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High-level configuration for HTML → Markdown conversion.
Use new/1 to build options from a map or keyword list, or construct
the struct directly. Pass the struct to HtmlToMarkdown.convert/2,
HtmlToMarkdown.options/1, or HtmlToMarkdown.convert_with_inline_images/3.
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Visitor pattern support for HTML to Markdown conversion.
This module provides a callback-based interface that allows you to intervene
in the HTML→Markdown conversion process at any point. Visitors can inspect,
modify, or replace the default conversion behavior for any HTML element type.
Overview
The visitor pattern is useful when you need to:
	Filter or modify elements during conversion (e.g., remove all links)
	Collect metadata about specific elements (e.g., all images)
	Apply custom formatting logic (e.g., style-specific handling)
	Implement content policies (e.g., sanitize external links)
	Skip or preserve certain elements as-is

Architecture
Conversion with a visitor involves:
	Define a visitor module with callback implementations
	Call convert_with_visitor/3 with HTML, options, and visitor
	The converter dispatches callbacks as it traverses the DOM
	Each callback returns a VisitResult to control continuation

Visitor Callbacks
All callbacks receive a NodeContext struct with metadata about the current node:
	node_type: Coarse-grained classification (e.g., :text, :link, :heading)
	tag_name: Raw HTML tag name (e.g., "a", "h1", "div")
	attributes: Map of HTML attributes
	depth: Nesting depth in the DOM tree (0 = root)
	index_in_parent: Zero-based index among siblings
	parent_tag: Parent element's tag name (nil if root)
	is_inline: Whether this element is treated as inline vs block

Visit Results
Each callback must return one of:
	:continue - Proceed with default conversion behavior
	{:custom, markdown} - Replace output with custom markdown string
	:skip - Omit this element entirely (don't output anything)
	:preserve_html - Include raw HTML verbatim in output
	{:error, message} - Stop conversion with an error

Method Naming Convention
	handle_*_start: Called before entering an element (pre-order)
	handle_*_end: Called after exiting an element (post-order)
	handle_*: Called for specific element types (e.g., handle_link, handle_image)

Execution Order
For a typical element like <div><p>text</p></div>:
	handle_element_start for <div>
	handle_element_start for <p>
	handle_text for "text"
	handle_element_end for <p>
	handle_element_end for </div>

Example
defmodule LinkFilter do
  @behaviour HtmlToMarkdown.Visitor

  @impl true
  def handle_link(_context, _href, text, _title) do
    # Convert all links to plain text
    {:custom, text}
  end

  @impl true
  def handle_other(_callback, _context, _args) do
    :continue
  end
end

html = "<p>Check <a href='https://example.com'>this</a> out!</p>"
{:ok, markdown} = HtmlToMarkdown.Visitor.convert_with_visitor(html, LinkFilter, nil)
# markdown == "Check this out!\n"
GenServer Integration
For more complex scenarios, you can use a GenServer to maintain state:
defmodule ImageCollector do
  @behaviour HtmlToMarkdown.Visitor
  use GenServer

  def start_link(_) do
    GenServer.start_link(__MODULE__, [])
  end

  def init(_) do
    {:ok, []}
  end

  @impl true
  def handle_image(_context, src, alt, _title) do
    # Store image metadata
    GenServer.cast(self(), {:collect_image, src, alt})
    :continue
  end

  @impl true
  def handle_other(_callback, _context, _args) do
    :continue
  end

  def handle_cast({:collect_image, src, alt}, images) do
    {:noreply, [%{src: src, alt: alt} | images]}
  end
end

{:ok, pid} = ImageCollector.start_link(nil)
{:ok, _markdown} = HtmlToMarkdown.Visitor.convert_with_visitor(html, pid, nil)
# Can query collected images via GenServer API
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      handle_definition_list_start(context)



        
          
        

    

  


  

      

          @callback handle_definition_list_start(context :: node_context()) :: visit_result()


      


Callback for handling definition list start.

  



  
    
      
    
    
      handle_definition_term(context, text)



        
          
        

    

  


  

      

          @callback handle_definition_term(context :: node_context(), text :: String.t()) ::
  visit_result()


      


Callback for handling definition terms.

