

 inherit

 v0.4.1

 Table of contents

 	Inherit

 	LICENSE

 	
 Modules

 	Inherit

 Inherit

Inherit provides compile-time pseudo-inheritance in Elixir through sophisticated AST manipulation, enabling modules to inherit struct fields, functions, and behaviors with zero runtime overhead.
Features
	Compile-time AST Processing: All inheritance resolved during compilation with @before_compile timing for optimal AST access
	Smart Function Inheritance: Dual strategy - direct AST copying for simple functions, delegation for functions calling private functions
	Intelligent Import Resolution: Automatically detects imported functions/macros and injects required require statements into child modules
	Advanced Function Overriding: Parent modules control overridability with defoverridable, supporting complex argument patterns and guards
	__PARENT__ Direct Access: Compile-time macro expansion to parent module references with automatic resolution
	super() Implementation Calls: Call parent implementations in overridden functions with compile-time resolution
	Selective Function Inheritance: Use defwithhold to exclude specific functions from inheritance
	Callback System: Support for before and after callbacks during the inheritance process
	Deep Inheritance Chains: Multi-level inheritance with proper AST and import propagation through the chain
	Custom __using__ Inheritance: Parent modules define custom inheritance behavior that cascades to children
	Complex Field Support: Handles sophisticated field types including AST-like structures and nested data

Installation
Add inherit to your list of dependencies in mix.exs:
def deps do
 [
 {:inherit, "~> 0.4.2"}
]
end
Basic Usage
Making a module inheritable
Use Inherit in your module and define struct fields:
defmodule Person do
 use Inherit, [
 name: "",
 age: 0
]

 def greet(person) do
 "Hello, I'm #{person.name} and I'm #{person.age} years old"
 end
 defoverridable greet: 1

 def adult?(person) do
 person.age >= 18
 end
 defoverridable adult?: 1

 def name_length(person) do
 String.length(person.name)
 end
 # No defoverridable - child modules cannot override this
end
Inheriting from a module
Use the parent module in your child module and specify additional fields:
defmodule Employee do
 use Person, [
 salary: 0,
 department: ""
]

 # Override parent function with super call
 def greet(employee) do
 super(employee) <> " and I work in #{employee.department}"
 end
 defoverridable greet: 1

 # Access parent module directly using __PARENT__
 def is_adult_person(employee) do
 __PARENT__.adult?(employee)
 end

 # This would compile with warning but never be called:
 def name_length(employee),
 do: 999 # Parent didn't use defoverridable!
end
Using the inherited module
Create an Employee struct with inherited fields
employee = %Employee{
 name: "John",
 age: 30,
 salary: 50000,
 department: "Engineering"
}

Call overridden function (with super call)
Employee.greet(employee)
=> "Hello, I'm John and I'm 30 years old and I work in Engineering"

Call inherited function
Employee.adult?(employee)
=> true

Call parent function via __PARENT__
Employee.is_adult_person(employee)
=> true

Function without defoverridable always calls parent version
Employee.name_length(employee)
=> 4 (calls Person.name_length, not any child override)
Advanced Usage
Custom __using__ macros with callbacks
Parent modules can define their own __using__ macros with callback support:
defmodule BaseServer do
 use GenServer
 use Inherit, [state: %{}]

 defmacro __using__(fields) do
 # Before callback ensures GenServer behavior is included first
 before_callback = quote do
 use GenServer
 end

 quote do
 require Inherit
 Inherit.from(unquote(__MODULE__), unquote(fields), before: unquote(before_callback))

 def start_link(opts \\ []) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end
 defoverridable start_link: 1
 end
 end

 @impl true
 def init(opts) do
 {:ok, struct(__MODULE__, opts)}
 end
 defoverridable init: 1
end

defmodule MyServer do
 use BaseServer, [additional_field: "value"]

