

 horizon

 v0.2.5

 Table of contents

 	Horizon

 	Deploying with Horizon

 	Horizon Ops Helper Scripts

 	Sample Host Configurations

 	Sample Proxy Configuration

 	Changelog

 	LICENSE

 	Installation Guides

 	FreeBSD Template Setup

 	Hetzner Cloud Setup Guide

 	Hetzner Cloud Host Instantiation

 	FreeBSD Installation

 	Building FreeBSD VMs in Proxmox

 	Configuration Files

 	build_conf

 	web_proxy_conf

 	postgres_conf

 	postgres_backup_conf

 	

 	Modules

 	Horizon.NginxConfig

 	Horizon.Ops.BSD.Config

 	Horizon.Ops.BSD.Step

 	Horizon.Ops.BSD.Utils

 	Horizon.Ops.Target

 	Horizon.Ops.Utils

 	Horizon.Project

 	Horizon.Server

 	Mix Tasks

 	mix horizon.gen.cert

 	mix horizon.init

 	mix horizon.ops.init

Horizon

Welcome to Horizon, an ops library for deploying Elixir/Phoenix
projects to FreeBSD hosts.

 Features

	Only SSH access is required for administration
	Uses install files so you can version manage host configuration
	Installs Elixir, Erlang, Postgres and Postgres databases
	Full Postgres install with a single command
	Tools to setup Postgres backup server
	Simplifies FreeBSD management on ZFS file systems
	Can deploy to bare-metal or VM hosts

 Getting Started

This guide is intended to help you get started with Horizon for deploying your Elixir/Phoenix application to FreeBSD hosts.
Follow the installation instructions on this page to configure your existing project to use Horizon for deployment.
Then follow the guides below to setup your host servers and deploy your Elixir/Phoenix application with Horizon.
	Deploying with Horizon
	Horizon Ops Scripts
	Sample Host Configurations
	Proxy Configuration

 Additional Guides and Resources

	FreeBSD Template Setup
	Hetzner Cloud Setup Guide
	Hetzner Cloud Host Instantiation
	FreeBSD Installation
	Creating a FreeBSD VM on Proxmox

 Installation

Add horizon to your list of dependencies in mix.exs:
def deps do
 [
 {:horizon, "~> 0.2", runtime: false}
]
end
After adding horizon to your list of dependencies, run:
mix deps.get

Use the following instructions to configure your application so Horizon can
stage, build and deploy your applications.
	Define a Release in mix.exs
	Add Tailwind to your assets.setup
	Run mix horizon.init

 Configuring your project for Horizon

Horizon builds scripts for each release in your project to stage, build, and deploy your Elixir/Phoenix app.

 Add a Release to your mix.exs file

If you haven't defined a release, add one to your mix.exs file.
The simplest release configuration looks like:
 def project do
 [
 app: :my_app,
 ...,
 releases: [my_app: []]
 ...
]
 end
In general however, you will want configure access information for your build and deploy hosts.
The example below also configures steps
to set the default release values for a FreeBSD system
and to create the run control script in the rel/overlays/rc_d/ folder.
 def project do
 [
 app: :my_app,
 ...,
 releases: [
 my_app: [
 applications: [runtime_tools: :permanent],
 include_executables_for: [:unix],
 build_host_ssh: System.get_env("BUILD_HOST_SSH"),
 deploy_hosts_ssh: System.get_env("DEPLOY_HOSTS_SSH"),
 # app_path: "/usr/local/my_app",
 # bin_path: "bin",
 # build_path: "/usr/local/opt/my_app/build",
 # release_commands: [],
 # releases_path: ".releases",
 steps: [
 &Horizon.Ops.BSD.Step.setup/1,
 :assemble,
 :tar
],
]
]
 end
assemble is required to create your release target. tar is needed to build a tarball for deployment.

 Configure Runtime.exs for IPv4

If you are using a default config/runtime.exs file, it may ship with a default IPv6 listen address.
For the examples in this guide you will need to configure it for IPv4.
 config :my_app1, MyApp1Web.Endpoint,
 url: [host: host, port: 443, scheme: "https"],
 http: [
 # Enable IPv6 and bind on all interfaces.
 # Set it to {0, 0, 0, 0, 0, 0, 0, 1} for local network only access.
 # See the documentation on https://hexdocs.pm/bandit/Bandit.html#t:options/0
 # for details about using IPv6 vs IPv4 and loopback vs public addresses.
 ip: {0, 0, 0, 0},
 port: port
],

 Configure Host and Port in Runtime.exs

You may also need to configure the host and port in your config/runtime.exs file.
The host demo-web in this example is the name used in your browser to access your website.
This can be an actual domain name, an IP address or an alias in your /etc/hosts file.
The port is the port number your Phoenix application will listen on.
If you are running multiple applications in your Horizon setup, each application will need a unique port number.
 host = System.get_env("PHX_HOST") || "demo-web1"
 port = String.to_integer(System.get_env("PORT") || "4000")

 Configuring Tailwind for FreeBSD

The default mix alias assets.setup is:
"assets.setup": [
 "tailwind.install --if-missing",
 "esbuild.install --if-missing"
],
However, a tailwind download for FreeBSD is not currently provided by the Tailwind project.
This is resolved by passing a URL to tailwind.install from which to download the tailwind executable.
Add the "assets.setup.freebsd" mix alias to your mix.exs file.
+ @tailwindcss_freebsd_x64 "https://people.freebsd.org/~dch/pub/tailwind/v$version/tailwindcss-$target"
 ...
 defp aliases do
 [
 ...
 "assets.setup": ["tailwind.install --if-missing", "esbuild.install --if-missing"],
+ "assets.setup.freebsd": [
+ "tailwind.install #{@tailwindcss_freebsd_x64}",
+ "esbuild.install --if-missing"
+],
 ...
]
 end

 Horizon Script Generation

Running mix horizon.init creates scripts for each of thereleases defined in your mix project. FreeBSD customary defaults are used for installation paths and are added when you include &Horizon.Ops.BSD.Step.setup/1 as the first step of each release.
Running this script will provide instructions for creating a mix alias "assets.setup.freebsd" (if not already configured) that will install esbuild and tailwind on your build host.
❯ mix horizon.init
Created bin/horizon_helpers.sh
Created bin/stage-my_app1.sh
Created bin/build-my_app1.sh
Created bin/build_script-my_app1.sh
Created bin/deploy-my_app1.sh
Created bin/deploy_script-my_app1.sh

You must run mix horizon.init to update your scripts every time you change a release in mix.exs.

 Configuring Env vars for releases

Running mix release.init creates a rel/ directory that contains the file env.sh.eex.
The simplest way to manage env vars is to add them directly to rel/env.sh.eex:
...
export PHX_SERVER=true
export SECRET_KEY_BASE=O7Delm59ZMLKlSh80ZnrBIhZmf6sz1NVMhbAofIxYNNZUqnkaa9SnizAA1jpxDl6
export PGHOSTADDR=10.0.0.3
export PHX_HOST=demo-web1

export DATABASE_URL=ecto://451f8d75-a808-11ef-8e9c-e1aff46a3315:0462ae2ea0e180b4beb0558bf5baec29e87c1ec9bd4f5c6c@$PGHOSTADDR/my_app1_prod
...
Update the env.sh.eex file with the environment variables required for your application.
You can generate a secret key with:
mix phx.gen.secret

 Alternative: Importing existing .env file

If you are using a .env file for environment variables, one method is just to add it to your env.sh.eex file:
cat .env >> rel/env.sh.eex
Or, reference the .env file from within env.sh.eex.
env_file=/usr/local/my_app/.env
chmod 600 $env_file
. $env_file

If using this method, you will need to add .env to your deploy artifacts.
One solution is to copy the .env file to your overlays folder in rel/overlays/.env.
This method may be insufficient since the same .env file is shared for all deploy versions.
Writing a step or a more sophisticated overlay that is version dependent may be required if not using env.sh.eex.

Source code is licensed under the BSD 3-Clause License.
See the Getting Started section for more information on configuring your project for Horizon.

Deploying with Horizon

This guide walks you through using Horizon to deploy your ElixirPhoenix application to production hosts.
It covers host configuration and the deployment process to release your web application to production.
This guide assumes you have hosts with FreeBSD installed, names and/or addresses for those hosts, and passwordless access to the hosts. See the installation resources for more information on setting up your hosts.