  



  
    
      
    
    
      handle_element_end(context, output)



        
          
        

    

  


  

      

          @callback handle_element_end(context :: node_context(), output :: String.t()) ::
  visit_result()


      


Callback for handling generic element end.
Called after exiting any element, receives the default markdown output.

  



  
    
      
    
    
      handle_element_start(context)



        
          
        

    

  


  

      

          @callback handle_element_start(context :: node_context()) :: visit_result()


      


Callback for handling generic element start.
Called before entering any element.

  



  
    
      
    
    
      handle_emphasis(context, text)



        
          
        

    

  


  

      

          @callback handle_emphasis(context :: node_context(), text :: String.t()) :: visit_result()


      


Callback for handling emphasis/italic elements.

  



  
    
      
    
    
      handle_form(context, action, method)



        
          
        

    

  


  

      

          @callback handle_form(
  context :: node_context(),
  action :: String.t() | nil,
  method :: String.t() | nil
) :: visit_result()


      


Callback for handling forms.

  



  
    
      
    
    
      handle_heading(context, level, text, id)



        
          
        

    

  


  

      

          @callback handle_heading(
  context :: node_context(),
  level :: 1..6,
  text :: String.t(),
  id :: String.t() | nil
) :: visit_result()


      


Callback for handling headings (h1-h6).

  



  
    
      
    
    
      handle_horizontal_rule(context)



        
          
        

    

  


  

      

          @callback handle_horizontal_rule(context :: node_context()) :: visit_result()


      


Callback for handling horizontal rules.

  



  
    
      
    
    
      handle_iframe(context, src)



        
          
        

    

  


  

      

          @callback handle_iframe(context :: node_context(), src :: String.t() | nil) ::
  visit_result()


      


Callback for handling iframe elements.

  



  
    
      
    
    
      handle_image(context, src, alt, title)



        
          
        

    

  


  

      

          @callback handle_image(
  context :: node_context(),
  src :: String.t(),
  alt :: String.t(),
  title :: String.t() | nil
) :: visit_result()


      


Callback for handling images.

  



  
    
      
    
    
      handle_input(context, input_type, name, value)



        
          
        

    

  


  

      

          @callback handle_input(
  context :: node_context(),
  input_type :: String.t(),
  name :: String.t() | nil,
  value :: String.t() | nil
) :: visit_result()


      


Callback for handling input elements.

  



  
    
      
    
    
      handle_line_break(context)



        
          
        

    

  


  

      

          @callback handle_line_break(context :: node_context()) :: visit_result()


      


Callback for handling line breaks.

  



  
    
      
    
    
      handle_link(context, href, text, title)



        
          
        

    

  


  

      

          @callback handle_link(
  context :: node_context(),
  href :: String.t(),
  text :: String.t(),
  title :: String.t() | nil
) :: visit_result()


      


Callback for handling anchor links.

  



  
    
      
    
    
      handle_list_end(context, ordered, output)



        
          
        

    

  


  

      

          @callback handle_list_end(
  context :: node_context(),
  ordered :: boolean(),
  output :: String.t()
) ::
  visit_result()


      


Callback for handling list end.

  



  
    
      
    
    
      handle_list_item(context, ordered, marker, text)



        
          
        

    

  


  

      

          @callback handle_list_item(
  context :: node_context(),
  ordered :: boolean(),
  marker :: String.t(),
  text :: String.t()
) :: visit_result()


      


Callback for handling list items.

  



  
    
      
    
    
      handle_list_start(context, ordered)



        
          
        

    

  


  

      

          @callback handle_list_start(context :: node_context(), ordered :: boolean()) ::
  visit_result()


      


Callback for handling list start.

  



  
    
      
    
    
      handle_mark(context, text)



        
          
        

    

  


  

      

          @callback handle_mark(context :: node_context(), text :: String.t()) :: visit_result()


      


Callback for handling mark/highlight elements.