 # Inherits GenServer behavior with proper callback order
 # Can override start_link and init if needed
end
Deep inheritance chains
defmodule LivingThing do
 use Inherit, [alive: true]

 def life_span(thing), do: thing.alive && 100
 defoverridable life_span: 1
end

defmodule Animal do
 use LivingThing, [mobile: true]

 def life_span(animal), do: super(animal) + 50
 defoverridable life_span: 1
end

defmodule Mammal do
 use Animal, [warm_blooded: true]

 def life_span(mammal), do: super(mammal) + 25
 defoverridable life_span: 1
end

Mammal.life_span(%Mammal{}) => 175 (100 + 50 + 25)
Preventing inheritance with defwithhold
By default, all public functions are inherited by child modules. Use defwithhold to prevent specific functions from being inherited:
defmodule Parent do
 use Inherit, [field: 1]

 def inherited_function do
 "This will be inherited"
 end

 def not_inherited_function do
 "This will not be inherited"
 end
 defwithhold not_inherited_function: 0
end

defmodule Child do
 use Parent, []

 # Child.inherited_function() works automatically
 # Child.not_inherited_function() raises UndefinedFunctionError
end
Function Overriding Rules
Important: Parent modules control which functions can be overridden by child modules.
	✅ Functions marked with defoverridable in the parent CAN be overridden by children
	❌ Functions NOT marked with defoverridable CANNOT be overridden (attempts compile with warnings but never execute)
	🔄 Child modules must also use defoverridable when overriding to allow further inheritance

Example
defmodule Parent do
 use Inherit, [field: 1]

 def can_override, do: "parent"
 defoverridable can_override: 0

 def cannot_override, do: "parent only" # No defoverridable!
end

defmodule Child do
 use Parent, []

 def can_override, do: "child" # ✅ Works - parent used defoverridable
 defoverridable can_override: 0

 def cannot_override, do: "child" # ⚠️ Compiles with warning, never called!
end

Results:
Child.can_override() # => "child"
Child.cannot_override() # => "parent only" (parent's version always used)
Key Differences from OOP Inheritance
Unlike traditional object-oriented inheritance, Inherit operates at compile-time through AST manipulation:
	Compile-time: All inheritance is resolved during compilation through AST generation
	Explicit overriding: Only functions marked defoverridable can be overridden
	Function delegation: Non-overridden functions are automatically generated as delegation calls
	AST-based super calls: super() calls are resolved at compile time to direct parent calls
	Module-level inheritance: Inheritance works at the module level, not the instance level

How It Works
The inheritance system creates a compile-time inheritance tree where modules can inherit from parent modules through AST manipulation:
flowchart TD
 LivingThing["LivingThing
use Inherit, [alive: true]
defines: breathe(), grow()"]

 Animal["Animal
use LivingThing, [mobile: true]
inherits: breathe(), grow()
defines: move(), hunt()"]

 Plant["Plant
use LivingThing, [mobile: false]
inherits: breathe(), grow()
defines: photosynthesize()"]

 Mammal["Mammal
use Animal, [warm_blooded: true]
inherits: breathe(), grow(), move(), hunt()
defines: nurse_young()"]

 LivingThing --> Animal
 LivingThing --> Plant
 Animal --> Mammal

 style LivingThing fill:#FF9800,stroke:#E65100,stroke-width:3px,color:#fff
 style Animal fill:#2196F3,stroke:#0D47A1,stroke-width:3px,color:#fff
 style Plant fill:#4CAF50,stroke:#1B5E20,stroke-width:3px,color:#fff
 style Mammal fill:#9C27B0,stroke:#4A148C,stroke-width:3px,color:#fff
Technical Implementation:
	Compile-time Processing: All inheritance is resolved during compilation for zero runtime overhead
	Dual Inheritance Strategy: 	AST Copying: Functions with no private calls have their AST copied directly to child modules
	Delegation: Functions that call private functions are inherited as delegation calls to preserve encapsulation

	Private Function Detection: The system analyzes parent function AST to detect calls to private functions
	Override Resolution: defoverridable functions can be overridden, while others generate delegation calls
	Macro Expansion: __PARENT__ and super() calls are expanded to direct module references during compilation

