

 Integrator

 v0.1.3

 Table of contents

 	Integrator

 	Introduction to Integrator

 	Interpolation and Fixed Times

 	Output Functions

 	Event Functions

 	NonLinearEqnRoot Usage

 	Modules

 	Integrator

 	Integrator.AdaptiveStepsize

 	Integrator.AdaptiveStepsize.ComputedStep

 	Integrator.MultiIntegrator

 	Integrator.NonLinearEqnRoot

 	Integrator.RungeKutta

 	Integrator.RungeKutta.BogackiShampine23

 	Integrator.RungeKutta.DormandPrince45

 	Integrator.SampleEqns

 	Integrator.Utils

Integrator

A numerical integrator written in Elixir for the solution of sets of non-stiff ordinary differential
equations (ODEs).

 Installation

The package can be installed by adding integrator to your list of dependencies in mix.exs:
def deps do
 [
 {:integrator, "~> 0.1"},
]
end
The docs can be found at https://hexdocs.pm/integrator.

 Description

Two integrator options are available; ode45 which is an adaptation of the Octave
ode45 and Matlab
ode45. The ode45 integrator utilizes the
Dormand-Prince 4th/5th order Runge
Kutta algorithm.
ode23 is an adaptation of the Octave
ode23 and Matlab
ode23 The ode23 integrator uses the
Bogacki-Shampine 3rd order Runge
Kutta algorithm.
Both ode45 (which is the default integrator option) and ode23 utilize an adaptive stepsize
algorithm for computing the integration time step. The time step is computed based on the
satisfaction of a required error tolerance.
This library heavily leverages Elixir Nx; many thanks to the
creators of Nx, as without it this library
would not have been possible. The GNU Octave code was also
used heavily for inspiration and was used to generate numerical test cases for the Elixir versions
of the algorithms. Many thanks to John W. Eaton for his tremendous work on
Octave. Integrator has been tested extensively during its development, and has a large and growing
test suite.

 Usage

See the Livebook guides for detailed examples of usage. As a simple example, you can integrate the
Van der Pol equation as defined in Integrator.SampleEqns.van_der_pol_fn/2 from time 0 to 20 with an
intial x value of [0, 1] via:
t_initial = 0.0
t_final = 20.0
x_initial = Nx.tensor([0.0, 1.0])
solution = Integrator.integrate(&SampleEqns.van_der_pol_fn/2, [t_initial, t_final], x_initial)
Then, solution.output_t contains a list of output times, and solution.output_x contains a list
of values of x at these corresponding times.
[image: images/van_der_pol]
Options exist for:
	outputting simulation results dynamically via an output function (for applications
such as plotting dynamically, or for animating while the simulation is underway)
	generating simulation output at fixed times (such as at t = 0.1, 0.2, 0.3, etc.)
	interpolating intermediate points via quartic Hermite interpolation (for ode45) or via cubic
Hermite interpolation (for ode23)
	detecting termination events (such as collisions); see the Livebooks for details.
	increasing the simulation fidelity (at the expense of simulation time) via absolute tolerance and
relative tolerance settings

 So why should I care??? A tool to solve ODEs? WTF???

The basic gist of the project is that it is a tool in Elixir (that leverages Nx)
to numerically solve sets of ordinary differential equations (ODEs). Science and engineering
problems typically generate either sets of ODEs or partial differential equations (PDEs). So basically
integrator lets you solve any scientific or engineering problem which generates ODEs, which is a
HUGE class of problems (FYI, finite element methods are used to solve sets of PDEs).
Fun fact: hundreds (or even thousands) of scientific problems had been formulated in the form of ODEs
since the time that Isaac Newton first invented calculus in the 1600's, but these problems remained
intractable & unsolvable for over three centuries other than a very small handful that were amenable
to a "closed form solution"; i.e., the ODEs could be solved analytically (i.e., via mathematical
manipulations). So there was this tragic dilemma; we could formulate these problems mathematically
since the 1600's - 1800's, but couldn't actually solve them. SAD! :disappointed:
So one of the primary drivers to create the first digital computers in the 1940's - 1960's was
to solve ODEs. The space program, for example, would have been impossible without the numerical
solution of ODEs which represented the space flight trajectories, attitude, & control. And before
the first digital computers, analog computers were used to solve ODEs back in the 1920's - 1940's.
So believe it or not, the first computers were developed and used to solve ODEs, not play League of
Legends. :wink:
These algorithms are battle-tested and in some cases have been around for decades; Matlab and Octave
are just relatively clean implementations of some of these algorithms, so I used them as the basis
for my Elixir versions.

