

 IEx

 v1.19.0-rc.0

 [image: Logo]

 Table of contents

 	
 Modules

 	IEx

 	IEx.Helpers

 	IEx.Info

 	IEx.Pry

 	IEx.Server

IEx

Elixir's interactive shell.
Some of the functionalities described here will not be available
depending on your terminal. In particular, if you get a message
saying that the smart terminal could not be run, some of the
features described here won't work.
Helpers
IEx provides a bunch of helpers. They can be accessed by typing
h() into the shell or as a documentation for the IEx.Helpers module.
Autocomplete
To discover a module's public functions or other modules, type the module name
followed by a dot, then press tab to trigger autocomplete. For example:
Enum.
A module may export functions that are not meant to be used directly:
these functions won't be autocompleted by IEx. IEx will not autocomplete
functions annotated with @doc false, @impl true, or functions that
aren't explicitly documented and where the function name is in the form
of __foo__.
Autocomplete is available by default on Windows shells from Erlang/OTP 26.
Encoding and coloring
IEx expects inputs and outputs to be in UTF-8 encoding. This is the
default for most Unix terminals but it may not be the case on Windows.
If you are running on Windows and you see incorrect values printed,
you may need to change the encoding of your current session by running
chcp 65001 before calling iex (or before calling iex.bat if using
PowerShell).
Similarly, ANSI coloring is enabled by default on most Unix terminals.
They are also available on Windows consoles from Windows 10 and on
Erlang/OTP 26 or later. For earlier Erlang/OTP versions, you can
explicitly enable it for the current user in the registry by running
the following command:
$ reg add HKCU\Console /v VirtualTerminalLevel /t REG_DWORD /d 1

After running the command above, you must restart your current console.
Shell history
It is possible to get shell history by passing some options that enable it
in the VM. This can be done on a per-need basis when starting IEx:
$ iex --erl "-kernel shell_history enabled"

If you would rather enable it on your system as a whole, you can use
the ERL_AFLAGS environment variable and make sure that it is set
accordingly on your terminal/shell configuration.
On Unix-like / Bash:
$ export ERL_AFLAGS="-kernel shell_history enabled"

On Windows:
$ set ERL_AFLAGS "-kernel shell_history enabled"

On Windows 10 / PowerShell:
$ $env:ERL_AFLAGS = "-kernel shell_history enabled"

Expressions in IEx
As an interactive shell, IEx evaluates expressions. This has some
interesting consequences that are worth discussing.
The first one is that the code is truly evaluated and not compiled.
This means that any benchmarking done in the shell is going to have
skewed results. So never run any profiling nor benchmarks in the shell.
Second, IEx allows you to break an expression into many lines,
since this is common in Elixir. For example:
iex(1)> "ab
...(1)> c"
"ab\nc"
In the example above, the shell will be expecting more input until it
finds the closing quote. Sometimes it is not obvious which character
the shell is expecting, and the user may find themselves trapped in
the state of incomplete expression with no ability to terminate it other
than by exiting the shell.
For such cases, there is a special break-trigger (#iex:break) that when
encountered on a line by itself will force the shell to break out of any
pending expression and return to its normal state:
iex(1)> ["ab
...(1)> c"
...(1)> "
...(1)>]
...(1)> #iex:break
** (TokenMissingError) iex:1: incomplete expression
Pasting multiline expressions into IEx
IEx evaluates its input line by line in an eager fashion. If at the end of a
line the code seen so far is a complete expression, IEx will evaluate it at
that point.
iex(1)> [1, [2], 3]
[1, [2], 3]
To prevent this behavior breaking valid code where the subsequent line
begins with a binary operator, such as |>/2 or ++/2 , IEx automatically
treats such lines as if they were prepended with IEx.Helpers.v/0, which
returns the value of the previous expression, if available.
iex(1)> [1, [2], 3]
[1, [2], 3]
iex(2)> |> List.flatten()
[1, 2, 3]
The above is equivalent to:
iex(1)> [1, [2], 3]
[1, [2], 3]
iex(2)> v() |> List.flatten()
[1, 2, 3]
If there are no previous expressions in the history, the pipe operator will
fail:
iex(1)> |> List.flatten()
** (RuntimeError) v(-1) is out of bounds
If the previous expression was a match operation, the pipe operator will also
fail, to prevent an unsolicited break of the match:
iex(1)> x = 42
iex(2)> |> IO.puts()
** (SyntaxError) iex:2:1: pipe shorthand is not allowed immediately after a match expression in IEx. To make it work, surround the whole pipeline with parentheses ('|>')
 |
 2 | |> IO.puts()
 | ^
Note, however, the above does not work for +/2 and -/2, as they
are ambiguous with the unary +/1 and -/1:
iex(1)> 1
1
iex(2)> + 2
2
The BREAK menu
Inside IEx, hitting Ctrl+C will open up the BREAK menu. In this
menu you can quit the shell, see process and ETS tables information
and much more.
Exiting the shell
There are a few ways to quit the IEx shell:
	via the BREAK menu (available via Ctrl+C) by typing q, pressing enter
	by hitting Ctrl+C, Ctrl+C
	by hitting Ctrl+\

If you are connected to remote shell, it remains alive after disconnection.
dbg and breakpoints
IEx integrates with Kernel.dbg/2 and introduces a backend that
can pause code execution. To enable it, you must pass --dbg pry:
$ iex --dbg pry

For example, take the following function:
def my_fun(arg1, arg2) do
 dbg(arg1 + arg2)
 ... implementation ...
end
When the code is executed with iex (most often by calling
iex --dbg pry -S mix), it will ask you permission to use "pry".
If you agree, it will start an IEx shell in the context of the function
above, with access to its variables, imports, and aliases. However,
you can only access existing values, it is not possible to access
private functions nor change the execution itself (hence the name
"pry").
When using |> dbg() at the end of a pipeline, you can pry each
step of the pipeline. You can type n whenever you want to jump
into the next pipe. Type continue when you want to execute all
of the steps but stay within the pried process. Type respawn when
you want to leave the pried process and start a new shell.
Alternatively, you can start a pry session directly, without dbg/2
by calling IEx.pry/0.
IEx also allows you to set breakpoints to start pry sessions
on a given module, function, and arity you have no control of
via IEx.break!/4. Similar to pipelines in dbg(), IEx.break!/4
allows you to debug a function line by line and access its variables.
However, breakpoints do not contain information about imports and
aliases from the source code.
When using dbg or breakpoints with tests, remember to pass the
--trace to mix test to avoid running into timeouts:
$ iex -S mix test --trace
$ iex -S mix test path/to/file:line --trace

