

 Journey

 v0.10.30

 Table of contents

 	Journey

 	Journey License

 	Building a resilient application with Journey

 	
 Modules

 	Journey

 	Journey.Examples.CreditCardApplication

 	Journey.Examples.CreditCardApplication.Compute

 	Journey.Insights.FlowAnalytics

 	Journey.Insights.Status

 	Journey.Node

 	Journey.Node.Conditions

 	Journey.Node.UpstreamDependencies

 	Journey.Tools

 	UselessMachine

 Journey

Journey is an Elixir library for building and executing computation graphs, with built-in persistence, reliability, and scalability.
Define your application workflows as dependency graphs where user inputs automatically trigger computations in the correct order, with all state persisted to PostgreSQL.
Executions of the graph survive crashes, redeploys, page reloads, while scaling naturally with your application - no additional infrastructure or cloud service$ required.
Your application can perform durable, short or long-running executions, with retries, scalability, dependency tracking, scheduling and analytics.
Journey's primitives are simple: graph, dependencies, functions, persistence, retries, scheduling. Together, they help you build rich, scalable, reliable functionality with simple, well-structured and easy-to-understand code, quickly.
Installation and Configuration
To use Journey in your application, you will need to install the package, configure its db, optionally configure its logging, and tell it about the graphs you want Journey to be aware of.
	The package can be installed by adding journey to your list of dependencies in mix.exs:

def deps do
 [
 {:journey, "~> 0.10"}
]
end
	Journey uses Postgres DB for persistence. Add Journey Postgres DB to your project's configuration.

Alongside your app's Repo configuration, add Journey's. For example, if you want to use Journey in your Phoenix application, you might do something like:
config/test.exs:
config :journey, Journey.Repo,
 username: "postgres",
 password: "postgres",
 hostname: "localhost",
 database: "demo_journey_test#{System.get_env("MIX_TEST_PARTITION")}",
 pool_size: System.schedulers_online() * 2
config/dev.exs:
config :journey, Journey.Repo,
 username: "postgres",
 password: "postgres",
 hostname: "localhost",
 database: "demo_journey_dev",
 stacktrace: true,
 show_sensitive_data_on_connection_error: true,
 pool_size: 10,
 log: false
config/runtime.exs:
if config_env() == :prod do
 ...
 database_journey_url =
 System.get_env("DATABASE_JOURNEY_URL") ||
 raise """
 environment variable DATABASE_JOURNEY_URL is missing.
 For example: ecto://USER:PASS@HOST/DATABASE
 """

 config :journey, Journey.Repo,
 # ssl: true,
 url: database_journey_url,
 pool_size: String.to_integer(System.get_env("POOL_SIZE_JOURNEY") || "10"),
 socket_options: maybe_ipv6
 ...
end
	Configure the level of logging you want to see from Journey

Example:
config/config.exs:
config :journey, log_level: :warning
	Tell Journey which graphs it should know about:

config/config.exs:
config :journey, :graphs, [
 # This is just an example graph that ships with Journey.
 &Journey.Examples.CreditCardApplication.graph/0,

 # When you define functions that create graphs in your application, add them here.
 ...
]
Questions / Comments / Issues
To get in touch, report an issue, or ask a question, please create a github issue: https://github.com/markmark206/journey/issues
Full Documentation
Documentation can be found at https://hexdocs.pm/journey.

 Journey License

Copyright (c) 2021-2025 Mark Markaryan
Journey is dual-licensed to support individuals and small teams while ensuring that commercial use contributes to its ongoing development.

0. TL;DR (Informal Summary)
Journey is free to use for your project, if your Entity generates less than $10k/month in total revenue.
For all other uses, please purchase a license: https://gojourney.dev.

1. Definitions
	"Journey" refers to the software package named journey, including all code, documentation, and related materials.
	"Use" means installing, copying, modifying, or executing Journey.
	"Commercial Use" means any use of Journey in connection with a product, service, or business activity intended for or resulting in commercial advantage or monetary compensation.
	"Entity" means any company, organization, or group of individuals working together in a coordinated business capacity, including all subsidiaries, parent companies, and affiliates under common control (directly or indirectly owning 50% or more voting interest).
	"Project" means a distinct software application, service, or system that incorporates Journey, whether for internal operations, customer-facing services, or any other business purpose.

2. Grant of License (Permitted Use)
You may use Journey freely if your Entity generates less than $10,000 USD in total monthly revenue.
For Entities generating at least $10,000 USD in total monthly revenue, each Project using Journey requires a separate commercial license. Please purchase a license: https://gojourney.dev

3. Commercial License Required
If your Entity generates at least $10,000 USD in total monthly revenue, you must obtain a separate commercial license for each Project that uses Journey.
This includes internal business applications such as employee tools, operational systems, data processing applications, and administrative systems.
To purchase a commercial license, please visit: https://gojourney.dev
If you believe your use of Journey requires a commercial license, you may continue using it for up to 30 days while you evaluate licensing terms, without a license key or with a free "Small Project" license key. Continued use beyond this period without a valid license may violate this agreement.

4. Restrictions
	You may not sublicense, redistribute, or repackage Journey (modified or unmodified) as part of a paid product, developer tool, or commercial service without a commercial license.
	You may not remove or alter licensing notices or attribution in the source code.

5. Warranty Disclaimer
JOURNEY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHOR OR COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY ARISING FROM THE USE OF JOURNEY.

6. Not Open Source (OSI)
This license does not comply with the Open Source Definition as defined by the Open Source Initiative. Journey is source-available software.

7. Governing Law
This license shall be governed by and construed in accordance with the laws of the State of Washington, USA, without regard to conflict of law principles.
Any legal action arising from this license shall be brought exclusively in the state or federal courts located in King County, Washington.

– Mark Markaryan
github.com/markmark206/journey
gojourney.dev

 Building a resilient application with Journey

[Optional] Setting Build Key, see https://gojourney.dev/your_keys
(Using "Journey Livebook Demo" build key)
System.put_env("JOURNEY_BUILD_KEY", "B27AXHMERm2Z6ehZhL49v")

Mix.install(
 [
 {:ecto_sql, "~> 3.10"},
 {:postgrex, "~> 0.21"},
 {:jason, "~> 1.4"},
 {:journey, "~> 0.10"},
 # {:journey, path: Path.join([__DIR__, "../.."])},
 {:kino_vega_lite, "~> 0.1.11"},
 {:kino, "~> 0.16.1"}
],
 start_applications: false
)

Application.put_env(:journey, :log_level, :warning)

Update this configuration to point to your database server
(to create the database, run `mix ecto.create` from the root of the repo).
Application.put_env(:journey, Journey.Repo,
 database: "journey_dev",
 username: "postgres",
 password: "postgres",
 hostname: "localhost",
 log: false,
 port: 5432
)

Application.put_env(:journey, :ecto_repos, [Journey.Repo])

Application.loaded_applications()
|> Enum.map(fn {app, _, _} -> app end)
|> Enum.each(&Application.ensure_all_started/1)
Getting things done with Journey
This livebook shows using Journey for a ridiculously basic flow: computing the sum of two numbers, and determining whether the sum exceeds a threshold. It has two input values (x and y) and two computations (sum and large_value_alert).
This livebook shows creating a blueprint (graph) for computing the sum and large_value_alert, and then executing an instance of the blueprint to perform computations for a particular set of inputs.
A few things to note:
	every input value (:x, :y), or computation result (:sum, :large_value_alert) is persisted,
	the two computations	happen reliably (their functions are executed with a retry policy),
	are as horizontally distributed as your app is (the functions will run wherever your app runs),
	are proactive (:sum will be computed when :x and :y become available, and :large_value_alert will be computed when :sum is available).

	executions of this flow can be as long-running as needed (milliseconds? months?), and will live through system restarts, crashes, redeployments, page reloads, etc.

These attributes – reliability, scalability, and persistence – come without the need to subscribe to an online service, or ship your application's data to a third party, or to deploy any additional infrastructure. Just your application, using a package, storing data in your database, and running as it normally would.
Define the Blueprint of the Application
Our application is very simple, given two numbers, it computes the sum, and sets an alert if the sum is "too large".
"Business logic": f_add(x, y)
The function for adding two numbers. Part of the "business logic" of this application.
f_add = fn %{x: x, y: y} -> {:ok, x + y} end
#Function<42.81571850/1 in :erl_eval.expr/6>
The flow
A journey graph is the blueprint for this application. It defines its inputs and computed values exist, their dependencies, and attaches functions to self-computing values.
import Journey.Node
import Journey.Node.Conditions
import Journey.Node.UpstreamDependencies

graph = Journey.new_graph(
 # graph name.
 "g1",
 # graph version.
 "v1",
 # graph nodes.
 [
 input(:x),
 input(:y),
 # the `:sum` computation is waiting on :x and :y.
 compute(:sum, [:x, :y], f_add),
 compute(
 :large_value_alert,
 unblocked_when(
 :sum,
 fn sum_node -> sum_node.set_time != nil and sum_node.node_value > 40 end
),
 fn _ -> {:ok, "🚨"} end
),
]
)
%Journey.Graph{
 name: "g1",
 version: "v1",
 nodes: [
 %Journey.Graph.Input{name: :execution_id, type: :input},
 %Journey.Graph.Input{name: :last_updated_at, type: :input},
 %Journey.Graph.Input{name: :x, type: :input},
 %Journey.Graph.Input{name: :y, type: :input},
 %Journey.Graph.Step{
 name: :sum,
 gated_by: [:x, :y],
 f_compute: #Function<42.81571850/1 in :erl_eval.expr/6>,
 f_on_save: nil,
 type: :compute,
 mutates: nil,
 max_retries: 3,
 abandon_after_seconds: 60
 },
 %Journey.Graph.Step{
 name: :large_value_alert,
 gated_by: {:sum, #Function<42.81571850/1 in :erl_eval.expr/6>},
 f_compute: #Function<42.81571850/1 in :erl_eval.expr/6>,
 f_on_save: nil,
 type: :compute,
 mutates: nil,
 max_retries: 3,
 abandon_after_seconds: 60
 }
]
}
Flow, visualized
Here is the visual – Mermaid – representation of the graph that we have just defined.
You can see the two input values (:x, :y), the two computations (:sum,:large_value_alert), and their dependencies.
It also shows two system values, :execution_id and :last_updated_at, which are maintained by the runtime.
graph
|> Journey.Tools.generate_mermaid_graph()
|> Kino.Mermaid.new()
graph TD
 %% Graph
 subgraph Graph["🧩 'g1', version v1"]
 execution_id[execution_id]
 last_updated_at[last_updated_at]
 x[x]
 y[y]
 sum["sum
(anonymous fn)"]
 large_value_alert["large_value_alert
(anonymous fn)"]

 x --> sum
 y --> sum
 sum --> large_value_alert
 end

 %% Styling
 classDef inputNode fill:#e1f5fe,stroke:#01579b,stroke-width:2px,color:#000000
 classDef computeNode fill:#f3e5f5,stroke:#4a148c,stroke-width:2px,color:#000000
 classDef scheduleNode fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#000000
 classDef mutateNode fill:#e8f5e8,stroke:#2e7d32,stroke-width:2px,color:#000000

 %% Apply styles to actual nodes
 class y,x,last_updated_at,execution_id inputNode
 class large_value_alert,sum computeNode
Executing instances of the blueprint
Now that we have the blueprint of the application, we can run its executions.
Starting a new execution
Here is an example of starting a new execution of the graph. If the application handles a user's visit to your website, this might happen when the user lands on the web page, and, perhaps, starts engaging with it.
We'll take a note of the id of the execution, just in case everything crashes (or if the user reloads the page, or leaves and comes back in a month) and we need to reload it later.
execution = Journey.start_execution(graph)

