

 html_to_markdown

 v2.22.5

 Table of contents

 	html-to-markdown

 	
 Modules

 	HtmlToMarkdown

 	HtmlToMarkdown.InlineImage

 	HtmlToMarkdown.InlineImageConfig

 	HtmlToMarkdown.InlineImageWarning

 	HtmlToMarkdown.MetadataConfig

 	HtmlToMarkdown.Options

 	HtmlToMarkdown.PreprocessingOptions

 	HtmlToMarkdown.Visitor

 	Exceptions

 	HtmlToMarkdown.Error

 html-to-markdown

 HtmlToMarkdown - html_to_markdown v2.22.5

HtmlToMarkdown

High-level Elixir interface for the Rust html-to-markdown engine.

 Summary

 Types

 inline_config_input()

 metadata_config_input()

 options_input()

 Functions

 convert(html, options \\ nil)

 Convert HTML to Markdown.

 convert!(html, options \\ nil)

 Convert HTML to Markdown and raise on failure.

 convert_with_inline_images(html, options \\ nil, inline_config \\ nil)

 Convert HTML and collect inline image assets.

 convert_with_inline_images!(html, options \\ nil, inline_config \\ nil)

 Bang variant of convert_with_inline_images/3.

 convert_with_metadata(html, options \\ nil, metadata_config \\ nil)

 Convert HTML to Markdown and extract metadata.

 convert_with_metadata!(html, options \\ nil, metadata_config \\ nil)

 Bang variant of convert_with_metadata/3.

 convert_with_options(html, handle)

 Convert HTML using a reusable options handle.

 convert_with_options!(html, handle)

 Variant of convert_with_options/2 that raises on failure.

 options(opts \\ nil)

 Create a reusable options handle (opaque reference).

 start_profiling(output_path, frequency \\ 1000)

 Start Rust-side profiling and write a flamegraph to the given output path.

 stop_profiling()

 Stop Rust-side profiling and flush the flamegraph.

 Types

 inline_config_input()

 @type inline_config_input() ::
 HtmlToMarkdown.InlineImageConfig.t() | map() | keyword() | nil

 metadata_config_input()

 @type metadata_config_input() ::
 HtmlToMarkdown.MetadataConfig.t() | map() | keyword() | nil

 options_input()

 @type options_input() :: HtmlToMarkdown.Options.t() | map() | keyword() | nil

 Functions

 convert(html, options \\ nil)

 @spec convert(String.t(), options_input()) :: {:ok, String.t()} | {:error, term()}

Convert HTML to Markdown.
The options argument accepts an %HtmlToMarkdown.Options{} struct,
a map/keyword list with option keys, or nil (defaults).

 convert!(html, options \\ nil)

 @spec convert!(String.t(), options_input()) :: String.t()

Convert HTML to Markdown and raise on failure.

 convert_with_inline_images(html, options \\ nil, inline_config \\ nil)

 @spec convert_with_inline_images(String.t(), options_input(), inline_config_input()) ::
 {:ok, String.t(), [HtmlToMarkdown.InlineImage.t()],
 [HtmlToMarkdown.InlineImageWarning.t()]}
 | {:error, term()}

Convert HTML and collect inline image assets.
Returns {:ok, markdown, inline_images, warnings}.

 convert_with_inline_images!(html, options \\ nil, inline_config \\ nil)

 @spec convert_with_inline_images!(String.t(), options_input(), inline_config_input()) ::
 {String.t(), [HtmlToMarkdown.InlineImage.t()],
 [HtmlToMarkdown.InlineImageWarning.t()]}

Bang variant of convert_with_inline_images/3.

 convert_with_metadata(html, options \\ nil, metadata_config \\ nil)

 @spec convert_with_metadata(String.t(), options_input(), metadata_config_input()) ::
 {:ok, String.t(), map()} | {:error, term()}

Convert HTML to Markdown and extract metadata.
Returns {:ok, markdown, metadata}.

 convert_with_metadata!(html, options \\ nil, metadata_config \\ nil)

 @spec convert_with_metadata!(String.t(), options_input(), metadata_config_input()) ::
 {String.t(), map()}

Bang variant of convert_with_metadata/3.

 convert_with_options(html, handle)

 @spec convert_with_options(String.t(), reference()) ::
 {:ok, String.t()} | {:error, term()}

Convert HTML using a reusable options handle.

 convert_with_options!(html, handle)

 @spec convert_with_options!(String.t(), reference()) :: String.t()

Variant of convert_with_options/2 that raises on failure.

 options(opts \\ nil)

 @spec options(options_input()) :: reference()

Create a reusable options handle (opaque reference).
The handle can be passed to convert_with_options/2.

 start_profiling(output_path, frequency \\ 1000)

 @spec start_profiling(String.t(), integer()) :: :ok | {:error, term()}

Start Rust-side profiling and write a flamegraph to the given output path.

 stop_profiling()

 @spec stop_profiling() :: :ok | {:error, term()}

Stop Rust-side profiling and flush the flamegraph.

