name, opts \\ [])

 Updates an existing endpoint.

 Types

 accelerator()

 @type accelerator() :: :cpu | :gpu

 endpoint_type()

 @type endpoint_type() :: :public | :protected | :private

 instance_size()

 @type instance_size() :: :x1 | :x2 | :x4 | :x8

 vendor()

 @type vendor() :: :aws | :azure | :gcp

 Functions

 create(name, opts)

 @spec create(
 String.t(),
 keyword()
) :: {:ok, HfHub.InferenceEndpoints.Endpoint.t()} | {:error, term()}

Creates a new inference endpoint.
Arguments
	name - Endpoint name

Required Options
	:repository - Model repository ID (e.g., "bert-base-uncased")
	:accelerator - :cpu or :gpu
	:instance_size - :x1, :x2, :x4, or :x8
	:instance_type - Instance type (e.g., "g5.xlarge")
	:region - Cloud region (e.g., "us-east-1")
	:vendor - Cloud vendor: :aws, :azure, or :gcp

Optional
	:framework - "pytorch", "tensorflow", etc. (default: "pytorch")
	:task - ML task (e.g., "text-classification")
	:namespace - Organization namespace (default: current user)
	:min_replica - Minimum replicas (default: 0)
	:max_replica - Maximum replicas (default: 1)
	:scale_to_zero_timeout - Seconds before scaling to zero
	:type - :public, :protected, or :private (default: :protected)
	:custom_image - Custom Docker image configuration
	:token - Authentication token

Examples
{:ok, endpoint} = HfHub.InferenceEndpoints.create("my-endpoint",
 repository: "bert-base-uncased",
 accelerator: :gpu,
 instance_size: :x1,
 instance_type: "g5.xlarge",
 region: "us-east-1",
 vendor: :aws,
 task: "text-classification"
)

{:ok, endpoint} = HfHub.InferenceEndpoints.create("my-endpoint",
 repository: "sentence-transformers/all-MiniLM-L6-v2",
 accelerator: :cpu,
 instance_size: :x2,
 instance_type: "c6i.xlarge",
 region: "eu-west-1",
 vendor: :aws,
 min_replica: 1,
 max_replica: 4,
 scale_to_zero_timeout: 300
)

 delete(name, opts \\ [])

 @spec delete(
 String.t(),
 keyword()
) :: :ok | {:error, term()}

Deletes an endpoint.
Warning: This is destructive and cannot be undone.
Arguments
	name - Endpoint name

Options
	:namespace - Organization namespace
	:token - Authentication token

Examples
:ok = HfHub.InferenceEndpoints.delete("my-endpoint")

 get(name, opts \\ [])

 @spec get(
 String.t(),
 keyword()
) :: {:ok, HfHub.InferenceEndpoints.Endpoint.t()} | {:error, term()}

Gets an endpoint by name.
Arguments
	name - Endpoint name

Options
	:namespace - Organization namespace (default: current user)
	:token - Authentication token

Examples
{:ok, endpoint} = HfHub.InferenceEndpoints.get("my-endpoint")
{:ok, endpoint} = HfHub.InferenceEndpoints.get("my-endpoint", namespace: "my-org")

 list(opts \\ [])

 @spec list(keyword()) ::
 {:ok, [HfHub.InferenceEndpoints.Endpoint.t()]} | {:error, term()}

Lists all inference endpoints.
Options
	:namespace - Organization namespace (default: current user)
	:token - Authentication token

Examples
{:ok, endpoints} = HfHub.InferenceEndpoints.list()
{:ok, endpoints} = HfHub.InferenceEndpoints.list(namespace: "my-org")

 pause(name, opts \\ [])

 @spec pause(
 String.t(),
 keyword()
) :: {:ok, HfHub.InferenceEndpoints.Endpoint.t()} | {:error, term()}

Pauses an endpoint.
Paused endpoints don't incur compute costs but retain configuration.
They must be resumed before they can serve requests.
Arguments
	name - Endpoint name

Options
	:namespace - Organization namespace
	:token - Authentication token

Examples
{:ok, endpoint} = HfHub.InferenceEndpoints.pause("my-endpoint")

 resume(name, opts \\ [])

 @spec resume(
 String.t(),
 keyword()
) :: {:ok, HfHub.InferenceEndpoints.Endpoint.t()} | {:error, term()}

Resumes a paused endpoint.
Arguments
	name - Endpoint name

Options
	:namespace - Organization namespace
	:token - Authentication token

Examples
{:ok, endpoint} = HfHub.InferenceEndpoints.resume("my-endpoint")

 scale_to_zero(name, opts \\ [])

 @spec scale_to_zero(
 String.t(),
 keyword()
) :: {:ok, HfHub.InferenceEndpoints.Endpoint.t()} | {:error, term()}

Scales endpoint to zero replicas.
Different from pause: the endpoint can auto-wake on incoming requests,
while a paused endpoint must be explicitly resumed.
Arguments
	name - Endpoint name

Options
	:namespace - Organization namespace
	:token - Authentication token

Examples
{:ok, endpoint} = HfHub.InferenceEndpoints.scale_to_zero("my-endpoint")

 update(name, opts \\ [])

 @spec update(
 String.t(),
 keyword()
) :: {:ok, HfHub.InferenceEndpoints.Endpoint.t()} | {:error, term()}

Updates an existing endpoint.
Only provided options are updated; others remain unchanged.
Arguments
	name - Endpoint name

Options
	:namespace - Organization namespace
	:accelerator - :cpu or :gpu
	:instance_size - :x1, :x2, :x4, or :x8
	:instance_type - Instance type
	:min_replica - Minimum replicas
	:max_replica - Maximum replicas
	:scale_to_zero_timeout - Seconds before scaling to zero
	:repository - Model repository ID
	:framework - Framework ("pytorch", "tensorflow", etc.)
	:revision - Model revision
	:task - ML task
	:token - Authentication token

Examples
{:ok, endpoint} = HfHub.InferenceEndpoints.update("my-endpoint",
 instance_size: :x2,
 max_replica: 4
)

{:ok, endpoint} = HfHub.InferenceEndpoints.update("my-endpoint",
 repository: "bert-large-uncased"
)

HfHub.InferenceEndpoints.ComputeConfig

Compute configuration for an inference endpoint.

 Summary

 Types

 accelerator()

 t()

 Functions

 from_response(response)

 Creates a ComputeConfig struct from an API response.

 Types

 accelerator()

 @type accelerator() :: :cpu | :gpu

 t()

 @type t() :: %HfHub.InferenceEndpoints.ComputeConfig{
 accelerator: accelerator() | nil,
 instance_size: String.t() | nil,
 instance_type: String.t() | nil,
 scaling: HfHub.InferenceEndpoints.ScalingConfig.t() | nil
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a ComputeConfig struct from an API response.

HfHub.InferenceEndpoints.Endpoint

Inference Endpoint information.
Represents a deployed inference endpoint with its configuration and status.

 Summary

 Types

 endpoint_type()

 status()

 t()

 Functions

 from_response(response)

 Creates an Endpoint struct from an API response.

 Types

 endpoint_type()

 @type endpoint_type() :: :public | :protected | :private

 status()

 @type status() ::
 :pending
 | :initializing
 | :updating
 | :running
 | :paused
 | :failed
 | :scaled_to_zero

 t()

 @type t() :: %HfHub.InferenceEndpoints.Endpoint{
 compute: HfHub.InferenceEndpoints.ComputeConfig.t() | nil,
 created_at: DateTime.t() | nil,
 model: HfHub.InferenceEndpoints.ModelConfig.t() | nil,
 name: String.t(),
 namespace: String.t() | nil,
 provider: HfHub.InferenceEndpoints.ProviderConfig.t() | nil,
 status: status() | nil,
 type: endpoint_type() | nil,
 updated_at: DateTime.t() | nil,
 url: String.t() | nil
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates an Endpoint struct from an API response.

HfHub.InferenceEndpoints.ModelConfig

Model configuration for an inference endpoint.

 Summary

 Types

 t()

 Functions

 from_response(response)

 Creates a ModelConfig struct from an API response.

 Types

 t()

 @type t() :: %HfHub.InferenceEndpoints.ModelConfig{
 framework: String.t() | nil,
 image: map() | nil,
 repository: String.t() | nil,
 revision: String.t() | nil,
 task: String.t() | nil
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a ModelConfig struct from an API response.

HfHub.InferenceEndpoints.ProviderConfig

Cloud provider configuration for an inference endpoint.

 Summary

 Types

 t()

 vendor()

 Functions

 from_response(response)

 Creates a ProviderConfig struct from an API response.

 Types

 t()

 @type t() :: %HfHub.InferenceEndpoints.ProviderConfig{
 region: String.t() | nil,
 vendor: vendor() | nil
}

 vendor()

 @type vendor() :: :aws | :azure | :gcp

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a ProviderConfig struct from an API response.

HfHub.InferenceEndpoints.ScalingConfig

Scaling configuration for an inference endpoint.

 Summary

 Types

 t()

 Functions

 from_response(response)

 Creates a ScalingConfig struct from an API response.

 Types

 t()

 @type t() :: %HfHub.InferenceEndpoints.ScalingConfig{
 max_replica: pos_integer() | nil,
 min_replica: non_neg_integer() | nil,
 scale_to_zero_timeout: non_neg_integer() | nil
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a ScalingConfig struct from an API response.

HfHub.LFS

LFS (Large File Storage) utilities for HuggingFace Hub.
Provides functionality for calculating file hashes and preparing
upload information for the LFS protocol.
Based on Python's huggingface_hub.lfs module.

 Summary

 Functions

 lfs_headers()

 Returns the standard LFS headers for API requests.

 oid(info)

 Returns the LFS OID (object identifier) for upload info.

 sha256_hex(upload_info)

 Converts UploadInfo sha256 to lowercase hex string.

 Functions

 lfs_headers()

 @spec lfs_headers() :: [{String.t(), String.t()}]

Returns the standard LFS headers for API requests.

 oid(info)

 @spec oid(HfHub.LFS.UploadInfo.t()) :: String.t()

Returns the LFS OID (object identifier) for upload info.
The OID is the lowercase hex representation of the SHA256 hash.

 sha256_hex(upload_info)

 @spec sha256_hex(HfHub.LFS.UploadInfo.t()) :: String.t()

Converts UploadInfo sha256 to lowercase hex string.

