

 json_schema_editor

 v0.9.9

 Table of contents

 	JSON Schema Editor

 	Changelog

 	
 Modules

 	JSONSchemaEditor

 	JSONSchemaEditor.JSONEditor

 	JSONSchemaEditor.PrettyPrinter

 	JSONSchemaEditor.SchemaGenerator

 	JSONSchemaEditor.SchemaMutator

 	JSONSchemaEditor.SchemaUtils

 	JSONSchemaEditor.SimpleValidator

 	JSONSchemaEditor.UIState

 	JSONSchemaEditor.Viewer

 JSON Schema Editor

[image: test]
A Phoenix LiveComponent for visually building, editing, and validating JSON Schemas.
[image: JSON Schema Editor Screenshot]
Features
	Visual Editing: Recursively build and edit deeply nested objects and arrays.
	Advanced Logic: Support for oneOf, anyOf, allOf and conditional keywords (if, then, else, not).
	Test Lab: Validate sample JSON data against your schema in real-time with detailed error reporting.
	Schema Generation: Automatically infer a JSON Schema from a pasted JSON object.
	Undo/Redo: Full history support for all schema modifications.
	Real-time Validation: In-editor logic checking (e.g., min <= max) with immediate visual feedback.
	Draft 07 Support: Includes constraints, enums, constants, null type, and $schema management.
	Custom Extensions: Support for adding and editing custom x- properties at any node level.
	Copy to Clipboard: One-click export of the generated schema.
	Lightweight: Zero external JS dependencies (uses native Phoenix hooks), only requires phoenix_live_view.
	JSON Viewer: Dedicated component for displaying JSON with syntax highlighting and indentation guides.
	JSON Editor: Specialized component for editing JSON data according to a provided JSON Schema.

Installation
This library uses a small CSS file for styling and a JavaScript hook for clipboard functionality.
1. Add json_schema_editor to your list of dependencies in mix.exs:
def deps do
 [
 {:json_schema_editor, "~> 0.9.7"}
]
end
2. Import the library's CSS in your assets/css/app.css (or equivalent):
@import "../../deps/json_schema_editor/assets/css/json_schema_editor.css";
3. Configure JavaScript Hooks (Clipboard Support):
In your assets/js/app.js, import and register the hook:
import { Hooks as JSEHooks } from "../../deps/json_schema_editor/assets/js/json_schema_editor"

// ... existing hooks
let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 hooks: { ...JSEHooks, ...other_hooks }
})
Usage
The editor supports JSON Schema Draft 07. It automatically injects the $schema URI if not provided.
1. Initialize the Schema
def mount(_params, _session, socket) do
 schema = %{
 "type" => "object",
 "properties" => %{
 "user" => %{
 "type" => "object",
 "properties" => %{
 "name" => %{"type" => "string", "minLength" => 2}
 }
 }
 }
 }

 {:ok, assign(socket, my_schema: schema)}
end
2. Render the Component
<.live_component
 module={JSONSchemaEditor}
 id="json-editor"
 schema={@my_schema}
 on_change={fn updated_schema -> send(self(), {:schema_changed, updated_schema}) end}
 on_save={fn updated_schema -> send(self(), {:schema_saved, updated_schema}) end}
 class="my-custom-theme"
 header_class="bg-gray-100 p-4"
 toolbar_class="flex gap-2"
/>
Note: Both on_save and on_change are optional. If on_save is omitted, the "Save" button will not be rendered. on_change triggers on every valid update.
3. Handle Updates
def handle_info({:schema_saved, updated_schema}, socket) do
 # The schema is guaranteed to be logically consistent here
 {:noreply, assign(socket, my_schema: updated_schema)}
end

def handle_info({:schema_changed, updated_schema}, socket) do
 # Triggered whenever the schema is modified and valid
 {:noreply, assign(socket, my_schema: updated_schema)}
end
JSON Viewer
You can also use the standalone viewer component to display any JSON data with syntax highlighting.
<JSONSchemaEditor.Viewer.render json={@my_schema} />
It accepts maps, lists, or even raw JSON strings (which it will attempt to decode and pretty-print).
JSON Editor
The library also includes a dedicated JSON Editor component for editing JSON data according to a schema.
<.live_component
 module={JSONSchemaEditor.JSONEditor}
 id="json-data-editor"
 schema={@my_schema}
 json={@my_data}
 on_change={fn updated_json -> send(self(), {:json_changed, updated_json}) end}
 on_save={fn updated_json -> send(self(), {:json_updated, updated_json}) end}
/>
It features real-time validation, a visual tree editor, and a live preview of the edited data.
Theming
The editor uses CSS variables for styling, which can be easily overridden in your project's CSS or via the class attribute.
.my-custom-theme {
 /* Override main colors */
 --jse-primary: #ec4899;
 --jse-primary-hover: #db2777;