 HtmlToMarkdown.InlineImage - html_to_markdown v2.22.5

HtmlToMarkdown.InlineImage

Represents an inline image extracted during conversion.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %HtmlToMarkdown.InlineImage{
 attributes: map(),
 data: binary(),
 description: String.t() | nil,
 dimensions: {non_neg_integer(), non_neg_integer()} | nil,
 filename: String.t() | nil,
 format: String.t(),
 source: String.t()
}

 HtmlToMarkdown.InlineImageConfig - html_to_markdown v2.22.5

HtmlToMarkdown.InlineImageConfig

Configuration for inline image extraction.

 Summary

 Types

 t()

 Functions

 new(cfg)

 Build a configuration struct from a map, keyword list, or another struct.

 Types

 t()

 @type t() :: %HtmlToMarkdown.InlineImageConfig{
 capture_svg: boolean(),
 filename_prefix: String.t() | nil,
 infer_dimensions: boolean(),
 max_decoded_size_bytes: pos_integer()
}

 Functions

 new(cfg)

 @spec new(t() | map() | keyword() | nil) :: t()

Build a configuration struct from a map, keyword list, or another struct.

 HtmlToMarkdown.InlineImageWarning - html_to_markdown v2.22.5

HtmlToMarkdown.InlineImageWarning

Warning emitted during inline image extraction.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %HtmlToMarkdown.InlineImageWarning{
 index: non_neg_integer(),
 message: String.t()
}

 HtmlToMarkdown.MetadataConfig - html_to_markdown v2.22.5

HtmlToMarkdown.MetadataConfig

Configuration for metadata extraction.
This controls which metadata sections are extracted during convert_with_metadata/3.

 Summary

 Types

 t()

 Functions

 new(cfg)

 Types

 t()

 @type t() :: %HtmlToMarkdown.MetadataConfig{
 extract_document: boolean(),
 extract_headers: boolean(),
 extract_images: boolean(),
 extract_links: boolean(),
 extract_structured_data: boolean(),
 max_structured_data_size: pos_integer()
}

 Functions

 new(cfg)

 @spec new(t() | map() | keyword() | nil) :: t()

 HtmlToMarkdown.Options - html_to_markdown v2.22.5

HtmlToMarkdown.Options

High-level configuration for HTML → Markdown conversion.
Use new/1 to build options from a map or keyword list, or construct
the struct directly. Pass the struct to HtmlToMarkdown.convert/2,
HtmlToMarkdown.options/1, or HtmlToMarkdown.convert_with_inline_images/3.

 Summary

 Types

 code_block_style()

 heading_style()

 highlight_style()

 list_indent_type()

 newline_style()

 t()

 whitespace_mode()

 Functions

 new(opts)

 Build options from a struct, keyword list, or map.

 Types

 code_block_style()

 @type code_block_style() :: :indented | :backticks | :tildes

 heading_style()

 @type heading_style() :: :underlined | :atx | :atx_closed

 highlight_style()

 @type highlight_style() :: :double_equal | :html | :bold | :none

 list_indent_type()

 @type list_indent_type() :: :spaces | :tabs

 newline_style()

 @type newline_style() :: :spaces | :backslash

 t()

 @type t() :: %HtmlToMarkdown.Options{
 autolinks: boolean(),
 br_in_tables: boolean(),
 bullets: String.t(),
 code_block_style: code_block_style(),
 code_language: String.t(),
 convert_as_inline: boolean(),
 debug: boolean(),
 default_title: boolean(),
 encoding: String.t(),
 escape_ascii: boolean(),
 escape_asterisks: boolean(),
 escape_misc: boolean(),
 escape_underscores: boolean(),
 extract_metadata: boolean(),
 heading_style: heading_style(),
 highlight_style: highlight_style(),
 hocr_spatial_tables: boolean(),
 keep_inline_images_in: MapSet.t(),
 list_indent_type: list_indent_type(),
 list_indent_width: pos_integer(),
 newline_style: newline_style(),
 preprocessing: HtmlToMarkdown.PreprocessingOptions.t(),
 preserve_tags: MapSet.t(),
 skip_images: boolean(),
 strip_newlines: boolean(),
 strip_tags: MapSet.t(),
 strong_em_symbol: String.t(),
 sub_symbol: String.t(),
 sup_symbol: String.t(),
 whitespace_mode: whitespace_mode(),
 wrap: boolean(),
 wrap_width: pos_integer()
}

 whitespace_mode()

