

 igniter

 v0.7.2

 [image: Logo]

 Table of contents

 	Home

 	Writing Generators

 	Configuring Igniter

 	Documenting Tasks

 	Upgrades

 	Change Log

 	
 Modules

 	Igniter

 	Igniter.Scribe

 	Igniter.Test

 	Igniter.Upgrades

 	Writing Mix tasks

 	Igniter.Mix.Task

 	Igniter.Mix.Task.Args

 	Igniter.Mix.Task.Info

 	Project modifications

 	Igniter.Project.Application

 	Igniter.Project.Config

 	Igniter.Project.Deps

 	Igniter.Project.Formatter

 	Igniter.Project.IgniterConfig

 	Igniter.Project.MixProject

 	Igniter.Project.Module

 	Igniter.Project.TaskAliases

 	Igniter.Project.Test

 	Igniter.Refactors.Elixir

 	Igniter.Refactors.Rename

 	Code modifications

 	Igniter.Code.Common

 	Igniter.Code.Function

 	Igniter.Code.Keyword

 	Igniter.Code.List

 	Igniter.Code.Map

 	Igniter.Code.Module

 	Igniter.Code.String

 	Igniter.Code.Tuple

 	Extensions

 	Igniter.Extension

 	Igniter.Extensions.Phoenix

 	Library support

 	Igniter.Libs.Ecto

 	Igniter.Libs.Phoenix

 	Igniter.Libs.Swoosh

 	Utilities

 	Igniter.Util.BackwardsCompat

 	Igniter.Util.Debug

 	Igniter.Util.IO

 	Igniter.Util.Install

 	Igniter.Util.Loading

 	Igniter.Util.Version

 	Igniter.Util.Warning

 	
 Mix Tasks

 	mix igniter.add

 	mix igniter.add_extension

 	mix igniter.apply_upgrades

 	mix igniter.gen.task

 	mix igniter.install

 	mix igniter.move_files

 	mix igniter.refactor.rename_function

 	mix igniter.refactor.unless_to_if_not

 	mix igniter.remove

 	mix igniter.setup

 	mix igniter.update_gettext

 	mix igniter.upgrade

 Home

[image: Logo Light][image: Logo Dark][image: CI]
[image: License: MIT]
[image: Hex version badge]
[image: Hexdocs badge]
[image: REUSE status]
[image: Ask DeepWiki]
Igniter
Igniter is a code generation and project patching framework.
There are two audiences for Igniter:
	End-users:	Provides tasks like mix igniter.install to automatically add dependencies to your project
	Provides upgraders to upgrade your deps and apply codemods at the same time
	Provides refactors like mix igniter.refactor.rename_function to refactor your code automatically

	Library authors and platform teams: Igniter is a toolkit for writing smarter generators that can semantically create and modify existing files in end-user's projects (e.g. codemods)

For end-users
Installers
Igniter provides mix igniter.install, which will automatically add the dependency to your mix.exs and then run
that library's installer if it has one.
Upgraders
The mix igniter.upgrade mix task is a drop-in replacement for mix deps.update but it will additionally
run any upgrade patchers defined in the target package (if there are any).
See the upgrades guide guide for more.
Refactors
In addition to providing tools for library authors to patch your code, common operations are available to use as needed.
	mix igniter.refactor.rename_function - Rename a function in your application, along with all references to it. Optionally it can also mark the previous function as deprecated.

Others
	mix igniter.update_gettext - Use this to update gettext if your version of gettext is lower than 0.26.1 and you are seeing a compile warning
about gettext backends.

Installation
Igniter requires Elixir 1.15+, but 1.17+ is recommended for full compatibility.
Standard Installation for end-users
Add Igniter to an existing elixir project by adding it to your dependencies in mix.exs:
{:igniter, "~> 0.6", only: [:dev, :test]}
Note: If you only want to use mix igniter.install to add dependencies to your project then you can install the archive instead of adding Igniter to your project.
Installing globally via an archive
First, install the archive:
mix archive.install hex igniter_new
Then you can run mix igniter.new to generate a new elixir project
mix igniter.new app_name --install ash
Creating a new mix project using Igniter
If you want to create a new mix project that uses ash and ecto you can run a command like:
mix igniter.new app_name --install ash,ecto
You can also combine an Igniter install command with existing project generators (e.g. mix phx.new) by specifying the mix task name with the --with flag. If you want to pass arguments to the existing project generator/task you can pass them with --with-args:
mix igniter.new app_name --install ash --with phx.new --with-args="--no-ecto --no-html"
For library authors and platform teams
Igniter is a toolkit for writing smarter generators that can semantically create and modify existing files.
Installing for library authors
For library authors, add Igniter to your mix.exs with optional: true:
{:igniter, "~> 0.6", optional: true}
optional: true ensures that end users can install as outlined above, and :igniter will not be included in their production application.
Patterns
Mix tasks built with Igniter are both individually callable, and composable. This means that tasks can call each other, and also end-users can create and customize their own generators composing existing tasks.
Installers
Igniter will look for a task called <your_package>.install when the user runs mix igniter.install <your_package>, and will run it after installing and fetching dependencies.
To create your installer, use mix igniter.gen.task <your_package>.install
Generators/Patchers
Generators created with Igniter can be run like any other mix task, or composed together. For example, lets say that you wanted to have your own Ash.Resource generator, that starts with the default mix ash.gen.resource task, but then adds or modifies additional files:
To create your generator, use mix igniter.gen.task <your_package>.task.name
in lib/mix/tasks/my_app.gen.resource.ex
defmodule Mix.Tasks.MyApp.Gen.Resource do
 use Igniter.Mix.Task

 @impl Igniter.Mix.Task
 def igniter(igniter) do
 [resource | _] = igniter.args.argv

 resource = Igniter.Code.Module.parse(resource)
 my_special_thing = Module.concat([resource, SpecialThing])
 location = Igniter.Code.Module.proper_location(my_special_thing)

 igniter
 |> Igniter.compose_task("ash.gen.resource", igniter.args.argv)
 |> Igniter.Project.Module.create_module(my_special_thing, """
 # this is the special thing for #{inspect()}
 """)
 end
end
Upgrading to 0.4.x
You may notice an issue running mix igniter.upgrade if you are using 0.3.x versions.
you must manually upgrade Igniter (by editing your mix.exs file or running mix deps.update)
to a version greater than or equal to 0.3.78 before running mix igniter.upgrade. A problem
was discovered with the process of Igniter upgrading itself or one of its dependencies.
In any case where Igniter must both download and compile a new version of itself, it will exit
and print instructions with a command you can run to complete the upgrade. For example:
mix igniter.apply_upgrades igniter:0.4.0:0.5.0 package:0.1.3:0.1.4

 Writing Generators

In Igniter, generators are done as a wrapper around Mix.Task, allowing them to be called individually or composed as part of a task.
Since an example is worth a thousand words, lets take a look at an example that generates a file and ensures a configuration is set in the user's config.exs.
An igniter for igniters?!
Run mix igniter.gen.task your_app.task.name to generate a new, fully configured igniter task!
lib/mix/tasks/your_lib.gen.your_thing.ex
defmodule Mix.Tasks.YourLib.Gen.YourThing do
 use Igniter.Mix.Task

 @impl Igniter.Mix.Task
 def igniter(igniter) do
 [module_name | _] = igniter.args.argv

 module_name = Igniter.Code.Module.parse(module_name)
 path = Igniter.Code.Module.proper_location(module_name)
 app_name = Igniter.Project.Application.app_name(igniter)

 igniter
 |> Igniter.create_new_elixir_file(path, """
 defmodule #{inspect(module_name)} do
 use YourLib.Thing

 ...some_code
 end
 """)
 |> Igniter.Project.Config.configure(
 "config.exs",
 app_name,
 [:list_of_things],
 [module_name],
 updater: &Igniter.Code.List.prepend_new_to_list(&1, module_name)
)
 end
end
Now, your users can run
mix your_lib.gen.your_thing MyApp.MyModuleName
and it will present them with a diff, creating a new file and updating their config.exs.
Additionally, other generators can "compose" this generator using Igniter.compose_task/3
igniter
|> Igniter.compose_task(Mix.Tasks.YourLib.Gen.YourThing, ["MyApp.MyModuleName"])
|> Igniter.compose_task(Mix.Tasks.YourLib.Gen.YourThing, ["MyApp.SomeOtherName"])
Writing a library installer
Igniter will look for a mix task called your_library.install when a user runs mix igniter.install your_library. As long as it has the correct name, it will be run automatically as part of installation!
Task Groups
Igniter allows for composing tasks, which means that many igniter tasks can be run in tandem. This happens automatically when using mix igniter.install, for example:
mix igniter.install package1 package2. You can also do this manually by using Igniter.compose_task/3. See the example above.
However, composing tasks means that sometimes a flag from one task may conflict with a flag from another task. Igniter will alert users when this happens, and ask them to
prefix the option with your task name. For example, the user may see an error like this:
Ambiguous flag provided `--option`.

The task or task groups `package1, package2` all define the flag `--option`.

To disambiguate, provide the arg as `--<prefix>.option`,
where `<prefix>` is the task or task group name.

For example:

`--package1.option`

It is not possible to prevent this from happening for all combinations of invocations of your task, but you can help by using a group.
%Igniter.Mix.Task.Info{
 group: :your_package,
 ...
}
Setting this group performs two functions:
	any tasks that share a group with each other will be assumed that the same flag has the same meaning. That way,
users don't have to disambiguate when calling mix igniter.install yourthing1 yourthing2 --option, because it is assumed
to have the same meaning.
	it can provide a shorter/semantic name to type, i.e instead of --ash-authentication-phoenix.install.domain it could be just --ash.domain.

By default the group name is the full task name. We suggest setting a group for all of your tasks.
You should not use a group name that is used by someone else, just like you should not use a module prefix used by someone else in general.
Navigating the Igniter Codebase
A large part of writing generators with igniter is leveraging our built-in suite of tools for working with zippers and AST, as well as our off-the-shelf patchers for making project modifications. The codebase is split up into four primary divisions:
	Igniter.Project.* - project-level, off-the-shelf patchers
	Igniter.Code.* - working with zippers and manipulating source code
	Igniter.Mix.* - mix tasks, tools for writing igniter mix tasks
	Igniter.Util.* - various utilities and helpers

 Configuring Igniter

This guide is for those who are end-users of igniter, for example, using the generators provided by a library that are backed by igniter.
Setting up igniter
Use mix igniter.setup to create a .igniter.exs file in your project root. This file configures igniter for your project. You can run this command repeatedly to keep the file up to date over time.
See the documentation in Igniter.Project.IgniterConfig for available configuration.
Extensions
Igniter supports extensions. These extensions are limited to determining where modules should be created (i.e a module in /web ending in Controller).
This is not bulletproof and will likely need to be improved over time. (The best thing would be if Phoenix conventions were the same as the
elixir conventions of module names matching paths). To this end, you will want to add the phoenix extension if your generator builds any phoenix-related modules.
For an end user, this can be done with mix igniter.add_extension phoenix.
For those writing tasks, use Igniter.compose_task("igniter.add_extension", ["phoenix"]).
Moving files
One available configuration is module_location. This configuration dictates where modules are placed when there is a folder that exactly matches their module name. There are two available strategies for this, and with igniter not only can you change your mind, but you can actually move back and forth between each strategy. To move any modules to their rightful place, use mix igniter.move_files.
Only for matching modules
The following rules are only applied when a top-level module is defined in the file. If it is not, then the file will always be left exactly where it is. It is generally considered best-practice to define one top-level module per file.
:outside_matching_folder
The "standard" way to place a module is to place it in a folder path that exactly matches its module name, inside of lib/. For example, a module named MyApp.MyModule would be placed in lib/my_app/my_module.ex.
Use the default :outside_matching_folder to follow this convention in all cases.
:inside_matching_folder
What some people don't like about the previously described strategy is that it can split up related modules. For example:
lib/
└── my_app/
 ├── accounts/
 │ ├── user.ex
 │ ├── organization.ex
 ├── social/
 │ ├── post.ex
 │ ├── comment.ex
 ├── accounts.ex # <- This feels to some like it should be in `/accounts`
 └── social.ex
They would prefer to put that leaf-node module in its matching folder if it exists, and otherwise follow the original convention if not.
lib/
└── my_app/
 ├── accounts/
 │ ├── user.ex
 │ ├── organization.ex
 │ ├── accounts.ex
 ├── social/
 │ ├── post.ex
 │ ├── comment.ex
 │ └── social.ex

 Documenting Tasks

Igniter.Scribe is a powerful tool that allows you to automatically generate documentation for your installers and mix tasks. Instead of writing static documentation that can quickly become outdated, you can create living documentation that shows exactly what your tasks do by running them in a test environment.
Overview
The --scribe option available on all Igniter mix tasks enables automatic documentation generation. When you run a task with this option, Igniter will:
	Set up a test project environment
	Execute your task's logic
	Capture all the changes made to files
	Generate a markdown document showing the step-by-step process
	Save the documentation to the specified file path

Basic Usage
To generate documentation for any Igniter mix task, use the --scribe option followed by the output file path:
mix your.task --scribe documentation/tutorials/your-guide.md

Setting Up Your Task for Scribe
defmodule Mix.Tasks.YourLibrary.Install do
 @shortdoc "Installs YourLibrary into a project"

 @moduledoc """
 #{@shortdoc}

 ## Options

 - `--example` - Creates example resources
 """

 use Igniter.Mix.Task

 @impl Igniter.Mix.Task
 def igniter(igniter) do
 igniter
 |> Igniter.Scribe.start_document(
 "Manual Installation Guide",
 @manual_lead_in,
 app_name: :my_app
)
 |> add_your_sections()
 end
end
Scribe API Reference
start_document/4
Initializes the documentation with a title and introduction. Only the first call to this function is honored.
Igniter.Scribe.start_document(igniter, title, contents, opts \\ [])
Parameters:
	igniter - The Igniter struct
	title - The main title for the document (will be rendered as # Title)
	contents - Introduction text that appears after the title
	opts - Optional keyword list (can include :app_name and other options)

Example:
@manual_lead_in """
This guide will walk you through the process of manually installing YourLibrary into your project.
If you are starting from scratch, you can use `mix new` or `mix igniter.new` and follow these instructions.
"""

igniter
|> Igniter.Scribe.start_document(
 "Manual Installation",
 @manual_lead_in,
 app_name: :my_app
)
section/3
Creates a new section in the documentation with a header, explanation, and the actual changes.
Igniter.Scribe.section(igniter, header, explanation, callback)
Parameters:
	igniter - The Igniter struct
	header - The section header text
	explanation - Descriptive text explaining what this section does
	callback - A function that receives the igniter and performs the actual changes

Example:
@setup_dependencies """
Install and configure the required dependencies for YourLibrary.
This will add the necessary packages to your mix.exs file.
"""

igniter
|> Igniter.Scribe.section("Setup Dependencies", @setup_dependencies, fn igniter ->
 igniter
 |> Igniter.Scribe.patch(&Igniter.Project.Deps.add_dep(&1, {:other_library, "~> 1.0"}))
 |> Igniter.Scribe.patch(&Igniter.compose_task(&1, "other_library.install"))
end)
patch/2
Captures changes made by a function and includes them in the documentation as code diffs.
Igniter.Scribe.patch(igniter, callback)
Parameters:
	igniter - The Igniter struct
	callback - A function that receives the igniter and returns a modified igniter

The patch function will:
	Compare the before and after state of files
	Generate diffs for modified files
	Show creation of new files with full content
	Automatically format the output with appropriate syntax highlighting

Example:
igniter
|> Igniter.Scribe.patch(fn igniter ->
 igniter
 |> Igniter.Project.Config.configure("config.exs", :your_library, [:option], true)
 |> Igniter.Project.Module.create_module(YourApp.SomeModule, """
 defmodule YourApp.SomeModule do
 # Module content here
 end
 """)
end)
Best Practices
1. Use Descriptive Section Names and Explanations
Choose clear, descriptive names for your sections and provide helpful explanations:
@setup_formatter """
Configure the DSL auto-formatter. This tells the formatter to remove excess parentheses
and how to sort sections in your modules for consistency.
"""

igniter
|> Igniter.Scribe.section("Setup The Formatter", @setup_formatter, fn igniter ->
 # Implementation
end)
2. Group Related Changes
Group logically related changes together within sections:
igniter
|> Igniter.Scribe.section("Configure Application", @config_explanation, fn igniter ->
 igniter
 |> Igniter.Scribe.patch(&configure_main_settings/1)
 |> Igniter.Scribe.patch(&configure_optional_settings/1)
 |> Igniter.Scribe.patch(&setup_environment_configs/1)
end)
3. Use Module Attributes for Documentation
Store your documentation strings in module attributes to keep them organized and reusable:
defmodule Mix.Tasks.YourLibrary.Install do
 @manual_lead_in """
 This guide walks you through manually installing YourLibrary.
 """

 @dependency_setup """
 Install required dependencies and configure them for your project.
 """

 @formatter_setup """
 Configure code formatting for your DSL.
 """

 # Use these throughout your igniter/1 function
end
Example: Complete Installer
Take a look at Ash Framework's installer here, and see the generated markdown file here.

 Upgrades

Igniter provides a mix task mix igniter.upgrade that is a drop-in replacement for
mix deps.update, but will run any associated upgrade tasks for the packages that have changed.
Using Upgraders
In general, you can replace your usage of mix deps.update with mix igniter.upgrade. Packages that
don't use igniter will be updated as normal, and packages that do will have any associated upgraders run.
Writing Upgraders
To write an upgrader, your package should provide an igniter task called your_package.upgrade. This task
will take two positional arguments, from and to, which are the old and new versions of the package.
While you are free to implement this logic however you like, we suggest using
mix igniter.gen.task your_package.upgrade --upgrade, and following the patterns that are provided by the generated task.
Limitations
Compile Compatibility
The new version of the package must be "compile compatible" with your existing code. For this reason,
we encourage library authors to make even major versions compile compatible with previous versions, but
this is not always possible. For those cases, we encourage library authors to provide a version prior
to their breaking changes that includes an upgrader to code that is compatible with the new version. This way,
you can at least instruct users to mix igniter.upgrade package@that.version before upgrading to the latest
version.
Path dependencies
We cannot determine the old version for path dependencies, so currently there is no way to use
them with mix igniter.upgrade. We can potentially support this in the future with arguments
like --old-version-<dep-name> x.y.z.
Upgrading in CI (i.e Dependabot)
The flag --git-ci is provided to mix igniter.upgrade to allow for CI integration. This flag
causes igniter to parse the previous versions from the mix.lock file prior to the current pull request.
This limitation does mean that only hex dependencies can be upgraded in this way.
Here is an example set of github action steps that will run mix igniter.upgrade and add a commit
for any upgrades.
Limitations
This example setup does not trigger the github actions on your PR again. This is due to
[intentional limitations of GITHUB_TOKEN]. You can see more here: https://github.com/stefanzweifel/git-auto-commit-action?tab=readme-ov-file#commits-made-by-this-action-do-not-trigger-new-workflow-runs
It is possible to work around this with a "personal access token". If you come up with a nice way
to make the commit trigger another workflow, please let us know 😊.
igniter-upgrade:
 name: mix igniter.upgrade
 runs-on: ubuntu-latest
 if: ${{inputs.igniter-upgrade}}
 permissions:
 contents: write
 steps:
 - name: Dependabot metadata
 id: dependabot-metadata
 uses: dependabot/fetch-metadata@v2
 if: github.event.pull_request.user.login == 'dependabot[bot]'
 - uses: actions/checkout@v3
 with:
 fetch-depth: 0
 ref: ${{ github.head_ref }}
 # This uses a `.tool-version` file for languages
 # Feel free to use whatever steps you want to set up elixir
 # and run the `igniter.upgrade` mix task. Just use the same flags as shown.
 - uses: team-alembic/staple-actions/actions/mix-task@main
 with:
 task: igniter.upgrade --git-ci
 - name: Commit Changes
 uses: stefanzweifel/git-auto-commit-action@v5
 if: github.event.pull_request.user.login == 'dependabot[bot]'
 with:
 commit_message: "[dependabot skip] Apply Igniter Upgrades"
 commit_user_name: dependabot[bot]

 Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.
v0.7.2 (2026-01-28)
Bug Fixes:
	don't fail on missing .formatter.exs by Zach Daniel

v0.7.1 (2026-01-21)
Improvements:
	Add more context to umbrella error message (#358) by José Valim

v0.7.0 (2025-11-05)
Features:
	Add support for SiteEncrypt.Phoenix.Endpoint detection (#339) by Herman verschooten

