

 Jido

 v1.0.0-rc.4

 Table of contents

 	Home

 	Getting Started

 	Actions

 	Agents

 	

 	Modules

 	Jido.Actions.Files.DeleteFile

 	Jido.Actions.Files.ListDirectory

 	Jido.Actions.Files.MakeDirectory

 	Jido.Actions.Files.WriteFile

 	Jido.Command

 	Jido.Command.Manager

 	Jido.Commands.Default

 	Jido.Discovery

 	Jido.Runner

 	Jido.Runner.Chain

 	Jido.Supervisor

 	Core

 	Jido

 	Jido.Action

 	Jido.Agent

 	Jido.Sensor

 	Jido.Signal

 	Jido.Workflow

 	Workflows

 	Jido.Workflow.Chain

 	Jido.Workflow.Closure

 	Jido.Workflow.Tool

 	Agent_Runtime

 	Jido.Agent.Runtime

 	Example_Actions

 	Jido.Actions.Arithmetic

 	Jido.Actions.Basic

 	Jido.Actions.Files

 	Jido.Actions.Simplebot

 	Utilities

 	Jido.Agent.Runtime.State

 	Jido.Error

 	Jido.Util

Jido (自動)

自動 (Jido) - A flexible framework for building distributed Agents and Workflows in Elixir.
[image: Hex Version]
[image: Hex Docs]
[image: CI Status]
[image: Apache 2 License]

 Current Status

Jido is under active development. The API of this library is usable, but not stable. We are actively working on stabilizing the current API and preparing for a 1.0 release.
We welcome feedback and contributions! Please feel free to open an issue or submit a PR.

 Features

	Actions: Discrete, composable units of functionality with consistent interfaces
	Workflows: Robust execution runtime with logging, telemetry, and error handling
	Agents: Stateful autonomous entities that can plan and execute workflows
	Sensors: Event-driven data gathering components
	Signals: Cloud Events-based messaging between components
	Flexible Planning: Pluggable planners for agent decision making
	Comprehensive Testing: Rich testing tools and helpers
	Observable: Built-in telemetry and debugging tools

 Installation

Add jido to your dependencies in mix.exs:
def deps do
 [
 {:jido, "~> 0.1.0"}
]
end

 Getting Started

 Creating an Action

Actions are the basic building blocks in Jido. Here's a simple arithmetic action:
defmodule MyApp.Actions.Add do
 use Jido.Action,
 name: "add",
 description: "Adds two numbers",
 schema: [
 value: [type: :number, required: true],
 amount: [type: :number, required: true]
]

 @impl true
 def run(%{value: value, amount: amount}, _context) do
 {:ok, %{result: value + amount}}
 end
end

 Creating a Simple Agent

Agents combine actions into autonomous behaviors:
defmodule MyApp.SimpleAgent do
 use Jido.Agent,
 name: "SimpleBot",
 description: "A simple agent that performs basic tasks",
 schema: [
 location: [type: :atom, default: :home],
 battery_level: [type: :integer, default: 100]
]

 @impl true
 def plan(%__MODULE__{} = agent) do
 {:ok, [
 {MyApp.Actions.Basic.Log, message: "Hello, world!"},
 {MyApp.Actions.Basic.Sleep, duration: 50},
 {MyApp.Actions.Basic.Log, message: "Goodbye, world!"}
]}
 end
end

 Starting an Agent Runtime

Start an agent worker under your supervision tree:
In your application.ex
children = [
 {Registry, keys: :unique, name: Jido.AgentRegistry},
 {Jido.Agent.Supervisor, pubsub: MyApp.PubSub}
]

Start an agent instance
{:ok, pid} = Jido.Agent.Runtime.start_link(MyApp.SimpleAgent.new())

 Contributing

We welcome contributions! Please feel free to submit a PR.
To run tests:
mix test

 License

Apache License 2.0 - See LICENSE.md for details.

Getting Started with Jido

Welcome to Jido, a powerful yet approachable Elixir framework for defining Agents that plan and execute Actions organized by Commands (collectively forming simple or complex workflows). If you’ve never built anything with Agents, Actions, or Commands before, this guide will help you get up and running step by step.