Take a note of the id of the execution, so we can reload it in case the data center reboots.
execution_id = execution.id
"EXECLG0R2MD2JBARMVRE380L"
The new execution doesn't have much in it at this point, nothing has been set or computed, except for the two system fields.
No values are set, except for system-provided values.
Journey.values_all(execution)
%{
 sum: :not_set,
 y: :not_set,
 x: :not_set,
 last_updated_at: {:set, 1755833244},
 execution_id: {:set, "EXECLG0R2MD2JBARMVRE380L"},
 large_value_alert: :not_set
}
Once :x and :y are provided, :sum gets computed
The user might start supplying the data:
execution = Journey.set_value(execution, :x, 12); :ok
:ok
Btw, if the world crashed (or got redeployed, or if the user leaves), no worries.
Since we took a note of the ID of the execution, we can load the execution as soon as things are back up (or when the user comes back), and proceed as if nothing happened.
reloaded_execution = Journey.load(execution_id)
%Journey.Persistence.Schema.Execution{
 __meta__: #Ecto.Schema.Metadata<:loaded, "executions">,
 id: "EXECLG0R2MD2JBARMVRE380L",
 graph_name: "g1",
 graph_version: "v1",
 archived_at: nil,
 values: [
 %Journey.Persistence.Schema.Execution.Value{
 __meta__: #Ecto.Schema.Metadata<:loaded, "values">,
 id: "VALGLMD0YZDTBAD40LTX7G3",
 execution_id: "EXECLG0R2MD2JBARMVRE380L",
 execution: #Ecto.Association.NotLoaded<association :execution is not loaded>,
 node_name: :last_updated_at,
 node_type: :input,
 node_value: 1755833251,
 set_time: 1755833251,
 ex_revision: 1,
 inserted_at: 1755833244,
 updated_at: 1755833251
 },
 %Journey.Persistence.Schema.Execution.Value{
 __meta__: #Ecto.Schema.Metadata<:loaded, "values">,
 id: "VALXH5TGBT2EZ64LR26AEYX",
 execution_id: "EXECLG0R2MD2JBARMVRE380L",
 execution: #Ecto.Association.NotLoaded<association :execution is not loaded>,
 node_name: :x,
 node_type: :input,
 node_value: 12,
 set_time: 1755833251,
 ex_revision: 1,
 inserted_at: 1755833244,
 updated_at: 1755833251
 },
 %Journey.Persistence.Schema.Execution.Value{
 __meta__: #Ecto.Schema.Metadata<:loaded, "values">,
 id: "VAL5GZB3YHBG48RX2G00AYL",
 execution_id: "EXECLG0R2MD2JBARMVRE380L",
 execution: #Ecto.Association.NotLoaded<association :execution is not loaded>,
 node_name: :execution_id,
 node_type: :input,
 node_value: "EXECLG0R2MD2JBARMVRE380L",
 set_time: 1755833244,
 ex_revision: 0,
 inserted_at: 1755833244,
 updated_at: 1755833244
 },
 %Journey.Persistence.Schema.Execution.Value{
 __meta__: #Ecto.Schema.Metadata<:loaded, "values">,
 id: "VAL3HT5MMBTHX7TXD93D2A0",
 execution_id: "EXECLG0R2MD2JBARMVRE380L",
 execution: #Ecto.Association.NotLoaded<association :execution is not loaded>,
 node_name: :y,
 node_type: :input,
 node_value: nil,
 set_time: nil,
 ex_revision: 0,
 inserted_at: 1755833244,
 updated_at: 1755833244
 },
 %Journey.Persistence.Schema.Execution.Value{
 __meta__: #Ecto.Schema.Metadata<:loaded, "values">,
 id: "VALM10Z0R5VHJDA7VJL68G9",
 execution_id: "EXECLG0R2MD2JBARMVRE380L",
 execution: #Ecto.Association.NotLoaded<association :execution is not loaded>,
 node_name: :sum,
 node_type: :compute,
 node_value: nil,
 set_time: nil,
 ex_revision: 0,
 inserted_at: 1755833244,
 updated_at: 1755833244
 },
 %Journey.Persistence.Schema.Execution.Value{
 __meta__: #Ecto.Schema.Metadata<:loaded, "values">,
 id: "VALGJGJA9A860BB3JH59YY9",
 execution_id: "EXECLG0R2MD2JBARMVRE380L",
 execution: #Ecto.Association.NotLoaded<association :execution is not loaded>,
 node_name: :large_value_alert,
 node_type: :compute,
 node_value: nil,
 set_time: nil,
 ex_revision: 0,
 inserted_at: 1755833244,
 updated_at: 1755833244
 }
],
 computations: [
 %Journey.Persistence.Schema.Execution.Computation{
 __meta__: #Ecto.Schema.Metadata<:loaded, "computations">,
 id: "CMPR0Y39G6ARJYG37T4G9G3",
 execution_id: "EXECLG0R2MD2JBARMVRE380L",
 execution: #Ecto.Association.NotLoaded<association :execution is not loaded>,
 node_name: :sum,
 computation_type: :compute,
 state: :not_set,
 ex_revision_at_start: nil,
 ex_revision_at_completion: nil,
 scheduled_time: nil,
 start_time: nil,
 completion_time: nil,
 deadline: nil,
 error_details: nil,
 computed_with: nil,
 inserted_at: 1755833244,
 updated_at: 1755833244
 },
 %Journey.Persistence.Schema.Execution.Computation{
 __meta__: #Ecto.Schema.Metadata<:loaded, "computations">,
 id: "CMPZ1T53HMV6LYRA3GY7G5R",
 execution_id: "EXECLG0R2MD2JBARMVRE380L",
 execution: #Ecto.Association.NotLoaded<association :execution is not loaded>,
 node_name: :large_value_alert,
 computation_type: :compute,
 state: :not_set,
 ex_revision_at_start: nil,
 ex_revision_at_completion: nil,
 scheduled_time: nil,
 start_time: nil,
 completion_time: nil,
 deadline: nil,
 error_details: nil,
 computed_with: nil,
 inserted_at: 1755833244,
 updated_at: 1755833244
 }
],
 revision: 1,
 inserted_at: 1755833244,
 updated_at: 1755833251
}
The user is supplying the other input:
reloaded_execution = Journey.set_value(reloaded_execution, :y, 2); :ok
:ok
Now that both :x and :y have been supplied, :sum gets computed. Here is the state attached to the execution:
(Note: since :sum is "small", :large_value_alert does not get set (thanks to the condition we defined in the graph for this node.)
Journey.values_all(reloaded_execution)
%{
 sum: {:set, 14},
 y: {:set, 2},
 x: {:set, 12},
 last_updated_at: {:set, 1755833255},
 execution_id: {:set, "EXECLG0R2MD2JBARMVRE380L"},
 large_value_alert: :not_set
}
Can also get specific values:
Journey.get_value(reloaded_execution, :sum, wait_any: true)
{:ok, 14}
Journey.get_value(reloaded_execution, :large_value_alert)
{:error, :not_set}
Bigger :x -> bigger :sum -> :large_value_alert 🚨!!
If an input value changes, the downstream nodes get re-evaluated.
reloaded_execution = Journey.set_value(reloaded_execution, :x, 133); :ok
:ok
"no worries, here is the updated sum"
Journey.get_value(reloaded_execution, :sum, wait_new: true)
{:ok, 135}
The updated :x pushes :sum over the threshold that triggers :large_value_alert:
Journey.get_value(reloaded_execution, :large_value_alert)
{:ok, "🚨"}
reloaded_execution = Journey.set_value(reloaded_execution, :x, 1); :ok
:ok
Journey.get_value(reloaded_execution, :sum, wait_new: true)
{:ok, 3}
Journey.get_value(reloaded_execution, :large_value_alert)
{:error, :not_set}
This basic computation happened with persistence, resiliency, and scalability.
Searching through executions
You can search the database for execution records, querying by specific values, with sorting, limits and pagination:
Journey.list_executions(
 graph_name: graph.name,
 graph_version: graph.version,
 order_by_execution_fields: [:inserted_at],
 filter_by: [{:sum, :gt, 2}, {:x, :lt, 10}],
 offset: 0,
 limit: 10
)
|> Enum.map(fn e ->
 Journey.values(e)
end)
[
 %{sum: 3, y: 2, x: 1, last_updated_at: 1755826416, execution_id: "EXECV9Z60T26H0AY5BT50M6G"},
 %{sum: 3, y: 2, x: 1, last_updated_at: 1755827033, execution_id: "EXECYGV60454G29YD84R2X14"},
 %{sum: 3, y: 2, x: 1, last_updated_at: 1755828575, execution_id: "EXECXDGXZ01MT5915MJD984L"},
 %{sum: 3, y: 2, x: 1, last_updated_at: 1755830344, execution_id: "EXECAE6861D337HRL9AY4J5Z"},
 %{sum: 3, y: 2, x: 1, last_updated_at: 1755831312, execution_id: "EXEC03G5YMTV1TDVT75DTE9M"},
 %{sum: 3, y: 2, x: 1, last_updated_at: 1755833269, execution_id: "EXECLG0R2MD2JBARMVRE380L"}
]
System Status: health, stats
You can find the stats of the system: the executions what graphs are running, how many are there, and what is happening, generally.
This is a general "high level stats and health check".
System stats, as a human friendly text:
Journey.Insights.Status.status() |> Journey.Insights.Status.to_text() |> IO.puts()
System Status: HEALTHY
Database: Connected
==

GRAPHS (1 total):

Name: 'g1'
Version: 'v1'
Executions:
- active: 6
- archived: 0
First activity: 2025-08-22T03:27:24Z
Last activity: 2025-08-22T03:27:49Z
Computations:
✓ success: 25
◯ not_set: 7

:ok
System stats, as a code-friendly data structure:
Journey.Insights.Status.status()
%{
 status: :healthy,
 graphs: [
 %{
 stats: %{
 computations: %{
 by_state: %{abandoned: 0, cancelled: 0, success: 25, failed: 0, not_set: 7, computing: 0},
 most_recently_created: "2025-08-22T03:27:49Z",
 most_recently_updated: "2025-08-22T03:27:49Z"
 },
 executions: %{
 active: 6,
 archived: 0,
 most_recently_created: "2025-08-22T03:27:24Z",
 most_recently_updated: "2025-08-22T03:27:49Z"
 }
 },
 graph_name: "g1",
 graph_version: "v1"
 }
],
 database_connected: true
}
Flow Analytics: see user's progression
Since every data-setting operation touches the execution, Journey can provide stats on what is happening in the system. What percentage of users reached :x, what percentage of users reached :y, etc.
In a way, this is not unlike funnel analytics for the application defined by the graph.
"Flow Analytics" as a human-friendly text.
Journey.Insights.FlowAnalytics.flow_analytics(graph.name, graph.version)
|> Journey.Insights.FlowAnalytics.to_text()
|> IO.puts()
Graph: 'g1'
Version: 'v1'
Analyzed at: 2025-08-22T03:28:01.343599Z

EXECUTION STATS:

Total executions: 6
Average duration: 8 seconds
Median duration: 1 second

NODE STATS (3 nodes):

Node Name: 'sum'
Type: compute
Reached by: 6 executions (100.0%)
Average time to reach: 8 seconds
Flow ends here: 0 executions (0.0% of all, 0.0% of reached)

Node Name: 'x'
Type: input
Reached by: 6 executions (100.0%)
Average time to reach: 8 seconds
Flow ends here: 0 executions (0.0% of all, 0.0% of reached)

Node Name: 'y'
Type: input
Reached by: 6 executions (100.0%)
Average time to reach: 3 seconds
Flow ends here: 0 executions (0.0% of all, 0.0% of reached)

:ok
"Flow Analytics" as a code-friendly datastructure.
get some analytics for the executions flowing through the system: how many, what does the funnel look like
Journey.Insights.FlowAnalytics.flow_analytics(graph.name, graph.version)
%{
 graph_name: "g1",
 graph_version: "v1",
 node_stats: %{
 nodes: [
 %{
 node_type: :compute,
 node_name: :sum,
 reached_count: 6,
 reached_percentage: 100.0,
 average_time_to_reach: 8,
 flow_ends_here_count: 0,
 flow_ends_here_percentage_of_all: 0.0,
 flow_ends_here_percentage_of_reached: 0.0
 },
 %{
 node_type: :input,
 node_name: :x,
 reached_count: 6,
 reached_percentage: 100.0,
 average_time_to_reach: 8,
 flow_ends_here_count: 0,
 flow_ends_here_percentage_of_all: 0.0,
 flow_ends_here_percentage_of_reached: 0.0
 },
 %{
 node_type: :input,
 node_name: :y,
 reached_count: 6,
 reached_percentage: 100.0,
 average_time_to_reach: 3,
 flow_ends_here_count: 0,
 flow_ends_here_percentage_of_all: 0.0,
 flow_ends_here_percentage_of_reached: 0.0
 }
]
 },
 analyzed_at: "2025-08-22T03:28:04.202091Z",
 executions: %{
 count: 6,
 duration_median_seconds_to_last_update: 1,
 duration_avg_seconds_to_last_update: 8
 }
}
In summary
This showed:
	an application defined as a graph + business logic (the function attached to compute nodes),
	an execution of the flow take place, step by step,
	an execution of the flow be interrupted and resumed, as if nothing happened,
	analytics describing the "funnel" of executions of your graph,

Behind the scenes (not visible in this simple example):
	computations were subject to a retry policy and retries in case of failures,
	computations scale seamlessly: they run on any replica of your application.

This all happened without application data getting shipped to a third party, or requiring a SAAS dependency.
See Journey documentation for examples of more complex applications (e.g. a Horoscope app, or a Credit Card Application flow, which includes Mutations, and one-time and recurring Scheduled events).

Journey

Journey is an Elixir library for building and executing computation graphs, with built-in persistence, reliability, and scalability.
Define your application workflows as dependency graphs where user inputs automatically trigger computations in the correct order, with all state persisted to PostgreSQL.
Executions of the graph survive crashes, redeploys, page reloads, while scaling naturally with your application - no additional infrastructure or cloud service$ required.
Your application can perform durable, short or long-running executions, with retries, scalability, dependency tracking, scheduling and analytics.
Journey's primitives are simple: graph, dependencies, functions, persistence, retries, scheduling. Together, they help you build rich, scalable, reliable functionality with simple, well-structured and easy-to-understand code, quickly.
Overview
To illustrate a few concepts (graph, dependencies – including conditional dependencies, computation functions, persistence), here is a simple example.
This graph adds two numbers when they become available, and conditionally sets the "too large" flag.
iex> import Journey.Node
iex> # Defining a graph, with two input nodes and two downstream computations.
iex> graph = Journey.new_graph(
...> "demo graph",
...> "v1",
...> [
...> input(:x),
...> input(:y),
...> # :sum is unblocked when :x and :y are provided.
...> compute(:sum, [:x, :y], fn %{x: x, y: y} -> {:ok, x + y} end),
...> # :large_value_alert is unblocked when :sum is provided and is greater than 40.
...> compute(
...> :large_value_alert,
...> [sum: fn sum_node -> sum_node.node_value > 40 end],
...> fn %{sum: sum} -> {:ok, "🚨, at #{sum}"} end,
...> f_on_save: fn _execution_id, _result ->
...> # (e.g. send a pubsub notification to the LiveView process to update the UI)
...> :ok
...> end
...>)
...>]
...>)
iex> # Start an execution of this graph, set input values, read computed values.
iex> execution = Journey.start_execution(graph)
iex> execution = Journey.set_value(execution, :x, 12)
iex> execution = Journey.set_value(execution, :y, 2)
iex> Journey.get_value(execution, :sum, wait_any: true)
{:ok, 14}
iex> Journey.get_value(execution, :large_value_alert)
{:error, :not_set}
iex> eid = execution.id
iex> # After an outage / redeployment / page reload / long pause, an execution
iex> # can be reloaded and continue, as if nothing happened.
iex> execution = Journey.load(eid)
iex> # An update to :y triggers a re-computation of downstream values.
iex> execution = Journey.set_value(execution, :y, 37)
iex> Journey.get_value(execution, :large_value_alert, wait_any: true)
{:ok, "🚨, at 49"}
iex> Journey.values(execution) |> redact([:execution_id, :last_updated_at])
%{execution_id: "...", last_updated_at: 1234567890, sum: 49, x: 12, y: 37, large_value_alert: "🚨, at 49"}
The graph can be visualized as a Mermaid graph:
> Journey.Tools.generate_mermaid_graph(graph)
graph TD
 %% Graph
 subgraph Graph["🧩 'demo graph', version v1"]
 execution_id[execution_id]
 last_updated_at[last_updated_at]
 x[x]
 y[y]
 sum["sum
(anonymous fn)"]
 large_value_alert["large_value_alert
(anonymous fn)"]

 x --> sum
 y --> sum
 sum --> large_value_alert
 end

 %% Styling
 classDef inputNode fill:#e1f5fe,stroke:#01579b,stroke-width:2px,color:#000000
 classDef computeNode fill:#f3e5f5,stroke:#4a148c,stroke-width:2px,color:#000000
 classDef scheduleNode fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#000000
 classDef mutateNode fill:#e8f5e8,stroke:#2e7d32,stroke-width:2px,color:#000000

 %% Apply styles to actual nodes
 class y,x,last_updated_at,execution_id inputNode
 class large_value_alert,sum computeNode
A few things to note about this example:
	Every input value (:x, :y), or computation result (:sum, :large_value_alert) is persisted as soon as it becomes available,
	The functions attached to :sum and :large_value_alert	are called reliably, with a retry policy,
	will execute on any of the replicas of your application,
	are called proactively – when their upstream dependencies are available.