 @type whitespace_mode() :: :normalized | :strict

 Functions

 new(opts)

 @spec new(t() | map() | keyword() | nil) :: t()

Build options from a struct, keyword list, or map.

 HtmlToMarkdown.PreprocessingOptions - html_to_markdown v2.22.5

HtmlToMarkdown.PreprocessingOptions

Configuration for HTML preprocessing before conversion.

 Summary

 Types

 preset()

 t()

 Functions

 new(opts)

 Build preprocessing options from a map/keyword list/struct.

 Types

 preset()

 @type preset() :: :minimal | :standard | :aggressive

 t()

 @type t() :: %HtmlToMarkdown.PreprocessingOptions{
 enabled: boolean(),
 preset: preset(),
 remove_forms: boolean(),
 remove_navigation: boolean()
}

 Functions

 new(opts)

 @spec new(t() | map() | keyword() | nil) :: t()

Build preprocessing options from a map/keyword list/struct.

 HtmlToMarkdown.Visitor - html_to_markdown v2.22.5

HtmlToMarkdown.Visitor behaviour

Visitor pattern support for HTML to Markdown conversion.
This module provides a callback-based interface that allows you to intervene
in the HTML→Markdown conversion process at any point. Visitors can inspect,
modify, or replace the default conversion behavior for any HTML element type.
Overview
The visitor pattern is useful when you need to:
	Filter or modify elements during conversion (e.g., remove all links)
	Collect metadata about specific elements (e.g., all images)
	Apply custom formatting logic (e.g., style-specific handling)
	Implement content policies (e.g., sanitize external links)
	Skip or preserve certain elements as-is

Architecture
Conversion with a visitor involves:
	Define a visitor module with callback implementations
	Call convert_with_visitor/3 with HTML, options, and visitor
	The converter dispatches callbacks as it traverses the DOM
	Each callback returns a VisitResult to control continuation

Visitor Callbacks
All callbacks receive a NodeContext struct with metadata about the current node:
	node_type: Coarse-grained classification (e.g., :text, :link, :heading)
	tag_name: Raw HTML tag name (e.g., "a", "h1", "div")
	attributes: Map of HTML attributes
	depth: Nesting depth in the DOM tree (0 = root)
	index_in_parent: Zero-based index among siblings
	parent_tag: Parent element's tag name (nil if root)
	is_inline: Whether this element is treated as inline vs block

Visit Results
Each callback must return one of:
	:continue - Proceed with default conversion behavior
	{:custom, markdown} - Replace output with custom markdown string
	:skip - Omit this element entirely (don't output anything)
	:preserve_html - Include raw HTML verbatim in output
	{:error, message} - Stop conversion with an error

Method Naming Convention
	handle_*_start: Called before entering an element (pre-order)
	handle_*_end: Called after exiting an element (post-order)
	handle_*: Called for specific element types (e.g., handle_link, handle_image)

Execution Order
For a typical element like <div><p>text</p></div>:
	handle_element_start for <div>
	handle_element_start for <p>
	handle_text for "text"
	handle_element_end for <p>
	handle_element_end for </div>

Example
defmodule LinkFilter do
 @behaviour HtmlToMarkdown.Visitor

 @impl true
 def handle_link(_context, _href, text, _title) do
 # Convert all links to plain text
 {:custom, text}
 end

 @impl true
 def handle_other(_callback, _context, _args) do
 :continue
 end
end

html = "<p>Check this out!</p>"
{:ok, markdown} = HtmlToMarkdown.Visitor.convert_with_visitor(html, LinkFilter, nil)
markdown == "Check this out!\n"
GenServer Integration
For more complex scenarios, you can use a GenServer to maintain state:
defmodule ImageCollector do
 @behaviour HtmlToMarkdown.Visitor
 use GenServer

 def start_link(_) do
 GenServer.start_link(__MODULE__, [])
 end

 def init(_) do
 {:ok, []}
 end

 @impl true
 def handle_image(_context, src, alt, _title) do
 # Store image metadata
 GenServer.cast(self(), {:collect_image, src, alt})
 :continue
 end