Introduction to Integrator

Mix.install([
 {:integrator, "~> 0.1.2"},
 {:kino_vega_lite, "~> 0.1.7"}
])

 Numerical Integration in Elixir

Numerical integration is easy with Integrator. For example, let's integrate the
Van der Pol equation Integrator.SampleEqns.van_der_pol_fn for 20 seconds:
alias Integrator.SampleEqns

t_initial = Nx.tensor(0.0, type: :f64)
t_final = Nx.tensor(20.0, type: :f64)
x_initial = Nx.tensor([2.0, 0.0], type: :f64)
solution = Integrator.integrate(&SampleEqns.van_der_pol_fn/2, [t_initial, t_final], x_initial)
Now you can plot the results via Kino:
alias VegaLite, as: VL

data =
 Enum.zip(solution.output_t, solution.output_x)
 |> Enum.map(fn {t, x} ->
 [
 %{t: Nx.to_number(t), x: Nx.to_number(x[0]), x_value: "x[0]"},
 %{t: Nx.to_number(t), x: Nx.to_number(x[1]), x_value: "x[1]"}
]
 end)
 |> List.flatten()

chart =
 VL.new(width: 600, height: 400, title: "Solution of van der Pol Equation (μ = 1) with ode45")
 |> VL.mark(:line, point: true, tooltip: true)
 |> VL.encode_field(:x, "t", type: :quantitative)
 |> VL.encode_field(:y, "x", type: :quantitative)
 |> VL.encode_field(:color, "x_value", type: :nominal)
 |> VL.data_from_values(data)
 |> Kino.VegaLite.new()
 |> Kino.render()
Compare this with the plot from the Matlab ode45 manual page:
[image: van der pol]

Interpolation and Fixed Times

Mix.install([
 {:integrator, "~> 0.1.2"},
 {:kino_vega_lite, "~> 0.1.7"}
])

 Interpolation

By default, refine: 4 for integrator ode45. This means that four points are interpolated
for every solution of the ODE.
alias Integrator.SampleEqns

t_initial = Nx.tensor(0.0, type: :f64)
t_final = Nx.tensor(20.0, type: :f64)
x_initial = Nx.tensor([2.0, 0.0], type: :f64)
solution = Integrator.integrate(&SampleEqns.van_der_pol_fn/2, [t_initial, t_final], x_initial)
Visualizing refine: 4:
alias VegaLite, as: VL

defmodule VanDerPol do
 def plot(solution) do
 data =
 Enum.zip(solution.output_t, solution.output_x)
 |> Enum.map(fn {t, x} ->
 [
 %{t: Nx.to_number(t), x: Nx.to_number(x[0]), x_value: "x[0]"},
 %{t: Nx.to_number(t), x: Nx.to_number(x[1]), x_value: "x[1]"}
]
 end)
 |> List.flatten()

 VL.new(
 width: 600,
 height: 400,
 title: "Solution of van der Pol Equation (μ = 1) with ode45"
)
 |> VL.mark(:line, point: true, tooltip: true)
 |> VL.encode_field(:x, "t", type: :quantitative)
 |> VL.encode_field(:y, "x", type: :quantitative)
 |> VL.encode_field(:color, "x_value", type: :nominal)
 |> VL.data_from_values(data)
 |> Kino.VegaLite.new()
 |> Kino.render()
 end
end

VanDerPol.plot(solution)
You can turn off interpolation by setting refine: 1:
t_initial = Nx.tensor(0.0, type: :f64)
t_final = Nx.tensor(20.0, type: :f64)
x_initial = Nx.tensor([2.0, 0.0], type: :f64)
opts = [refine: 1]

solution =
 Integrator.integrate(&SampleEqns.van_der_pol_fn/2, [t_initial, t_final], x_initial, opts)

VanDerPol.plot(solution)
Note how much "chunkier" the plot is without the interpolated points. These points are solely those from the Runge-Kutta simulation. Note that these values can also be accessed by solution.ode_t and solution.ode_x.
Finally, you can output data at fixed times. For example, let's print out data at 0.1 second intervals:
t_initial = Nx.tensor(0.0, type: :f64)
t_final = Nx.tensor(20.0, type: :f64)
x_initial = Nx.tensor([2.0, 0.0], type: :f64)
t_range = Nx.linspace(t_initial, t_final, n: 201, type: :f64)
opts = [refine: 1]
solution = Integrator.integrate(&SampleEqns.van_der_pol_fn/2, t_range, x_initial, opts)
VanDerPol.plot(solution)

Output Functions

Mix.install([
 {:integrator, "~> 0.1.2"},
 {:kino_vega_lite, "~> 0.1.7"}
])

 Usage

An output function lets you plot the results of an integration or simulation while it's occurring, or
send the data to an animation tool. Let's see how that works.
First, we'll need to set up an empty chart to receive the data:
alias VegaLite, as: VL

chart =
 VL.new(
 width: 600,
 height: 400,
 title: "Solution of van der Pol Equation (μ = 1) with ode45"
)
 |> VL.mark(:line, point: true, tooltip: true)
 |> VL.encode_field(:x, "t", type: :quantitative)
 |> VL.encode_field(:y, "x", type: :quantitative)
 |> VL.encode_field(:color, "x_value", type: :nominal)
 |> Kino.VegaLite.new()
 |> Kino.render()
Now, let's connect an output function to the simulation, and we'll inject a Process.sleep(50) on purpose so that the simulation takes a while. Watch the chart above while you run the simulation below.
alias Integrator.SampleEqns

t_initial = Nx.tensor(0.0, type: :f64)
t_final = Nx.tensor(20.0, type: :f64)
x_initial = Nx.tensor([2.0, 0.0], type: :f64)

output_fn = fn t, x ->
 # t and x are lists of Nx tensors

 Enum.zip(t, x)
 |> Enum.map(fn {t, x} ->
 [
 %{t: Nx.to_number(t), x: Nx.to_number(x[0]), x_value: "x[0]"},
 %{t: Nx.to_number(t), x: Nx.to_number(x[1]), x_value: "x[1]"}
]
 end)
 |> List.flatten()
 |> Enum.map(fn point ->
 Kino.VegaLite.push(chart, point)