Bug Fixes:
	put_in_map/set_map_key not setting keys properly (#348) by Nick Krichevsky

	don't pass --no-git onto installers by Zach Daniel

	modify_config_code twice with keyword values (#332) by grzuy

v0.6.30 (2025-09-25)
Bug Fixes:
	don't silently ignore certain errors during spinners by Zach Daniel

	don't display "temporarily adding igniter" when we aren't by Zach Daniel

v0.6.29 (2025-09-20)
Bug Fixes:
	prevent duplicate 'live' directories for modules with Live namespace (#330) by Matthew Sinclair

	prevent duplicate 'live' directories for modules with Live namespace by Matthew Sinclair

Improvements:
	add delay_task to run tasks at the end by Zach Daniel

v0.6.28 (2025-08-21)
Bug Fixes:
	use appropriate function name function -> function? (#326) by Ciarán Walsh

Improvements:
	igniter.new Don't run git init if already in git repo (#328) by Erik André Jakobsen

v0.6.27 (2025-08-14)
	releasing a new version to handle locally published version with IO.inspects left in 🤦‍♂️

v0.6.26 (2025-07-29)
Bug Fixes:
	improve Phoenix web module detection in list_routers (#325) by James Harton

v0.6.25 (2025-07-23)
Bug Fixes:
	remove another enumeration of the rewrite by Zach Daniel

v0.6.24 (2025-07-23)
Bug Fixes:
	iterate over sources, not rewrite, in one more place by Zach Daniel

v0.6.23 (2025-07-23)
Bug Fixes:
	remove case where we iterate a rewrite by Zach Daniel

v0.6.22 (2025-07-22)
Bug Fixes:
	handle :error coming from alias updater by Zach Daniel

	add :error case clause in modify_existing_alias by Zach Daniel

v0.6.21 (2025-07-19)
Bug Fixes:
	properly detect deps location by Zach Daniel

Improvements:
	don't enumerate igniter.rewrite by Zach Daniel

v0.6.20 (2025-07-18)
Bug Fixes:
	handle non-tty inputs on tasks that aren't installers by Zach Daniel

Improvements:
	add a nicer error on :eof response from yes? by Zach Daniel

v0.6.19 (2025-07-15)
Bug Fixes:
	typo in set_yes by Zach Daniel

v0.6.18 (2025-07-15)
Improvements:
	support more tasks being called just from the archive by Zach Daniel

igniter.new v0.5.30 (2025-07-14)
Features:
	create git repositories by default, and add --no-git to disable it

v0.6.17 (2025-07-14)
Bug Fixes:
	properly use already retrieved task name by Zach Daniel

v0.6.16 (2025-07-14)
Bug Fixes:
	remove all test macros by Zach Daniel

Improvements:
	don't assume --yes with no tty when in test mode by Zach Daniel

	clean up and deprecate macros in Igniter.Mix.Task by Zach Daniel

	more granular info on the output of installers by Zach Daniel

v0.6.15 (2025-07-13)
Bug Fixes:
	vendor Path.relative_to to get 1.18.4 behavior by Zach Daniel

	assume Kernel is imported in older Elixir versions by Zach Daniel

v0.6.14 (2025-07-09)
Bug Fixes:
	a slew of fixes for config, code modification, deps addition, keywords by Zach Daniel

v0.6.13 (2025-07-09)
Bug Fixes:
	handle unexpected cases around detecting tty by Zach Daniel

v0.6.12 (2025-07-09)
Bug Fixes:
	properly encode values added to mix project by Zach Daniel

v0.6.11 (2025-07-06)
Improvements:
	when stdin is not a tyy, treat that as --yes by Zach Daniel

v0.6.10 (2025-07-02)
Improvements:
	make Igniter.exists? support directories by Zach Daniel

v0.6.9 (2025-06-25)
Improvements:
	Implement removal of configuration (#309) by Benjamin Milde

	add required? option to Igniter.update_elixir_file/3 by Benjamin Milde

v0.6.8 (2025-06-18)
Bug Fixes:
	properly honor explicitly passed --only flag over other only configs by Zach Daniel

	properly render the child that must be placed in the supervision tree by Zach Daniel

Improvements:
	Update argument error message about apply_igniter in test (#305) by Kenneth Kostrešević

v0.6.7 (2025-06-08)
Bug Fixes:
	In assert_has_issue/3 set condition with issue as function #297 (#298)

Improvements:
	fix issue w/ type system validation on old versions of elixir

	support private repositories

	Use hex to support looking up org package versions (#299)

	Add missing --only flag documentation for installer install task (#284)

	add refute_creates

v0.6.6 (2025-06-06)
Improvements:
	remove protocol consolidation dev changes

	add Igniter.rm and track removed files across operations

v0.6.5 (2025-06-04)
Bug Fixes:
	properly rename function & attributes on module move

v0.6.4 (2025-05-30)
Bug Fixes:
	reword syntax to avoid compile error

Improvements:
	introduce Igniter.Scribe and --scribe option

v0.6.3 (2025-05-29)
Bug Fixes:
	display all error output, and bump installer version

	Display notices even when there are no content changes.

v0.6.2 (2025-05-24)
Improvements:
	track task name and parent task name in igniter

	add quiet_on_no_changes? assign

	add usage-rules.md

v0.6.1 (2025-05-22)
Bug Fixes:
	remove references to old versions

v0.6.0 (2025-05-21)
Bug Fixes:
	OTP 28 Compatibility via removing inflex (#288)

Use Igniter.Inflex.pluralize or depend on Inflex directly if you need it
v0.5.52 (2025-05-20)
Improvements:
	bump installer version

	Add igniter.init task to igniter_new archive (#283)

	clean up igniter after adding it for installation

	Task/adds move to function and attrs (#274)

	generate a test when generating a new task

v0.5.51 (2025-05-15)
Bug Fixes:
	properly detect map format

	don't always create default config files

	Add impl to generated mix task (#276)

	Matches function guards when using move_to_def (#273)

v0.5.50 (2025-05-01)
Bug Fixes:
	don't try to inspect functions in test helpers

v0.5.49 (2025-04-30)
Improvements:
	properly honor --only flag

v0.5.48 (2025-04-29)
Improvements:
	clean up igniter/1-2 check, and make it a warning

v0.5.47 (2025-04-21)
Improvements:
	make router optional in select_endpoint

	accept functions in warning/notice/issue assertions

	add Igniter.Code.Common.variable?

v0.5.46 (2025-04-15)
Bug Fixes:
	wording in router selection message

v0.5.45 (2025-04-10)
Bug Fixes:
	keep as close to installer order as possible for dependencies

v0.5.44 (2025-04-09)
Bug Fixes:
	handle list of arities in Igniter.Code.Function.function_call?/3

Improvements:
	install private packages from hexpm (#157)

	prevent infinitely looping install task

v0.5.43 (2025-04-02)
Bug Fixes:
	properly use dep_opts when comparing new deps

v0.5.42 (2025-03-31)
Improvements:
	add live_debugger to our known only env config

v0.5.41 (2025-03-28)
Features:
	add igniter.add task (#258)

Improvements:
	show warning about generating new umbrella projects

v0.5.40 (2025-03-26)
Bug Fixes:
	only display changing sources in puts_diff in test

Improvements:
	more testing helpers

	support error/warning/notice returns on updating files

v0.5.39 (2025-03-25)
Bug Fixes:
	handler erlang style modules in function detection

	igniter.upgrade crash on dependency declaration when only option is an atom (#257)

Improvements:
	add Igniter.Code.Common.add_comment/2

	add Igniter.Project.Config.configure_group/6

v0.5.38 (2025-03-21)
Bug Fixes:
	handler erlang style modules in function detection

v0.5.37 (2025-03-18)
Improvements:
	avoid duplicate module warning on local.igniter

v0.5.36 (2025-03-14)
Bug Fixes:
	add in an ugly hack for handling common packages only option

v0.5.35 (2025-03-12)
Bug Fixes:
	don't use Application.app_dir as the app may not be running yet

v0.5.34 (2025-03-12)
Bug Fixes:
	ensure composed installers happen first

v0.5.33 (2025-03-11)
Bug Fixes:
	add backwards compatibility function for relative_to_cwd

	trim package install list to handle edge case

	installer: handle --with-args="string" syntax

Improvements:
	Add :placement option to Phoenix.add_scope/4 and Phoenix.append_to_scope/4 (#251)

	add mix igniter.remove dep1 dep2 task

	add assert_has_task test helper

v0.5.32 (2025-03-08)
Bug Fixes:
	properly replace _ with - in task group names

v0.5.31 (2025-03-04)
v0.5.30 (2025-03-03)
Bug Fixes:
	various fixes with cross project function renaming

	ensure all paths are relative_to_cwd

Improvements:
	mix igniter.refactor.rename_function short doc (#243)

	add local.igniter task for easier upgrading

v0.5.29 (2025-02-25)
Bug Fixes:
	remove erroneous diff displaying code

v0.5.28 (2025-02-24)
Improvements:
	add phx_test_project for testing(#239)

v0.5.27 (2025-02-20)
Improvements:
	support dep_opts in schema info

v0.5.26 (2025-02-20)
Bug Fixes:
	only look for .formatter.exs files in known directories

	load all known archives when running the archive installer

v0.5.25 (2025-02-16)
Bug Fixes:
	check file changed by actually comparing content

	pattern match error when default option is selected on long diff

v0.5.24 (2025-02-12)
Bug Fixes:
	resolve project :config_path (#226)

v0.5.23 (2025-02-11)
Bug Fixes:
	better error messages and fixes for unconventional deps

v0.5.22 (2025-02-11)
Bug Fixes:
	fix & simplify keyword removal

	don't pass --from-elixir-install in with-args by default

	web_module/1 duplicating Web (#221)

	ensure that installer includes apps igniter needs

	properly split --with-args

Improvements:
	support non-literal/non-standard deps lists

	better UX around large files (#222)

	Change default updater fn for configure_runtime_env/6 to match configure/6 (#220)

v0.5.21 (2025-02-03)
Bug Fixes:
	error in codemod while formatting

Improvements:
	Add :after opt to Config functions (#213)

	make diff checking faster

v0.5.20 (2025-01-27)
Improvements:
	raise when installing igniter as an archive

v0.5.19 (2025-01-27)
Features:
	Igniter.Code.Module.move_to_attribute_definition (#207)

Bug Fixes:
	handle single length list config paths that already exist

v0.5.18 (2025-01-27)
Improvements:
	show yellow text indicating generated notices

v0.5.17 (2025-01-26)
Improvements:
	remove warnings about Phx.New in some new projects

	properly parse with_args in igniter.new

v0.5.16 (2025-01-22)
Improvements:
	add owl/inflex utility dependencies

v0.5.15 (2025-01-22)
Improvements:
	protect against csv errors on windows

v0.5.14 (2025-01-21)
Bug Fixes:
	ensure only relative paths are added to rewrite

v0.5.13 (2025-01-21)
Bug Fixes:
	handle local igniter in installer w/ more granular deps compile

v0.5.12 (2025-01-20)
Bug Fixes:
	don't run deps.compile task after deps.get

Improvements:
	use req instead of httpc for calling to hex

	shorter package install line

v0.5.11 (2025-01-20)
Bug Fixes:
	don't assume path for application module

v0.5.10 (2025-01-20)
Bug Fixes:
	fix duplication of comments on dep writing in empty project

v0.5.9 (2025-01-19)
Bug Fixes:
	combine comments when adding or replacing code

	Igniter.Project.MixProject.update/4 now creates non-existing functions (#190)

Improvements:
	ensure phoenix /live files go where they should

	Default yes? to Y (#197)

	Add Phoenix.select_endpoint/3 (#192)

v0.5.8 (2025-01-06)
Improvements:
	significant cleanup of deps compilation logic

	suppress all output for cleaner loading spinners

v0.5.7 (2025-01-06)
Bug Fixes:
	properly iterate over tasks list

v0.5.6 (2025-01-05)
Improvements:
	better step explanation in installer

v0.5.5 (2025-01-05)
Bug Fixes:
	only display mix.exs changes when showing them

v0.5.4 (2025-01-05)
Bug Fixes:
	don't show git warning for changes igniter made

	print message after diff

	allow check to pass when no issues found (#178)

Improvements:
	capture and suppress output in installers (#186)

	print version diff when upgrading packages (#185)

	sort the missing packages when upgrading

v0.5.3 (2024-12-26)
Bug Fixes:
	ensure deps are compiled and proceed w/ install if igniter is

Improvements:
	rip out shared utils

v0.5.2 (2024-12-25)
Improvements:
	add --yes-to-deps option to mix igniter.install

	add --yes-to-deps when using mix igniter.new

v0.5.1 (2024-12-24)
Bug Fixes:
	Igniter.mkdir not expanding paths correctly (#174)

	handle case where third tuple elem is nil

	handle mix rebar deprecations for 1.18 (#172)

Improvements:
	add prepend_to_pipeline and has_pipeline to

	add fallback igniter install in archive

v0.5.0 (2024-12-19)
Features:
	add Igniter.mkdir (#165)

Bug Fixes:
	set quoted default to handle regex escaping issues

	parse_argv callback should be overridable (#166)

	use original file's extname when moving files always

Improvements:
	default igniter installation to being optional

	Igniter.Project.MixProject.update/4 (#168)

	Igniter.Project.MixProject.update/4

	add has_dep?/2

	add convenient wrapper around installing new packages

v0.4.8 (2024-11-27)
Breaking Changes:
	add expand_env? option to Igniter.Code.Common.add_code/3 (#151)

Bug Fixes:
	if alias elements are strings ensure they aren't interpreted as AST

	don't move modules back to their "proper" location

	use new ignore_missing_sub_formatters option in rewrite

Improvements:
	add :force? option to Igniter.Project.Application.add_new_child/3 (#156)

	handle io formatting more uniformly (#148)

	handle io formatting more uniformly

v0.4.7 (2024-11-12)
Improvements:
	Add Igniter.Libs.Swoosh for working with Swoosh

Bug Fixes:
	print a consistent number of blank lines around diffs (#147)

v0.4.6 (2024-11-06)
Bug Fixes:
	suppress module conflict warning when running upgrade_igniter

	pass dot_formatter when updating rewrite sources (#144)

	skip unknown deps in dot formatter

Improvements:
	Add priv_dir functions to return priv directory (#141)

v0.4.5 (2024-11-04)
Bug Fixes:
	skip unknown deps in dot formatter

v0.4.4 (2024-11-03)
Improvements:
	support replace_or_append instruction when modifying task aliases
	Add priv_dir functions to return priv directory (#141)

v0.4.3 (2024-11-02)
Bug Fixes:
	various fixes for test formatting

Improvements:
	Tools for removing formatter plugins & imported deps

v0.4.2 (2024-11-02)
Bug Fixes:
	properly compose upgrade tasks

Improvements:
	update rewrite to 1.0.0 (#135)

v0.4.1 (2024-11-01)
Bug Fixes:
	apply 0.3 compatibility fixes for upgrades

v0.3.77 (2024-11-01)
Bug Fixes:
	don't skip igniter composition on existing issues

	handle Igniter.Project.Application.app_module/1 returning tuple

	properly retain trailing newlines in replace_code/2

	handle grouped options in positional args parsing

	properly pass --with-args to generator

	handle connected = in extract_positional_args

	properly split args on equals symbol

	Igniter.Code.Common.replace_code/2: Don't leave zipper at parent when extending blocks (#123)

Improvements:
	Parse argv by default and store in Igniter struct (#131)

	upgrade igniter/2 to igniter/1 in simple cases

	optimize Igniter.Project.Module.find_module/2 when all files haven't been loaded

	add Igniter.Test.diff/2 (#120)

	add Igniter.Test.diff/2

v0.3.76 (2024-10-28)
Bug Fixes:
	properly ignore with-args when passing args to installers

	expand_literal should expand single-child blocks

	expand_literal should return an error Macro.expand_literals doesn't return a literal

	make task run/1 overridable (#114)

	Support integer argument in move_right/2 and move_upwards/2 and add move_left/2 (#113)

Improvements:
	resolve project app names set using a module attribute (#111)

	resolve project app names set using a module attribute

v0.3.75 (2024-10-26)
Bug Fixes:
	make update_gettext idempotent

v0.3.74 (2024-10-24)
Bug Fixes:
	properly compare version lists

v0.3.73 (2024-10-24)
Bug Fixes:
	don't use yes? if --git_ci or --yes

v0.3.72 (2024-10-22)
Bug Fixes:
	set --yes automatically in git_ci

v0.3.71 (2024-10-22)
v0.3.70 (2024-10-22)
Bug Fixes:
	properly upgrade deps with mix deps.update

v0.3.69 (2024-10-21)
Improvements:
	add mix igniter.refactor.unless_to_if_not

v0.3.68 (2024-10-21)
Bug Fixes:
	properly detect all version migrations

	make replacing code append to parent blocks when extendable

	pass through additional arguments to installers

	reintroduce accidentally removed function

	don't call into shared lib?

v0.3.67 (2024-10-19)
Bug Fixes:
	ensure deps are always added in explicit tuple format

	don't use the 2 arg version of config when the first key would be ugly

v0.3.66 (2024-10-19)
Improvements:
	significant improvements to function checking speed

v0.3.65 (2024-10-19)
Improvements:
	add mix igniter.upgrade

	add mix igniter.refactor.rename_function

v0.3.64 (2024-10-17)
Bug Fixes:
	don't infinitely recurse on update_all_matches

	detect node removal in update_all_matches

Improvements:
	add Igniter.Code.String

v0.3.63 (2024-10-15)
Bug Fixes:
	properly collect csv options into lists

v0.3.62 (2024-10-14)
Bug Fixes:
	properly parse csv/keep options

v0.3.61 (2024-10-14)
Improvements:
	support csv option type and properly handle keep options lists

v0.3.60 (2024-10-14)
Improvements:
	don't rely on elixir 1.16+ features

v0.3.59 (2024-10-14)
Bug Fixes:
	don't return igniter from message function

v0.3.58 (2024-10-13)
Bug Fixes:
	don't assume the availabilit of which

v0.3.57 (2024-10-11)
Improvements:
	add group and option disambiguation based on groups

v0.3.56 (2024-10-11)
Improvements:
	support required arguments in the info schema

v0.3.55 (2024-10-11)
Bug Fixes:
	fix pattern match on prompt on git changes

v0.3.54 (2024-10-11)
Bug Fixes:
	looser match on git change detection

v0.3.53 (2024-10-11)
Improvements:
	add on_exists handling to Igniter.Libs.Ecto.gen_migration

v0.3.52 (2024-10-07)
Improvements:
	properly warn on git changes before committing

v0.3.51 (2024-10-07)
Bug Fixes:
	provide proper version in the installer

Improvements:
	remove System.cmd for igniter.install in installer

	allow excluding line numbers in Igniter.Test.assert_has_patch

	prettier errors on task exits

v0.3.50 (2024-10-07)
Improvements:
	don't warn on missing installers that aren't actually missing

v0.3.49 (2024-10-06)
Bug Fixes:
	fix dialyzer spec

v0.3.48 (2024-10-04)
Improvements:
	add opts_updater option to add_new_child

	add Igniter.Libs.Ecto.gen_migration

	implement various deprecations

	add Igniter.Libs.Ecto for listing/selecting repos

	add defaults key to Info{}

v0.3.47 (2024-10-04)
Bug Fixes:
	prompt users to handle diverged environment issues

	display installer output in IO.stream()

	honor --yes properly when adding nested deps

	don't install revoked versions of packages

	install non-rc packages, or the rc package if there is none

v0.3.46 (2024-10-03)
Bug Fixes:
	fix message in task name warning

v0.3.45 (2024-09-25)
Bug Fixes:
	use ensure_all_started without a list for backwards compatibility

Improvements:
	Yn -> y/n to represent a lack of a default

v0.3.44 (2024-09-24)
Bug Fixes:
	properly create or update config files

	format files after reading so formatter_opts is set before later writes

	remove incorrect call to add_code from replace_code

v0.3.43 (2024-09-23)
Bug Fixes:
	traverse lists without entering child nodes

v0.3.42 (2024-09-23)
Bug Fixes:
	handle empty requested positional args when extracting positional

