

 Iter

 v0.1.0

 Table of contents

 	Iter

 	The Ultimate Enum Cheatsheet

 	Changelog

 	LICENSE

 	Modules

 	Iter

Iter

[image: Hex Version]
[image: docs]
[image: CI]
A blazing fast compile-time optimized alternative to the Enum and Stream
modules.
Overview
Iter allows you to effortlessly write highly-efficient pipelines to process
enumerables, in a familiar and highly readable style.
iex> require Iter
iex> 1..10 |> Iter.map(& &1 ** 2) |> Iter.sum()
385
Iter will merge both the map and sum steps and perform both in one single
pass. Unlike the same pipeline written with Enum, it won't build any
intermediate list, therefore saving memory and CPU cycles.
You can think of Iter as compile-time streams, or as comprehensions on
steroids. It should be highly efficient compared to the same pipeline written
with Stream, since it does most of the work at compile time without any
runtime overhead. And while it actually works very similarly to for/1 under
the hood and basically emits the same code, it offers a much more flexible,
composable and extensive API.
The benchmarks folder illustrates how Iter compares to Enum or Stream
through some examples.
Because Iter is compile-time, these are macros and not functions. This has
several implications:
	you have to require the module first before using it
	they won't appear in the stacktrace in case of errors (but Iter tries to
make sure that stacktraces will point to the line of the step responsible)
	if you "break" the pipeline, Iter won't be able to optimize it as a single
pass: it will suffer the same issue as Enum

1..10
|> Iter.map(& &1 ** 2)
|> IO.inspect() # <= pipeline broken, creates an intermediate list
|> Iter.sum()
When there is no possibility of merging steps, Iter is simply delegating to
Enum which is optimized plenty on individual steps.
Installation
Iter can be installed by adding iter to your list of dependencies in
mix.exs:
def deps do
 [
 {:iter, "~> 0.1.0"}
]
end
The documentation can be found at
https://hexdocs.pm/iter.
Motivation
Iter aims to provide a production-ready alternative to the Enum and Stream
modules, that allows to write enumerable pipelines in a familiar way without a
need to be concerned about efficiency.
Premature optimization is the root of all evil. But by consistently providing
better performance out of the box, Iter aims to help focusing more on writing
readable code, and to remove the tradeoff between readability and performance.
While Iter is close to offer a drop-in replacement for Enum/Stream, it
doesn't aim to be an exact one. The Consistency section below
covers the differences with the standard library.
Consistency
Iter is mostly consistent with the standard library, but it is prioritizing
efficiency over absolute consistency with the Enum and Stream modules, which
implies some slight differences. These differences are always documented in the
concerned macro docs.
Negative indexes
Iter only supports positive indexes when inside a pipeline, so most of
functions like at/1, slice/1 or take/1 which would also accept negative
indexes cannot be replaced in cases needing it. The reason is simple: working
with negative indexes implies to materialize the whole list once. If you need
it, you should replace the relevant step to use Enum, or maybe call
Iter.reverse/1 before accessing it (see
Collecting the pipeline section).
API differences
Iter should cover most of the Enum API, but:
	some operations are still missing
	some operations won't be added because cannot be implemented efficiently
	some extra functions are being provided: Iter.mean/1, Iter.first/1,
Iter.last/1 (to compensate with the lack of negative indexes) and
Iter.match/3 (pattern-match to filter and extract at once, like in
comprehensions)

Collecting the pipeline
Some operations like Iter.to_list/1, Iter.reverse/2, Iter.reduce/3,
Iter.group_by/2... need to materialize an intermediate list or accumulator and
will collect the pipeline.
Operations that are collecting the pipeline are always mentioning it in their
documentation.
Here is a simple example:
users
|> Iter.map(&fetch_user/1)
|> Iter.reject(&is_nil/1)
|> Iter.each(&process_user/1)
The pipeline above will start processing users as they are retrieved, in one
single pass. But assuming we want to make sure to be able to first retrieving
all users before starting the processing step, Iter.to_list/1 can be used to
make the intent explicit:
users
|> Iter.map(&fetch_user/1)
|> Iter.reject(&is_nil/1)
|> Iter.to_list() # forcing the pipeline to collect
|> Iter.each(&process_user/1)
Forcing a pipeline to collect through Enum.to_list/1 (or Enum.reverse/1,
faster) can also be used to circumvent some of Iter's limitations like the
absence of negative indexes support:
foo
|> Iter.map(&bar/1)
|> Iter.to_list() # forcing the pipeline to collect
|> Iter.take(maybe_negative_index)
In the example above, Iter.take/2 is now the only step of its pipeline and can
support negative indexing. The extra pass required is made explicit.
Resources
Still learning Enum and struggling to find the right function? Make sure to
check our UltimateEnum cheatsheet!
Copyright and License
Iter is licensed under the MIT License.