 Web Cluster Topology

This guide walks you through configuring a four-server topology.
The names demo-web1, demo-web2, demo-build, demo-pg1, and demo-pg2 are for the web, build, and database hosts.
The application cluster uses demo-web1 as a web host and the nginx reverse proxy.
The web hosts demo-web1 and demo-web2 are connected to a PostgreSQL database server, demo-pg1.
The demo-pg1 server is backed up by demo-pg2 using a rolling snapshot backup strategy.
Finally, the fifth server, demo-build, is a build host that builds the release tarball
that is deployed to the demo-web1 and demo-web2 hosts.
The topology is illustrated below.
graph BT
 linkStyle default stroke-width:3px
 user1[Web User 1] -->|Browser Connection| nginx[Nginx on web1]
 user2[Web User 2] -->|Browser Connection| nginx
 nginx -.->|Upstream Connection| web1[Web Server web1]
 nginx -.->|Upstream Connection| web2[Web Server web2]
 web1 -->|Database Access| pg1[PostgreSQL pg1]
 web2 -->|Database Access| pg1
 pg2[PostgreSQL pg2] -->|Rolling Snapshot Backup| pg1

 subgraph web1_components [Web1 Host]
 direction TB
 style web1_components stroke-dasharray: 5 5
 nginx
 web1
 end

 Installing Horizon Ops Tools

Horizon has a suite of tools for deploying your Elixir/Phoenix application to a FreeBSD host. These tools are installed with:
mix horizon.ops.init
The Horizon ops scripts are not specific to your application; therefore, you can install them anywhere on your system.
The default install location is ops/bin inside your project, but you may want to install them in $HOME/bin so they are more generally available.
mix horizon.ops.init ~/bin

And update your path if needed:
export PATH=$PATH:~/bin

 Naming Hosts and Configuring LAN

If you have just followed the host instantiation instructions and created five VMs, you will need to assign host names to each VM and, for convenience, add them to your /etc/hosts file.
Define the host names in your /etc/hosts file with the public IP addresses of each host.
The IP addresses for our demo project are:
cat /etc/hosts
...
Demo
178.156.153.24	demo-build
5.161.249.144	demo-web1
178.156.153.23	demo-web2
178.156.153.21	demo-pg1
178.156.153.22	demo-pg2

 Set Hostnames

With host name aliases set, you can set the hostname of each host.
ssh admin@demo-web1 "doas hostname demo-web1; doas sysrc hostname=demo-web1"
ssh admin@demo-web2 "doas hostname demo-web2; doas sysrc hostname=demo-web2"
ssh admin@demo-pg1 "doas hostname demo-pg1; doas sysrc hostname=demo-pg1"
ssh admin@demo-pg2 "doas hostname demo-pg2; doas sysrc hostname=demo-pg2"
ssh admin@demo-build "doas hostname demo-build; doas sysrc hostname=demo-build"

 Configure LAN

Hetzner Cloud VMs are configured with a private network interface on vtnet1.
We will configure the vtnet1 interface on each host to use DHCP.
ssh admin@demo-web1 "doas sysrc ifconfig_vtnet1=DHCP"
ssh admin@demo-web2 "doas sysrc ifconfig_vtnet1=DHCP"
ssh admin@demo-pg1 "doas sysrc ifconfig_vtnet1=DHCP"
ssh admin@demo-pg2 "doas sysrc ifconfig_vtnet1=DHCP"
ssh admin@demo-build "doas sysrc ifconfig_vtnet1=DHCP"

Note that on Hetzner Cloud, the DHCP server assigns a netmask of 0xFFFF.
This means that there is no LAN in the traditional sense and no arp requests.
Instead, traffic sent to a another host on the "LAN" is handled by the gateway router.
This will come into play when configuring the host-based authentication for the database.
$ netstat -rn
Routing tables

Internet:
Destination Gateway Flags Netif Expire
default 172.31.1.1 UGS vtnet0
5.161.249.144 link#3 UH lo0
10.0.0.0/16 10.0.0.1 UGS vtnet1
10.0.0.1 link#2 UHS vtnet1
10.0.0.2 link#3 UH lo0
127.0.0.1 link#3 UH lo0

 Configuring Hosts

Each type of host in our web app topology has unique requirements.
You can use Horizon Ops bsd_install.sh and a config file to set up each host according its needs.
We'll look at each type of host and the configuration needed -- web, postgres, postgres-backup, and build.
Sample configuration files are provided for each host type.

 Configure Web Hosts

A web host has minimal configuration because we ship the Erlang runtime in the deployments. This allows you to update the Elixir version on deployments.
For the topology in this example, demo-web1 is also serving as the reverse proxy. We'll install the nginx application, start the nginx service and install certbot for future certificate configuration.
Create a file named web+proxy.conf with the following content:
pkg:nginx
service:nginx
pkg:py311-certbot
and configure your web host with:
bsd_install.sh admin@demo-web1 web+proxy.conf
If your are horizontally scaling your web app topology with additional web hosts, you only need to install specific applications that they may need. Typically, other web hosts will not need proxies, certificates, or other services.

 Configure Postgres Host

Your postgres host serves as a database for all of the web hosts.
For performance reasons, you may use a larger cloud server or a dedicated server for your database.
This example installs Postgres on demo-pg1.
There are four installation steps we will use to stand up a Postgres database:
	Install the version of postgres server and contrib library of your choice
	Configure zfs for database snapshots.
	Initialize postgres. This configures postgresql.conf, pg_hba.conf and logging. Logging is at /var/log/postgresql.log
	Create a database. Creating a database creates a user/password, and updates pg_hba.conf. You can also choose the locale and ctype of the database.

Three postgres encoding options are available:
	postgres.db:c_mixed_utf8
	postgres.db:c_utf8_full
	postgres.db:us_utf8_full

The most common option is c_mixed_utf8 which sorts with byte order for speed, but encodes with UTF-8.
This format, while common, will not sort UTF-8 characters as desired.
In this example, we install postgresql17-server and postgresql17-contrib and initialize the database with the c_mixed_utf8 encoding.
Note that we also initialize zfs before initializing the database.
The zfs initialization is required for the backup host to take snapshots of the database.
Create the file postgres.conf with:
pkg:postgresql17-server
pkg:postgresql17-contrib
postgres.zfs-init
postgres.init

Encode with UTF8 and sort with byte order
postgres.db:c_mixed_utf8:my_app1_prod
and install with:
bsd_install.sh admin@demo-pg1 postgres.conf
Running this command generated the following output:
...
CREATE ROLE
[SUCCESS] User 451f8d75-a808-11ef-8e9c-e1aff46a3315 created successfully.
CREATE DATABASE
[SUCCESS] Database my_app1_prod created successfully.
[SUCCESS] Added user 451f8d75-a808-11ef-8e9c-e1aff46a3315@my_app1_prod to pg_hba.conf.
[SUCCESS] Postgres reloaded successfully.
[SUCCESS] Username: 451f8d75-a808-11ef-8e9c-e1aff46a3315
[SUCCESS] Password: 0462ae2ea0e180b4beb0558bf5baec29e87c1ec9bd4f5c6c
[SUCCESS] Database: my_app1_prod
[WARN] Record these credentials in a secure location.
[WARN] You will not be able to retrieve the password later.

Save the username and password in a secure location. You will need them to configure your Elixir/Phoenix application.