The User switch command
Besides the BREAK menu, one can type Ctrl+G to get to the
User switch command menu. When reached, you can type h to
get more information.
In this menu, developers are able to start new shells and
alternate between them. Let's give it a try:
User switch command
 --> s iex
 --> c
The command above will start a new shell and connect to it.
Create a new variable called hello and assign some value to it:
hello = :world
Now, let's roll back to the first shell:
User switch command
 --> c 1
Now, try to access the hello variable again:
hello
** (CompileError) undefined variable "hello"
The command above fails because we have switched shells.
Since shells are isolated from each other, you can't access the
variables defined in one shell from the other one.
The User switch command can also be used to terminate an existing
session, for example when the evaluator gets stuck in an infinite
loop or when you are stuck typing an expression:
User switch command
 --> i
 --> c
The User switch command menu also allows developers to connect to
remote shells using the r command. A topic which we will discuss next.
Remote shells
IEx allows you to connect to another node in two fashions.
First of all, we can only connect to a shell if we give names
both to the current shell and the shell we want to connect to.
Let's give it a try. First, start a new shell:
$ iex --sname foo
iex(foo@HOST)1>

The string between the parentheses in the prompt is the name
of your node. We can retrieve it by calling the node/0
function:
iex(foo@HOST)1> node()
:"foo@HOST"
iex(foo@HOST)2> Node.alive?()
true
For fun, let's define a simple module in this shell too:
iex(foo@HOST)3> defmodule Hello do
...(foo@HOST)3> def world, do: "it works!"
...(foo@HOST)3> end
Now, let's start another shell, giving it a name as well:
$ iex --sname bar
iex(bar@HOST)1>

If we try to dispatch to Hello.world/0, it won't be available
as it was defined only in the other shell:
iex(bar@HOST)1> Hello.world()
** (UndefinedFunctionError) undefined function Hello.world/0
However, we can connect to the other shell remotely. Open up
the User switch command prompt (Ctrl+G) and type:
User switch command
 --> r 'foo@HOST' 'Elixir.IEx'
 --> c
Now we are connected into the remote node, as the prompt shows us,
and we can access the information and modules defined over there:
iex(foo@HOST)1> Hello.world()
"it works!"
In fact, connecting to remote shells is so common that we provide
a shortcut via the command line as well:
$ iex --sname baz --remsh foo@HOST

Where "remsh" means "remote shell". In general, Elixir supports:
	remsh from an Elixir node to an Elixir node
	remsh from a plain Erlang node to an Elixir node (through the ^G menu)
	remsh from an Elixir node to a plain Erlang node (and get an erl shell there)

Connecting an Elixir shell to a remote node without Elixir is
not supported.
The .iex.exs file
When starting, IEx looks for a configured path, then for a local .iex.exs file
(located in the current working directory), then for a global .iex.exs file
located inside the directory pointed by the IEX_HOME environment variable
(which defaults to ~) and loads the first one it finds (if any).
The code in the chosen .iex.exs file is evaluated line by line in the shell's
context, as if each line were being typed in the shell. For instance, any modules
that are loaded or variables that are bound in the .iex.exs file will be available
in the shell after it has booted.
Take the following .iex.exs file:
Load another ".iex.exs" file
import_file("~/.iex.exs")

Import some module from lib that may not yet have been defined
import_if_available(MyApp.Mod)

Print something before the shell starts
IO.puts("hello world")

Bind a variable that'll be accessible in the shell
value = 13
Running IEx in the directory where the above .iex.exs file is located
results in:
$ iex
Erlang/OTP 24 [...]

hello world
Interactive Elixir - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> value
13

It is possible to load another file by configuring the iex application's dot_iex
value (config :iex, dot_iex: "PATH" or IEx.configure(dot_iex: "PATH"))
or supplying the --dot-iex option to IEx. See iex --help.
In case of remote nodes, the location of the .iex.exs files are taken
relative to the user that started the application, not to the user that
is connecting to the node in case of remote IEx connections.
Configuring the shell
There are a number of customization options provided by IEx. Take a look
at the docs for the IEx.configure/1 function by typing h IEx.configure/1.
Those options can be configured in your project configuration file or globally
by calling IEx.configure/1 from your ~/.iex.exs file. For example:
.iex.exs
IEx.configure(inspect: [limit: 3])
Now run the shell:
$ iex
Erlang/OTP 24 [...]

Interactive Elixir - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> [1, 2, 3, 4, 5]
[1, 2, 3, ...]

 Summary

 Functions

 break!(ast, stops \\ 1)

 Macro-based shortcut for IEx.break!/4.

 break!(module, function, arity, stops \\ 1)

 Sets up a breakpoint in module, function and arity with
the given number of stops.

 color(color, string)

 Returns string escaped using the specified color.

 configuration()

 Returns IEx configuration.

 configure(options)

 Configures IEx.

 inspect_opts()

 Returns the options used for inspecting.

 pry()

 Pries into the process environment.

 started?()

 Returns true if IEx was started, false otherwise.

 width()

 Returns the IEx width for printing.