Improvements:
	add Igniter.Code.List.replace_in_list/3

	allow appending/prepending a different value when the full

v0.3.41 (2024-09-23)
Improvements:
	add Igniter.Project.TaskAliases.add_alias/3-4

v0.3.40 (2024-09-23)
Bug Fixes:
	properly detect existing scopes with matching names

v0.3.39 (2024-09-18)
Bug Fixes:
	don't warn while parsing files

	display an error when a composed task can't be found

Improvements:
	more phoenix router specific code

	make issues red and formatted with more spacing

	properly compare regex literals

	add dont_move_file_pattern utility

	update installer to always run mix deps get and install

v0.3.38 (2024-09-16)
Bug Fixes:
	don't add warning on overwrite option

Improvements:
	better confirmation message experience

v0.3.37 (2024-09-15)
Improvements:
	return igniter in Igniter.Test.assert_unchanged

v0.3.36 (2024-09-13)
Bug Fixes:
	reevaluate .igniter.exs when it changes

Improvements:
	Support for extensions in igniter config

	Add a phoenix extension to prevent moving modules that may be phoenix-y

v0.3.35 (2024-09-10)
Bug Fixes:
	much smarter removal of import_config when evaluating configuration files

	when including a glob, use test_files in test_mode

Improvements:
	add Igniter.Code.Common.remove/2

v0.3.34 (2024-09-10)
Bug Fixes:
	properly avoid adding duplicate children to application tree

v0.3.33 (2024-09-10)
Bug Fixes:
	properly determine module placement in app tree

v0.3.32 (2024-09-10)
Bug Fixes:
	properly extract app module from def project

v0.3.31 (2024-09-10)
Bug Fixes:
	set only option to nil by default

v0.3.30 (2024-09-10)
Bug Fixes:
	handle some edge cases in application child adding

Improvements:
	support the opts being code when adding a new child to the app tree

	prepend new children instead of appending them

	add an after option to add_new_child/3

	better warnings on invalid patches in test

v0.3.29 (2024-09-09)
Improvements:
	check for git changes to avoid overwriting unsaved changes

	add mix igniter.gen.task to quickly generate a full task

	properly find the default location for mix task modules

	add --only option, and only key in Igniter.Mix.Task.Info

	add Igniter.Test with helpers for writing tests

	extract app name and app module from mix.exs file

v0.3.28 (2024-09-09)
Bug Fixes:
	don't hardcode Spark.Formatter plugin

v0.3.27 (2024-09-08)
Improvements:
	when replacing a dependency, leave it in the same location

v0.3.26 (2024-09-08)
Improvements:
	add igniter.update_gettext

v0.3.25 (2024-09-06)
Improvements:
	add configure_runtime_env codemod

	remove dependencies that aren't strictly necessary

	remove dependencies that we don't really need

	more options to igniter.new

v0.3.24 (2024-08-26)
Bug Fixes:
	detect equal lists for node equality

v0.3.23 (2024-08-26)
Bug Fixes:
	properly move to arguments of Module.fun calls

Improvements:
	add Igniter.Code.Common.expand_literal/1

	add --with-args to pass additional args to installers

v0.3.22 (2024-08-20)
Improvements:
	add options to control behavior when creating a file that already exists

v0.3.21 (2024-08-20)
Improvements:
	add copy_template/4

v0.3.20 (2024-08-19)
Bug Fixes:
	ensure no timeout on task async streams

	don't hardcode Foo.Supervisor ð�¤¦

v0.3.19 (2024-08-13)
Bug Fixes:
	properly handle values vs code in configure

v0.3.18 (2024-08-08)
Bug Fixes:
	fix and test keyword setting on empty list

v0.3.17 (2024-08-08)
Bug Fixes:
	properly parse boolean switches from positional args

	don't warn on Macro.Env.expand_alias/3 not being defined

	descend into single child block when modifying keyword

	set format: :keyword when adding keyword list item to empty list

	escape injected code in Common.replace_code/2 (#70)

	:error consistency in remove_keyword_key and argument_equals? in Config.configure (#68)

Improvements:
	support for non-elixir files with create_new_file, update_file, include_existing_file, include_or_create_file, create_or_update_file (#75)

	support "notices" (#65)

v0.3.16 (2024-07-31)
Bug Fixes:
	loadpaths after compiling deps

Improvements:
	add create_module utility

v0.3.15 (2024-07-31)
Bug Fixes:
	remove force?: true from dep installation

	better handling of positional args in igniter.new

v0.3.14 (2024-07-30)
Bug Fixes:
	detect more function call formats

	properly extract arguments when parsing positional args

v0.3.13 (2024-07-30)
Bug Fixes:
	force compile dependencies to avoid strange compiler issues

v0.3.12 (2024-07-30)
Improvements:
	add Igniter.Libs.Phoenix.endpoints_for_router/2

v0.3.11 (2024-07-27)
Bug Fixes:
	ensure igniter is compiled first

	fetch deps after adding any nested installers

	various fixes & improvements to positional argument listing

Improvements:
	clean up dependency compiling logic

	optimize module finding w/ async_stream

	add rest: true option for positional args

v0.3.10 (2024-07-26)
Bug Fixes:
	recompile igniter in ingiter.install

Improvements:
	add positional_args!/1 macro for use in tasks

	better output on missing installers & already present dep

v0.3.9 (2024-07-22)
Bug Fixes:
	force compile dependencies.

	use length of path for insertion point, instead of node equality

v0.3.8 (2024-07-19)
Improvements:
	better map key setting

	detect strings as non extendable blocks

	add option to ignore already present phoenix scopes

v0.3.7 (2024-07-19)
Bug Fixes:
	improve add_code by modifying the supertree

v0.3.6 (2024-07-19)
Bug Fixes:
	properly scope configuration modification code

	properly add blocks of code together

v0.3.5 (2024-07-19)
Bug Fixes:
	properly move to pattern matches in scope

	configures?/3 -> configures_key & configures_root_key (#54)

Improvements:
	add blocks together more fluidly in add_code

v0.3.4 (2024-07-19)
Bug Fixes:
	recompile :igniter if it has to

Improvements:
	include config in include_all_elixir_files (#55)

	add Function.argument_equals?/3 (#53)

	add Function.argument_equals?/3

v0.3.3 (2024-07-18)
Improvements:
	fix function typespecs & add inflex dependency

	only show executed installers (#50)

	support tuple dependencies in igniter.install (#49)

v0.3.2 (2024-07-16)
Bug Fixes:
	don't compile igniter dep again when compiling deps

v0.3.1 (2024-07-16)
Bug Fixes:
	when adding code to surrounding block, don't go up multiple blocks

v0.3.0 (2024-07-15)
Improvements:
	Add Igniter.Libs.Phoenix for working with Phoenix

	deprecate duplicate Igniter.Code.Module.move_to_use function

	Igniter.Project.Config.configures?/4 that takes a config file

	Add Igniter.Util.Warning for formatting code in warnings

v0.2.13 (2024-07-15)
Bug Fixes:
	remove redundant case clause in Igniter.Code.Common

Improvements:
	make apply_and_fetch_dependencies only change deps/0

	remove a bunch of dependencies by using :inets & :httpc

v0.2.12 (2024-07-10)
Bug Fixes:
	fix dialyzer warnings about info/2 never being nil

v0.2.11 (2024-07-10)
Bug Fixes:
	prevent crash on specific cases with igniter.new

Improvements:
	more consistent initial impl of elixirc_paths

	support :kind in find_and_update_or_create_module/5 (#38)

v0.2.10 (2024-07-10)
Improvements:
	ensure test/support is in elixirc paths automatically when necessary

v0.2.9 (2024-07-09)
Bug Fixes:
	simplify how we get tasks to run

	don't try to format after editing mix.exs

v0.2.8 (2024-07-09)
Bug Fixes:
	fix deps compilation issues by vendoring deps.compile

	honor --yes flag when installing deps always

Improvements:
	small tweaks to output

v0.2.7 (2024-07-09)
Bug Fixes:
	remove shortnames for global options, to reduce conflicts

	remove erroneous warning while composing tasks

	pass file_path to ensure_default_configs_exist (#36)

	preserve original ordering in Util.Install (#33)

	include only "mix.exs" in the actual run in apply_and_fetch_dependencies (#32)

	always return {:ok, zipper} in append_new_to_list/2 (#31)

Improvements:
	support an optional append? flag for add_dep/3 (#34)

	add add_dep/2-3, that accepts a full dep specification

	deprecate add_dependency/3-4

	make module moving much smarter

	add configurations for not moving certain modules

	make source_folders configurable

v0.2.6 (2024-07-02)
Improvements:
	properly find nested modules again

	make igniter tests much faster by not searching our own project

	add include_all_elixir_files/1

	add module_exists?/2

	add find_and_update_module/3

	only require rejecting mix deps.get one time & remember that choice

	simpler messages signaling a mix deps.get

v0.2.5 (2024-07-02)
Improvements:
	move_modules -> move_files

	move some files around and update config names

	use %Info{} structs to compose and plan nested installers

	add Igniter.apply_and_fetch_dependencies/1 and Igniter.has_changes?/1 (#28)

	rename option_schema/2 -> info/2

	only create default configs if an env-specific config is created

v0.2.4 (2024-06-28)
Bug Fixes:
	fix match error in append_new_to_list

	version string splitting (#25)

Improvements:
	add an optional path argument to find_and_update_or_create_module/5

	add option_schema/2 callback to Igniter.Mix.Task

	Module.find_and_update_or_create_module

	add a way to move files

	add .igniter.exs file, and mix igniter.setup to create it

	move files to configured location based on changes

	add fallback to compose_task (#19)

	add proper_test_support_location/1 (#18)

	add proper_test_location/1 (#17)

v0.2.3 (2024-06-21)
Improvements:
	use override: true for git/github deps as well

v0.2.2 (2024-06-21)
Bug Fixes:
	don't show unnecessary diff output

	don't compile before fetching deps

v0.2.1 (2024-06-21)
Improvements:
	workaround trailing comment issues w/ sourceror

	support --with option in igniter.new

v0.2.0 (2024-06-20)
Improvements:
	make installer use override: true on local dependency

	ensure dependencies are compiled after mix deps.get

	use warnings instead of errors for better UX

	move project related things to Project namespace

v0.1.8 (2024-06-19)
Bug Fixes:
	update spitfire for env fix

Improvements:
	rename env_at_cursor to current_env

	improve marshalling of spitfire env to macro env

	show warning when adding dependencies by default

v0.1.7 (2024-06-14)
Improvements:
	various restructurings and improvements across the board

	use Spitfire to ensure that aliases are considered when comparing modules

	use Spitfire to use any existing aliases when inserting code

	use Zipper.topmost to power new Spitfire-related features

v0.1.6 (2024-06-13)
Bug Fixes:
	patch formatter fix, to be removed later when rewrite PR is merged

	properly find functions in scope

v0.1.5 (2024-06-13)
Bug Fixes:
	Igniter.Code.Common.with/2 was not properly merging with original zipper

v0.1.4 (2024-06-13)
Improvements:
	use path: prefix instead of local:

v0.1.3 (2024-06-13)
Improvements:
	support space-separated installers

v0.1.2 (2024-06-13)
Bug Fixes:
	remove unsupportable package installation symbols

	don't run mix deps.get if dependency changes are aborted

v0.1.1 (2024-06-13)
Bug Fixes:
	always format the file even if no .formatter.exs exists

v0.1.0 (2024-06-13)
Bug Fixes:
	handle existing deps when they are not local properly

Improvements:
	ignore installer tasks that are not igniter tasks

	draw the rest of the owl

	add installer archive

	more module helpers

	wrap code in ==code== so you can tell what is being puts

	add CI/build and get it passing locally

Igniter

Tools for generating and patching code into an Elixir project.
Assigns
Assigns are a way to store arbitrary data on an Igniter struct that can be used to
pass information between tasks, configure behavior, or maintain state throughout
the execution pipeline. They work similarly to assigns in Phoenix LiveView or Plug.
You can set assigns using assign/3 or assign/2, and access them via the
assigns field on the Igniter struct.
Special Assigns
The following assigns have special meaning and can be set to control Igniter's behavior:
	:prompt_on_git_changes? - Controls whether Igniter should warn users about
uncommitted git changes before applying modifications. Defaults to true. When
enabled, Igniter will check git status and display a warning if there are
uncommitted changes, giving users a chance to save their work before proceeding.

	:quiet_on_no_changes? - Controls whether Igniter should display a message when
no changes are proposed. Defaults to false. When set to true, Igniter will
suppress the "No proposed content changes!" message that normally appears when
running operations that don't result in any file modifications.

 Summary

 Types

 t()

 zipper_updater()

 Functions

 add_issue(igniter, issue)

 Adds an issue to the issues list. Any issues will prevent writing and be displayed to the user.

 add_notice(igniter, notice)

 Adds a notice to the notices list. Notices are displayed to the user once the igniter finishes running.

 add_task(igniter, task, argv \\ [])

 Adds a task to the tasks list. Tasks will be run after all changes have been committed

 add_warning(igniter, warning)

 Adds a warning to the warnings list. Warnings will not prevent writing, but will be displayed to the user.

 apply_and_fetch_dependencies(igniter, opts \\ [])

 Applies the current changes to the mix.exs in the Igniter and fetches dependencies.

 assign(igniter, key_vals)

 assign(igniter, key, value)

 Stores the key/value pair in igniter.assigns

 changed?(igniter)

 Returns true if the igniter or source provided has changed

 changed?(igniter, paths)

 Returns true if any of the files specified in paths have changed.

 compose_task(igniter, task, argv \\ nil, fallback \\ nil)

 Finds the Igniter.Mix.Task task by name and composes it with igniter.

 copy_template(igniter, source, target, assigns, opts \\ [])

 Copies an EEx template file from the source path to the target path.

 create_new_elixir_file(igniter, path, contents \\ "", opts \\ [])

 deprecated

 create_new_file(igniter, path, contents \\ "", opts \\ [])

 Creates a new file in the project with the provided string contents. Adds an error if it already exists.

 create_or_update_elixir_file(igniter, path, contents, updater)

 Creates the given file in the project with the provided string contents, or updates it with a function of type zipper_updater() if it already exists.

 create_or_update_file(igniter, path, contents, updater)

 Creates the given file in the project with the provided string contents, or updates it with a function as in update_file/3 (or with zipper_updater() for elixir files) if it already exists.

 delay_task(igniter, task, argv \\ [])

 Adds a delayed task to the tasks list. Delayed tasks will be run after all other composed tasks have been added.

 do_or_dry_run(igniter, opts \\ [])

 Executes or dry-runs a given Igniter.

 exists?(igniter, path)

 Checks if a file exists on the file system or in the igniter.

 has_changes?(igniter, paths \\ nil)

 Returns whether the current Igniter has pending changes.

 include_all_elixir_files(igniter)

 This function stores in the igniter if its been run before, so it is only run once, which is expensive.

 include_existing_elixir_file(igniter, path, opts \\ [])

 deprecated

 include_existing_file(igniter, path, opts \\ [])

 Includes the given file in the project, expecting it to exist. Does nothing if its already been added.

 include_glob(igniter, glob)

 Includes all files matching the given glob, expecting them all (for now) to be elixir files.

 include_or_create_elixir_file(igniter, path, contents \\ "")

 deprecated

 include_or_create_file(igniter, path, contents \\ "")

 Includes or creates the given file in the project with the provided contents. Does nothing if its already been added.

 install(igniter, package, argv \\ [], opts \\ [])

 Installs a package as if calling mix igniter.install

 mkdir(igniter, path)

 Creates a folder in the project.

 move_file(igniter, from, to, opts \\ [])

 new()

 Returns a new igniter

 rm(igniter, path)

 Deletes a file when the igniter is applied

 subdirectory?(path, base_path)

 update_all_elixir_files(igniter, updater)

 Runs an update over all elixir files

 update_assign(igniter, key, default, fun)

 update_elixir_file(igniter, path, func, opts \\ [])

 Updates the source code of the given elixir file

 update_file(igniter, path, updater, opts \\ [])

 Updates a given file's Rewrite.Source

 update_glob(igniter, glob, func)

 Updates all files matching the given glob with the given zipper function.

 Types

 t()

 @type t() :: %Igniter{
 args: Igniter.Mix.Task.Args.t(),
 assigns: map(),
 issues: [String.t()],
 mkdirs: [String.t()],
 moves: %{optional(String.t()) => String.t()},
 notices: [String.t()],
 parent: term(),
 rewrite: Rewrite.t(),
 rms: [String.t()],
 task: term(),
 tasks: [
 String.t()
 | {String.t(), [String.t()]}
 | {String.t(), [String.t()], :delayed}
],
 warnings: [String.t()]
}

 zipper_updater()

 @type zipper_updater() :: (Sourceror.Zipper.t() ->
 {:ok, Sourceror.Zipper.t()}
 | {:error, String.t() | [String.t()]}
 | {:warning, String.t() | [String.t()]})

 Functions

 add_issue(igniter, issue)

 @spec add_issue(t(), term() | [term()]) :: t()

Adds an issue to the issues list. Any issues will prevent writing and be displayed to the user.

 add_notice(igniter, notice)

 @spec add_notice(t(), String.t()) :: t()

Adds a notice to the notices list. Notices are displayed to the user once the igniter finishes running.

 add_task(igniter, task, argv \\ [])

Adds a task to the tasks list. Tasks will be run after all changes have been committed

 add_warning(igniter, warning)

 @spec add_warning(t(), term() | [term()]) :: t()

Adds a warning to the warnings list. Warnings will not prevent writing, but will be displayed to the user.

 apply_and_fetch_dependencies(igniter, opts \\ [])

Applies the current changes to the mix.exs in the Igniter and fetches dependencies.
Returns the remaining changes in the Igniter if successful.
Options
	:error_on_abort? - If true, raises an error if the user aborts the operation. Returns the original igniter if not.
	:yes - If true, automatically applies the changes without prompting the user.

 assign(igniter, key_vals)

 assign(igniter, key, value)

 @spec assign(t(), atom(), term()) :: t()

Stores the key/value pair in igniter.assigns

 changed?(igniter)

 @spec changed?(t() | Rewrite.Source.t()) :: boolean()

Returns true if the igniter or source provided has changed

 changed?(igniter, paths)

 @spec changed?(t(), String.t() | [String.t()]) :: boolean()

Returns true if any of the files specified in paths have changed.

 compose_task(igniter, task, argv \\ nil, fallback \\ nil)

 @spec compose_task(
 t(),
 task :: String.t() | module(),
 argv :: [String.t()] | nil,
 fallback :: (t() -> t()) | (t(), [String.t()] -> t()) | nil
) :: t()

Finds the Igniter.Mix.Task task by name and composes it with igniter.
If the task doesn't exist, a fallback function may be provided. This
function should accept and return the igniter.
Argument handling
This function calls the task's igniter/1 (or igniter/2) callback, setting
igniter.args using the current igniter.args.argv_flags. This prevents
composed tasks from accidentally consuming positional arguments. If you
wish the composed task to access additional arguments, you must explicitly
pass an argv list.
Additionally, you must declare other tasks you are composing with in your
task's Igniter.Mix.Task.Info struct using the :composes key. Without
this, you'll see unexpected argument errors if a flag that a composed task
uses is passed without you explicitly declaring it in your :schema.
Example
def info(_argv, _parent) do
 %Igniter.Mix.Task.Info{
 ...,
 composes: [
 "other.task1",
 "other.task2"
]
 }

def igniter(igniter) do
 igniter
 # other.task1 will see igniter.args.argv_flags as its args
 |> Igniter.compose_task("other.task1")
 # other.task2 will see an additional arg and flag
 |> Igniter.compose_task("other.task2", ["arg", "--flag"] ++ igniter.argv.argv_flags)
end

 copy_template(igniter, source, target, assigns, opts \\ [])

 @spec copy_template(
 igniter :: t(),
 source :: Path.t(),
 target :: Path.t(),
 assigns :: Keyword.t(),
 opts :: Keyword.t()
) :: t()

Copies an EEx template file from the source path to the target path.
Accepts the same options as create_new_file/4.

 create_new_elixir_file(igniter, path, contents \\ "", opts \\ [])

 This function is deprecated. Use `create_new_file/4`.

 create_new_file(igniter, path, contents \\ "", opts \\ [])

Creates a new file in the project with the provided string contents. Adds an error if it already exists.
Options
	:on_exists - The action to take if the file already exists. Can be	:error (default) - Adds an error that prevents any eventual write.
	:warning - Warns when writing but continues (without overwriting)
	:skip - Skips writing the file without a warning
	:overwrite - Warns when writing and overwrites the content with the new content

 create_or_update_elixir_file(igniter, path, contents, updater)

 @spec create_or_update_elixir_file(t(), Path.t(), String.t(), zipper_updater()) :: t()

Creates the given file in the project with the provided string contents, or updates it with a function of type zipper_updater() if it already exists.

 create_or_update_file(igniter, path, contents, updater)

Creates the given file in the project with the provided string contents, or updates it with a function as in update_file/3 (or with zipper_updater() for elixir files) if it already exists.

 delay_task(igniter, task, argv \\ [])

Adds a delayed task to the tasks list. Delayed tasks will be run after all other composed tasks have been added.

 do_or_dry_run(igniter, opts \\ [])

Executes or dry-runs a given Igniter.

 exists?(igniter, path)

 @spec exists?(t(), Path.t()) :: boolean()

Checks if a file exists on the file system or in the igniter.

 has_changes?(igniter, paths \\ nil)

Returns whether the current Igniter has pending changes.

 include_all_elixir_files(igniter)

This function stores in the igniter if its been run before, so it is only run once, which is expensive.

 include_existing_elixir_file(igniter, path, opts \\ [])

 This function is deprecated. Use `include_existing_file/3` instead.