 Configure Postgres Backup Host

To configure a backup host, you can use a similar configuration as the Postgres host. The backup host will have the same version of Postgres, but we will not initialize postgres with postgres.init nor create a database.
Create the file postgres-backup.conf with:
pkg:postgresql17-server
pkg:postgresql17-contrib
postgres.zfs-init
and install with:
bsd_install.sh admin@demo-pg2 postgres-backup.conf
Install Backup Scripts and Cron Jobs
To finalize the backup configuration you will need to:
	Copy the zfs_snapshot.sh script to the backup host. This script is used to backup the Postgres database to a ZFS volume.
	Ensure demo-pg2 has passwordless access to demo-pg1.
	Add a crontab to run zfs_snapshot.sh

First, copy the zfs_snapshot.sh script to the backup host. Remember to copy zfs_snapshot.sh from the location where you installed the Horizon ops scripts.
ssh admin@demo-pg2 "mkdir -p bin"
scp ~/bin/zfs_snapshot.sh admin@demo-pg2:bin

You will likely need to add an ssh key to demo-pg2 and copy its public key to demo-pg1 and verify passwordless access to demo-pg1 from demo-pg2.
ssh admin@demo-pg2 "ssh-keygen"

scp admin@demo-pg2:.ssh/id_rsa.pub /tmp
scp /tmp/id_rsa.pub admin@demo-pg1:/tmp
ssh admin@demo-pg1 "cat /tmp/id_rsa.pub >> .ssh/authorized_keys"

Before adding the cronjob, log into demo-pg2 and verify that you can ssh to demo-pg1 without a password. For this example we added a host to /etc/hosts to make it easier to reference demo-pg1.
$ tail -1 /etc/hosts
10.0.0.3	pg1
This command below assumes pg1 is in /etc/hosts and you can ssh to admin@pg1 from demo-pg2 without a password.
ssh admin@demo-pg2 "CRON_JOB='*/30 * * * * /home/admin/bin/zfs_snapshot.sh admin@pg1 >> /var/log/zfs_snapshot.log 2>&1'; (crontab -l 2>/dev/null | grep -Fq \"\$CRON_JOB\") || (crontab -l 2>/dev/null; echo \"\$CRON_JOB\") | crontab -"

Verify the Backup
You can verify the backup by connecting to demo-pg2 and running the backup command:
Running the backup on our demo produced the following output:
ssh admin@demo-pg2
$ bin/zfs_snapshot.sh admin@pg1
Running PostgreSQL backup and creating ZFS snapshot...
 pg_backup_start

 0/2000028
(1 row)

ERROR: backup is not in progress
HINT: Did you call pg_backup_start()?
PostgreSQL backup and ZFS snapshot completed.
No common snapshot found, or no previous snapshots. Sending full snapshot.
Sending full rolling snapshot zroot/var/db_postgres@rolling-20241121080548 to controlling host...
full send of zroot/var/db_postgres@rolling-20241121080548 estimated size is 13.8M
total estimated size is 13.8M
TIME SENT SNAPSHOT zroot/var/db_postgres@rolling-20241121080548
Cleaning up old rolling snapshots...
Not enough snapshots for cleanup. Current count: 1, required: 48
Snapshot process completed.
admin@demo-pg2:~ $ zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
zroot/ROOT/default@2024-11-19-11:35:22-0 394M - 2.10G -
zroot/ROOT/default@initial-setup 500K - 2.12G -
zroot/var/db_postgres@rolling-20241121080548 56K - 14.3M -

The "ERROR: backup is not in progress" message is expected since pg_backup_start is run at the start of the backup, but a backup was never requested from postgres. Instead, a physical backup via zfs is run and this error is generated when pg_backup_stop is called.

It's a good idea to also validate that the log file was created and contains the expected output.
bin/zfs_snapshot.sh admin@pg1 >> /var/log/zfs_snapshot.log
tail /var/log/zfs_snapshot.log

 Configure Build Host

To prepare a build host, you'll need to install the Erlang runtime and Elixir.
For simplicity, we maintain only one version of each on a build host.
We use the latest packaged (pkg) version of Erlang for convenience but build our own version of Elixir.
The build host is responsible for creating the release tarball.
Create a file named build.conf with the following content:
pkg:ca_root_nss
pkg:gcc
pkg:rsync
pkg:gmake
pkg:git
pkg:erlang-runtime27

Set the path to erlang so we can install elixir
path:/usr/local/lib/erlang27/bin

elixir:1.17.3
To install the necessary packages and configure the host, run:
bsd_install.sh admin@demo-build build.conf

 Configure Reverse Proxy

To Configure nginx we use Horizon.NginxConfig module to send the configuration to the proxy host.
In the following example, we configure the nginx server to proxy requests to the my_app1 application running on demo-web1.
user="admin"
host="demo-web1"

projects = [
 %Horizon.Project{
 name: "my_app1",
 server_names: ["demo-web1"],
 http_only: true,
 # certificate: :letsencrypt,
 # letsencrypt_domain: "my_app.com",
 servers: [
 # Verify PORT is same as in runtime.exs or env.sh.eex
 %Horizon.Server{internal_ip: "10.0.0.2", port: 4000},
 %Horizon.Server{internal_ip: "10.0.0.5", port: 4000}
]
 }
]
Horizon.NginxConfig.send(projects, user, host, action: :restart)
If you want to add a second application my_app2 to the same application cluster, you can add it to the projects list and call Horizon.NginxConfig.send/4 again.
When running multiple applications on the same host, ensure that the ports are unique for each application.

Here is an example of configuring two applications on the same host.
my_app1 is deployed with http_only and my_app2 uses a self-signed cert.
in my_app2
mix horizon.gen.cert

In a Livebook cell, run the following code to configure the nginx server to proxy requests to the my_app1 and my_app2 applications running on demo-web1 and demo-web2.
user="admin"
host="demo-web1"

projects = [
 %Horizon.Project{
 name: "my_app1",
 server_names: ["my-app1"],
 http_only: true,
 # certificate: :letsencrypt,
 # letsencrypt_domain: "my_app",
 servers: [
 # Verify PORT is same as in runtime.exs or env.sh.eex
 %Horizon.Server{internal_ip: "10.0.0.2", port: 4000},
 %Horizon.Server{internal_ip: "10.0.0.5", port: 4000}
]
 },
 %Horizon.Project{
 name: "my_app2",
 server_names: ["my-app2"],
 certificate: :self,
 servers: [
 # Verify PORT is same as in runtime.exs or env.sh.eex
 %Horizon.Server{internal_ip: "10.0.0.2", port: 5000},
 %Horizon.Server{internal_ip: "10.0.0.5", port: 5000}
]
 }
]
Horizon.NginxConfig.send(projects, user, host, action: :restart)
If you have open ports on your firewall, you will be able to access each application by the server name and port number when using the http_only: true option.

 Configure Certificates

There are several options to consider when configuring certificates for your web host.
	no certificates - use http only for testing
	self-signed certificates - use for testing when you don't have a domain name
	acme certificates - per domain certificates
	wildcard certificates - for multiple subdomains. requires DNS configuration

 Self-signed Certificates

You can install self-signed certificates using Horizon's mix task
mix horizon.gen.cert

This will run mix phx.gen.cert if no certificates are found in the priv/cert directory and will copy the certificates to the rel/overlays/cert directory. This will allow you to use the certificates in your release when you don't have a domain name.
ACME Certificates
You can generate certificates using certbot with the following command on the demo-web1 host:
doas certbot certonly \
 --dry-run --webroot \
 --webroot-path /usr/local/my_app1 \
 --rsa-key-size 4096 \
 --email me@example.com \
 --agree-tos \
 --non-interactive \
 -d my_app1.com

Remove the --dry-run option and use appropriate values for your email and domain to generate a real certificate.
Wildcard Certificates
If you have multiple subdomains, you can use a wildcard certificate.
certbot supports multiple DNS providers to automate the process.
On the demo-web1 host, you can get a list of the supported providers:
 $ pkg search certbot
py311-certbot-2.11.0,1 Let's Encrypt client
py311-certbot-apache-2.11.0 Apache plugin for Certbot
py311-certbot-dns-cloudflare-2.11.0_1 Cloudflare DNS plugin for Certbot
py311-certbot-dns-cpanel-0.4.0 CPanel DNS Authenticator plugin for Certbot
py311-certbot-dns-digitalocean-2.11.0 DigitalOcean DNS Authenticator plugin for Certbot
py311-certbot-dns-dnsimple-2.11.0 DNSimple DNS Authenticator plugin for Certbot
py311-certbot-dns-dnsmadeeasy-2.11.0 DNS Made Easy DNS Authenticator plugin for Certbot
py311-certbot-dns-gandi-1.5.0 Gandi LiveDNS plugin for Certbot
py311-certbot-dns-gehirn-2.11.0 Gehirn Infrastructure Service DNS Authenticator plugin for Certbot
py311-certbot-dns-google-2.11.0 Google Cloud DNS Authenticator plugin for Certbot
py311-certbot-dns-linode-2.11.0 Linode DNS Authenticator plugin for Certbot
py311-certbot-dns-luadns-2.11.0 LuaDNS Authenticator plugin for Certbot
py311-certbot-dns-nsone-2.11.0 NS1 DNS Authenticator plugin for Certbot
py311-certbot-dns-ovh-2.11.0 OVH DNS Authenticator plugin for Certbot
py311-certbot-dns-powerdns-0.2.1_1 PowerDNS DNS Authenticator plugin for Certbot
py311-certbot-dns-rfc2136-2.11.0 RFC 2136 DNS Authenticator plugin for Certbot
py311-certbot-dns-route53-2.11.0 Route53 DNS Authenticator plugin for Certbot
py311-certbot-dns-sakuracloud-2.11.0 Sakura Cloud DNS Authenticator plugin for Certbot
py311-certbot-dns-standalone-1.1 Standalone DNS Authenticator plugin for Certbot
py311-certbot-nginx-2.11.0 NGINX plugin for Certbot