 @impl true
 def handle_other(_callback, _context, _args) do
 :continue
 end

 def handle_cast({:collect_image, src, alt}, images) do
 {:noreply, [%{src: src, alt: alt} | images]}
 end
end

{:ok, pid} = ImageCollector.start_link(nil)
{:ok, _markdown} = HtmlToMarkdown.Visitor.convert_with_visitor(html, pid, nil)
Can query collected images via GenServer API

 Summary

 Types

 node_context()

 node_type()

 visit_result()

 Callbacks

 handle_audio(context, src)

 Callback for handling audio elements.

 handle_blockquote(context, content, depth)

 Callback for handling blockquotes.

 handle_button(context, text)

 Callback for handling button elements.

 handle_code_block(context, lang, code)

 Callback for handling code blocks.

 handle_code_inline(context, code)

 Callback for handling inline code.

 handle_custom_element(context, tag_name, html)

 Callback for handling custom/unknown elements.

 handle_definition_description(context, text)

 Callback for handling definition descriptions.

 handle_definition_list_end(context, output)

 Callback for handling definition list end.

 handle_definition_list_start(context)

 Callback for handling definition list start.

 handle_definition_term(context, text)

 Callback for handling definition terms.

 handle_element_end(context, output)

 Callback for handling generic element end.

 handle_element_start(context)

 Callback for handling generic element start.

 handle_emphasis(context, text)

 Callback for handling emphasis/italic elements.

 handle_form(context, action, method)

 Callback for handling forms.

 handle_heading(context, level, text, id)

 Callback for handling headings (h1-h6).

 handle_horizontal_rule(context)

 Callback for handling horizontal rules.

 handle_iframe(context, src)

 Callback for handling iframe elements.

 handle_image(context, src, alt, title)

 Callback for handling images.

 handle_input(context, input_type, name, value)

 Callback for handling input elements.

 handle_line_break(context)

 Callback for handling line breaks.

 handle_link(context, href, text, title)

 Callback for handling anchor links.

 handle_list_end(context, ordered, output)

 Callback for handling list end.

 handle_list_item(context, ordered, marker, text)

 Callback for handling list items.

 handle_list_start(context, ordered)

 Callback for handling list start.

 handle_mark(context, text)

 Callback for handling mark/highlight elements.

 handle_other(callback, context, args)

 Catch-all callback for any visitor callback not explicitly implemented.

 handle_strikethrough(context, text)

 Callback for handling strikethrough elements.

 handle_strong(context, text)

 Callback for handling strong/bold elements.

 handle_subscript(context, text)

 Callback for handling subscript elements.

 handle_superscript(context, text)

 Callback for handling superscript elements.

 handle_table_end(context, output)

 Callback for handling table end.

 handle_table_row(context, cells, is_header)

 Callback for handling table rows.

 handle_table_start(context)

 Callback for handling table start.

 handle_text(context, text)

 Callback for handling text nodes.

 handle_underline(context, text)

 Callback for handling underline elements.

 handle_video(context, src)

 Callback for handling video elements.

 Functions

 convert_with_visitor(html, visitor, options \\ nil)

 Convert HTML to Markdown with visitor callbacks.

 Types

 node_context()

 @type node_context() :: %{
 node_type: node_type(),
 tag_name: String.t(),
 attributes: map(),
 depth: non_neg_integer(),
 index_in_parent: non_neg_integer(),
 parent_tag: String.t() | nil,
 is_inline: boolean()
}

 node_type()