The Ultimate Enum Cheatsheet

The Enum module provides functions that are incredibly useful, flexible and
expressive. It is fair to claim that it is more than making up for the lack of
loops in Elixir. However, the number of functions might feel overwhelming at
first.
This cheatsheet is meant as an attempt to categorize functions in order to learn
or find them more easily. It doesn't mean to be exhaustive, and it also contains
a few non-Enum yet useful recipes for working with enumerables.
Disclaimer: this cheatsheet is not directly related to Iter, but since
Iter API is based on Enum it can also help its usage.
Return a list of the same size
Transform each element
Enum.map/2
iex> Enum.map(1..3, & &1 ** 2)
[1, 4, 9]
Using the index: Enum.with_index/2
iex> Enum.with_index(["a", "b", "c"])
[{"a", 0}, {"b", 1}, {"c", 2}]
iex> Enum.with_index(["a", "b", "c"], &String.duplicate(&1, &2))
["", "b", "cc"]
Using another list/enumerable: Enum.zip/2 or Enum.zip_with/3
iex> Enum.zip(["i", "x", "c"], [1, 10, 100])
[{"i", 1}, {"x", 10}, {"c", 100}]
iex> Enum.zip_with(["i", "x", "c"], [1, 10, 100], &"#{&1}: #{&2}")
["i: 1", "x: 10", "c: 100"]
See also: Enum.zip/1, Enum.zip_with/2, Enum.unzip/1
Using an accumulator: Enum.map_reduce/3
1/1, 2/3, 3/6, 4/10
iex> Enum.map_reduce(1..4, 0, fn x, acc ->
...> new_acc = x + acc
...> {x / new_acc, new_acc}
...> end)
{[1.0, 0.6666666666666666, 0.5, 0.4], 10}
Just cast as a list
Enum.to_list/1
iex> Enum.to_list(1..3)
[1, 4, 9]
iex> Enum.to_list(%{"foo" => 1, "bar" => 2})
[{"bar", 2}, {"foo", 1}]
Reordering
Reverse order: Enum.reverse/2
iex> Enum.reverse([:a, :b, :c])
[:c, :b, :a]
Enum.sort/1 / Enum.sort/2
iex> Enum.sort([:b, :d, :a, :c])
[:a, :b, :c, :d]
iex> Enum.sort([:b, :d, :a, :c], :desc)
[:d, :c, :b, :a]
Enum.sort_by/2 / Enum.sort_by/3
iex> Enum.sort_by(["abc", "d", "ef"], &String.length/1)
["d", "ef", "abc"]
iex> Enum.sort_by(["abc", "d", "ef"], &String.length/1, :desc)
["abc", "ef", "d"]
⚠️ WARNING - Pitfall when comparing structs, see doc
iex> dates = [~D[2019-01-01], ~D[2020-03-02], ~D[2019-06-06]]
iex> Enum.sort(dates)
[~D[2019-01-01], ~D[2020-03-02], ~D[2019-06-06]]
iex> Enum.sort(dates, Date)
[~D[2019-01-01], ~D[2019-06-06], ~D[2020-03-02]]
Random order: Enum.shuffle/1
iex> Enum.shuffle([:a, :b, :c, :d])
[:c, :a, :d, :b]
Return a shorter list
Filtering on a condition
Enum.filter/2 / Enum.reject/2
iex> Enum.filter(["ant", "bat", "cat"], & &1 =~ "at")
["bat", "cat"]
iex> Enum.reject(["ant", "bat", "cat"], & &1 =~ "at")
["ant"]
Both at once: Enum.split_with/2:
iex> Enum.split_with(["ant", "bat", "cat"], & &1 =~ "at")
{["bat", "cat"], ["ant"]}
Filtering + transforming in one pass: for/1 comprehension
iex> for s <- ["ant", "bat", "cat"], s =~ "at" do
...> String.capitalize(s)
...> end
["Bat", "Cat"]
Slicing
From a range: Enum.slice/2
iex> Enum.slice([1, 2, 3, 4, 5], 1..3)
[2, 3, 4]
From an index and amount: Enum.slice/3
iex> Enum.slice(1..100, 5, 10)
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
Amount-based
Keep an amount: Enum.take/2
iex> Enum.take(["ant", "bat", "cat", "dog"], 2)
["ant", "bat"]
negative index: take from the end
iex> Enum.take(["ant", "bat", "cat", "dog"], -2)
["cat", "dog"]
Remove an amount: Enum.drop/2
iex> Enum.drop(["ant", "bat", "cat", "dog"], 2)
["cat", "dog"]
negative index: drop from the end
iex> Enum.drop(["ant", "bat", "cat", "dog"], -2)
["ant", "bat"]
Both at once: Enum.split/2
iex> Enum.split(["ant", "bat", "cat", "dog"], 2)
{["ant", "bat"], ["cat", "dog"]}
Until a condition is met
Enum.take_while/2 / Enum.drop_while/2
iex> Enum.take_while(["bat", "cat", "dog"], & &1 =~ "at")
["bat", "cat"]
iex> Enum.drop_while(["bat", "cat", "dog"], & &1 =~ "at")
["dog"]
Both at once: Enum.split_while/2:
iex> Enum.split_while(["bat", "cat", "dog"], & &1 =~ "at")
{["bat", "cat"], ["dog"]}
Removing duplicates
All duplicates: Enum.uniq/1 / Enum.uniq_by/2
iex> Enum.uniq([3, 2, 1, 1, 2, 3])
[3, 2, 1]
iex> Enum.uniq_by(["foo", "bar", "baz", "foo"], &String.first/1)
["foo", "bar"]
Successive duplicates only: Enum.dedup/1 / Enum.dedup_by/2
iex> Enum.dedup([3, 2, 1, 1, 2, 3])
[3, 2, 1, 2, 3]
iex> Enum.dedup_by(["foo", "bar", "baz", "foo"], &String.first/1)
["foo", "bar", "foo"]
Side note - Use a set: MapSet.new/1 / MapSet.new/2
When working with unique elements, maybe a list isn't the best data structure.
If you don't care about the ordering but want to efficiently test for
membership, you most likely want a MapSet.
iex> MapSet.new([3, 2, 1, 1, 2, 3])
MapSet.new([1, 2, 3])
iex> MapSet.new(["foo", "bar", "baz", "foo"], &String.first/1)
MapSet.new(["b", "f"])
Random sample
Enum.take_random/2
iex> Enum.take_random([:a, :b, :c, :d], 2)
[:c, :a]
Return/search a single element
Element matching a condition
These will return early at the first match.
Enum.find/2
iex> Enum.find(["ant", "bat", "cat"], & &1 =~ "at")
"bat"
With transformation: Enum.find_value/2
iex> Enum.find_value(["ant", "bat", "cat"], & &1 =~ "at" && String.upcase(&1))
"BAT"
Its index: Enum.find_index/2
iex> Enum.find_index(["ant", "bat", "cat"], & &1 =~ "at")
1
An extreme value
Enum.max/1 / Enum.max_by/2
iex> Enum.max([2, 5, 3, 1, 4])
5
iex> Enum.max_by(["a", "bcd", "ef"], &String.length/1)
"bcd"
Enum.min/1 / Enum.min_by/2
iex> Enum.min([2, 5, 3, 1, 4])
1
iex> Enum.min_by(["a", "bcd", "ef"], &String.length/1)
"a"
⚠️ WARNING - Pitfall when comparing structs, see doc
iex> Enum.max([~D[2017-03-31], ~D[2017-04-01]])
~D[2017-03-31]
iex> Enum.max([~D[2017-03-31], ~D[2017-04-01]], Date)
~D[2017-04-01]
Both at once: Enum.min_max/1 / Enum.min_max_by/2
iex> Enum.min_max([2, 5, 3, 1, 4])
{1, 5}
iex> Enum.min_max_by(["a", "bcd", "ef"], &String.length/1)
{"a", "bcd"}
At a known index
⚠️ WARNING
Accessing linked lists by index is linear. If you are using the following in
a nested call, you are probably doing something wrong.
Raising on failure: Enum.fetch!/2
iex> Enum.fetch!(["ant", "bat", "cat"], 0)
"ant"
iex> Enum.fetch!(["ant", "bat", "cat"], -1)
"cat"
iex> Enum.fetch!(["ant", "bat", "cat"], 3)
** (Enum.OutOfBoundsError) out of bounds error
:ok/:error result: Enum.fetch/2
iex> Enum.fetch(["ant", "bat", "cat"], 2)
{:ok, "cat"}
iex> Enum.fetch(["ant", "bat", "cat"], 3)
:error
With default value: Enum.at/2
iex> Enum.at(["ant", "bat", "cat"], 3)
nil
iex> Enum.at(["ant", "bat", "cat"], 3, "none")
"none"
Random sample
Enum.random/1
iex> Enum.random([:a, :b, :c, :d])
:c
Return a number
Count without stopping
All elements: Enum.count/1
iex> Enum.count(["ant", "bat", "cat"])
3
Matching elements: Enum.count/2
iex> Enum.count(["ant", "bat", "cat"], & &1 =~ "at")
2
Count up to a limit
Enum.count_until/2
iex> Enum.count_until(1..20, 5)
5
iex> Enum.count_until(1..20, 50)
20
Matching elements: Enum.count_until/3
iex> Enum.count_until(1..20, &rem(&1, 2) == 0, 5)
5
iex> Enum.count_until(1..20, &rem(&1, 2) == 0, 50)
10
Other aggregations
Enum.sum/1
iex> Enum.sum([1, 20, 300])
321
Enum.product/1
iex> Enum.product([1, 20, 300])
6000
Find an index
Enum.find_index/2
iex> Enum.find_index(["ant", "bat", "cat"], & &1 =~ "at")
1
Return a map
Sample data
iex> users = [%{id: 10, name: "Joe"}, %{id: 20, name: "Robert"}, %{id: 30, name: "Jose"}]
From key/value pairs
Map.new/2 / Map.new/1
iex> Map.new(users, &{&1.id, &1.name})
%{10 => "Joe", 20 => "Robert", 30 => "Jose"}
iex> Map.new([{:foo, 12}, {:bar, 5}])
%{bar: 5, foo: 12}
Enum.into/3 / Enum.into/2
iex> Enum.into(users, %{}, &{&1.id, &1.name})
%{10 => "Joe", 20 => "Robert", 30 => "Jose"}
iex> Enum.into([{:foo, 12}, {:bar, 5}], %{})
%{bar: 5, foo: 12}
Aggregations
Counting: Enum.frequencies/1 / Enum.frequencies_by/2
iex> Enum.frequencies(["a", "b", "a", "c"])
%{"a" => 2, "b" => 1, "c" => 1}
iex> Enum.frequencies_by(users, &String.first(&1.name))
%{"J" => 2, "R" => 1}
Grouping: Enum.group_by/2 / Enum.group_by/3
iex> Enum.group_by(users, &String.first(&1.name))
%{
 "J" => [%{id: 10, name: "Joe"}, %{id: 30, name: "Jose"}],
 "R" => [%{id: 20, name: "Robert"}]
}
iex> Enum.group_by(users, &String.first(&1.name), & &1.id)
%{"J" => [10, 30], "R" => [20]}
Return/build a string
Sample data
words = ["hello", "world"]
Actually return a string
Enum.map_join/3
iex> Enum.map_join(words, ", ", &String.capitalize/1)
"Hello, World"
When no need to transform: Enum.join/2
iex> Enum.join(1..5, "-")
"1-2-3-4-5"
⚠️ WARNING - Efficient string building
Building your string manually using concatenation might lead to
degraded performance, make sure to always rely on Enum.map_join/3 /
Enum.join/2 or use IO data
to build large strings dynamically.
Building and using IO data
Joining as IO data: Enum.map_intersperse/3
iex> Enum.map_intersperse(words, ", ", &String.capitalize/1)
["Hello", ", ", "World"]
When no need to transform: Enum.intersperse/2
only when already list/enumerable of strings
iex> Enum.intersperse(words, ", ")
["hello", ", ", "world"]
else need to map_intersperse + to_string
iex> Enum.map_intersperse(1..5, ", ", &to_string/1)
["1", ", ", "2", ", ", "3", ", ", "4", ", ", "5"]
IO data to string: IO.iodata_to_binary/1
iex> IO.iodata_to_binary(["Hello", ", " | ["World", ?!]])
"Hello, World!"
NOTE - Building a string might be un-necessary
IO data can be used directly for IO
iex> IO.puts(["Hello", ", " | ["World", ?!]])
Hello, World!
:ok
iex> File.write!("hello.txt", ["Hello", ", " | ["World", ?!]])
:ok
Return a boolean
Matching a condition
These will return early at the first match.
Enum.any?/2
iex> Enum.any?(["ant", "bat", "cat"], & &1 =~ "at")
true
iex> Enum.any?(["ant", "bat", "cat"], & &1 =~ "z")
false
Enum.all?/2
iex> Enum.all?(["ant", "bat", "cat"], & &1 =~ "t")
true
iex> Enum.all?(["ant", "bat", "cat"], & &1 =~ "at")
false
Emptiness
Enum.empty?/1
iex> Enum.empty?([])
true
iex> Enum.empty?([:exists])
true
Membership
Enum.member?/2
iex> Enum.member?(["ant", "bat", "cat"], "bat")
true
iex> Enum.member?(["ant", "bat", "cat"], "dog")
false
Same but shorter: in/2
iex> "bat" in ["ant", "bat", "cat"]
true
Side note - Use a set: MapSet.new/1 / MapSet.new/2
Checking membership within a list has a linear cost - potentially
quadratic within a loop. You might want to convert a list to a
MapSet for efficient lookups.
DON'T
Enum.find(fn x -> x.id in list end)
DO
set = MapSet.new(list)
Enum.find(fn x -> x.id in set end)
Return a flattened list
Without transformation: Enum.concat/1
iex> Enum.concat([["ant", "bat"], ["cat", "dog"]])
["ant", "bat", "cat", "dog"]
With transformation: Enum.flat_map/2
iex> list = [%{data: [1, 2]}, %{data: [3, 4]}]
iex> Enum.flat_map(list, & &1.data)
[1, 2, 3, 4]
Return several smaller lists
By size: Enum.chunk_every/2 / Enum.chunk_every/4
iex> Enum.chunk_every([1, 2, 3, 4, 5, 6], 2)
[[1, 2], [3, 4], [5, 6]]
Enum.chunk_every([1, 2, 3, 4, 5, 6], 3, 2, :discard)
[[1, 2, 3], [3, 4, 5]]
Grouped by condition: Enum.chunk_by/2
iex> animals = ["cat", "bat", "beaver", "camel"]
iex> Enum.chunk_by(animals, &String.first/1)
[["cat"], ["bat", "beaver"], ["camel"]]
See also: Enum.chunk_while/4
When nothing else works
The closest thing to a for loop
The most important one: Enum.reduce/3
iex> Enum.reduce([2, 4, 8], 0, fn x, acc ->
...> acc + 1 / x
...> end)
0.875 # 1 / 2 + 1 / 4 + 1 / 8
⚠️ WARNING - Building a list
Lists should never be built by appending, always by prepending. Quoting the
Erlang efficiency guide,
"To avoid copying the result in each iteration, build the list in reverse order
and reverse the list when you are done":
iex> Enum.reduce(1..5, [], fn x, acc -> [x ** 2 | acc] end)
[25, 16, 9, 4, 1]
iex> |> Enum.reverse()
[1, 4, 9, 16, 25]
⚠️ WARNING - Reinventing the wheel
Enum.reduce/3 and its variants are very powerful and can be seen as the swiss
army knife of the Enum module. But if there is a specialized function that
does what you need, rolling your own manual implementation might be more verbose
and less efficient (see the build a string section for
example).
Skipping the initial accumulator
Enum.reduce/2
first element will be used as accumulator instead
iex> Enum.reduce([2, 4, 8], fn x, acc ->
...> acc + 1 / x
...> end)
2.375 # 2 + 1 / 4 + 1 / 8
⚠️ WARNING - Edge cases
It might seem that 0 is optional here...
iex> Enum.reduce([10, 20, 30], &+/2)
60
... but will actually raise if empty
iex> Enum.reduce([], &+/2)
** (Enum.EmptyError) empty error
Early returns (like break)
Enum.reduce_while/3
iex> Enum.reduce_while([2, 4, 0, 1], 0, fn x, acc ->
...> if x == 0 do
...> {:halt, acc}
...> else
...> {:cont, acc + 1 / x}
...> end
...> end)
0.75 # 1 / 2 + 1 / 4
NOTE - Recursion
The benefit of Enum.reduce_while/3 is that it works with any enumerable.
However, a recursion-based implementation might be more readable, maintainable
and performant if you only need to support lists. The previous example could be
re-implemented as:
 def sum_inverses([x | xs], acc) when x != 0 do
 sum_inverses(xs, acc + 1 / x)
 end