Using DNSimple as an example and following their instructions, I created a secrets folder and added an API token:
mkdir -p ~/.secrets/certbot
echo "dns_dnsimple_token = YOUR_DNSIMPLE_API_TOKEN" >> ~/.secrets/certbot/dnsimple.ini
chmod 600 ~/.secrets/certbot/dnsimple.ini

Then I ran the following command to generate a wildcard certificate:
 doas certbot certonly \
 --dns-dnsimple \
 --dns-dnsimple-credentials ~/.secrets/certbot/dnsimple.ini \
 --dns-dnsimple-propagation-seconds 60 \
 --non-interactive \
 --agree-tos \
 --email me@example.com \
 -d "example.com" -d "*.example.com"

Updating Nginx Configuration with Certificates
When you have your certificates, you can update the nginx configuration to use them.
If you are using standard Let's Encrypt certificates, you can simplify configuration by providing the domain name and the certificate type:
iex> projects =[%Horizon.Project{
 name: "my_app1",
 server_names: ["demo-web1"],
 certificate: :letsencrypt,
 letsencrypt_domain: "example.com",
 #acme_challenge_path: "custom_path",
 servers: [
 # Verify PORT is same as in runtime.exs or env.sh.eex
 %Horizon.Server{internal_ip: "10.0.0.2", port: 4000},
 %Horizon.Server{internal_ip: "10.0.0.5", port: 4000}
]
 }]
 Horizon.NginxConfig.send(projects, user, host, action: :restart)
You can also specify the path to the acme challenge if you have a custom path by setting the acme_challenge_path explicitly.
Renewing Certificates
Letsencrypt certificates have a lifespan of 90 days and therefore need to be renewed on a periodic basis.
Certificate renewal is done with certbot renew. You can use the Horizon script add_certbot_crontab.sh to schedule a cron job to check twice daily if certificates need to be renewed. If the certificates are due for renewal, the cron job will renew them and reload the nginx service.
Run this script to add a cron job to demo-web1:
$ bin/add_certbot_crontab.sh admin@demo-web1
Cron job added successfully.

This script will add a cron job that looks like this:
0 0,12 * * * /usr/local/bin/doas /usr/local/bin/certbot renew --quiet --post-hook "/usr/local/bin/doas /usr/sbin/service nginx reload"

 Deploying a Release

graph LR
 A[YOUR APP] --> B[STAGE]
 B --> C[BUILD]
 C --> D[DEPLOY]
The configuration and install steps described above are run infrequently; usually when versions change or servers are added.
The majority of the work in a new deployment is the setup; with that out of the way, you can now build and release your Elixir application into the wild.
The stage, build, and deploy tasks are the most frequently executed tasks as they are required for each release. Let's look at each step:
	Staging copies the app source to the build machine.
	Building creates a tarball that is ready to run on a deploy host.
	Deploy copies the tarball to the build machine and starts the service. (Future: JEDI can allow hot deploys to a running service.)

To install these scripts for your application, run:
mix horizon.init

Assuming you have used the default bin folder for your project, you should see the following scripts for my_app1 generated in bin/:
$ ls -F bin
build-my_app1.sh* deploy-my_app1.sh* horizon_helpers.sh
build_script-my_app1.sh* deploy_script-my_app1.sh stage-my_app1.sh*

 Stage and Build

Before deploying an app you must stage it to the build server and build the app.
Running the stage and build steps produces:
transfer existing code state to build server
(use --force to stage code that is not committed)
./bin/stage-my_app.sh --force

build your app on the build server and
copy the tarball to .releases/
./bin/build-my_app.sh

In this example, the --force option permits copying uncommitted code to the build server.
The build step places a tarball in the .releases directory. This tarball is ready to be deployed to the production host.

 Deploy

The deploy step is the final step in the release process.
It copies the tarball to the deploy_hosts_ssh defined in releases in mix.exs, extracts the tarball, and (re)starts the service.
deploy the release
./bin/deploy-my_app.sh

These steps can be combined into a single command:
./bin/stage-my_app.sh --force && ./bin/build-my_app.sh && ./bin/deploy-my_app.sh

If successful, your application will be running on the production hosts and you can access it via the domain name or IP address of the host.

 Release Steps Summary

Here is a summary of the actions taken in each release step.
Stage
	Uses rsync or tar/scp to copy the current project state to the build host

Build
	checks if tailwind is available and downloads it if needed.
	installs mix local.hex
	runs mix deps.get
	runs mix assets.setup.freebsd
	runs mix phx.digest.clean --all
	runs mix assets.deploy
	runs mix release	Calls Horizon.Ops.BSD.Step.setup/1 that creates the rcd script

	stores the tarball in .releases
	stores the tarball name in .releases/my_app.data

Deploy
	adds my_app_enable="YES" to /etc/rc.conf
	expands the tarball
	sets env.sh to mode 0400.
	creates user 'my_app1' (name of your app) if it doesn't exist
	moves rcd script to /usr/local/etc/rc.d/my_app1
	runs any optional release commands
	runs doas service my_app1 restart

Apps are started with the user that has the same name as the app.
For example, the release my_app1 will be run as the user my_app1.
This allows multiple Elixir/Phoenix apps to reside on the same
server, each isolated from the other and individually controlled
with the service command.

 Example Release for MyApp1

Assuming you have the previously described hosts configured and running, here are the steps to deploy MyApp1 to demo-web1 and demo-web2.
	mix phx.new my_app1
	cd my_app1
	mix ecto.create
	Configure mix.exs
	Create my_app1_prod db if needed
	Add env vars to rel/env.sh.eex
	mix horizon.init
	./bin/stage-my_app1.sh --force && ./bin/build-my_app1.sh && ./bin/deploy-my_app1.sh
	configure nginx http_only
	browse to http://demo-web1

 def project do
 [
 app: :my_app1,
 ...
 releases: [
 my_app1: [
 include_executables_for: [:unix],
 steps: [&Horizon.Ops.BSD.Step.setup/1, :assemble, :tar],
 build_host_ssh: "admin@demo-build",
 deploy_hosts_ssh: ["admin@demo-web1", "admin@demo-web2"]
],
]
]
 end
Horizon provides scripts to backup an existing postgres database and restore it to the new database.

 Running Phoenix Apps on FreeBSD

Running mix release generates a script that is used to start and stop your application. This is a script and not a binary executable. The name of the application binary that gets launched is beam.smp with a full path of /usr/local/my_app/erts-<version>/bin/beam.smp.
This is a problem for FreeBSD as it uses the pid and the name of the app when searching for a service to stop. For this reason, if you use the default release scripts to start and stop your app, it will time out when stopping the app.
Horizon fixes this by creating a run command file in /usr/local/etc/rc.d/my_app. On FreeBSD, you can still use the default scripts:
Ok to use remote|rpc|eval
/usr/local/my_app/bin/my_app remote|rpc|eval
for running remote, rpc, or eval, but for starting/stopping the service, you should use:
service my_app start|stop|restart|status

If you have an existing rc_d script and want to fix it for FreeBSD, simply add procname="*beam.smp" to the script. This will allow FreeBSD to find the service and stop it correctly.