API Reference
	__PARENT__ - Compile-time macro that expands to the immediate parent module
	super(args...) - Calls the parent implementation when overriding inherited functions
	defwithhold - Prevents specified functions from being inherited by child modules

Examples
Basic inheritance with field merging:
Inheritance chain: Animal -> Mammal -> Primate -> Human
%Animal{species: "", habitat: ""}
%Mammal{species: "", habitat: "", warm_blooded: true, fur_type: ""}
%Primate{species: "", habitat: "", warm_blooded: true, fur_type: "", opposable_thumbs: true}
%Human{species: "Homo sapiens", habitat: "Global", warm_blooded: true, fur_type: "", opposable_thumbs: true, language: ""}
Function inheritance strategies:
AST Copying vs Delegation based on private function usage

Parent with private function calls
defmodule Parent do
 use Inherit, [field: 1]

 defp private_helper(x), do: x * 2

 def with_private_call(x) do
 private_helper(x) + 1 # Calls private function
 end
 defoverridable with_private_call: 1

 def without_private_call(x) do
 x + 10 # No private function calls
 end
 defoverridable without_private_call: 1
end

defmodule Child do
 use Parent, [child_field: 2]
end

Results demonstrate different inheritance strategies:
Child.with_private_call(5) # => 11 (delegated: apply(Parent, :with_private_call, [5]))
Child.without_private_call(5) # => 15 (AST copied: x + 10)

Real example - Animal.move/1 calls private validate_movement/1
Animal.move("walk") # => "Moving by walk" (original implementation)
Mammal.move("run") # => "Moving by run" (delegated to Animal due to private function call)
Primate.move("swing") # => "Moving by swing" (delegated through inheritance chain)
Human.move("walk") # => "Moving by walk" (delegated through inheritance chain)

Override behavior with proper inheritance control
Animal.describe() # => "I am an animal"
Mammal.describe() # => "I am an animal that is warm-blooded" (overrides and calls super())
Primate.describe() # => "I am an animal that is warm-blooded with opposable thumbs" (overrides and calls __PARENT__)

Functions without defoverridable cannot be overridden (compilation warning)
Human.special_ability() # => "opposable thumbs" (calls Primate.special_ability, not Human - emits warning)

Import resolution and GenServer integration with inheritance
%Human{} |> GenServer.start() # Works seamlessly with inherited GenServer behavior
Documentation
Documentation can be generated with ExDoc
and published on HexDocs. Once published, the docs can
be found at https://hexdocs.pm/inherit.

 LICENSE

Copyright (c) 2025 DockYard, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Inherit

Inherit provides compile-time pseudo-inheritance in Elixir through sophisticated
AST manipulation, allowing modules to inherit struct fields, generate inherited
function definitions, and override behaviors from parent modules.
All inheritance is resolved at compile-time through AST processing, making it
highly efficient with no runtime overhead.
Features
	Compile-time AST-based inheritance: Functions are inherited through AST generation, not runtime delegation
	Struct field inheritance: Child modules inherit all fields from parent modules with field merging
	Function overriding with defoverridable: Parent functions marked with defoverridable can be overridden by child modules
	__PARENT__ module access: Use __PARENT__ macro for direct parent module references in function bodies
	super() calls: Call the parent implementation when overriding inherited functions (resolved at compile-time)
	Function withholding: Use defwithhold to prevent specific functions from being inherited
	Deep inheritance chains: Support for multiple levels of inheritance with proper AST propagation
	Custom __using__ inheritance: Parent modules can define custom __using__ macros that are inherited
	Private function call detection: Automatically detects and handles private function calls within inherited functions
	GenServer integration: Works seamlessly with GenServer and other OTP behaviors

Basic Usage
Making a module inheritable
defmodule Parent do
 use Inherit, [
 field1: "default_value",
 field2: 42
]

 def some_function(value) do
 value + 1
 end
 defoverridable some_function: 1 # Child modules can override this

 def another_function do
 "parent implementation"
 end
 # No defoverridable - child modules cannot override this
end
Inheriting from a module
defmodule Child do
 use Parent, [
 field3: "additional_field"
]