 Table of Contents

	Getting Started with Jido	Table of Contents
	1. Overview of Jido Concepts	Actions
	Commands
	Agents

	2. Creating Your First Action	Action Explanation	Schema
	run/2 Function

	Combining Actions into a Command
	Command Explanation
	Defining an Agent with Commands
	Agent Explanation
	Running the Agent

	Steps in detail:
	We'll assume our runtime was started with name: "announcer_1"
	... handle other events or unknown signals

 1. Overview of Jido Concepts

 Actions

An Action is a small, discrete piece of logic you can execute.
Each Action:
	Implements the Jido.Action behavior.
	Defines a schema describing its parameters (which NimbleOptions validates).
	Has a run/2 callback that does the work.

 Commands

A Command is essentially a named group of Actions that the Agent can plan and then execute.
Commands are:
	Implement the Jido.Command behavior.
	Define a list of possible command specs (like :move, :greet, etc.), each with its own parameter schema.
	Provide a handle_command/3 function that returns a list of Actions (or a single Action) to be executed.

 Agents

An Agent in Jido is a data-driven entity that can hold state, register Commands, and run workflows composed of Actions.
Agents:
	Have a state schema (defined via NimbleOptions) that validates state changes.
	Contain hooks (callbacks) for customizing behavior before/after validation, planning, execution, and error handling.
	Can be extended by registering more Commands.

The lifecycle looks something like this:
	Plan a command with an Agent → validated and turned into pending Actions.
	Run those pending Actions → applying changes to the Agent’s state.

There is a convenience function act/4 that validates state, plans the command, and runs all pending Actions all in a single step.

 2. Creating Your First Action

Let’s create a simple Action that logs a message. We’ll call it LogMessage.
defmodule MyApp.Actions.LogMessage do
 @moduledoc """
 An Action that logs a message at a specified log level.
 """
 use Jido.Action,
 name: "log_message",
 description: "Logs a message",
 schema: [
 level: [type: {:in, [:debug, :info, :warning, :error]}, default: :info],
 message: [type: :string, required: true]
]

 require Logger

 @impl true
 def run(%{level: level, message: msg}, _context) do
 case level do
 :debug -> Logger.debug(msg)
 :info -> Logger.info(msg)
 :warning -> Logger.warning(msg, [])
 :error -> Logger.error(msg)
 end

 # The return tuple of {:ok, new_params} indicates success
 {:ok, %{logged: true, message: msg}}
 end
end

 Action Explanation

The Action module above demonstrates two key concepts:
Schema
	Defines required parameters (message) and optional ones (level)
	Sets default values (:info for level)
	Validates parameter types and allowed values

run/2 Function
	Takes validated parameters and context as arguments
	Performs the actual logging operation
	Returns {:ok, map()} on success	The returned map can be passed to subsequent Actions in a workflow

 Combining Actions into a Command

Next, let's create a Command named :announce that logs two messages in sequence. We'll implement this in a new module MyApp.Commands.Announcements using the Jido.Command behavior:
defmodule MyApp.Commands.Announcements do
 @moduledoc """
 A Command set for logging announcements.
 """
 use Jido.Command

 alias MyApp.Actions.LogMessage

 @impl true
 def commands do
 [
 # Command name is :announce
 announce: [
 description: "Logs two messages in sequence",
 schema: [
 msg1: [type: :string, required: true],
 msg2: [type: :string, required: true]
]
]
]
 end

 @impl true
 def handle_command(:announce, _agent, %{msg1: m1, msg2: m2}) do
 actions = [
 {LogMessage, message: m1, level: :info},
 {LogMessage, message: m2, level: :info}
]

 # Return an {:ok, actions_list} tuple
 {:ok, actions}
 end
end

 Command Explanation

The commands/0 function declares what commands exist (in this case, :announce) and their parameter schemas.
The handle_command/3 function converts the command call (:announce, agent, params) into a list of Actions that get executed.

 Defining an Agent with Commands

Now that we have a Command module (MyApp.Commands.Announcements), we want to define an Agent that can use it. Here's a minimal example:
defmodule MyApp.Agents.AnnouncerAgent do
 @moduledoc """
 A simple Agent that can announce messages using commands from Announcements.
 """
 use Jido.Agent,
 name: "announcer_agent",
 description: "An agent that can log announcements",
 commands: [MyApp.Commands.Announcements],
 schema: [
 # optional schema fields for this Agent
 announcements_made: [type: :integer, default: 0]
]

 @impl true
 def on_before_plan(agent, :announce, params) do
 # Maybe we want to do some custom logic or transformations
 new_params = Map.put(params, :msg1, "[ANNOUNCE] " <> params.msg1)
 {:ok, {:announce, new_params}}
 end

 @impl true
 def on_after_run(agent, result) do
 # Suppose we track how many announcements we've done
 announcements_count = agent.state.announcements_made + 1
 new_state = %{agent.state | announcements_made: announcements_count}
 {:ok, %{result | state: new_state}}
 end
end

 Agent Explanation

The use Jido.Agent macro configures the agent with:
	A name and description for identification
	Command modules like MyApp.Commands.Announcements that define available commands
	A schema validated by NimbleOptions, with fields like announcements_made defaulting to 0

The agent provides lifecycle callbacks like on_before_plan/3 that can be overridden to customize planning and execution.