HfHub.LFS.UploadInfo

Information required to determine upload method for a file.
Contains:
	sha256 - SHA256 hash of the file content (binary)
	size - Total file size in bytes
	sample - First 512 bytes of the file (for content detection)

 Summary

 Types

 t()

 Functions

 from_binary(data)

 Creates UploadInfo from binary data.

 from_path(path)

 Creates UploadInfo from a file path.

 Types

 t()

 @type t() :: %HfHub.LFS.UploadInfo{
 sample: binary(),
 sha256: binary(),
 size: non_neg_integer()
}

 Functions

 from_binary(data)

 @spec from_binary(binary()) :: t()

Creates UploadInfo from binary data.
Calculates SHA256 hash on the binary directly.

 from_path(path)

 @spec from_path(Path.t()) :: t()

Creates UploadInfo from a file path.
Reads the file to calculate SHA256 hash and captures the first 512 bytes.

HfHub.Organizations

Organization profile API.
Provides functions to interact with HuggingFace Hub organization profiles
and member listings.
Examples
Get organization profile
{:ok, org} = HfHub.Organizations.get("huggingface")
IO.inspect(org.num_models)

List members
{:ok, members} = HfHub.Organizations.list_members("huggingface")

 Summary

 Functions

 get(org_name, opts \\ [])

 Gets an organization's public profile.

 list_members(org_name, opts \\ [])

 Lists members of an organization.

 Functions

 get(org_name, opts \\ [])

 @spec get(
 String.t(),
 keyword()
) :: {:ok, HfHub.Users.Organization.t()} | {:error, term()}

Gets an organization's public profile.
Arguments
	org_name - The organization name

Options
	:token - Authentication token

Examples
{:ok, org} = HfHub.Organizations.get("huggingface")
IO.inspect(org.name) # "huggingface"
IO.inspect(org.num_models) # 1000+

 list_members(org_name, opts \\ [])

 @spec list_members(
 String.t(),
 keyword()
) :: {:ok, [HfHub.Users.User.t()]} | {:error, term()}

Lists members of an organization.
Arguments
	org_name - The organization name

Options
	:token - Authentication token

Examples
{:ok, members} = HfHub.Organizations.list_members("huggingface")
Enum.each(members, &IO.inspect(&1.username))

HfHub.Repo

Repository management operations for HuggingFace Hub.
Provides create, delete, update, and move operations for repositories
(models, datasets, and spaces).
Examples
Create a new model repository
{:ok, url} = HfHub.Repo.create("my-org/my-model", private: true)

Create a space with Gradio
{:ok, url} = HfHub.Repo.create("my-space",
 repo_type: :space,
 space_sdk: "gradio"
)

Delete a repository
:ok = HfHub.Repo.delete("my-org/old-model")

Update settings
:ok = HfHub.Repo.update_settings("my-model", private: true, gated: :auto)

Move/rename a repository
{:ok, url} = HfHub.Repo.move("old-name", "new-org/new-name")

 Summary

 Types

 gated()

 repo_type()

 space_hardware()

 space_sdk()

 Functions

 create(repo_id, opts \\ [])

 Creates a new repository on the Hugging Face Hub.

 delete(repo_id, opts \\ [])

 Deletes a repository.

 exists?(repo_id, opts \\ [])

 Checks if a repository exists.

 file_exists?(repo_id, filename, opts \\ [])

 Checks if a file exists in a repository.

 move(from_repo, to_repo, opts \\ [])

 Moves (renames) a repository.

 revision_exists?(repo_id, revision, opts \\ [])

 Checks if a revision exists.

 update_settings(repo_id, opts \\ [])

 Updates repository settings.

 Types

 gated()

 @type gated() :: :auto | :manual | false

 repo_type()

 @type repo_type() :: :model | :dataset | :space

 space_hardware()

 @type space_hardware() :: String.t()

 space_sdk()

 @type space_sdk() :: String.t()

 Functions

 create(repo_id, opts \\ [])

 @spec create(
 String.t(),
 keyword()
) :: {:ok, HfHub.Repo.RepoUrl.t()} | {:error, term()}

Creates a new repository on the Hugging Face Hub.
Options
	:token - Authentication token
	:repo_type - Type of repository (:model, :dataset, :space). Defaults to :model.
	:private - Whether the repository should be private. Defaults to false.
	:exist_ok - If true, do not error if repo already exists. Defaults to false.
	:space_sdk - SDK to use for spaces ("gradio", "streamlit", "docker", "static").
	:space_hardware - Hardware to use for spaces.

Examples
{:ok, url} = HfHub.Repo.create("my-model")
{:ok, url} = HfHub.Repo.create("my-dataset", repo_type: :dataset)

 delete(repo_id, opts \\ [])

 @spec delete(
 String.t(),
 keyword()
) :: :ok | {:error, term()}

Deletes a repository.
Options
	:token - Authentication token
	:repo_type - Type of repository. Defaults to :model.
	:missing_ok - If true, do not error if repo does not exist. Defaults to false.

 exists?(repo_id, opts \\ [])

 @spec exists?(
 String.t(),
 keyword()
) :: boolean()

Checks if a repository exists.
Using HEAD request to check existence.
For models: /repo_id
For datasets: /datasets/repo_id
For spaces: /spaces/repo_id

 file_exists?(repo_id, filename, opts \\ [])

 @spec file_exists?(String.t(), String.t(), keyword()) :: boolean()

Checks if a file exists in a repository.

 move(from_repo, to_repo, opts \\ [])

 @spec move(String.t(), String.t(), keyword()) ::
 {:ok, HfHub.Repo.RepoUrl.t()} | {:error, term()}

Moves (renames) a repository.
Options
	:token - Authentication token
	:repo_type - Type of repository. Defaults to :model.

 revision_exists?(repo_id, revision, opts \\ [])

 @spec revision_exists?(String.t(), String.t(), keyword()) :: boolean()

Checks if a revision exists.
Uses the repo info endpoint to check for valid revision.
This is effectively checking if we can get info about a specific revision.

 update_settings(repo_id, opts \\ [])

 @spec update_settings(
 String.t(),
 keyword()
) :: :ok | {:error, term()}

Updates repository settings.
Options
	:token - Authentication token
	:repo_type - Type of repository. Defaults to :model.
	:private - Set visibility
	:gated - Set gated status (:auto, :manual, false)

HfHub.Repo.RepoUrl

Repository URL returned from create/move operations.

 Summary

 Types

 t()

 Functions

 from_response(response, repo_type)

 Create a RepoUrl struct from an API response.

 Types

 t()

 @type t() :: %HfHub.Repo.RepoUrl{
 repo_id: String.t(),
 repo_type: :model | :dataset | :space,
 url: String.t()
}

 Functions

 from_response(response, repo_type)

Create a RepoUrl struct from an API response.

HfHub.RepoFiles

Repository file listing with ETag information.
Provides Bumblebee-compatible file listing that returns a map of
filenames to ETags, suitable for efficient cache validation.
Examples
List files from HuggingFace repository
{:ok, files} = HfHub.RepoFiles.get_repo_files({:hf, "bert-base-uncased"})
=> %{"config.json" => ""abc123"", "pytorch_model.bin" => ""def456"", ...}

List files from local directory
{:ok, files} = HfHub.RepoFiles.get_repo_files({:local, "/path/to/model"})
=> %{"config.json" => nil, "pytorch_model.bin" => nil, ...}

 Summary

 Functions

 get_repo_files(repository)

 Gets a map of files and their ETags from a repository.

 Functions

 get_repo_files(repository)

 @spec get_repo_files(HfHub.Repository.t()) ::
 {:ok, %{required(String.t()) => String.t() | nil}} | {:error, term()}

Gets a map of files and their ETags from a repository.
For HuggingFace repositories, returns %{filename => etag} where etag
is used for cache validation. For local directories, returns
%{filename => nil}.
Examples
{:ok, files} = HfHub.RepoFiles.get_repo_files({:hf, "bert-base-uncased"})
Map.has_key?(files, "config.json")
=> true

HfHub.Repository

Repository reference types and helpers for HuggingFace Hub.
Provides Bumblebee-compatible repository tuple types alongside
the existing keyword-based API.
Repository Types
A repository can be referenced as:
	{:hf, repository_id} - HuggingFace Hub repository
	{:hf, repository_id, opts} - HuggingFace Hub repository with options
	{:local, directory} - Local directory containing model files

Options for :hf repositories
	:revision - Git revision (branch, tag, or commit). Defaults to "main".
	:cache_dir - Override the cache directory
	:offline - If true, only use cached files
	:auth_token - Authentication token for private repos
	:subdir - Subdirectory within the repository

Examples
Simple HuggingFace repository
{:hf, "bert-base-uncased"}

With options
{:hf, "bert-base-uncased", revision: "v1.0", auth_token: "hf_xxx"}

Local directory
{:local, "/path/to/model"}

 Summary

 Types

 opts()

 t()

 Functions

 cache_scope(repository_id)

 Converts a repository ID to a cache scope string.

 file_listing_url(arg)

 Returns a URL to list the contents of a HuggingFace repository.

 file_url(arg, filename)

 Returns a URL pointing to a file in a HuggingFace repository.

 normalize!(other)

 Normalizes a repository reference to its canonical form.