 # Override a parent function (only works if parent used defoverridable)
 def some_function(value) do
 super(value) + 10 # Calls Parent.some_function/1 and adds 10
 end
 defoverridable some_function: 1

 # Access parent module directly using __PARENT__
 def call_parent do
 __PARENT__.another_function()
 end

 # This would compile with a warning but never be called:
 # def another_function, do: "child implementation" # Parent didn't use defoverridable!
end
Advanced Usage
Custom __using__ macros
Parent modules can define their own __using__ macros that will be inherited:
defmodule BaseServer do
 use GenServer
 use Inherit, [state: %{}]

 defmacro __using__(fields) do
 quote do
 use GenServer
 require Inherit
 Inherit.from(unquote(__MODULE__), unquote(fields))

 def start_link(opts \\ []) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end
 defoverridable start_link: 1
 end
 end

 @impl true
 def init(opts) do
 {:ok, struct(__MODULE__, opts)}
 end
 defoverridable init: 1
end
Deep inheritance chains
defmodule LivingThing do
 use Inherit, [alive: true]
 def life_span(thing), do: thing.alive && 50
 defoverridable life_span: 1 # Must mark as overridable for children to override
end

defmodule Animal do
 use LivingThing, [mobile: true]
 def life_span(animal), do: super(animal) + 30
 defoverridable life_span: 1 # Mark as overridable for further children
end

defmodule Mammal do
 use Animal, [warm_blooded: true]
 def life_span(mammal), do: super(mammal) + 20
 defoverridable life_span: 1
end

Mammal.life_span(%Mammal{}) => 100 (50 + 30 + 20)
Function withholding with defwithhold
defmodule Parent do
 use Inherit, [field: 1]

 def inherited_function do
 "This will be inherited"
 end

 def private_function do
 "This will not be inherited"
 end
 defwithhold private_function: 0 # Prevents inheritance
end

defmodule Child do
 use Parent, []
 # Child.inherited_function() works automatically
 # Child.private_function() raises UndefinedFunctionError
end
Important: Function Overriding Rules
Parent modules control which functions can be overridden by child modules:
	Functions marked with defoverridable in the parent can be overridden by children

	Functions NOT marked with defoverridable cannot be overridden (attempts will compile with warnings but never execute)

	Child modules must also use defoverridable when overriding to allow further inheritance
 defmodule Parent do
use Inherit, [field: 1]

def can_override, do: "parent"
defoverridable can_override: 0

def cannot_override, do: "parent only" # No defoverridable!
 end
 defmodule Child do
use Parent, []

def can_override, do: "child" # This works - parent used defoverridable
defoverridable can_override: 0

def cannot_override, do: "child" # Compiles with warning, never called!
 end
 # Child.can_override() => "child"
 # Child.cannot_override() => "parent only" (parent's version always used)

How It Works
The inheritance system operates at compile-time with sophisticated AST processing:
	@before_compile Timing: Uses @before_compile callback for optimal AST access and processing timing
	Intelligent Import Resolution: Automatically detects imported functions/macros and injects require statements
	Dual Inheritance Strategy: Functions are inherited using two approaches based on their implementation:	AST Copying: Functions with no private calls have their AST copied directly to child modules
	Delegation: Functions calling private functions are inherited as delegation calls to preserve encapsulation

	Enhanced Private Function Detection: Uses Module.definitions_in/2 for accurate private function tracking
	Advanced Argument Processing: Handles complex argument patterns (guards, defaults, destructuring, pattern matching)
	Callback System: Supports before and after callbacks during inheritance for custom setup
	Macro Expansion: __PARENT__ and super() calls are expanded to direct module references during compilation

Function Inheritance Strategies
AST Copying (for functions with no private calls):
Parent function:
def simple_add(a, b), do: a + b

Child gets this AST directly copied:
def simple_add(a, b), do: a + b # Same implementation
Delegation (for functions with private calls):
Parent function:
defp private_multiply(x), do: x * 2
def complex_calc(x), do: private_multiply(x) + 1