 # Sleep on purpose to slow down the simulation:
 Process.sleep(50)
 end)
end

opts = [output_fn: output_fn, type: :f64]

solution =
 Integrator.integrate(&SampleEqns.van_der_pol_fn/2, [t_initial, t_final], x_initial, opts)

Event Functions

Mix.install([
 {:integrator, "~> 0.1.2"},
 {:kino_vega_lite, "~> 0.1.7"}
])

 Usage

An event function lets you terminate a simulation based on some event (such as a collision). For this example, we're going to mimic the Matlab ballode.m bouncing ball example. See also here.
The equations of a bouncing ball are:
$$ x_0 = x_1 $$
$$ x_1 = - g $$
where $ g = 9.81 m/s^2 $. Let's encode that in an Nx function:
import Nx.Defn

ode_fn = fn _t, x ->
 x0 = x[1]
 x1 = -9.81
 Nx.stack([x0, x1])
end
The follwing event function will detect when $ x_0 $ goes negative, and will return :halt in order to terminate the simulation:
event_fn = fn _t, x ->
 value = Nx.to_number(x[0])
 answer = if value <= 0.0, do: :halt, else: :continue
 {answer, value}
end
Create an empty chart to receive the data:
alias VegaLite, as: VL

chart =
 VL.new(
 width: 600,
 height: 400,
 title: "Bouncing Ball"
)
 |> VL.mark(:line, point: true, tooltip: true)
 |> VL.encode_field(:x, "t", type: :quantitative)
 |> VL.encode_field(:y, "x", type: :quantitative)
 |> VL.encode_field(:color, "x_value", type: :nominal)
 |> Kino.VegaLite.new()

|> Kino.render()
This output function will send the values of $ x_0 $ to the chart while the simulation is underway:
output_fn = fn t, x ->
 Enum.zip(t, x)
 |> Enum.map(fn {t, x} ->
 [%{t: Nx.to_number(t), x: Nx.to_number(x[0]), x_value: "x[0]"}]
 end)
 |> List.flatten()
 |> Enum.map(fn point ->
 Kino.VegaLite.push(chart, point)
 end)
end
We need to define a function which will determine what to do when transitions happen, which in our
case, are collisions between the ball and the ground. We'll reverse the direction of the ball, and
decrease its velocity by 10% (to account for bouncing).
coefficient_of_restitution = -0.9

transition_fn = fn t, x, _multi, opts ->
 x1 = Nx.multiply(coefficient_of_restitution, x[1])
 {:continue, t, Nx.stack([x[0], x1]), opts}
end
There's some recursive code in Integrator.MultiIntegrator that restarts the simulation when terminal
events are encountered.
alias Integrator.MultiIntegrator

t_initial = Nx.tensor(0.0, type: :f64)
t_final = Nx.tensor(30.0, type: :f64)
x_initial = Nx.tensor([0.0, 20.0], type: :f64)
opts = [output_fn: output_fn]

multi_integrator =
 MultiIntegrator.integrate(ode_fn, event_fn, transition_fn, t_initial, t_final, x_initial, opts)
Compare this plot with the version on the Matlab page:
[image: bouncing_ball]

NonLinearEqnRoot Usage

 Mix.install(
 [
 {:integrator, "~> 0.1"}
]
)

 Finding a root

(to be filled in later)

Integrator

A library for solving non-stiff ordinary differential equations (ODEs).
Integrator uses either the Dormand-Prince 4/5 Runge Kutta algorithm, or the Bogacki-Shampine 2/3
Runge Kutta algorithm. It is intended that the user only needs to call Integrator.integrate/4, and
the Integrator.AdaptiveStepsize and Integrator.RungeKutta modules are only exposed for advanced
users who want to use the underlying algorithms directly.

 Summary

 Functions

 integrate(ode_fn, t_start_t_end, x0, opts \\ [])

 Integrates an ODE function using either the Dormand-Prince45 method or the Bogacki-Shampine23 method.

 options_schema_integrator_only()

Functions

 Link to this function

 integrate(ode_fn, t_start_t_end, x0, opts \\ [])

 View Source

 @spec integrate(
 ode_fn :: Integrator.RungeKutta.ode_fn_t(),
 t_start_t_end :: Nx.t() | [float() | Nx.t()],
 x0 :: Nx.t(),
 opts :: Keyword.t()
) :: Integrator.AdaptiveStepsize.t()

Integrates an ODE function using either the Dormand-Prince45 method or the Bogacki-Shampine23 method.

 Options

	:initial_step - The initial stepsize. If not provided, a stepsize will be chosen automatically. Can be a float
or a Nx tensor.

	:integrator - The integrator to use. Currently only :ode45 and :ode23 are supported, which correspond to
Integrator.RungeKutta.DormandPrince45 and Integrator.RungeKutta.BogackiShampine23, respectively. The default value is :ode45.