 Types

 opts()

 @type opts() :: [
 revision: String.t(),
 cache_dir: Path.t(),
 offline: boolean(),
 auth_token: String.t(),
 subdir: String.t()
]

 t()

 @type t() :: {:hf, String.t()} | {:hf, String.t(), keyword()} | {:local, Path.t()}

 Functions

 cache_scope(repository_id)

 @spec cache_scope(String.t()) :: String.t()

Converts a repository ID to a cache scope string.
Used for organizing cached files by repository.
Examples
iex> HfHub.Repository.cache_scope("openai/gpt-2")
"openai--gpt-2"

 file_listing_url(arg)

 @spec file_listing_url({:hf, String.t(), keyword()}) :: String.t()

Returns a URL to list the contents of a HuggingFace repository.
Examples
iex> HfHub.Repository.file_listing_url({:hf, "bert-base-uncased", []})
"https://huggingface.co/api/models/bert-base-uncased/tree/main"

 file_url(arg, filename)

 @spec file_url({:hf, String.t(), keyword()}, String.t()) :: String.t()

Returns a URL pointing to a file in a HuggingFace repository.
Examples
iex> HfHub.Repository.file_url({:hf, "bert-base-uncased", []}, "config.json")
"https://huggingface.co/bert-base-uncased/resolve/main/config.json"

iex> HfHub.Repository.file_url({:hf, "bert-base-uncased", revision: "v1.0"}, "config.json")
"https://huggingface.co/bert-base-uncased/resolve/v1.0/config.json"

 normalize!(other)

 @spec normalize!(t()) :: {:hf, String.t(), keyword()} | {:local, Path.t()}

Normalizes a repository reference to its canonical form.
Converts {:hf, id} to {:hf, id, []} for consistent handling.
Examples
iex> HfHub.Repository.normalize!({:hf, "bert-base-uncased"})
{:hf, "bert-base-uncased", []}

iex> HfHub.Repository.normalize!({:hf, "bert-base-uncased", revision: "v1.0"})
{:hf, "bert-base-uncased", [revision: "v1.0"]}

iex> HfHub.Repository.normalize!({:local, "/path/to/model"})
{:local, "/path/to/model"}

HfHub.Spaces

Space management API for HuggingFace Spaces.
Provides runtime control, secrets, variables, and hardware configuration.
Hardware Options
	:cpu_basic - Free CPU
	:cpu_upgrade - Upgraded CPU
	:t4_small - T4 GPU (small)
	:t4_medium - T4 GPU (medium)
	:a10g_small - A10G GPU (small)
	:a10g_large - A10G GPU (large)
	:a100_large - A100 GPU
	:zero_a10g - ZeroGPU A10G

Storage Options
	:small - Small persistent storage
	:medium - Medium persistent storage
	:large - Large persistent storage

Examples
Get runtime info
{:ok, runtime} = HfHub.Spaces.get_runtime("user/my-space")

Request GPU hardware
{:ok, runtime} = HfHub.Spaces.request_hardware("user/my-space", :t4_small)

Add a secret
:ok = HfHub.Spaces.add_secret("user/my-space", "API_KEY", "secret_value")

Pause and restart
{:ok, _} = HfHub.Spaces.pause("user/my-space")
{:ok, _} = HfHub.Spaces.restart("user/my-space")

 Summary

 Types

 hardware()

 storage()

 Functions

 add_secret(repo_id, key, value, opts \\ [])

 Adds or updates a secret.

 add_variable(repo_id, key, value, opts \\ [])

 Adds or updates a variable.

 delete_secret(repo_id, key, opts \\ [])

 Deletes a secret.

 delete_storage(repo_id, opts \\ [])

 Deletes persistent storage.

 delete_variable(repo_id, key, opts \\ [])

 Deletes a variable.

 duplicate(from_id, opts \\ [])

 Duplicates a Space to a new repository.

 get_runtime(repo_id, opts \\ [])

 Gets runtime information for a Space.

 get_variables(repo_id, opts \\ [])

 Gets all variables for a Space.

 pause(repo_id, opts \\ [])

 Pauses a running Space.

 request_hardware(repo_id, hardware, opts \\ [])

 Requests hardware upgrade or downgrade.

 request_storage(repo_id, storage, opts \\ [])

 Requests persistent storage.

 restart(repo_id, opts \\ [])

 Restarts a Space.

 set_sleep_time(repo_id, seconds, opts \\ [])

 Sets the auto-sleep timeout.

 Types

 hardware()

 @type hardware() ::
 :cpu_basic
 | :cpu_upgrade
 | :t4_small
 | :t4_medium
 | :a10g_small
 | :a10g_large
 | :a100_large
 | :zero_a10g

 storage()

 @type storage() :: :small | :medium | :large

 Functions

 add_secret(repo_id, key, value, opts \\ [])

 @spec add_secret(String.t(), String.t(), String.t(), keyword()) ::
 :ok | {:error, term()}

Adds or updates a secret.
Secrets are encrypted and not visible after creation.
Arguments
	repo_id - Repository ID
	key - Secret name
	value - Secret value
	opts - Request options

Options
	:token - Authentication token
	:description - Optional description

Examples
:ok = HfHub.Spaces.add_secret("user/my-space", "API_KEY", "secret_value")
:ok = HfHub.Spaces.add_secret("user/my-space", "API_KEY", "value",
 description: "API key for external service")

 add_variable(repo_id, key, value, opts \\ [])

 @spec add_variable(String.t(), String.t(), String.t(), keyword()) ::
 {:ok, HfHub.Spaces.SpaceVariable.t()} | {:error, term()}

Adds or updates a variable.
Variables are visible in the Space settings.
Arguments
	repo_id - Repository ID
	key - Variable name
	value - Variable value
	opts - Request options

Options
	:token - Authentication token
	:description - Optional description

Examples
{:ok, var} = HfHub.Spaces.add_variable("user/my-space", "DEBUG", "true")

 delete_secret(repo_id, key, opts \\ [])

 @spec delete_secret(String.t(), String.t(), keyword()) :: :ok | {:error, term()}

Deletes a secret.
Arguments
	repo_id - Repository ID
	key - Secret name to delete
	opts - Request options

Options
	:token - Authentication token

Examples
:ok = HfHub.Spaces.delete_secret("user/my-space", "API_KEY")

 delete_storage(repo_id, opts \\ [])

 @spec delete_storage(
 String.t(),
 keyword()
) :: {:ok, HfHub.Spaces.SpaceRuntime.t()} | {:error, term()}

Deletes persistent storage.
Warning: This is destructive and cannot be undone.
Arguments
	repo_id - Repository ID
	opts - Request options

Options
	:token - Authentication token

Examples
{:ok, runtime} = HfHub.Spaces.delete_storage("user/my-space")

 delete_variable(repo_id, key, opts \\ [])

 @spec delete_variable(String.t(), String.t(), keyword()) :: :ok | {:error, term()}

Deletes a variable.
Arguments
	repo_id - Repository ID
	key - Variable name to delete
	opts - Request options

Options
	:token - Authentication token

Examples
:ok = HfHub.Spaces.delete_variable("user/my-space", "DEBUG")

 duplicate(from_id, opts \\ [])

 @spec duplicate(
 String.t(),
 keyword()
) :: {:ok, HfHub.Repo.RepoUrl.t()} | {:error, term()}

Duplicates a Space to a new repository.
Arguments
	from_id - Source Space repository ID
	opts - Request options

Options
	:token - Authentication token
	:to_id - Target repository ID (default: same name in user namespace)
	:private - Make duplicate private (default: false)
	:hardware - Hardware for duplicate
	:storage - Storage for duplicate
	:secrets - List of secrets to copy (maps with "key" and "value")
	:variables - List of variables to copy (maps with "key" and "value")

Examples
{:ok, repo_url} = HfHub.Spaces.duplicate("gradio/hello_world")
{:ok, repo_url} = HfHub.Spaces.duplicate("gradio/hello_world",
 to_id: "user/my-copy", private: true)

 get_runtime(repo_id, opts \\ [])

 @spec get_runtime(
 String.t(),
 keyword()
) :: {:ok, HfHub.Spaces.SpaceRuntime.t()} | {:error, term()}

Gets runtime information for a Space.
Arguments
	repo_id - Repository ID (e.g., "user/my-space")
	opts - Request options

Options
	:token - Authentication token

Examples
{:ok, runtime} = HfHub.Spaces.get_runtime("user/my-space")
runtime.stage # => :running
runtime.hardware # => "cpu-basic"

 get_variables(repo_id, opts \\ [])

 @spec get_variables(
 String.t(),
 keyword()
) ::
 {:ok, %{required(String.t()) => HfHub.Spaces.SpaceVariable.t()}}
 | {:error, term()}

Gets all variables for a Space.
Arguments
	repo_id - Repository ID
	opts - Request options

Options
	:token - Authentication token

Examples
{:ok, vars} = HfHub.Spaces.get_variables("user/my-space")
vars["MY_VAR"].value # => "some_value"

 pause(repo_id, opts \\ [])

 @spec pause(
 String.t(),
 keyword()
) :: {:ok, HfHub.Spaces.SpaceRuntime.t()} | {:error, term()}

Pauses a running Space.
A paused Space stops using resources but retains its configuration.
Arguments
	repo_id - Repository ID
	opts - Request options

Options
	:token - Authentication token

Examples
{:ok, runtime} = HfHub.Spaces.pause("user/my-space")

 request_hardware(repo_id, hardware, opts \\ [])

 @spec request_hardware(String.t(), hardware(), keyword()) ::
 {:ok, HfHub.Spaces.SpaceRuntime.t()} | {:error, term()}

Requests hardware upgrade or downgrade.
Arguments
	repo_id - Repository ID
	hardware - Hardware type (see module docs)
	opts - Request options

Options
	:token - Authentication token
	:sleep_time - Auto-sleep timeout in seconds

Examples
{:ok, runtime} = HfHub.Spaces.request_hardware("user/my-space", :t4_small)
{:ok, runtime} = HfHub.Spaces.request_hardware("user/my-space", :cpu_basic,
 sleep_time: 300)

 request_storage(repo_id, storage, opts \\ [])

 @spec request_storage(String.t(), storage(), keyword()) ::
 {:ok, HfHub.Spaces.SpaceRuntime.t()} | {:error, term()}

Requests persistent storage.
Arguments
	repo_id - Repository ID
	storage - Storage tier (:small, :medium, or :large)
	opts - Request options

Options
	:token - Authentication token

Examples
{:ok, runtime} = HfHub.Spaces.request_storage("user/my-space", :small)

 restart(repo_id, opts \\ [])

 @spec restart(
 String.t(),
 keyword()
) :: {:ok, HfHub.Spaces.SpaceRuntime.t()} | {:error, term()}

Restarts a Space.
Arguments
	repo_id - Repository ID
	opts - Request options

Options
	:token - Authentication token
	:factory_reboot - Full factory reset (default: false)

Examples
{:ok, runtime} = HfHub.Spaces.restart("user/my-space")
{:ok, runtime} = HfHub.Spaces.restart("user/my-space", factory_reboot: true)

 set_sleep_time(repo_id, seconds, opts \\ [])

 @spec set_sleep_time(String.t(), integer(), keyword()) ::
 {:ok, HfHub.Spaces.SpaceRuntime.t()} | {:error, term()}

Sets the auto-sleep timeout.
Arguments
	repo_id - Repository ID
	seconds - Timeout in seconds, or -1 to disable (requires paid hardware)
	opts - Request options

Options
	:token - Authentication token

Examples
{:ok, runtime} = HfHub.Spaces.set_sleep_time("user/my-space", 300)
{:ok, runtime} = HfHub.Spaces.set_sleep_time("user/my-space", -1) # Never sleep

HfHub.Spaces.SpaceRuntime

Runtime information for a HuggingFace Space.

