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OTP behaviour for http_cache
stores.
Installation
{deps, [{http_cache_store_behaviour, "~> 0.3.0"}]}.
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The behaviour for http_cache response stores
Keep in mind that for a unique combination of a request's method, URL, body and bucket, there still can be several different responses, depending on the vary and content-range headers. A so called candidate is a response that matches request information independently of these two headers. The main http_cache module is in charge of selecting a response that satisfies these two headers.
One possibility is to include vary and content-range in the key. The content-range header, if the returned response is a 206 Partial Response, is stored in the request metadata (#{parsed_headers := #{<<"content-range">> := {bytes, 3, 10, 20}}} for instance).
This is why the process is the following:	http_cache request all the potential responses (candidates) using list_candidates/1
	http_cache selects the freshest response whose vary and content-range headers match
	http_cache request the response with get_response/1
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        Returns a response from a response reference returned by list_candidates/1
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        Invalidates all responses for a given URL digest
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        Returns the list of candidates matching a request, via its request key


    


    
      
        notify_response_used/2
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      Link to this type
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          -type alternate_key() :: term().


      


Alternate key attached to a stored response
  



  
    
      
      Link to this type
    
    body/0


      
       
       View Source
     


  


  

      

          -type body() :: binary().


      


The body transmitted to the backend
This is a binary so as to optimize copying around data: an IOlist would have to be copied whereas (big) binaries are simply reference-counted.
  



  
    
      
      Link to this type
    
    candidate/0


      
       
       View Source
     


  


  

      

          -type candidate() ::
    {RespRef :: response_ref(),
     Status :: status(),
     RespHeaders :: headers(),
     VaryHeaders :: vary_headers(),
     RespMetadata :: response_metadata()}.


      



  



  
    
      
      Link to this type
    
    headers/0


      
       
       View Source
     


  


  

      

          -type headers() :: [{binary(), binary()}].


      


Request or response headers
  



  
    
      
      Link to this type
    
    opts/0


      
       
       View Source
     


  


  

      

          -type opts() :: any().


      


Options for the backend store
  



  
    
      
      Link to this type
    
    request_key/0


      
       
       View Source
     


  


  

      

          -type request_key() :: binary().


      


A unique, opaque, key for a request taking into account the request's information (method, URL, body and bucket)
  



  
    
      
      Link to this type
    
    response_metadata/0


      
       
       View Source
     


  


  

      

          -type response_metadata() ::
    #{created := timestamp(),
      expires := timestamp(),
      grace := timestamp(),
      ttl_set_by := header | heuristics,
      parsed_headers := #{binary() => term()},
      alternate_keys := [alternate_key()]}.


      



  



  
    
      
      Link to this type
    
    response_ref/0


      
       
       View Source
     


  


  

      

          -type response_ref() :: term().


      


Opaque backend's reference to a response, returned by http_cache:get/2 and used as a parameter by http_cache:notify_response_used/2.
  



  
    
      
      Link to this type
    
    status/0


      
       
       View Source
     


  


  

      

          -type status() :: pos_integer().


      


HTTP status
  



  
    
      
      Link to this type
    
    stored_response/0


      
       
       View Source
     


  


  

      

          -type stored_response() ::
    {Status :: status(),
     Headers :: headers(),
     BodyOrFile :: body() | {file, file:name_all()},
     Metadata :: response_metadata()}.


      


Stored HTTP response with its metadata
The body can either be a binary (for example if the response is stored in memory) or a file (if the response is stored on disk).
  



  
    
      
      Link to this type
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       View Source
     


  


  

      

          -type timestamp() :: non_neg_integer().


      


UNIX timestamp in seconds
  



  
    
      
      Link to this type
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       View Source
     


  


  

      

          -type url_digest() :: binary().


      


Opaque URL digest as computed by the main module
  



  
    
      
      Link to this type
    
    vary_headers/0


      
       
       View Source
     


  


  

      

          -type vary_headers() :: #{binary() := binary() | undefined}.


      


Headers taken into account by vary
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      Link to this callback
    
    get_response/2


      
       
       View Source
     


  


  

      

          -callback get_response(RespRef :: response_ref(), Opts :: opts()) -> stored_response() | undefined.


      


Returns a response from a response reference returned by list_candidates/1
  



  
    
      
      Link to this callback
    
    invalidate_by_alternate_key/2


      
       
       View Source
     


      (optional)

  


  

      

          -callback invalidate_by_alternate_key([AltKeys :: alternate_key()], Opts :: opts()) -> invalidation_result().


      



  



  
    
      
      Link to this callback
    
    invalidate_url/2


      
       
       View Source
     


  


  

      

          -callback invalidate_url(UrlDigest :: url_digest(), Opts :: opts()) -> invalidation_result().


      


Invalidates all responses for a given URL digest
  



  
    
      
      Link to this callback
    
    list_candidates/2


      
       
       View Source
     


  


  

      

          -callback list_candidates(RequestKey :: request_key(), Opts :: opts()) -> [candidate()].


      


Returns the list of candidates matching a request, via its request key
  



  
    
      
      Link to this callback
    
    notify_response_used/2


      
       
       View Source
     


  


  

      

          -callback notify_response_used(RespRef :: response_ref(), Opts :: opts()) -> ok | {error, term()}.


      


Notify that a response was used. A LRU cache, for instance, would update the timestamp the response was last used
  



  
    
      
      Link to this callback
    
    put/6


      
       
       View Source
     


  


  

      

          -callback put(RequestKey :: request_key(),
    UrlDigest :: url_digest(),
    VaryHeaders :: vary_headers(),
    Response :: http_cache_response(),
    RespMetadata :: response_metadata(),
    Opts :: opts()) ->
       ok | {error, term()}.


      


Stores a response and associated metadata
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