 /* Override layout dimensions */
 --jse-tree-row-height: 2rem;
}
See assets/css/json_schema_editor.css for the full list of available variables.
Development
Running Tests
mix test --cover

Running the Demos
Main Schema Editor Demo
elixir examples/demo.exs

JSON Data Editor Demo
elixir examples/json_editor.exs

Visit http://localhost:4040 (or 4041 for the JSON editor) to see the components in action.

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[0.9.9] - 2026-02-02
Added
	Utility functions for cleaning custom properties from the schema:	JSONSchemaEditor.SchemaUtils.clean_custom_property/2: Removes a specific custom property recursively.
	JSONSchemaEditor.SchemaUtils.clean_all_custom_properties/1: Removes all properties starting with x-.

[0.9.8] - 2026-02-01
Added
	Support for custom schema extensions (x- properties) at any node level
	Automatic type casting for extension values (number, boolean, null)
	Dedicated UI section for managing custom extensions with a new 'tag' icon

[0.9.7] - 2026-01-27
Added
	on_change callback for real-time schema and data updates
	header_class and toolbar_class assigns for custom styling
	on_save callback support to conditionally render the "Save" button

Changed
	Refactored CSS to use private variables with fallbacks for better theming support

[0.9.6] - 2026-01-27
Changed
	Updated .jse-host and .jse-container to use height: 100% instead of min-height: 100vh to better adapt to parent containers

[0.9.5] - 2026-01-26
Fixed
	Prevent on_save callback in JSONEditor when schema validation fails
	Disable "Save" button in JSONEditor when schema validation fails

[0.9.4] - 2026-01-26
Added
	New JSONSchemaEditor.JSONEditor component for editing JSON data according to a schema

[0.9.3] - 2026-01-22
Added
	Progressive disclosure UI enhancements for improved skimmability
	Visual highlights for active constraints and logic when sections are collapsed
	Node summaries (property counts, item types) displayed on collapsed nodes
	Error highlighting for collapsed nodes and closed toggle sections
	Automatic expansion of nodes when toggling constraints, logic, or description
	Visual indicator for existing descriptions when collapsed

[0.9.2] - 2026-01-22
Changed
	Bump Elixir requirement to ~> 1.18 to use the built-in JSON module

Fixed
	Improved SchemaUtils.cast_value/2 to safely handle non-string inputs
	Fixed list index gap handling in SchemaUtils.update_in_path/3

[0.9.1] - 2026-01-22
Changed
	Improved documentation and usage examples

Fixed
	Fixed format selection in the UI

[0.9.0] - 2026-01-22
Added
	Support for if, then, else, and not keywords (conditional logic)
	Progressive disclosure for conditional logic and negation in the UI
	Support for null type
	UI state for property ordering

Changed
	Major internal refactoring: introduced SchemaMutator to centralize schema transformations
	Simplified event handling and UI component data flow
	Performance optimization: Pre-compiled regex patterns in SimpleValidator
	Performance optimization: Efficient validation error lookup using tuple keys
	Performance optimization: Optimized SchemaUtils.update_in_path/3 and schema validation logic
	Improved documentation for Viewer and PrettyPrinter modules
	Expanded test coverage including property-based tests for validator and mutator

Fixed
	Removed redundant schema update logic when adding properties

[0.8.0] - 2026-01-21
Added
	New JSONSchemaEditor.Viewer component for standalone JSON display with syntax highlighting
	Structural punctuation highlighting in JSON viewer (braces, brackets, colons, commas)
	Indentation guides (vertical lines) in JSON viewer for better readability

Changed
	PrettyPrinter.format/1 now automatically decodes and pretty-prints JSON strings

[0.7.3] - 2026-01-20
Fixed
	Fixed Test Lab textarea not stretching to fill its container

[0.7.2] - 2026-01-20
Changed
	Increased the default height of the Sample JSON Data textarea in Test Lab