 Running the Agent

Let's see how to plan and run a command:
defmodule MyApp.Example do
 def run_demo do
 # 1. Create a new agent instance
 agent = MyApp.Agents.AnnouncerAgent.new()

 # 2. Plan the :announce command with the required params
 {:ok, planned_agent} =
 MyApp.Agents.AnnouncerAgent.plan(agent, :announce, %{msg1: "Hello", msg2: "World"})

 # 3. Execute all pending actions
 {:ok, final_agent} = MyApp.Agents.AnnouncerAgent.run(planned_agent)

 IO.inspect(final_agent.state, label: "Agent final state")
 end
end
Steps in detail:
Create: MyApp.Agents.AnnouncerAgent.new().
Plan: plan(agent, :announce, %{msg1: "Hello", msg2: "World"}) → returns an updated agent with queued actions.
Run: run(agent) executes the queued actions (in this case, two LogMessage calls).
You’ll see the logs appear in your console, and the announcements_made field will be incremented to 1.
Shortcut: You can do everything in one shot with act/4:
elixir
Copy code
{:ok, final_agent} =
 MyApp.Agents.AnnouncerAgent.act(agent, :announce, %{msg1: "Hello", msg2: "World"})
This will validate state, plan the command, and run all pending actions, returning the updated agent.
	Integrating an Agent in a Phoenix Application
Agents in Jido are often long-running processes so that external systems (HTTP requests, channels, etc.) can interact with them. A typical approach is:

Start a Runtime process (from Jido.Agent.Runtime) in your Phoenix application.ex.
Supervise that runtime so it stays alive, allowing commands to be dispatched to it via GenServer or PubSub.
For example, in your lib/my_app/application.ex:
def start(_type, _args) do
 children = [
 # Start the Phoenix endpoint
 MyAppWeb.Endpoint,
 # Start the PubSub system
 {Phoenix.PubSub, name: MyApp.PubSub},
 # Start a Jido Runtime with our agent
 {
 Jido.Agent.Runtime,
 agent: MyApp.Agents.AnnouncerAgent.new("announcer_1"),
 pubsub: MyApp.PubSub
 # Optionally specify topic or max_queue_size, etc.
 # topic: "custom.topic"
 }
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
end
What happens here?
Jido.Agent.Runtime starts up with a specific agent instance. We give it a unique ID like "announcer_1".
We pass in pubsub: MyApp.PubSub so that it can broadcast/receive events on that named PubSub system.
Once it’s running, we can call Runtime.act/3, Runtime.manage/3, etc., on that PID or name.
	Sending Commands via PubSub
Jido provides built-in support for PubSub signals. If you have the runtime started (as shown above), you can do something like:

elixir
Copy code
We'll assume our runtime was started with name: "announcer_1"
alias Jido.Agent.Runtime
defmodule MyAppWeb.AnnounceController do
 use MyAppWeb, :controller
 @runtime_server {:via, Registry, {Jido.AgentRegistry, "announcer_1"}}
 def create(conn, %{"msg1" => msg1, "msg2" => msg2}) do
Asynchronously trigger announcement
:ok = Runtime.act_async(@runtime_server, :announce, %{msg1: msg1, msg2: msg2})

conn
|> put_flash(:info, "Announcement queued!")
|> redirect(to: "/announcements/new")
 end
end
Here’s what’s happening:
We define a @runtime_server referencing the Jido runtime process. Jido automatically registers it under Jido.AgentRegistry.
We call Runtime.act_async/3 to dispatch the :announce command. This enqueues and executes the command in our supervised agent process.
Phoenix.PubSub is used under the hood so that events, state transitions, or failures can be broadcast to subscribers.
If you wanted to subscribe to agent events (like :act_completed or :queue_overflow signals), you can do:
elixir
Copy code
defmodule MyAppWeb.AgentEventsLive do
 use Phoenix.LiveView
 alias Jido.Signal
 @topic "jido.agent.announcer_1"
 def mount(_params, _session, socket) do
if connected?(socket) do
 Phoenix.PubSub.subscribe(MyApp.PubSub, @topic)
end