 @spec include_existing_elixir_file(t(), Path.t(), opts :: Keyword.t()) :: t()

 include_existing_file(igniter, path, opts \\ [])

 @spec include_existing_file(t(), Path.t(), opts :: Keyword.t()) :: t()

Includes the given file in the project, expecting it to exist. Does nothing if its already been added.
Options
	:required? - Tracks an issue for the file missing. Defaults to false.

 include_glob(igniter, glob)

 @spec include_glob(t(), Path.t() | GlobEx.t()) :: t()

Includes all files matching the given glob, expecting them all (for now) to be elixir files.

 include_or_create_elixir_file(igniter, path, contents \\ "")

 This function is deprecated. Use `include_or_create_file/3` instead.

 @spec include_or_create_elixir_file(t(), Path.t(), contents :: String.t()) :: t()

 include_or_create_file(igniter, path, contents \\ "")

 @spec include_or_create_file(t(), Path.t(), contents :: String.t()) :: t()

Includes or creates the given file in the project with the provided contents. Does nothing if its already been added.

 install(igniter, package, argv \\ [], opts \\ [])

Installs a package as if calling mix igniter.install
See mix igniter.install for information on the package format.
Options
	append? - If true, appends the package to the existing list of packages instead of prepending. Defaults to false.

Examples
 Igniter.install(igniter, "ash")
 Igniter.install(igniter, "ash_authentication@2.0", ["--authentication-strategies", "password,magic_link"])

 mkdir(igniter, path)

 @spec mkdir(t(), Path.t()) :: t()

Creates a folder in the project.

 move_file(igniter, from, to, opts \\ [])

 new()

 @spec new() :: t()

Returns a new igniter

 rm(igniter, path)

Deletes a file when the igniter is applied

 subdirectory?(path, base_path)

 update_all_elixir_files(igniter, updater)

Runs an update over all elixir files

 update_assign(igniter, key, default, fun)

 update_elixir_file(igniter, path, func, opts \\ [])

 @spec update_elixir_file(t(), Path.t(), zipper_updater(), keyword()) :: t()

Updates the source code of the given elixir file
Options
	:required? - Tracks an issue for the file missing. Defaults to true.

 update_file(igniter, path, updater, opts \\ [])

Updates a given file's Rewrite.Source

 update_glob(igniter, glob, func)

 @spec update_glob(
 t(),
 Path.t() | GlobEx.t(),
 zipper_updater()
) :: t()

Updates all files matching the given glob with the given zipper function.
Adds any new files matching that glob to the igniter first.

Igniter.Scribe

Contains functions for use with the --scribe option in Igniter.
See the guide for more.

 Summary

 Functions

 patch(original_igniter, callback)

 section(igniter, header, explanation, callback)

 Adds a new section to the documentation.

 start_document(igniter, title, contents, opts \\ [])

 Sets the path and title of the document being generated. Only the first call to this is honored.

 Functions

 patch(original_igniter, callback)

 section(igniter, header, explanation, callback)

Adds a new section to the documentation.

 start_document(igniter, title, contents, opts \\ [])

Sets the path and title of the document being generated. Only the first call to this is honored.

Igniter.Test

Tools for testing with igniter.

 Summary

 Functions

 apply_igniter(igniter)

 Fakes applying the changes of an igniter.

 apply_igniter!(igniter)

 Applies an igniter, raising an error if there are any issues.

 assert_content_equals(igniter, path, text)

 assert_creates(igniter, path, content \\ nil)

 Asserts that a file was created during the igniter run.

 assert_has_delayed_task(igniter, task, argv)

 assert_has_issue(igniter, path \\ nil, issue)

 assert_has_notice(igniter, notice)

 assert_has_patch(igniter, path, patch)

 assert_has_task(igniter, task, argv)

 assert_has_warning(igniter, warning)

 assert_moves(igniter, from, to)

 Asserts that a file was moved to a specific location.

 assert_rms(igniter, expected_paths)

 assert_unchanged(igniter)

 assert_unchanged(igniter, path_or_paths)

 diff(igniter, opts \\ [])

 Return the current igniter diff.

 phx_test_project(opts \\ [])

 Sets up a test igniter that mimics a new phoenix project

 puts_diff(igniter, opts \\ [])

 Print the current igniter diff, returning the igniter.

 refute_creates(igniter, path)

 Asserts that a file was NOT created during the igniter run.

 test_project(opts \\ [])

 Sets up a test igniter that has only the files passed to it.

 Functions

 apply_igniter(igniter)

 @spec apply_igniter(Igniter.t()) ::
 {:ok, Igniter.t(),
 %{
 tasks: [{String.t(), [String.t()]}],
 warnings: [String.t()],
 notices: [String.t()]
 }}
 | {:error, [String.t()]}

Fakes applying the changes of an igniter.
This function returns any tasks, errors, warnings.

 apply_igniter!(igniter)

 @spec apply_igniter!(Igniter.t()) :: Igniter.t() | no_return()

Applies an igniter, raising an error if there are any issues.
See apply_igniter/1 for more.

 assert_content_equals(igniter, path, text)

 assert_creates(igniter, path, content \\ nil)

Asserts that a file was created during the igniter run.
Optionally validates the content of the created file if content is provided.
Examples
test_project()
|> Igniter.create_new_file("lib/example.ex", "defmodule Example, do: nil")
|> assert_creates("lib/example.ex")

test_project()
|> Igniter.create_new_file("lib/example.ex", "defmodule Example, do: nil")
|> assert_creates("lib/example.ex", "defmodule Example, do: nil")

 assert_has_delayed_task(igniter, task, argv)

 assert_has_issue(igniter, path \\ nil, issue)

 assert_has_notice(igniter, notice)

 assert_has_patch(igniter, path, patch)

 assert_has_task(igniter, task, argv)

 assert_has_warning(igniter, warning)

 assert_moves(igniter, from, to)

 @spec assert_moves(Igniter.t(), from :: String.t(), [{:to, String.t()}]) ::
 Igniter.t()

Asserts that a file was moved to a specific location.
Example
test_project()
|> Igniter.move_file("lib/old_location.ex", "lib/new_location.ex")
|> assert_moves("lib/old_location.ex", "lib/new_location.ex")

 assert_rms(igniter, expected_paths)

 assert_unchanged(igniter)

 assert_unchanged(igniter, path_or_paths)

 diff(igniter, opts \\ [])

 @spec diff(Igniter.t(), opts :: Keyword.t()) :: String.t()

Return the current igniter diff.
Options
	:only - Only return the diff for this file or files

 phx_test_project(opts \\ [])

Sets up a test igniter that mimics a new phoenix project

 puts_diff(igniter, opts \\ [])

 @spec puts_diff(Igniter.t(), opts :: Keyword.t()) :: Igniter.t()

Print the current igniter diff, returning the igniter.
This is primarily used for debugging purposes.
Options
	:label - A label to print before the diff
	:only - Only print the diff for this file or files

 refute_creates(igniter, path)

Asserts that a file was NOT created during the igniter run.
This will pass if the file doesn't exist at all, or if it already existed
before the igniter run started.
Examples
test_project()
|> refute_creates("lib/non_existent.ex")

test_project()
|> refute_creates("mix.exs") # mix.exs already exists

 test_project(opts \\ [])

 @spec test_project(opts :: Keyword.t()) :: Igniter.t()

 @spec test_project(opts :: Keyword.t()) :: Igniter.t()

Sets up a test igniter that has only the files passed to it.
Starting point
All of the files of an empty mix project are added by default.
You can specify more or overwrite files with the :files option.
Limitations
You cannot install new dependencies, or use dependencies your own project does not have.
If you need to do that kind of thing, you will have to do a test that uses tools like
System.cmd in a temporary directory.
Options
	files - A map of file paths to file contents. The file paths should be relative to the project root.
	app_name - The name of the application. Defaults to :test.

Examples
test_project(files: %{
 "lib/foo.ex" => """
 defmodule MyApp.Foo do
 use Ash.Resource
 end
 """
})

Igniter.Upgrades

Utilities for running upgrades.

 Summary

 Functions

 run(igniter, from, to, upgrade_map, opts)

 Run all upgrades from from to to.

 Functions

 run(igniter, from, to, upgrade_map, opts)

Run all upgrades from from to to.

Igniter.Mix.Task behaviour

A behaviour for implementing a Mix task that is enriched to be composable with other Igniter tasks.
Note
A default run/1 is implemented so you can directly run the task. Igniter never uses this function, so it is overridable.
This enables your library to make use of the task for its own purposes if needed. An example would be if you wanted to implement an Igniter installer, but also have an install task for end-user consumption (e.g. mix tailwind.install).
Options and Arguments
Command line args are automatically parsed into igniter.args using the configuration returned
from info/2. See Igniter.Mix.Task.Info for more.

 Summary

 Callbacks

 igniter(igniter)

 Main entrypoint for tasks. This callback accepts and returns an Igniter struct.

 igniter(igniter, argv)

 deprecated

 All the generator behavior happens here, you take an igniter and task arguments, and return an igniter.

 info(argv, composing_task)

 Returns an Igniter.Mix.Task.Info struct, with information used when running the igniter task.

 installer?()

 parse_argv(argv)

 Returns an Igniter.Mix.Task.Args struct.

 supports_umbrella?()

 Whether or not it supports being run in the root of an umbrella project

 Functions

 options!(argv)

 deprecated

 Parses the options for the task based on its info.

 positional_args!(argv)

 deprecated

 set_yes(igniter, args)

 Callbacks

 igniter(igniter)

 (optional)

 @callback igniter(igniter :: Igniter.t()) :: Igniter.t()

Main entrypoint for tasks. This callback accepts and returns an Igniter struct.

 igniter(igniter, argv)

 (optional)

 This callback is deprecated. Use igniter/1 instead.

 @callback igniter(igniter :: Igniter.t(), argv :: [String.t()]) :: Igniter.t()

All the generator behavior happens here, you take an igniter and task arguments, and return an igniter.

 info(argv, composing_task)

 @callback info(argv :: [String.t()], composing_task :: nil | String.t()) ::
 Igniter.Mix.Task.Info.t()

Returns an Igniter.Mix.Task.Info struct, with information used when running the igniter task.
This info will be used to validate arguments in composed tasks.
Use the positional_args!(argv) to get your positional arguments according to your info.positional, and the remaining unused args.
Use the options!(argv) macro to get your parsed options according to your info.schema.
Important Limitations
	Each task still must parse its own argv in igniter/2 and must ignore any unknown options.
To accomplish this, use the automatically imported options!(argv) macro, which uses the info/2
callback to validate args and return options
	You cannot use composes to list tasks unless they are in your library or in direct dependencies of your library.
To validate their options, you must include their options in your own option schema.

 installer?()

 @callback installer?() :: boolean()

 parse_argv(argv)

 @callback parse_argv(argv :: [String.t()]) :: Igniter.Mix.Task.Args.t()

Returns an Igniter.Mix.Task.Args struct.
This callback can be implemented to private custom parsing and validation behavior for
command line arguments. By default, the options specified in info/2 will be used
to inject a default implementation.

 supports_umbrella?()

 @callback supports_umbrella?() :: boolean()

Whether or not it supports being run in the root of an umbrella project
At the moment, this is still experimental and we suggest not turning it on.

 Functions

 options!(argv)

 (macro)

 This macro is deprecated. use `igniter.args.options` instead.

 @spec options!(argv :: term()) :: term() | no_return()

Parses the options for the task based on its info.

 positional_args!(argv)

 (macro)

 This macro is deprecated. use `igniter.args.positional` instead.

 set_yes(igniter, args)

Igniter.Mix.Task.Args

Command line arguments parsed when running an Igniter.Mix.Task.
These args will usually be accessed through igniter.args when the
Igniter.Mix.Task.igniter/1 callback is run. To learn more about how
they are parsed, see Igniter.Mix.Task.Info.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Igniter.Mix.Task.Args{
 argv: [String.t()],
 argv_flags: [String.t()],
 options: keyword(),
 positional: %{required(atom()) => term()}
}

Igniter.Mix.Task.Info

Info for an Igniter.Mix.Task, returned from the info/2 callback
Configurable Keys
	schema - The option schema for this task, in the format given to OptionParser, i.e [name: :string]. See the schema section for more.
	defaults - Default values for options in the schema.
	required - A list of flags that are required for this task to run.
	positional - A list of positional arguments that this task accepts. A list of atoms, or a keyword list with the option and config.
See the positional arguments section for more.
	aliases - A map of aliases to the schema keys.
	only - For installers, a list of environments that the dependency should be installed to.
	dep_opts - For installers, dependency options that should be set, like runtime: false. Use the only key for only option.
	composes - A list of tasks that this task might compose.
	installs - A list of dependencies that should be installed before continuing.
	adds_deps - A list of dependencies that should be added to the mix.exs, but do not need to be installed before continuing.
	extra_args? - Whether or not to allow extra arguments. This forces all tasks that compose this task to allow extra args as well.
	example - An example usage of the task. This is used in the help output.

Your task should always use switches and not strict to validate provided options!
Options and Arguments
Command line args are automatically parsed into igniter.args using this struct's configuration.
@impl Igniter.Mix.Task
def igniter(igniter) do
 positional = igniter.args.positional
 options = igniter.args.options
end
If you need to do custom validation or parsing, you can implement Igniter.Mix.Task.parse_argv/1
and return an Igniter.Mix.Task.Args struct. If helpful, the positional_args!/1 and
options!/1 macros can be used to parse positional arguments and options/flags using your
info configuration.
@impl Igniter.Mix.Task
def parse_argv(argv) do
 {positional, argv_flags} = positional_args!(argv)
 options = options!(argv_flags)

 # custom validation or additional parsing

 %Igniter.Mix.Task.Args{
 argv: argv,
 argv_flags: argv_flags,
 positional: positional,
 options: options
 }
end
Options
The schema is an option parser schema, and OptionParser is used to parse the options, with
a few notable differences.
	The defaults from the defaults option in your task info are applied.
	The :keep type is automatically aggregated into a list.
	The :csv option automatically splits the value on commas, and allows it to be specified multiple times.
This also raises an error if an option with a trailing comma is provided, suggesting that the user remove
the comma or quote the value.

Positional Arguments
Each positional argument can provide the following options:
	:optional - Whether or not the argument is optional. Defaults to false.
	:rest - Whether or not the argument consumes the rest of the positional arguments. Defaults to false. The value will be converted to a list automatically.

 Summary

 Types

 dep()

 t()

 Functions

 global_options()

 Types

 dep()

 @type dep() ::
 {atom(), String.t()}
 | {atom(), Keyword.t()}
 | {atom(), String.t(), Keyword.t()}

 t()

 @type t() :: %Igniter.Mix.Task.Info{
 adds_deps: [dep()],
 alias_conflicts: %{optional(atom()) => [String.t()]},
 aliases: Keyword.t(),
 composes: [String.t()],
 defaults: Keyword.t(),
 dep_opts: Keyword.t(),
 example: String.t() | nil,
 extra_args?: boolean(),
 flag_conflicts: %{optional(atom()) => [String.t()]},
 group: atom() | nil,
 installs: [dep()],
 only: [atom()] | nil,
 positional: [atom() | {atom(), optional: boolean(), rest: boolean()}],
 required: [atom()],
 schema: Keyword.t()
}

 Functions

 global_options()

Igniter.Project.Application

Codemods and tools for working with Application modules.

 Summary

 Functions

 add_new_child(igniter, to_supervise, opts \\ [])

 Adds a new child to the children list in the application file

 app_module(igniter)

 Returns the name of the application module.

 app_name()

 deprecated

 Returns the name of the current application.

 app_name(igniter)

 Returns the name of the application.

 config_path(igniter)

 Returns the config_path of the application.

 create_app(igniter, application)

 create_application_file(igniter, application)

 priv_dir(igniter, subpath \\ [])

 Returns the path of the application's priv directory.

 skip_after(zipper, opts)

 Functions

 add_new_child(igniter, to_supervise, opts \\ [])

 @spec add_new_child(
 Igniter.t(),
 module() | {module(), {:code, term()}} | {module(), term()},
 opts :: Keyword.t()
) :: Igniter.t()

Adds a new child to the children list in the application file
To pass quoted code as the options, use the following format:
{module, {:code, quoted_code}}
i.e
{MyApp.Supervisor, {:code, quote do
 Application.fetch_env!(:app, :config)
end}}
Options
	:after - A list of other modules that this supervisor should appear after,
 or a function that takes a module and returns true if this module should be placed after it.
	:opts_updater - A function that takes the current options (second element of the child tuple),
 and returns a new value. If the existing value of the module is not a tuple, the value passed into
 your function will be []. Your function must return {:ok, zipper} or
 {:error | :warning, "error_or_warning"}.
	:force? - If true, forces adding a new child, even if an existing child uses the
same child module. Defaults to false.

Ordering
We will put the new child as the earliest item in the list that we can, skipping any modules
in the after option.
Examples
Given an application start/2 that looks like this:
def start(_type, _args) do
 children = [
 ChildOne,
 {ChildTwo, opt: 1}
]

 Supervisor.start_link(children, strategy: :one_for_one)
end
Add a new child that isn't currently present:
Igniter.Project.Application.add_new_child(igniter, NewChild)
=>
children = [
 NewChild,
 ChildOne,
 {ChildTwo, opt: 1}
]
Add a new child after some existing ones:
Igniter.Project.Application.add_new_child(igniter, NewChild, after: [ChildOne, ChildTwo])
=>
children = [
 ChildOne,
 {ChildTwo, opt: 1},
 NewChild
]
If the given child module is already present, add_new_child/3 is a no-op by default:
Igniter.Project.Application.add_new_child(igniter, {ChildOne, opt: 1})
=>
children = [
 ChildOne,
 {ChildTwo, opt: 1}
]
You can explicitly handle module conflicts by passing an :opts_updater:
Igniter.Project.Application.add_new_child(igniter, {ChildOne, opt: 1},
 opts_updater: fn opts ->
 {:ok, Sourceror.Zipper.replace(opts, [opt: 1])}
 end
)
=>
children = [
 {ChildOne, opt: 1},
 {ChildTwo, opt: 1}
]
Using force?: true, you can force a child to be added, even if the module
conflicts with an existing one:
Igniter.Project.Application.add_new_child(igniter, {ChildOne, opt: 1}, force?: true)
=>
children = [
 {ChildOne, opt: 1},
 ChildOne,
 {ChildTwo, opt: 1}
]

 app_module(igniter)

Returns the name of the application module.

 app_name()

 This function is deprecated. Use `app_name/1` instead..

 @spec app_name() :: atom()

Returns the name of the current application.

 app_name(igniter)

 @spec app_name(Igniter.t()) :: atom()

Returns the name of the application.

 config_path(igniter)

 @spec config_path(Igniter.t()) :: binary()

Returns the config_path of the application.

 create_app(igniter, application)

 create_application_file(igniter, application)

 priv_dir(igniter, subpath \\ [])

 @spec priv_dir(Igniter.t(), [String.t()]) :: String.t()

Returns the path of the application's priv directory.

 skip_after(zipper, opts)

Igniter.Project.Config

Codemods and utilities for modifying Elixir config files.

 Summary

 Types

 after_predicate()

 config_group_item()

 updater()

 Functions

 configure(igniter, file_name, app_name, config_path, value, opts \\ [])

 Sets a config value in the given configuration file, updating it with updater if it is already set.

 configure_group(igniter, file_path, app_name, shared_prefix, items, opts \\ [])

 Configures a "group" of configurations, which is multiple configurations set at one time.
If the app + the shared prefix is already configured, then each configuration is added individually,
and the comment for the group is ignored. The sub configurations use configure, so if you want to
not change the value if its already set, use updater: &{:ok, &1} in the item opts.

 configure_new(igniter, file_path, app_name, config_path, value, opts \\ [])

 Sets a config value in the given configuration file, if it is not already set.

 configure_runtime_env(igniter, env, app_name, config_path, value, opts \\ [])

 configures?(zipper, path, app_name)

 deprecated

 configures?(igniter, config_file_name, path, app_name)

 deprecated

 Returns true if the given configuration path is set somewhere after the provided zipper, or in the given configuration file.

 configures_key?(zipper, root_key, key_or_path)

 Same as configures_key?/4 but accepts a Zipper.

 configures_key?(igniter, config_file_name, root_key, key_or_path)

 If the last argument is key, checks if either config :root_key, :key, ...
or config :root_key, key: ... is set.

 configures_root_key?(zipper, root_key)

 Same as configures_root_key?/3 but accepts a Zipper instead.

 configures_root_key?(igniter, config_file_name, root_key)

 Checks if either config :root_key, _ or config :root_key, _, _ is present
in the provided config file.

 get_updater(opts, value)

 modify_config_code(zipper, config_path, app_name, value, opts \\ [])

 Modifies elixir configuration code starting at the configured zipper.

 modify_configuration_code(zipper, config_path, app_name, value, opts \\ [])

 deprecated

 Modifies elixir configuration code starting at the configured zipper.

 remove_application_configuration(igniter, file_name, app_name)

 Removes an applications config completely.