 Additional Options

Also see the options for these functions which are passed through:
	Integrator.NonLinearEqnRoot.find_zero/4
	Integrator.AdaptiveStepsize.integrate/10

 Link to this function

 options_schema_integrator_only()

 View Source

Integrator.AdaptiveStepsize

Integrates a set of ODEs with an adaptive timestep.

 Summary

 Types

 event_fn_t()

 integration_status()

 options_t()

 output_fn_t()

 refine_strategy()

 speed()

 t()

 Functions

 abs_rel_norm_opts(opts)

 Gets the default values used by the absolute-relative norm; e.g., abs_tol, rel_tol, and
norm_control

 elapsed_time_ms(step)

 Returns the total elapsed time for the integration (in milleseconds)

 integrate(stepper_fn, interpolate_fn, ode_fn, t_start, t_end, fixed_times, initial_tstep, x0, order, opts \\ [])

 Integrates a set of ODEs.

 option_keys()

 options_schema()

 options_schema_adaptive_stepsize_only()

 starting_stepsize(order, ode_fn, t0, x0, abs_tol, rel_tol, opts \\ [])

 Computes a good initial timestep for an ODE solver of order order
using the algorithm described in the reference below.

Types

 Link to this type

 event_fn_t()

 View Source

 @type event_fn_t() :: (Nx.t(), Nx.t() -> {integration_status(), Nx.t()})

 Link to this type

 integration_status()

 View Source

 @type integration_status() :: :halt | :continue

 Link to this type

 options_t()

 View Source

 @type options_t() ::
 {:max_iterations, integer()}
 | {:max_fn_eval_count, integer()}
 | {:type, term()}
 | {:machine_eps, float()}
 | {:tolerance, float()}
 | {:nonlinear_eqn_root_output_fn, term()}
 | {:abs_tol, term()}
 | {:event_fn, (term(), term() -> term()) | nil}
 | {:max_number_of_errors, integer()}
 | {:max_step, term()}
 | {:norm_control, boolean()}
 | {:output_fn, (term(), term() -> term()) | nil}
 | {:refine, atom() | pos_integer()}
 | {:rel_tol, term()}
 | {:speed, atom() | float()}
 | {:store_results?, boolean()}

 Link to this type

 output_fn_t()

 View Source

 @type output_fn_t() :: ([Nx.t()], [Nx.t()] -> any())

 Link to this type

 refine_strategy()

 View Source

 @type refine_strategy() :: integer() | :fixed_times

 Link to this type

 speed()

 View Source

 @type speed() :: :no_delay | float()

 Link to this type

 t()

 View Source

 @type t() :: %Integrator.AdaptiveStepsize{
 count_cycles__compute_step: integer(),
 count_loop__increment_step: integer(),
 dt: Nx.t() | nil,
 error_count: integer(),
 fixed_times: [Nx.t()] | nil,
 i_step: integer(),
 k_vals: Nx.t() | nil,
 nx_type: Nx.Type.t(),
 ode_t: [Nx.t()],
 ode_x: [Nx.t()],
 options_comp: Nx.t() | nil,
 output_t: [Nx.t()],
 output_x: [Nx.t()],
 t_new: Nx.t() | nil,
 t_new_chunk: [Nx.t()],
 t_new_rk_interpolate: Nx.t() | nil,
 t_old: Nx.t() | nil,
 terminal_event: integration_status(),
 terminal_output: integration_status(),
 timestamp_ms: integer() | nil,
 timestamp_start_ms: integer() | nil,
 x_new: Nx.t() | nil,
 x_new_chunk: [Nx.t()],
 x_new_rk_interpolate: Nx.t() | nil,
 x_old: Nx.t() | nil
}

Functions

 Link to this function

 abs_rel_norm_opts(opts)

 View Source

 @spec abs_rel_norm_opts(Keyword.t()) :: Keyword.t()

Gets the default values used by the absolute-relative norm; e.g., abs_tol, rel_tol, and
norm_control

 Link to this function

 elapsed_time_ms(step)

 View Source

 @spec elapsed_time_ms(t()) :: pos_integer()

Returns the total elapsed time for the integration (in milleseconds)

 Link to this function

 integrate(stepper_fn, interpolate_fn, ode_fn, t_start, t_end, fixed_times, initial_tstep, x0, order, opts \\ [])

 View Source

 @spec integrate(
 stepper_fn :: Integrator.RungeKutta.stepper_fn_t(),
 interpolate_fn :: Integrator.RungeKutta.interpolate_fn_t(),
 ode_fn :: Integrator.RungeKutta.ode_fn_t(),
 t_start :: Nx.t(),
 t_end :: Nx.t(),
 fixed_times :: [Nx.t()] | nil,
 initial_tstep :: Nx.t(),
 x0 :: Nx.t(),
 order :: integer(),
 opts :: Keyword.t()
) :: t()

Integrates a set of ODEs.

 Options

	:abs_tol (term/0) - The absolute tolerance used when computing the absolute relative norm. Defaults to 1.0e-06 in the Nx type that's been specified.

	:event_fn - A 2 arity function which determines whether an event has occured. If so, the integration is halted. The default value is nil.