{:ok, socket}
 end
 def handle_info(%Signal{type: "jido.agent.cmd_completed"} = signal, socket) do
E.g. handle the completion event
IO.puts("Action completed with data: #{inspect(signal.data)}")
{:noreply, socket}
 end
 # ... handle other events or unknown signals
 def handle_info(_other, socket), do: {:noreply, socket}
end
That’s it! Your Jido Agent can now be driven by HTTP requests, WebSockets, or internal messages—making it easy to build robust, stateful workflows in your Phoenix app.
	Next Steps
Add More Actions: Create new use Jido.Action modules for your domain (file manipulations, external APIs, arithmetic, etc.).
Organize Commands: Group them in modules using use Jido.Command—each command can orchestrate multiple actions.
Extend Agent: Overwrite lifecycle callbacks (on_before_plan/3, on_after_run/2, etc.) to handle advanced logic.
Distribute: Spin up multiple agents across nodes for parallel, fault-tolerant workflows.
Testing: Use ExUnit or property-based tests to ensure reliability. Jido is easy to test in isolation—just instantiate your Agent with new(), plan commands, and run them.
Jido opens up a flexible approach to building composable, functional workflows in Elixir. By leveraging Actions (reusable building blocks) and Commands (aggregated behavior), your Agent can handle anything from simple sequential tasks to complex asynchronous flows, with powerful PubSub-driven eventing for a real-time experience.

Happy hacking with Jido! If you have any questions or want to learn more about advanced features like compensation, parallel workflows, or advanced hooks, check out the rest of our documentation and examples.

Working with Workflows in Jido: Actions, Chains, and Closures

Jido's workflows system provides a robust framework for building composable, fault-tolerant business logic through Actions (discrete workflows), Chains (workflow sequences), and Closures (reusable workflow wrappers).

 Table of Contents

	Core Concepts
	Working with Actions
	Workflow Chains
	Workflow Closures
	Advanced Features

 Core Concepts

The Jido workflows system is built on several key abstractions:
	Actions: Discrete, composable units of functionality with built-in validation and error handling
	Chains: Sequences of workflows where output flows from one workflow to the next
	Closures: Reusable workflow wrappers with pre-configured context and options

Rather than using exceptions, Jido employs a functional approach that offers several benefits:
	Consistent error handling through {:ok, result} or {:error, reason} tuples
	Composable workflows that can be chained together
	Explicit error paths that require handling
	No silent failures
	Better testability through monadic workflows
	Built-in parameter validation
	Standardized telemetry and monitoring

 Working with Actions

 Creating a Basic Action

Here's how to create a simple Action:
defmodule MyApp.AddOneAction do
 use Jido.Action,
 name: "add_one",
 description: "Adds 1 to the input value",
 schema: [
 value: [type: :integer, required: true]
]

 @impl true
 def run(%{value: value}, _context) do
 {:ok, %{value: value + 1}}
 end
end
Key components:
	The use Jido.Action statement with required configuration
	A schema defining expected parameters
	The run/2 callback implementation

 Action Configuration Options

When defining a Action, you can specify:
use Jido.Action,
 name: "my_action", # Required, must be snake_case
 description: "Description", # Optional documentation
 category: "processing", # Optional categorization
 tags: ["tag1", "tag2"], # Optional tags for grouping
 vsn: "1.0.0", # Optional version string
 schema: [# Optional parameter schema
 param1: [type: :string, required: true],
 param2: [type: :integer, default: 0]
]

 Parameter Validation

Actions use NimbleOptions for parameter validation. The schema supports:
schema: [
 string_param: [type: :string],
 integer_param: [type: :integer],
 atom_param: [type: :atom],
 boolean_param: [type: :boolean],
 list_param: [type: {:list, :string}],
 keyword_list_param: [type: :keyword_list],
 map_param: [type: :map],
 custom_param: [type: {:custom, MyModule, :validate_custom, []}]
]

 Workflow Chains

Chains allow you to compose multiple workflows together, where the output of one workflow becomes the input for the next.