 @type node_type() ::
 :text
 | :element
 | :heading
 | :paragraph
 | :div
 | :blockquote
 | :pre
 | :hr
 | :list
 | :list_item
 | :definition_list
 | :definition_term
 | :definition_description
 | :table
 | :table_row
 | :table_cell
 | :table_header
 | :table_body
 | :table_head
 | :table_foot
 | :link
 | :image
 | :strong
 | :em
 | :code
 | :strikethrough
 | :underline
 | :subscript
 | :superscript
 | :mark
 | :small
 | :br
 | :span
 | :article
 | :section
 | :nav
 | :aside
 | :header
 | :footer
 | :main
 | :figure
 | :figcaption
 | :time
 | :details
 | :summary
 | :form
 | :input
 | :select
 | :option
 | :button
 | :textarea
 | :label
 | :fieldset
 | :legend
 | :audio
 | :video
 | :picture
 | :source
 | :iframe
 | :svg
 | :canvas
 | :ruby
 | :rt
 | :rp
 | :abbr
 | :kbd
 | :samp
 | :var
 | :cite
 | :q
 | :del
 | :ins
 | :data
 | :meter
 | :progress
 | :output
 | :template
 | :slot
 | :html
 | :head
 | :body
 | :title
 | :meta
 | :link_tag
 | :style
 | :script
 | :base
 | :custom

 visit_result()

 @type visit_result() ::
 :continue
 | {:custom, String.t()}
 | :skip
 | :preserve_html
 | {:error, String.t()}

 Callbacks

 handle_audio(context, src)

 @callback handle_audio(context :: node_context(), src :: String.t() | nil) ::
 visit_result()

Callback for handling audio elements.

 handle_blockquote(context, content, depth)

 @callback handle_blockquote(
 context :: node_context(),
 content :: String.t(),
 depth :: non_neg_integer()
) :: visit_result()

Callback for handling blockquotes.

 handle_button(context, text)

 @callback handle_button(context :: node_context(), text :: String.t()) :: visit_result()

Callback for handling button elements.

 handle_code_block(context, lang, code)

 @callback handle_code_block(
 context :: node_context(),
 lang :: String.t() | nil,
 code :: String.t()
) :: visit_result()

Callback for handling code blocks.

 handle_code_inline(context, code)

 @callback handle_code_inline(context :: node_context(), code :: String.t()) ::
 visit_result()

Callback for handling inline code.

 handle_custom_element(context, tag_name, html)

 @callback handle_custom_element(
 context :: node_context(),
 tag_name :: String.t(),
 html :: String.t()
) :: visit_result()

Callback for handling custom/unknown elements.

 handle_definition_description(context, text)

 @callback handle_definition_description(context :: node_context(), text :: String.t()) ::
 visit_result()

Callback for handling definition descriptions.

 handle_definition_list_end(context, output)

 @callback handle_definition_list_end(context :: node_context(), output :: String.t()) ::
 visit_result()

Callback for handling definition list end.

 handle_definition_list_start(context)

 @callback handle_definition_list_start(context :: node_context()) :: visit_result()

Callback for handling definition list start.

 handle_definition_term(context, text)

 @callback handle_definition_term(context :: node_context(), text :: String.t()) ::
 visit_result()

Callback for handling definition terms.

 handle_element_end(context, output)

 @callback handle_element_end(context :: node_context(), output :: String.t()) ::
 visit_result()

Callback for handling generic element end.
Called after exiting any element, receives the default markdown output.

 handle_element_start(context)

 @callback handle_element_start(context :: node_context()) :: visit_result()

Callback for handling generic element start.
Called before entering any element.

 handle_emphasis(context, text)

 @callback handle_emphasis(context :: node_context(), text :: String.t()) :: visit_result()

Callback for handling emphasis/italic elements.

 handle_form(context, action, method)

 @callback handle_form(
 context :: node_context(),
 action :: String.t() | nil,
 method :: String.t() | nil
) :: visit_result()

Callback for handling forms.

 handle_heading(context, level, text, id)

 @callback handle_heading(
 context :: node_context(),
 level :: 1..6,
 text :: String.t(),
 id :: String.t() | nil
) :: visit_result()

Callback for handling headings (h1-h6).

 handle_horizontal_rule(context)

 @callback handle_horizontal_rule(context :: node_context()) :: visit_result()

Callback for handling horizontal rules.

 handle_iframe(context, src)

 @callback handle_iframe(context :: node_context(), src :: String.t() | nil) ::
 visit_result()

Callback for handling iframe elements.

 handle_image(context, src, alt, title)

 @callback handle_image(
 context :: node_context(),
 src :: String.t(),
 alt :: String.t(),
 title :: String.t() | nil
) :: visit_result()

Callback for handling images.

 handle_input(context, input_type, name, value)

 @callback handle_input(
 context :: node_context(),
 input_type :: String.t(),
 name :: String.t() | nil,
 value :: String.t() | nil
) :: visit_result()

Callback for handling input elements.

 handle_line_break(context)

 @callback handle_line_break(context :: node_context()) :: visit_result()