 Functions

 break!(ast, stops \\ 1)

 (since 1.5.0)

 (macro)

Macro-based shortcut for IEx.break!/4.

 break!(module, function, arity, stops \\ 1)

 (since 1.5.0)

 @spec break!(module(), atom(), arity(), non_neg_integer()) :: IEx.Pry.id()

Sets up a breakpoint in module, function and arity with
the given number of stops.
This function will instrument the given module and load a new
version in memory with line by line breakpoints at the given
function and arity. If the module is recompiled, all breakpoints
are lost.
When a breakpoint is reached, IEx will ask if you want to pry
the given function and arity. In other words, this works similar
to IEx.pry/0 as the running process becomes the evaluator of
IEx commands and is temporarily changed to have a custom group
leader. However, differently from IEx.pry/0, aliases and imports
from the source code won't be available in the shell.
IEx helpers includes many conveniences related to breakpoints.
Below they are listed with the full module, such as IEx.Helpers.breaks/0,
but remember it can be called directly as breaks() inside IEx.
They are:
	IEx.Helpers.break!/2 - sets up a breakpoint for a given Mod.fun/arity
	IEx.Helpers.break!/4 - sets up a breakpoint for the given module, function, arity
	IEx.Helpers.breaks/0 - prints all breakpoints and their IDs
	IEx.Helpers.continue/0 - continues until the next breakpoint in the same shell
	IEx.Helpers.n/0 - goes to the next line of the current breakpoint
	IEx.Helpers.next/0 - same as above
	IEx.Helpers.open/0 - opens editor on the current breakpoint
	IEx.Helpers.remove_breaks/0 - removes all breakpoints in all modules
	IEx.Helpers.remove_breaks/1 - removes all breakpoints in a given module
	IEx.Helpers.reset_break/1 - sets the number of stops on the given ID to zero
	IEx.Helpers.reset_break/3 - sets the number of stops on the given module, function, arity to zero
	IEx.Helpers.respawn/0 - starts a new shell (breakpoints will ask for permission once more)
	IEx.Helpers.whereami/1 - shows the current location

By default, the number of stops in a breakpoint is 1. Any follow-up
call won't stop the code execution unless another breakpoint is set.
Alternatively, the number of stops can be increased by passing the stops
argument. IEx.Helpers.reset_break/1 and IEx.Helpers.reset_break/3
can be used to reset the number back to zero. Note the module remains
"instrumented" even after all stops on all breakpoints are consumed.
You can remove the instrumentation in a given module by calling
IEx.Helpers.remove_breaks/1 and on all modules by calling
IEx.Helpers.remove_breaks/0.
Within a breakpoint, you can call n to jump to the next line.
To exit a breakpoint, you can either invoke continue, which will
block the shell until the next breakpoint is found or the process
terminates, or invoke respawn, which starts a new IEx shell,
freeing up the pried one.
Examples
The examples below will use break!, assuming that you are setting
a breakpoint directly from your IEx shell. But you can set up a break
from anywhere by using the fully qualified name IEx.break!.
The following sets up a breakpoint on URI.parse/1:
break! URI, :parse, 1
This call will setup a breakpoint that stops once.
To set a breakpoint that will stop 10 times:
break! URI, :parse, 1, 10
IEx.break!/2 is a convenience macro that allows breakpoints
to be given in the Mod.fun/arity format:
break! URI.parse/1
Or to set a breakpoint that will stop 10 times:
break! URI.parse/1, 10
This function returns the breakpoint ID and will raise if there
is an error setting up the breakpoint.
Patterns and guards
IEx.break!/2 allows patterns to be given, triggering the
breakpoint only in some occasions. For example, to trigger
the breakpoint only when the first argument starts with the
"https" string:
break! URI.parse("https" <> _, _)
Only a single break point can be set per function. So if you call
IEx.break! multiple times with different patterns, only the last
pattern is kept.
Macros
While it is possible to set breakpoint in macros, remember that macros
are generally expanded at compilation time, and therefore they may never
be invoked during runtime. Similarly, while patterns may be given to
macros, macros receive ASTs as arguments, and not values. For example,
if you try to break on a macro with the following pattern:
break! MyModule.some_macro(pid) when pid == self()
This breakpoint will never be reached, because a macro never receives
a PID. Even if you call the macro as MyModule.some_macro(self()),
the macro will receive the AST representing the self() call, and not
the PID itself.
Breaks and mix test
To use IEx.break!/4 during tests, you need to run mix inside
the iex command and pass the --trace to mix test to avoid running
into timeouts:
$ iex -S mix test --trace
$ iex -S mix test path/to/file:line --trace

 color(color, string)

 @spec color(atom(), iodata()) :: iodata()

Returns string escaped using the specified color.
ANSI escapes in string are not processed in any way.

 configuration()

 @spec configuration() :: keyword()

Returns IEx configuration.

 configure(options)

 @spec configure(keyword()) :: :ok

Configures IEx.
The supported options are:
	:auto_reload
	:alive_prompt
	:colors
	:default_prompt
	:dot_iex
	:history_size
	:inspect
	:parser
	:width

They are discussed individually in the sections below.
Colors
A keyword list that encapsulates all color settings used by the
shell. See documentation for the IO.ANSI module for the list of
supported colors and attributes.
List of supported keys in the keyword list:
	:enabled - boolean value that allows for switching the coloring on and off
	:eval_result - color for an expression's resulting value
	:eval_info - ... various informational messages
	:eval_error - ... error messages
	:eval_interrupt - ... interrupt messages
	:stack_info - ... the stacktrace color
	:blame_diff - ... when blaming source with no match
	:ls_directory - ... for directory entries (ls helper)
	:ls_device - ... device entries (ls helper)

When printing documentation, IEx will convert the Markdown
documentation to ANSI as well. Colors for this can be configured
via:
	:doc_code - the attributes for code blocks (cyan, bright)
	:doc_inline_code - inline code (cyan)
	:doc_headings - h1 and h2 (yellow, bright)
	:doc_title - the overall heading for the output (reverse, yellow, bright)
	:doc_bold - (bright)
	:doc_underline - (underline)

IEx will also color inspected expressions using the :syntax_colors
option. Such can be disabled with:
IEx.configure(colors: [syntax_colors: false])
You can also configure the syntax colors, however, as desired.
The below will format atoms in red and remove the coloring for
all other data types:
IEx.configure(colors: [syntax_colors: [atom: :red]])
The default values can be found in IO.ANSI.syntax_colors/0.
Inspect
A keyword list containing inspect options used by the shell
when printing results of expression evaluation. Defaults to
pretty formatting with a limit of 50 entries.
To show all entries, configure the limit to :infinity:
IEx.configure(inspect: [limit: :infinity])
See Inspect.Opts for the full list of options.
Width
An integer indicating the maximum number of columns to use in output.
The default value is 80 columns. The actual output width is the minimum
of this number and result of :io.columns. This way you can configure IEx
to be your largest screen size and it should always take up the full width
of your current terminal screen.
History size
Number of expressions and their results to keep in the history.
The value is an integer. When it is negative, the history is unlimited.
Prompt
This is an option determining the prompt displayed to the user
when awaiting input.
The value is a keyword list with two possible keys representing prompt types:
	:default_prompt - used when Node.alive?/0 returns false