Child gets a delegation call:
def complex_calc(x), do: apply(Parent, :complex_calc, [x])
This ensures private functions remain encapsulated in their original module while still allowing inheritance.
API Reference
	__PARENT__ - Compile-time macro that expands to the immediate parent module
	super(args...) - Calls the parent implementation when overriding inherited functions (compile-time resolved)
	defwithhold - Prevents specified functions from being inherited by child modules

Real Examples from Refactored Implementation
Inheritance chain: Animal -> Mammal -> Primate -> Human (from test suite)

defmodule Animal do
 use GenServer
 use Inherit, [species: "", habitat: "", alive: true]

 # Custom __using__ with callback support
 defmacro __using__(fields) do
 before_callback = quote do
 use GenServer # Ensure GenServer behavior is included
 end

 quote do
 require Inherit
 Inherit.from(unquote(__MODULE__), unquote(fields), before: unquote(before_callback))

 def breathe(animal), do: "breathing as #{animal.species}"
 defoverridable breathe: 1
 end
 end

 # Function that calls private function - will be DELEGATED in children
 def move(animal, method) do
 validate_movement(method) # Calls private function
 "Moving by #{method}"
 end
 defoverridable move: 2

 defp validate_movement(method) do
 method in ["walk", "run", "swim"] || raise "Invalid movement: #{method}"
 end

 # Function with no private calls - AST will be COPIED to children
 def describe(animal) do
 "I am a #{animal.species}" # No private function calls
 end
 defoverridable describe: 1

 # Function using imported utility with automatic require injection
 def log_species(animal) do
 Logger.info("Species: #{animal.species}") # Auto-detects Logger import
 end
end

defmodule Mammal do
 use Animal, [warm_blooded: true, fur_type: ""]

 def describe(mammal) do
 super(mammal) <> " that is warm-blooded" # Calls parent via super
 end
 defoverridable describe: 1
end

defmodule Primate do
 use Mammal, [opposable_thumbs: true]

 def describe(primate) do
 __PARENT__.describe(primate) <> " with opposable thumbs" # Direct parent call
 end
 defoverridable describe: 1
end

defmodule Human do
 use Primate, [language: "", culture: ""]

 # This function will never be called because Primate doesn't mark describe/1
 # as defoverridable (demonstrates inheritance control)
 def describe(human) do
 __PARENT__.describe(human) <> " and complex language"
 end
end

Results demonstrate sophisticated inheritance features:
move/2 is DELEGATED because it calls private validate_movement/1
Mammal.move(%Mammal{species: "dog"}, "run") # => "Moving by run" (delegated to Animal)
Primate.move(%Primate{species: "chimp"}, "swing") # => "Moving by swing" (delegated through chain)

describe/1 has AST COPIED and demonstrates override chain
Human.describe(%Human{species: "Homo sapiens"}) # Uses Primate.describe (not Human due to no defoverridable)
=> "I am a Homo sapiens that is warm-blooded with opposable thumbs"

GenServer integration works seamlessly through callback system
{:ok, pid} = GenServer.start(Human, []) # Inherits GenServer behavior properly

 Summary

 Functions

 __using__(fields)

 Makes a module inheritable by setting up the inheritance infrastructure.

 attributes_for(module)

 Retrieves inheritance attributes for a given module.

 defwithhold(keywords)

 Prevents specified functions from being inherited by child modules.

 from(parent, fields, quoted_callbacks \\ [])

 Establishes inheritance from a parent module to the current module.

 merge_from(parent, fields)

 Merges parent struct fields with child fields for inheritance.