 Types

 after_predicate()

 @type after_predicate() :: (Sourceror.Zipper.t() -> boolean())

 config_group_item()

 @type config_group_item() ::
 {[term()] | term(), term()} | {[term()] | term(), term(), Keyword.t()}

 updater()

 @type updater() ::
 (Sourceror.Zipper.t() -> {:ok, Sourceror.Zipper.t()}) | :error | nil

 Functions

 configure(igniter, file_name, app_name, config_path, value, opts \\ [])

 @spec configure(
 Igniter.t(),
 Path.t(),
 atom(),
 [atom()],
 term(),
 opts :: Keyword.t()
) :: Igniter.t()

Sets a config value in the given configuration file, updating it with updater if it is already set.
If the value is source code, pass {:code, value}, otherwise pass just the value.
To produce this source code, we suggest using Sourceror.parse_string!. For example:
|> Igniter.Project.Config.configure(
 "fake.exs",
 :tailwind,
 [:default, :args],
 {:code,
 Sourceror.parse_string!("""
 ~w(--config=tailwind.config.js --input=css/app.css --output=../output/assets/app.css)
 """)}
)
Options
	failure_message - A message to display to the user if the configuration change is unsuccessful.
	updater - updater/0. A function that takes a zipper at a currently configured value and returns a new zipper with the value updated.
	after - after_predicate/0. Moves to the last node that matches the predicate. Useful to guarantee a config is placed after a specific node.

 configure_group(igniter, file_path, app_name, shared_prefix, items, opts \\ [])

 @spec configure_group(
 Igniter.t(),
 Path.t(),
 atom(),
 shared_prefix :: [atom()],
 [config_group_item()],
 opts :: Keyword.t()
) :: Igniter.t()

Configures a "group" of configurations, which is multiple configurations set at one time.
If the app + the shared prefix is already configured, then each configuration is added individually,
and the comment for the group is ignored. The sub configurations use configure, so if you want to
not change the value if its already set, use updater: &{:ok, &1} in the item opts.
Options
	comment - A comment string to add above the group when its added.

 configure_new(igniter, file_path, app_name, config_path, value, opts \\ [])

 @spec configure_new(
 Igniter.t(),
 Path.t(),
 atom(),
 [atom()],
 term(),
 opts :: Keyword.t()
) :: Igniter.t()

Sets a config value in the given configuration file, if it is not already set.
See configure/6 for more.
Options
	failure_message - A message to display to the user if the configuration change is unsuccessful.
	after - after_predicate/0. Moves to the last node that matches the predicate.

 configure_runtime_env(igniter, env, app_name, config_path, value, opts \\ [])

 @spec configure_runtime_env(
 Igniter.t(),
 atom(),
 atom(),
 [atom()],
 term(),
 opts :: Keyword.t()
) :: Igniter.t()

 configures?(zipper, path, app_name)

 This function is deprecated. Use configures_root_key?/2 or configures_key?/3 instead..

 @spec configures?(Sourceror.Zipper.t(), [atom()], atom()) :: boolean()

 configures?(igniter, config_file_name, path, app_name)

 This function is deprecated. Use configures_root_key?/3 or configures_key?/4 instead..

 @spec configures?(Igniter.t(), String.t(), [atom()], atom()) :: boolean()

Returns true if the given configuration path is set somewhere after the provided zipper, or in the given configuration file.

 configures_key?(zipper, root_key, key_or_path)

 @spec configures_key?(Sourceror.Zipper.t(), atom(), atom() | [atom()]) :: boolean()

Same as configures_key?/4 but accepts a Zipper.

 configures_key?(igniter, config_file_name, root_key, key_or_path)

 @spec configures_key?(
 Igniter.t(),
 String.t(),
 atom(),
 atom() | [atom()]
) :: boolean()

If the last argument is key, checks if either config :root_key, :key, ...
or config :root_key, key: ... is set.
If the last argument is a keyword path, checks if
config :root_key, path_head, [...] defines path_rest or if
config :root_key, [...] defines path, where path_head is the first
element of path and path_rest are the remaining elements.
Note: config_file_name should not include the config/ prefix.

 configures_root_key?(zipper, root_key)

 @spec configures_root_key?(Sourceror.Zipper.t(), atom()) :: boolean()

Same as configures_root_key?/3 but accepts a Zipper instead.

 configures_root_key?(igniter, config_file_name, root_key)

 @spec configures_root_key?(Igniter.t(), String.t(), atom()) :: boolean()

Checks if either config :root_key, _ or config :root_key, _, _ is present
in the provided config file.
Note: The config file name should not include the config/ prefix.

 get_updater(opts, value)

 modify_config_code(zipper, config_path, app_name, value, opts \\ [])

Modifies elixir configuration code starting at the configured zipper.
If you want to set configuration, use configure/6 or configure_new/5 instead. This is a lower-level
tool for modifying configuration files when you need to adjust some specific part of them.
Options
	updater - updater/0. A function that takes a zipper at a currently configured value and returns a new zipper with the value updated.
	after - after_predicate/0. Moves to the last node that matches the predicate.

 modify_configuration_code(zipper, config_path, app_name, value, opts \\ [])

 This function is deprecated. Use `modify_config_code/5`.

 @spec modify_configuration_code(
 Sourceror.Zipper.t(),
 [atom()],
 atom(),
 term(),
 opts :: Keyword.t()
) :: Sourceror.Zipper.t()

 @spec modify_configuration_code(
 Sourceror.Zipper.t(),
 [atom()],
 atom(),
 term(),
 opts :: Keyword.t()
) ::
 {:ok, Sourceror.Zipper.t()}
 | :error
 | {:warning, String.t()}
 | {:error, String.t()}

Modifies elixir configuration code starting at the configured zipper.
If you want to set configuration, use configure/6 or configure_new/5 instead. This is a lower-level
tool for modifying configuration files when you need to adjust some specific part of them.
Options
	updater - updater/0. A function that takes a zipper at a currently configured value and returns a new zipper with the value updated.
	after - after_predicate/0. Moves to the last node that matches the predicate.

 remove_application_configuration(igniter, file_name, app_name)

 @spec remove_application_configuration(Igniter.t(), Path.t(), atom()) :: Igniter.t()

Removes an applications config completely.

Igniter.Project.Deps

Codemods and utilities for managing dependencies declared in mix.exs

 Summary

 Functions

 add_dep(igniter, dep, opts \\ [])

 Adds a dependency to the mix.exs file.

 add_dependency(igniter, name, version, opts \\ [])

 deprecated

 fetch_hex_api_url_and_headers(package, opts)

 get_dep(igniter, name)

 Gets the current dependency declaration in mix.exs for a given dependency.

 get_dependency_declaration(igniter, name)

 deprecated

 Gets the current dependency declaration in mix.exs for a given dependency.

 has_dep?(igniter, name)

 Returns true if the given dependency is in mix.exs

 remove_dep(igniter, name)

 Removes a dependency from mix.exs

 set_dep_option(igniter, name, key, quoted)

 Sets a dependency option for an existing dependency

 Functions

 add_dep(igniter, dep, opts \\ [])

Adds a dependency to the mix.exs file.
|> Igniter.Project.Deps.add_dep({:my_dependency, "~> X.Y.Z"})
Options
	:yes? - Automatically answer yes to any prompts.
	:append? - Append to the dependency list instead of prepending.
	:error? - Returns an error instead of a notice on failure.
	:on_exists - The action to take if the dep is already present	:overwrite (default) - Overwrites with the new depenency
	:skip - Skips adding the dependency

 add_dependency(igniter, name, version, opts \\ [])

 This function is deprecated. Use `add_dep/2` or `add_dep/3` instead..

 fetch_hex_api_url_and_headers(package, opts)

 get_dep(igniter, name)

 @spec get_dep(Igniter.t(), name :: atom()) ::
 {:ok, nil | String.t()} | {:error, String.t()}

Gets the current dependency declaration in mix.exs for a given dependency.

 get_dependency_declaration(igniter, name)

 This function is deprecated. use `get_dep/2` instead, which can return ok/error tuple.

Gets the current dependency declaration in mix.exs for a given dependency.

 has_dep?(igniter, name)

Returns true if the given dependency is in mix.exs

 remove_dep(igniter, name)

Removes a dependency from mix.exs

 set_dep_option(igniter, name, key, quoted)

 @spec set_dep_option(Igniter.t(), atom(), atom(), quoted :: term()) :: Igniter.t()

Sets a dependency option for an existing dependency

Igniter.Project.Formatter

Codemods and utilities for interacting with .formatter.exs files

 Summary

 Functions

 add_formatter_plugin(igniter, plugin)

 Adds a new plugin to the list of plugins in the root .formatter.exs

 import_dep(igniter, dep)

 Adds a new dep to the list of imported deps in the root .formatter.exs

 remove_formatter_plugin(igniter, plugin)

 REmoves a plugin to the list of plugins in the root .formatter.exs

 remove_imported_dep(igniter, dep)

 Removes an imported dep from the list of imported deps in the root .formatter.exs

 Functions

 add_formatter_plugin(igniter, plugin)

 @spec add_formatter_plugin(Igniter.t(), plugin :: module()) :: Igniter.t()

Adds a new plugin to the list of plugins in the root .formatter.exs

 import_dep(igniter, dep)

 @spec import_dep(Igniter.t(), dep :: atom()) :: Igniter.t()

Adds a new dep to the list of imported deps in the root .formatter.exs

 remove_formatter_plugin(igniter, plugin)

 @spec remove_formatter_plugin(Igniter.t(), plugin :: module()) :: Igniter.t()

REmoves a plugin to the list of plugins in the root .formatter.exs

 remove_imported_dep(igniter, dep)

 @spec remove_imported_dep(Igniter.t(), dep :: atom()) :: Igniter.t()

Removes an imported dep from the list of imported deps in the root .formatter.exs

Igniter.Project.IgniterConfig

Tools for reading and modifying the .igniter.exs file.
The command mix igniter.setup will generate this file, as well
as keep it up to date with any new configurations. You can run this
command at any time to update the file without overriding your own config.
If the file does not exist, all values are considered to have their default value.
Options
	module_location -
	:outside_matching_folder, modules will be placed in a folder exactly matching their path.
	:inside_matching_folder, modules who's name matches an existing folder will be placed inside that folder,
or moved there if the folder is created.

	extensions -
A list of extensions to use in the project.

	deps_location -
The strategy for finding the deps list to add new dependencies to, in your deps/0 function in mix.exs
	:last_list_literal expects your deps function to return a literal list which will be prepended to
	{:variable, :name} expects to find an assignment from the given variable to a list literal, i.e deps = [...], and prepends to that
	:mfa will call the given mfa with the igniter and the zipper within the deps/0 function. It should return {:ok, zipper}
 at the position where the dep should be prepended, or :error if the location could not be found.

	source_folders -
A list of folders to manage elixir files in.

	dont_move_files -
A list of strings or regexes. Any files that equal (in the case of strings) or match (in the case of regexes) will not be moved.

 Summary

 Functions

 add_extension(igniter, extension)

 configs()

 configure(igniter, key, value)

 dont_move_file_pattern(igniter, pattern)

 get(igniter, config)

 setup(igniter)

 Functions

 add_extension(igniter, extension)

 configs()

 configure(igniter, key, value)

 dont_move_file_pattern(igniter, pattern)

 get(igniter, config)

 setup(igniter)

Igniter.Project.MixProject

Codemods and utilities for updating project configuration in mix.exs.

 Summary

 Functions

 update(igniter, function_name, path, update_fun)

 Updates the project configuration AST at the given path.

 Functions

 update(igniter, function_name, path, update_fun)

 @spec update(
 Igniter.t(),
 function_name :: atom(),
 path :: [atom(), ...],
 update_fun :: (Sourceror.Zipper.t() | nil ->
 {:ok,
 Sourceror.Zipper.t() | nil | {:code, quoted :: Macro.t()}}
 | {:error | :warning, term()}
 | :error)
) :: Igniter.t()

Updates the project configuration AST at the given path.
This function accepts a function_name atom corresponding to a function
like project/0, application/0, or cli/0 and navigates to the given
path, jumping to private functions if necessary and creating nested
keyword lists if they don't already exist. It then calls the given
update_fun, using the return value to update the AST.
update_fun must be a function that accepts one argument, a zipper
targeting the current AST at the given configuration path or nil if
there was no value at that path. It then must return one of the
following:
	{:ok, zipper} - the updated zipper
	{:ok, {:code, quoted}} - a quoted expression that should be
inserted as the new value at path
	{:ok, nil} - indicates that the last key in path should be
removed
	{:error, message} or {:warning, message} - an error or warning
that should be added to igniter
	:error - indicates igniter should be returned without change

Examples
Assuming a newly-generated Mix project that looks like:
defmodule Example.MixProject do
 use Mix.Project

 def project do
 [
 app: :example,
 version: "0.1.0",
 elixir: "~> 1.17",
 start_permanent: Mix.env() == :prod,
 deps: deps()
]
 end

 def application do
 [
 extra_applications: [:logger]
]
 end

 defp deps do
 []
 end
end
Increment the project version by one patch level
Igniter.Project.MixProject.update(igniter, :project, [:version], fn zipper ->
 new_version =
 zipper.node
 |> Version.parse!()
 |> Map.update!(:patch, &(&1 + 1))
 |> to_string()

 {:ok, {:code, new_version}}
end)

would result in
def project do
 [
 ...,
 version: "0.1.1",
 ...
]
end
Set the preferred env for a task to :test
Igniter.Project.MixProject.update(
 igniter,
 :cli,
 [:preferred_envs, :"some.task"],
 fn _ -> {:ok, {:code, :test}} end
)

would create `cli/0` and set the env:
def cli do
 [
 preferred_envs: [
 "some.task": :test
]
]
end
Add :some_application to :extra_applications
Igniter.Project.MixProject.update(igniter, :application, [:extra_applications], fn
 nil -> {:ok, {:code, [:some_application]}}
 zipper -> Igniter.Code.List.append_to_list(zipper, :some_application)
end)

would result in
def application do
 [
 extra_applications: [:logger, :some_application]
]
end
Remove :extra_applications altogether
Igniter.Project.MixProject.update(
 igniter,
 :application,
 [:extra_applications],
 fn _ -> {:ok, nil} end
)

would result in
def application do
 []
end

Igniter.Project.Module

Codemods and utilities for interacting with modules

 Summary

 Types

 location_type()

 Placement instruction for a module.

 Functions

 create_module(igniter, module_name, contents, opts \\ [])

 Creates a new file & module in its appropriate location.

 find_all_matching_modules(igniter, predicate)

 find_and_update_module(igniter, module_name, updater)

 Finds a module and updates its contents. Returns {:error, igniter} if the module could not be found. Do not discard this igniter.

 find_and_update_module!(igniter, module_name, updater)

 Finds a module and updates its contents. Raises an error if it doesn't exist

 find_and_update_or_create_module(igniter, module_name, contents, updater, opts \\ [])

 Finds a module and updates its contents wherever it is.

 find_module(igniter, module_name)

 Finds a module, returning a new igniter, and the source and zipper location. This new igniter should not be discarded.

 find_module!(igniter, module_name)

 Finds a module, raising an error if its not found.

 module_exists(igniter, module_name)

 Checks if a module is defined somewhere in the project. The returned igniter should not be discarded.

 module_exists?(igniter, module_name)

 deprecated

 Checks if a module is defined somewhere in the project. The returned igniter should not be discarded.

 module_name(igniter, suffix)

 Given a suffix, returns a module name with the prefix of the current project.

 module_name_prefix(igniter)

 The module name prefix based on the mix project's module name

 parse(module_name)

 Parses a string into a module name

 proper_location(igniter, module_name, type \\ :source_folder)

 Determines where a module should be placed in a project.

 Types

 location_type()

 @type location_type() ::
 :source_folder | {:source_folder, String.t()} | :test | :test_support

Placement instruction for a module.
	:source_folder - The first source folder of the project
	{:source_folder, path} - The selected source folder, i.e "lib"
	:test - Creating a test file
	:test_support - Creating a test support file

 Functions

 create_module(igniter, module_name, contents, opts \\ [])

Creates a new file & module in its appropriate location.
Options
	:location - A location type. See location_type/0 for more.

 find_all_matching_modules(igniter, predicate)

 @spec find_all_matching_modules(igniter :: Igniter.t(), (module(),
 Sourceror.Zipper.t() ->
 boolean())) ::
 {Igniter.t(), [module()]}

 find_and_update_module(igniter, module_name, updater)

 @spec find_and_update_module(Igniter.t(), module(), (Sourceror.Zipper.t() ->
 {:ok, Sourceror.Zipper.t()}
 | :error)) ::
 {:ok, Igniter.t()} | {:error, Igniter.t()}

Finds a module and updates its contents. Returns {:error, igniter} if the module could not be found. Do not discard this igniter.

 find_and_update_module!(igniter, module_name, updater)

 @spec find_and_update_module!(Igniter.t(), module(), (Sourceror.Zipper.t() ->
 {:ok, Sourceror.Zipper.t()}
 | :error)) ::
 Igniter.t()

Finds a module and updates its contents. Raises an error if it doesn't exist

 find_and_update_or_create_module(igniter, module_name, contents, updater, opts \\ [])

Finds a module and updates its contents wherever it is.
If the module does not yet exist, it is created with the provided contents. In that case,
the path is determined with Igniter.Code.Module.proper_location/2, but may optionally be overwritten with options below.
Options
	:path - Path where to create the module, relative to the project root. Default: nil (uses :kind to determine the path).

 find_module(igniter, module_name)

 @spec find_module(Igniter.t(), module()) ::
 {:ok, {Igniter.t(), Rewrite.Source.t(), Sourceror.Zipper.t()}}
 | {:error, Igniter.t()}

Finds a module, returning a new igniter, and the source and zipper location. This new igniter should not be discarded.
In general, you should not use the returned source and zipper to update the module, instead, use this to interrogate
the contents or source in some way, and then call find_and_update_module/3 with a function to perform an update.

 find_module!(igniter, module_name)

 @spec find_module!(Igniter.t(), module()) ::
 {Igniter.t(), Rewrite.Source.t(), Sourceror.Zipper.t()} | no_return()

Finds a module, raising an error if its not found.
See find_module/2 for more information.

 module_exists(igniter, module_name)

 @spec module_exists(Igniter.t(), module()) :: {boolean(), Igniter.t()}

Checks if a module is defined somewhere in the project. The returned igniter should not be discarded.

 module_exists?(igniter, module_name)

 This function is deprecated. Use `module_exists/2` instead..

Checks if a module is defined somewhere in the project. The returned igniter should not be discarded.

 module_name(igniter, suffix)

 @spec module_name(Igniter.t(), String.t()) :: module()

Given a suffix, returns a module name with the prefix of the current project.

 module_name_prefix(igniter)

 @spec module_name_prefix(Igniter.t()) :: module()

The module name prefix based on the mix project's module name

 parse(module_name)

 @spec parse(String.t()) :: module()

Parses a string into a module name

 proper_location(igniter, module_name, type \\ :source_folder)

 @spec proper_location(Igniter.t(), module(), location_type()) :: String.t()

Determines where a module should be placed in a project.

Igniter.Project.TaskAliases

Codemods and utilities for interacting with task aliases in the mix.exs file

 Summary

 Functions

 add_alias(igniter, name, value, opts \\ [])

 Adds an alias to the mix.exs file

 modify_existing_alias(igniter, name, updater)

 Modifies an existing alias, doing nothing if it doesn't exist

 Functions

 add_alias(igniter, name, value, opts \\ [])

 @spec add_alias(
 Igniter.t(),
 atom() | String.t(),
 String.t() | {:code, term()} | [String.t() | {:code, term()}],
 opts :: Keyword.t()
) :: Igniter.t()

Adds an alias to the mix.exs file
Options
	:if_exists - How to alter the alias if it already exists. Options are:
	:ignore - Do nothing if the alias already exists. This is the default.
	:prepend - Add the new alias to the beginning of the list (if it is not already present).
	{:prepend, value} - Add a different value than the originally supplied alias to the beginning of the list (if it is not already present).
	{:replace_or_append, old, new} - If the old value is in the list, it is replaced with the new value. Otherwise the new value is appended (if it is not already present).
	:append - Add the new alias to the end of the list (if it is not already present).
	{:append, value} - Add a different value than the originally supplied alias to the end of the list (if it is not already present).
	:warn - Print a warning if the alias already exists.

 modify_existing_alias(igniter, name, updater)

 @spec modify_existing_alias(
 Igniter.t(),
 atom() | String.t(),
 (Sourceror.Zipper.t() -> {:ok, Sourceror.Zipper.t()} | :error)
) :: Igniter.t()

Modifies an existing alias, doing nothing if it doesn't exist

Igniter.Project.Test

Codemods and utilities for interacting with test and test support files

 Summary

 Functions

 ensure_test_support(igniter)

 Functions

 ensure_test_support(igniter)

Igniter.Refactors.Elixir

Refactors for changes in Elixir

 Summary

 Functions

 unless_to_if_not(igniter)

 Functions

 unless_to_if_not(igniter)

 @spec unless_to_if_not(Igniter.t()) :: Igniter.t()

Igniter.Refactors.Rename

Refactors for renaming things in a project

 Summary

 Functions

 rename_function(igniter, old, new, opts \\ [])

 Renames a function globally across a project.

 subsume_module_attrs(zipper, attrs \\ [], top? \\ true)

 Functions

 rename_function(igniter, old, new, opts \\ [])

 @spec rename_function(
 Igniter.t(),
 old :: {module(), atom()},
 new :: {module(), atom()},
 opts :: Keyword.t()
) :: Igniter.t()

Renames a function globally across a project.
Options
	:arity - :any | integer | [integer]. The arity or arities of the function to rename. Defaults to :any.