	:max_number_of_errors (integer/0) - The maximum number of permissible errors before the integration is halted. The default value is 5000.

	:max_step (term/0) - The default max time step. The default value is determined by the start and end times.

	:norm_control (boolean/0) - Indicates whether norm control is to be used when computing the absolute relative norm. The default value is true.

	:output_fn - A 2 arity function which is called at each output point. The default value is nil.

	:refine - Indicates the number of additional interpolated points. 1 means no interpolation; 2 means one
additional interpolated point; etc. :fixed_times means that the output times are fixed. The default value is 4.

	:rel_tol (term/0) - The relative tolerance used when computing the absolute relative norm. Defaults to 1.0e-03 in the Nx type that's been specified.

	:speed - :no_delay means to simulate as fast as possible. 1.0 means real time, 2.0 means twice as fast as real time,
0.5 means half as fast as real time, etc. The default value is :no_delay.

	:store_results? (boolean/0) - Indicates whether or not to store the results of the integration. The default value is true.

 Additional Options

Also see the options for the Integrator.NonLinearEqnRoot.find_zero/4 which are passed
into integrate/10.
Originally adapted from the Octave
integrate_adaptive.m
See Wikipedia

 Link to this function

 option_keys()

 View Source

 Link to this function

 options_schema()

 View Source

 Link to this function

 options_schema_adaptive_stepsize_only()

 View Source

 Link to this function

 starting_stepsize(order, ode_fn, t0, x0, abs_tol, rel_tol, opts \\ [])

 View Source

 @spec starting_stepsize(
 order :: integer(),
 ode_fn :: Integrator.RungeKutta.ode_fn_t(),
 t0 :: Nx.t(),
 x0 :: Nx.t(),
 abs_tol :: Nx.t(),
 rel_tol :: Nx.t(),
 opts :: Keyword.t()
) :: Nx.t()

Computes a good initial timestep for an ODE solver of order order
using the algorithm described in the reference below.
The input argument ode_fn, is the function describing the differential
equations, t0 is the initial time, and x0 is the initial
condition. abs_tol and rel_tol are the absolute and relative
tolerance on the ODE integration.
Originally based on the Octave
starting_stepsize.m.
Reference:
E. Hairer, S.P. Norsett and G. Wanner,
"Solving Ordinary Differential Equations I: Nonstiff Problems",
Springer.

Integrator.AdaptiveStepsize.ComputedStep

The results of the computation of an individual Runge-Kutta step

 Summary

 Types

 t()

Types

 Link to this type

 t()

 View Source

 @type t() :: %Integrator.AdaptiveStepsize.ComputedStep{
 k_vals: Nx.t(),
 options_comp: Nx.t(),
 t_new: Nx.t(),
 x_new: Nx.t()
}

Integrator.MultiIntegrator

Integrates multiple simulations that are tied together somehow, such as a bouncing ball
in the ballode.m example.

 Summary

 Types

 integration_status()

 t()

 transition_fn_t()

 Functions

 all_output_data(multi, t_or_x)

 Collates the simulation output from all of the integrations

 integrate(ode_fn, event_fn, transition_fn, t_start, t_end, x0, opts)

 Integrates multiple times, with a transition function handling the junction between integrations

Types

 Link to this type

 integration_status()

 View Source

 @type integration_status() :: :halt | :continue | :completed

 Link to this type

 t()

 View Source

 @type t() :: %Integrator.MultiIntegrator{
 event_t: [Nx.t()],
 event_x: [Nx.t()],
 integration_status: integration_status(),
 integrations: [Integrator.AdaptiveStepsize.t()],
 t_end: Nx.t(),
 t_start: Nx.t(),
 transition_x: [Nx.t()]
}

 Link to this type

 transition_fn_t()

 View Source

 @type transition_fn_t() ::
 (Nx.t(), Nx.t(), t(), Keyword.t() ->
 {integration_status(), Nx.t(), Nx.t(), Keyword.t()})

Functions

 Link to this function

 all_output_data(multi, t_or_x)

 View Source

 @spec all_output_data(t(), atom()) :: [Nx.t()]

Collates the simulation output from all of the integrations

 Link to this function

 integrate(ode_fn, event_fn, transition_fn, t_start, t_end, x0, opts)

 View Source

 @spec integrate(
 ode_fn :: Integrator.RungeKutta.ode_fn_t(),
 event_fn :: Integrator.AdaptiveStepsize.event_fn_t(),
 transition_fn :: transition_fn_t(),
 t_start :: Nx.t(),
 t_end :: Nx.t(),
 x0 :: Nx.t(),
 opts :: Keyword.t()
) :: t()

Integrates multiple times, with a transition function handling the junction between integrations

 Options

See the options for these functions which are passed through:
	Integrator.NonLinearEqnRoot.find_zero/4
	Integrator.AdaptiveStepsize.integrate/10
	Integrator.integrate/4

Integrator.NonLinearEqnRoot

Finds the roots (i.e., zeros) of a non-linear equation.
Based on fzero.m
from Octave.
This is essentially the ACM algorithm 748: Enclosing Zeros of Continuous Functions
due to Alefeld, Potra and Shi, ACM Transactions on Mathematical Software, Vol. 21,
No. 3, September 1995. Although the workflow is the same, the structure of
the algorithm has been transformed non-trivially; also, the algorithm has also been
slightly modified.

