

 http_cache_store_behaviour

 v0.3.0

 Table of contents

 	http_cache_store_behaviour

 	Modules

 	http_cache_store_behaviour

http_cache_store_behaviour

OTP behaviour for http_cache
stores.
Installation
{deps, [{http_cache_store_behaviour, "~> 0.3.0"}]}.

http_cache_store_behaviour behaviour

The behaviour for http_cache response stores
Keep in mind that for a unique combination of a request's method, URL, body and bucket, there still can be several different responses, depending on the vary and content-range headers. A so called candidate is a response that matches request information independently of these two headers. The main http_cache module is in charge of selecting a response that satisfies these two headers.
One possibility is to include vary and content-range in the key. The content-range header, if the returned response is a 206 Partial Response, is stored in the request metadata (#{parsed_headers := #{<<"content-range">> := {bytes, 3, 10, 20}}} for instance).
This is why the process is the following:	http_cache request all the potential responses (candidates) using list_candidates/1
	http_cache selects the freshest response whose vary and content-range headers match
	http_cache request the response with get_response/1

 Anchor for this section

 Summary

 Types

 alternate_key/0

 Alternate key attached to a stored response

 body/0

 The body transmitted to the backend

 candidate/0

 headers/0

 Request or response headers

 opts/0

 Options for the backend store

 request_key/0

 A unique, opaque, key for a request taking into account the request's information (method, URL, body and bucket)

 response_metadata/0

 response_ref/0

 Opaque backend's reference to a response, returned by http_cache:get/2 and used as a parameter by http_cache:notify_response_used/2.

 status/0

 HTTP status

 stored_response/0

 Stored HTTP response with its metadata

 timestamp/0

 UNIX timestamp in seconds

 url_digest/0

 Opaque URL digest as computed by the main module

 vary_headers/0

 Headers taken into account by vary

 Callbacks

 get_response/2

 Returns a response from a response reference returned by list_candidates/1

 invalidate_by_alternate_key/2

 invalidate_url/2

 Invalidates all responses for a given URL digest

 list_candidates/2

 Returns the list of candidates matching a request, via its request key

 notify_response_used/2

 Notify that a response was used. A LRU cache, for instance, would update the timestamp the response was last used

 put/6

 Stores a response and associated metadata

 Anchor for this section

Types

 Link to this type

 alternate_key/0

 View Source

 -type alternate_key() :: term().

Alternate key attached to a stored response

 Link to this type

 body/0

 View Source

 -type body() :: binary().

The body transmitted to the backend
This is a binary so as to optimize copying around data: an IOlist would have to be copied whereas (big) binaries are simply reference-counted.

 Link to this type

 candidate/0

 View Source

 -type candidate() ::
 {RespRef :: response_ref(),
 Status :: status(),
 RespHeaders :: headers(),
 VaryHeaders :: vary_headers(),
 RespMetadata :: response_metadata()}.

 Link to this type

 headers/0

 View Source

 -type headers() :: [{binary(), binary()}].

Request or response headers

 Link to this type

 opts/0

 View Source

 -type opts() :: any().

Options for the backend store

 Link to this type

 request_key/0

 View Source

 -type request_key() :: binary().

A unique, opaque, key for a request taking into account the request's information (method, URL, body and bucket)

 Link to this type

 response_metadata/0

 View Source

 -type response_metadata() ::
 #{created := timestamp(),
 expires := timestamp(),
 grace := timestamp(),
 ttl_set_by := header | heuristics,
 parsed_headers := #{binary() => term()},
 alternate_keys := [alternate_key()]}.

 Link to this type

 response_ref/0

 View Source

 -type response_ref() :: term().

Opaque backend's reference to a response, returned by http_cache:get/2 and used as a parameter by http_cache:notify_response_used/2.

 Link to this type

 status/0

 View Source

 -type status() :: pos_integer().

HTTP status

 Link to this type

 stored_response/0

 View Source

 -type stored_response() ::
 {Status :: status(),
 Headers :: headers(),
 BodyOrFile :: body() | {file, file:name_all()},
 Metadata :: response_metadata()}.

Stored HTTP response with its metadata
The body can either be a binary (for example if the response is stored in memory) or a file (if the response is stored on disk).

 Link to this type

 timestamp/0

 View Source

 -type timestamp() :: non_neg_integer().

UNIX timestamp in seconds

 Link to this type

 url_digest/0

 View Source

 -type url_digest() :: binary().

Opaque URL digest as computed by the main module

 Link to this type

 vary_headers/0

 View Source

 -type vary_headers() :: #{binary() := binary() | undefined}.

Headers taken into account by vary

 Anchor for this section

Callbacks

 Link to this callback

 get_response/2

 View Source

 -callback get_response(RespRef :: response_ref(), Opts :: opts()) -> stored_response() | undefined.

Returns a response from a response reference returned by list_candidates/1

 Link to this callback

 invalidate_by_alternate_key/2

 View Source

 (optional)

 -callback invalidate_by_alternate_key([AltKeys :: alternate_key()], Opts :: opts()) -> invalidation_result().

 Link to this callback

 invalidate_url/2

 View Source

 -callback invalidate_url(UrlDigest :: url_digest(), Opts :: opts()) -> invalidation_result().

Invalidates all responses for a given URL digest

 Link to this callback

 list_candidates/2

 View Source

 -callback list_candidates(RequestKey :: request_key(), Opts :: opts()) -> [candidate()].

Returns the list of candidates matching a request, via its request key

 Link to this callback

 notify_response_used/2

 View Source

 -callback notify_response_used(RespRef :: response_ref(), Opts :: opts()) -> ok | {error, term()}.

Notify that a response was used. A LRU cache, for instance, would update the timestamp the response was last used

 Link to this callback

 put/6

 View Source

 -callback put(RequestKey :: request_key(),
 UrlDigest :: url_digest(),
 VaryHeaders :: vary_headers(),
 Response :: http_cache_response(),
 RespMetadata :: response_metadata(),
 Opts :: opts()) ->
 ok | {error, term()}.

Stores a response and associated metadata

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