 def sum_inverses(_, acc), do: acc
Working with several lists / enumerables
Two inputs: Enum.zip_reduce/4
iex> Enum.zip_reduce([3, 4, 2], [100, 10, 1], 0, fn x, y, acc ->
...> x * y + acc
...> end)
342 # 3 * 100 + 4 * 10 + 2 * 1
More inputs: Enum.zip_reduce/3
iex> Enum.zip_reduce([[4, 2], [10, 1], [1, -1]], 0, fn xs, acc ->
...> Enum.product(xs) + acc
...> end)
38 # 4 * 10 * 1 + 2 * 1 * -1
Keeping all the steps
With initial accumulator: Enum.scan/3
iex> Enum.scan([2, 4, 8], 0, fn x, acc ->
...> acc + 1 / x
...> end)
[0.5, 0.75, 0.875]
Without initial accumulator: Enum.scan/2
iex> Enum.scan([2, 4, 8], fn x, acc ->
...> acc + 1 / x
...> end)
[2, 2.25, 2.375]

Changelog

Dev
v0.1.0 (2022-12-25)
	Initial release

LICENSE

MIT License
Copyright (c) 2022 Sabiwara
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Iter

A blazing fast compile-time optimized alternative to the Enum and Stream
modules.
Overview
Iter allows you to effortlessly write highly-efficient pipelines to process
enumerables, in a familiar and highly readable style.
iex> require Iter
iex> 1..10 |> Iter.map(& &1 ** 2) |> Iter.sum()
385
Iter will merge both the map and sum steps and perform both in one single
pass. Unlike the same pipeline written with Enum, it won't build any
intermediate list, therefore saving memory and CPU cycles.
You can think of Iter as compile-time streams, or as comprehensions on
steroids. It should be highly efficient compared to the same pipeline written
with Stream, since it does most of the work at compile time without any
runtime overhead. And while it actually works very similarly to for/1 under
the hood and basically emits the same code, it offers a much more flexible,
composable and extensive API.
The benchmarks folder illustrates how Iter compares to Enum or Stream
through some examples.
Because Iter is compile-time, these are macros and not functions. This has
several implications:
	you have to require the module first before using it
	they won't appear in the stacktrace in case of errors (but Iter tries to
make sure that stacktraces will point to the line of the step responsible)
	if you "break" the pipeline, Iter won't be able to optimize it as a single
pass: it will suffer the same issue as Enum