 Summary

 Types

 convergence_status()

 interpolation_type()

 iter_type()

 options_t()

 output_fn_t()

 search_for_2nd_point_t()

 t()

 zero_fn_t()

 Functions

 bracket_fx(z)

 bracket_x(z)

 find_zero(zero_fn, initial_values, opts \\ [], fn_evals \\ 0)

 Finds a zero for a function in an interval [a, b] (if the 2nd argument is a list) or
in the vicinity of a (if the 2nd argument is a float).

 option_keys()

 options_schema()

Types

 Link to this type

 convergence_status()

 View Source

 @type convergence_status() :: :halt | :continue

 Link to this type

 interpolation_type()

 View Source

 @type interpolation_type() ::
 :bisect
 | :double_secant
 | :inverse_cubic_interpolation
 | :quadratic_interpolation_plus_newton
 | :secant

 Link to this type

 iter_type()

 View Source

 @type iter_type() :: 1 | 2 | 3 | 4 | 5

 Link to this type

 options_t()

 View Source

 @type options_t() ::
 {:max_iterations, integer()}
 | {:max_fn_eval_count, integer()}
 | {:type, term()}
 | {:machine_eps, float()}
 | {:tolerance, float()}
 | {:nonlinear_eqn_root_output_fn, term()}

 Link to this type

 output_fn_t()

 View Source

 @type output_fn_t() :: (float(), float() -> any())

 Link to this type

 search_for_2nd_point_t()

 View Source

 @type search_for_2nd_point_t() :: %Integrator.NonLinearEqnRoot.SearchFor2ndPoint{
 a: float() | nil,
 b: float() | nil,
 fa: float() | nil,
 fb: float() | nil,
 fn_eval_count: integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Integrator.NonLinearEqnRoot{
 a: float() | nil,
 b: float() | nil,
 c: float() | nil,
 d: float() | nil,
 e: float() | nil,
 fa: float() | nil,
 fb: float() | nil,
 fc: float() | nil,
 fd: float() | nil,
 fe: float() | nil,
 fn_eval_count: integer(),
 fu: float() | nil,
 fx: float() | nil,
 iter_type: iter_type(),
 iteration_count: integer(),
 mu_ba: float() | nil,
 u: float() | nil,
 x: float() | nil
}

 Link to this type

 zero_fn_t()

 View Source

 @type zero_fn_t() :: (float() -> float())

Functions

 Link to this function

 bracket_fx(z)

 View Source

 @spec bracket_fx(t()) :: [float()]

 Link to this function

 bracket_x(z)

 View Source

 @spec bracket_x(t()) :: [float()]

 Link to this function

 find_zero(zero_fn, initial_values, opts \\ [], fn_evals \\ 0)

 View Source

 @spec find_zero(zero_fn_t(), [float()] | float(), Keyword.t(), integer()) :: t()

Finds a zero for a function in an interval [a, b] (if the 2nd argument is a list) or
in the vicinity of a (if the 2nd argument is a float).

 Options

	:max_iterations (integer/0) - The maximum allowed number of iterations when finding a root. The default value is 1000.

	:max_fn_eval_count (integer/0) - The maximum allowed number of function evaluations when finding a root. The default value is 1000.

	:type - The Nx type. The default value is :f64.

	:machine_eps (float/0) - The machine epsilon. Defaults to Nx.constants.epsilon/1 for this Nx type.

	:tolerance (float/0) - The tolerance for the convergence when finding a root. Defaults to Nx.Constants.epsilon/1 for this Nx type.

	:nonlinear_eqn_root_output_fn (term/0) - An output function to call so intermediate results can be retrieved when finding a root. The default value is nil.

 Link to this function

 option_keys()

 View Source

 Link to this function

 options_schema()

 View Source

Integrator.RungeKutta behaviour

A behaviour that Runge-Kutta algorithms must implement. Currently, Integrator.DormandPrince45
and Integrator.BogackiShampine23 implement this behaviour.
See the list of Runge-Kutta methods

 Summary

 Types

 interpolate_fn_t()

 ode_fn_t()

 stepper_fn_t()

 Callbacks

 integrate(ode_fn, t, x, dt, k_vals, t_next)

 Integrates an ODE function

 interpolate(t, x, der, t_out)

 Interpolates using the method that is suitable for this particular Runge-Kutta method

 order()

 The order of this Runge-Kutta method

Types

 Link to this type

 interpolate_fn_t()

 View Source

 @type interpolate_fn_t() :: (Nx.t(), Nx.t(), Nx.t(), Nx.t() -> Nx.t())

 Link to this type

 ode_fn_t()

 View Source

 @type ode_fn_t() :: (Nx.t(), Nx.t() -> Nx.t())

 Link to this type

 stepper_fn_t()

 View Source

 @type stepper_fn_t() ::
 ((Nx.t(), Nx.t() -> Nx.t()), Nx.t(), Nx.t(), Nx.t(), Nx.t(), Nx.t() ->
 {Nx.t(), Nx.t(), Nx.t(), Nx.t()})

Callbacks

 Link to this callback

 integrate(ode_fn, t, x, dt, k_vals, t_next)