	Executions of this flow can take as long as needed (milliseconds? months?), and will live through system restarts, crashes, redeployments, page reloads, etc.

So What Exactly Does Journey Provide?
Despite the simplicity of use, here are a few things provided by Journey that are worth noting:
	Persistence: Executions are persisted, so if the customer leaves the web site, or if the system crashes, their execution can be reloaded and continued from where it left off.

	Scaling: Since Journey runs as part of your application, it scales with your application. Your graph's computations (:sum's function in the example above, or &compute_zodiac_sign/1 and &compute_horoscope/1 in the example above) run on the same nodes where the replicas of your application are running. No additional infrastructure or cloud services are needed.

	Reliability: Journey uses database-based supervision of computation tasks: The compute functions are subject to customizable retry policy, so if :sum's function above or &compute_horoscope/1 below fails because of a temporary glitch (e.g. the LLM service it uses for drafting horoscopes is currently overloaded), it will be retried.

	Code Structure: The flow of your application is captured in the Journey graph, and the business logic is captured in the compute functions (:sum's function above, or &compute_zodiac_sign/1 and &compute_horoscope/1 below). This clean separation supports you in structuring the functionality of your application in a clear, easy to understand and maintain way.

	Conditional flow: Journey allows you to define conditions for when a node is to be unblocked. So if your graph includes a "credit_approval_decision" node, the decision can inform which part of the graph is to be executed next (sending a "congrats!" email and starting the credit card issuance process, or sending a "sad trombone" email).

	Graph Visualization: Journey provides tools for visualizing your application's graph, so you can easily see the flow of data and computations in your application, and to share and discuss it with your team.

	Scheduling: Your graph can include computations that are scheduled to run at a later time, or on a recurring basis. Daily horoscope emails! A reminder email if they haven't visited the web site in a while! A "happy birthday" email!

	Removing PII. Journey gives you an easy way to erase sensitive data once it is no longer needed. For example, your Credit Card Application graph can include a step to remove the SSN once the credit score has been computed. For an example, please see
mutate(:ssn_redacted, [:credit_score], fn _ -> {:ok, "<redacted>"} end, mutates: :ssn)
node in the example credit card application graph, here, which mutates the contents of the :ssn node, replacing its value with "<redacted>", when :credit_score completes.

	Tooling and visualization: Journey.Tools provides a set of tools for introspecting and managing executions, and for visualizing your application's graph.

A (slightly) richer example: computing horoscopes
Consider a simple Horoscope application that computes a customer's zodiac sign and horoscope based on their birthday. The application will ask the customer to input their name and birthday, and it then auto-computes their zodiac sign and horoscope.
This application can be thought of as a graph of nodes, where each node represents a piece of customer-provided data or the result of a computation. Add functions for computing the zodiac sign and horoscope, and capture the sequencing of the computations, and you have a graph that captures the flow of data and computations in your application. When a customer visits your application, you can start the execution of the graph, to accept and store customer-provided inputs (name, birthday), and to compute the zodiac sign and horoscope based on these inputs.
Journey provides a way to define such graphs, and to run their executions, to serve your customer flows.
Step-by-Step
Below is a step-by-step example of defining a Journey graph for this Horoscope application.
(These are code snippets, if you want a complete fragment you can paste into iex or livebook, scroll down to the "Putting together" code block.)
This graph captures customer inputs, and defines computeations (together with their functions and prerequisites):
graph = Journey.new_graph(
 "horoscope workflow - module doctest",
 "v1.0.0",
 [
 input(:first_name),
 input(:birth_day),
 input(:birth_month),
 compute(
 :zodiac_sign,
 [:birth_month, :birth_day],
 &compute_zodiac_sign/1
),
 compute(
 :horoscope,
 [:first_name, :zodiac_sign],
 &compute_horoscope/1
)
]
)
When a customer lands on your web page, and starts a new flow, your application will start a new execution of the graph,
execution = Journey.start_execution(graph)
and it will populate the execution with the input values (name, birthday) as the customer provides them:
execution = Journey.set_value(execution, :first_name, "Mario")
execution = Journey.set_value(execution, :birth_day, 5)
execution = Journey.set_value(execution, :birth_month, "May")
Providing these input values will trigger automatic computations of the customer's zodiac_sign and the horoscope, which can then be read from the execution and rendered on the web page.
{:ok, zodiac_sign} = Journey.get_value(execution, :zodiac_sign, wait_any: true)
{:ok, horoscope} = Journey.get_value(execution, :horoscope, wait_any: true)
And that's it!
Example
Putting together the components of the horoscope example into a complete, running doctest example:
iex> # 1. Define a graph capturing the data and the logic of the application -
iex> # the nodes, their dependencies, and their computations:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "horoscope workflow - module doctest",
...> "v1.0.0",
...> [
...> input(:first_name),
...> input(:birth_day),
...> input(:birth_month),
...> compute(
...> :zodiac_sign,
...> # Depends on user-supplied data:
...> [:birth_month, :birth_day],
...> # Computes itself, once the dependencies are satisfied:
...> fn %{birth_month: _birth_month, birth_day: _birth_day} ->
...> {:ok, "Taurus"}
...> end
...>),
...> compute(
...> :horoscope,
...> # Computes itself once :first_name and :zodiac_sign are in place:
...> [:first_name, :zodiac_sign],
...> fn %{first_name: name, zodiac_sign: zodiac_sign} ->
...> {:ok, "🍪s await, #{zodiac_sign} #{name}!"}
...> end
...>)
...>]
...>)
iex>
iex> # 2. For every customer visiting your website, start a new execution of the graph:
iex> e = Journey.start_execution(graph)
iex>
iex> # 3. Populate the execution's nodes with the data as provided by the visitor:
iex> e = Journey.set_value(e, :birth_day, 26)
iex>
iex> # As a side note: if the user leaves and comes back later or if everything crashes,
iex> # you can always reload the execution using its id:
iex> e = Journey.load(e.id)
iex>
iex> # Continuing, as if nothing happened:
iex> e = Journey.set_value(e, :birth_month, "April")
iex>
iex> # 4. Now that we have :birth_month and :birth_day, :zodiac_sign will compute itself:
iex> Journey.get_value(e, :zodiac_sign, wait_any: true)
{:ok, "Taurus"}
iex> Journey.values(e) |> redact([:execution_id, :last_updated_at])
%{birth_day: 26, birth_month: "April", zodiac_sign: "Taurus", execution_id: "...", last_updated_at: 1234567890}
iex>
iex> # 5. Once we get :first_name, the :horoscope node will compute itself:
iex> e = Journey.set_value(e, :first_name, "Mario")
iex> Journey.get_value(e, :horoscope, wait_any: true)
{:ok, "🍪s await, Taurus Mario!"}
iex>
iex> Journey.values(e) |> redact([:execution_id, :last_updated_at])
%{birth_day: 26, birth_month: "April", first_name: "Mario", horoscope: "🍪s await, Taurus Mario!", zodiac_sign: "Taurus", execution_id: "...", last_updated_at: 1234567890}
iex>
iex> # 6. and we can always list executions.
iex> this_execution = Journey.list_executions(graph_name: "horoscope workflow - module doctest", order_by_execution_fields: [:inserted_at]) |> Enum.reverse() |> hd
iex> e.id == this_execution.id
true
For a more in-depth example of building a more complex application, see the Credit Card Application example in Journey.Examples.CreditCardApplication.

 Summary

 Functions

 archive(execution_id)

 Archives an execution, making it invisible and stopping all background processing.

 get_value(execution, node_name, opts \\ [])

 Returns the value of a node in an execution. Optionally waits for the value to be set.

 history(execution_id)

 Returns the chronological history of all successful computations and set values for an execution.

 list_executions(options \\ [])

 Queries and retrieves multiple executions from the database with flexible filtering, sorting, and pagination.

 load(execution_id, opts \\ [])

 Reloads the current state of an execution from the database to get the latest changes.

 new_graph(name, version, nodes, opts \\ [])

 Creates a new computation graph with the given name, version, and node definitions.

 set_value(execution_id, node_name, value)

 Sets the value for an input node in an execution and triggers recomputation of dependent nodes.

 start_execution(graph)

 Starts a new execution instance of a computation graph, initializing it to accept input values and perform computations.

 unarchive(execution_id)

 Un-archives the supplied execution, if it is archived.

 unset_value(execution_id, node_name)

 Removes the value from an input node in an execution and invalidates all dependent computed nodes.

 values(execution, opts \\ [])

 Returns a map of all set node values in an execution, excluding unset nodes.

 values_all(execution, opts \\ [])

 Returns a map of all nodes in an execution with their current status, including unset nodes.

 Functions

 archive(execution_id)

Archives an execution, making it invisible and stopping all background processing.
Archiving permanently (*) freezes an execution by marking it with an archived timestamp.
This removes it from normal visibility and excludes it from all scheduler processing,
while preserving the data for potential future access.
*) an execution can be unarchived by calling unarchive/1
Quick Example
archived_at = Journey.archive(execution)
Journey.load(execution) # Returns nil (hidden)
Journey.load(execution, include_archived: true) # Can still access
Use unarchive/1 to reverse archiving and list_executions/1 with :include_archived to find archived executions.
Parameters
	execution - A %Journey.Persistence.Schema.Execution{} struct or execution ID string

Returns
	Integer timestamp (Unix epoch seconds) when the execution was archived

Key Behaviors
	Scheduler exclusion - Archived executions are excluded from all background sweeps and processing
	Hidden by default - Not returned by list_executions/1 or load/2 unless explicitly included
	Idempotent - Archiving an already archived execution returns the existing timestamp
	Reversible - Use unarchive/1 to restore normal visibility and processing

Examples
Basic archiving workflow:
iex> import Journey.Node
iex> graph = Journey.new_graph("archive example", "v1.0.0", [input(:data)])
iex> execution = Journey.start_execution(graph)
iex> execution.archived_at
nil
iex> archived_at = Journey.archive(execution)
iex> is_integer(archived_at)
true
iex> Journey.load(execution)
nil
iex> Journey.load(execution, include_archived: true) != nil
true
Idempotent behavior:
iex> import Journey.Node
iex> graph = Journey.new_graph("archive idempotent", "v1.0.0", [input(:data)])
iex> execution = Journey.start_execution(graph)
iex> first_archive = Journey.archive(execution)
iex> second_archive = Journey.archive(execution)
iex> first_archive == second_archive
true

 get_value(execution, node_name, opts \\ [])

Returns the value of a node in an execution. Optionally waits for the value to be set.
Quick Examples
Basic usage - get a set value
{:ok, value} = Journey.get_value(execution, :name)

Wait for a computed value to be available
{:ok, result} = Journey.get_value(execution, :computed_field, wait_any: true)

Wait for a new version of the value
{:ok, new_value} = Journey.get_value(execution, :name, wait_new: true)
Use set_value/3 to set input values that trigger computations.
Parameters
	execution - A %Journey.Persistence.Schema.Execution{} struct
	node_name - Atom representing the node name (must exist in the graph)
	opts - Keyword list of options (see Options section below)

Returns
	{:ok, value} – the value is set
	{:error, :not_set} – the value is not yet set
	{:error, :no_such_value} – the node does not exist

Errors
	Raises RuntimeError if the node name does not exist in the execution's graph
	Raises ArgumentError if both :wait_any and :wait_new options are provided (mutually exclusive)

Options
	:wait_any – whether or not to wait for the value to be set. This option can have the following values:	false or 0 – return immediately without waiting (default)
	true – wait until the value is available, or until timeout
	a positive integer – wait for the supplied number of milliseconds (default: 30_000)
	:infinity – wait indefinitely
This is useful for self-computing nodes, where the value is computed asynchronously.

	:wait_new – whether to wait for a new revision of the value, compared to the version in the supplied execution. This option can have the following values:	false – do not wait for a new revision (default)
	true – wait for a value with a higher revision than the current one, or the first value if none exists yet, or until timeout
	a positive integer – wait for the supplied number of milliseconds for a new revision
This is useful for when want a new version of the value, and are waiting for it to get computed.