 Summary

 Types

 stage()

 t()

 Functions

 from_response(response)

 Create a SpaceRuntime struct from an API response.

 Types

 stage()

 @type stage() ::
 :building
 | :running
 | :paused
 | :sleeping
 | :stopped
 | :runtime_error
 | :no_app_file

 t()

 @type t() :: %HfHub.Spaces.SpaceRuntime{
 hardware: String.t() | nil,
 raw_logs: boolean() | nil,
 requested_hardware: String.t() | nil,
 sdk: String.t() | nil,
 sdk_version: String.t() | nil,
 sleep_time: integer() | nil,
 stage: stage() | nil,
 storage: String.t() | nil
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Create a SpaceRuntime struct from an API response.

HfHub.Spaces.SpaceVariable

A Space environment variable.

 Summary

 Types

 t()

 Functions

 from_response(key, response)

 Create a SpaceVariable struct from an API response.

 Types

 t()

 @type t() :: %HfHub.Spaces.SpaceVariable{
 description: String.t() | nil,
 key: String.t(),
 updated_at: DateTime.t() | nil,
 value: String.t() | nil
}

 Functions

 from_response(key, response)

 @spec from_response(String.t(), map() | String.t()) :: t()

Create a SpaceVariable struct from an API response.

HfHub.Users

User profile and activity API.
Provides functions to interact with HuggingFace Hub user profiles,
followers/following relationships, and repository likes.
Examples
Get user profile
{:ok, user} = HfHub.Users.get("username")
IO.inspect(user.num_followers)

List followers
{:ok, followers} = HfHub.Users.list_followers("username")

Like/unlike repos
:ok = HfHub.Users.like("bert-base-uncased")
:ok = HfHub.Users.unlike("bert-base-uncased")

 Summary

 Functions

 get(username, opts \\ [])

 Gets a user's public profile.

 like(repo_id, opts \\ [])

 Likes a repository.

 list_followers(username, opts \\ [])

 Lists users who follow a user.

 list_following(username, opts \\ [])

 Lists users a user is following.

 list_liked_repos(username, opts \\ [])

 Lists repositories liked by a user.

 list_likers(repo_id, opts \\ [])

 Lists users who liked a repository.

 unlike(repo_id, opts \\ [])

 Unlikes a repository.

 Functions

 get(username, opts \\ [])

 @spec get(
 String.t(),
 keyword()
) :: {:ok, HfHub.Users.User.t()} | {:error, term()}

Gets a user's public profile.
Arguments
	username - The HuggingFace username

Options
	:token - Authentication token

Examples
{:ok, user} = HfHub.Users.get("julien-c")
IO.inspect(user.username) # "julien-c"
IO.inspect(user.fullname) # "Julien Chaumond"

 like(repo_id, opts \\ [])

 @spec like(
 String.t(),
 keyword()
) :: :ok | {:error, term()}

Likes a repository.
Requires authentication.
Arguments
	repo_id - Repository ID (e.g., "bert-base-uncased")

Options
	:token - Authentication token. If not provided, uses configured token.
	:repo_type - Type of repository (:model, :dataset, :space). Defaults to :model.

Examples
:ok = HfHub.Users.like("bert-base-uncased")
:ok = HfHub.Users.like("squad", repo_type: :dataset)

 list_followers(username, opts \\ [])

 @spec list_followers(
 String.t(),
 keyword()
) :: {:ok, [HfHub.Users.User.t()]} | {:error, term()}

Lists users who follow a user.
Arguments
	username - The HuggingFace username

Options
	:token - Authentication token

Examples
{:ok, followers} = HfHub.Users.list_followers("julien-c")
Enum.each(followers, &IO.inspect(&1.username))

 list_following(username, opts \\ [])

 @spec list_following(
 String.t(),
 keyword()
) :: {:ok, [HfHub.Users.User.t()]} | {:error, term()}

Lists users a user is following.
Arguments
	username - The HuggingFace username

Options
	:token - Authentication token

Examples
{:ok, following} = HfHub.Users.list_following("julien-c")

 list_liked_repos(username, opts \\ [])

 @spec list_liked_repos(
 String.t(),
 keyword()
) :: {:ok, [map()]} | {:error, term()}

Lists repositories liked by a user.
Arguments
	username - The HuggingFace username

Options
	:token - Authentication token

Examples
{:ok, liked} = HfHub.Users.list_liked_repos("julien-c")

 list_likers(repo_id, opts \\ [])

 @spec list_likers(
 String.t(),
 keyword()
) :: {:ok, [HfHub.Users.User.t()]} | {:error, term()}

Lists users who liked a repository.
Arguments
	repo_id - Repository ID (e.g., "bert-base-uncased")

Options
	:token - Authentication token
	:repo_type - Type of repository (:model, :dataset, :space). Defaults to :model.

Examples
{:ok, likers} = HfHub.Users.list_likers("bert-base-uncased")

 unlike(repo_id, opts \\ [])

 @spec unlike(
 String.t(),
 keyword()
) :: :ok | {:error, term()}

Unlikes a repository.
Requires authentication.
Arguments
	repo_id - Repository ID (e.g., "bert-base-uncased")

Options
	:token - Authentication token. If not provided, uses configured token.
	:repo_type - Type of repository (:model, :dataset, :space). Defaults to :model.

Examples
:ok = HfHub.Users.unlike("bert-base-uncased")

HfHub.Users.Organization

Represents a HuggingFace Hub organization profile.

 Summary

 Types

 t()

 Functions

 from_response(response)

 Creates an Organization struct from an API response map.

 Types

 t()

 @type t() :: %HfHub.Users.Organization{
 avatar_url: String.t() | nil,
 details: String.t() | nil,
 fullname: String.t() | nil,
 name: String.t(),
 num_datasets: non_neg_integer(),
 num_members: non_neg_integer(),
 num_models: non_neg_integer(),
 num_spaces: non_neg_integer()
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates an Organization struct from an API response map.

HfHub.Users.User

Represents a HuggingFace Hub user profile.

 Summary

 Types

 t()

 Functions

 from_response(response)

 Creates a User struct from an API response map.

 Types

 t()

 @type t() :: %HfHub.Users.User{
 avatar_url: String.t() | nil,
 details: String.t() | nil,
 fullname: String.t() | nil,
 is_following: boolean() | nil,
 num_datasets: non_neg_integer(),
 num_followers: non_neg_integer(),
 num_following: non_neg_integer(),
 num_likes: non_neg_integer(),
 num_models: non_neg_integer(),
 num_spaces: non_neg_integer(),
 username: String.t()
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a User struct from an API response map.

HfHub.Webhooks

Webhooks API for event notifications on HuggingFace Hub.
Webhooks enable automated notifications when events occur on repositories.
Examples
List all webhooks
{:ok, webhooks} = HfHub.Webhooks.list(token: "hf_xxx")

Get a specific webhook
{:ok, webhook} = HfHub.Webhooks.get("webhook-id", token: "hf_xxx")

Create a new webhook
{:ok, webhook} = HfHub.Webhooks.create("https://example.com/hook",
 watched: [{:model, "bert-base-uncased"}],
 domains: [:repo],
 token: "hf_xxx")

Enable/disable a webhook
{:ok, webhook} = HfHub.Webhooks.enable("webhook-id", token: "hf_xxx")
{:ok, webhook} = HfHub.Webhooks.disable("webhook-id", token: "hf_xxx")

Delete a webhook
:ok = HfHub.Webhooks.delete("webhook-id", token: "hf_xxx")

 Summary

 Types

 domain()

 Functions

 create(url, opts \\ [])

 Creates a new webhook.

 delete(webhook_id, opts \\ [])

 Deletes a webhook.

 disable(webhook_id, opts \\ [])

 Disables a webhook.

 enable(webhook_id, opts \\ [])

 Enables a webhook.

 get(webhook_id, opts \\ [])

 Gets a webhook by ID.

 list(opts \\ [])

 Lists all webhooks for the authenticated user.

 update(webhook_id, opts \\ [])

 Updates a webhook.