Callback for handling line breaks.

 handle_link(context, href, text, title)

 @callback handle_link(
 context :: node_context(),
 href :: String.t(),
 text :: String.t(),
 title :: String.t() | nil
) :: visit_result()

Callback for handling anchor links.

 handle_list_end(context, ordered, output)

 @callback handle_list_end(
 context :: node_context(),
 ordered :: boolean(),
 output :: String.t()
) ::
 visit_result()

Callback for handling list end.

 handle_list_item(context, ordered, marker, text)

 @callback handle_list_item(
 context :: node_context(),
 ordered :: boolean(),
 marker :: String.t(),
 text :: String.t()
) :: visit_result()

Callback for handling list items.

 handle_list_start(context, ordered)

 @callback handle_list_start(context :: node_context(), ordered :: boolean()) ::
 visit_result()

Callback for handling list start.

 handle_mark(context, text)

 @callback handle_mark(context :: node_context(), text :: String.t()) :: visit_result()

Callback for handling mark/highlight elements.

 handle_other(callback, context, args)

 @callback handle_other(
 callback :: atom(),
 context :: node_context() | nil,
 args :: list()
) ::
 visit_result()

Catch-all callback for any visitor callback not explicitly implemented.
This allows you to implement only the callbacks you need while providing
a default behavior for all others.
The callback parameter is an atom like :link, :heading, :element_start, etc.
The args parameter is a list of the callback arguments.

 handle_strikethrough(context, text)

 @callback handle_strikethrough(context :: node_context(), text :: String.t()) ::
 visit_result()

Callback for handling strikethrough elements.

 handle_strong(context, text)

 @callback handle_strong(context :: node_context(), text :: String.t()) :: visit_result()

Callback for handling strong/bold elements.

 handle_subscript(context, text)

 @callback handle_subscript(context :: node_context(), text :: String.t()) ::
 visit_result()

Callback for handling subscript elements.

 handle_superscript(context, text)

 @callback handle_superscript(context :: node_context(), text :: String.t()) ::
 visit_result()

Callback for handling superscript elements.

 handle_table_end(context, output)

 @callback handle_table_end(context :: node_context(), output :: String.t()) ::
 visit_result()

Callback for handling table end.

 handle_table_row(context, cells, is_header)

 @callback handle_table_row(
 context :: node_context(),
 cells :: [String.t()],
 is_header :: boolean()
) :: visit_result()

Callback for handling table rows.

 handle_table_start(context)

 @callback handle_table_start(context :: node_context()) :: visit_result()

Callback for handling table start.

 handle_text(context, text)

 @callback handle_text(context :: node_context(), text :: String.t()) :: visit_result()

Callback for handling text nodes.
This is the most frequently called callback (~100+ times per document).

 handle_underline(context, text)

 @callback handle_underline(context :: node_context(), text :: String.t()) ::
 visit_result()

Callback for handling underline elements.

 handle_video(context, src)

 @callback handle_video(context :: node_context(), src :: String.t() | nil) ::
 visit_result()

Callback for handling video elements.

 Functions

 convert_with_visitor(html, visitor, options \\ nil)

 @spec convert_with_visitor(
 html :: String.t(),
 visitor :: atom() | pid(),
 options :: map() | nil
) :: {:ok, String.t()} | {:error, String.t()}

Convert HTML to Markdown with visitor callbacks.
This function performs HTML-to-Markdown conversion while dispatching callbacks
to the provided visitor module or process for customization.
Parameters
	html - HTML string to convert
	visitor - Visitor module or PID to receive callbacks
	options - Optional conversion options map (see HtmlToMarkdown.Options)

Returns
	{:ok, markdown} - Successful conversion with resulting Markdown
	{:error, reason} - Conversion failed with error reason

Examples
defmodule MyVisitor do
 use HtmlToMarkdown.Visitor

 def handle_link(_context, href, text, _title) do
 # Format links using standard Markdown syntax
 {:custom, "[" <> text <> "](" <> href <> ")"}
 end
end

Use the visitor during conversion
html = "Click me"
{:ok, _markdown} = HtmlToMarkdown.Visitor.convert_with_visitor(html, MyVisitor, nil)

 HtmlToMarkdown.Error - html_to_markdown v2.22.5

HtmlToMarkdown.Error exception

Raised by HtmlToMarkdown.convert!/2 when the native converter returns an error.

OEBPS/dist/epub-4WIP524F.js