[0.7.1] - 2026-01-20
Added
	Quick-set default Schema URI button (inset into the URI input field)

[0.7.0] - 2026-01-20
Added
	Test Lab: Live validation of sample JSON against the edited schema
	Built-in SimpleValidator to support testing without external dependencies
	Improved button styles and disabled states

[0.6.0] - 2026-01-20
Added
	Undo/Redo support for the Visual Editor
	Standardized icons for better UI consistency

[0.5.0] - 2026-01-20
Added
	Schema Generation: Infer JSON Schema (Draft 07) from pasted JSON data
	Updated Import Modal to switch between 'Import Schema' and 'Generate from JSON' modes

[0.4.0] - 2026-01-20
Added
	Import functionality: Paste JSON from clipboard to hydrate the schema editor
	Import button and modal dialog

[0.3.1] - 2026-01-19
Fixed
	Fixed BadMapError when updating logic branches (e.g., anyOf) by adding list traversal support to SchemaUtils
	Removed forced alphabetical sorting of object properties to prevent UI jumping during renaming

[0.3.0] - 2026-01-15
Changed
	Major codebase refactor for simplicity and maintainability
	Consolidated and simplified event handlers
	Streamlined validation and schema utility functions
	Improved module documentation and usage examples
	Enhanced UI component data-driven rendering

[0.2.0] - 2026-01-14
Added
	Support for $schema field with Draft 07 default
	Tabbed interface with Visual Editor and JSON Preview
	JSON PrettyPrinter for formatted schema display
	Copy to Clipboard functionality for schema export
	Format support for string types (email, date-time, etc.)
	Strict Object Control (additionalProperties: false)
	Composition & Logic support (anyOf, oneOf, allOf)
	Collapsible nodes for better navigation
	Enum support with type-safe casting
	Validation constraints for all types
	Metadata fields (title, description)
	Required fields management
	Expandable description textarea
	Soft encapsulation support for custom classes and attributes

Changed
	Improved CSS styling and organization
	Refactored component structure for better maintainability
	Enhanced UI/UX with better visual feedback
	Simplified README documentation
	Standardized schema update helpers
	Decoupled UI state from JSON Schema

Removed
	Tailwind-specific CSS directives
	Redundant type labels from UI
	Packaging guide documentation

[0.1.0] - 2026-01-14
Added
	Initial release of JSON Schema Editor.
	Basic recursive schema editing support.
	Real-time validation.
	Phoenix LiveComponent integration.

JSONSchemaEditor

A Phoenix LiveComponent for visually editing JSON Schemas.
It provides a rich interface for creating and modifying JSON Schemas (Draft 07), supporting
nested structures, arrays, validation constraints, logical composition (oneOf, anyOf, allOf),
conditional logic (if, then, else, not), and custom extensions (x- properties).
The library also includes a dedicated JSONSchemaEditor.JSONEditor component for editing
JSON data according to a provided schema.
The components include "Test Lab" for live validation, "JSON Preview" with syntax highlighting,
and visual tree editors.
Attributes
	id (required) - A unique identifier for the component instance.
	schema (required) - The initial JSON Schema map to edit. Defaults to a basic schema if empty.
	on_save (optional) - A 1-arity callback function invoked when the user clicks "Save".
It receives the current schema as a map.
	on_change (optional) - A 1-arity callback function invoked when the schema changes.
It receives the updated schema as a map.
Note: This callback is NOT invoked if the schema is invalid.
	class (optional) - Additional CSS classes to apply to the root container.
	header_class (optional) - Additional CSS classes to apply to the header section.
	toolbar_class (optional) - Additional CSS classes to apply to the toolbar/actions section.

Usage
<.live_component
 module={JSONSchemaEditor}
 id="json-editor"
 schema={@my_schema}
 on_save={fn new_schema -> send(self(), {:save_schema, new_schema}) end}
 class="my-custom-theme"
 header_class="bg-gray-100"
/>

 Summary

 Functions

 handle_event(event, params, socket)

 Callback implementation for Phoenix.LiveComponent.handle_event/3.

 render(assigns)

 Callback implementation for Phoenix.LiveComponent.render/1.

 update(assigns, socket)

 Callback implementation for Phoenix.LiveComponent.update/2.