1..10
|> Iter.map(& &1 ** 2)
|> IO.inspect() # <= pipeline broken, creates an intermediate list
|> Iter.sum()
When there is no possibility of merging steps, Iter is simply delegating to
Enum which is optimized plenty on individual steps.
Consistency
Iter is mostly consistent with the standard library, but it is prioritizing
efficiency over absolute consistency with the Enum and Stream modules, which
implies some slight differences. These differences are always documented in the
concerned macro docs.
Negative indexes
Iter only supports positive indexes when inside a pipeline, so most of
functions like at/1, slice/1 or take/1 which would also accept negative
indexes cannot be replaced in cases needing it. The reason is simple: working
with negative indexes implies to materialize the whole list once. If you need
it, you should replace the relevant step to use Enum, or maybe call
Iter.reverse/1 before accessing it (see
Collecting the pipeline section).
API differences
Iter should cover most of the Enum API, but:
	some operations are still missing
	some operations won't be added because cannot be implemented efficiently
	some extra functions are being provided: Iter.mean/1, Iter.first/1,
Iter.last/1 (to compensate with the lack of negative indexes) and
Iter.match/3 (pattern-match to filter and extract at once, like in
comprehensions)

Collecting the pipeline
Some operations like Iter.to_list/1, Iter.reverse/2, Iter.reduce/3,
Iter.group_by/2... need to materialize an intermediate list or accumulator and
will collect the pipeline.
Operations that are collecting the pipeline are always mentioning it in their
documentation.
Here is a simple example:
users
|> Iter.map(&fetch_user/1)
|> Iter.reject(&is_nil/1)
|> Iter.each(&process_user/1)
The pipeline above will start processing users as they are retrieved, in one
single pass. But assuming we want to make sure to be able to first retrieving
all users before starting the processing step, Iter.to_list/1 can be used to
make the intent explicit:
users
|> Iter.map(&fetch_user/1)
|> Iter.reject(&is_nil/1)
|> Iter.to_list() # forcing the pipeline to collect
|> Iter.each(&process_user/1)
Forcing a pipeline to collect through Enum.to_list/1 (or Enum.reverse/1,
faster) can also be used to circumvent some of Iter's limitations like the
absence of negative indexes support:
foo
|> Iter.map(&bar/1)
|> Iter.to_list() # forcing the pipeline to collect
|> Iter.take(maybe_negative_index)
In the example above, Iter.take/2 is now the only step of its pipeline and can
support negative indexing. The extra pass required is made explicit.

 Anchor for this section

 Summary

 Functions

 all?(enumerable)

 Returns true if all elements in enumerable are truthy.
Equivalent to Enum.all?/1.

 all?(enumerable, fun)

 Returns true if fun returns a truthy value for all elements in enumerable.
Equivalent to Enum.all?/2.

 any?(enumerable)

 Returns true if at least one element in enumerable is truthy.
Equivalent to Enum.any?/1.

 any?(enumerable, fun)

 Returns true if fun returns a truthy value for at least one element in enumerable.
Equivalent to Enum.any?/2.

 at(enumerable, index)

 Finds the element at the given index (zero-based). Equivalent to Enum.at/2.

 at(enumerable, index, default)

 Finds the element at the given index (zero-based).
Equivalent to Enum.at/3.

 concat(enumerable)

 Given an enumerable of enumerables, concatenates the enumerables into a single one.
Equivalent to Enum.concat/1.

 concat(left, right)

 Concatenates the enumerable on the right with the enumerable on the left.
Equivalent to Enum.concat/2.

 count(enumerable)

 Returns the size of the enumerable. Equivalent to Enum.count/1.

 count(enumerable, fun)

 Returns the count of elements in the enumerable for which fun returns a truthy value.
Equivalent to Enum.count/2.

 dedup(enumerable)

 Enumerates the enumerable, removing successive duplicate elements.
Equivalent to Enum.dedup/1.

 dedup_by(enumerable, fun)

 Enumerates the enumerable, removing successive elements for which fun return duplicate values.
Equivalent to Enum.dedup_by/2.

 drop(enumerable, amount)

 Drops an amount of elements from the beginning of the enumerable.
Equivalent to Enum.drop/2.

 drop_while(enumerable, fun)

 Drops elements at the beginning of the enumerable, while fun returns
a truthy value. Equivalent to Enum.drop_while/2.

 each(enumerable, fun)

 Invokes the given fun for each element in the enumerable.
Equivalent to Enum.each/2.

 empty?(enumerable)

 Returns true if enumerable is empty, otherwise false.
Equivalent to Enum.empty?/1.

 fetch(enumerable, index)

 Finds the element at the given index (zero-based).
Equivalent to Enum.fetch/2.

 fetch!(enumerable, index)

 Finds the element at the given index (zero-based).
Equivalent to Enum.fetch!/2.

 filter(enumerable, fun)

 Filters the enumerable, keeping only elements for which fun returns a truthy value.
Equivalent to Enum.filter/2.

 find(enumerable, fun)

 Returns the first element for which fun returns a truthy value.
Equivalent to Enum.find/2.

 find(enumerable, default, fun)

 Returns the first element for which fun returns a truthy value,
returns default if not found.any()
Equivalent to Enum.find/3.

 find_index(enumerable, fun)

 Similar to find/2, but returns the index (zero-based) of the element
instead of the element itself.
Equivalent to Enum.find_index/2.

 find_value(enumerable, fun)

 Similar to find/2, but returns the value of the function invocation instead
of the element itself. Equivalent to Enum.find_value/2.

 find_value(enumerable, default, fun)

 Similar to find/3, but returns the value of the function invocation instead
of the element itself. Equivalent to Enum.find_value/3.

 first(enumerable)

 Retrieves the first element of the enumerable, or nil if empty.

 first(enumerable, default)

 Retrieves the first element of the enumerable, or default if empty.

 flat_map(enumerable, fun)

 Maps the given fun over enumerable and flattens the result.
Equivalent to Enum.flat_map/2.

 frequencies(enumerable)

 Returns a map with keys as unique elements of enumerable and values
as the count of every element.
Equivalent to Enum.frequencies/1.

 frequencies_by(enumerable, key_fun)

 Returns a map with keys as unique elements given by key_fun and values
as the count of every element.
Equivalent to Enum.frequencies_by/2.

 group_by(enumerable, key_fun)

 Splits the enumerable into groups based on key_fun. Equivalent to Enum.group_by/2.

 group_by(enumerable, key_fun, value_fun)

 Splits the enumerable into groups based on key_fun.
Equivalent to Enum.group_by/3.

 intersperse(enumerable, separator)

 Intersperses separator between each element of the enumerable.
Equivalent to Enum.intersperse/2.

 into(enumerable, collectable)

 Inserts the given enumerable into a collectable.
Equivalent to Enum.into/2.

 into(enumerable, collectable, fun)

 Inserts the given enumerable into a collectable and maps the fun
function on each item.
Equivalent to Enum.into/3.

 join(enumerable)

 Joins the given enumerable into a string without any separator.
Equivalent to Enum.join/1.

 join(enumerable, joiner)

 Joins the given enumerable into a string with joiner as a separator.
Equivalent to Enum.join/2.

 last(enumerable)

 Retrieves the last element of the enumerable, or nil if empty.

 last(enumerable, default)

 Retrieves the last element of the enumerable, or default if empty.