The command usage for the default app is:
Usage: my_app COMMAND [ARGS]

The known commands are:

 start Starts the system
 start_iex Starts the system with IEx attached
 daemon Starts the system as a daemon
 daemon_iex Starts the system as a daemon with IEx attached
 eval "EXPR" Executes the given expression on a new, non-booted system
 rpc "EXPR" Executes the given expression remotely on the running system
 remote Connects to the running system via a remote shell
 restart Restarts the running system via a remote command
 stop Stops the running system via a remote command
 pid Prints the operating system PID of the running system via a remote command
 version Prints the release name and version to be booted

Horizon Ops Helper Scripts

Horizon Ops Helper Scripts are a collection of scripts that help with the operational tasks of managing Horizon infrastructure. These scripts are designed to automate common tasks, such as setting up new hosts, configuring databases, and managing backups. By using these scripts, you can save time and reduce the risk of human error in your operations.
Below is a list of helper scripts available in the Horizon Ops Helper Scripts repository and a brief description of each script's purpose.

 freebsd_setup.sh

bsd_install.sh
Usage: freebsd_setup.sh [user@]host
The freebsd_setup.sh script automates the initial setup of a newly created FreeBSD host. This script automates configuration of elevated privileges, configures SSH keys, disables password login, and updates the system.
It performs the following tasks:
	Ensures doas command (replacement for sudo) is installed.
	Configures doas.conf
	Verifies SSH authorized_keys file is set up and disables password login.
	Runs freebsd-update to update the system.

 bsd_install.sh

This script automates the installation of packages on a remote FreeBSD host.
It reads a configuration file and performs the install actions defined therein on the remote host.
bsd_install.sh
Usage: bsd_install.sh [--json] host config_file
 --json Output in JSON format (optional)
 host [user@]remote_host
 config_file Path to the configuration file

See Sample Host Configurations for examples of configuration files.

 add_certbot_crontab.sh

add_certbot_crontab.sh
Usage: ops/bin/add_certbot_crontab.sh [user@]host
Adds the cronjob for certbot to renew the SSL certificates and restart nginx.

 zfs_snapshot.sh

Backup script that runs locally on the postgres backup host.

 Transferring Databases

There are several scripts to help with transferring databases between hosts.

 backup_databases.sh

backup_databases.sh

Usage: backup_databases.sh [-p port] [-U user] [-o output_dir] host

Options:
 -p port PostgreSQL server port (default: 5432)
 -U user PostgreSQL user (default: postgres)
 -o output_dir Local directory to store backups (default: current directory)

Uses locally installed psql to backup all databases on a remote host and transfer them to the local host. Each database is compressed and saved as a separate file in the specified output directory.

 backup_databases_over_ssh.sh

backup_databases_over_ssh.sh
Usage: backup_databases_over_ssh.sh [-o output_dir] [user@]host

If your database does not have an open port from which to backup, or if you don't have a compatible psql client, you can use this script to backup the databases over SSH. This script will connect to the remote host using ssh and run psql on the remote host to backup the databases.

 restore_database.sh

restore_database.sh

Usage: restore_database.sh [-p port] [-U user] [-d database] backup_file host

Options:
 -p port PostgreSQL server port (default: 5432)
 -U user PostgreSQL user (default: postgres)
 -d database Database name to restore into

Arguments:
 backup_file Path to the backup file (required)
 host PostgreSQL server host (required)

This script restores a database from a backup file to a remote PostgreSQL server. It uses the psql client to connect to the remote server and restore the database from the specified backup file.

 update_database_owner.sh

update_database_owner.sh
Usage: update_database_owner.sh [-p port] [-U user] db_name target_user host

This script updates the owner of a database to a new user. It connects to the specified PostgreSQL server using psql at host HOST and changes the owner of the specified database to the target user.

 Control Postgres Access from External Hosts

If you have increased security concerns, Horizon provides scripts to toggle access to the PostgreSQL server from external hosts for individual users.

 turn_off_user_access.sh

Usage: turn_off_user_access.sh db_user [user@]remote_host

 turn_on_user_access.sh

Usage: turn_on_user_access.sh db_user [user@]remote_host

 turn_off_postgres_access.sh

turn_off_postgres_access.sh [user@]remote_host

 turn_on_postgres_access.sh

turn_on_postgres_access.sh [user@]remote_host

Sample Host Configurations

This guide contains sample configuration files for setting up a multi-host environment with Horizon.
Using these sample files you can build the host collateral that you need to deploy your Elixir/Phoenix application.

 Build Host

We start with a sample config file for a build host.
The only expectation for this host is to build a release but not run the application.
This config file uses the current pkg version of erlang erlang-runtime27 and builds Elixir 1.17.3 from source.
The path is set to the erlang bin directory and must precede the Elixir install.
This dynamically sets the path so the Elixir installer knows where to find Erlang.
Note: The path is dependent upon the version of erlang that is installed and you will need to update it accordingly.

pkg:ca_root_nss
pkg:gcc
pkg:rsync
pkg:gmake
pkg:git
pkg:erlang-runtime27

Set the path to erlang so we can install elixir
path:/usr/local/lib/erlang27/bin

elixir:1.17.3
You can now configure the demo-build build host with:
./ops/bin/bsd_install.sh admin@demo-build build.conf

 Web Host

A web host only needs application specific packages. For example, if your app needs vips for use with vix, you can install it here.
In this example, the web host does not need any additional packages.

 Proxy Host

The reverse-proxy host is used to route traffic to the web host. It needs to have Nginx installed and configured to route traffic to the web hosts.
We also install certbot on this host to manage SSL certificates.
The proxy.conf file for the reverse-proxy host looks like:
pkg:nginx
service:nginx
pkg:py311-certbot
The pkg commands install the packages and the service command starts the Nginx service.
In this example, we are going to configure the demo-web1 host as the proxy host:
./ops/bin/bsd_install.sh admin@demo-web1 proxy.conf

 Postgres Host

The postgres host is your primary database server.
There are four steps to getting Postgres up and running:
	Install the version of postgres server and contrib library of your choice
	Configure zfs for database snapshots.
	Initialize postgres. This configures postgresql.conf, pg_hba.conf and logging. Logging is at /var/log/postgresql.log
	Create a database. Creating a database creates a user/password, and updates pg_hba.conf. You can also choose the locale and ctype of the database.

 Creating a Database

When creating a database you need to specify how it is to sort strings and how text is encoded. Horizon provides three options:
	postgres-db-c_mixed_utf8
	postgres-db-c_utf8_full
	postgres-db-us_utf8_full

The c in c_mixed_utf8 and c_utf8_full stands for C locale. This locale sorts strings by byte order. The us in us_utf8_full stands for US locale. This locale sorts strings by dictionary order.
If you plan on running physical backups with zfs, install postgres.zfs-init BEFORE postgres.init. If /var/db/postgres/data<version> already exists, you will need to create a new zfs dataset manually and move the data directory to the new dataset.

The postgres.conf file for the postgres host looks like:
pkg:postgresql17-server
pkg:postgresql17-contrib
postgres.zfs-init
postgres.init

Encode with UTF8 and sort with byte order
postgres.db:c_mixed_utf8:mydb

Other postgresql options
#postgres.db:us_utf8_full:mydb
#postgres.db:c_utf8_full:mydb
Configure your postgres host with:
./ops/bin/bsd_install.sh admin@demo-pg1 postgres.conf

 Postgres Backup Host

The postgres backup host is used to store backups of the postgres database.
For this host you don't need to initialize postgres, but you do need to install the postgres server, the contrib library and initialize zfs.
The postgres-backup.conf file for the postgres-backup host looks like:
pkg:postgresql17-server
pkg:postgresql17-contrib
postgres.zfs-init
Setup the postgres backup host with:
./ops/bin/bsd_install.sh admin@demo-pg2 postgres-backup.conf
That's it! You now have hosts ready for start your Elixir/Phoenix application deployment with Horizon.

Sample Proxy Configuration

Mix.install([
 {:horizon, "~> 0.2"}
])

 Section

user = "admin"
host = "demo-web1"

projects = [
 %Horizon.Project{
 name: "my_app1",
 server_names: ["demo-web1"],
 http_only: true,
 # certificate: :letsencrypt,
 # letsencrypt_domain: "my_app",
 servers: [
 # Verify PORT is same as in runtime.exs or env.sh.eex
 %Horizon.Server{internal_ip: "10.0.0.2", port: 4000},
 %Horizon.Server{internal_ip: "10.0.0.5", port: 4000}
]
 }
]
[
 %Horizon.Project{
 name: "my_app1",
 server_names: ["demo-web1"],
 certificate: nil,
 authenticator: nil,
 cert_path: nil,
 cert_key_path: nil,
 letsencrypt_domain: nil,
 acme_challenge_path: nil,
 http_only: true,
 servers: [
 %Horizon.Server{internal_ip: "10.0.0.2", port: 4000},
 %Horizon.Server{internal_ip: "10.0.0.5", port: 4000}
]
 }
]
 IO.puts Horizon.NginxConfig.generate(projects)
load_module /usr/local/libexec/nginx/ngx_mail_module.so;
load_module /usr/local/libexec/nginx/ngx_stream_module.so;
worker_processes auto;

events {
 worker_connections 1024;
}

http {
 include mime.types;
 default_type application/octet-stream;
 client_max_body_size 6M;
 sendfile on;
 keepalive_timeout 65;
 gzip on;
 access_log on;
 access_log /var/log/nginx/access.log;

 map $http_upgrade $connection_upgrade {
 default upgrade;
 '' close;
 }

 # Define upstream servers (local or remote)
 upstream backend_my_app1 {
 ip_hash;
 server 10.0.0.2:4000;
 server 10.0.0.5:4000;
 }

 # Define server block for HTTP
 server {
 listen 80;
 server_name demo-web1;
 location / {
 proxy_pass http://backend_my_app1;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection $connection_upgrade;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
 }
}

:ok
 Horizon.NginxConfig.send(projects, user, host, action: :restart)

11:09:45.483 [info] Nginx configuration sent to demo-web1

{:ok,
 "Performing sanity check on nginx configuration:\nStopping nginx.\nWaiting for PIDS: 75496.\nPerforming sanity check on nginx configuration:\nStarting nginx.\n"}

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

 Unreleased

 0.2.5

 Added

	Added -n option to restore_database.sh to activate the --no-owner option on pg_restore.