 Types

 domain()

 @type domain() :: :repo | :discussion

 Functions

 create(url, opts \\ [])

 @spec create(
 String.t(),
 keyword()
) :: {:ok, HfHub.Webhooks.WebhookInfo.t()} | {:error, term()}

Creates a new webhook.
Arguments
	url - Webhook endpoint URL

Options
	:watched - List of repos to watch: [{:model, "user/repo"}, {:dataset, "name"}]
	:domains - Event domains: [:repo, :discussion]
	:secret - Webhook secret for signature verification
	:token - Authentication token (required)

Examples
{:ok, webhook} = HfHub.Webhooks.create("https://example.com/hook",
 watched: [{:model, "bert-base-uncased"}],
 domains: [:repo],
 secret: "my-secret",
 token: "hf_xxx")

{:ok, webhook} = HfHub.Webhooks.create("https://example.com/hook",
 watched: [{:model, "bert-base-uncased"}, {:dataset, "squad"}],
 domains: [:repo, :discussion],
 token: "hf_xxx")

 delete(webhook_id, opts \\ [])

 @spec delete(
 String.t(),
 keyword()
) :: :ok | {:error, term()}

Deletes a webhook.
Options
	:missing_ok - Don't error if webhook doesn't exist (default: false)
	:token - Authentication token (required)

Examples
:ok = HfHub.Webhooks.delete("webhook-id", token: "hf_xxx")
:ok = HfHub.Webhooks.delete("maybe-exists", missing_ok: true, token: "hf_xxx")

 disable(webhook_id, opts \\ [])

 @spec disable(
 String.t(),
 keyword()
) :: {:ok, HfHub.Webhooks.WebhookInfo.t()} | {:error, term()}

Disables a webhook.
Options
	:token - Authentication token (required)

Examples
{:ok, webhook} = HfHub.Webhooks.disable("webhook-id", token: "hf_xxx")

 enable(webhook_id, opts \\ [])

 @spec enable(
 String.t(),
 keyword()
) :: {:ok, HfHub.Webhooks.WebhookInfo.t()} | {:error, term()}

Enables a webhook.
Options
	:token - Authentication token (required)

Examples
{:ok, webhook} = HfHub.Webhooks.enable("webhook-id", token: "hf_xxx")

 get(webhook_id, opts \\ [])

 @spec get(
 String.t(),
 keyword()
) :: {:ok, HfHub.Webhooks.WebhookInfo.t()} | {:error, term()}

Gets a webhook by ID.
Options
	:token - Authentication token (required)

Examples
{:ok, webhook} = HfHub.Webhooks.get("webhook-id", token: "hf_xxx")

 list(opts \\ [])

 @spec list(keyword()) :: {:ok, [HfHub.Webhooks.WebhookInfo.t()]} | {:error, term()}

Lists all webhooks for the authenticated user.
Options
	:token - Authentication token (required)

Examples
{:ok, webhooks} = HfHub.Webhooks.list(token: "hf_xxx")

 update(webhook_id, opts \\ [])

 @spec update(
 String.t(),
 keyword()
) :: {:ok, HfHub.Webhooks.WebhookInfo.t()} | {:error, term()}

Updates a webhook.
Options
	:url - New webhook endpoint URL
	:watched - New list of repos to watch
	:domains - New event domains
	:secret - New webhook secret
	:token - Authentication token (required)

Examples
{:ok, webhook} = HfHub.Webhooks.update("webhook-id",
 url: "https://new-url.com/hook",
 token: "hf_xxx")

{:ok, webhook} = HfHub.Webhooks.update("webhook-id",
 watched: [{:model, "gpt2"}],
 token: "hf_xxx")

HfHub.Webhooks.WatchedItem

Represents a watched item in a webhook configuration.
A watched item specifies a repository or entity to monitor for events.

 Summary

 Types

 item_type()

 t()

 Functions

 from_response(response)

 Creates a WatchedItem from API response.

 Types

 item_type()

 @type item_type() :: :model | :dataset | :space | :user | :org

 t()

 @type t() :: %HfHub.Webhooks.WatchedItem{name: String.t(), type: item_type()}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a WatchedItem from API response.

HfHub.Webhooks.WebhookInfo

Represents a webhook configuration on HuggingFace Hub.
Webhooks enable automated notifications when events occur on repositories.

 Summary

 Types

 t()

 Functions

 from_response(response)

 Creates a WebhookInfo from API response.

 Types

 t()

 @type t() :: %HfHub.Webhooks.WebhookInfo{
 created_at: DateTime.t() | nil,
 disabled: boolean(),
 domains: [:repo | :discussion],
 id: String.t(),
 secret: String.t() | nil,
 url: String.t(),
 watched: [HfHub.Webhooks.WatchedItem.t()]
}

 Functions

 from_response(response)

 @spec from_response(map()) :: t()

Creates a WebhookInfo from API response.

HfHub.Api

HuggingFace Hub API client.
Provides functions to interact with the HuggingFace Hub API for fetching
metadata about models, datasets, and spaces.
Examples
Get model information
{:ok, model_info} = HfHub.Api.model_info("bert-base-uncased")

Get dataset information
{:ok, dataset_info} = HfHub.Api.dataset_info("squad")

List models with filters
{:ok, models} = HfHub.Api.list_models(filter: "text-classification", sort: "downloads")

List files in a repository
{:ok, files} = HfHub.Api.list_files("bert-base-uncased", repo_type: :model)

 Summary

 Types

 dataset_info()

 file_info()

 model_info()

 space_info()

 tree_entry()

 Functions

 dataset_configs(repo_id, opts \\ [])

 Gets the available configuration names for a dataset.

 dataset_info(repo_id, opts \\ [])

 Fetches information about a dataset from the HuggingFace Hub.

 dataset_splits(repo_id, opts \\ [])

 Lists available splits for a dataset config.

 extract_config_names(card_data)

 Extracts configuration names from dataset card_data.

 list_datasets(opts \\ [])

 Lists datasets from the HuggingFace Hub with optional filters.

 list_files(repo_id, opts \\ [])

 Lists files in a repository.

 list_models(opts \\ [])

 Lists models from the HuggingFace Hub with optional filters.

 list_repo_tree(repo_id, opts \\ [])

 Lists repository tree entries (files and folders).

 model_info(repo_id, opts \\ [])

 Fetches information about a model from the HuggingFace Hub.

 space_info(repo_id, opts \\ [])

 Fetches information about a space from the HuggingFace Hub.

 Types

 dataset_info()

 @type dataset_info() :: %{
 id: String.t(),
 author: String.t() | nil,
 sha: String.t(),
 downloads: non_neg_integer(),
 likes: non_neg_integer(),
 tags: [String.t()],
 siblings: [file_info()],
 created_at: DateTime.t(),
 updated_at: DateTime.t()
}

 file_info()

 @type file_info() :: %{
 rfilename: String.t(),
 size: non_neg_integer(),
 lfs: map() | nil
}

 model_info()

 @type model_info() :: %{
 id: String.t(),
 author: String.t() | nil,
 sha: String.t(),
 downloads: non_neg_integer(),
 likes: non_neg_integer(),
 tags: [String.t()],
 pipeline_tag: String.t() | nil,
 siblings: [file_info()],
 created_at: DateTime.t(),
 updated_at: DateTime.t()
}

 space_info()

 @type space_info() :: %{
 id: String.t(),
 author: String.t() | nil,
 sha: String.t(),
 likes: non_neg_integer(),
 tags: [String.t()],
 sdk: String.t(),
 created_at: DateTime.t(),
 updated_at: DateTime.t()
}

 tree_entry()

 @type tree_entry() :: %{
 type: :file | :folder,
 path: String.t(),
 size: non_neg_integer() | nil,
 lfs: map() | nil,
 oid: String.t() | nil
}

 Functions

 dataset_configs(repo_id, opts \\ [])

 @spec dataset_configs(
 HfHub.repo_id(),
 keyword()
) :: {:ok, [String.t()]} | {:error, term()}

Gets the available configuration names for a dataset.
Configurations (also called subsets) represent different versions or splits
of a dataset. For example, openai/gsm8k has "main" and "socratic" configs.
Options
	:token - Authentication token. If not provided, uses configured token.

Examples
{:ok, configs} = HfHub.Api.dataset_configs("openai/gsm8k")
=> {:ok, ["main", "socratic"]}

{:ok, configs} = HfHub.Api.dataset_configs("imdb")
=> {:ok, ["plain_text"]}

 dataset_info(repo_id, opts \\ [])

 @spec dataset_info(
 HfHub.repo_id(),
 keyword()
) :: {:ok, dataset_info()} | {:error, term()}

Fetches information about a dataset from the HuggingFace Hub.
Options
	:revision - Git revision (branch, tag, or commit hash). Defaults to "main".
	:token - Authentication token. If not provided, uses configured token.

Examples
{:ok, info} = HfHub.Api.dataset_info("squad")
{:ok, info} = HfHub.Api.dataset_info("squad", revision: "main")

 dataset_splits(repo_id, opts \\ [])

 @spec dataset_splits(
 HfHub.repo_id(),
 keyword()
) :: {:ok, [String.t()]} | {:error, term()}

Lists available splits for a dataset config.
Options
	:config - Dataset config name (defaults to inferred config).
	:revision - Git revision. Defaults to "main".
	:token - Authentication token.

 extract_config_names(card_data)

 @spec extract_config_names(map() | nil) :: [String.t()]

Extracts configuration names from dataset card_data.
Handles both the modern "configs" format and legacy "dataset_config_names" format.
Examples
iex> HfHub.Api.extract_config_names(%{"configs" => [%{"config_name" => "main"}]})
["main"]

iex> HfHub.Api.extract_config_names(%{"dataset_config_names" => ["train", "test"]})
["train", "test"]

iex> HfHub.Api.extract_config_names(nil)
[]

 list_datasets(opts \\ [])

 @spec list_datasets(keyword()) :: {:ok, [dataset_info()]} | {:error, term()}

Lists datasets from the HuggingFace Hub with optional filters.
Options
	:filter - Filter by task or other criteria
	:sort - Sort by field (e.g., "downloads", "likes", "updated")
	:direction - Sort direction (:asc or :desc)
	:limit - Maximum number of results
	:author - Filter by author

Examples
{:ok, datasets} = HfHub.Api.list_datasets(sort: "downloads", limit: 10)

 list_files(repo_id, opts \\ [])

 @spec list_files(
 HfHub.repo_id(),
 keyword()
) :: {:ok, [file_info()]} | {:error, term()}

Lists files in a repository.
Options
	:repo_type - Type of repository (:model, :dataset, or :space). Defaults to :model.
	:revision - Git revision. Defaults to "main".
	:recursive - List files recursively. Defaults to true for datasets.
	:path_in_repo - Subdirectory path to list.
	:token - Authentication token.