 View Source

 @callback integrate(
 ode_fn :: ode_fn_t(),
 t :: Nx.t(),
 x :: Nx.t(),
 dt :: Nx.t(),
 k_vals :: Nx.t(),
 t_next :: Nx.t()
) :: {x_next :: Nx.t(), x_est :: Nx.t(), k_new :: Nx.t()}

Integrates an ODE function

 Link to this callback

 interpolate(t, x, der, t_out)

 View Source

 @callback interpolate(t :: Nx.t(), x :: Nx.t(), der :: Nx.t(), t_out :: Nx.t()) ::
 x_out :: Nx.t()

Interpolates using the method that is suitable for this particular Runge-Kutta method

 Link to this callback

 order()

 View Source

 @callback order() :: integer()

The order of this Runge-Kutta method

Integrator.RungeKutta.BogackiShampine23

Bogacki-Shampine method of third order. For the definition of this method see
Wikipedia
Originally based on Octave runge_kutta_23.m

 Summary

 Functions

 integrate(ode_fn, t, x, dt, k_vals, t_next)

 Solves a set of non-stiff Ordinary Differential Equations (non-stiff ODEs) with the well-known
explicit Bogacki-Shampine method of order 3.

 interpolate(t, x, der, t_out)

 Performs a Hermite cubic interpolation when using BogackiShampine23 via
Utils.hermite_cubic_interpolation/4

 order()

 Returns the order of this Runge-Kutta method (which is 3)

Functions

 Link to this function

 integrate(ode_fn, t, x, dt, k_vals, t_next)

 View Source

Solves a set of non-stiff Ordinary Differential Equations (non-stiff ODEs) with the well-known
explicit Bogacki-Shampine method of order 3.
See Wikipedia here
and here

 Link to this function

 interpolate(t, x, der, t_out)

 View Source

Performs a Hermite cubic interpolation when using BogackiShampine23 via
Utils.hermite_cubic_interpolation/4

 Link to this function

 order()

 View Source

Returns the order of this Runge-Kutta method (which is 3)

Integrator.RungeKutta.DormandPrince45

Integrates and interpolates a system of ODEs with a given initial condition x from t
to t + dt with the Dormand-Prince method. For the definition of this method see
Wikipedia.
Originally based on runge_kutta_45_dorpri.m
from Octave.
It uses six function evaluations to calculate fourth and fifth-order accurate solutions.
The difference between these solutions is then taken to be the error of the (fourth-order) solution.
This error estimate is very convenient for adaptive stepsize integration algorithms.
The Dormand–Prince method has seven stages, but it uses only six function evaluations per step
because it has the FSAL (First Same As Last) property: the last stage is evaluated at the same
point as the first stage of the next step. Dormand and Prince chose the coefficients of their
method to minimize the error of the fifth-order solution. This is the main difference with the
Fehlberg method, which
was constructed so that the fourth-order solution has a small error.
See the Octave docs for ode45

 Summary

 Functions

 integrate(ode_fn, t, x, dt, k_vals, t_next)

 Integrates a system of ODEs with
[Dormand-Prince]](http://en.wikipedia.org/wiki/Dormand%E2%80%93Prince_method).

 interpolate(t, x, der, t_out)

 Performs a 4th order Hermite interpolation when interpolating with DormandPrince45
using Utils.hermite_quartic_interpolation/4

 order()

 Returns the order of this Runge-Kutta method (which is 5)

Functions

 Link to this function

 integrate(ode_fn, t, x, dt, k_vals, t_next)

 View Source

Integrates a system of ODEs with
[Dormand-Prince]](http://en.wikipedia.org/wiki/Dormand%E2%80%93Prince_method).
Reference: Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (2008),
Solving ordinary differential equations I: Nonstiff problems,
Berlin, New York: Springer-Verlag, ISBN 978-3-540-56670-0

 Link to this function

 interpolate(t, x, der, t_out)

 View Source

Performs a 4th order Hermite interpolation when interpolating with DormandPrince45
using Utils.hermite_quartic_interpolation/4

 Link to this function

 order()

 View Source

Returns the order of this Runge-Kutta method (which is 5)

Integrator.SampleEqns

Functions to be used in testing

 Summary

 Functions

 euler_equations(arg1, x)

 The Euler equations of a rigid body without external forces. This is a standard test
problem proposed by Krogh for solvers intended for nonstiff problems [see below].
Based on "rigidode.m" from Matlab/Octave. The analytical solutions are Jacobian
elliptic functions.

 falling_particle(arg1, x)

 Simulates a point mass or particle falling through pass affected by gravity. Used for comparisons
with the Matlab/Octave ballode.m routine

 van_der_pol_fn(arg1, x)

 From octave b

Functions

 Link to this function

 euler_equations(arg1, x)

 View Source

 @spec euler_equations(Nx.t(), Nx.t()) :: Nx.t()

The Euler equations of a rigid body without external forces. This is a standard test
problem proposed by Krogh for solvers intended for nonstiff problems [see below].
Based on "rigidode.m" from Matlab/Octave. The analytical solutions are Jacobian
elliptic functions.
See rigidode.m
in Matlab.
Shampine, L. F., and M. K. Gordon, Computer Solution of Ordinary Differential Equations,
W.H. Freeman & Co., 1975