 Basic Chaining

alias Jido.Workflow.Chain

Simple sequential chain
Chain.chain([
 AddOne,
 MultiplyByTwo,
 SubtractThree
], %{value: 5})

With workflow-specific options
Chain.chain([
 AddOne,
 {MultiplyBy, [factor: 3]},
 {WriteToFile, [filename: "result.txt"]},
 SubtractThree
], %{value: 5})

 Chain Options

Chains support several options:
Chain.chain(
 workflows,
 initial_params,
 async: true, # Run the chain asynchronously
 context: %{user_id: 123}, # Context passed to each workflow
 timeout: 5000, # Maximum execution time
 max_retries: 3, # Retry attempts for failed workflows
 backoff: 1000 # Initial retry backoff time
)

 Chain Error Handling

Chains stop execution on the first error:
case Chain.chain([Op1, Op2, Op3], params) do
 {:ok, result} ->
 # All workflows succeeded
 handle_success(result)

 {:error, error} ->
 # An workflow failed
 handle_error(error)
end

 Workflow Closures

Closures allow you to create reusable workflow wrappers with pre-configured context and options.

 Creating Closures

alias Jido.Workflow.Closure

Create a closure with pre-configured context
closure = Closure.closure(MyAction,
 %{user_id: 123}, # Pre-configured context
 timeout: 5000 # Pre-configured options
)

Use the closure multiple times
{:ok, result1} = closure.(%{value: 5})
{:ok, result2} = closure.(%{value: 10})

 Async Closures

Create an async closure
async_closure = Closure.async_closure(MyAction,
 %{user_id: 123},
 timeout: 5000
)

Use the async closure
async_ref = async_closure.(%{value: 5})
{:ok, result} = Jido.Workflow.await(async_ref)

 Running Workflows

Common workflow execution patterns:
Synchronous execution
{:ok, result} = Jido.Workflow.run(MyAction, %{value: 5})

Asynchronous execution
async_ref = Jido.Workflow.run_async(MyAction, %{value: 5})
{:ok, result} = Jido.Workflow.await(async_ref)

With context
{:ok, result} = Jido.Workflow.run(MyAction, %{value: 5}, %{user_id: 123})

With options
{:ok, result} = Jido.Workflow.run(MyAction, %{value: 5}, %{},
 timeout: 5000,
 max_retries: 3,
 backoff: 1000
)

 Lifecycle Hooks

Workflows support optional lifecycle callbacks:
defmodule MyAction do
 use Jido.Action,
 name: "my_action",
 schema: [value: [type: :integer, required: true]]

 # Called before parameter validation
 @impl true
 def on_before_validate_params(params) do
 {:ok, params}
 end

 # Called after parameter validation
 @impl true
 def on_after_validate_params(params) do
 {:ok, params}
 end

 # Main execution
 @impl true
 def run(params, context) do
 {:ok, %{result: params.value * 2}}
 end

 # Called after successful execution
 @impl true
 def on_after_run(result) do
 {:ok, result}
 end
end

 Error Handling

The system uses the Jido.Error module for standardized error handling:
def run(params, _context) do
 case process_data(params) do
 {:ok, result} ->
 {:ok, %{result: result}}

 {:error, reason} ->
 {:error, Error.execution_error("Processing failed: #{reason}")}
 end
end
Common error types:
	:validation_error - Invalid parameters
	:execution_error - Runtime execution failure
	:timeout - Workflow exceeded time limit
	:config_error - Invalid configuration

 Testing

Here's how to test workflows effectively:
defmodule MyActionTest do
 use ExUnit.Case, async: true
 use ExUnitProperties # For property-based testing

 alias MyApp.MyAction

 test "processes valid input" do
 assert {:ok, %{result: 10}} =
 MyAction.run(%{value: 5}, %{})
 end

 test "validates parameters" do
 assert {:error, %Error{type: :validation_error}} =
 MyAction.validate_params(%{invalid: "params"})
 end

 test "chains workflows" do
 result = Chain.chain([
 AddOne,
 {MultiplyBy, [factor: 2]}
], %{value: 5})

 assert {:ok, %{value: 12}} = result
 end

 property "handles all valid integers" do
 check all value <- integer() do
 assert {:ok, %{result: result}} =
 MyAction.run(%{value: value}, %{})
 assert result == value * 2
 end
 end
end