 0.2.4 - 2024-12-02

 Changed

	Cleaned up Deploying with Horizon docs.

 0.2.3 - 2024-11-29

 Added

	Added proxmox VM creation guide.
	Added CHANGELOG.md to Hex page.

 [0.2.2]

 Changed

	Compressed images in docs.

 [0.2.1]

 Fixed

	Fixed document links in README.md.

 [0.2.0]

 Added

	Added ssl headers to nginx.conf (NginxConfig.generate/4)
	Added mix horizon.ops.init to install HorizonOps scripts.
	Added .ssh/environment file to store environment variables for ssh connections.
	Added --verbose option on bsd_install.sh (similar to debug)
	Added docs for Horizon Ops scripts.
	Added docs for Proxmox setup.
	Added docs for FreeBSD Install
	Added docs for Hetzner Cloud setup
	Added sample config files for hosts, e.g. [build, web, pg, backup]

 Changed

	Moved last two arguments of NginxConfig.send/4 to opts
	Changed log_duration to off in postgresql.conf to save space.
	Changed log_statement to ddl in postgresql.conf to save space.
	Changed mix horizon.init to only install project specific deploy scripts.
	Removed -u user option on ops scripts and included optional [user@] for hosts

 Fixed

	Fixed bug in NginxConfig.generate to properly handle multiple server names.

 0.1.3

 Changed

	Added freebsd_setup.sh script to help setup first-boot configuration for FreeBSD hosts.
	Changed host on bsd_install.sh to combine user and host into a single argument.
	Added postgres.zfs-init command to bsd_install.sh script.

 Fixed

	Fixed documentation issues.

 0.1.2 - 2024-10-29

 Changed

	Updates for adding to Hex

 0.1.1 - 2024-10-29

 Added

	Added zfs_snapshot script
	Added functionality for connecting to VM providers to create host instances (starting with GCE VM hosts).
	Introduced Horizon.Target module utilizing ADTs for deployment targets.
	Added features to install and configure PostgreSQL on FreeBSD hosts.
	Implemented initial support for setting up a database follower and moving the master.

 Changed

	Updated postgres.conf comments
	Renamed the project from "Horizon" to "HorizonOps".
	Updated the structure to include components like Horizon.GCE, Horizon.AWS, HorizonBSD, and HorizonLinux.

 Fixed

	Minor bug fixes related to FreeBSD deployment scripts.

 [0.1.0] - 2024-10-19

 Added

	Initial release of Horizon.
	Scripts for deploying Phoenix applications to FreeBSD hosts.
	Tools for configuring FreeBSD hosts with Elixir/Phoenix releases.
	Basic support for PostgreSQL installation and configuration on FreeBSD.

LICENSE

BSD 3-Clause License
Copyright (c) 2024, Jim Freeze
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

FreeBSD Template Setup

Creating VM templates can save time when deploying new VMs.
This guide covers the initial setup of a FreeBSD host prior to creating a template from the host.

 Server Access Setup

For convenience, we start with defining a host alias in /etc/hosts for the existing host.
In this example our hosts are configured on Hetzner Cloud.
Get the public IP of the server from your provider console.
[image: Server Public IP]

 Add DNS to /etc/hosts

Add the remote server IP to /etc/hosts.
We know this server will be web so we'll add an alias for demo-web1.
##
Host Database
#
localhost is used to configure the loopback interface
when the system is booting. Do not change this entry.
##
127.0.0.1 localhost
255.255.255.255 broadcasthost
::1 localhost

5.161.249.144 demo-web1

 Configure passwordless access to the remote server

Use ssh-copy-id to copy your public key to the remote server.
ssh-copy-id admin@demo-web1 1 ✘ 10:23:52
/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: "/Users/jimfreeze/.ssh/id_rsa.pub"
The authenticity of host 'demo-web1 (5.161.249.144)' can't be established.
ED25519 key fingerprint is SHA256:o6XFCLWgF2HQKNlCip4itEqh5S+AY0sYeKEjlrAtDtQ.
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now it is to install the new keys
(admin@demo-web1) Password for admin@:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'admin@demo-web1'"
and check to make sure that only the key(s) you wanted were added.

Now verify you can log in without a password.
❯ ssh admin@demo-web1
FreeBSD 14.1-RELEASE (GENERIC) releng/14.1-n267679-10e31f0946d8

Welcome to FreeBSD!

admin@:~ $

 Configure the remote server

The freebsd_setup.sh script configures new installs of FreeBSD and performs the following tasks:
	Ensures doas command (replacement for sudo) is installed.
	Configures doas.conf
	Verifies SSH authorized_keys file is set up and disables password login.
	Runs freebsd-update to update the system.

freebsd_setup.sh admin@demo-web1 1 ✘ 10:33:44
[INFO] Ensuring 'doas' is installed on the remote host...
[INFO] Running setup script on remote host admin@demo-web1...
[INFO] Verifying SSH key setup...
[INFO] Backing up existing configuration files...
[INFO] Configuring doas...
[INFO] Configuring .shrc...
[INFO] Configuring sshd...
[INFO] Setting SSH-related permissions...
[INFO] Configuring /boot/loader.conf...
[INFO] Reloading sshd service...
Performing sanity check on sshd configuration.
[INFO] sshd service reloaded successfully.
[INFO] Updating the system...
Looking up update.FreeBSD.org mirrors... 3 mirrors found.
Fetching public key from update1.freebsd.org... done.
Fetching metadata signature for 14.1-RELEASE from update1.freebsd.org... done.
Fetching metadata index... done.
Fetching 2 metadata files... done.
Inspecting system... done.
Preparing to download files... done.
Fetching 115 patches.....10....20....30....40....50....60....70....80....90....100....110.. done.
Applying patches... done.
The following files will be updated as part of updating to
14.1-RELEASE-p6:
/bin/freebsd-version
/boot/kernel/cfiscsi.ko
...
Creating snapshot of existing boot environment... done.
Installing updates...
Restarting sshd after upgrade
Performing sanity check on sshd configuration.
Stopping sshd.
Waiting for PIDS: 84289.
Performing sanity check on sshd configuration.
Starting sshd.
Scanning /usr/share/certs/untrusted for certificates...
Scanning /usr/share/certs/trusted for certificates...
 done.
[INFO] System updated successfully.
[INFO] Initial setup complete.
Please reboot your system and run the following commands after rebooting:
 doas pkg upgrade -y
 doas zfs snapshot zroot/ROOT/default@initial-setup
[INFO] Remote installs complete. Reboot, upgrade and snapshot remaining.
 RUN: ssh admin@demo-web1 'doas shutdown -r now'

Follow the instructions to reboot the server and run the upgrade command.
ssh admin@demo-web1 'doas shutdown -r now'

Shutdown NOW!
shutdown: [pid 83595]
Shutdown NOW!

System shutdown time has arrived

Log back in after the server reboots and finish the upgrade.
ssh admin@demo-web1

admin@:~ $ doas pkg upgrade -y
Updating FreeBSD repository catalogue...
Fetching data.pkg: 100% 7 MiB 7.5MB/s 00:01
Processing entries: 100%
FreeBSD repository update completed. 35521 packages processed.
All repositories are up to date.
Checking for upgrades (1 candidates): 100%
Processing candidates (1 candidates): 100%
Checking integrity... done (0 conflicting)
Your packages are up to date.

doas zfs snapshot zroot/ROOT/default@initial-setup

You can verify the snapshot was created with the following command.
admin@:~ $ zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
zroot/ROOT/default@2024-11-19-11:35:22-0 394M - 2.10G -
zroot/ROOT/default@initial-setup 144K - 2.12G -

Your server is now set up and ready for Horizon.