 Link to this function

 falling_particle(arg1, x)

 View Source

 @spec falling_particle(Nx.t(), Nx.t()) :: Nx.t()

Simulates a point mass or particle falling through pass affected by gravity. Used for comparisons
with the Matlab/Octave ballode.m routine

 Link to this function

 van_der_pol_fn(arg1, x)

 View Source

 @spec van_der_pol_fn(Nx.t(), Nx.t()) :: Nx.t()

From octave b
fvdp = @(t,x) [x(2); (1 - x(1)^2) * x(2) - x(1)];

Integrator.Utils

Various utility functions used in Integrator

 Summary

 Functions

 columns_as_list(matrix, start_index, end_index \\ nil)

 Returns the columns of a tensor as a list of vector tensors

 epsilon(nx_type)

 Gets the epsilon for a particular Nx type

 epsilon_nx(nx_type)

 hermite_cubic_interpolation(t, x, der, t_out)

 Performs a 3rd order Hermite interpolation. Adapted from function hermite_cubic_interpolation in
runge_kutta_interpolate.m

 hermite_quartic_interpolation(t, x, der, t_out)

 Performs a 4th order Hermite interpolation. Used by an ODE solver to interpolate the
solution at the time t_out. As proposed by Shampine in Lawrence, Shampine,
"Some Practical Runge-Kutta Formulas", 1986.

 kahan_sum(sum, comp, term)

 Implements the Kahan summation algorithm, also known as compensated summation.
Based on this code in Octave.
This is really a private function, but is made public so the docs are visible.

 sign(x)

 Returns the sign of the tensor as -1 or 1 (or 0 for zero tensors)

 unique(values)

 Given a list of elements, create a new list with only the unique elements from the list

 vector_as_list(vector)

 Converts a Nx vector into a list of 1-D tensors

Functions

 Link to this function

 columns_as_list(matrix, start_index, end_index \\ nil)

 View Source

 @spec columns_as_list(Nx.t(), integer(), integer() | nil) :: [Nx.t()]

Returns the columns of a tensor as a list of vector tensors
E.g., a tensor of the form:
~M[
 1 2 3 4
 5 6 7 8
 9 10 11 12
]s8
will return
 [
~V[1 5 9]s8,
~V[2 6 10]s8,
~V[3 7 11]s8,
~V[4 8 12]s8
]

 Link to this function

 epsilon(nx_type)

 View Source

 @spec epsilon(Nx.Type.t()) :: float()

 @spec epsilon(Nx.Type.t()) :: float()

Gets the epsilon for a particular Nx type

 Link to this function

 epsilon_nx(nx_type)

 View Source

 Link to this function

 hermite_cubic_interpolation(t, x, der, t_out)

 View Source

 @spec hermite_cubic_interpolation(Nx.t(), Nx.t(), Nx.t(), Nx.t()) :: Nx.t()

Performs a 3rd order Hermite interpolation. Adapted from function hermite_cubic_interpolation in
runge_kutta_interpolate.m
See Wikipedia

 Link to this function

 hermite_quartic_interpolation(t, x, der, t_out)

 View Source

 @spec hermite_quartic_interpolation(Nx.t(), Nx.t(), Nx.t(), Nx.t()) :: Nx.t()

Performs a 4th order Hermite interpolation. Used by an ODE solver to interpolate the
solution at the time t_out. As proposed by Shampine in Lawrence, Shampine,
"Some Practical Runge-Kutta Formulas", 1986.
See hermite_quartic_interpolation function in Octave.

 Link to this function

 kahan_sum(sum, comp, term)

 View Source

 @spec kahan_sum(Nx.t(), Nx.t(), Nx.t()) :: {Nx.t(), Nx.t()}

Implements the Kahan summation algorithm, also known as compensated summation.
Based on this code in Octave.
This is really a private function, but is made public so the docs are visible.
The algorithm significantly reduces the numerical error in the total
obtained by adding a sequence of finite precision floating point numbers
compared to the straightforward approach. For more details
see this Wikipedia entry.
This function is called by AdaptiveStepsize.integrate to better catch
equality comparisons.
The first input argument is the variable that will contain the summation.
This variable is also returned as the first output argument in order to
reuse it in subsequent calls to kahan_sum/3 function.
The second input argument contains the compensation term and is returned
as the second output argument so that it can be reused in future calls of
the same summation.
The third input argument term is the variable to be added to sum.

 Link to this function

 sign(x)

 View Source

 @spec sign(float()) :: float()

Returns the sign of the tensor as -1 or 1 (or 0 for zero tensors)

 Link to this function

 unique(values)

 View Source

 @spec unique(list()) :: list()

Given a list of elements, create a new list with only the unique elements from the list

 Link to this function

 vector_as_list(vector)

 View Source

 @spec vector_as_list(Nx.t()) :: [Nx.t()]

Converts a Nx vector into a list of 1-D tensors
Is there an existing Nx way to do this? If so, swap the usage of this function
and then delete this
Note that
vector |> Nx.as_list() |> Enum.map(& Nx.tensor(&1, type: Nx.type(vector)))
seems to introduce potential precision issues

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