Examples
{:ok, files} = HfHub.Api.list_files("bert-base-uncased", repo_type: :model)

 list_models(opts \\ [])

 @spec list_models(keyword()) :: {:ok, [model_info()]} | {:error, term()}

Lists models from the HuggingFace Hub with optional filters.
Options
	:filter - Filter by task, library, or other criteria
	:sort - Sort by field (e.g., "downloads", "likes", "updated")
	:direction - Sort direction (:asc or :desc)
	:limit - Maximum number of results
	:author - Filter by author

Examples
{:ok, models} = HfHub.Api.list_models(filter: "text-classification", limit: 10)

 list_repo_tree(repo_id, opts \\ [])

 @spec list_repo_tree(
 HfHub.repo_id(),
 keyword()
) :: {:ok, [tree_entry()]} | {:error, term()}

Lists repository tree entries (files and folders).
Options
	:repo_type - Type of repository (:model, :dataset, or :space). Defaults to :model.
	:revision - Git revision. Defaults to "main".
	:path_in_repo - Subdirectory path to list.
	:recursive - List recursively. Defaults to false.
	:expand - Request expanded metadata. Defaults to false.
	:token - Authentication token.

 model_info(repo_id, opts \\ [])

 @spec model_info(
 HfHub.repo_id(),
 keyword()
) :: {:ok, model_info()} | {:error, term()}

Fetches information about a model from the HuggingFace Hub.
Options
	:revision - Git revision (branch, tag, or commit hash). Defaults to "main".
	:token - Authentication token. If not provided, uses configured token.

Examples
{:ok, info} = HfHub.Api.model_info("bert-base-uncased")
{:ok, info} = HfHub.Api.model_info("bert-base-uncased", revision: "main")

 space_info(repo_id, opts \\ [])

 @spec space_info(
 HfHub.repo_id(),
 keyword()
) :: {:ok, space_info()} | {:error, term()}

Fetches information about a space from the HuggingFace Hub.
Options
	:revision - Git revision (branch, tag, or commit hash). Defaults to "main".
	:token - Authentication token. If not provided, uses configured token.

Examples
{:ok, info} = HfHub.Api.space_info("user/space-name")

HfHub.Auth

Authentication and authorization for HuggingFace Hub.
Handles token management, login/logout flows, and user information retrieval.
Examples
Get current token
{:ok, token} = HfHub.Auth.get_token()

Set token
:ok = HfHub.Auth.set_token("hf_...")

Get current user info
{:ok, user} = HfHub.Auth.whoami()

Logout
:ok = HfHub.Auth.logout()

 Summary

 Types

 user_info()

 Functions

 auth_headers(opts \\ [])

 Builds HTTP authorization headers from the current or provided token.

 get_token()

 Retrieves the current HuggingFace token.

 login(opts \\ [])

 Interactive login flow.

 logout()

 Logs out and removes stored credentials.

 set_token(token)

 Sets the HuggingFace authentication token.

 validate_token(token)

 Validates a token.

 whoami()

 Gets information about the current authenticated user.

 Types

 user_info()

 @type user_info() :: %{
 username: String.t(),
 email: String.t(),
 fullname: String.t() | nil,
 organizations: [String.t()]
}

 Functions

 auth_headers(opts \\ [])

 @spec auth_headers(keyword()) :: {:ok, [{String.t(), String.t()}]} | {:error, term()}

Builds HTTP authorization headers from the current or provided token.
Options
	:token - Token to use. If not provided, uses get_token/0.

Examples
{:ok, headers} = HfHub.Auth.auth_headers()
=> {:ok, [{"authorization", "Bearer hf_..."}]}

{:ok, headers} = HfHub.Auth.auth_headers(token: "hf_custom")

 get_token()

 @spec get_token() :: {:ok, String.t()} | {:error, :no_token}

Retrieves the current HuggingFace token.
Checks in order:
	Application configuration
	HF_TOKEN environment variable
	Stored credentials file

Examples
{:ok, token} = HfHub.Auth.get_token()

 login(opts \\ [])

 @spec login(keyword()) :: :ok | {:error, term()}

Interactive login flow.
Prompts for a token and stores it for future use.
Options
	:token - Token to use (skips prompt)
	:add_to_git_credentials - Add token to git credentials. Defaults to false.

Examples
:ok = HfHub.Auth.login(token: "hf_...")
:ok = HfHub.Auth.login() # Interactive prompt

 logout()

 @spec logout() :: :ok

Logs out and removes stored credentials.
Examples
:ok = HfHub.Auth.logout()

 set_token(token)

 @spec set_token(String.t()) :: :ok

Sets the HuggingFace authentication token.
The token is stored in application configuration for the current session.
Arguments
	token - HuggingFace API token (starts with "hf_")

Examples
:ok = HfHub.Auth.set_token("hf_...")

 validate_token(token)

 @spec validate_token(String.t()) :: :ok | {:error, term()}

Validates a token.
Checks if the token is properly formatted and valid with the Hub API.
Arguments
	token - Token to validate

Examples
:ok = HfHub.Auth.validate_token("hf_...")
{:error, :invalid_token} = HfHub.Auth.validate_token("bad_token")

 whoami()

 @spec whoami() :: {:ok, user_info()} | {:error, term()}

Gets information about the current authenticated user.
Requires a valid authentication token.
Examples
{:ok, user} = HfHub.Auth.whoami()
IO.inspect(user.username)
IO.inspect(user.organizations)

HfHub.Cache

Cache management for downloaded files.
Provides functions to manage the local cache of downloaded HuggingFace files,
including checking cache status, retrieving paths, and evicting old files.
Examples
Check if a file is cached
cached? = HfHub.Cache.cached?(
 repo_id: "bert-base-uncased",
 filename: "config.json"
)

Get cache path for a file
{:ok, path} = HfHub.Cache.cache_path(
 repo_id: "bert-base-uncased",
 filename: "config.json"
)

Clear cache for a repository
:ok = HfHub.Cache.clear_cache(repo_id: "bert-base-uncased")

Get cache statistics
{:ok, stats} = HfHub.Cache.cache_stats()

 Summary

 Types

 cache_stats()

 Functions

 cache_path(opts)

 Gets the local cache path for a file.

 cache_stats()

 Gets cache statistics.

 cached?(opts)

 Checks if a file is cached locally.

 clear_cache(opts \\ [])

 Clears cached files.

 evict_lru(opts)

 Evicts least recently used files to free up space.

 validate_integrity()

 Validates cache integrity.

 Types

 cache_stats()

 @type cache_stats() :: %{
 total_size: non_neg_integer(),
 file_count: non_neg_integer(),
 repos: [String.t()],
 last_accessed: DateTime.t() | nil
}

 Functions

 cache_path(opts)

 @spec cache_path(keyword()) :: {:ok, Path.t()} | {:error, :not_cached}

Gets the local cache path for a file.
Returns {:ok, path} if the file is cached, {:error, :not_cached} otherwise.
Options
	:repo_id - Repository ID
	:filename - Name of the file
	:repo_type - Type of repository. Defaults to :model.
	:revision - Git revision. Defaults to "main".

Examples
{:ok, path} = HfHub.Cache.cache_path(
 repo_id: "bert-base-uncased",
 filename: "config.json"
)

 cache_stats()

 @spec cache_stats() :: {:ok, cache_stats()} | {:error, term()}

Gets cache statistics.
Returns information about cache size, file count, and repositories.
Examples
{:ok, stats} = HfHub.Cache.cache_stats()
IO.inspect(stats.total_size) # Total bytes
IO.inspect(stats.file_count) # Number of files
IO.inspect(stats.repos) # List of cached repos

 cached?(opts)

 @spec cached?(keyword()) :: boolean()

Checks if a file is cached locally.
Options
	:repo_id - Repository ID
	:filename - Name of the file
	:repo_type - Type of repository. Defaults to :model.
	:revision - Git revision. Defaults to "main".

Examples
cached? = HfHub.Cache.cached?(
 repo_id: "bert-base-uncased",
 filename: "config.json"
)

 clear_cache(opts \\ [])

 @spec clear_cache(keyword()) :: :ok | {:error, term()}

Clears cached files.
Options
	:repo_id - Clear cache for specific repository. If not provided, clears all.
	:repo_type - Type of repository. Defaults to :model.

Examples
Clear cache for specific repo
:ok = HfHub.Cache.clear_cache(repo_id: "bert-base-uncased")

Clear all cache
:ok = HfHub.Cache.clear_cache()

 evict_lru(opts)

 @spec evict_lru(keyword()) :: :ok | {:error, term()}

Evicts least recently used files to free up space.
Options
	:target_size - Target cache size in bytes
	:max_age - Maximum age of files in seconds

Examples
Evict files to get under 5GB
:ok = HfHub.Cache.evict_lru(target_size: 5 * 1024 * 1024 * 1024)

Evict files older than 30 days
:ok = HfHub.Cache.evict_lru(max_age: 30 * 24 * 60 * 60)

 validate_integrity()

 @spec validate_integrity() :: {:ok, map()} | {:error, term()}

Validates cache integrity.
Checks that all cached files have valid checksums and removes corrupted files.
Examples
{:ok, report} = HfHub.Cache.validate_integrity()

HfHub.DatasetFiles

Resolve dataset file paths by config and split.

 Summary

 Types

 tree_entry()

 Functions

 configs_from_tree(tree)

 Infers dataset config names from a repo tree.

 resolve(repo_id, config, split, opts \\ [])

 Resolves dataset file paths for a config and split by listing the repo tree.

 resolve_from_tree(tree, config, split)

 Resolves dataset file paths from a pre-fetched repo tree.

 splits_from_tree(tree, config)

 Infers available split names from a repo tree for a config.

 Types

 tree_entry()

 @type tree_entry() :: %{
 type: :file | :folder,
 path: String.t(),
 size: non_neg_integer() | nil,
 lfs: map() | nil,
 oid: String.t() | nil
}

 Functions

 configs_from_tree(tree)

 @spec configs_from_tree([tree_entry()]) :: [String.t()]

Infers dataset config names from a repo tree.

 resolve(repo_id, config, split, opts \\ [])

 @spec resolve(HfHub.repo_id(), String.t(), String.t(), keyword()) ::
 {:ok, [String.t()]} | {:error, term()}

Resolves dataset file paths for a config and split by listing the repo tree.

 resolve_from_tree(tree, config, split)

 @spec resolve_from_tree([tree_entry()], String.t(), String.t()) ::
 {:ok, [String.t()]} | {:error, :no_files_found}

Resolves dataset file paths from a pre-fetched repo tree.

 splits_from_tree(tree, config)

 @spec splits_from_tree([tree_entry()], String.t()) :: [String.t()]

Infers available split names from a repo tree for a config.