 Creating a Template

We'll use this server as a template to create web hosts, postgres hosts and build hosts.
If not using Hetzner Cloud, follow the instructions for your provider to create a snapshot of the server.
First, shut down the server.
ssh admin@demo-web1 "doas shutdown -h now" ✔ 4h 43m 12s 15:22:12
Shutdown NOW!
shutdown: [pid 30486]
Shutdown NOW!

System shutdown time has arrived

 Create a Snapshot

Go to the Snapshot tab.
[image: Select Snapshot Tab]
Create a snapshot of the server.
[image: Create a Snapshot]
You now have a snapshot of the server that can be used to create new servers.
[image: Template Snapshot]

Hetzner Cloud Setup Guide

A quick guide to creating a FreeBSD host template on Hetzner Cloud
This guide will walk you through setting up a new Hetzner Cloud project, creating a firewall, a network, and adding servers.
After creating a project, our strategy is to create network and firewall collateral first.
Then we will add servers to the network and create a new server and save it as a template.
That template will be used to create new servers in the future.

 FreeBSD Host Installation on Hetzner Cloud Summary

	Create a new project
	Create a Firewall	Name SSH and Ping Firewall Rules
	SSH and Ping Firewall Rules
	Web Server Rules
	Phoenix Dev Rule and LAN Rules
	Name the Firewall

	Create a Network

 Create a new project

Browse to Hetzner Cloud and click "New project".
[image: Create a project]
and add your project.
[image: Create a project]

 Project Overview

In the project page, you can configure networks, firewalls, and servers.
[image: Project page]

 Create a Firewall

If you are using a Cloudflare Argo Tunnel or other service to expose your app to the internet, the following firewall rules may need to be adapted.

Click "Create Firewall" to create a new firewall.
[image: Create a Firewall]

 SSH and Ping Firewall Rules

Here we will create inbound rules and internal LAN rules.
Hetzner provides rules for ssh and ping but does not name them.
Feel free to add appropriate names to the rules.
[image: SSH and Ping Rules]

 Web Server Rules

Next, add rules for HTTP and HTTPS.
[image: Web Server Rules]

 Phoenix Dev Rule and LAN Rules

Open port 4000 for the Phoenix server.
You can close this port in your production firewall.
Opening this port is helpful when testing deployment because
this can be accessed when nginx is running on port 80 and 443.
Also shown in the image below are the LAN rules that allow servers to talk to each other.
The web hosts will need to access the postgres server on port 5432 and
the postgres backup server will need to access the postgres server for backups.
We open all the ports for the LAN because the servers are in a private network.
[image: Port 4000 and LAN]

 Name the Firewall

[image: Name the Firewall]

 Create a Network

Move next to the network tab and create a new network.
[image: Create a Network]

 Network Zone

Select the network zone that matches where your servers are located.
The default IP range is usually sufficient.
[image: Network Zone]

 Add Servers

Move to the servers tab to add a server to the network.
Click "Add Server" to create a new server.
[image: Add Servers]

 Select an Image

Hetzner does not provide a FreeBSD image, so we will select an existing image and install
FreeBSD on it using one of the FreeBSD ISO images hosted by Hetzner.
Which image you select is not important because we will be installing FreeBSD from an ISO image.
[image: Select Server Image]

 Select Server Type

Select if you want to use a shared or dedicated CPU.
[image: Select Server Type]
Select the number of CPUs and memory.
[image: Select Server CPU and Memory]

 Select the Firewall

[image: Select Server Firewall]

 Select the Network

[image: Select Server Network]

 Name the Server

[image: Name the Server]

 Server Dashboard Page

Go to the server dashboard page and click "ISO Images" to add the FreeBSD ISO image.
[image: ISO Images]

 Mount FreeBSD ISO

Type freebsd in the search box to find the FreeBSD ISO images and mount the most recent image.
[image: Mount FreeBSD ISO]

 Launch Console

Click the console icon to open a console.
[image: Open a Console]

 Open a Console

Once in the console, click "Ctl + Alt + Del" to reboot the server.
Note that you will need to click into the console and enter keystrokes for the console to recognize and mount the ISO. (Don't ask me why.)
[image: Hetzner Console]

 FreeBSD Boot Installer

When the ISO is recognized and booted, you will see the FreeBSD boot installer. Press enter to boot the installer.
Follow the steps for FreeBSD install.
The notable difference is that you will need to select the vtnet0 network interface and configure the IPv6 address.
We will configure vtnet1 for the LAN interface in a later step.
[image: FreeBSD Boot Installer]
The network and IPv6 configuration shown below are additional steps not found in the FreeBSD install guide.

 vtnet0 Configuration

Choose vtnet0 for the public network interface. vtne1 will be used for the private LAN interface.
[image: vtnet0 Configuration]

 IPv6 Configuration

Configure the IPv6 address for the public network interface.
[image: IPv6 Configuration]

 SLAAC Autoconfiguration for IPv6

[image: SLAAC Autoconfiguration]
Continue with the FreeBSD install guide.

 Unmount ISO

After the installation is complete, you will need to reboot the server and then unmount the ISO image before it starts up.
[image: Reboot]

 Reboot

Reboot the server and unmount the ISO. Be quick! :-)
[image: Unmount ISO]

 Template Creation

You now have a FreeBSD server that is almost ready to be used as a template for future servers.
Follow the steps in FreeBSD Template Setup to complete the template setup.

Hetzner Cloud Host Instantiation

This guide covers creating multiple hosts from a template on Hetzner Cloud to create
a horizontally scalable infrastructure.

 Select a host Image

In the Image section, click on the Snapshots tab and select the snapshot you created in the previous guide.
[image: Select Snapshot]

 Name the Hosts

For the scalable infrastructure, we'll create multiple hosts from the snapshot.
Add four servers to the list and name them web2, pg1, pg2, and build.
[image: Name the Servers]

 Create the Hosts

Create the hosts and note the IP addresses, both public and private.
[image: Server Summary]

FreeBSD Installation

Installing FreeBSD from an ISO image is a simple process that takes around 3-5 minutes.
If you're used to using containers, you can think of this step as the equivalent of searching for and creating a new container. The upside is you know exactly what is going into your FreeBSD installation.
For most systems. this process only needs to be performed occasionally as FreeBSD systems are updated. This example shows the process for a new installation of FreeBSD 14.1 RELEASE.

 Start the Installer

Select the Boot Installer by hitting enter.
[image: Start Installer]

 Select Install

[image: Select Install]

 Select Your Keyboard

[image: Select Your Keyboard]

 Hostname

You can leave the hostname blank for now as we will set it later during the initial setup.
[image: Hostname]

 System Components

We add the ports tree to save time in case it is needed later and we add the source tree for convenience.
[image: System Components]

 Disk Setup

We will use the entire disk for the installation. If you have a specific partitioning scheme in mind, you can select the manual option.
[image: Disk Setup]

 ZFS Configuration

Use the defaults for ZFS configuration.
[image: ZFS Configuration]

 Device Type

This will depend o your hosting setup, but usually we offload any disk redundancy to the hosting provider.
In a typical Horizon setup, the two host types (web and postgres) do not need redundancy as the web hosts are stateless and can be recreated easily and the postgres host is continually backed up (and possibly mirrored).
[image: Device Type]

 Drive Selection

Select the device to format.
[image: Drive Selection]

 Confirm Formatting

[image: Confirm Formatting]

 Checksum Verification

[image: Checksum Verification]

 Installation (Archive Extraction)

[image: Installation (Archive Extraction)]

 Set Root Password

[image: Set Root Password]

 Network Configuration

[image: Network Configuration]

 Add IPv4 Interface

[image: Add IPv4 Interface]

 Use DHCP

[image: Use DHCP]

 IPv6 Configuration

This can skipped if you don't plan to use IPv6.
[image: IPv6 Configuration]

 Confirm Network Configuration

[image: Confirm Network Configuration]

 Select Timezone

[image: Select Timezone]

 Select Country

[image: Select Country]

 Select Locality

This is the city closest to your server. If you don't see your city, select the closest one.
[image: Select Locality]

 Confirm Timezone

[image: Confirm Timezone]]

 Skip Set Date

[image: Skip Date Setup]

 Skip Set Time

[image: Skip Time Setup]

 System Configuration

It's a good idea to add ntpd and ntpd_sync_on_start as VM clocks can drift significantly.
Adding local_unbound can speed up DNS lookups but is optional.
[image: System Configuration]

 System Hardening

Select all the hardening options.
[image: System Hardening]

 Add a User

[image: Add a User]

 Add User Console

This example adds the admin user and sets their group to wheel.
Adding the user to the wheel group is required to give your user elevated privileges if using the freebsd_setup.sh script.
[image: Add User Console]

 Exit Guided Install

[image: Exit Guided Install]

 Manual Configuration

[image: Manual Configuration]

 Add doas.conf

At the end of installation but before rebooting, add the doas package to your system
and configure privileges for the wheel group.
The simple doas configuration will allow you to run commands to setup your hosts.
When you run the freebsd_setup.sh script it will enhance doas.conf.
[image: Add doas oops]

 Oops. Create the directory first.