Note: :wait_any and :wait_new are mutually exclusive.
Examples
 iex> execution =
 ...> Journey.Examples.Horoscope.graph() |>
 ...> Journey.start_execution() |>
 ...> Journey.set_value(:birth_day, 26)
 iex> Journey.get_value(execution, :birth_day)
 {:ok, 26}
 iex> Journey.get_value(execution, :birth_month)
 {:error, :not_set}
 iex> Journey.get_value(execution, :astrological_sign)
 {:error, :not_set}
 iex> execution = Journey.set_value(execution, :birth_month, "April")
 iex> Journey.get_value(execution, :astrological_sign)
 {:error, :not_set}
 iex> Journey.get_value(execution, :astrological_sign, wait_any: true)
 {:ok, "Taurus"}
 iex> Journey.get_value(execution, :horoscope, wait_any: 2_000)
 {:error, :not_set}
 iex> execution = Journey.set_value(execution, :first_name, "Mario")
 iex> Journey.get_value(execution, :horoscope, wait_any: true)
 {:ok, "🍪s await, Taurus Mario!"}

 history(execution_id)

Returns the chronological history of all successful computations and set values for an execution.
This function provides visibility into the order of operations during execution, showing both
value sets and successful computations in chronological order. Only successful computations
are included; failed computations are filtered out. At the same revision, computations appear
before values.
Quick Example
history = Journey.history(execution)
[%{node_name: :x, computation_or_value: :value, revision: 1},
%{node_name: :sum, computation_or_value: :computation, revision: 2}, ...]
Use values/2 to see only current values, or set_value/3 and get_value/3 for individual operations.
Parameters
	execution - A %Journey.Persistence.Schema.Execution{} struct or execution ID string

Returns
	List of maps sorted by revision, where each map contains:	:computation_or_value - either :computation or :value
	:node_name - the name of the node
	:node_type - the type of the node (:input, :compute, :mutate, etc.)
	:revision - the execution revision when this operation completed
	:value - the actual value (only present for :value entries)

Examples
Basic usage showing value sets and computation:
iex> import Journey.Node
iex> graph = Journey.new_graph("history example", "v1.0.0", [
...> input(:x),
...> input(:y),
...> compute(:sum, [:x, :y], fn %{x: x, y: y} -> {:ok, x + y} end)
...>])
iex> execution = Journey.start_execution(graph)
iex> execution = Journey.set_value(execution, :x, 10)
iex> execution = Journey.set_value(execution, :y, 20)
iex> Journey.get_value(execution, :sum, wait_any: true)
{:ok, 30}
iex> Journey.history(execution) |> Enum.map(fn entry ->
...> case entry.node_name do
...> :execution_id -> %{entry | value: "..."}
...> :last_updated_at -> %{entry | value: 1234567890}
...> _ -> entry
...> end
...> end)
[
 %{node_name: :execution_id, node_type: :input, computation_or_value: :value, value: "...", revision: 0},
 %{node_name: :x, node_type: :input, computation_or_value: :value, value: 10, revision: 1},
 %{node_name: :y, node_type: :input, computation_or_value: :value, value: 20, revision: 2},
 %{node_name: :sum, node_type: :compute, computation_or_value: :computation, revision: 4},
 %{node_name: :last_updated_at, node_type: :input, computation_or_value: :value, value: 1234567890, revision: 4},
 %{node_name: :sum, node_type: :compute, computation_or_value: :value, value: 30, revision: 4}
]

 list_executions(options \\ [])

Queries and retrieves multiple executions from the database with flexible filtering, sorting, and pagination.
This function enables searching across all executions in your system, with powerful filtering
capabilities based on graph names, node values, and execution metadata. It's essential for
monitoring workflows, building dashboards, and analyzing execution patterns.
Quick Example
List all executions for a specific graph
executions = Journey.list_executions(graph_name: "user_onboarding")

List executions for a specific graph version
v1_executions = Journey.list_executions(
 graph_name: "user_onboarding",
 graph_version: "v1.0.0"
)

Find executions where age > 18
adults = Journey.list_executions(
 graph_name: "user_registration",
 filter_by: [{:age, :gt, 18}]
)
Use with start_execution/1 to create executions and load/2 to get individual execution details.
Parameters
	options - Keyword list of query options (all optional):	:graph_name - String name of a specific graph to filter by
	:graph_version - String version of a specific graph to filter by (requires :graph_name)
	:sort_by - List of fields to sort by, including both execution fields and node values (see Sorting section for details)
	:filter_by - List of node value filters using database-level filtering for optimal performance. Each filter is a tuple {node_name, operator, value} or {node_name, operator} for nil checks. Operators: :eq, :neq, :lt, :lte, :gt, :gte (comparisons), :in, :not_in (membership), :is_nil, :is_not_nil (existence). Values can be strings, numbers, booleans, nil or lists (used with :in and :not_in). Complex values (maps, tuples, functions) will raise an ArgumentError.
	:limit - Maximum number of results (default: 10,000)
	:offset - Number of results to skip for pagination (default: 0)
	:include_archived - Whether to include archived executions (default: false)

Returns
	List of %Journey.Persistence.Schema.Execution{} structs with preloaded values and computations
	Empty list [] if no executions match the criteria

Options
:sort_by
Sort by execution fields or node values. Supports atoms for ascending ([:updated_at]),
keywords for direction ([updated_at: :desc]), and mixed formats ([:graph_name, inserted_at: :desc]).
Available fields:
	Execution fields: :inserted_at, :updated_at, :revision, :graph_name, :graph_version
	Node values: Any node name from the graph (e.g., :age, :score) using JSONB ordering
	Direction: :asc (default) or :desc

Key Behaviors
	Filtering performed at database level for optimal performance
	Only primitive values supported for filtering (complex types raise errors)
	Archived executions excluded by default

Examples
Basic listing by graph name:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "list example basic - #{Journey.Helpers.Random.random_string()}",
...> "v1.0.0",
...> [input(:status)]
...>)
iex> Journey.start_execution(graph) |> Journey.set_value(:status, "active")
iex> Journey.start_execution(graph) |> Journey.set_value(:status, "pending")
iex> executions = Journey.list_executions(graph_name: graph.name)
iex> length(executions)
2
Filtering by graph version:
iex> import Journey.Node
iex> graph_name = "version example D9Xmexzd7DVe"
iex> graph_v1 = Journey.new_graph(
...> graph_name,
...> "v1.0.0",
...> [input(:data)]
...>)
iex> graph_v2 = Journey.new_graph(
...> graph_name,
...> "v2.0.0",
...> [input(:data), input(:new_field)]
...>)
iex> Journey.start_execution(graph_v1) |> Journey.set_value(:data, "v1 data")
iex> Journey.start_execution(graph_v2) |> Journey.set_value(:data, "v2 data")
iex> Journey.list_executions(graph_name: graph_v1.name, graph_version: "v1.0.0") |> length()
1
iex> Journey.list_executions(graph_name: graph_v1.name, graph_version: "v2.0.0") |> length()
1
iex> Journey.list_executions(graph_name: graph_v1.name) |> length()
2
Validation that graph_version requires graph_name:
iex> Journey.list_executions(graph_version: "v1.0.0")
** (ArgumentError) Option :graph_version requires :graph_name to be specified
Sorting by execution fields and node values:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "sort example - #{Journey.Helpers.Random.random_string()}",
...> "v1.0.0",
...> [input(:priority)]
...>)
iex> Journey.start_execution(graph) |> Journey.set_value(:priority, "high")
iex> Journey.start_execution(graph) |> Journey.set_value(:priority, "low")
iex> Journey.start_execution(graph) |> Journey.set_value(:priority, "medium")
iex> # Sort by priority descending - shows the actual sorted values
iex> Journey.list_executions(graph_name: graph.name, sort_by: [priority: :desc]) |> Enum.map(fn e -> Journey.values(e) |> Map.get(:priority) end)
["medium", "low", "high"]
Filtering with multiple operators:
iex> graph = Journey.Examples.Horoscope.graph()
iex> for day <- 1..20, do: Journey.start_execution(graph) |> Journey.set_value(:birth_day, day) |> Journey.set_value(:birth_month, 4) |> Journey.set_value(:first_name, "Mario")
iex> # Various filtering examples
iex> Journey.list_executions(graph_name: graph.name, filter_by: [{:birth_day, :eq, 10}]) |> Enum.count()
1
iex> Journey.list_executions(graph_name: graph.name, filter_by: [{:birth_day, :neq, 10}]) |> Enum.count()
19
iex> Journey.list_executions(graph_name: graph.name, filter_by: [{:birth_day, :lte, 5}]) |> Enum.count()
5
iex> Journey.list_executions(graph_name: graph.name, filter_by: [{:birth_day, :in, [5, 10, 15]}]) |> Enum.count()
3
iex> Journey.list_executions(graph_name: graph.name, filter_by: [{:first_name, :is_not_nil}]) |> Enum.count()
20
Multiple filters, sorting, and pagination:
iex> graph = Journey.Examples.Horoscope.graph()
iex> for day <- 1..20, do: Journey.start_execution(graph) |> Journey.set_value(:birth_day, day) |> Journey.set_value(:birth_month, 4) |> Journey.set_value(:first_name, "Mario")
iex> # Multiple filters combined
iex> Journey.list_executions(
...> graph_name: graph.name,
...> filter_by: [{:birth_day, :gt, 10}, {:first_name, :is_not_nil}],
...> sort_by: [birth_day: :desc],
...> limit: 5
...>) |> Enum.count()
5
iex> # Pagination
iex> Journey.list_executions(graph_name: graph.name, limit: 3) |> Enum.count()
3
iex> Journey.list_executions(graph_name: graph.name, limit: 5, offset: 10) |> Enum.count()
5
Including archived executions:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "list example - archived - #{Journey.Helpers.Random.random_string()}",
...> "v1.0.0",
...> [input(:status)]
...>)
iex> e1 = Journey.start_execution(graph)
iex> _e2 = Journey.start_execution(graph)
iex> Journey.archive(e1)
iex> Journey.list_executions(graph_name: graph.name) |> length()
1
iex> Journey.list_executions(graph_name: graph.name, include_archived: true) |> length()
2

 load(execution_id, opts \\ [])

Reloads the current state of an execution from the database to get the latest changes.
Executions can be modified by their background computations, or scheduled events, or other processes setting their values. This function is used to get the latest state of an execution -- as part of normal operations, or when the system starts up, or when the user whose session is being tracked as an execution comes back to the web site and resumes their flow.
Quick Example
execution = Journey.set_value(execution, :name, "Mario")
execution = Journey.load(execution) # Get updated state with new revision
{:ok, greeting} = Journey.get_value(execution, :greeting, wait_any: true)
Use set_value/3 and get_value/3 to modify and read execution values.
Parameters
	execution - A %Journey.Persistence.Schema.Execution{} struct or execution ID string
	opts - Keyword list of options (see Options section below)

Returns
	A %Journey.Persistence.Schema.Execution{} struct with current database state, or nil if not found

Options
	:preload - Whether to preload associated nodes and values. Defaults to true.
Set to false for better performance when you only need execution metadata.
	:include_archived - Whether to include archived executions. Defaults to false.
Archived executions are normally hidden but can be loaded with this option.

Key Behaviors
	Fresh state - Always returns the current state from the database, not cached data
	Revision tracking - Loaded execution will have the latest revision number
	Archived handling - Archived executions return nil unless explicitly included
	Performance option - Use preload: false to skip loading values/computations for speed

Examples
Basic reloading after value changes:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "load example - basic",
...> "v1.0.0",
...> [
...> input(:name),
...> compute(:greeting, [:name], fn %{name: name} -> {:ok, "Hello, #{name}!"} end)
...>]
...>)
iex> execution = Journey.start_execution(graph)
iex> execution.revision
0
iex> execution = Journey.set_value(execution, :name, "Alice")
iex> execution.revision > 0
true
iex> {:ok, "Hello, Alice!"} = Journey.get_value(execution, :greeting, wait_any: true)
iex> reloaded = Journey.load(execution)
iex> reloaded.revision >= execution.revision
true
Loading by execution ID:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "load example - by id",
...> "v1.0.0",
...> [input(:data)]
...>)
iex> execution = Journey.start_execution(graph)
iex> execution_id = execution.id
iex> reloaded = Journey.load(execution_id)
iex> reloaded.id == execution_id
true
Performance optimization with preload option:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "load example - no preload",
...> "v1.0.0",
...> [input(:data)]
...>)
iex> execution = Journey.start_execution(graph)
iex> fast_load = Journey.load(execution, preload: false)
iex> fast_load.id == execution.id
true
Handling archived executions:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "load example - archived",
...> "v1.0.0",
...> [input(:data)]
...>)
iex> execution = Journey.start_execution(graph)
iex> Journey.archive(execution)
iex> Journey.load(execution)
nil
iex> Journey.load(execution, include_archived: true) != nil
true

 new_graph(name, version, nodes, opts \\ [])

Creates a new computation graph with the given name, version, and node definitions.
This is the foundational function for defining Journey graphs. It creates a validated
graph structure that can be used to start executions with start_execution/1. The graph
defines the data flow, dependencies, and computations for your application workflow.
Quick Example
import Journey.Node
graph = Journey.new_graph(
 "user onboarding",
 "v1.0.0",
 [
 input(:email),
 compute(:welcome_message, [:email], fn %{email: email} ->
 {:ok, "Welcome #{email}!"}
 end)
]
)
execution = Journey.start_execution(graph)
Use start_execution/1 to create executions and set_value/3 to populate input values.
Parameters
	name - String identifying the graph (e.g., "user registration workflow")
	version - String version identifier following semantic versioning (e.g., "v1.0.0")
	nodes - List of node definitions created with Journey.Node functions (input/1, compute/4, etc.)
	opts - Optional keyword list of options:	:f_on_save - Graph-wide callback function invoked after any node computation succeeds.
Receives (execution_id, node_name, result) where result is {:ok, value} or {:error, reason}.
This callback is called after any node-specific f_on_save callbacks.