 map(enumerable, fun)

 Applies fun on each element of enumerable. Equivalent to Enum.map/2.

 map_intersperse(enumerable, separator, fun)

 Maps and intersperses the given enumerable with separator.
Equivalent to Enum.map_intersperse/3.

 map_join(enumerable, mapper)

 Applies mapper and joins the given enumerable into a string without any separator.
Equivalent to Enum.map_join/2.

 map_join(enumerable, joiner, mapper)

 Applies mapper and joins the given enumerable into a string with joiner as a separator.
Equivalent to Enum.map_join/3.

 map_reduce(enumerable, acc, fun)

 Invokes the given function to each element in the enumerable to reduce it to
a single element, while keeping an accumulator.
Equivalent to Enum.map_reduce/3.

 match(enumerable, pattern, expr)

 Pattern-matches on each element of the enumerable, filters out elements that
do not match the pattern, and returns the expr.

 max(enumerable)

 Returns the maximal element in the enumerable according to Erlang's term ordering.
Equivalent to Enum.max/1.

 mean(enumerable)

 Returns the mean value of all elements in enumerable.

 member?(enumerable, element)

 Checks if element exists within the enumerable.
Equivalent to Enum.member?/2.

 min(enumerable)

 Returns the minimal element in the enumerable according to Erlang's term ordering.
Equivalent to Enum.min/1.

 product(enumerable)

 Returns the product of all elements in enumerable.
Equivalent to Enum.product/1.

 random(enumerable)

 Returns a random element of the enumerable. Equivalent to Enum.random/1.

 reduce(enumerable, fun)

 Invokes fun for each element in the enumerable with the accumulator.
Equivalent to Enum.reduce/2.

 reduce(enumerable, acc, fun)

 Invokes fun for each element in the enumerable with the accumulator.
Equivalent to Enum.reduce/3.

 reject(enumerable, fun)

 Filters the enumerable, rejecting elements for which fun returns a truthy value.
Equivalent to Enum.reject/2.

 reverse(enumerable)

 Returns a list of elements in enumerable in reverse order.
Equivalent to Enum.reverse/1.

 reverse(enumerable, tail)

 Reverses the elements in enumerable, appends the tail, and
returns the result as a list.
Equivalent to Enum.reverse/2.

 scan(enumerable, acc, fun)

 Applies the given function to each element in the enumerable, storing the
result in a list and passing it as the accumulator for the next computation.
Equivalent to Enum.scan/3.

 shuffle(enumerable)

 Returns a list with enumerable elements in a random order.
Equivalent to Enum.shuffle/1.

 sort(enumerable)

 Sorts the enumerable according to Erlang's term ordering.
Equivalent to Enum.sort/1.

 sort(enumerable, sorter)

 Sorts the enumerable by the given sorter function or module.
Equivalent to Enum.sort/2.

 sort_by(enumerable, fun, sorter \\ :asc)

 Sorts the mapped results of the enumerable according to Erlang's term ordering.
Equivalent to Enum.sort_by/2.

 split(enumerable, amount)

 Splits the enumerable into two lists, leaving amount elements in the first one.
Equivalent to Enum.split/2.

 split_while(enumerable, fun)

 Splits the enumerable in two at the position of the element for which fun
returns a falsy value for the first time. Equivalent to Enum.split_while/2.

 split_with(enumerable, fun)

 Splits the enumerable in two lists based on the truthiness of applying fun on
each element. Equivalent to Enum.split_with/2.

 sum(enumerable)

 Returns the sum of all elements in enumerable. Equivalent to Enum.sum/1.

 take(enumerable, amount)

 Takes an amount of elements from the beginning of the enumerable.
Equivalent to Enum.take/2.

 take_random(enumerable, amount)

 Takes an amount of random elements from the enumerable.
Equivalent to Enum.take_random/2.

 take_while(enumerable, fun)

 Takes the elements from the beginning of the enumerable, while fun returns
a truthy value. Equivalent to Enum.take_while/2.

 to_list(enumerable)

 Converts enumerable to a list. Equivalent to Enum.to_list/1.

 uniq(enumerable)

 Enumerates the enumerable, removing the duplicate elements.
Equivalent to Enum.uniq/1.

 uniq_by(enumerable, fun)

 Enumerates the enumerable, removing elements for which fun return duplicate values.
Equivalent to Enum.uniq_by/2.

 unzip(enumerable)

 Extracts two-element tuples from the given enumerable and returns them
as two separate lists.
Equivalent to Enum.unzip/1.

 with_index(enumerable)

 Returns the enumerable with each element wrapped in a tuple
alongside its index. Equivalent to Enum.with_index/1.

 with_index(enumerable, fun_or_offset)

 Returns the enumerable with each element wrapped in a tuple
alongside its index. Equivalent to Enum.with_index/2.

 zip(enumerables)

 Zips corresponding elements from a finite collection of enumerables
into a list of tuples.

 zip(left, right)

 Zips corresponding elements from two enumerables into a list of tuples.

 Anchor for this section

Functions

 Link to this macro

 all?(enumerable)

 View Source

 (macro)

Returns true if all elements in enumerable are truthy.
Equivalent to Enum.all?/1.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.all?(["yes", true])
true

iex> Iter.all?([false, true])
false

iex> Iter.all?([])
true

 Link to this macro

 all?(enumerable, fun)

 View Source

 (macro)

Returns true if fun returns a truthy value for all elements in enumerable.
Equivalent to Enum.all?/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Enum.all?([2, 4, 6], fn x -> rem(x, 2) == 0 end)
true

iex> Enum.all?([2, 3, 4], fn x -> rem(x, 2) == 0 end)
false

iex> Iter.all?([], fn x -> rem(x, 2) == 0 end)
true

 Link to this macro

 any?(enumerable)

 View Source

 (macro)

Returns true if at least one element in enumerable is truthy.
Equivalent to Enum.any?/1.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.any?([false, true])
true

iex> Iter.any?([false, nil])
false

iex> Iter.any?([])
false

 Link to this macro

 any?(enumerable, fun)

 View Source

 (macro)

Returns true if fun returns a truthy value for at least one element in enumerable.
Equivalent to Enum.any?/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Enum.any?([2, 4, 6], fn x -> rem(x, 2) == 1 end)
false

iex> Enum.any?([2, 3, 4], fn x -> rem(x, 2) == 1 end)
true

iex> Iter.any?([], fn x -> rem(x, 2) == 1 end)
false

 Link to this macro

 at(enumerable, index)

 View Source

 (macro)

Finds the element at the given index (zero-based). Equivalent to Enum.at/2.
Returns nil if not found.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.
Note: Negative indexes are NOT supported when used in a pipeline, since this
would imply to materialize the whole list and therefore cannot be done lazily.
If you need to use negative indexes, you can either use materialize the pipeline first
using Iter.to_list/1 or use the equivalent Enum function.
Read the Collecting the pipeline section for more information.
Also, see Iter.last/1 if you need to access the last element.

 examples

 Examples

iex> Iter.at([:foo, :bar, :baz], 2)
:baz

iex> Iter.at([:foo, :bar, :baz], 3)
nil

 Link to this macro

 at(enumerable, index, default)

 View Source

 (macro)

Finds the element at the given index (zero-based).
Equivalent to Enum.at/3.
Returns default if not found.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.
Note: Negative indexes are NOT supported when used in a pipeline, since this
would imply to materialize the whole list and therefore cannot be done lazily.
If you need to use negative indexes, you can either use materialize the pipeline first
using Iter.to_list/1 or use the equivalent Enum function.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.at(1..1000, 5, :none)
6
iex> Iter.at(1..1000, 1000, :none)
:none

 Link to this macro

 concat(enumerable)

 View Source

 (macro)

Given an enumerable of enumerables, concatenates the enumerables into a single one.
Equivalent to Enum.concat/1.

 examples

 Examples

iex> Iter.concat([1..3, 4..6])
[1, 2, 3, 4, 5, 6]