[image: Add doas]

 Add the pkg doas

[image: Add the pkg doas]

 Exit

[image: Exit]

 Reboot

[image: Reboot]
Your FreeBSD system is now installed and ready for the next steps.

Building FreeBSD VMs in Proxmox

An example configuration to create a VM for FreeBSD in Proxmox.
This guide is not intended to be a tutorial for Proxmox, but rather a reference for creating a VM for FreeBSD on Proxmox.

 Name Your Virtual Machine

[image: Name Your Virtual Machine]

 Select the ISO

If not already added, you can add a FreeBSD ISO by clicking on a host under the Datacenter (pve by default) and selecting local and then Download from URL to add an ISO Image.
FreeBSD ISO's can be found at FreeBSD ISO Images.
[image: Select the ISO]
Pasting the 14.1 link https://download.freebsd.org/ftp/releases/ISO-IMAGES/14.1/FreeBSD-14.1-RELEASE-amd64-disc1.iso into the URL section and clicking Query URL will validate the link to the ISO.
[image: Select the ISO]
Back at your VM creation, select the ISO you just added.
[image: Select the ISO]

 Set the OS Type

Set the OS type to "other".
[image: Set the OS Type]

 System Configuration

Set the Graphics card to VirtIO-GPU and the Machine to q35.
Optionally enable the Qemu Agent.
[image: System Configuration]

 Disk Configuration

Use the VirtIO Block for the Bus/Device.
[image: Disk Configuration]

 CPU Configuration

Select the number of CPU's you want to allocate to the VM.
Enable AES instruction set and 1GB page sizes.
[image: CPU Configuration]

 Allocate Memory

[image: Allocate Memory]

 Network Configuration

Use the VirtIO (paravirtualized) network card.
[image: Network Configuration]

 Confirm

[image: Confirm]

 Proxmox Configuration File

Below is the resulting config file for this example FreeBSD VM configuration in Proxmox.
agent: 1
boot: order=virtio0;ide2;net0
cores: 8
cpu: host,flags=+pdpe1gb;+aes
ide2: local:iso/FreeBSD-14.1-RELEASE-amd64-disc1.iso,media=cdrom,size=1146374K
machine: q35
memory: 4096
meta: creation-qemu=8.1.5,ctime=1731773520
name: BSD-Install-Demo
net0: virtio=BC:24:11:61:1F:96,bridge=vmbr0,firewall=1
numa: 0
ostype: other
scsihw: virtio-scsi-single
smbios1: uuid=0be523c5-e87b-4120-a07b-a9d3493491d9
sockets: 1
vga: virtio
virtio0: local-zfs:vm-200-disk-0,iothread=1,size=64G
vmgenid: dfd5e6ba-dd39-44d9-8f0e-216b5700579f

build_conf

#
Horizon.Ops - Sample Config for a build host
#

The `pkg` option installs the specified package using the package manager.
pkg:ca_root_nss
pkg:gcc
pkg:rsync
pkg:gmake
pkg:git
pkg:erlang-runtime27

The `path` option sets a runtime path for the script
Set the path to erlang so we can install elixir
path:/usr/local/lib/erlang27/bin

The `elixir` option pulls the specified version of Elixir from github and builds Elixir from source
elixir:1.17.3

web_proxy_conf

#
Horizon.Ops - Sample Config for a reverse-proxy and web server
#

pkg:nginx

Configure and start the nginx service
service:nginx
pkg:py311-certbot

postgres_conf

#
Horizon.Ops - Sample Config for a Postgres Server
#
This installation script sets up a PostgreSQL server,
initializes the database, and creates multiple databases
with different locale and encoding settings.
#
Install Options
The script uses several configuration options to set up and customize the PostgreSQL server.
#
1. Install Packages
#
Option: pkg
#
pkg:<package_name>
#
The `pkg` option installs the specified package using the package manager.
#
Examples:
#
pkg:postgresql16-server
pkg:postgresql16-contrib
#
These commands install the PostgreSQL 17 server and additional contributed utilities.
Note that you don't need to specify the full name of the package.
#
#
2. Initialize ZFS
#
Option: postgres.zfs-init
#
This option initializes ZFS for the PostgreSQL server.
It creates a ZFS pool and sets up the mount point for the database.
This must be run before initializing the PostgreSQL server.
#
Example:
#
postgres.zfs-init
#
#
3. Initialize PostgreSQL
#
Option: postgres.init
#
This option initializes the PostgreSQL server.
It calls `initdb` starts the database server.
#
Example:
#
postgres.init
#
#
4. Create Databases with Specific Locale Settings
#
Option: postgres.db:<encoding_type>:<database_name>
#
This option creates a PostgreSQL database with a specific encoding type and locale settings.
The <encoding_type> specifies the collation and character type (ctype) settings,
and <database_name> is the name of the database to be created.
#
Encoding Types:
#
c_mixed_utf8: Collate = C, CType = C.UTF-8 (default, uses template1)
c_utf8_full: Collate = C.UTF-8, CType = C.UTF-8
us_utf8_full: Collate = en_US.UTF-8, CType = en_US.UTF-8
#
Examples:
#
postgres.db:c_mixed_utf8:mydb1
postgres.db:c_utf8_full:mydb2
postgres.db:us_utf8_full:mydb3
#
These commands create three databases:
mydb1 with collation C and ctype C.UTF-8
mydb2 with both collation and ctype set to C.UTF-8
mydb3 with both collation and ctype set to en_US.UTF-8
#

pkg:postgresql17-server
pkg:postgresql17-contrib
postgres.zfs-init
postgres.init

Create individual database
postgres.db:c_mixed_utf8:my_app

postgres_backup_conf

#
Horizon.Ops - Sample Config for a Postgres Backup Server
#
Install postgres for convenience if we need to restore from backup
or stand up the backup as the replacement server
#

pkg:postgresql17-server
pkg:postgresql17-contrib

Initialize ZFS for the PostgreSQL Backup server
postgres.zfs-init

Horizon.NginxConfig

This module generates an Nginx configuration file using a templating system.
Allows for template overrides in the current project.
The configuration is based on Horizon.Project and Horizon.Server.

 Customizing the Nginx configuration template

To customize your nginx.conf, copy the template from the Horizon package to your project:
$ mkdir -p priv/horizon/templates
$ cp deps/horizon/priv/templates/nginx/nginx.conf.eex priv/horizon/templates/nginx.conf.eex

 Running the generator from iex

 Examples

user = "username"
host = "host-address"
remote_path = "/usr/local/etc/nginx/nginx.conf"

projects = [
 %Horizon.Project{
 name: "project-name",
 server_names: ["my.server.com"],
 http_only: true,
 servers: [
 %Horizon.Server{internal_ip: "127.0.0.1", port: 4000},
 %Horizon.Server{internal_ip: "192.168.100.100", port: 4000}
]
 }
]

config_output = Horizon.NginxConfig.generate(projects)
encoded_content = :base64.encode(config_output)
command = "echo #{encoded_content} | ssh #{user}@#{host} 'base64 -d | doas tee #{remote_path} > /dev/null && doas service nginx reload'"
{result, exit_code} = System.cmd("sh", ["-c", command])

 Summary

 Functions

 Horizon.Ops.BSD.Config - horizon v0.2.5

Horizon.Ops.BSD.Config

Horizon.Ops configuration.

 Summary

 Functions

 Horizon.Ops.BSD.Step - horizon v0.2.5

Horizon.Ops.BSD.Step

The Horizon.Ops.BSD.Step module contains steps that are used to
perform tasks during the release process.
	setup/1 - Run all the needed release steps.
	echo/1 - Echo the release name and options to the console.
	merg