 Best Practices

	Keep workflows focused on a single responsibility
	Use meaningful names and descriptions
	Always validate input parameters
	Return consistent result structures
	Handle all error cases explicitly
	Use context for cross-cutting concerns
	Add telemetry for monitoring
	Write comprehensive tests including property-based tests
	Document behavior and edge cases
	Consider retry strategies for workflows that may fail
	Use chains for complex workflows
	Use closures to create reusable workflow configurations

 Advanced Features

 Telemetry Integration

Workflows automatically emit telemetry events that can be used for monitoring:
	:start - When an workflow begins execution
	:complete - When an workflow successfully completes
	:error - When an workflow encounters an error

 Retry Mechanisms

Built-in retry support with exponential backoff:
Jido.Workflow.run(MyAction, params, %{},
 max_retries: 3,
 backoff: 1000 # Initial backoff in milliseconds
)

 Async Workflows

For long-running workflows:
Start async workflow
async_ref = Jido.Workflow.run_async(MyAction, params)

Cancel if needed
Jido.Workflow.cancel(async_ref)

Wait for result with timeout
case Jido.Workflow.await(async_ref, 5000) do
 {:ok, result} -> handle_success(result)
 {:error, %Error{type: :timeout}} -> handle_timeout()
end

 Context Usage

Context can be used to pass cross-cutting concerns:
context = %{
 user_id: user.id,
 tenant_id: tenant.id,
 request_id: correlation_id
}

Jido.Workflow.run(MyAction, params, context)
This guide covers the core concepts and advanced features of working with Workflows, Actions, Chains, and Closures in Jido. For more detailed information about specific features, consult the hex documentation or the source code.

Agents

 TODO

Jido.Actions.Files.DeleteFile

Deletes a file or directory

 Summary

 Functions

 Jido.Actions.Files.ListDirectory - Jido v1.0.0-rc.4

Jido.Actions.Files.ListDirectory

Lists contents of a directory with optional filtering

 Summary

 Functions

 Jido.Actions.Files.MakeDirectory - Jido v1.0.0-rc.4

Jido.Actions.Files.MakeDirectory

Creates a directory and optionally its parent directories

 Summary

 Functions

 Jido.Actions.Files.WriteFile - Jido v1.0.0-rc.4

Jido.Actions.Files.WriteFile

Writes content to a file, creating parent directories if needed

 Summary

 Functions

 Jido.Command - Jido v1.0.0-rc.4

Jido.Command behaviour

Defines a Command behavior for extending Agent capabilities.
Commands are the primary way to extend an Agent's functionality. Each Command module can
implement multiple named commands that define sequences of Actions for the Agent to execute.

 Command Registration

Commands must be registered with the Agent's Command Manager before use:
{:ok, manager} = Manager.new() |> Manager.register(MyApp.ChatCommand)
{:ok, agent} = Agent.new() |> Agent.set_command_manager(manager)

 Command Structure

Each command requires:
	A unique name (atom)
	A description explaining its purpose
	A schema defining its parameters using NimbleOptions
	A handle_command/3 implementation that returns Actions

 Example Implementation

defmodule MyApp.ChatCommand do
 use Jido.Command

 @impl true
 def commands do
 [
 generate_text: [
 description: "Generates a text response",
 schema: [
 prompt: [
 type: :string,
 required: true,
 doc: "The input prompt for text generation"
],
 max_tokens: [
 type: :integer,
 default: 100,
 doc: "Maximum tokens to generate"
]
]
]
]
 end

 @impl true
 def handle_command(:generate_text, agent, params) do
 actions = [
 {TextGeneration, params},
 {ResponseFormatter, format: :markdown}
]
 {:ok, actions}
 end
end

 Error Handling

Commands should return detailed error tuples when failures occur:
def handle_command(:risky_command, agent, params) do
 case validate_preconditions(agent) do
 :ok -> {:ok, [{SafeAction, params}]}
 {:error, reason} ->
 {:error, "Command failed precondition check: #{reason}"}
 end
end

 Testing Commands

See Jido.CommandTest for examples of testing Command implementations.

 Summary

 Types

 Jido.Command.Manager - Jido v1.0.0-rc.4

Jido.Command.Manager

Manages command registration and dispatch for Agents.
The Command Manager maintains an immutable state of registered commands
and their specifications, handling validation and dispatch of commands
to the appropriate handlers.