Returns
	%Journey.Graph{} struct representing the validated and registered computation graph

Errors
	Raises RuntimeError if graph validation fails (e.g., circular dependencies, unknown node references)
	Raises ArgumentError if parameters have invalid types or empty node list
	Raises KeywordValidator.Error if options are invalid

Key Behaviors
	Validation - Automatically validates graph structure for cycles, dependency correctness
	Registration - Registers graph in catalog for execution tracking and reloading
	Immutable - Graph definition is immutable once created; create new versions for changes
	Node types - Supports input, compute, mutate, schedule_once, and schedule_recurring nodes
	f_on_save Callbacks - If defined, the graph-wide f_on_save callback is called after Node-specific f_on_saves (if defined)

Examples
Basic workflow with input and computation:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "greeting workflow",
...> "v1.0.0",
...> [
...> input(:name),
...> compute(:greeting, [:name], fn %{name: name} -> {:ok, "Hello, #{name}!"} end)
...>]
...>)
iex> graph.name
"greeting workflow"
iex> execution = Journey.start_execution(graph)
iex> execution = Journey.set_value(execution, :name, "Alice")
iex> Journey.get_value(execution, :greeting, wait_any: true)
{:ok, "Hello, Alice!"}
Graph with a graph-wide f_on_save callback:
iex> import Journey.Node
iex> _graph = Journey.new_graph(
...> "notification workflow",
...> "v1.0.0",
...> [
...> input(:user_id),
...> compute(:fetch_user, [:user_id], fn %{user_id: id} ->
...> {:ok, %{id: id, name: "User #{id}"}}
...> end),
...> compute(:send_email, [:fetch_user], fn %{fetch_user: user} ->
...> {:ok, "Email sent to #{user.name}"}
...> end)
...>],
...> f_on_save: fn _execution_id, node_name, result ->
...> # This will be called for both :fetch_user and :send_email computations
...> IO.puts("Node #{node_name} completed with result: #{inspect(result)}")
...> :ok
...> end
...>)
Complex workflow with conditional dependencies:
iex> import Journey.Node
iex> import Journey.Node.Conditions
iex> import Journey.Node.UpstreamDependencies
iex> graph = Journey.new_graph(
...> "horoscope workflow",
...> "v1.0.0",
...> [
...> input(:first_name),
...> input(:birth_day),
...> input(:birth_month),
...> compute(
...> :zodiac_sign,
...> [:birth_month, :birth_day],
...> fn %{birth_month: _birth_month, birth_day: _birth_day} ->
...> {:ok, "Taurus"}
...> end
...>),
...> compute(
...> :horoscope,
...> unblocked_when({
...> :and,
...> [
...> {:first_name, &provided?/1},
...> {:zodiac_sign, &provided?/1}
...>]
...> }),
...> fn %{first_name: name, zodiac_sign: zodiac_sign} ->
...> {:ok, "🍪s await, #{zodiac_sign} #{name}!"}
...> end
...>)
...>]
...>)
iex> execution = Journey.start_execution(graph)
iex> execution = Journey.set_value(execution, :birth_day, 15)
iex> execution = Journey.set_value(execution, :birth_month, "May")
iex> Journey.get_value(execution, :zodiac_sign, wait_any: true)
{:ok, "Taurus"}
iex> execution = Journey.set_value(execution, :first_name, "Bob")
iex> Journey.get_value(execution, :horoscope, wait_any: true)
{:ok, "🍪s await, Taurus Bob!"}
Multiple node types in a workflow:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "data processing workflow",
...> "v2.1.0",
...> [
...> input(:raw_data),
...> compute(:upper_case, [:raw_data], fn %{raw_data: data} ->
...> {:ok, String.upcase(data)}
...> end),
...> compute(:suffix, [:upper_case], fn %{upper_case: data} ->
...> {:ok, "#{data} omg yay"}
...> end)
...>]
...>)
iex> execution = Journey.start_execution(graph)
iex> execution = Journey.set_value(execution, :raw_data, "hello world")
iex> Journey.get_value(execution, :upper_case, wait_any: true)
{:ok, "HELLO WORLD"}
iex> Journey.get_value(execution, :suffix, wait_any: true)
{:ok, "HELLO WORLD omg yay"}

 set_value(execution_id, node_name, value)

Sets the value for an input node in an execution and triggers recomputation of dependent nodes.
When a value is set, Journey automatically recomputes any dependent computed nodes to ensure
consistency across the dependency graph. The operation is idempotent - setting the same value
twice has no effect.
Parameters
	execution - A %Journey.Persistence.Schema.Execution{} struct or execution ID string
	node_name - Atom representing the input node name (must exist in the graph)
	value - The value to set. Supported types: nil, string, number, map, list, boolean. Note that if the map or the list contains atoms, those atoms will be converted to strings.

Returns
	Updated %Journey.Persistence.Schema.Execution{} struct with incremented revision (if value changed)

Errors
	Raises RuntimeError if the node name does not exist in the execution's graph
	Raises RuntimeError if attempting to set a compute node (only input nodes can be set)

Key Behaviors
	Automatic recomputation - Setting a value triggers recomputation of all dependent nodes
	Idempotent - Setting the same value twice has no effect (no revision increment)
	Input nodes only - Only input nodes can be set; compute nodes are read-only

Quick Example
execution = Journey.set_value(execution, :name, "Mario")
{:ok, greeting} = Journey.get_value(execution, :greeting, wait_any: true)
Use get_value/3 to retrieve the set value and unset_value/2 to remove values.
Examples
Basic setting with cascading recomputation:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "set workflow - cascading example",
...> "v1.0.0",
...> [
...> input(:name),
...> compute(:greeting, [:name], fn %{name: name} -> {:ok, "Hello, #{name}!"} end)
...>]
...>)
iex> execution = graph |> Journey.start_execution()
iex> execution = Journey.set_value(execution, :name, "Mario")
iex> Journey.get_value(execution, :greeting, wait_any: true)
{:ok, "Hello, Mario!"}
iex> execution = Journey.set_value(execution, :name, "Luigi")
iex> Journey.get_value(execution, :greeting, wait_new: true)
{:ok, "Hello, Luigi!"}
Idempotent behavior - same value doesn't change revision:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "set workflow - idempotent example",
...> "v1.0.0",
...> [input(:name)]
...>)
iex> execution = graph |> Journey.start_execution()
iex> execution = Journey.set_value(execution, :name, "Mario")
iex> first_revision = execution.revision
iex> execution = Journey.set_value(execution, :name, "Mario")
iex> execution.revision == first_revision
true
Different value types:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "set workflow - value types example",
...> "v1.0.0",
...> [input(:number), input(:flag), input(:data)]
...>)
iex> execution = graph |> Journey.start_execution()
iex> execution = Journey.set_value(execution, :number, 42)
iex> execution = Journey.set_value(execution, :flag, true)
iex> execution = Journey.set_value(execution, :data, %{key: "value"})
iex> Journey.get_value(execution, :number)
{:ok, 42}
iex> Journey.get_value(execution, :flag)
{:ok, true}
Using an execution ID:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "set workflow - execution_id example",
...> "v1.0.0",
...> [input(:name)]
...>)
iex> execution = graph |> Journey.start_execution()
iex> updated_execution = Journey.set_value(execution.id, :name, "Luigi")
iex> Journey.get_value(updated_execution, :name)
{:ok, "Luigi"}

 start_execution(graph)

Starts a new execution instance of a computation graph, initializing it to accept input values and perform computations.
Creates a persistent execution in the database with a unique ID and begins background processing
for any schedulable nodes. The execution starts with revision 0 and no values set.
Quick Example
execution = Journey.start_execution(graph)
execution = Journey.set_value(execution, :name, "Mario")
{:ok, greeting} = Journey.get_value(execution, :greeting, wait_any: true)
Use set_value/3 to provide input values and get_value/3 to retrieve computed results.
Parameters
	graph - A validated %Journey.Graph{} struct created with new_graph/3. The graph must
have passed validation during creation and be registered in the graph catalog.

Returns
	A new %Journey.Persistence.Schema.Execution{} struct with:	:id - Unique execution identifier (UUID string)
	:graph_name and :graph_version - From the source graph
	:revision - Always starts at 0, increments with each state change
	:archived_at - Initially nil (not archived)
and other fields.

Key Behaviors
	Database persistence - Execution state is immediately saved to PostgreSQL
	Unique execution - Each call creates a completely independent execution instance
	Background processing - Scheduler automatically begins monitoring for schedulable nodes
	Ready for inputs - Can immediately accept input values via set_value/3

Examples
Basic execution creation:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "greeting workflow",
...> "v1.0.0",
...> [
...> input(:name),
...> compute(
...> :greeting,
...> [:name],
...> fn %{name: name} -> {:ok, "Hello, #{name}!"} end
...>)
...>]
...>)
iex> execution = Journey.start_execution(graph)
iex> execution.graph_name
"greeting workflow"
iex> execution.graph_version
"v1.0.0"
iex> execution.revision
0
Execution properties and immediate workflow:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "calculation workflow",
...> "v1.0.0",
...> [
...> input(:x),
...> input(:y),
...> compute(:sum, [:x, :y], fn %{x: x, y: y} -> {:ok, x + y} end)
...>]
...>)
iex> execution = Journey.start_execution(graph)
iex> is_binary(execution.id)
true
iex> execution.archived_at
nil
iex> user_values = Journey.values(execution, reload: false) |> Map.drop([:execution_id, :last_updated_at])
iex> user_values
%{}
iex> execution = Journey.set_value(execution, :x, 10)
iex> execution = Journey.set_value(execution, :y, 20)
iex> Journey.get_value(execution, :sum, wait_any: true)
{:ok, 30}
Multiple independent executions:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "counter workflow",
...> "v1.0.0",
...> [input(:count)]
...>)
iex> execution1 = Journey.start_execution(graph)
iex> execution2 = Journey.start_execution(graph)
iex> execution1.id != execution2.id
true
iex> execution1 = Journey.set_value(execution1, :count, 1)
iex> execution2 = Journey.set_value(execution2, :count, 2)
iex> Journey.get_value(execution1, :count)
{:ok, 1}
iex> Journey.get_value(execution2, :count)
{:ok, 2}

 unarchive(execution_id)

Un-archives the supplied execution, if it is archived.
Parameters:
	execution or execution_id: The execution to un-archive, or the ID of the execution to un-archive.

Returns
	:ok

Examples
 iex> execution =
 ...> Journey.Examples.Horoscope.graph() |>
 ...> Journey.start_execution() |>
 ...> Journey.set_value(:birth_day, 26)
 iex> _archived_at = Journey.archive(execution)
 iex> # The execution is now archived, and it is no longer visible.
 iex> nil == Journey.load(execution, include_archived: false)
 true
 iex> Journey.unarchive(execution)
 :ok
 iex> # The execution is now un-archived, and it can now be loaded.
 iex> nil == Journey.load(execution, include_archived: false)
 false
 iex> # Un-archiving an un-archived execution has no effect.
 iex> Journey.unarchive(execution)
 :ok

 unset_value(execution_id, node_name)

Removes the value from an input node in an execution and invalidates all dependent computed nodes.
When a value is unset, Journey automatically invalidates (unsets) all computed nodes that depend
on the unset input, creating a cascading effect through the dependency graph. This ensures data
consistency - no computed values remain that were based on the now-removed input.
Quick Example
execution = Journey.unset_value(execution, :name)
{:error, :not_set} = Journey.get_value(execution, :name)
Use set_value/3 to set values and get_value/3 to check if values are set.
Parameters
	execution - A %Journey.Persistence.Schema.Execution{} struct or execution ID string
	node_name - Atom representing the input node name (must exist in the graph)

Returns
	Updated %Journey.Persistence.Schema.Execution{} struct with incremented revision (if value was set)

Errors
	Raises RuntimeError if the node name does not exist in the execution's graph
	Raises RuntimeError if attempting to unset a compute node (only input nodes can be unset)

Key Behaviors
	Cascading invalidation - Dependent computed nodes are automatically unset
	Idempotent - Multiple unsets of the same value have no additional effect
	Input nodes only - Only input nodes can be unset; compute nodes cannot be unset

Examples
Basic unsetting with cascading invalidation:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "unset workflow - basic example",
...> "v1.0.0",
...> [
...> input(:name),
...> compute(
...> :greeting,
...> [:name],
...> fn %{name: name} -> {:ok, "Hello, #{name}!"} end
...>)
...>]
...>)
iex> execution = graph |> Journey.start_execution()
iex> execution = Journey.set_value(execution, :name, "Mario")
iex> Journey.get_value(execution, :greeting, wait_any: true)
{:ok, "Hello, Mario!"}
iex> execution_after_unset = Journey.unset_value(execution, :name)
iex> Journey.get_value(execution_after_unset, :name)
{:error, :not_set}
iex> Journey.get_value(execution_after_unset, :greeting)
{:error, :not_set}
Multi-level cascading (A → B → C chain):
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "unset workflow - cascade example",
...> "v1.0.0",
...> [
...> input(:a),
...> compute(:b, [:a], fn %{a: a} -> {:ok, "B:#{a}"} end),
...> compute(:c, [:b], fn %{b: b} -> {:ok, "C:#{b}"} end)
...>]
...>)
iex> execution = graph |> Journey.start_execution()
iex> execution = Journey.set_value(execution, :a, "value")
iex> Journey.get_value(execution, :b, wait_any: true)
{:ok, "B:value"}
iex> Journey.get_value(execution, :c, wait_any: true)
{:ok, "C:B:value"}
iex> execution_after_unset = Journey.unset_value(execution, :a)
iex> Journey.get_value(execution_after_unset, :a)
{:error, :not_set}
iex> Journey.get_value(execution_after_unset, :b)
{:error, :not_set}
iex> Journey.get_value(execution_after_unset, :c)
{:error, :not_set}
Idempotent behavior:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "unset workflow - idempotent example",
...> "v1.0.0",
...> [input(:name)]
...>)
iex> execution = graph |> Journey.start_execution()
iex> original_revision = execution.revision
iex> execution_after_unset = Journey.unset_value(execution, :name)
iex> execution_after_unset.revision == original_revision
true

 values(execution, opts \\ [])

Returns a map of all set node values in an execution, excluding unset nodes.
This function filters the execution to only include nodes that have been populated with data.
Unset nodes are excluded from the result. Always includes :execution_id and :last_updated_at metadata.
Quick Example
execution = Journey.set_value(execution, :name, "Alice")
values = Journey.values(execution)
%{name: "Alice", execution_id: "EXEC...", last_updated_at: 1234567890}
Use values_all/1 to see all nodes including unset ones, or get_value/3 for individual values.
Parameters
	execution - A %Journey.Persistence.Schema.Execution{} struct
	opts - Keyword list of options (:reload - see values_all/1 for details)