HfHub.Download

File download functionality for HuggingFace Hub.
Provides functions to download files from HuggingFace repositories with
caching, resume support, and progress tracking.
Examples
Download a single file
{:ok, path} = HfHub.Download.hf_hub_download(
 repo_id: "bert-base-uncased",
 filename: "config.json",
 repo_type: :model
)

Download entire repository snapshot
{:ok, snapshot_path} = HfHub.Download.snapshot_download(
 repo_id: "bert-base-uncased",
 repo_type: :model
)

Stream download for large files
{:ok, stream} = HfHub.Download.download_stream(
 repo_id: "bert-base-uncased",
 filename: "pytorch_model.bin"
)

 Summary

 Types

 download_opts()

 Functions

 compute_sha256(path)

 Computes the SHA256 hash of a file.

 download_stream(opts)

 Creates a stream for downloading a file.

 hf_hub_download(opts)

 Downloads a file from a HuggingFace repository.

 resume_download(opts)

 Resumes an interrupted download.

 snapshot_download(opts)

 Downloads an entire repository snapshot.

 Types

 download_opts()

 @type download_opts() :: [
 repo_id: HfHub.repo_id(),
 filename: HfHub.filename(),
 repo_type: HfHub.repo_type(),
 revision: HfHub.revision(),
 cache_dir: Path.t(),
 force_download: boolean(),
 extract: boolean(),
 extract_dir: Path.t(),
 token: String.t() | nil,
 progress_callback:
 (non_neg_integer(), non_neg_integer() | nil -> any()) | nil,
 verify_checksum: boolean(),
 expected_sha256: String.t() | nil
]

 Functions

 compute_sha256(path)

 @spec compute_sha256(Path.t()) :: {:ok, String.t()} | {:error, term()}

Computes the SHA256 hash of a file.
Returns {:ok, hash} where hash is a lowercase hex-encoded string.
Examples
{:ok, hash} = HfHub.Download.compute_sha256("/path/to/file")
=> {:ok, "abc123..."}

 download_stream(opts)

 @spec download_stream(keyword()) :: {:ok, Enumerable.t()} | {:error, term()}

Creates a stream for downloading a file.
Useful for large files where you want to process the data as it downloads.
Options
	:repo_id - Repository ID
	:filename - Name of the file to download
	:repo_type - Type of repository. Defaults to :model.
	:revision - Git revision. Defaults to "main".
	:token - Authentication token.

Examples
{:ok, stream} = HfHub.Download.download_stream(
 repo_id: "bert-base-uncased",
 filename: "pytorch_model.bin"
)

stream
|> Stream.each(fn chunk -> IO.write(chunk) end)
|> Stream.run()

 hf_hub_download(opts)

 @spec hf_hub_download(download_opts()) :: {:ok, Path.t()} | {:error, term()}

Downloads a file from a HuggingFace repository.
Returns the local path to the cached file.
Options
	:repo_id - Repository ID (e.g., "bert-base-uncased")
	:filename - Name of the file to download
	:repo_type - Type of repository (:model, :dataset, or :space). Defaults to :model.
	:revision - Git revision. Defaults to "main".
	:cache_dir - Local cache directory. Defaults to configured cache directory.
	:force_download - Force re-download even if cached. Defaults to false.
	:extract - Extract archives after download. Defaults to false.
	:extract_dir - Destination for extracted files (directory for archives, file path for .gz).
	:token - Authentication token.
	:progress_callback - Function called with (bytes_downloaded, total_bytes) during download.
total_bytes may be nil if the server doesn't provide Content-Length.
	:verify_checksum - Verify SHA256 checksum after download. Defaults to false.
	:expected_sha256 - Expected SHA256 hash. If provided and doesn't match, returns error.

Examples
{:ok, path} = HfHub.Download.hf_hub_download(
 repo_id: "bert-base-uncased",
 filename: "config.json"
)

{:ok, path} = HfHub.Download.hf_hub_download(
 repo_id: "squad",
 filename: "train.json",
 repo_type: :dataset,
 revision: "main"
)

With progress tracking
{:ok, path} = HfHub.Download.hf_hub_download(
 repo_id: "some/model",
 filename: "model.bin",
 progress_callback: fn downloaded, total ->
 if total, do: IO.puts("#{round(downloaded / total * 100)}%")
 end
)

With checksum verification
{:ok, path} = HfHub.Download.hf_hub_download(
 repo_id: "some/model",
 filename: "model.bin",
 verify_checksum: true,
 expected_sha256: "abc123..."
)

 resume_download(opts)

 @spec resume_download(keyword()) :: {:ok, Path.t()} | {:error, term()}

Resumes an interrupted download.
Options
	:repo_id - Repository ID
	:filename - Name of the file to download
	:repo_type - Type of repository. Defaults to :model.
	:revision - Git revision. Defaults to "main".
	:token - Authentication token.

Examples
{:ok, path} = HfHub.Download.resume_download(
 repo_id: "bert-base-uncased",
 filename: "pytorch_model.bin"
)

 snapshot_download(opts)

 @spec snapshot_download(keyword()) :: {:ok, Path.t()} | {:error, term()}

Downloads an entire repository snapshot.
Returns the local path to the snapshot directory.
Options
	:repo_id - Repository ID
	:repo_type - Type of repository. Defaults to :model.
	:revision - Git revision. Defaults to "main".
	:cache_dir - Local cache directory.
	:ignore_patterns - List of glob patterns to ignore
	:allow_patterns - List of glob patterns to allow
	:token - Authentication token.

Examples
{:ok, snapshot_path} = HfHub.Download.snapshot_download(
 repo_id: "bert-base-uncased"
)

{:ok, snapshot_path} = HfHub.Download.snapshot_download(
 repo_id: "bert-base-uncased",
 ignore_patterns: ["*.msgpack", "*.h5"]
)

HfHub.Extract

Archive detection and extraction utilities.

 Summary

 Types

 archive_type()

 Functions

 default_extract_path(path)

 Returns the default extraction path for an archive.

 detect_archive_type(path)

 Detects the archive type from a path.

 extract(path, dest)

 Extracts an archive to the destination path.

 Types

 archive_type()

 @type archive_type() :: :zip | :tar | :tar_gz | :tar_xz | :gz

 Functions

 default_extract_path(path)

 @spec default_extract_path(Path.t()) :: Path.t()

Returns the default extraction path for an archive.
For gzip files, this is the target file path.
For other archives, this is a directory path.

 detect_archive_type(path)

 @spec detect_archive_type(Path.t()) :: archive_type() | nil

Detects the archive type from a path.

 extract(path, dest)

 @spec extract(Path.t(), Path.t()) :: {:ok, Path.t()} | {:error, term()}

Extracts an archive to the destination path.
For gzip files, dest is the output file path. For other archive types,
dest is the destination directory.

HfHub.FS

Filesystem utilities for HuggingFace cache management.
Provides low-level functions for managing the local cache directory structure,
file paths, and locking mechanisms.
Examples
Ensure cache directory exists
:ok = HfHub.FS.ensure_cache_dir()

Get repository path
path = HfHub.FS.repo_path("bert-base-uncased", :model)

Get file path in repository
path = HfHub.FS.file_path("bert-base-uncased", :model, "config.json")

Acquire file lock for concurrent downloads
{:ok, lock} = HfHub.FS.lock_file("bert-base-uncased", "pytorch_model.bin")
... download file ...
:ok = HfHub.FS.unlock_file(lock)

 Summary

 Functions

 cache_dir()

 Gets the configured cache directory.

 ensure_cache_dir()

 Ensures the cache directory exists.

 file_path(repo_id, repo_type, filename, revision \\ "main")

 Gets the local path for a file in a repository.

 lock_file(repo_id, filename)

 Acquires a lock on a file for concurrent download protection.

 repo_path(repo_id, repo_type)

 Gets the local path for a repository.

 unlock_file(lock)

 Releases a file lock.

 Functions

 cache_dir()

 @spec cache_dir() :: Path.t()

Gets the configured cache directory.
Examples
dir = HfHub.FS.cache_dir()
=> "/home/user/.cache/huggingface"

 ensure_cache_dir()

 @spec ensure_cache_dir() :: :ok | {:error, term()}

Ensures the cache directory exists.
Creates the cache directory and any necessary subdirectories if they don't exist.
Examples
:ok = HfHub.FS.ensure_cache_dir()

 file_path(repo_id, repo_type, filename, revision \\ "main")

 @spec file_path(
 HfHub.repo_id(),
 HfHub.repo_type(),
 HfHub.filename(),
 HfHub.revision()
) :: Path.t()

Gets the local path for a file in a repository.
Arguments
	repo_id - Repository ID
	repo_type - Type of repository
	filename - Name of the file
	revision - Git revision (defaults to "main")

Examples
path = HfHub.FS.file_path("bert-base-uncased", :model, "config.json")
=> "/home/user/.cache/huggingface/hub/models--bert-base-uncased/snapshots/main/config.json"

 lock_file(repo_id, filename)

 @spec lock_file(HfHub.repo_id(), HfHub.filename()) ::
 {:ok, reference()} | {:error, term()}

Acquires a lock on a file for concurrent download protection.
Returns {:ok, lock} where lock is a reference that can be used to unlock the file.
Arguments
	repo_id - Repository ID
	filename - Name of the file

Examples
{:ok, lock} = HfHub.FS.lock_file("bert-base-uncased", "pytorch_model.bin")
... perform download ...
:ok = HfHub.FS.unlock_file(lock)

 repo_path(repo_id, repo_type)

 @spec repo_path(HfHub.repo_id(), HfHub.repo_type()) :: Path.t()

Gets the local path for a repository.
Arguments
	repo_id - Repository ID
	repo_type - Type of repository (:model, :dataset, or :space)

Examples
path = HfHub.FS.repo_path("bert-base-uncased", :model)
=> "/home/user/.cache/huggingface/hub/models--bert-base-uncased"

 unlock_file(lock)

 @spec unlock_file(reference()) :: :ok | {:error, term()}

Releases a file lock.
Arguments
	lock - Lock reference from lock_file/2

Examples
{:ok, lock} = HfHub.FS.lock_file("bert-base-uncased", "config.json")
:ok = HfHub.FS.unlock_file(lock)

HfHub.Cache.Server

GenServer for managing cache state and operations.
This server maintains cache metadata, handles concurrent access,
and implements LRU eviction policies.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts \\ [])

 Starts the cache server.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the cache server.
Options
	:name - The name to register the server under. Defaults to HfHub.Cache.Server.