	:alive_prompt - used when Node.alive?/0 returns true

The following values in the prompt string will be replaced appropriately:
	%counter - the index of the history
	%prefix - a prefix given by IEx.Server
	%node - the name of the local node

Parser
This is an option determining the parser to use for IEx.
The parser is a "mfargs", which is a tuple with three elements:
the module name, the function name, and extra arguments to
be appended. The parser receives at least three arguments, the
current input as a charlist, the parsing options as a keyword list,
and the state. The initial state is an empty charlist. It must
return {:ok, expr, state} or {:incomplete, state}.
If the parser raises, the state is reset to an empty charlist.
In earlier Elixir versions, the parser would receive the input
and the initial buffer as strings. However, this behaviour
changed when Erlang/OTP introduced multiline editing. If you
support earlier Elixir versions, you can normalize the inputs
by calling to_charlist/1.

.iex
Configure the file loaded into your IEx session when it starts.
See more information in the .iex.exs documentation.
Auto reloading
When set to true, the :auto_reload option automatically purges
in-memory modules when they get invalidated by a concurrent compilation
happening in the Operating System.

 inspect_opts()

 @spec inspect_opts() :: keyword()

Returns the options used for inspecting.

 pry()

 (macro)

Pries into the process environment.
This function is useful for debugging a particular chunk of code
when executed by a particular process. The process becomes
the evaluator of IEx commands and is temporarily changed to
have a custom group leader. Those values are reverted by
calling IEx.Helpers.respawn/0, which starts a new IEx shell,
freeing up the pried one.
When a process is pried, all code runs inside IEx and has
access to all imports and aliases from the original code.
However, you cannot change the execution of the code nor
access private functions of the module being pried. Module
functions still need to be accessed via Mod.fun(args).
See also break!/4 for others ways to pry.
dbg/0 integration
By calling iex --dbg pry, iex will set this function
as the default backend for dbg/0 calls.

Examples
Let's suppose you want to investigate what is happening
with some particular function. By invoking IEx.pry/0 from
the function, IEx will allow you to access its binding
(variables), verify its lexical information and access
the process information. Let's see an example:
import Enum, only: [map: 2]

defmodule Adder do
 def add(a, b) do
 c = a + b
 require IEx; IEx.pry()
 end
end
When invoking Adder.add(1, 2), you will receive a message in
your shell to pry the given environment. By allowing it,
the shell will be reset and you gain access to all variables
and the lexical scope from above:
iex(1)> map([a, b, c], &IO.inspect(&1))
1
2
3
Keep in mind that IEx.pry/0 runs in the caller process,
blocking the caller during the evaluation cycle. The caller
process can be freed by calling respawn/0, which starts a
new IEx evaluation cycle, letting this one go:
iex(2)> respawn()
true

Interactive Elixir - press Ctrl+C to exit (type h() ENTER for help)
Setting variables or importing modules in IEx does not
affect the caller's environment. However, sending and
receiving messages will change the process state.
Pry and macros
When setting up Pry inside a code defined by macros, such as:
defmacro __using__(_) do
 quote do
 def add(a, b) do
 c = a + b
 require IEx; IEx.pry()
 end
 end
end
The variables defined inside quote won't be available during
prying due to the hygiene mechanism in quoted expressions. The
hygiene mechanism changes the variable names in quoted expressions
so they don't collide with variables defined by the users of the
macros. Therefore the original names are not available.
Pry and mix test
To use IEx.pry/0 during tests, you need to run mix inside
the iex command and pass the --trace to mix test to avoid running
into timeouts:
$ iex -S mix test --trace
$ iex -S mix test path/to/file:line --trace

 started?()

 @spec started?() :: boolean()

Returns true if IEx was started, false otherwise.
This means the IEx application was started, but not
that its CLI interface is running.

 width()

 @spec width() :: pos_integer()

Returns the IEx width for printing.
Used by helpers and it has a default maximum cap of 80 chars.

IEx.Helpers

Welcome to Interactive Elixir. You are currently
seeing the documentation for the module IEx.Helpers
which provides many helpers to make Elixir's shell
more joyful to work with.
This message was triggered by invoking the helper h(),
usually referred to as h/0 (since it expects 0 arguments).
You can use the h/1 function to invoke the documentation
for any Elixir module or function:
iex> h(Enum)
iex> h(Enum.map)
iex> h(Enum.reverse/1)
You can also use the i/1 function to introspect any value
you have in the shell:
iex> i("hello")
There are many other helpers available, here are some examples:
	b/1 - prints callbacks info and docs for a given module
	c/1 - compiles a file
	c/2 - compiles a file and writes bytecode to the given path
	cd/1 - changes the current directory
	clear/0 - clears the screen
	exports/1 - shows all exports (functions + macros) in a module
	flush/0 - flushes all messages sent to the shell
	h/0 - prints this help message
	h/1 - prints help for the given module, function or macro
	i/0 - prints information about the last value
	i/1 - prints information about the given term
	ls/0 - lists the contents of the current directory
	ls/1 - lists the contents of the specified directory
	open/1 - opens the source for the given module or function in your editor
	pid/1 - creates a PID from a string
	pid/3 - creates a PID with the 3 integer arguments passed
	port/1 - creates a port from a string
	port/2 - creates a port with the 2 non-negative integers passed
	process_info/1 - returns information about the given process
	pwd/0 - prints the current working directory
	r/1 - recompiles the given module's source file
	recompile/0 - recompiles the current project
	ref/1 - creates a reference from a string
	ref/4 - creates a reference with the 4 integer arguments passed
	runtime_info/0 - prints runtime info (versions, memory usage, stats)
	t/1 - prints the types for the given module or function
	v/0 - retrieves the last value from the history
	v/1 - retrieves the nth value from the history

There are also several helpers available when debugging, such as:
	break!/2 - sets a breakpoint at Module.function/arity
	breaks/0 - prints all breakpoints to the terminal
	c/0 - a shortcut for continue/0
	continue/0 - continues execution of the current process
	n/0 - a shortcut for next/0
	next/0 - goes to the next line of the current breakpoint
	remove_breaks/0 - removes all breakpoints and instrumentation from all modules
	whereami/1 - prints the current location and stacktrace in a pry session

Help for all of those functions can be consulted directly from
the command line using the h/1 helper itself. Try:
iex> h(v/0)
To list all IEx helpers available, which is effectively all
exports (functions and macros) in the IEx.Helpers module:
iex> exports(IEx.Helpers)
This module also includes helpers for debugging purposes, see
IEx.break!/4 for more information.
To learn more about IEx as a whole, type h(IEx).