	:deprecate - :soft | :hard. Leave the original function in place, but with a deprecation.
Soft deprecations appear in documentation but do not cause warnings. Hard deprecations warn when they are called.

 subsume_module_attrs(zipper, attrs \\ [], top? \\ true)

Igniter.Code.Common

General purpose utilities for working with Sourceror.Zipper.

 Summary

 Functions

 add_code(zipper, new_code, opts \\ [])

 Adds the provided code to the zipper.

 add_comment(zipper, comment, opts \\ [])

 current_env(zipper)

 Expands the environment at the current zipper position and returns the
expanded environment. Currently used for properly working with aliases.

 expand_alias(zipper)

 expand_aliases(zipper)

 expand_literal(zipper)

 Expands a literal value using the env at the cursor, if possible

 extendable_block?(arg1)

 find_all(zipper, predicate)

 Returns a list of zippers to each node that satisfies the predicate function, or
an empty list if none are found.

 maybe_move_to_block(zipper)

 Enters a block, and moves to the first child, or returns the zipper unmodified.

 maybe_move_to_single_child_block(zipper)

 Enters a block with a single child, and moves to that child,
or returns the zipper unmodified

 move_left(zipper, pred_or_n)

 Moves a zipper to the left.

 move_next(zipper, pred)

 Moves nextwards (depth-first), until the provided predicate returns true.

 move_right(zipper, pred_or_n)

 Moves a zipper to the right.

 move_to(zipper, pred)

 Moves to the first node that matches the predicate.

 move_to_cursor(zipper, pattern)

 Matches and moves to the location of a __cursor__ in provided source code.

 move_to_cursor_match_in_scope(zipper, patterns)

 Moves to the cursor that matches the provided pattern or one of the provided patterns, in the current scope.

 move_to_do_block(zipper)

 Moves to a do block for the current call.

 move_to_last(zipper, pred)

 Moves to the last node that matches the predicate.

 move_to_pattern(zipper, pattern)

 Moves to the next node that matches the given pattern.

 move_to_zipper(zipper, pred)

 Moves to the next zipper that matches the predicate.

 move_upwards(zipper, pred_or_n)

 Moves a zipper upwards.

 move_upwards_until(zipper, pred)

 Moves to the last node before the node that matches the predicate, going upwards.

 node_matches_pattern?(zipper, pattern)

 Returns true if the current node matches the given pattern.

 nodes_equal?(left, right)

 nth_right(zipper, n)

 deprecated

 parse_to_zipper!(string)

 remove(zipper, pred)

 Removes any nodes matching the provided pattern, until there are no matches left.

 remove_all_matches(zipper, pred)

 Removes all nodes matching the given predicate with the given function.

 replace_code(zipper, code)

 Replaces code with new code.

 rightmost(zipper)

 Moves the zipper all the way to the right, potentially entering a single value block.

 single_child_block?(zipper)

 update_all_matches(zipper, pred, fun)

 Updates all nodes matching the given predicate with the given function.

 use_aliases(new_code, current_code)

 Replaces full module names in new_code with any aliases for that
module found in the current_code environment.

 variable?(arg1, name)

 Returns true if the node represents a variable with the given name

 variable_assignment?(arg1, name)

 Returns true if the node represents a variable assignment

 within(top_zipper, fun)

 Runs the function fun on the subtree of the currently focused node and
returns the updated zipper.

 Functions

 add_code(zipper, new_code, opts \\ [])

 @spec add_code(Sourceror.Zipper.t(), String.t() | Macro.t(), [opt]) ::
 Sourceror.Zipper.t()
when opt: {:placement, :after | :before} | {:expand_env?, boolean()}

Adds the provided code to the zipper.
Options
	:placement - :after | :before. Determines if the code goes :after or :before the current node. Defaults to :after.

	:expand_env? - boolean. Whether or not to read the current file to use it's aliases for added code. Defaults to true. This option is a no-op on Elixir < 1.17.

Example:
iex> existing_zipper = Igniter.Code.Common.parse_to_zipper!("""
...> IO.puts("abc")
...> """)
...>
...> existing_zipper
...> |> Igniter.Code.Common.add_code("""
...> IO.puts("Goodbye, world!")
...> """, after: true)
...> |> Sourceror.Zipper.root()
...> |> Sourceror.to_string()
"IO.puts(\"abc\")
IO.puts(\"Goodbye, world!\")"

 add_comment(zipper, comment, opts \\ [])

 current_env(zipper)

Expands the environment at the current zipper position and returns the
expanded environment. Currently used for properly working with aliases.

 expand_alias(zipper)

 @spec expand_alias(Sourceror.Zipper.t()) :: Sourceror.Zipper.t()

 expand_aliases(zipper)

 @spec expand_aliases(Sourceror.Zipper.t()) :: Sourceror.Zipper.t()

 expand_literal(zipper)

 @spec expand_literal(Sourceror.Zipper.t()) :: {:ok, any()} | :error

Expands a literal value using the env at the cursor, if possible

 extendable_block?(arg1)

 find_all(zipper, predicate)

 @spec find_all(Sourceror.Zipper.t(), predicate :: (Sourceror.Zipper.t() -> boolean())) ::
 [
 Sourceror.Zipper.t()
]

Returns a list of zippers to each node that satisfies the predicate function, or
an empty list if none are found.
The optional second parameters specifies the direction, defaults to
:next.

 maybe_move_to_block(zipper)

 @spec maybe_move_to_block(Sourceror.Zipper.t()) :: Sourceror.Zipper.t()

Enters a block, and moves to the first child, or returns the zipper unmodified.

 maybe_move_to_single_child_block(zipper)

 @spec maybe_move_to_single_child_block(Sourceror.Zipper.t()) :: Sourceror.Zipper.t()

Enters a block with a single child, and moves to that child,
or returns the zipper unmodified

 move_left(zipper, pred_or_n)

 @spec move_left(
 Sourceror.Zipper.t(),
 non_neg_integer() | (Sourceror.Zipper.t() -> boolean())
) ::
 {:ok, Sourceror.Zipper.t()} | :error

Moves a zipper to the left.
If the second argument is a predicate function, it will be called on the zipper and then
move leftwards until the predicate returns true. This function will automatically enter
and exit blocks.
If the second argument is a non-negative integer, it will move left that many times if
possible, returning :error otherwise.

 move_next(zipper, pred)

 @spec move_next(Sourceror.Zipper.t(), (Sourceror.Zipper.t() -> boolean())) ::
 {:ok, Sourceror.Zipper.t()} | :error

Moves nextwards (depth-first), until the provided predicate returns true.
Returns :error if the end is reached without finding a match.

 move_right(zipper, pred_or_n)

 @spec move_right(
 Sourceror.Zipper.t(),
 non_neg_integer() | (Sourceror.Zipper.t() -> boolean())
) ::
 {:ok, Sourceror.Zipper.t()} | :error

Moves a zipper to the right.
If the second argument is a predicate function, it will be called on the zipper and then
move rightwards until the predicate returns true. This function will automatically enter
and exit blocks.
If the second argument is a non-negative integer, it will move right that many times if
possible, returning :error otherwise.

 move_to(zipper, pred)

 @spec move_to(Sourceror.Zipper.t(), (Sourceror.Zipper.t() -> boolean())) ::
 {:ok, Sourceror.Zipper.t()} | :error

 @spec move_to(Sourceror.Zipper.t(), (Sourceror.Zipper.t() -> boolean())) ::
 {:ok, Sourceror.Zipper.t()} | :error

Moves to the first node that matches the predicate.

 move_to_cursor(zipper, pattern)

 @spec move_to_cursor(Sourceror.Zipper.t(), Sourceror.Zipper.t() | String.t()) ::
 {:ok, Sourceror.Zipper.t()} | :error

Matches and moves to the location of a __cursor__ in provided source code.
Use __cursor__() to match a cursor in the provided source code. Use __ to skip any code at a point.
For example:
zipper =
 """
 if true do
 10
 end
 """
 |> Sourceror.parse_string!()
 |> Sourceror.Zipper.zip()

pattern =
 """
 if __ do
 __cursor__()
 end
 """

{:ok, zipper} = Igniter.Code.Common.move_to_cursor(zipper, pattern)
Sourceror.Zipper.node(zipper)
=> {:__block__,
[
trailing_comments: [],
leading_comments: [],
end_of_expression: [newlines: 1, line: 2, column: 5],
token: "10",
line: 2,
column: 3
], ~c"
"}

 move_to_cursor_match_in_scope(zipper, patterns)

 @spec move_to_cursor_match_in_scope(Sourceror.Zipper.t(), String.t() | [String.t()]) ::
 {:ok, Sourceror.Zipper.t()} | :error

Moves to the cursor that matches the provided pattern or one of the provided patterns, in the current scope.
See move_to_cursor/2 for an example of a pattern

 move_to_do_block(zipper)

 @spec move_to_do_block(Sourceror.Zipper.t()) :: {:ok, Sourceror.Zipper.t()} | :error

Moves to a do block for the current call.
For example, at a node like:
foo do
 10
end
You would get a zipper back at 10.

 move_to_last(zipper, pred)

 @spec move_to_last(Sourceror.Zipper.t(), (Sourceror.Zipper.t() -> boolean())) ::
 {:ok, Sourceror.Zipper.t()} | :error

Moves to the last node that matches the predicate.
Similar to move_to/2 but it doesn't stop at the first match,
for example a zipper for the following code:
port = 4000
port = 4001
With a match for port = _ as {:=, _, [{:port, _, _}, _]},
will return the second port variable.

 move_to_pattern(zipper, pattern)

 (macro)

Moves to the next node that matches the given pattern.

 move_to_zipper(zipper, pred)

Moves to the next zipper that matches the predicate.

 move_upwards(zipper, pred_or_n)

 @spec move_upwards(
 Sourceror.Zipper.t(),
 non_neg_integer() | (Sourceror.Zipper.t() -> boolean())
) ::
 {:ok, Sourceror.Zipper.t()} | :error

Moves a zipper upwards.
If the second argument is a predicate function, it will be called on the zipper and then
move upwards until the predicate returns true.
If the second argument is a non-negative integer, it will move upwards that many times if
possible, returning :error otherwise.

 move_upwards_until(zipper, pred)

 @spec move_upwards_until(Sourceror.Zipper.t(), (Sourceror.Zipper.t() -> boolean())) ::
 {:ok, Sourceror.Zipper.t()} | :error

Moves to the last node before the node that matches the predicate, going upwards.

 node_matches_pattern?(zipper, pattern)

 (macro)

Returns true if the current node matches the given pattern.
Examples:
list_zipper =
 "[1, 2, 3]"
 |> Sourceror.parse_string!()
 |> Sourceror.Zipper.zip()

Common.node_matches_pattern?(list_zipper, value when is_list(value)) # true

 nodes_equal?(left, right)

 @spec nodes_equal?(Sourceror.Zipper.t() | Macro.t(), Macro.t()) :: boolean()

 nth_right(zipper, n)

 This function is deprecated. Use `move_right/2` instead, passing an integer as the second argument..

 @spec nth_right(Sourceror.Zipper.t(), non_neg_integer()) ::
 {:ok, Sourceror.Zipper.t()} | :error

 parse_to_zipper!(string)

 remove(zipper, pred)

 @spec remove(Sourceror.Zipper.t(), (Sourceror.Zipper.t() -> boolean())) ::
 Sourceror.Zipper.t()

Removes any nodes matching the provided pattern, until there are no matches left.

 remove_all_matches(zipper, pred)

 @spec remove_all_matches(
 Sourceror.Zipper.t(),
 (Sourceror.Zipper.t() -> boolean())
) :: Sourceror.Zipper.t()

Removes all nodes matching the given predicate with the given function.
Recurses until the predicate no longer returns false

 replace_code(zipper, code)

Replaces code with new code.

 rightmost(zipper)

 @spec rightmost(Sourceror.Zipper.t()) :: Sourceror.Zipper.t()

Moves the zipper all the way to the right, potentially entering a single value block.

 single_child_block?(zipper)

 @spec single_child_block?(Sourceror.Zipper.t()) :: boolean()

 update_all_matches(zipper, pred, fun)

 @spec update_all_matches(
 Sourceror.Zipper.t(),
 (Sourceror.Zipper.t() -> boolean()),
 (Sourceror.Zipper.t() ->
 {:ok, Sourceror.Zipper.t() | {:code, term()}} | {:warning | :error, term()})
) :: {:ok, Sourceror.Zipper.t()} | {:warning | :error, term()}

Updates all nodes matching the given predicate with the given function.
Recurses until the predicate no longer returns false

 use_aliases(new_code, current_code)

Replaces full module names in new_code with any aliases for that
module found in the current_code environment.
This function is a no-op on Elixir < 1.17.

 variable?(arg1, name)

 @spec variable?(zipper :: Sourceror.Zipper.t(), name :: atom()) :: boolean()

Returns true if the node represents a variable with the given name

 variable_assignment?(arg1, name)

 @spec variable_assignment?(zipper :: Sourceror.Zipper.t(), name :: atom()) ::
 boolean()

Returns true if the node represents a variable assignment

 within(top_zipper, fun)

Runs the function fun on the subtree of the currently focused node and
returns the updated zipper.
fun must return {:ok, zipper} or :error, {:error, error} or {:warning, warn}, which may be positioned at the top of the subtree.

Igniter.Code.Function

Utilities for working with functions.

 Summary

 Functions

 append_argument(zipper, value)

 Appends an argument to a function call, leaving the zipper at the function call's node.

 argument_equals?(zipper, index, term)

 Checks if the provided function call (in a Zipper) has an argument that equals
term at index.

 argument_matches_pattern?(zipper, index, pattern)

 Returns true if the argument at the provided index exists and matches the provided pattern

 argument_matches_predicate?(zipper, index, func)

 Returns true if the argument at the given index matches the provided predicate

 function?(zipper, name \\ :any, arity \\ :any)

 Returns true if the value is a function literal.

 function_call?(zipper)

 Returns true if the node is a function call

 function_call?(zipper, name, arity \\ :any)

 Returns true if the node is a function call of the given name

 get_local_function_call(zipper)

 Gets the name and arity of a local function call.

 get_local_function_call_name(zipper)

 Gets the name of a local function call.

 move_to_def(zipper, opts \\ [])

 move_to_def(zipper, fun, arity, opts \\ [])

 Moves the zipper to a function definition by the given name and arity. You may
also pass in a :target option to specify where in the function you want to
move to. By default it will move to the inside of the function.
The :target option can be one of the following

 move_to_defp(zipper, fun, arity, opts \\ [])

 move_to_function_call(zipper, name, arity, predicate \\ fn _ -> true end)

 Moves to a function call by the given name and arity, matching the given predicate, in the current or lower scope

 move_to_function_call_in_current_scope(zipper, name, arity, predicate \\ fn _ -> true end)

 Moves to a function call by the given name and arity, matching the given predicate, in the current scope

 move_to_nth_argument(zipper, index)

 Moves to the nth argument of a function call.

 update_nth_argument(zipper, index, func)

 Updates the nth argument of a function call, leaving the zipper at the function call's node.

 Functions

 append_argument(zipper, value)

 @spec append_argument(Sourceror.Zipper.t(), any()) ::
 {:ok, Sourceror.Zipper.t()} | :error

Appends an argument to a function call, leaving the zipper at the function call's node.

 argument_equals?(zipper, index, term)

 @spec argument_equals?(Sourceror.Zipper.t(), integer(), any()) :: boolean()

Checks if the provided function call (in a Zipper) has an argument that equals
term at index.

 argument_matches_pattern?(zipper, index, pattern)

 (macro)

Returns true if the argument at the provided index exists and matches the provided pattern
Note: to check for argument equality, use argument_equals?/3 instead.

 argument_matches_predicate?(zipper, index, func)

 @spec argument_matches_predicate?(
 Sourceror.Zipper.t(),
 non_neg_integer(),
 (Sourceror.Zipper.t() ->
 boolean())
) :: boolean()

Returns true if the argument at the given index matches the provided predicate

 function?(zipper, name \\ :any, arity \\ :any)

 @spec function?(
 Sourceror.Zipper.t(),
 name :: :any | :any_named | {module(), atom()} | :anonymous,
 arity :: :any | non_neg_integer() | [non_neg_integer()]
) :: boolean()

Returns true if the value is a function literal.
Examples:
	fn x -> x end
	&(&1 + &2)
	&SomeMod.fun/2

To refine the check, you can use name and arity.
Names
	:any - matches any function literal, named or not
	:any_named - matches any named function literal
	:anonymous - matches any anonymous function literal
	{module, name} - matches a function literal with the given module and name

 function_call?(zipper)

 @spec function_call?(Sourceror.Zipper.t()) :: boolean()

Returns true if the node is a function call

 function_call?(zipper, name, arity \\ :any)

 @spec function_call?(
 Sourceror.Zipper.t(),
 atom() | {module(), atom()},
 arity :: integer() | :any | [integer()]
) :: boolean()

Returns true if the node is a function call of the given name
If an atom is provided, it only matches functions in the form of function(name).
If an {module, atom} is provided, it matches functions called on the given module,
taking into account any imports or aliases.

 get_local_function_call(zipper)

 @spec get_local_function_call(Sourceror.Zipper.t()) ::
 {:ok, {atom(), non_neg_integer()}} | :error

Gets the name and arity of a local function call.
Returns :error if the node is not a function call or cannot be determined.

 get_local_function_call_name(zipper)

 @spec get_local_function_call_name(Sourceror.Zipper.t()) :: {:ok, atom()} | :error

Gets the name of a local function call.
Returns :error if the node is not a function call or cannot be determined.

 move_to_def(zipper, opts \\ [])

 @spec move_to_def(Sourceror.Zipper.t(), Keyword.t()) ::
 {:ok, Sourceror.Zipper.t()} | :error

 move_to_def(zipper, fun, arity, opts \\ [])

 @spec move_to_def(
 Sourceror.Zipper.t(),
 fun :: atom(),
 arity :: integer() | [integer()] | :any,
 Keyword.t()
) :: {:ok, Sourceror.Zipper.t()} | :error

Moves the zipper to a function definition by the given name and arity. You may
also pass in a :target option to specify where in the function you want to
move to. By default it will move to the inside of the function.
The :target option can be one of the following:
	:inside - moves to the inside of the function
	:before - moves to before the function and takes into consideration the
attributes @doc, @spec, and @impl if they exist
	:at - moves to the function definition itself. Use this if you want to add
code directly before or directly after the function.

Example - Moves before the function.
zipper =
 """
 defmodule Test do
 @doc "hello"
 @spec hello() :: :world
 def hello() do
 :world
 end
 end
 """
 |> Sourceror.parse_string!()
 |> Zipper.zip()

{:ok, zipper} = Igniter.Code.Function.move_to_function_and_attrs(zipper, :hello, 0)

zipper =
 Igniter.Code.Common.add_code(
 zipper,
 """
 def world() do
 :hello
 end
 """,
 placement: :before
)

Igniter.Util.Debug.code_at_node(Zipper.topmost(zipper))
defmodule Test do
def world() do
:hello
end
#
@doc "hello"
@spec hello() :: :world
def hello() do
:world
end
end

 move_to_defp(zipper, fun, arity, opts \\ [])

 @spec move_to_defp(
 Sourceror.Zipper.t(),
 fun :: atom(),
 arity :: integer() | [integer()],
 Keyword.t()
) ::
 {:ok, Sourceror.Zipper.t()} | :error

 move_to_function_call(zipper, name, arity, predicate \\ fn _ -> true end)

Moves to a function call by the given name and arity, matching the given predicate, in the current or lower scope

 move_to_function_call_in_current_scope(zipper, name, arity, predicate \\ fn _ -> true end)

Moves to a function call by the given name and arity, matching the given predicate, in the current scope

 move_to_nth_argument(zipper, index)

 @spec move_to_nth_argument(
 Sourceror.Zipper.t(),
 non_neg_integer()
) :: {:ok, Sourceror.Zipper.t()} | :error

Moves to the nth argument of a function call.

 update_nth_argument(zipper, index, func)

 @spec update_nth_argument(
 Sourceror.Zipper.t(),
 non_neg_integer(),
 (Sourceror.Zipper.t() -> {:ok, Sourceror.Zipper.t()} | :error | term())
) :: {:ok, Sourceror.Zipper.t()} | :error | term()

Updates the nth argument of a function call, leaving the zipper at the function call's node.