Examples
{:ok, pid} = HfHub.Cache.Server.start_link()

HfHub.Config

Configuration utilities for HfHub.
Provides functions to access and manage configuration settings.

 Summary

 Functions

 cache_dir()

 Gets the cache directory path.

 cache_opts()

 Gets cache options.

 endpoint()

 Gets the HuggingFace Hub endpoint URL.

 http_opts()

 Gets HTTP client options.

 Functions

 cache_dir()

 @spec cache_dir() :: Path.t()

Gets the cache directory path.
Checks in order:
	Application configuration
	HF_HUB_CACHE environment variable
	HF_HOME environment variable
	Default: "~/.cache/huggingface"

Examples
cache_dir = HfHub.Config.cache_dir()
=> "/home/user/.cache/huggingface"

 cache_opts()

 @spec cache_opts() :: keyword()

Gets cache options.
Examples
opts = HfHub.Config.cache_opts()

 endpoint()

 @spec endpoint() :: String.t()

Gets the HuggingFace Hub endpoint URL.
Defaults to "https://huggingface.co".
Examples
endpoint = HfHub.Config.endpoint()
=> "https://huggingface.co"

 http_opts()

 @spec http_opts() :: keyword()

Gets HTTP client options.
Examples
opts = HfHub.Config.http_opts()

HfHub.HTTP

HTTP client for HuggingFace Hub API.
Provides low-level HTTP request functionality with authentication,
rate limiting, and error handling.

 Summary

 Functions

 delete(path, opts \\ [])

 Performs a DELETE request.

 download_file(url, destination, opts \\ [])

 Downloads a file from a URL with streaming support.

 get(path, opts \\ [])

 Makes a GET request to the HuggingFace Hub API.

 get_paginated(path, opts \\ [])

 Makes a paginated GET request and collects all pages.

 head(url, opts \\ [])

 Makes a HEAD request to fetch headers without body.

 patch(path, body \\ nil, opts \\ [])

 Performs a PATCH request with JSON body.

 post(path, body \\ nil, opts \\ [])

 Makes a POST request to the HuggingFace Hub API.

 post_action(path, body \\ nil, opts \\ [])

 Performs a POST request expecting no response body.

 put(path, body \\ nil, opts \\ [])

 Performs a PUT request with JSON body.

 Functions

 delete(path, opts \\ [])

 @spec delete(
 String.t(),
 keyword()
) :: :ok | {:ok, map()} | {:error, term()}

Performs a DELETE request.
DELETE requests typically don't have a body but may return data.

 download_file(url, destination, opts \\ [])

 @spec download_file(String.t(), Path.t(), keyword()) :: :ok | {:error, term()}

Downloads a file from a URL with streaming support.
Arguments
	url - Full URL to download
	destination - Local file path
	opts - Download options

Options
	:token - Authentication token
	:resume - Resume interrupted download. Defaults to false.
	:progress_callback - Function called with download progress.
The callback receives (bytes_downloaded, total_bytes) where
total_bytes may be nil if the server doesn't provide Content-Length.

Examples
:ok = HfHub.HTTP.download_file(
 "https://huggingface.co/bert-base-uncased/resolve/main/config.json",
 "/tmp/config.json"
)

With progress tracking
:ok = HfHub.HTTP.download_file(
 "https://huggingface.co/bert-base-uncased/resolve/main/model.bin",
 "/tmp/model.bin",
 progress_callback: fn downloaded, total ->
 if total, do: IO.puts("#{round(downloaded / total * 100)}%")
 end
)

 get(path, opts \\ [])

 @spec get(
 String.t(),
 keyword()
) :: {:ok, map() | [map()]} | {:error, term()}

Makes a GET request to the HuggingFace Hub API.
Arguments
	path - API path (e.g., "/api/models/bert-base-uncased")
	opts - Request options

Options
	:token - Authentication token
	:headers - Additional headers
	:params - Query parameters

Examples
{:ok, response} = HfHub.HTTP.get("/api/models/bert-base-uncased")

 get_paginated(path, opts \\ [])

 @spec get_paginated(
 String.t(),
 keyword()
) :: {:ok, [map()]} | {:error, term()}

Makes a paginated GET request and collects all pages.
Pagination follows the Link header with rel="next".
Options
	:token - Authentication token
	:headers - Additional headers
	:params - Query parameters

 head(url, opts \\ [])

 @spec head(
 String.t(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Makes a HEAD request to fetch headers without body.
Used for ETag-based cache validation.
Arguments
	url - Full URL to request
	opts - Request options

Options
	:headers - Request headers
	:follow_redirects - Whether to follow redirects. Defaults to true.

Examples
{:ok, response} = HfHub.HTTP.head("https://huggingface.co/model/file")

 patch(path, body \\ nil, opts \\ [])

 @spec patch(String.t(), map() | nil, keyword()) :: {:ok, map()} | {:error, term()}

Performs a PATCH request with JSON body.

 post(path, body \\ nil, opts \\ [])

 @spec post(String.t(), map() | nil, keyword()) :: {:ok, map()} | {:error, term()}

Makes a POST request to the HuggingFace Hub API.
Arguments
	path - API path
	body - Request body (will be JSON-encoded)
	opts - Request options

Examples
{:ok, response} = HfHub.HTTP.post("/api/endpoint", %{data: "value"})

 post_action(path, body \\ nil, opts \\ [])

 @spec post_action(String.t(), map() | nil, keyword()) :: :ok | {:error, term()}

Performs a POST request expecting no response body.
Used for actions that return 200/204 with no content.

 put(path, body \\ nil, opts \\ [])

 @spec put(String.t(), map() | nil, keyword()) :: {:ok, map()} | {:error, term()}

Performs a PUT request with JSON body.

HfHub.Errors.BadRequest exception

Raised for HTTP 400 Bad Request errors.

HfHub.Errors.CacheNotFound exception

Exception raised when the HuggingFace cache directory is not found.

HfHub.Errors.CorruptedCache exception

Exception for unexpected structure in the HuggingFace cache.

HfHub.Errors.DDUFCorruptedFile exception

Exception thrown when the DDUF file is corrupted.

HfHub.Errors.DDUFError exception

Base exception for errors related to the DDUF format.

HfHub.Errors.DDUFExport exception

Exception for errors during DDUF export.

HfHub.Errors.DDUFInvalidEntryName exception

Exception thrown when the DDUF entry name is invalid.

HfHub.Errors.DisabledRepo exception

Raised when trying to access a repository disabled by its author.

HfHub.Errors.DryRun exception

Error triggered when a dry run cannot be performed.

HfHub.Errors.EntryNotFound exception

Raised when a file or entry is not found in a repository.
Can be raised for both remote (Hub) and local (cache) entries.

HfHub.Errors.FileMetadata exception

Error triggered when file metadata cannot be retrieved.
This happens when ETag or commit_hash is missing from response.

HfHub.Errors.GatedRepo exception

Raised when trying to access a gated repository without authorization.
User must accept terms on the Hub website to gain access.

HfHub.Errors.HFValidation exception

Generic exception thrown by huggingface_hub validators.
Inherits behavior similar to Python's ValueError.

HfHub.Errors.HTTPError exception

Base HTTP error with request and response context.
Stores metadata like request_id and server_message for debugging.

 Summary

 Functions

 append_to_message(error, additional)

 Appends additional context to the error message.

 Functions

 append_to_message(error, additional)

 @spec append_to_message(
 %HfHub.Errors.HTTPError{
 __exception__: true,
 message: term(),
 request_id: term(),
 response: term(),
 server_message: term(),
 status: term()
 },
 String.t()
) :: %HfHub.Errors.HTTPError{
 __exception__: true,
 message: term(),
 request_id: term(),
 response: term(),
 server_message: term(),
 status: term()
}

Appends additional context to the error message.
Returns a new HTTPError with the updated message.

HfHub.Errors.InferenceEndpointError exception

Generic exception when dealing with Inference Endpoints.

HfHub.Errors.InferenceEndpointTimeout exception

Exception for timeouts while waiting for Inference Endpoint.

HfHub.Errors.InferenceTimeout exception

Raised when a model is unavailable or the request times out.

HfHub.Errors.LocalEntryNotFound exception

Raised when a file is not found in the local cache.
This occurs when network is disabled and the file isn't cached.

HfHub.Errors.LocalTokenNotFound exception

Raised when a local token is required but not found.

HfHub.Errors.NotASafetensorsRepo exception

Raised when a repo lacks safetensors files.
A safetensors repo should have either model.safetensors or
model.safetensors.index.json.

HfHub.Errors.OfflineMode exception

Raised when a network request is attempted with HF_HUB_OFFLINE=1.

HfHub.Errors.RemoteEntryNotFound exception

Raised when a file is not found on the remote Hub.
This is the HTTP error variant - the file doesn't exist remotely.

HfHub.Errors.RepositoryNotFound exception

Raised when trying to access an invalid repository or one without access.
Can occur with:
	Non-existent repository
	Private repository without authentication
	Incorrect repo_id format

HfHub.Errors.RevisionNotFound exception

Raised when trying to access a valid repository but invalid revision.

HfHub.Errors.SafetensorsParsing exception

Raised when failing to parse a safetensors file metadata.
This can occur if the file is not a safetensors file or doesn't
respect the specification.

HfHub.Errors.TextGeneration exception

Generic error raised if text-generation went wrong.

HfHub.Errors.TextGenerationIncomplete exception

Raised when text generation is incomplete.

HfHub.Errors.TextGenerationOverloaded exception

Raised when the text generation server is overloaded.

HfHub.Errors.TextGenerationValidation exception

Server-side validation error during text generation.

HfHub.Errors.XetAuthorization exception

Exception when user lacks authorization to use Xet Storage.

HfHub.Errors.XetDownload exception

Exception when download from Xet Storage fails.

HfHub.Errors.XetError exception

Base exception for errors related to Xet Storage.

HfHub.Errors.XetRefreshToken exception

Exception when the Xet refresh token is invalid.

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