 Summary

 Functions

 b(term)

 Prints the documentation for the given callback function.

 break!(ast, stops \\ 1)

 Sets up a breakpoint in the AST of shape Module.function/arity
with the given number of stops.

 break!(module, function, arity, stops \\ 1)

 Sets up a breakpoint in module, function and arity
with the given number of stops.

 breaks()

 Prints all breakpoints to the terminal.

 c()

 A shortcut for continue/0.

 c(files, path \\ :in_memory)

 Compiles the given files.

 cd(directory)

 Changes the current working directory to the given path.

 clear()

 Clears the console screen.

 continue()

 Continues execution of the current process.

 exports(module \\ Kernel)

 Prints a list of all the functions and macros exported by the given module.

 flush()

 Clears out all messages sent to the shell's inbox and prints them out.

 h()

 Prints the documentation for IEx.Helpers.

 h(term)

 Prints the documentation for the given module
or for the given function/arity pair.

 i(term \\ v(-1))

 Prints information about the data type of any given term.

 import_file(path)

 Injects the contents of the file at path.

 import_file_if_available(path)

 Similar to import_file but only imports the file if it is available.

 import_if_available(quoted_module, opts \\ [])

 Calls import/2 with the given arguments, but only if the module is available.

 l(module)

 Loads the given module's BEAM code (and ensures any previous
old version was properly purged before).

 ls(path \\ ".")

 Prints a list of the given directory's contents.

 n()

 A shortcut for next/0.

 next()

 Goes to the next line of the current breakpoint.

 nl(nodes \\ Node.list(), module)

 Deploys a given module's BEAM code to a list of nodes.

 open()

 Opens the current prying location.

 open(term)

 Opens the given module, module.function/arity, or {file, line}.

 pid(string)

 Creates a PID from string or atom.

 pid(x, y, z)

 Creates a PID with 3 non-negative integers passed as arguments
to the function.

 port(string)

 Creates a Port from string.

 port(major, minor)

 Creates a Port from two non-negative integers.

 process_info(pid)

 Prints information about the given process.

 pwd()

 Prints the current working directory.

 r(module_or_modules)

 Recompiles and reloads the given module or modules.

 recompile(options \\ [])

 Recompiles the current Mix project or Mix install
dependencies.

 ref(string)

 Creates a Reference from string.

 ref(w, x, y, z)

 Creates a Reference from its 4 non-negative integers components.

 remove_breaks()

 Removes all breakpoints and instrumentation from all modules.

 remove_breaks(module)

 Removes all breakpoints and instrumentation from module.

 reset_break(id)

 Resets the number of pending stops in the breakpoint
with the given id to zero.

 reset_break(module, function, arity)

 Resets the number of pending stops in the given module,
function and arity to zero.

 respawn()

 Respawns the current shell by starting a new shell process.

 runtime_info()

 Prints VM/runtime information such as versions, memory usage and statistics.

 runtime_info(topic)

 Just like runtime_info/0, except accepts topic or a list of topics.

 t(term)

 Prints the types for the given module or for the given function/arity pair.

 use_if_available(quoted_module, opts \\ [])

 Calls use/2 with the given arguments, but only if the module is available.

 v(n \\ -1)

 Returns the value of the nth expression in the history.

 whereami(radius \\ 2)

 Prints the current location and stacktrace in a pry session.

 Functions

 b(term)

 (macro)

Prints the documentation for the given callback function.
It also accepts single module argument to list
all available behaviour callbacks.
Examples
iex> b(Mix.Task.run/1)
iex> b(Mix.Task.run)
iex> b(GenServer)

 break!(ast, stops \\ 1)

 (since 1.5.0)

 (macro)

Sets up a breakpoint in the AST of shape Module.function/arity
with the given number of stops.
See IEx.break!/4 for a complete description of breakpoints
in IEx.
Examples
break! URI.decode_query/2

 break!(module, function, arity, stops \\ 1)

 (since 1.5.0)

Sets up a breakpoint in module, function and arity
with the given number of stops.
See IEx.break!/4 for a complete description of breakpoints
in IEx.
Examples
break! URI, :decode_query, 2

 breaks()

 (since 1.5.0)

Prints all breakpoints to the terminal.

 c()

 (since 1.17.0)

A shortcut for continue/0.

 c(files, path \\ :in_memory)

Compiles the given files.
It expects a list of files to compile and an optional path to write
the compiled code to. By default files are in-memory compiled.
To write compiled files to the current directory, "." can be given.
It returns the names of the compiled modules.
If you want to recompile an existing module, check r/1 instead.
Remote compilation
When compiling code, warnings and errors may be printed to standard error.
However, when connecting to a remote node, the standard error output is not
redirected to the client. This means that compilation failures will be written
to the logs or the output terminal of the machine you connect to.
Examples
In the example below, we pass a directory to where the c/2 function will
write the compiled .beam files to. This directory is typically named "ebin"
in Erlang/Elixir systems:
iex> c(["foo.ex", "bar.ex"], "ebin")
[Foo, Bar]
When compiling one file, there is no need to wrap it in a list:
iex> c("baz.ex")
[Baz]

 cd(directory)

Changes the current working directory to the given path.

 clear()

Clears the console screen.
This function only works if ANSI escape codes are enabled
on the shell, which means this function is by default
unavailable on Windows machines.

 continue()

 (since 1.5.0)