 Link to this macro

 concat(left, right)

 View Source

 (macro)

Concatenates the enumerable on the right with the enumerable on the left.
Equivalent to Enum.concat/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.concat(1..3, 4..6)
[1, 2, 3, 4, 5, 6]

 Link to this macro

 count(enumerable)

 View Source

 (macro)

Returns the size of the enumerable. Equivalent to Enum.count/1.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.count([1, 2, 3])
3

 Link to this macro

 count(enumerable, fun)

 View Source

 (macro)

Returns the count of elements in the enumerable for which fun returns a truthy value.
Equivalent to Enum.count/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.count(1..5, fn x -> rem(x, 2) == 0 end)
2

 Link to this macro

 dedup(enumerable)

 View Source

 (macro)

Enumerates the enumerable, removing successive duplicate elements.
Equivalent to Enum.dedup/1.

 examples

 Examples

iex> Iter.dedup([1, 2, 2, 3, 3, 1, 3])
[1, 2, 3, 1, 3]

 Link to this macro

 dedup_by(enumerable, fun)

 View Source

 (macro)

Enumerates the enumerable, removing successive elements for which fun return duplicate values.
Equivalent to Enum.dedup_by/2.

 examples

 Examples

iex> Iter.dedup_by([{1, :a}, {2, :b}, {2, :c}, {1, :a}], fn {x, _} -> x end)
[{1, :a}, {2, :b}, {1, :a}]

 Link to this macro

 drop(enumerable, amount)

 View Source

 (macro)

Drops an amount of elements from the beginning of the enumerable.
Equivalent to Enum.drop/2.
Note: Negative indexes are NOT supported when used in a pipeline, since this
would imply to materialize the whole list and therefore cannot be done lazily.
If you need to use negative indexes, you can either use materialize the pipeline first
using Iter.to_list/1 or use the equivalent Enum function.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.drop(1..10, 5)
[6, 7, 8, 9, 10]

 Link to this macro

 drop_while(enumerable, fun)

 View Source

 (macro)

Drops elements at the beginning of the enumerable, while fun returns
a truthy value. Equivalent to Enum.drop_while/2.

 examples

 Examples

iex> Iter.drop_while(1..10, & &1 < 6)
[6, 7, 8, 9, 10]

 Link to this macro

 each(enumerable, fun)

 View Source

 (macro)

Invokes the given fun for each element in the enumerable.
Equivalent to Enum.each/2.
Returns :ok.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> {:ok, pid} = Agent.start(fn -> [] end)
iex> Iter.each(1..5, fn i -> Agent.update(pid, &[i | &1]) end)
:ok
iex> Agent.get(pid, & &1)
[5, 4, 3, 2, 1]

 Link to this macro

 empty?(enumerable)

 View Source

 (macro)

Returns true if enumerable is empty, otherwise false.
Equivalent to Enum.empty?/1.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.empty?([])
true

iex> Iter.empty?([:foo])
false

 Link to this macro

 fetch(enumerable, index)

 View Source

 (macro)

Finds the element at the given index (zero-based).
Equivalent to Enum.fetch/2.
Returns {:ok, element} if found, otherwise :error.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.
Note: Negative indexes are NOT supported when used in a pipeline, since this
would imply to materialize the whole list and therefore cannot be done lazily.
If you need to use negative indexes, you can either use materialize the pipeline first
using Iter.to_list/1 or use the equivalent Enum function.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.fetch([:foo, :bar, :baz], 2)
{:ok, :baz}

iex> Iter.fetch([:foo, :bar, :baz], 3)
:error

 Link to this macro

 fetch!(enumerable, index)

 View Source

 (macro)

Finds the element at the given index (zero-based).
Equivalent to Enum.fetch!/2.
Raises OutOfBoundsError if the given index is outside the range
of the enumerable.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.
Note: Negative indexes are NOT supported when used in a pipeline, since this
would imply to materialize the whole list and therefore cannot be done lazily.
If you need to use negative indexes, you can either use materialize the pipeline first
using Iter.to_list/1 or use the equivalent Enum function.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.fetch!([:foo, :bar, :baz], 2)
:baz

iex> Iter.fetch!([:foo, :bar, :baz], 3)
** (Enum.OutOfBoundsError) out of bounds error

 Link to this macro

 filter(enumerable, fun)

 View Source

 (macro)

Filters the enumerable, keeping only elements for which fun returns a truthy value.
Equivalent to Enum.filter/2.

 examples

 Examples

iex> Iter.filter(1..4, &rem(&1, 2) == 1)
[1, 3]

 Link to this macro

 find(enumerable, fun)

 View Source

 (macro)

Returns the first element for which fun returns a truthy value.
Equivalent to Enum.find/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.find([2, 3, 4], fn x -> rem(x, 2) == 1 end)
3

iex> Iter.find([2, 4, 6], fn x -> rem(x, 2) == 1 end)
nil

 Link to this macro

 find(enumerable, default, fun)

 View Source

 (macro)

Returns the first element for which fun returns a truthy value,
returns default if not found.any()
Equivalent to Enum.find/3.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.find([2, 3, 4], 0, fn x -> rem(x, 2) == 1 end)
3

iex> Iter.find([2, 4, 6], 0, fn x -> rem(x, 2) == 1 end)
0

 Link to this macro

 find_index(enumerable, fun)

 View Source

 (macro)

Similar to find/2, but returns the index (zero-based) of the element
instead of the element itself.
Equivalent to Enum.find_index/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.find_index(["ant", "bat", "cat"], fn x -> x =~ "b" end)
1

iex> Iter.find_index(["ant", "bat", "cat"], fn x -> x =~ "z" end)
nil

 Link to this macro

 find_value(enumerable, fun)

 View Source

 (macro)

Similar to find/2, but returns the value of the function invocation instead
of the element itself. Equivalent to Enum.find_value/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.find_value([%{x: nil}, %{x: 5}, %{}], fn map -> map[:x] end)
5

iex> Iter.find_value([%{x: nil}, %{}, %{}], fn map -> map[:x] end)
nil

 Link to this macro

 find_value(enumerable, default, fun)

 View Source

 (macro)

Similar to find/3, but returns the value of the function invocation instead
of the element itself. Equivalent to Enum.find_value/3.
Returns default if not found.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.find_value([%{x: nil}, %{x: 5}, %{}], 0, fn map -> map[:x] end)
5

iex> Iter.find_value([%{x: nil}, %{}, %{}], 0, fn map -> map[:x] end)
0

 Link to this macro

 first(enumerable)

 View Source

 (macro)

Retrieves the first element of the enumerable, or nil if empty.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.
There is no equivalent Enum function.

 examples

 Examples

iex> Iter.first(1..1000)
1
iex> Iter.first([])
nil

 Link to this macro

 first(enumerable, default)

 View Source

 (macro)

Retrieves the first element of the enumerable, or default if empty.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.
There is no equivalent Enum function.

 examples

 Examples

iex> Iter.first(1..10, :none)
1
iex> Iter.first([], :none)
:none

 Link to this macro

 flat_map(enumerable, fun)

 View Source

 (macro)

Maps the given fun over enumerable and flattens the result.
Equivalent to Enum.flat_map/2.

 examples

 Examples

iex> Iter.flat_map(1..3, fn n -> 1..n end)
[1, 1, 2, 1, 2, 3]

 Link to this macro

 frequencies(enumerable)

 View Source

 (macro)

Returns a map with keys as unique elements of enumerable and values
as the count of every element.
Equivalent to Enum.frequencies/1.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.frequencies([1, 1, 2, 1, 2, 3])
%{1 => 3, 2 => 2, 3 => 1}

 Link to this macro

 frequencies_by(enumerable, key_fun)

 View Source

 (macro)

Returns a map with keys as unique elements given by key_fun and values
as the count of every element.
Equivalent to Enum.frequencies_by/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.frequencies_by(~w{aa aA bb cc}, &String.downcase/1)
%{"aa" => 2, "bb" => 1, "cc" => 1}