Returns
	Map with node names as keys and their current values as values
	Only includes nodes that have been set (excludes :not_set nodes)

Examples
Basic usage:
iex> import Journey.Node
iex> graph = Journey.new_graph("example", "v1.0.0", [input(:name), input(:age)])
iex> execution = Journey.start_execution(graph)
iex> Journey.values(execution) |> redact([:execution_id, :last_updated_at])
%{execution_id: "...", last_updated_at: 1234567890}
iex> execution = Journey.set_value(execution, :name, "Alice")
iex> Journey.values(execution) |> redact([:execution_id, :last_updated_at])
%{name: "Alice", execution_id: "...", last_updated_at: 1234567890}

 values_all(execution, opts \\ [])

Returns a map of all nodes in an execution with their current status, including unset nodes.
Unlike values/2 which only returns set nodes, this function shows all nodes including those
that haven't been set yet. Unset nodes are marked as :not_set, while set nodes are returned
as {:set, value} tuples. Useful for debugging and introspection.
Quick Example
all_status = Journey.values_all(execution)
%{name: {:set, "Alice"}, age: :not_set, execution_id: {:set, "EXEC..."}, ...}
Use values/2 to get only set values, or get_value/3 for individual node values.
Parameters
	execution - A %Journey.Persistence.Schema.Execution{} struct
	opts - Keyword list of options (:reload - defaults to true for fresh database state)

Returns
	Map with all nodes showing status: :not_set or {:set, value}
	Includes all nodes defined in the graph, regardless of current state

Examples
Basic usage showing status progression:
iex> import Journey.Node
iex> graph = Journey.new_graph("example", "v1.0.0", [input(:name), input(:age)])
iex> execution = Journey.start_execution(graph)
iex> Journey.values_all(execution) |> redact([:execution_id, :last_updated_at])
%{name: :not_set, age: :not_set, execution_id: {:set, "..."}, last_updated_at: {:set, 1234567890}}
iex> execution = Journey.set_value(execution, :name, "Alice")
iex> Journey.values_all(execution) |> redact([:execution_id, :last_updated_at])
%{name: {:set, "Alice"}, age: :not_set, execution_id: {:set, "..."}, last_updated_at: {:set, 1234567890}}

Journey.Examples.CreditCardApplication

This module demonstrates building a simple credit card application workflow using the Journey library.
You might find it interesting to read the actual source code of this example (the definition of the graph, and the "business logic" functions), but here is a doctest illustrating executing a credit card application workflow.
Examples:
iex> # The customer starts the application process and provides their personal information.
iex> import Journey.Node
iex> graph = Journey.Examples.CreditCardApplication.graph()
iex> execution = Journey.start_execution(graph)
iex>
iex> # This is only needed in a test, to perform background processing that happens automatically outside of tests.
iex> background_sweeps_task = Journey.Scheduler.Background.Periodic.start_background_sweeps_in_test(execution.id)
iex>
iex> execution = execution |> Journey.set_value(:full_name, "Mario")
iex> execution = execution |> Journey.set_value(:birth_date, "10/11/1981")
iex> execution = execution |> Journey.set_value(:ssn, "123-45-6789")
iex> execution = execution |> Journey.set_value(:email_address, "mario@example.com")
iex>
iex> # This kicks off the pre-approval process, which eventually completes.
iex> execution |> Journey.get_value(:preapproval_process_completed, wait_any: true)
{:ok, true}
iex> # We haven't heard from the customer, so we'll send a reminder in a few days (seconds;).
iex> execution |> Journey.get_value(:send_preapproval_reminder, wait_any: true)
{:ok, true}
iex>
iex> # Reminded, the customer requests an actual credit card.
iex> _execution = execution |> Journey.set_value(:credit_card_requested, true)
iex> # ... which triggers issuing the card.
iex>
iex> execution |> Journey.get_value(:initiate_credit_card_issuance, wait_any: true)
{:ok, true}
iex> execution |> Journey.values() |> redact([:schedule_request_credit_card_reminder, :execution_id, :last_updated_at])
%{
 preapproval_process_completed: true,
 birth_date: "10/11/1981",
 congratulate: "email_sent_congrats",
 preapproval_decision: "approved",
 credit_score: 800,
 email_address: "mario@example.com",
 full_name: "Mario",
 ssn: "<redacted>",
 ssn_redacted: "updated :ssn",
 credit_card_requested: true,
 initiate_credit_card_issuance: true,
 schedule_request_credit_card_reminder: 1234567890,
 execution_id: "...",
 last_updated_at: 1234567890
 }
iex>
iex> # Eventually, the fulfillment department marks the credit card as mailed.
iex> # Which triggers an email notifying the customer that the card has been mailed.
iex> execution = execution |> Journey.set_value(:credit_card_mailed, true)
iex> execution |> Journey.get_value(:credit_card_mailed_notification, wait_any: true)
{:ok, true}
iex> {:ok, _} = execution |> Journey.get_value(:archive, wait_any: true)
iex> # This is only needed in tests.
iex> Journey.Scheduler.Background.Periodic.stop_background_sweeps_in_test(background_sweeps_task)

 Summary

 Functions

 graph()

 This function defines the graph for the credit card application workflow.

 Functions

 graph()

This function defines the graph for the credit card application workflow.
The graph is defined as a list of nodes.
Input nodes have a name.
Computation nodes also have upstream dependencies and a function to compute the node's value, and a few other options.

Journey.Examples.CreditCardApplication.Compute

This module contains the business logic for the Credit Card Approval application, things like fetching the customer's credit score, making and communication the credit decision, etc.

 Summary

 Functions

 all_done(values)

 This function marks the flow as completed when it's all done.

 choose_the_time_to_archive(values)

 This function schedules archiving the execution.

 choose_the_time_to_send_reminder(values)

 This function simulates scheduling sending a reminder to preapproved customers.

 compute_decision(map)

 This function simulates computing the credit decision, based on the credit score.

 fetch_credit_score(values)

 This function simulates fetching a credit score from an external service.

 request_credit_card_issuance(values)

 This function simulates initiating the issuance and mailing of a credit card.

 send_card_mailed_notification(values)

 This function simulates emailing the customer and telling them that the card has been mailed.

 send_congrats(values)

 This function simulates sending the customer an email when their application was approved.

 send_preapproval_reminder(values)

 This function simulates sending the preapproved customer a reminder to request a credit card.

 send_rejection(values)

 This function simulates sending the customer an email when their application was declined.

 Functions

 all_done(values)

This function marks the flow as completed when it's all done.

 choose_the_time_to_archive(values)

This function schedules archiving the execution.

 choose_the_time_to_send_reminder(values)

This function simulates scheduling sending a reminder to preapproved customers.

 compute_decision(map)

This function simulates computing the credit decision, based on the credit score.

 fetch_credit_score(values)

This function simulates fetching a credit score from an external service.

 request_credit_card_issuance(values)

This function simulates initiating the issuance and mailing of a credit card.

 send_card_mailed_notification(values)

This function simulates emailing the customer and telling them that the card has been mailed.

 send_congrats(values)

This function simulates sending the customer an email when their application was approved.

 send_preapproval_reminder(values)

This function simulates sending the preapproved customer a reminder to request a credit card.

 send_rejection(values)

This function simulates sending the customer an email when their application was declined.

Journey.Insights.FlowAnalytics

Provides system-wide aggregate data about the state of the executions of a particular graph.
This can be thought of as "analytics" for a particular graph.

 Summary

 Functions

 flow_analytics(graph_name, graph_version, opts \\ [])

 Provides business-focused analytics for understanding customer behavior through Journey graphs.

 to_text(flow_analytics)

 Formats flow analytics data as human-readable text output.

 Functions

 flow_analytics(graph_name, graph_version, opts \\ [])

Provides business-focused analytics for understanding customer behavior through Journey graphs.
Uses optimized database queries that scale efficiently to millions of executions by leveraging
PostgreSQL's aggregation capabilities. System nodes (execution_id and last_updated_at) are
automatically excluded from the analysis.
Parameters
	graph_name - String, the graph name to analyze
	graph_version - String, the graph version to analyze
	opts - Keyword list with options:	:include_executions - :all | :archived | :active (default: :active)

	:flow_ends_here_after - Duration in seconds after which we consider a flow "ended" if no activity (default: 86400 seconds / 1 day)

Return Structure
Returns a map with graph metadata, execution-level analytics, and per-node customer journey metrics.
Examples
 iex(3)> Journey.Insights.FlowAnalytics.flow_analytics("Credit Card Application flow graph", "v1.0.0")
 %{
graph_name: "Credit Card Application flow graph",
analyzed_at: "2025-08-02T04:08:28.351195Z",
executions: %{
 count: 8294,
 duration_avg_seconds_to_last_update: 48,
 duration_median_seconds_to_last_update: 0
},
graph_version: "v1.0.0",
node_stats: %{
 nodes: [
 %{
 node_type: :input,
 node_name: :birth_date,
 # The number of executions that have set a value for this node.
 reached_count: 3884,
 # The average time it took for an execution to reach this node.
 average_time_to_reach: 1,
 # The number of executions which haven't been updated for a while, and this was the last node that was updated.
 flow_ends_here_count: 1953,
 # The percentage of all executions that ended here.
 flow_ends_here_percentage_of_all: 23.5,
 # The percentage of executions that reached this node and ended here.
 flow_ends_here_percentage_of_reached: 50.28,
 # The percentage of executions that have set a value for this node.
 reached_percentage: 46.8
 },
 %{
 node_type: :input,
 node_name: :email_address,
 reached_count: 2066,
 average_time_to_reach: 0,
 flow_ends_here_count: 213,
 flow_ends_here_percentage_of_all: 2.6,
 flow_ends_here_percentage_of_reached: 10.31,
 reached_percentage: 24.9
 },
 %{
 node_type: :input,
 node_name: :full_name,
 reached_count: 5736,
 average_time_to_reach: 0,
 flow_ends_here_count: 3716,
 flow_ends_here_percentage_of_all: 44.8,
 flow_ends_here_percentage_of_reached: 64.78,
 reached_percentage: 69.2
 },
 %{
 node_type: :compute,
 node_name: :credit_score,
 reached_count: 1844,
 average_time_to_reach: 1,
 flow_ends_here_count: 0,
 flow_ends_here_percentage_of_all: 0.0,
 flow_ends_here_percentage_of_reached: 0.0,
 reached_percentage: 22.2
 },
 ...
]
}
 }

 to_text(flow_analytics)

Formats flow analytics data as human-readable text output.
Example:
iex> flow_data = Journey.Insights.FlowAnalytics.flow_analytics("Credit Card Application flow graph", "v1.0.0")
iex> Journey.Insights.FlowAnalytics.to_text(flow_data) |> IO.puts()
Graph: 'Credit Card Application flow graph'
Version: 'v1.0.0'
Analyzed at: 2025-08-02T04:08:28Z

EXECUTION STATS:

Total executions: 8,294
Average duration: 48 seconds
Median duration: 0 seconds

NODE STATS (4 nodes):

Node Name: 'birth_date'
Type: input
Reached by: 3,884 executions (46.8%)
Average time to reach: 1 second
Flow ends here: 1,953 executions (23.5% of all, 50.3% of reached)

Node Name: 'email_address'
Type: input
Reached by: 2,066 executions (24.9%)
Average time to reach: 0 seconds
Flow ends here: 213 executions (2.6% of all, 10.3% of reached)

Node Name: 'full_name'
Type: input
Reached by: 5,736 executions (69.2%)
Average time to reach: 0 seconds
Flow ends here: 3,716 executions (44.8% of all, 64.8% of reached)

Node Name: 'credit_score'
Type: compute
Reached by: 1,844 executions (22.2%)
Average time to reach: 1 second
Flow ends here: 0 executions (0.0% of all, 0.0% of reached)

Journey.Insights.Status

Provides system health and monitoring insights for Journey executions.

 Summary

 Functions

 status()

 Returns current system health for monitoring/alerting

 to_text(status_data)

 Formats status data as human-readable text output.

 Functions

 status()

Returns current system health for monitoring/alerting
Response Structure
	status - :healthy or :unhealthy
	database_connected - Boolean indicating DB connectivity
	graphs - List of graph statistics, one per graph name/version

Example output:
%{
 status: :healthy,
 graphs: [
 %{
 stats: %{
 computations: %{
 by_state: %{
 abandoned: 239,
 cancelled: 0,
 success: 21106,
 failed: 0,
 not_set: 59294,
 computing: 0
 },
 most_recently_created: "2025-07-30T00:07:37Z",
 most_recently_updated: "2025-07-30T00:07:41Z"
 },
 executions: %{
 active: 4597,
 most_recently_created: "2025-07-30T00:07:37Z",
 most_recently_updated: "2025-07-30T00:07:41Z",
 archived: 2103
 }
 },
 graph_name: "Credit Card Application flow graph",
 graph_version: "v1.0.0"
 }
],
 database_connected: true
}

 to_text(status_data)

Formats status data as human-readable text output.
Example:
iex> status_data = Journey.Insights.Status.status()
iex> Journey.Insights.Status.to_text(status_data) |> IO.puts()
System Status: HEALTHY
Database: Connected
==

GRAPHS (3 total):

Name: 'Credit Card Application flow graph'
Version: 'v1.0.0'
Executions:
- active: 12.7k
- archived: 5.1k
First activity: 2025-07-28T19:50:40Z
Last activity: 2025-08-14T05:31:05Z
Computations:
✓ success: 61.4k
✗ failed: 0
⏳ computing: 33
◯ not_set: 151.7k
⚠ abandoned: 1.0k

Name: 'flow_analytics_perf_test'
Version: '1.0.0'
Executions:
- active: 900
- archived: 100
First activity: 2025-08-01T22:05:06Z
Last activity: 2025-08-01T22:05:09Z
Computations:
✓ success: 1.7k
⏳ computing: 54
◯ not_set: 2.3k

Name: 'g1'
Version: 'v1'
Executions:
- active: 25
- archived: 0
First activity: 2025-08-14T17:23:16Z
Last activity: 2025-08-14T17:29:36Z
Computations:
✓ success: 38
✗ failed: 7
◯ not_set: 4
⚠ abandoned: 2

Journey.Node

This module contains functions for creating nodes in a graph.
Nodes in a graph can be of several types:
	input/1 – a node that takes input from the user.
	compute/4 – a node that computes a value based on its upstream nodes.
	mutate/4 – a node that mutates the value of another node.
	schedule_once/3 – a node that, once unblocked, in its turn, unblocks others, on a schedule.
	schedule_recurring/3 – a node that, once unblocked, in its turn, unblocks others, on a schedule, time after time.