Continues execution of the current process.
This is usually called by sessions started with IEx.pry/0
or IEx.break!/4. This allows the current process to execute
until the next breakpoint, which will automatically yield control
back to IEx without requesting permission to pry.
If you simply want to move to the next line of the current breakpoint,
use n/0 or next/0 instead.
If the running process terminates, a new IEx session is
started.
While the process executes, the user will no longer have
control of the shell. If you would rather start a new shell,
use respawn/0 instead.

 exports(module \\ Kernel)

 (since 1.5.0)

Prints a list of all the functions and macros exported by the given module.

 flush()

Clears out all messages sent to the shell's inbox and prints them out.

 h()

Prints the documentation for IEx.Helpers.

 h(term)

 (macro)

Prints the documentation for the given module
or for the given function/arity pair.
Examples
iex> h(Enum)
It also accepts functions in the format function/arity
and module.function/arity, for example:
iex> h(receive/1)
iex> h(Enum.all?/2)
iex> h(Enum.all?)

 i(term \\ v(-1))

Prints information about the data type of any given term.
If no argument is given, the value of the previous expression
is used.
Examples
iex> i(1..5)
Will print:
Term
 1..5
Data type
 Range
Description
 This is a struct. Structs are maps with a __struct__ key.
Reference modules
 Range, Map

 import_file(path)

 (since 1.4.0)

 (macro)

Injects the contents of the file at path.
This would be the equivalent of getting all of the file contents and
pasting it all at once in IEx and executing it.
By default, the contents of a .iex.exs file in the same directory
as you are starting IEx are automatically imported. See the section
for ".iex.exs" in the IEx module docs for more information.
path has to be a literal string and is automatically expanded via
Path.expand/1.
Examples
~/file.exs
value = 13

in the shell
iex(1)> import_file("~/file.exs")
13
iex(2)> value
13

 import_file_if_available(path)

 (macro)

Similar to import_file but only imports the file if it is available.
By default, import_file/1 fails when the given file does not exist.
However, since import_file/1 is expanded at compile-time, it's not
possible to conditionally import a file since the macro is always
expanded:
This raises a File.Error if ~/.iex.exs doesn't exist.
if "~/.iex.exs" |> Path.expand() |> File.exists?() do
 import_file("~/.iex.exs")
end
This macro addresses this issue by checking if the file exists or not
in behalf of the user.

 import_if_available(quoted_module, opts \\ [])

 (macro)

Calls import/2 with the given arguments, but only if the module is available.
This lets you put imports in .iex.exs files (including ~/.iex.exs) without
getting compile errors if you open a console where the module is not available.
Example
In ~/.iex.exs
import_if_available(Ecto.Query)

 l(module)

Loads the given module's BEAM code (and ensures any previous
old version was properly purged before).
This function is useful when you know the bytecode for module
has been updated in the file system and you want to tell the VM
to load it.

 ls(path \\ ".")

Prints a list of the given directory's contents.
If path points to a file, prints its full path.

 n()

 (since 1.14.0)

A shortcut for next/0.

 next()

 (since 1.14.0)

Goes to the next line of the current breakpoint.
This is usually called by sessions started with IEx.break!/4.
If instead of the next line you want to move to the next breakpoint,
call continue/0 instead.
While the process executes, the user will no longer have
control of the shell. If you would rather start a new shell,
use respawn/0 instead.

 nl(nodes \\ Node.list(), module)

Deploys a given module's BEAM code to a list of nodes.
This function is useful for development and debugging when you have code that
has been compiled or updated locally that you want to run on other nodes.
The node list defaults to a list of all connected nodes.
Returns {:error, :nofile} if the object code (i.e. ".beam" file) for the module
could not be found locally.
Examples
iex> nl(HelloWorld)
{:ok,
 [
 {:node1@easthost, :loaded, HelloWorld},
 {:node1@westhost, :loaded, HelloWorld}
]}

iex> nl(NoSuchModuleExists)
{:error, :nofile}

 open()

Opens the current prying location.
This command only works inside a pry session started manually
via IEx.pry/0 or a breakpoint set via IEx.break!/4. Calling
this function during a regular IEx session will print an error.
Keep in mind the open/0 location may not exist when prying
precompiled source code, such as Elixir itself.
For more information and to open any module or function, see
open/1.

 open(term)

 (macro)

Opens the given module, module.function/arity, or {file, line}.
This function uses the ELIXIR_EDITOR environment variable
and falls back to EDITOR if the former is not available.
By default, it attempts to open the file and line using the
file:line notation. For example, for Sublime Text you can
set it as:
ELIXIR_EDITOR="subl"
Which will then try to open it as:
subl path/to/file:line
For Visual Studio Code, once enabled on the command line,
you can set it to:
ELIXIR_EDITOR="code --goto"
It is important that you choose an editor command that does
not block nor that attempts to run an editor directly in the
terminal. Command-line based editors likely need extra
configuration so they open up the given file and line in a
separate window.
For more complex use cases, you can use the __FILE__ and
__LINE__ notations to explicitly interpolate the file and
line into the command:
ELIXIR_EDITOR="my_editor +__LINE__ __FILE__"
Since this function prints the result returned by the editor,
ELIXIR_EDITOR can be set "echo" if you prefer to display the
location rather than opening it.
Keep in mind the location may not exist when opening precompiled
source code.
Examples
iex> open(MyApp)
iex> open(MyApp.fun/2)
iex> open({"path/to/file", 1})

 pid(string)

 @spec pid(binary() | atom()) :: pid()

Creates a PID from string or atom.
Examples
iex> pid("0.21.32")
#PID<0.21.32>

iex> pid("#PID<0.21.32>")
#PID<0.21.32>

iex> pid(:init)
#PID<0.0.0>

 pid(x, y, z)

 @spec pid(non_neg_integer(), non_neg_integer(), non_neg_integer()) :: pid()

Creates a PID with 3 non-negative integers passed as arguments
to the function.
Examples
iex> pid(0, 21, 32)
#PID<0.21.32>
iex> pid(0, 64, 2048)
#PID<0.64.2048>

 port(string)

 (since 1.8.0)

 @spec port(binary()) :: port()