 Link to this macro

 group_by(enumerable, key_fun)

 View Source

 (macro)

Splits the enumerable into groups based on key_fun. Equivalent to Enum.group_by/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.group_by(~w{ant buffalo cat dingo}, &String.length/1)
%{3 => ["ant", "cat"], 5 => ["dingo"], 7 => ["buffalo"]}

 Link to this macro

 group_by(enumerable, key_fun, value_fun)

 View Source

 (macro)

Splits the enumerable into groups based on key_fun.
Equivalent to Enum.group_by/3.
The result is a map where each key is given by key_fun and each
value is a list of elements given by value_fun.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.group_by(~w{ant buffalo cat dingo}, &String.length/1, &String.first/1)
%{3 => ["a", "c"], 5 => ["d"], 7 => ["b"]}

 Link to this macro

 intersperse(enumerable, separator)

 View Source

 (macro)

Intersperses separator between each element of the enumerable.
Equivalent to Enum.intersperse/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.intersperse(1..3, :foo)
[1, :foo, 2, :foo, 3]

 Link to this macro

 into(enumerable, collectable)

 View Source

 (macro)

Inserts the given enumerable into a collectable.
Equivalent to Enum.into/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.into([a: 1, b: 2, a: 3], %{})
%{a: 3, b: 2}

iex> Iter.into([1, 2, 1, 2.0], MapSet.new())
MapSet.new([1, 2, 2.0])

 Link to this macro

 into(enumerable, collectable, fun)

 View Source

 (macro)

Inserts the given enumerable into a collectable and maps the fun
function on each item.
Equivalent to Enum.into/3.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.into([a: 1, b: 2, a: 3], %{}, fn {k, v} -> {k, v * 2} end)
%{a: 6, b: 4}

iex> Iter.into([1, 2, 1, 2.0], MapSet.new(), & &1 * 2)
MapSet.new([2, 4, 4.0])

 Link to this macro

 join(enumerable)

 View Source

 (macro)

Joins the given enumerable into a string without any separator.
Equivalent to Enum.join/1.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.join(1..3)
"123"

 Link to this macro

 join(enumerable, joiner)

 View Source

 (macro)

Joins the given enumerable into a string with joiner as a separator.
Equivalent to Enum.join/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.join(1..3, "-")
"1-2-3"

 Link to this macro

 last(enumerable)

 View Source

 (macro)

Retrieves the last element of the enumerable, or nil if empty.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.
There is no equivalent Enum function, but it can compensate
for the lack of negative index support in at/2.

 examples

 Examples

iex> Iter.last(1..10)
10
iex> Iter.last([])
nil

 Link to this macro

 last(enumerable, default)

 View Source

 (macro)

Retrieves the last element of the enumerable, or default if empty.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.
There is no equivalent Enum function, but it can compensate
for the lack of negative index support in at/3.

 examples

 Examples

iex> Iter.last(1..10, :none)
10
iex> Iter.last([], :none)
:none

 Link to this macro

 map(enumerable, fun)

 View Source

 (macro)

Applies fun on each element of enumerable. Equivalent to Enum.map/2.

 examples

 Examples

iex> Iter.map(1..3, & &1 ** 2)
[1, 4, 9]

 Link to this macro

 map_intersperse(enumerable, separator, fun)

 View Source

 (macro)

Maps and intersperses the given enumerable with separator.
Equivalent to Enum.map_intersperse/3.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.map_intersperse(1..3, :foo, & &1 ** 2)
[1, :foo, 4, :foo, 9]

 Link to this macro

 map_join(enumerable, mapper)

 View Source

 (macro)

Applies mapper and joins the given enumerable into a string without any separator.
Equivalent to Enum.map_join/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.map_join(1..3, & &1 ** 2)
"149"

 Link to this macro

 map_join(enumerable, joiner, mapper)

 View Source

 (macro)

Applies mapper and joins the given enumerable into a string with joiner as a separator.
Equivalent to Enum.map_join/3.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.map_join(1..3, "-", & &1 ** 2)
"1-4-9"

 Link to this macro

 map_reduce(enumerable, acc, fun)

 View Source

 (macro)

Invokes the given function to each element in the enumerable to reduce it to
a single element, while keeping an accumulator.
Equivalent to Enum.map_reduce/3.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.map_reduce([1, 2, 3], 0, fn x, acc -> {x * 2, x + acc} end)
{[2, 4, 6], 6}

 Link to this macro

 match(enumerable, pattern, expr)

 View Source

 (macro)

Pattern-matches on each element of the enumerable, filters out elements that
do not match the pattern, and returns the expr.
This works a bit like a combination of map/2 and filter/2 and works very
similarly as for/1 comprehensions.
There is no equivalent Enum function.

 examples

 Examples

iex> Iter.match([{:ok, 1}, :error, {:ok, 3}], {:ok, x}, x + 1)
[2, 4]
The pattern also supports guards:
iex> Iter.match([1, nil, 3], x when is_integer(x), x * 2)
[2, 6]

 Link to this macro

 max(enumerable)

 View Source

 (macro)

Returns the maximal element in the enumerable according to Erlang's term ordering.
Equivalent to Enum.max/1.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.max([2, 4, 1, 3])
4

iex> Iter.max([])
** (Enum.EmptyError) empty error

 Link to this macro

 mean(enumerable)

 View Source

 (macro)

Returns the mean value of all elements in enumerable.
Raises Enum.EmptyError if enumerable is empty.
There is no equivalent Enum function.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.mean(1..10)
5.5

iex> Iter.mean([])
** (Enum.EmptyError) empty error

 Link to this macro

 member?(enumerable, element)

 View Source

 (macro)

Checks if element exists within the enumerable.
Equivalent to Enum.member?/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Enum.member?([:ant, :bat, :cat], :bat)
true

iex> Enum.member?([:ant, :bat, :cat], :dog)
false

iex> Iter.member?([1, 2, 3], 2.0)
false

 Link to this macro

 min(enumerable)

 View Source

 (macro)

Returns the minimal element in the enumerable according to Erlang's term ordering.
Equivalent to Enum.min/1.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.min([2, 4, 1, 3])
1

iex> Iter.min([])
** (Enum.EmptyError) empty error

 Link to this macro

 product(enumerable)

 View Source

 (macro)

Returns the product of all elements in enumerable.
Equivalent to Enum.product/1.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.product(1..3)
6

 Link to this macro

 random(enumerable)

 View Source

 (macro)

Returns a random element of the enumerable. Equivalent to Enum.random/1.
Raises Enum.EmptyError if enumerable is empty.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

Although not necessary, let's seed the random algorithm
iex> :rand.seed(:exsss, {1, 2, 3})
iex> Iter.random(1..100)
27

 Link to this macro

 reduce(enumerable, fun)

 View Source

 (macro)

Invokes fun for each element in the enumerable with the accumulator.
Equivalent to Enum.reduce/2.
Raises Enum.EmptyError if enumerable is empty.
The first element of the enumerable is used as the initial value of the accumulator.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.reduce(1..5, &*/2)
120

iex> Iter.reduce([], &*/2)
** (Enum.EmptyError) empty error

 Link to this macro

 reduce(enumerable, acc, fun)

 View Source

 (macro)

Invokes fun for each element in the enumerable with the accumulator.
Equivalent to Enum.reduce/3.
The value of acc is used as the initial value of the accumulator.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.reduce(1..5, 1, &*/2)
120

 Link to this macro

 reject(enumerable, fun)

 View Source

 (macro)

Filters the enumerable, rejecting elements for which fun returns a truthy value.
Equivalent to Enum.reject/2.

 examples

 Examples

iex> Iter.reject(1..4, &rem(&1, 2) == 1)
[2, 4]

 Link to this macro

 reverse(enumerable)

 View Source

 (macro)