 Summary

 Functions

 archive(name, gated_by, opts \\ [])

 Creates a graph node that mutates the value of another node.

 compute(name, gated_by, f_compute, opts \\ [])

 Creates a self-computing node.

 input(name)

 Creates a graph input node. The value of an input node is set with Journey.set_value/3. The name of the node must be an atom.

 mutate(name, gated_by, f_compute, opts \\ [])

 Creates a graph node that mutates the value of another node.

 schedule_once(name, gated_by, f_compute, opts \\ [])

 Creates a graph node that declares its readiness at a specific time, once.

 schedule_recurring(name, gated_by, f_compute, opts \\ [])

 Creates a graph node that declares its readiness at a specific time, time after time.

 Functions

 archive(name, gated_by, opts \\ [])

Creates a graph node that mutates the value of another node.
Examples:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "`archive()` doctest graph (a useless machine that archives itself immediately;)",
...> "v1.0.0",
...> [
...> input(:name),
...> archive(:archive, [:name])
...>]
...>)
iex> execution = graph |> Journey.start_execution()
iex> execution.archived_at == nil
true
iex> execution = Journey.set_value(execution, :name, "Mario")
iex> {:ok, _} = Journey.get_value(execution, :archive, wait_any: true)
iex> Journey.load(execution)
nil
iex> execution = Journey.load(execution, include_archived: true)
iex> execution.archived_at == nil
false

 compute(name, gated_by, f_compute, opts \\ [])

Creates a self-computing node.
name is an atom uniquely identifying the node in this graph.
gated_by defines when this node becomes eligible to compute.
 Accepts either:
	A list of atom node names, e.g. [:a, :b], indicating the node becomes unblocked when all of the listed nodes have a value.
	A keyword list with conditions, e.g. [a: fn node -> node.node_value > 10 end], for conditional dependencies.
	A mixed list combining atoms and keyword conditions, e.g. [:a, :b, c: fn node -> node.node_value > 5 end].
	A structured condition (see unblocked_when/1)
allowing for logical operators (:and, :or) and custom value predicates (e.g. unblocked_when({:and, [{:a, &provided?/1}, {:b, &provided?/1}]})).

f_compute is the function that computes the value of the node, once the upstream dependencies are satisfied.
The function is provided a map of the upstream nodes and their values as its argument and returns a tuple:
	{:ok, value} or
	{:error, reason}.
The function is called when the upstream nodes are set, and the value is set to the result of the function.

Note that return values are JSON-serialized for storage. If the returned value or reason contains atoms
(e.g., {:ok, :pending} or {:ok, %{status: :active}}), those atoms will be converted to
strings when retrieved via get_value/3.
In the case of a failure, the function is automatically retried, up to max_retries times.
If the function fails after max_retries attempts, the node is marked as failed.
If the function does not return within abandon_after_seconds, it is considered abandoned, and it will be retried (up to max_retries times).
Examples:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "`compute()` doctest graph (pig-latinize-ish a name)",
...> "v1.0.0",
...> [
...> input(:name),
...> compute(
...> :pig_latin_ish_name,
...> [:name],
...> fn %{name: name} ->
...> {:ok, "#{name}-ay"}
...> end,
...> max_retries: 4, # Optional (default: 3)
...> abandon_after_seconds: 60, # Optional (default: 60)
...> f_on_save: fn _execution_id, _params ->
...> # Optional callback to be called when the value is saved.
...> # This is useful for notifying other systems (e.g. a LiveView
...> # via PubSub.notify()) – that the value has been saved.
...> :ok
...> end
...>)
...>]
...>)
iex> execution = graph |> Journey.start_execution() |> Journey.set_value(:name, "Alice")
iex> execution |> Journey.get_value(:pig_latin_ish_name, wait_any: true)
{:ok, "Alice-ay"}
iex> execution |> Journey.values() |> redact([:execution_id, :last_updated_at])
%{name: "Alice", pig_latin_ish_name: "Alice-ay", execution_id: "...", last_updated_at: 1_234_567_890}
Keyword List Syntax for Conditional Dependencies
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "threshold alert example",
...> "v1.0.0",
...> [
...> input(:temperature),
...> # Using keyword list syntax for conditional dependency
...> compute(
...> :high_temp_alert,
...> [temperature: fn node -> node.node_value > 30 end],
...> fn %{temperature: temp} ->
...> {:ok, "High temperature alert: #{temp}°C"}
...> end
...>)
...>]
...>)
iex> execution = graph |> Journey.start_execution()
iex> execution = Journey.set_value(execution, :temperature, 25)
iex> Journey.get_value(execution, :high_temp_alert)
{:error, :not_set}
iex> execution = Journey.set_value(execution, :temperature, 35)
iex> Journey.get_value(execution, :high_temp_alert, wait_any: true)
{:ok, "High temperature alert: 35°C"}
Return Values
The f_compute function must return {:ok, value} or {:error, reason}. Note that atoms
in the returned value and reason will be converted to strings when persisted.

 input(name)

Creates a graph input node. The value of an input node is set with Journey.set_value/3. The name of the node must be an atom.
Examples:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "`input()` doctest graph (just a few input nodes)",
...> "v1.0.0",
...> [
...> input(:first_name),
...> input(:last_name),
...> input(:zip_code)
...>]
...>)
iex> execution = graph |> Journey.start_execution() |> Journey.set_value(:first_name, "Mario")
iex> Journey.values(execution) |> redact([:execution_id, :last_updated_at])
%{first_name: "Mario", execution_id: "...", last_updated_at: 1_234_567_890}

 mutate(name, gated_by, f_compute, opts \\ [])

Creates a graph node that mutates the value of another node.
Examples:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "`mutate()` doctest graph (a useless machine;)",
...> "v1.0.0",
...> [
...> input(:name),
...> mutate(
...> :remove_pii,
...> [:name],
...> fn %{name: _name} ->
...> # Return the new value for the "name" node.
...> {:ok, "redacted"}
...> end,
...> mutates: :name # The name of an existing node whose value will be mutated.
...>)
...>]
...>)
iex> execution =
...> graph
...> |> Journey.start_execution()
...> |> Journey.set_value(:name, "Mario")
iex> execution |> Journey.get_value(:remove_pii, wait_any: true)
{:ok, "updated :name"}
iex> execution |> Journey.values() |> redact([:execution_id, :last_updated_at])
%{name: "redacted", remove_pii: "updated :name", execution_id: "...", last_updated_at: 1_234_567_890}
Return Values
The f_compute function must return {:ok, value} or {:error, reason}. Note that atoms
in the returned value and reason will be converted to strings when persisted.

 schedule_once(name, gated_by, f_compute, opts \\ [])

Creates a graph node that declares its readiness at a specific time, once.
Once this node is unblocked, it will be executed to set the time at which it will unblock its downstream dependencies.
Examples:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "`schedule_once()` doctest graph (it reminds you to take a nap in a couple of seconds;)",
...> "v1.0.0",
...> [
...> input(:name),
...> schedule_once(
...> :schedule_a_nap,
...> [:name],
...> fn %{name: _name} ->
...> # This function is to return the time (in epoch seconds) at which
...> # its downstream dependencies should be unblocked.
...> in_two_seconds = System.system_time(:second) + 2
...> {:ok, in_two_seconds}
...> end
...>),
...> compute(
...> :nap_time,
...> [:name, :schedule_a_nap],
...> fn %{name: name, schedule_a_nap: _time_to_take_a_nap} ->
...> {:ok, "It's time to take a nap, #{name}!"}
...> end
...>)
...>]
...>)
iex> execution =
...> graph
...> |> Journey.start_execution()
...> |> Journey.set_value(:name, "Mario")
iex> execution |> Journey.values() |> Map.get(:name)
"Mario"
iex> # This is only needed in a test, to simulate the background processing that happens in non-tests automatically.
iex> background_sweeps_task = Journey.Scheduler.Background.Periodic.start_background_sweeps_in_test(execution.id)
iex> execution |> Journey.get_value(:nap_time, wait_any: true)
{:ok, "It's time to take a nap, Mario!"}
iex> Journey.Scheduler.Background.Periodic.stop_background_sweeps_in_test(background_sweeps_task)

Return Values
The f_compute function must return {:ok, value} or {:error, reason}. Note that atoms
in the returned value and reason will be converted to strings when persisted.

 schedule_recurring(name, gated_by, f_compute, opts \\ [])

Creates a graph node that declares its readiness at a specific time, time after time.
Once this node is unblocked, it will be repeatedly computed, to set the time at which it will unblock its downstream dependencies.
This is useful for triggering recurring tasks, such as sending reminders or notifications.
Examples:
iex> import Journey.Node
iex> graph = Journey.new_graph(
...> "`schedule_recurring()` doctest graph (it issues 'reminders' every few seconds)",
...> "v1.0.0",
...> [
...> input(:name),
...> schedule_recurring(
...> :schedule_a_reminder,
...> [:name],
...> fn _ ->
...> soon = System.system_time(:second) + 2
...> {:ok, soon}
...> end
...>),
...> compute(
...> :send_a_reminder,
...> [:name, :schedule_a_reminder],
...> fn %{name: name} = v ->
...> reminder_count = Map.get(v, :send_a_reminder, 0) + 1
...> IO.puts("[#{System.system_time(:second)}] #{name}, here is your scheduled reminder # #{reminder_count}.")
...> {:ok, reminder_count}
...> end
...>)
...>]
...>)
iex> execution =
...> graph
...> |> Journey.start_execution()
...> |> Journey.set_value(:name, "Mario")
iex> execution |> Journey.values() |> Map.get(:name)
"Mario"
iex> # This is only needed in a test, to simulate the background processing that happens in non-tests automatically.
iex> background_sweeps_task = Journey.Scheduler.Background.Periodic.start_background_sweeps_in_test(execution.id)
iex> # Wait for initial reminders
iex> {:ok, count1} = Journey.get_value(execution, :send_a_reminder, wait_any: true)
iex> count1 >= 1
true
iex> # Wait for more reminders to verify recurring behavior
iex> execution = Journey.load(execution)
iex> {:ok, count2} = Journey.get_value(execution, :send_a_reminder, wait_new: true)
iex> count2 > count1
true
iex> execution = Journey.load(execution)
iex> {:ok, count3} = Journey.get_value(execution, :send_a_reminder, wait_new: true)
iex> count3 > count2
true
iex> Journey.Scheduler.Background.Periodic.stop_background_sweeps_in_test(background_sweeps_task)

Return Values
The f_compute function must return {:ok, value} or {:error, reason}. Note that atoms
in the returned value and reason will be converted to strings when persisted.

Journey.Node.Conditions

This module contains helper functions for use when defining upstream dependencies for compute modules.

 Summary

 Functions

 false?(value_node)

 This is a helper function provided for use in unblocked_when conditions.
This function checks if the upstream node's value is false.

 provided?(value_node)

 This is a helper function provided for use in unblocked_when conditions.
This function checks if the supplied node has a value.
For "scheduled" types of nodes (schedule_once, schedule_recurring) it also checks that the scheduled time has come).

 true?(value_node)

 This is a helper function provided for use in unblocked_when conditions.
This function checks if the upstream node's value is true.

 Functions

 false?(value_node)

This is a helper function provided for use in unblocked_when conditions.
This function checks if the upstream node's value is false.
Examples
iex> import Journey.Node
iex> import Journey.Node.Conditions
iex> import Journey.Node.UpstreamDependencies
iex> graph = Journey.new_graph(
...> "umbrella forecast graph, doctest for false?",
...> "v1.0.0",
...> [
...> input(:it_will_rain_tomorrow),
...> compute(
...> :todays_preparation,
...> unblocked_when(:it_will_rain_tomorrow, &false?/1),
...> fn %{it_will_rain_tomorrow: false} -> {:ok, "prepare my bike"} end
...>)
...>]
...>)
iex> execution = Journey.start_execution(graph)
iex> execution = Journey.set_value(execution, :it_will_rain_tomorrow, false)
iex> Journey.get_value(execution, :todays_preparation, wait_any: true)
{:ok, "prepare my bike"}
iex> execution = Journey.set_value(execution, :it_will_rain_tomorrow, true)
iex> Journey.get_value(execution, :todays_preparation)
{:error, :not_set}

 provided?(value_node)

This is a helper function provided for use in unblocked_when conditions.
This function checks if the supplied node has a value.
For "scheduled" types of nodes (schedule_once, schedule_recurring) it also checks that the scheduled time has come).
Examples
iex> import Journey.Node
iex> import Journey.Node.Conditions
iex> import Journey.Node.UpstreamDependencies
iex> graph = Journey.new_graph(
...> "greeting workflow, doctest for provided?",
...> "v1.0.0",
...> [
...> input(:name),
...> compute(
...> :greeting,
...> unblocked_when(:name, &provided?/1),
...> fn %{name: name} -> {:ok, "Hello, #{name}!"} end
...>)
...>]
...>)
iex> execution = Journey.start_execution(graph)
iex> execution = Journey.set_value(execution, :name, "Alice")
iex> Journey.get_value(execution, :greeting, wait_any: true)
{:ok, "Hello, Alice!"}

 true?(value_node)

This is a helper function provided for use in unblocked_when conditions.
This function checks if the upstream node's value is true.
Examples
iex> import Journey.Node
iex> import Journey.Node.Conditions
iex> import Journey.Node.UpstreamDependencies
iex> graph = Journey.new_graph(
...> "umbrella forecast graph, doctest for true?",
...> "v1.0.0",
...> [
...> input(:it_will_rain_tomorrow),
...> compute(
...> :umbrella,
...> unblocked_when(:it_will_rain_tomorrow, &true?/1),
...> fn %{it_will_rain_tomorrow: true} -> {:ok, "need to pack my umbrella"} end
...>)
...>]
...>)
iex> execution = Journey.start_execution(graph)
iex> execution = Journey.set_value(execution, :it_will_rain_tomorrow, true)
iex> Journey.get_value(execution, :umbrella, wait_any: true)
{:ok, "need to pack my umbrella"}
iex> execution = Journey.set_value(execution, :it_will_rain_tomorrow, false)
iex> Journey.get_value(execution, :umbrella)
{:error, :not_set}

Journey.Node.UpstreamDependencies

 Summary

 Functions

 unblocked_when(r)

 unblocked_when(upstream_node_name, f_condition)

 This function is used to define the conditions under which a node is unblocked. It is intended to be used in the gated_by option of a node. The function takes a list of required upstream nodes and returns a predicate tree that can be used to check if the node is unblocked.