Creates a Port from string.
Examples
iex> port("0.4")
#Port<0.4>

 port(major, minor)

 (since 1.8.0)

 @spec port(non_neg_integer(), non_neg_integer()) :: port()

Creates a Port from two non-negative integers.
Examples
iex> port(0, 8080)
#Port<0.8080>
iex> port(0, 443)
#Port<0.443>

 process_info(pid)

 (since 1.19.0)

Prints information about the given process.
Includes a generic overview and details such as the linked and monitored processes,
the memory usage and the current stacktrace.
Examples
iex> process_info(self())
...
iex> process_info({:via, Registry, {MyApp.Registry, :name}})
...

 pwd()

Prints the current working directory.

 r(module_or_modules)

Recompiles and reloads the given module or modules.
Please note that all the modules defined in the same file as
modules are recompiled and reloaded. If you want to reload
multiple modules, it is best to reload them at the same time,
such as in r [Foo, Bar]. This is important to avoid false
warnings, since the module is only reloaded in memory and its
latest information is not persisted to disk. See the "In-memory
reloading" section below.
This function is meant to be used for development and
debugging purposes. Do not depend on it in production code.
In-memory reloading
When we reload the module in IEx, we recompile the module source
code, updating its contents in memory. The original .beam file
in disk, probably the one where the first definition of the module
came from, does not change at all.
Since docs, typespecs, and exports information are loaded from the
.beam file, they are not reloaded when you invoke this function.

 recompile(options \\ [])

Recompiles the current Mix project or Mix install
dependencies.
This helper requires either Mix.install/2 to have been
called within the current IEx session or for IEx to be
started alongside, for example, iex -S mix.
In the Mix.install/1 case, it will recompile any outdated
path dependency declared during install. Within a project,
it will recompile any outdated module.
Note this function simply recompiles Elixir modules, without
reloading configuration or restarting applications. This means
any long running process may crash on recompilation, as changed
modules will be temporarily removed and recompiled, without
going through the proper code change callback.
If you want to reload a single module, consider using
r(ModuleName) instead.
This function is meant to be used for development and
debugging purposes. Do not depend on it in production code.
Options
	:force - when true, forces the application to recompile

 ref(string)

 (since 1.6.0)

 @spec ref(binary()) :: reference()

Creates a Reference from string.
Examples
iex> ref("0.1.2.3")
#Reference<0.1.2.3>

 ref(w, x, y, z)

 (since 1.6.0)

 @spec ref(non_neg_integer(), non_neg_integer(), non_neg_integer(), non_neg_integer()) ::
 reference()

Creates a Reference from its 4 non-negative integers components.
Examples
iex> ref(0, 1, 2, 3)
#Reference<0.1.2.3>

 remove_breaks()

 (since 1.5.0)

Removes all breakpoints and instrumentation from all modules.

 remove_breaks(module)

 (since 1.5.0)

Removes all breakpoints and instrumentation from module.

 reset_break(id)

 (since 1.5.0)

Resets the number of pending stops in the breakpoint
with the given id to zero.
Returns :ok if there is such breakpoint ID. :not_found
otherwise.
Note the module remains "instrumented" on reset. If you would
like to effectively remove all breakpoints and instrumentation
code from a module, use remove_breaks/1 instead.

 reset_break(module, function, arity)

 (since 1.5.0)

Resets the number of pending stops in the given module,
function and arity to zero.
If the module is not instrumented or if the given function
does not have a breakpoint, it is a no-op and it returns
:not_found. Otherwise it returns :ok.
Note the module remains "instrumented" on reset. If you would
like to effectively remove all breakpoints and instrumentation
code from a module, use remove_breaks/1 instead.

 respawn()

Respawns the current shell by starting a new shell process.

 runtime_info()

 (since 1.5.0)

Prints VM/runtime information such as versions, memory usage and statistics.
Additional topics are available via runtime_info/1.
For more metrics, info, and debugging facilities, see the
Recon project.

 runtime_info(topic)

 (since 1.5.0)

Just like runtime_info/0, except accepts topic or a list of topics.
For example, topic :applications will list the applications loaded.

 t(term)

 (macro)

Prints the types for the given module or for the given function/arity pair.
Examples
iex> t(Enum)
@type t() :: Enumerable.t()
@type acc() :: any()
@type element() :: any()
@type index() :: integer()
@type default() :: any()

iex> t(Enum.t/0)
@type t() :: Enumerable.t()

iex> t(Enum.t)
@type t() :: Enumerable.t()

 use_if_available(quoted_module, opts \\ [])

 (since 1.7.0)

 (macro)

Calls use/2 with the given arguments, but only if the module is available.
This lets you use the module in .iex.exs files (including ~/.iex.exs) without
getting compile errors if you open a console where the module is not available.
Example
In ~/.iex.exs
use_if_available(Phoenix.HTML)

 v(n \\ -1)

Returns the value of the nth expression in the history.
n can be a negative value: if it is, the corresponding expression value
relative to the current one is returned. For example, v(-2) returns the
value of the expression evaluated before the last evaluated expression. In
particular, v(-1) returns the result of the last evaluated expression and
v() does the same.
Examples
iex(1)> "hello" <> " world"
"hello world"
iex(2)> 40 + 2
42
iex(3)> v(-2)
"hello world"
iex(4)> v(2)
42
iex(5)> v()
42

 whereami(radius \\ 2)

 (since 1.5.0)

Prints the current location and stacktrace in a pry session.
It expects a radius which chooses how many lines before and after
the current line we should print. By default the radius is of two
lines:
Location: lib/iex/lib/iex/helpers.ex:79

77:
78: def recompile do
79: require IEx; IEx.pry()
80: if mix_started?() do
81: config = Mix.Project.config

(IEx.Helpers) lib/iex/lib/iex/helpers.ex:78: IEx.Helpers.recompile/0
This command only works inside a pry session started manually
via IEx.pry/0 or a breakpoint set via IEx.break!/4. Calling
this function during a regular IEx session will print an error.
Keep in mind the whereami/1 location may not exist when prying
precompiled source code, such as Elixir itself.