 Usage

Create a new manager
manager = Manager.new()

Register command modules
{:ok, manager} = Manager.register(manager, MyApp.ChatCommand)
{:ok, manager} = Manager.register(manager, MyApp.ImageCommand)

Dispatch commands
{:ok, actions} = Manager.dispatch(manager, :generate_text, agent, %{
 prompt: "Hello!"
})

 Command Validation

All commands are validated at registration time:
	Command names must be unique across all modules
	Command specs must include description and schema
	Parameter schemas are validated using NimbleOptions

 Error Handling

The manager provides detailed error messages for:
	Invalid command specifications
	Duplicate command registration
	Missing commands
	Invalid parameters
	Command execution failures

 Summary

 Types

 Jido.Commands.Default - Jido v1.0.0-rc.4

Jido.Commands.Default

Provides default commands available to all Agents.

 Jido.Discovery - Jido v1.0.0-rc.4

Jido.Discovery

Discovery is the mechanism by which agents and sensors are discovered and registered with the system.
This module caches discovered components using :persistent_term for efficient lookups.
The cache is initialized at application startup and can be manually refreshed if needed.

 Summary

 Types

 Jido.Runner - Jido v1.0.0-rc.4

Jido.Runner behaviour

Behavior for executing planned actions on an Agent.

 Summary

 Types

 Jido.Runner.Chain - Jido v1.0.0-rc.4

Jido.Runner.Chain

Default runner that executes actions sequentially using Chain.chain.

 Jido.Supervisor - Jido v1.0.0-rc.4

Jido.Supervisor

A helper supervisor that starts and manages the resources for a specific Jido instance.
Each consumer of Jido defines their own module:
defmodule MyApp.Jido do
 use Jido, otp_app: :my_app
end
Then in your application’s supervision tree:
children = [
 MyApp.Jido
]

Supervisor.start_link(children, strategy: :one_for_one)

 Summary

 Functions

 Jido - Jido v1.0.0-rc.4

Jido behaviour

Jido is a flexible framework for building distributed AI Agents and Workflows in Elixir.
This module provides the main interface for interacting with Jido components, including:
	Managing and interacting with Agents through a high-level API
	Listing and retrieving Actions, Sensors, and Domains
	Filtering and paginating results
	Generating unique slugs for components

 Agent Interaction Examples

Find and act on an agent
"agent-id"
|> Jido.get_agent_by_id()
|> Jido.act(:command, %{param: "value"})

Act asynchronously
{:ok, agent} = Jido.get_agent_by_id("agent-id")
Jido.act_async(agent, :command)

Send management commands
{:ok, agent} = Jido.get_agent_by_id("agent-id")
Jido.manage(agent, :pause)

Subscribe to agent events
{:ok, topic} = Jido.get_agent_topic("agent-id")
Phoenix.PubSub.subscribe(MyApp.PubSub, topic)

 Summary

 Types

 Jido.Action - Jido v1.0.0-rc.4

Jido.Action behaviour

Defines a discrete, composable unit of functionality within the Jido system.
Each Action represents a delayed computation that can be composed with others
to build complex workflows and workflows. Actions are defined at compile-time
and provide a consistent interface for validating inputs, executing workflows,
and handling results.

 Features

	Compile-time configuration validation
	Runtime input parameter validation
	Consistent error handling and formatting
	Extensible lifecycle hooks
	JSON serialization support

 Usage

To define a new Action, use the Jido.Action behavior in your module:
defmodule MyAction do
 use Jido.Action,
 name: "my_action",
 description: "Performs a specific workflow",
 category: "processing",
 tags: ["example", "demo"],
 vsn: "1.0.0",
 schema: [
 input: [type: :string, required: true]
]

 @impl true
 def run(params, _context) do
 # Your action logic here
 {:ok, %{result: String.upcase(params.input)}}
 end
end

 Callbacks

Implementing modules must define the following callback:
	run/2: Executes the main logic of the Action.

Optional callbacks for custom behavior:
	on_before_validate_params/1: Called before parameter validation.
	on_after_validate_params/1: Called after parameter validation.
	on_after_run/1: Called after the Action's main logic has executed.

 Error Handling

Actions use the OK monad for consistent error handling. Errors are wrapped
in Jido.Error structs for uniform error reporting across the system.

 Parameter Validation

Note on Validation: The validation process for Actions is intentionally loose.
Only fields specified in the schema are validated. Unspecified fields are not
validated, allowing for easier Action composition. This approach enables Actions
to accept and pass along additional parameters that may be required by other
Actions in a chain without causing validation errors.