Igniter.Code.Keyword

Utilities for working with keyword.

 Summary

 Functions

 get_key(zipper, key)

 Moves the zipper to the value of key in a keyword list.

 keyword_has_path?(zipper, list)

 Returns true if the node is a nested keyword list containing a value at the given path.

 keywordify(list, value)

 Puts into nested keyword lists represented by path

 put_in_keyword(zipper, path, value, updater \\ nil)

 Puts a value at a path into a keyword list, calling updater on the zipper at the value if the key is already present.

 remove_keyword_key(zipper, key)

 Removes a key from a keyword list if present. Returns :error only if the node is not a list

 set_keyword_key(zipper, key, value, updater \\ nil)

 Sets a key in a keyword list to a value.

 Functions

 get_key(zipper, key)

 @spec get_key(Sourceror.Zipper.t(), atom()) :: {:ok, Sourceror.Zipper.t()} | :error

Moves the zipper to the value of key in a keyword list.

 keyword_has_path?(zipper, list)

 @spec keyword_has_path?(Sourceror.Zipper.t(), [atom()]) :: boolean()

Returns true if the node is a nested keyword list containing a value at the given path.

 keywordify(list, value)

 @spec keywordify(path :: [atom()], value :: any()) :: any()

Puts into nested keyword lists represented by path

 put_in_keyword(zipper, path, value, updater \\ nil)

 @spec put_in_keyword(
 Sourceror.Zipper.t(),
 [atom()],
 term(),
 (Sourceror.Zipper.t() ->
 {:ok, Sourceror.Zipper.t()}
 | :error
 | {:error, String.t()}
 | {:warning, String.t()})
 | nil
) ::
 {:ok, Sourceror.Zipper.t()}
 | :error
 | {:error, String.t()}
 | {:warning, String.t()}

Puts a value at a path into a keyword list, calling updater on the zipper at the value if the key is already present.
Navigates through nested keyword lists following the given path (list of atoms).
If the full path doesn't exist, it creates the necessary nested structure.
If the path exists, it calls the updater function with the zipper at the existing value.
The updater function can return:
	{:ok, zipper} - Replace the existing value with the updated zipper
	anything else, which is returned untouched

This function preserves any errors or warnings returned by the updater function,
passing them through unchanged.

 remove_keyword_key(zipper, key)

 @spec remove_keyword_key(Sourceror.Zipper.t(), atom()) ::
 {:ok, Sourceror.Zipper.t()} | :error

Removes a key from a keyword list if present. Returns :error only if the node is not a list

 set_keyword_key(zipper, key, value, updater \\ nil)

 @spec set_keyword_key(
 Sourceror.Zipper.t(),
 atom(),
 term(),
 (Sourceror.Zipper.t() -> {:ok, Sourceror.Zipper.t()} | term()) | nil
) :: {:ok, Sourceror.Zipper.t()} | term()

Sets a key in a keyword list to a value.
If the key already exists, calls the updater function with the zipper at the existing value.
If the key doesn't exist, sets it to the given value.
The updater function can return:
	{:ok, zipper} - Replace the existing value with the updated zipper
	anything else - which is returned untouched

This function preserves any errors or warnings returned by the updater function,
passing them through unchanged.

Igniter.Code.List

Utilities for working with lists.

 Summary

 Types

 equality_pred()

 Functions

 append_new_to_list(zipper, quoted, equality_pred \\ &Common.nodes_equal?/2)

 Appends quoted to the list unless it is already present, determined by equality_pred.

 append_to_list(zipper, quoted)

 Appends quoted to the list

 do_move_to_list_item(zipper, pred)

 Moves to the list item matching the given predicate, assuming you are currently inside the list

 find_list_item_index(zipper, pred)

 Finds the index of the first list item that satisfies pred

 list?(zipper)

 Returns true if the zipper is at a list literal

 map(zipper, fun)

 Applies the given function to every element of the list. The passed function must return {:ok, zipper} or :error When map returns, the Zipper will point to the final element of the list.

 move_to_list_item(zipper, pred)

 Moves to the list item matching the given predicate

 prepend_new_to_list(zipper, quoted, equality_pred \\ &Common.nodes_equal?/2)

 Prepends quoted to the list unless it is already present, determined by equality_pred.

 prepend_to_list(zipper, quoted)

 Prepends quoted to the list

 remove_from_list(zipper, predicate)

 remove_index(zipper, index)

 Removes the item at the given index, returning :error if nothing is at that index

 replace_in_list(zipper, predicate, value)

 Types

 equality_pred()

 @type equality_pred() :: (Sourceror.Zipper.t(), Macro.t() -> boolean())

 Functions

 append_new_to_list(zipper, quoted, equality_pred \\ &Common.nodes_equal?/2)

 @spec append_new_to_list(Sourceror.Zipper.t(), quoted :: Macro.t(), equality_pred()) ::
 {:ok, Sourceror.Zipper.t()} | :error

Appends quoted to the list unless it is already present, determined by equality_pred.

 append_to_list(zipper, quoted)

 @spec append_to_list(Sourceror.Zipper.t(), quoted :: Macro.t()) ::
 {:ok, Sourceror.Zipper.t()} | :error

Appends quoted to the list

 do_move_to_list_item(zipper, pred)

Moves to the list item matching the given predicate, assuming you are currently inside the list

 find_list_item_index(zipper, pred)

 @spec find_list_item_index(Sourceror.Zipper.t(), (Sourceror.Zipper.t() -> boolean())) ::
 integer() | nil

Finds the index of the first list item that satisfies pred

 list?(zipper)

 @spec list?(Sourceror.Zipper.t()) :: boolean()

Returns true if the zipper is at a list literal

 map(zipper, fun)

 @spec map(Sourceror.Zipper.t(), (Sourceror.Zipper.t() -> {:ok, Sourceror.Zipper.t()})) ::
 {:ok, Sourceror.Zipper.t()} | :error

Applies the given function to every element of the list. The passed function must return {:ok, zipper} or :error When map returns, the Zipper will point to the final element of the list.

 move_to_list_item(zipper, pred)

 @spec move_to_list_item(Sourceror.Zipper.t(), (Sourceror.Zipper.t() -> boolean())) ::
 {:ok, Sourceror.Zipper.t()} | :error

Moves to the list item matching the given predicate

 prepend_new_to_list(zipper, quoted, equality_pred \\ &Common.nodes_equal?/2)

 @spec prepend_new_to_list(Sourceror.Zipper.t(), quoted :: Macro.t(), equality_pred()) ::
 {:ok, Sourceror.Zipper.t()} | :error

Prepends quoted to the list unless it is already present, determined by equality_pred.

 prepend_to_list(zipper, quoted)

 @spec prepend_to_list(Sourceror.Zipper.t(), quoted :: Macro.t()) ::
 {:ok, Sourceror.Zipper.t()} | :error

Prepends quoted to the list

 remove_from_list(zipper, predicate)

 @spec remove_from_list(
 Sourceror.Zipper.t(),
 predicate :: (Sourceror.Zipper.t() -> boolean())
) ::
 {:ok, Sourceror.Zipper.t()} | :error

 remove_index(zipper, index)

 @spec remove_index(Sourceror.Zipper.t(), index :: non_neg_integer()) ::
 {:ok, Sourceror.Zipper.t()} | :error

Removes the item at the given index, returning :error if nothing is at that index

 replace_in_list(zipper, predicate, value)

 @spec replace_in_list(
 Sourceror.Zipper.t(),
 predicate :: (Sourceror.Zipper.t() -> boolean()),
 term :: any()
) :: {:ok, Sourceror.Zipper.t()} | :error

Igniter.Code.Map

Utilities for working with maps.

 Summary

 Functions

 mappify(list, value)

 Puts a value into nested maps at the given path

 put_in_map(zipper, path, value, updater \\ nil)

 Puts a value at a path into a map, calling updater on the zipper at the value if the key is already present

 set_map_key(zipper, key, value, updater)

 Puts a key into a map, calling updater on the zipper at the value if the key is already present

 Functions

 mappify(list, value)

Puts a value into nested maps at the given path

 put_in_map(zipper, path, value, updater \\ nil)

 @spec put_in_map(
 Sourceror.Zipper.t(),
 [term()],
 term(),
 (Sourceror.Zipper.t() -> {:ok, Sourceror.Zipper.t()} | :error) | nil
) :: {:ok, Sourceror.Zipper.t()} | :error

Puts a value at a path into a map, calling updater on the zipper at the value if the key is already present

 set_map_key(zipper, key, value, updater)

 @spec set_map_key(Sourceror.Zipper.t(), term(), term(), (Sourceror.Zipper.t() ->
 {:ok, Sourceror.Zipper.t()}
 | :error)) ::
 {:ok, Sourceror.Zipper.t()} | :error

Puts a key into a map, calling updater on the zipper at the value if the key is already present

Igniter.Code.Module

Utilities for working with Elixir modules

 Summary

 Functions

 create_module(igniter, module_name, contents, opts \\ [])

 deprecated

 Creates a new file & module in its appropriate location.

 find_all_matching_modules(igniter, predicate)

 deprecated

 find_and_update_module(igniter, module_name, updater)

 deprecated

 Finds a module and updates its contents. Returns {:error, igniter} if the module could not be found. Do not discard this igniter.

 find_and_update_module!(igniter, module_name, updater)

 deprecated

 find_and_update_or_create_module(igniter, module_name, contents, updater, opts \\ [])

 deprecated

 Finds a module and updates its contents wherever it is.

 find_module(igniter, module_name)

 deprecated

 Finds a module, returning a new igniter, and the source and zipper location. This new igniter should not be discarded.

 find_module!(igniter, module_name)

 deprecated

 Finds a module, raising an error if its not found.

 module?(zipper)

 module_exists?(igniter, module_name)

 deprecated

 Checks if a module is defined somewhere in the project. The returned igniter should not be discarded.

 module_matching?(zipper, pred)

 Checks if the value is a module that matches a given predicate

 module_name(suffix)

 deprecated

 Given a suffix, returns a module name with the prefix of the current project.

 module_name(igniter, suffix)

 deprecated

 Given a suffix, returns a module name with the prefix of the current project.

 module_name_prefix()

 deprecated

 The module name prefix based on the mix project's module name

 module_name_prefix(igniter)

 deprecated

 The module name prefix based on the mix project's module name

 move_to_attribute_definition(zipper, name)

 Move to an attribute definition inside a module.

 move_to_def(zipper, fun, arity)

 deprecated

 move_to_defmodule(zipper)

 Moves the zipper to a defmodule call

 move_to_defmodule(zipper, module)

 Moves the zipper to a specific defmodule call

 move_to_defp(zipper, fun, arity)

 deprecated

 move_to_module_using(zipper, one_of_modules)

 Moves the zipper to the body of a module that uses the provided module (or one of the provided modules).

 move_to_use(zipper, module)

 Moves the zipper to the use statement for a provided module.

 move_to_using(zipper, module)

 deprecated

 parse(module_name)

 deprecated

 Parses a string into a module name

 proper_location(module_name, source_folder \\ "lib")

 deprecated

 Returns the idiomatic file location for a given module, starting with "lib/".

 proper_test_location(module_name)

 deprecated

 Returns the test file location for a given module, according to
mix test expectations, starting with "test/" and ending with "_test.exs".

 proper_test_support_location(module_name)

 deprecated

 Returns the test support location for a given module, starting with
"test/support/" and dropping the module name prefix in the path.

 Functions

 create_module(igniter, module_name, contents, opts \\ [])

 This function is deprecated. Use `Igniter.Project.Module.create_module/4` instead.

Creates a new file & module in its appropriate location.

 find_all_matching_modules(igniter, predicate)

 This function is deprecated. Use `Igniter.Project.Module.find_all_matching_modules/2` instead.

 @spec find_all_matching_modules(igniter :: Igniter.t(), (module(),
 Sourceror.Zipper.t() ->
 boolean())) ::
 {Igniter.t(), [module()]}

 find_and_update_module(igniter, module_name, updater)

 This function is deprecated. Use `Igniter.Project.Module.find_and_update_module/3` instead.

 @spec find_and_update_module(Igniter.t(), module(), (Sourceror.Zipper.t() ->
 {:ok, Sourceror.Zipper.t()}
 | :error)) ::
 {:ok, Igniter.t()} | {:error, Igniter.t()}

Finds a module and updates its contents. Returns {:error, igniter} if the module could not be found. Do not discard this igniter.

 find_and_update_module!(igniter, module_name, updater)

 This function is deprecated. Use `Igniter.Project.Module.find_and_update_module!/3` instead.

 find_and_update_or_create_module(igniter, module_name, contents, updater, opts \\ [])

 This function is deprecated. Use `Igniter.Project.Module.find_and_update_or_create_module/5` instead.

Finds a module and updates its contents wherever it is.
If the module does not yet exist, it is created with the provided contents. In that case,
the path is determined with Igniter.Code.Module.proper_location/2, but may optionally be overwritten with options below.
Options
	:path - Path where to create the module, relative to the project root. Default: nil (uses :kind to determine the path).

 find_module(igniter, module_name)

 This function is deprecated. Use `Igniter.Project.Module.find_module/2` instead.

 @spec find_module(Igniter.t(), module()) ::
 {:ok, {Igniter.t(), Rewrite.Source.t(), Sourceror.Zipper.t()}}
 | {:error, Igniter.t()}

Finds a module, returning a new igniter, and the source and zipper location. This new igniter should not be discarded.
In general, you should not use the returned source and zipper to update the module, instead, use this to interrogate
the contents or source in some way, and then call find_and_update_module/3 with a function to perform an update.

 find_module!(igniter, module_name)

 This function is deprecated. Use `Igniter.Project.Module.find_module!/2` instead.

 @spec find_module!(Igniter.t(), module()) ::
 {Igniter.t(), Rewrite.Source.t(), Sourceror.Zipper.t()} | no_return()

Finds a module, raising an error if its not found.
See find_module/2 for more information.

 module?(zipper)

 module_exists?(igniter, module_name)

 This function is deprecated. Use `Igniter.Project.Module.module_exists/2` instead.

Checks if a module is defined somewhere in the project. The returned igniter should not be discarded.

 module_matching?(zipper, pred)

Checks if the value is a module that matches a given predicate

 module_name(suffix)

 This function is deprecated. Use `module_name/2` instead..

 @spec module_name(String.t()) :: module()

Given a suffix, returns a module name with the prefix of the current project.

 module_name(igniter, suffix)

 This function is deprecated. Use `Igniter.Project.Module.module_name/2` instead..

 @spec module_name(Igniter.t(), String.t()) :: module()

Given a suffix, returns a module name with the prefix of the current project.

 module_name_prefix()

 This function is deprecated. Use `Igniter.Project.Module.module_name_prefix/1` instead.

 @spec module_name_prefix() :: module()

The module name prefix based on the mix project's module name

 module_name_prefix(igniter)

 This function is deprecated. Use `Igniter.Project.Module.module_name_prefix/1` instead.

 @spec module_name_prefix(Igniter.t()) :: module()

The module name prefix based on the mix project's module name

 move_to_attribute_definition(zipper, name)

 @spec move_to_attribute_definition(Sourceror.Zipper.t(), atom()) ::
 {:ok, Sourceror.Zipper.t()} | :error

Move to an attribute definition inside a module.
Example
Given this module:
defmodule MyAppWeb.Endpoint do
 @doc "My App Endpoint"

 @session_options [
 store: :cookie,
 ...
]
end
You can move into @doc attribute with:
Igniter.Code.Module.move_to_attribute_definition(zipper, :doc)
Or you can move into @session_options constant with:
Igniter.Code.Module.move_to_attribute_definition(zipper, :session_options)

 move_to_def(zipper, fun, arity)

 This function is deprecated. Use `Igniter.Code.Function.move_to_def/3` instead.

 move_to_defmodule(zipper)

 @spec move_to_defmodule(Sourceror.Zipper.t()) :: {:ok, Sourceror.Zipper.t()} | :error

Moves the zipper to a defmodule call

 move_to_defmodule(zipper, module)

 @spec move_to_defmodule(Sourceror.Zipper.t(), module()) ::
 {:ok, Sourceror.Zipper.t()} | :error

Moves the zipper to a specific defmodule call

 move_to_defp(zipper, fun, arity)

 This function is deprecated. Use `Igniter.Code.Function.move_to_defp/3` instead.

 move_to_module_using(zipper, one_of_modules)

 @spec move_to_module_using(Sourceror.Zipper.t(), module() | [module()]) ::
 {:ok, Sourceror.Zipper.t()} | :error

Moves the zipper to the body of a module that uses the provided module (or one of the provided modules).

 move_to_use(zipper, module)

Moves the zipper to the use statement for a provided module.

 move_to_using(zipper, module)

 This function is deprecated. Use `move_to_use/2` instead..

 parse(module_name)

 This function is deprecated. Use `Igniter.Project.Module.parse/1` instead..

 @spec parse(String.t()) :: module()

Parses a string into a module name

 proper_location(module_name, source_folder \\ "lib")

 This function is deprecated. Use `Igniter.Project.Module.proper_location/3`.

 @spec proper_location(module(), source_folder :: String.t()) :: Path.t()

Returns the idiomatic file location for a given module, starting with "lib/".

 proper_test_location(module_name)

 This function is deprecated. Use `Igniter.Project.Module.proper_location/3`.

 @spec proper_test_location(module()) :: Path.t()

Returns the test file location for a given module, according to
mix test expectations, starting with "test/" and ending with "_test.exs".

 proper_test_support_location(module_name)

 This function is deprecated. Use `Igniter.Project.Module.proper_location/3`.

 @spec proper_test_support_location(module()) :: Path.t()

Returns the test support location for a given module, starting with
"test/support/" and dropping the module name prefix in the path.

Igniter.Code.String

Utilities for working with strings.

 Summary

 Functions

 string?(zipper)

 Returns true if the node represents a literal string, false otherwise.

 update_string(zipper, func)

 Updates a node representing a string with the result of the given function

 Functions

 string?(zipper)

 @spec string?(Sourceror.Zipper.t()) :: boolean()

Returns true if the node represents a literal string, false otherwise.

 update_string(zipper, func)

 @spec update_string(Sourceror.Zipper.t(), (String.t() -> {:ok, String.t()} | :error)) ::
 {:ok, Sourceror.Zipper.t()} | :error

Updates a node representing a string with the result of the given function

Igniter.Code.Tuple

Utilities for working with tuples.

 Summary

 Functions

 append_elem(zipper, quoted)

 Appends quoted to the elem

 elem_equals?(zipper, elem, value)

 tuple?(item)

 Returns true if the zipper is at a literal tuple, false if not.

 tuple_elem(item, elem)

 Returns a zipper at the tuple element at the given index, or :error if the index is out of bounds.

 Functions

 append_elem(zipper, quoted)

 @spec append_elem(Sourceror.Zipper.t(), quoted :: Macro.t()) ::
 {:ok, Sourceror.Zipper.t()} | :error

Appends quoted to the elem

 elem_equals?(zipper, elem, value)

 @spec elem_equals?(Sourceror.Zipper.t(), elem :: non_neg_integer(), value :: term()) ::
 boolean()

 tuple?(item)

 @spec tuple?(Sourceror.Zipper.t()) :: boolean()

Returns true if the zipper is at a literal tuple, false if not.

 tuple_elem(item, elem)

 @spec tuple_elem(Sourceror.Zipper.t(), elem :: non_neg_integer()) ::
 {:ok, Sourceror.Zipper.t()} | :error

Returns a zipper at the tuple element at the given index, or :error if the index is out of bounds.

Igniter.Extension behaviour

Alter igniter's behavior by adding new functionality.
This is used to allow frameworks to modify things like
the conventional location of files.

 Summary

 Callbacks

 proper_location(t, module, t)

 Choose a proper location for any given module.

 Callbacks

 proper_location(t, module, t)

 @callback proper_location(
 Igniter.t(),
 module(),
 Keyword.t()
) :: {:ok, Path.t()} | :error

Choose a proper location for any given module.
Possible return values:
	{:ok, path}: The path where the module should be located.
	:error: It should go in the default place, or according to other extensions.
	:keep: Keep the module in the same location, unless another extension has a place for it, or its just been created.