Returns a list of elements in enumerable in reverse order.
Equivalent to Enum.reverse/1.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.reverse(1..3)
[3, 2, 1]

 Link to this macro

 reverse(enumerable, tail)

 View Source

 (macro)

Reverses the elements in enumerable, appends the tail, and
returns the result as a list.
Equivalent to Enum.reverse/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.reverse(1..3, 4..6)
[3, 2, 1, 4, 5, 6]

 Link to this macro

 scan(enumerable, acc, fun)

 View Source

 (macro)

Applies the given function to each element in the enumerable, storing the
result in a list and passing it as the accumulator for the next computation.
Equivalent to Enum.scan/3.

 examples

 Examples

iex> Iter.scan(1..5, 1, &*/2)
[1, 2, 6, 24, 120]

 Link to this macro

 shuffle(enumerable)

 View Source

 (macro)

Returns a list with enumerable elements in a random order.
Equivalent to Enum.shuffle/1.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

Although not necessary, let's seed the random algorithm
iex> :rand.seed(:exsss, {1, 2, 3})
iex> Iter.shuffle(1..6)
[3, 2, 5, 1, 4, 6]

 Link to this macro

 sort(enumerable)

 View Source

 (macro)

Sorts the enumerable according to Erlang's term ordering.
Equivalent to Enum.sort/1.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.sort([4, 1, 5, 2, 3])
[1, 2, 3, 4, 5]

 Link to this macro

 sort(enumerable, sorter)

 View Source

 (macro)

Sorts the enumerable by the given sorter function or module.
Equivalent to Enum.sort/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.sort([4, 1, 5, 2, 3], :desc)
[5, 4, 3, 2, 1]

 Link to this function

 sort_by(enumerable, fun, sorter \\ :asc)

 View Source

Sorts the mapped results of the enumerable according to Erlang's term ordering.
Equivalent to Enum.sort_by/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.
This is actually just an alias for Enum.sort_by/2, Iter isn't able to
optimize it.

 examples

 Examples

iex> Iter.sort_by(["some", "kind", "of", "monster"], &byte_size/1)
["of", "some", "kind", "monster"]

 Link to this macro

 split(enumerable, amount)

 View Source

 (macro)

Splits the enumerable into two lists, leaving amount elements in the first one.
Equivalent to Enum.split/2.
Note: Negative indexes are NOT supported when used in a pipeline, since this
would imply to materialize the whole list and therefore cannot be done lazily.
If you need to use negative indexes, you can either use materialize the pipeline first
using Iter.to_list/1 or use the equivalent Enum function.
Read the Collecting the pipeline section for more information.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.split(1..10, 5)
{[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]}

 Link to this macro

 split_while(enumerable, fun)

 View Source

 (macro)

Splits the enumerable in two at the position of the element for which fun
returns a falsy value for the first time. Equivalent to Enum.split_while/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.split_while(1..10, & &1 < 6)
{[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]}

 Link to this macro

 split_with(enumerable, fun)

 View Source

 (macro)

Splits the enumerable in two lists based on the truthiness of applying fun on
each element. Equivalent to Enum.split_with/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.split_with(1..4, &rem(&1, 2) == 1)
{[1, 3], [2, 4]}

 Link to this macro

 sum(enumerable)

 View Source

 (macro)

Returns the sum of all elements in enumerable. Equivalent to Enum.sum/1.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.sum(1..3)
6

 Link to this macro

 take(enumerable, amount)

 View Source

 (macro)

Takes an amount of elements from the beginning of the enumerable.
Equivalent to Enum.take/2.
Note: Negative indexes are NOT supported when used in a pipeline, since this
would imply to materialize the whole list and therefore cannot be done lazily.
If you need to use negative indexes, you can either use materialize the pipeline first
using Iter.to_list/1 or use the equivalent Enum function.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.take(1..1000, 5)
[1, 2, 3, 4, 5]

 Link to this macro

 take_random(enumerable, amount)

 View Source

 (macro)

Takes an amount of random elements from the enumerable.
Equivalent to Enum.take_random/2.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

Although not necessary, let's seed the random algorithm
iex> :rand.seed(:exsss, {1, 2, 3})
iex> Iter.take_random(1..100, 3)
[74, 28, 55]

 Link to this macro

 take_while(enumerable, fun)

 View Source

 (macro)

Takes the elements from the beginning of the enumerable, while fun returns
a truthy value. Equivalent to Enum.take_while/2.

 examples

 Examples

iex> Iter.take_while(1..1000, & &1 < 6)
[1, 2, 3, 4, 5]

 Link to this macro

 to_list(enumerable)

 View Source

 (macro)

Converts enumerable to a list. Equivalent to Enum.to_list/1.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.to_list(1..3)
[1, 2, 3]

 Link to this macro

 uniq(enumerable)

 View Source

 (macro)

Enumerates the enumerable, removing the duplicate elements.
Equivalent to Enum.uniq/1.

 examples

 Examples

iex> Iter.uniq([1, 2, 1, 3, 2, 4])
[1, 2, 3, 4]

 Link to this macro

 uniq_by(enumerable, fun)

 View Source

 (macro)

Enumerates the enumerable, removing elements for which fun return duplicate values.
Equivalent to Enum.uniq_by/2.

 examples

 Examples

iex> Iter.uniq_by([{1, :x}, {2, :y}, {1, :z}], fn {x, _} -> x end)
[{1, :x}, {2, :y}]

 Link to this macro

 unzip(enumerable)

 View Source

 (macro)

Extracts two-element tuples from the given enumerable and returns them
as two separate lists.
Equivalent to Enum.unzip/1.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.unzip([{:a, 1}, {:b, 2}, {:c, 3}])
{[:a, :b, :c], [1, 2, 3]}

 Link to this macro

 with_index(enumerable)

 View Source

 (macro)

Returns the enumerable with each element wrapped in a tuple
alongside its index. Equivalent to Enum.with_index/1.

 examples

 Examples

iex> Iter.with_index(["a", "b", "c"])
[{"a", 0}, {"b", 1}, {"c", 2}]

 Link to this macro

 with_index(enumerable, fun_or_offset)

 View Source

 (macro)

Returns the enumerable with each element wrapped in a tuple
alongside its index. Equivalent to Enum.with_index/2.
Like Enum.with_index/2, accepts either an anonymous function or an integer offset,
but it has to infer the type at compile time. If the expression can't be inferred to
be either an fn or a capture, it will assume it is an integer
(example: Iter.with_index(list, var) will only work if var is an integer).
If an offset is given, it will index from the given offset instead of from zero.
If a function is given, it will index by invoking the function for each element
and index (zero-based) of the enumerable.

 examples

 Examples

iex> Iter.with_index(["a", "b", "c"], 100)
[{"a", 100}, {"b", 101}, {"c", 102}]

iex> Iter.with_index(["a", "b", "c"], fn elem, index -> String.duplicate(elem, index) end)
["", "b", "cc"]

iex> Iter.with_index(["a", "b", "c"], &String.duplicate(&1, &2))
["", "b", "cc"]

 Link to this function

 zip(enumerables)

 View Source

Zips corresponding elements from a finite collection of enumerables
into a list of tuples.
This is actually just an alias for Enum.zip/1, Iter isn't able to
optimize it.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.zip([[1, 2, 3], [:a, :b, :c], ["foo", "bar", "baz"]])
[{1, :a, "foo"}, {2, :b, "bar"}, {3, :c, "baz"}]

 Link to this function

 zip(left, right)

 View Source

Zips corresponding elements from two enumerables into a list of tuples.
This is actually just an alias for Enum.zip/2, Iter isn't able to
optimize it.
Note: This step collects the pipeline and cannot be merged with following steps.
Read the Collecting the pipeline section for more information.

 examples

 Examples

iex> Iter.zip([1, 2, 3, 4, 5], [:a, :b, :c])
[{1, :a}, {2, :b}, {3, :c}]

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