 Summary

 Types

 Jido.Agent - Jido v1.0.0-rc.4

Jido.Agent behaviour

Defines an Agent within the Jido system.
An Agent represents a higher-level entity that can plan and execute a series of Actions.
Agents are defined at compile-time and provide a consistent interface for planning,
executing, and managing complex workflows. Agents can be extended with Command plugins that
package pre-defined sequences of Actions.

 Features

	Compile-time configuration validation
	Runtime input parameter validation
	Consistent error handling and formatting
	Extensible lifecycle hooks
	JSON serialization support
	Plugin support for pre-defined sequences of Actions
	Dynamic planning and execution of Action sequences

 Usage

To define a new Agent, use the Jido.Agent behavior in your module:
defmodule MyAgent do
 use Jido.Agent,
 name: "my_agent",
 description: "Performs a complex workflow",
 category: "processing",
 tags: ["example", "demo"],
 vsn: "1.0.0",
 commands: [MyCommand1, MyCommand2]
 schema: [
 input: [type: :string, required: true]
]
end

 Optional Overrides

Implementing modules must define the following callback:
	c:plan/1: Generates a plan (sequence of Actions) for the Agent to execute.

 Summary

 Types

 Jido.Sensor - Jido v1.0.0-rc.4

Jido.Sensor behaviour

Defines the behavior and implementation for Sensors in the Jido system.
A Sensor is a GenServer that emits Signals on PubSub based on specific events and retains a configurable number of last values.

 Usage

To define a new Sensor, use the Jido.Sensor behavior in your module:
defmodule MySensor do
 use Jido.Sensor,
 name: "my_sensor",
 description: "Monitors a specific metric",
 category: :monitoring,
 tags: [:example, :demo],
 vsn: "1.0.0",
 schema: [
 metric: [type: :string, required: true]
]

 @impl true
 def generate_signal(state) do
 # Your sensor logic here
 {:ok, Jido.Signal.new(%{
 source: "#{state.sensor.name}:#{state.id}",
 topic: "metric_update",
 payload: %{value: get_metric_value()},
 timestamp: DateTime.utc_now()
 })}
 end
end

 Callbacks

Implementing modules can override the following callbacks:
	mount/1: Called when the sensor is initialized.
	generate_signal/1: Generates a signal based on the current state.
	before_publish/2: Called before a signal is published.
	shutdown/1: Called when the sensor is shutting down.

 Summary

 Types

 Jido.Signal - Jido v1.0.0-rc.4

Jido.Signal

Defines the structure and behavior of a Signal in the Jido system.
This is a local implementation of the CloudEvents specification v1.0.

 Summary

 Types

 Jido.Workflow - Jido v1.0.0-rc.4

Jido.Workflow

Workflows are the Action runtime. They provide a robust framework for executing and managing workflows (multiple Actions) in a distributed system.
This module offers functionality to:
	Run workflows synchronously or asynchronously
	Manage timeouts and retries
	Cancel running workflows
	Normalize and validate input parameters and context
	Emit telemetry events for monitoring and debugging

Workflows are defined as modules (Actions) that implement specific callbacks, allowing for
a standardized way of defining and executing complex workflows across a distributed system.

 Features

	Synchronous and asynchronous workflow execution
	Automatic retries with exponential backoff
	Timeout handling for long-running workflows
	Parameter and context normalization
	Comprehensive error handling and reporting
	Telemetry integration for monitoring and tracing
	Cancellation of running workflows

 Usage

Workflows are executed using the run/4 or run_async/4 functions:
Jido.Workflow.run(MyAction, %{param1: "value"}, %{context_key: "context_value"})
See Jido.Action for how to define an Action.
For asynchronous execution:
async_ref = Jido.Workflow.run_async(MyAction, params, context)
... do other work ...
result = Jido.Workflow.await(async_ref)

 Integrating with OTP

For correct supervision of async tasks, ensure you start a Task.Supervisor under your
application's supervision tree, for example:
def start(_type, _args) do
 children = [
 {Task.Supervisor, name: Jido.Workflow.TaskSupervisor},
 ...
]
 Supervisor.start_link(children, strategy: :one_for_one)
end
This way, any async tasks spawned by run_async/4 will be supervised by the Task Supervisor.

 Summary

 Types

 Jido.Workflow.Chain - Jido v1.0.0-rc.4

Jido.Workflow.Chain

Provides functionality to chain multiple Jido Workflows together with interruption support.
This module allows for sequential execution of workflows, where the output
of one workflow becomes the input for the next workflow in the chain.
Execution can be interrupt