Igniter.Extensions.Phoenix

A phoenix extension for Igniter.
Install with mix igniter.add_extension phoenix

 Summary

 Functions

 proper_location(igniter, module, opts)

 Callback implementation for Igniter.Extension.proper_location/3.

 Functions

 proper_location(igniter, module, opts)

Callback implementation for Igniter.Extension.proper_location/3.

Igniter.Libs.Ecto

Codemods & utilities for working with Ecto

 Summary

 Functions

 gen_migration(igniter, repo, name, opts \\ [])

 Generates a new migration file for the given repo.

 list_repos(igniter)

 Lists all the ecto repos in the project

 select_repo(igniter, opts \\ [])

 Selects a repo module from the list of available repos.

 Functions

 gen_migration(igniter, repo, name, opts \\ [])

 @spec gen_migration(
 Igniter.t(),
 repo :: module(),
 name :: String.t(),
 opts :: Keyword.t()
) ::
 Igniter.t()

Generates a new migration file for the given repo.
Options
	:body - the body of the migration
	:timestamp - the timestamp to use for the migration.
 Primarily useful for testing so you know what the filename will be.
	:on_exists - what to do if the migration module already exists. Options are:	:increment - Calls this function again, but with an increasing number at the end, until it finds a free name. (default)
	:skip - do nothing
	:overwrite - overwrites the file
	{:error, error} - adds an issue to the igniter that prevents writing and displays to the user
	{:warning, warning} - adds a warning to the igniter that allows writing but displays to the user

 list_repos(igniter)

 @spec list_repos(Igniter.t()) :: {Igniter.t(), [module()]}

Lists all the ecto repos in the project

 select_repo(igniter, opts \\ [])

 @spec select_repo(Igniter.t(), Keyword.t()) :: {Igniter.t(), nil | module()}

Selects a repo module from the list of available repos.
Options
	:label - The label to display to the user when selecting the repo

Igniter.Libs.Phoenix

Codemods & utilities for working with Phoenix

 Summary

 Functions

 add_pipeline(igniter, name, contents, opts \\ [])

 Adds a pipeline to a Phoenix router.

 add_scope(igniter, route, contents, opts \\ [])

 Adds a scope to a Phoenix router.

 append_to_pipeline(igniter, name, contents, opts \\ [])

 Appends code to a Phoenix router pipeline.

 append_to_scope(igniter, route, contents, opts \\ [])

 Appends to a phoenix router scope.

 controller?(igniter, module)

 Returns true if the module is a Phoenix controller

 endpoints_for_router(igniter, router)

 Gets the list of endpoints that use a given router

 has_pipeline(igniter, router, name)

 Returns {igniter, true} if a pipeline exists in a Phoenix router, and {igniter, false} otherwise.

 html?(igniter, module)

 Returns true if the module is a Phoenix HTML module

 list_routers(igniter)

 Lists all routers found in the project.

 list_web_modules(igniter)

 Lists all web modules found in the project.

 move_to_router_use(igniter, zipper)

 Moves to the use statement in a module that matches use <WebModule>, :router

 prepend_to_pipeline(igniter, name, contents, opts \\ [])

 Prepends code to a Phoenix router pipeline.

 select_endpoint(igniter, router \\ nil, label \\ "Which endpoint should be used")

 Selects an endpoint to be used in a later step. If only one endpoint is found, it will be selected automatically.

 select_router(igniter, label \\ "Which router should be modified?")

 Selects a router to be used in a later step. If only one router is found, it will be selected automatically.

 web_module(igniter)

 Returns the web module name for the current app

 web_module?(module)

 Checks if a module is a valid web module.

 web_module_name()

 deprecated

 Returns the web module name for the current app

 web_module_name(suffix)

 deprecated

 Generates a module name that lives in the Web directory of the current app.

 web_module_name(igniter, suffix)

 Generates a module name that lives in the Web directory of the current app.

 Functions

 add_pipeline(igniter, name, contents, opts \\ [])

 @spec add_pipeline(Igniter.t(), atom(), String.t(), Keyword.t()) :: Igniter.t()

Adds a pipeline to a Phoenix router.
Options
	:router - The router module to append to. Will be looked up if not provided.
	:arg2 - The second argument to the scope macro. Must be a value (typically a module).

 add_scope(igniter, route, contents, opts \\ [])

 @spec add_scope(Igniter.t(), String.t(), String.t(), Keyword.t()) :: Igniter.t()

Adds a scope to a Phoenix router.
Options
	:router - The router module to append to. Will be looked up if not provided.
	:arg2 - The second argument to the scope macro. Must be a value (typically a module).
	:placement - :before | :after. Determines where the contents will be placed:
	:before - place before the first scope in the module if one is found, otherwise tries to place
 after the last pipeline or after the use MyAppWeb, :router call.
	:after - place at the end (bottom) of the module, after all scopes and pipelines.

 append_to_pipeline(igniter, name, contents, opts \\ [])

 @spec append_to_pipeline(Igniter.t(), atom(), String.t(), Keyword.t()) :: Igniter.t()

Appends code to a Phoenix router pipeline.
Options
	:router - The router module to append to. Will be looked up if not provided.

 append_to_scope(igniter, route, contents, opts \\ [])

 @spec append_to_scope(Igniter.t(), String.t(), String.t(), Keyword.t()) :: Igniter.t()

Appends to a phoenix router scope.
Relatively limited currently only exact matches of a top level route, second argument, and pipelines.
Options
	:router - The router module to append to. Will be looked up if not provided.
	:arg2 - The second argument to the scope macro. Must be a value (typically a module).
	:with_pipelines - A list of pipelines that the pipeline must be using to be considered a match.

	:placement - :before | :after. Determines where the contents will be placed. Note that it first tries
to find a matching scope and place the contents into that scope, otherwise :placement is used to determine
where to place the contents:
	:before - place before the first scope in the module if one is found, otherwise tries to place
 after the last pipeline or after the use MyAppWeb, :router call.
	:after - place at the end (bottom) of the module, after all scopes and pipelines.

 controller?(igniter, module)

 @spec controller?(Igniter.t(), module()) :: boolean()

Returns true if the module is a Phoenix controller

 endpoints_for_router(igniter, router)

 @spec endpoints_for_router(igniter :: Igniter.t(), router :: module()) ::
 {Igniter.t(), [module()]}

Gets the list of endpoints that use a given router

 has_pipeline(igniter, router, name)

 @spec has_pipeline(Igniter.t(), router :: module(), name :: atom()) ::
 {Igniter.t(), boolean()}

Returns {igniter, true} if a pipeline exists in a Phoenix router, and {igniter, false} otherwise.
Options
	:router - The router module to append to. Will be looked up if not provided.
	:arg2 - The second argument to the scope macro. Must be a value (typically a module).

 html?(igniter, module)

 @spec html?(Igniter.t(), module()) :: boolean()

Returns true if the module is a Phoenix HTML module

 list_routers(igniter)

 @spec list_routers(Igniter.t()) :: {Igniter.t(), [module()]}

Lists all routers found in the project.

 list_web_modules(igniter)

 @spec list_web_modules(Igniter.t()) :: {Igniter.t(), [module()]}

Lists all web modules found in the project.
A web module is defined as:
	Only one level of namespace deep (e.g., FooWeb not Foo.BarWeb)
	Ends with Web

 move_to_router_use(igniter, zipper)

 @spec move_to_router_use(Igniter.t(), Sourceror.Zipper.t()) ::
 :error | {:ok, Sourceror.Zipper.t()}

Moves to the use statement in a module that matches use <WebModule>, :router

 prepend_to_pipeline(igniter, name, contents, opts \\ [])

 @spec prepend_to_pipeline(Igniter.t(), atom(), String.t(), Keyword.t()) :: Igniter.t()

Prepends code to a Phoenix router pipeline.
Options
	:router - The router module to append to. Will be looked up if not provided.

 select_endpoint(igniter, router \\ nil, label \\ "Which endpoint should be used")

 @spec select_endpoint(Igniter.t(), module() | nil, String.t()) ::
 {Igniter.t(), module() | nil}

Selects an endpoint to be used in a later step. If only one endpoint is found, it will be selected automatically.
If no endpoints exist, {igniter, nil} is returned.
If multiple endpoints are found, the user is prompted to select one of them.

 select_router(igniter, label \\ "Which router should be modified?")

 @spec select_router(Igniter.t(), String.t()) :: {Igniter.t(), module() | nil}

Selects a router to be used in a later step. If only one router is found, it will be selected automatically.
If no routers exist, {igniter, nil} is returned.
If multiple routes are found, the user is prompted to select one of them.

 web_module(igniter)

 @spec web_module(Igniter.t()) :: module()

Returns the web module name for the current app

 web_module?(module)

 @spec web_module?(module() | String.t()) :: boolean()

Checks if a module is a valid web module.
A web module is defined as:
	Only one level of namespace deep (e.g., FooWeb not Foo.BarWeb)
	Ends with Web

Accepts both atoms and strings.

 web_module_name()

 This function is deprecated. Use `web_module/0` instead..

 @spec web_module_name() :: module()

Returns the web module name for the current app

 web_module_name(suffix)

 This function is deprecated. Use `web_module_name/2` instead..

 @spec web_module_name(String.t()) :: module()

Generates a module name that lives in the Web directory of the current app.

 web_module_name(igniter, suffix)

 @spec web_module_name(Igniter.t(), String.t()) :: module()

Generates a module name that lives in the Web directory of the current app.

Igniter.Libs.Swoosh

Codemods & utilities for working with Swoosh

 Summary

 Functions

 list_mailers(igniter)

 Lists all project modules that call use Swoosh.Mailer.

 move_to_mailer_use(zipper)

 Moves to the use statement in a module that matches use Swoosh.Mailer

 Functions

 list_mailers(igniter)

 @spec list_mailers(Igniter.t()) :: {Igniter.t(), [module()]}

Lists all project modules that call use Swoosh.Mailer.

 move_to_mailer_use(zipper)

 @spec move_to_mailer_use(Sourceror.Zipper.t()) :: :error | {:ok, Sourceror.Zipper.t()}

Moves to the use statement in a module that matches use Swoosh.Mailer

Igniter.Util.BackwardsCompat

Contains functions that we need to use that were introduced in newer Elixir versions.

 Summary

 Functions

 relative_to_cwd(path, opts \\ [])

 See Path.relative_to_cwd/2.

 Functions

 relative_to_cwd(path, opts \\ [])

See Path.relative_to_cwd/2.

Igniter.Util.Debug

Tools for debugging zippers.

 Summary

 Functions

 code_at_node(zipper)

 Returns the formatted code at the node of the zipper to the console

 puts_ast_at_node(zipper)

 Puts the ast at the node of the zipper to the console

 puts_code_at_node(zipper)

 Puts the formatted code at the node of the zipper to the console

 Functions

 code_at_node(zipper)

Returns the formatted code at the node of the zipper to the console

 puts_ast_at_node(zipper)

Puts the ast at the node of the zipper to the console

 puts_code_at_node(zipper)

Puts the formatted code at the node of the zipper to the console

Igniter.Util.IO

Helpers for working with input/output

 Summary

 Functions

 select(prompt, items, opts \\ [])

 Prompts the user to select from a list, repeating until an item is selected

 yes?(prompt)

 Prompts the user for yes or no, repeating the prompt until a satisfactory answer is given

 Functions

 select(prompt, items, opts \\ [])

Prompts the user to select from a list, repeating until an item is selected
Options
	display: A function that takes an item and returns a string to display

 yes?(prompt)

Prompts the user for yes or no, repeating the prompt until a satisfactory answer is given

Igniter.Util.Install

Tools for installing packages and running their associated
installers, if present.
[!NOTE]
The functions in this module are not composable, and are primarily meant to
be used internally and to support building custom tooling on top of Igniter,
such as Fireside.

 Summary

 Functions

 get_deps!(igniter, opts)

 install(deps, argv, igniter \\ Igniter.new(), opts \\ [])

 Installs the provided list of dependencies. deps can be either

 Functions

 get_deps!(igniter, opts)

 install(deps, argv, igniter \\ Igniter.new(), opts \\ [])

Installs the provided list of dependencies. deps can be either:
	a string like "ash,ash_postgres"
	a list of strings like ["ash", "ash_postgres", ...]
	a list of tuples like [{:ash, "~> 3.0"}, {:ash_postgres, "~> 2.0"}]

Igniter.Util.Loading

Utilities for doing operations with loading spinners.

 Summary

 Functions

 spawn_loader(task_name)

 with_log(opts \\ [], fun)

 with_spinner(name, fun, opts \\ [])

 Runs the function with a loading spinner, suppressing all output.

 Functions

 spawn_loader(task_name)

 with_log(opts \\ [], fun)

 with_spinner(name, fun, opts \\ [])

Runs the function with a loading spinner, suppressing all output.

Igniter.Util.Version

Utilities for working versions and version requirements

 Summary

 Functions

 version_string_to_general_requirement(version)

 version_string_to_general_requirement!(version)

 Provides a general requirement for a given version string.

 Functions

 version_string_to_general_requirement(version)

 version_string_to_general_requirement!(version)

 @spec version_string_to_general_requirement!(String.t()) :: String.t() | no_return()

Provides a general requirement for a given version string.
For example
3.1.2 would be ~> 3.0
and
0.2.4 would be ~> 0.2

Igniter.Util.Warning

Utilities for emitting well formatted warnings

 Summary

 Functions

 formatted_warning(message, code)

 warn_with_code_sample(igniter, message, code)

 Functions

 formatted_warning(message, code)

 warn_with_code_sample(igniter, message, code)

mix igniter.add

Adds the provided deps to mix.exs
This is only useful when you want to add a dependency without running its installer, since igniter.install already adds the dependency to mix.exs.
This task also gets the dependencies after completion.
Example
mix igniter.add dep1 dep2

mix igniter.add_extension

Adds an extension to your .igniter.exs configuration file.
The extension can be the module name of an extension,
or the string phoenix, which maps to Igniter.Extensions.Phoenix.
Example
mix igniter.add_extension phoenix

 Summary

 Functions

 igniter(igniter)

 Callback implementation for Igniter.Mix.Task.igniter/1.

 Functions

 igniter(igniter)

Callback implementation for Igniter.Mix.Task.igniter/1.

mix igniter.apply_upgrades

Applies the upgrade scripts for the list of package version changes provided.
This can be used to explicitly run specific upgrade scripts within a given version range for a package.
This is also required if your call to mix igniter.upgrade requires an upgrade of igniter itself.
mix igniter.apply_upgrades package1:0.3.1:0.3.2 package2:1.2.4:1.5.9

Options
	--yes or -y - Accept all changes automatically

 Summary

 Functions

 igniter(igniter)

 Callback implementation for Igniter.Mix.Task.igniter/1.

 Functions

 igniter(igniter)

Callback implementation for Igniter.Mix.Task.igniter/1.

mix igniter.gen.task

Generates a new igniter task
Example
mix igniter.gen.task my_app.install

Options
	--no-optional or -o - Whether or not to define the task to be compatible with igniter as an optional dependency.
	--upgrade or -u - Whether or not the task is an upgrade task. See the upgrades guide for more.
	--private or -p - Whether or not the task is a private task. This means it has no shortdoc or moduledoc.
Upgrade tasks are always private.

 Summary

 Functions

 igniter(igniter)

 Callback implementation for Igniter.Mix.Task.igniter/1.

 Functions

 igniter(igniter)

Callback implementation for Igniter.Mix.Task.igniter/1.

mix igniter.install

Install a package or packages, running any Igniter installers.
Args
mix igniter.install package1 package2 package3
Package formats
	package - The latest version of the package will be installed, pinned at the
 major version, or minor version if there is no major version yet.
	package@version - The package will be installed at the specified version.
 If the version given is generic, like 3.0, it will be pinned as described above.
 if it is specific, like 3.0.1, it will be pinned at that exact version with ==.
	package@git:git_url - The package will be installed from the specified git url.
	package@github:project/repo - The package will be installed from the specified github repo.
	package@github:project/repo@ref - The package will be installed from the specified github repo, at the specified ref (i.e tag, branch, commit).
	package@path:path/to/dep - The package will be installed from the specified path.
	org/package - The package exists in a private Hex organization. This can be used
along with all the options above, e.g. org/package@version.

Additionally, a Git ref can be specified when using git or github:
	package@git:git_url@ref

Options
	--only - Install the requested packages in only a specific environment(s), i.e --only dev, --only dev,test

Switches
	--dry-run - Run the task without making any changes.
	--yes - Automatically answer yes to any prompts.
	--yes-to-deps - Automatically answer yes to any prompts about installing new deps.
	--verbose - Display additional output from various operations.
	--example - Request that installed packages include initial example code.

argv values are also passed to the igniter installer tasks of installed packages.

mix igniter.move_files

Moves any relevant files to their 'correct' location.

 Summary

 Functions

 igniter(igniter)

 Callback implementation for Igniter.Mix.Task.igniter/1.

 Functions

 igniter(igniter)

Callback implementation for Igniter.Mix.Task.igniter/1.

mix igniter.refactor.rename_function

Rename functions across a project with automatic reference updates.
Rename a given function across a whole project.
This will remap definitions in addition to calls and references.
Keep in mind that it cannot detect 100% of cases, and will always
miss usage of apply/3 for dynamic function calling.
If the new module is different than the old module, the function will be moved.
If the new module does not exist, it will be created.
Pass an arity to the first function to only rename a specific arity definition.
Options
	--deprecate - soft | hard The old function will remain in place but deprecated. Soft deprecations,
only affect documentation, while hard deprecations will display a warning when the function is called.

Example
mix igniter.refactor.rename_function Mod.fun NewMod.new_fun

 Summary

 Functions

 igniter(igniter)

 Callback implementation for Igniter.Mix.Task.igniter/1.

 parse_fun(input)

 Functions

 igniter(igniter)

Callback implementation for Igniter.Mix.Task.igniter/1.

 parse_fun(input)

mix igniter.refactor.unless_to_if_not

Rewrites occurrences of unless x to if !x across the project.
Example
mix igniter.refactor.unless_to_if_not

 Summary

 Functions

 igniter(igniter)

 Callback implementation for Igniter.Mix.Task.igniter/1.

 Functions

 igniter(igniter)

Callback implementation for Igniter.Mix.Task.igniter/1.

mix igniter.remove

Removes the provided deps from mix.exs
This task also unlocks and cleans any unused dependencies after completion.
Important Note
Igniter does not have a concept of "uninstallers" right now. All that this task does
is remove dependencies. If you still have usages of a given dependency, then you will
have to clean that up yourself (and likely want to do it before removing
the dependency).
Example
mix igniter.remove dep1 dep2

mix igniter.setup

Creates or updates a .igniter.exs file, used to configure Igniter for end user's preferences.

 Summary

 Functions

 igniter(igniter)

 Callback implementation for Igniter.Mix.Task.igniter/1.

 Functions

 igniter(igniter)

Callback implementation for Igniter.Mix.Task.igniter/1.

mix igniter.update_gettext

Applies changes to resolve a warning introduced in gettext 0.26.0

 Summary

 Functions

 igniter(igniter)

 Callback implementation for Igniter.Mix.Task.igniter/1.

 Functions

 igniter(igniter)

Callback implementation for Igniter.Mix.Task.igniter/1.

mix igniter.upgrade

Fetch and upgrade dependencies. A drop in replacement for mix deps.update that also runs upgrade tasks.
Updates dependencies via mix deps.update and then runs any upgrade tasks for any changed dependencies.
By default, this task updates to the latest versions allowed by the mix.exs file, just like mix deps.update.
To upgrade a package to a specific version, you can specify the version after the package name,
separated by an @ symbol. This allows upgrading beyond what your mix.exs file currently specifies,
i.e if you have ~> 1.0 in your mix.exs file, you can use mix igniter.upgrade package@2.0 to
upgrade to version 2.0, which will update your mix.exs and run any equivalent upgraders.
Limitations
The new version of the package must be "compile compatible" with your existing code. See the upgrades guide for more.
Example
mix igniter.upgrade package1 package2@1.2.1

Options
	--yes - Accept all changes automatically
	--all - Upgrades all dependencies
	--only - only fetches dependencies for given environment
	--verbose - display additional output from various operations
	--target - only fetches dependencies for given target
	--no-archives-check - does not check archives before fetching deps
	--git-ci - Uses git history (HEAD~1) to check the previous versions in the lock file.
See the upgrade guides for more. Sets --yes automatically.

 Summary

 Functions

 igniter(igniter)

 Callback implementation for Igniter.Mix.Task.igniter/1.

 Functions

 igniter(igniter)

Callback implementation for Igniter.Mix.Task.igniter/1.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png