  



  
    
      
    
    
      handle_other(callback, context, args)



        
          
        

    

  


  

      

          @callback handle_other(
  callback :: atom(),
  context :: node_context() | nil,
  args :: list()
) ::
  visit_result()


      


Catch-all callback for any visitor callback not explicitly implemented.
This allows you to implement only the callbacks you need while providing
a default behavior for all others.
The callback parameter is an atom like :link, :heading, :element_start, etc.
The args parameter is a list of the callback arguments.

  



  
    
      
    
    
      handle_strikethrough(context, text)



        
          
        

    

  


  

      

          @callback handle_strikethrough(context :: node_context(), text :: String.t()) ::
  visit_result()


      


Callback for handling strikethrough elements.

  



  
    
      
    
    
      handle_strong(context, text)



        
          
        

    

  


  

      

          @callback handle_strong(context :: node_context(), text :: String.t()) :: visit_result()


      


Callback for handling strong/bold elements.

  



  
    
      
    
    
      handle_subscript(context, text)



        
          
        

    

  


  

      

          @callback handle_subscript(context :: node_context(), text :: String.t()) ::
  visit_result()


      


Callback for handling subscript elements.

  



  
    
      
    
    
      handle_superscript(context, text)



        
          
        

    

  


  

      

          @callback handle_superscript(context :: node_context(), text :: String.t()) ::
  visit_result()


      


Callback for handling superscript elements.

  



  
    
      
    
    
      handle_table_end(context, output)



        
          
        

    

  


  

      

          @callback handle_table_end(context :: node_context(), output :: String.t()) ::
  visit_result()


      


Callback for handling table end.

  



  
    
      
    
    
      handle_table_row(context, cells, is_header)



        
          
        

    

  


  

      

          @callback handle_table_row(
  context :: node_context(),
  cells :: [String.t()],
  is_header :: boolean()
) :: visit_result()


      


Callback for handling table rows.

  



  
    
      
    
    
      handle_table_start(context)



        
          
        

    

  


  

      

          @callback handle_table_start(context :: node_context()) :: visit_result()


      


Callback for handling table start.

  



  
    
      
    
    
      handle_text(context, text)



        
          
        

    

  


  

      

          @callback handle_text(context :: node_context(), text :: String.t()) :: visit_result()


      


Callback for handling text nodes.
This is the most frequently called callback (~100+ times per document).

  



  
    
      
    
    
      handle_underline(context, text)



        
          
        

    

  


  

      

          @callback handle_underline(context :: node_context(), text :: String.t()) ::
  visit_result()


      


Callback for handling underline elements.

  



  
    
      
    
    
      handle_video(context, src)



        
          
        

    

  


  

      

          @callback handle_video(context :: node_context(), src :: String.t() | nil) ::
  visit_result()


      


Callback for handling video elements.

  


        

      

      
        Functions


        


    

  
    
      
    
    
      convert_with_visitor(html, visitor, options \\ nil)



        
          
        

    

  


  

      

          @spec convert_with_visitor(
  html :: String.t(),
  visitor :: atom() | pid(),
  options :: map() | nil
) :: {:ok, String.t()} | {:error, String.t()}


      


Convert HTML to Markdown with visitor callbacks.
This function performs HTML-to-Markdown conversion while dispatching callbacks
to the provided visitor module or process for customization.
Parameters
	html - HTML string to convert
	visitor - Visitor module or PID to receive callbacks
	options - Optional conversion options map (see HtmlToMarkdown.Options)

Returns
	{:ok, markdown} - Successful conversion with resulting Markdown
	{:error, reason} - Conversion failed with error reason

Examples
defmodule MyVisitor do
  use HtmlToMarkdown.Visitor

  def handle_link(_context, href, text, _title) do
    # Format links using standard Markdown syntax
    {:custom, "[" <> text <> "](" <> href <> ")"}
  end
end

# Use the visitor during conversion
html = "<a href='#'>Click me</a>"
{:ok, _markdown} = HtmlToMarkdown.Visitor.convert_with_visitor(html, MyVisitor, nil)

  


        

      


  

  
    
    HtmlToMarkdown.Error - html_to_markdown v2.22.5
    
    

    


  
  

    
HtmlToMarkdown.Error exception
    



      
Raised by HtmlToMarkdown.convert!/2 when the native converter returns an error.
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