 Functions

 unblocked_when(r)

 unblocked_when(upstream_node_name, f_condition)

This function is used to define the conditions under which a node is unblocked. It is intended to be used in the gated_by option of a node. The function takes a list of required upstream nodes and returns a predicate tree that can be used to check if the node is unblocked.
The predicate tree can be a single node name, a function that takes a value node and returns a boolean, or a combination of these using :and, :or, and :not operations.
The function also supports nested predicate trees, allowing for complex conditions to be defined.
Examples:
iex> import Journey.Node
iex> import Journey.Node.Conditions
iex> import Journey.Node.UpstreamDependencies
iex> _graph =
...> Journey.new_graph(
...> "horoscope workflow - unblocked_when doctest",
...> "v1.0.0",
...> [
...> input(:first_name),
...> input(:birth_day),
...> input(:birth_month),
...> input(:suspended),
...> compute(
...> :zodiac_sign,
...> # Computes itself once :birth_month and :birth_day have been provided:
...> [:birth_month, :birth_day],
...> fn %{birth_month: _birth_month, birth_day: _birth_day} ->
...> # Everyone is a Taurus. ;)
...> {:ok, "Taurus"}
...> end
...>),
...> compute(
...> :horoscope,
...> # Computes itself once :first_name and :zodiac_sign are in place, and if not suspended.
...> unblocked_when({
...> :and,
...> [
...> {:first_name, &provided?/1},
...> {:zodiac_sign, &provided?/1},
...> {:suspended, fn suspended -> suspended.node_value != true end}
...>]
...> }),
...> fn %{first_name: name, zodiac_sign: zodiac_sign} ->
...> {:ok, "🍪s await, #{zodiac_sign} #{name}!"}
...> end
...>)
...>]
...>)
iex>

Journey.Tools

This module contains utility functions for the Journey library.

 Summary

 Functions

 computation_state(execution_id, node_name)

 Returns the current state of a computation node.

 computation_state_to_text(state)

 Converts a computation state atom to human-readable text with a visual symbol.

 computation_status_as_text(execution_id, node_name)

 Shows the status and dependencies for a single computation node.

 generate_mermaid_graph(graph, opts \\ [])

 Generates a Mermaid diagram representation of a Journey graph.

 retry_computation(execution_id, computation_node_name)

 Retries a failed computation.

 summarize(execution_id)

 deprecated

 Generates a human-readable text summary of an execution's current state.

 summarize_as_data(execution_id)

 Generates structured data about an execution's current state.

 summarize_as_text(execution_id)

 Generates a human-readable text summary of an execution's current state.

 what_am_i_waiting_for(execution_id, computation_node_name)

 Shows the status of upstream dependencies for a computation node.

 Functions

 computation_state(execution_id, node_name)

Returns the current state of a computation node.
Returns the state of the most recent computation attempt for the given node.
If no computation has been attempted yet, returns :not_set.
For input nodes (non-compute nodes), returns :not_compute_node.
Parameters
	execution_id - The ID of the execution to check
	node_name - The atom name of the node to check

Returns
	:not_set - No computation has been attempted yet
	:computing - Currently computing
	:success - Computation completed successfully
	:failed - Computation failed
	:abandoned - Computation was abandoned
	:cancelled - Computation was cancelled
	:not_compute_node - The node is an input node, not a computation

Examples
iex> import Journey.Node
iex> graph = Journey.new_graph("computation_state doctest graph", "v1.0.0", [
...> input(:value),
...> compute(:double, [:value], fn %{value: v} -> {:ok, v * 2} end)
...>])
iex> execution = Journey.start_execution(graph)
iex> Journey.Tools.computation_state(execution.id, :double)
:not_set
iex> Journey.Tools.computation_state(execution.id, :value)
:not_compute_node
iex> execution = Journey.set_value(execution, :value, 5)
iex> {:ok, _result} = Journey.get_value(execution, :double, wait_new: true)
iex> Journey.Tools.computation_state(execution.id, :double)
:success

 computation_state_to_text(state)

Converts a computation state atom to human-readable text with a visual symbol.
Returns a formatted string with an appropriate symbol and the state atom
for each computation state, following the pattern used in other Journey
text formatting functions.
Parameters
	state - The computation state atom returned by computation_state/2

Returns
A string with symbol and the state atom.
State Representations
	:not_set - "⬜ :not_set (not yet attempted)"
	:computing - "⏳ :computing"
	:success - "✅ :success"
	:failed - "❌ :failed"
	:abandoned - "❓ :abandoned"
	:cancelled - "🛑 :cancelled"
	:not_compute_node - "📝 :not_compute_node"

Examples
iex> Journey.Tools.computation_state_to_text(:success)
"✅ :success"

iex> Journey.Tools.computation_state_to_text(:computing)
"⏳ :computing"

iex> Journey.Tools.computation_state_to_text(:not_set)
"⬜ :not_set (not yet attempted)"

 computation_status_as_text(execution_id, node_name)

Shows the status and dependencies for a single computation node.
Provides a focused view of one specific computation node's status and dependencies,
similar to the computation sections in summarize_as_text/1 but for just one node.
Parameters
	execution_id - The ID of the execution to analyze
	node_name - The atom name of the computation node to check

Returns
A string showing the node's current status and dependencies.
For completed computations, shows the result with inputs used:
:send_follow_up (CMPTA5MDJHVXRMG54150EGX): ✅ :success | :compute | rev 4
inputs used:
 :user_applied (rev 0)
 :card_mailed (rev 0)
For outstanding computations, shows the dependency tree:
:send_weekly_reminder (CMPTA5MDJHVXRMG54150EGX): ⬜ :not_set (not yet attempted) | :compute
 :and
 ├─ 🛑 :subscribe_weekly | &true?/1
 ├─ 🛑 :weekly_reminder_schedule | &provided?/1
 └─ ✅ :email_address | &provided?/1 | rev 2
For input nodes (non-compute nodes), returns an appropriate message.
Examples
iex> import Journey.Node
iex> graph = Journey.new_graph("computation_status_as_text doctest", "v1.0.0", [
...> input(:value),
...> compute(:double, [:value], fn %{value: v} -> {:ok, v * 2} end)
...>])
iex> execution = Journey.start_execution(graph)
iex> Journey.Tools.computation_status_as_text(execution.id, :double)
":double: ⬜ :not_set (not yet attempted) | :compute\n ✅ :value | &is_set/1"

iex> import Journey.Node
iex> graph = Journey.new_graph("computation_status_as_text completed doctest", "v1.0.0", [
...> input(:value),
...> compute(:triple, [:value], fn %{value: v} -> {:ok, v * 3} end)
...>])
iex> execution = Journey.start_execution(graph)
iex> execution = Journey.set_value(execution, :value, 5)
iex> {:ok, _} = Journey.get_value(execution, :triple, wait_new: true)
iex> result = Journey.Tools.computation_status_as_text(execution.id, :triple)
iex> result =~ ":triple"
true
iex> result =~ "✅ :success"
true
iex> result =~ "inputs used"
true

 generate_mermaid_graph(graph, opts \\ [])

Generates a Mermaid diagram representation of a Journey graph.
Converts a graph into Mermaid syntax for visualization. By default returns only
the flow diagram without legend or timestamp.
Quick Example
Just the flow
mermaid = Journey.Tools.generate_mermaid_graph(graph)

Include legend and timestamp
mermaid = Journey.Tools.generate_mermaid_graph(graph,
 include_legend: true,
 include_timestamp: true
)
Options
	:include_legend - Include node type legend (default: false)
	:include_timestamp - Include generation timestamp (default: false)

 retry_computation(execution_id, computation_node_name)

Retries a failed computation.
This function enables retrying computations that have exhausted their max_retries
by making their previous attempts "stale" through upstream revision changes, then
creating a new computation for the scheduler to pick up.
Parameters
	execution_id - The ID of the execution containing the failed computation
	computation_node_name - The atom name of the computation node to retry

Returns
The updated execution struct
Example
iex> Journey.Tools.retry_computation("EXEC123", :email_horoscope)
%Journey.Persistence.Schema.Execution{...}
How It Works
	Finds upstream dependencies that are currently satisfied
	Increments the revision of the first available upstream node
	Creates a new :not_set computation for the scheduler to pick up
	Previous failed attempts become "stale" in the retry counting logic
	The scheduler can now execute the new computation attempt

 summarize(execution_id)

 This function is deprecated. Use summarize_as_text/1 instead.

Generates a human-readable text summary of an execution's current state.
This function is deprecated. Use summarize_as_text/1 instead.
Parameters
	execution_id - The ID of the execution to analyze

Returns
A formatted string with the complete execution state summary.

 summarize_as_data(execution_id)

Generates structured data about an execution's current state.
Returns a map containing:
	Execution metadata (ID, graph, timestamps, duration, revision, archived status)
	Values categorized as set/not_set with their details
	Computations categorized as completed/outstanding with dependency info

Example
iex> Journey.Tools.summarize_as_data("EXEC07B2H0H7J1LTAE0VJDAL")
%{
 execution_id: "EXEC07B2H0H7J1LTAE0VJDAL",
 graph_name: "g1",
 graph_version: "v1",
 archived_at: nil,
 created_at: 1723656196,
 updated_at: 1723656210,
 duration_seconds: 14,
 revision: 7,
 values: %{
 set: [...],
 not_set: [...]
 },
 computations: %{
 completed: [...],
 outstanding: [...]
 }
}
Parameters
	execution_id - The ID of the execution to analyze

Returns
A structured map with execution state data.
Use summarize_as_text/1 to get execution summary as text.

 summarize_as_text(execution_id)

Generates a human-readable text summary of an execution's current state.
Example
iex> Journey.Tools.summarize_as_text("EXEC07B2H0H7J1LTAE0VJDAL") |> IO.puts()
Execution summary:
- ID: 'EXEC07B2H0H7J1LTAE0VJDAL'
- Graph: 'g1' | 'v1'
...
:ok
Parameters
	execution_id - The ID of the execution to analyze

Returns
A formatted string with the complete execution state summary.
Use summarize_as_data/1 to get execution summary as data.

 what_am_i_waiting_for(execution_id, computation_node_name)

Shows the status of upstream dependencies for a computation node.
Lists each dependency with a checkmark (✅) if satisfied or a stop sign (🛑) if not.
Useful for debugging to see which dependencies are met and which are still blocking.
Parameters
	execution_id - The ID of the execution to analyze
	computation_node_name - The atom name of the computation node to check

Returns
A string showing the readiness status with checkmarks for met conditions and
stop signs for unmet conditions.
Example
iex> import Journey.Node
iex> graph = Journey.new_graph("what_am_i_waiting_for test graph Elixir.Journey.Tools", "v1.0.0", [
...> input(:name),
...> input(:title),
...> compute(:greeting, [:name, :title], fn %{name: name, title: title} ->
...> {:ok, "Hello, #{title} #{name}!"}
...> end)
...>])
iex> {:ok, execution} = Journey.start_execution(graph)
iex> Journey.Tools.what_am_i_waiting_for(execution.id, :greeting) |> IO.puts()
🛑 :name | &is_set/1
🛑 :title | &is_set/1
:ok
iex> {:ok, execution} = Journey.set_value(execution, :name, "Alice")
iex> Journey.Tools.what_am_i_waiting_for(execution.id, :greeting) |> IO.puts()
✅ :name | &is_set/1 | rev 1
🛑 :title | &is_set/1
:ok
iex> {:ok, execution} = Journey.set_value(execution, :title, "Dr.")
iex> {:ok, _greeting_value} = Journey.get_value(execution, :greeting, wait_new: true)
iex> Journey.Tools.what_am_i_waiting_for(execution.id, :greeting) |> IO.puts()
✅ :name | &is_set/1 | rev 1
✅ :title | &is_set/1 | rev 2
:ok

UselessMachine

This module (lib/examples/useless_machines.ex) contains an example of building a Useless Machine using Journey.
Here is an example of running the useless Machine:
iex> graph = UselessMachine.graph()
iex> execution = Journey.start_execution(graph)
iex> Journey.get_value(execution, :switch)
{:error, :not_set}
iex> Journey.get_value(execution, :paw)
{:error, :not_set}
iex> Journey.set_value(execution, :switch, "on")
iex> # updating switch triggers :paw
iex> Journey.get_value(execution, :paw, wait_any: true)
{:ok, "updated :switch"}
iex> # :paw set switch back to "off"
iex> Journey.get_value(execution, :switch, wait_any: true)
{:ok, "off"}

 Summary

 Functions

 graph()

 This function defines the graph for the Useless Machine.
It starts with a switch input and mutates the state to "off" when the switch
is toggled, simulating the behavior of a Useless Machine.

 lol_no(map)

 This function simulates the paw's response when the switch is toggled.
It prints a message and mutates the state of the :switch node to "off".

 Functions

 graph()

This function defines the graph for the Useless Machine.
It starts with a switch input and mutates the state to "off" when the switch
is toggled, simulating the behavior of a Useless Machine.

 lol_no(map)

This function simulates the paw's response when the switch is toggled.
It prints a message and mutates the state of the :switch node to "off".

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