IEx.Info protocol

A protocol to print information in IEx about the given data structure.
IEx.Helpers.i/1 uses this protocol to display a term-specific list
of information.
By default, an Any implementation will be used which returns
the "Data type", "Description" and "Reference modules" sections.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 info(term)

 Returns information for the given term.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 info(term)

 @spec info(term()) :: [{info_name :: String.Chars.t(), info :: String.t()}]

Returns information for the given term.
Information should be returned as a list of info_name-info tuples,
where info_name is a string-like value, such as an atom or a string
itself, and info is a string. info_name should be short. info can
be arbitrarily long and contain newlines.
IEx.Helpers.i/1 will generate (and always display)
the 'Implemented protocols' and 'Term' sections in the result.
All other sections of information are added (and can be overridden)
by customized implementations of this function.
It is recommended to at least include the following sections for a
custom implementation:
	"Data type": Name of the data type. Usually the name of the module
 defining the data type.
	"Description": One or a few sentences describing what the data type represents.
	"Reference modules": One or a few comma-separated module names that focus
on working with this datatype.

Other recommended sections are:
	"Raw representation": showing another way of writing the passed term.
This is mostly relevant for data-structures whose String.Chars-implementations
make use of sigils or other syntactic sugar.

IEx.Pry

The low-level API for prying sessions and setting up breakpoints.

 Summary

 Types

 break()

 break_error()

 id()

 Functions

 annotate_quoted(quoted, condition, caller)

 Annotate quoted expression with line-by-line IEx.Pry debugging steps.

 break(module, function, arity, breaks \\ 1)

 Sets up a breakpoint on the given module/function/arity.

 break(module, function, args, guard, env, breaks \\ 1)

 Sets up a breakpoint on the given module/function/args with the given guard.

 break!(module, function, arity, breaks \\ 1)

 Raising variant of break/4.

 break!(module, function, args, guard, env, breaks \\ 1)

 Raising variant of break/6.

 breaks()

 Returns all breakpoints.

 pry(binding, env)

 Callback for IEx.pry/0.

 remove_breaks()

 Removes all breakpoints on all modules.

 remove_breaks(module)

 Removes breakpoints in the given module.

 reset_break(id)

 Resets the breaks on a given breakpoint ID.

 reset_break(module, function, arity)

 Resets the breaks for the given module, function and arity.

 whereami(file, line, radius)

 Formats the location for whereami/3 prying.

 Types

 break()

 @type break() :: {id(), module(), {function(), arity()}, pending :: non_neg_integer()}

 break_error()

 @type break_error() ::
 :recompilation_failed
 | :no_beam_file
 | :unknown_function_arity
 | :missing_debug_info
 | :outdated_debug_info
 | :non_elixir_module

 id()

 @type id() :: integer()

 Functions

 annotate_quoted(quoted, condition, caller)

 (since 1.17.0)

 @spec annotate_quoted(Macro.t(), Macro.t(), Macro.Env.t()) :: Macro.t()

Annotate quoted expression with line-by-line IEx.Pry debugging steps.
It expects the quoted expression to annotate, a boolean condition that controls
if pry should run or not (usually is simply the boolean true), and the
caller macro environment.

 break(module, function, arity, breaks \\ 1)

 @spec break(module(), atom(), arity(), non_neg_integer()) ::
 {:ok, id()} | {:error, break_error()}

Sets up a breakpoint on the given module/function/arity.

 break(module, function, args, guard, env, breaks \\ 1)

 @spec break(
 module(),
 atom(),
 [Macro.t()],
 Macro.t(),
 Macro.Env.t(),
 non_neg_integer()
) ::
 {:ok, id()} | {:error, break_error()}

Sets up a breakpoint on the given module/function/args with the given guard.
It requires an env to be given to make the expansion of the guards.

 break!(module, function, arity, breaks \\ 1)

 @spec break!(module(), atom(), arity(), non_neg_integer()) :: id()

Raising variant of break/4.

 break!(module, function, args, guard, env, breaks \\ 1)

 @spec break!(
 module(),
 atom(),
 [Macro.t()],
 Macro.t(),
 Macro.Env.t(),
 non_neg_integer()
) :: id()

Raising variant of break/6.

 breaks()

 @spec breaks() :: [break()]

Returns all breakpoints.

 pry(binding, env)

Callback for IEx.pry/0.
You can invoke this function directly when you are not able to invoke
IEx.pry/0 as a macro. This function expects the binding (from
binding/0) and the environment (from __ENV__/0).

 remove_breaks()

 @spec remove_breaks() :: :ok

Removes all breakpoints on all modules.
This effectively loads the non-instrumented version of
currently instrumented modules into memory.

 remove_breaks(module)

 @spec remove_breaks(module()) :: :ok | {:error, :no_beam_file}

Removes breakpoints in the given module.
This effectively loads the non-instrumented version of
the module into memory.

 reset_break(id)

 @spec reset_break(id()) :: :ok | :not_found

Resets the breaks on a given breakpoint ID.

 reset_break(module, function, arity)

 @spec reset_break(module(), atom(), arity()) :: :ok | :not_found

Resets the breaks for the given module, function and arity.
If the module is not instrumented or if the given function
does not have a breakpoint, it is a no-op and it returns
:not_found. Otherwise it returns :ok.

 whereami(file, line, radius)

 @spec whereami(String.t(), non_neg_integer(), pos_integer()) ::
 {:ok, IO.chardata()} | :error

Formats the location for whereami/3 prying.
It receives the file, line and the snippet radius and
returns {:ok, lines}, where lines is a list of chardata
containing each formatted line, or :error.
The actual line is especially formatted in bold.

IEx.Server

The IEx.Server.
The server responsibilities include:
	reading input from the group leader and writing to the group leader
	sending messages to the evaluator
	taking over the evaluator process when using IEx.pry/0 or setting up breakpoints

 Summary

 Functions

 run(opts)

 Starts a new IEx server session.

 Functions

 run(opts)

 (since 1.8.0)

 @spec run(keyword()) :: :ok

Starts a new IEx server session.
The accepted options are:
	:prefix - the IEx prefix
	:env - the Macro.Env used for the evaluator
	:binding - an initial set of variables for the evaluator
	:on_eof - if it should :stop_evaluator (default) or :halt the system
	:register - if this shell should be registered in the broker (default is true)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png