 Functions

 __using__(fields)

 (macro)

Makes a module inheritable by setting up the inheritance infrastructure.
This macro is used when creating a new inheritable module (root parent). It:
	Defines a struct with the specified fields
	Sets up custom macro imports for inheritance functionality
	Creates a default __using__/1 macro for child modules to inherit from this module
	Establishes the module as the root of an inheritance hierarchy

Parameters
	fields - A keyword list defining the struct fields and their default values

Example
defmodule Animal do
 use Inherit, [
 species: "",
 habitat: "",
 alive: true
]

 def breathe(animal) do
 if animal.alive, do: "breathing", else: "not breathing"
 end
 defoverridable breathe: 1
end
This creates an Animal module that can be inherited from using use Animal, [...].

 attributes_for(module)

Retrieves inheritance attributes for a given module.
Returns the inheritance metadata stored in the module's $inherit attribute,
which contains information about the module's inheritance hierarchy and AST data.
Parameters
	module - The module to retrieve inheritance attributes for

Returns
A map containing inheritance metadata including:
	:parent - The parent module (if any)
	:ast - Stored AST for functions
	:private_funcs - Private function definitions
	:requires - Required modules for imports

Example
iex> Inherit.attributes_for(MyChildModule)
%{parent: MyParentModule, ast: [...], private_funcs: [...], requires: [...]}

 defwithhold(keywords)

 (macro)

Prevents specified functions from being inherited by child modules.
This macro removes functions from the inheritance mechanism, ensuring they will
not be automatically generated in child modules through AST processing. Functions
marked with defwithhold remain exclusive to the module that defines them.
Parameters
	keywords - A keyword list of {function_name, arity} pairs specifying
which functions should not be inheritable

Example
defmodule Vehicle do
 use Inherit, [wheels: 4]

 def start_engine do
 "Engine starting..."
 end

 def internal_diagnostics do
 "Running internal checks..."
 end
 defwithhold internal_diagnostics: 0 # Keep this function private to Vehicle
end

defmodule Car do
 use Vehicle, [doors: 4]

 # Car automatically inherits start_engine/0
 # Car does NOT inherit internal_diagnostics/0
 # Calling Car.internal_diagnostics() would raise UndefinedFunctionError
end
Technical Implementation
defwithhold removes function entries from the module's AST tracking, excluding
them from the inheritance AST generation process.

 from(parent, fields, quoted_callbacks \\ [])

 (macro)

Establishes inheritance from a parent module to the current module.
This macro is the core of the inheritance system. It processes the parent module's
functions and generates appropriate inheritance code based on whether each function
calls private functions or not. It also merges struct fields from the parent.
Parameters
	parent - The parent module to inherit from
	fields - A keyword list of additional struct fields to define in the child module

Inheritance Process
	Field Merging: Merges parent struct fields with child fields (child fields override parent fields)
	Function Analysis: Analyzes each parent function to detect private function calls
	AST Generation: Generates either direct AST copies or delegation calls based on analysis
	Override Setup: Preserves defoverridable information for child overrides

Generated Code Strategies
For functions with no private calls:
Parent function AST is copied directly:
def some_function(arg), do: arg + 1
For functions with private calls:
Delegation call is generated:
def some_function(arg), do: apply(Parent, :some_function, [arg])
Example
defmodule Animal do
 use Inherit, [species: ""]

 defp validate_species(animal), do: animal.species != ""

 def describe(animal) do
 validate_species(animal) # Calls private function
 "A #{animal.species}"
 end
 defoverridable describe: 1
end

defmodule Mammal do
 use Animal, [warm_blooded: true] # Calls Inherit.from(Animal, [warm_blooded: true])

 # Mammal.describe/1 is generated as: apply(Animal, :describe, [mammal])
 # This preserves access to Animal's private validate_species/1
end
Technical Notes
This macro is automatically called when a module uses another inheritable module.
It should not be called directly by users - instead use use ParentModule, fields.

 merge_from(parent, fields)

Merges parent struct fields with child fields for inheritance.
This function is used internally during the inheritance process to combine
parent module struct fields with additional fields specified by the child module.
Child fields take precedence over parent fields when there are conflicts.
Parameters
	parent - The parent module to inherit struct fields from
	fields - A keyword list of additional fields to merge

Returns
A keyword list containing the merged struct fields.
Example
iex> Inherit.merge_from(ParentModule, [child_field: "value"])
[parent_field1: "default", parent_field2: 42, child_field: "value"]
Technical Notes
This function is called automatically during inheritance setup and should not
typically be called directly by user code.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