 Functions

 handle_event(event, params, socket)

Callback implementation for Phoenix.LiveComponent.handle_event/3.

 render(assigns)

Callback implementation for Phoenix.LiveComponent.render/1.

 update(assigns, socket)

Callback implementation for Phoenix.LiveComponent.update/2.

JSONSchemaEditor.JSONEditor

A Phoenix LiveComponent for visually editing JSON data.
It provides a tree-based editor for modifying nested JSON structures, with
support for various data types and real-time JSON Schema validation.
Attributes
	id (required) - A unique identifier for the component instance.
	json (optional) - The initial JSON data to edit. Defaults to %{}.
	schema (optional) - A JSON Schema (as a map) to validate the data against.
	on_save (optional) - A 1-arity callback function invoked when the user clicks "Save".
It receives the current JSON data as a map or list.
	on_change (optional) - A 1-arity callback function invoked when the JSON data changes.
It receives the updated JSON data as a map or list.
Note: This callback is NOT invoked if the data is invalid according to the provided schema.
	class (optional) - Additional CSS classes to apply to the root container.
	header_class (optional) - Additional CSS classes to apply to the header section.
	toolbar_class (optional) - Additional CSS classes to apply to the toolbar/actions section.

Examples
Basic Usage
<.live_component
 module={JSONSchemaEditor.JSONEditor}
 id="json-editor"
 json={%{"foo" => "bar", "count" => 42}}
 on_change={fn new_json -> IO.inspect(new_json) end}
/>
With Schema Validation
<.live_component
 module={JSONSchemaEditor.JSONEditor}
 id="json-editor-with-schema"
 json={@user_data}
 schema={@user_schema}
 on_save={fn updated -> IO.inspect(updated) end}
/>

 Summary

 Functions

 handle_event(binary, arg2, socket)

 Callback implementation for Phoenix.LiveComponent.handle_event/3.

 render(assigns)

 Callback implementation for Phoenix.LiveComponent.render/1.

 Functions

 handle_event(binary, arg2, socket)

Callback implementation for Phoenix.LiveComponent.handle_event/3.

 render(assigns)

Callback implementation for Phoenix.LiveComponent.render/1.

JSONSchemaEditor.PrettyPrinter

Pretty prints JSON data into HTML with syntax highlighting.
Supports structural punctuation highlighting and indentation guides.
Can handle maps, lists, and raw JSON strings.

 Summary

 Functions

 format(data)

 Functions

 format(data)

JSONSchemaEditor.SchemaGenerator

Infers a JSON Schema (Draft 07) from a given Elixir data structure (deserialized JSON).

 Summary

 Functions

 generate(data)

 Functions

 generate(data)

JSONSchemaEditor.SchemaMutator

Handles all mutations to the JSON Schema.

 Summary

 Functions

 add_child(schema, path, key)

 add_enum_value(schema, path)

 add_extension(schema, path)

 add_logic_branch(schema, path, type)

 add_property(schema, path)

 change_type(schema, path, type)

 delete_extension(schema, path, key)

 delete_property(schema, path, key)

 remove_child(schema, path, key)

 remove_enum_value(schema, path, index_str)

 remove_logic_branch(schema, path, type, index_str)

 rename_property(schema, path, old_key, new_key)

 toggle_additional_properties(schema, path)

 toggle_required(schema, path, key)

 update_const(schema, path, value)

 update_constraint(schema, path, field, value)

 update_enum_value(schema, path, index_str, value)

 update_extension_key(schema, path, old_key, new_key)

 update_extension_value(schema, path, key, value)

 update_field(schema, path, field, value)

 Functions

 add_child(schema, path, key)

 add_enum_value(schema, path)

 add_extension(schema, path)

 add_logic_branch(schema, path, type)

 add_property(schema, path)

 change_type(schema, path, type)

 delete_extension(schema, path, key)

 delete_property(schema, path, key)

 remove_child(schema, path, key)

 remove_enum_value(schema, path, index_str)

 remove_logic_branch(schema, path, type, index_str)

 rename_property(schema, path, old_key, new_key)

 toggle_additional_properties(schema, path)

 toggle_required(schema, path, key)

 update_const(schema, path, value)

 update_constraint(schema, path, field, value)

 update_enum_value(schema, path, index_str, value)

 update_extension_key(schema, path, old_key, new_key)

 update_extension_value(schema, path, key, value)

 update_field(schema, path, field, value)

JSONSchemaEditor.SchemaUtils

Utility functions for working with JSON Schemas.

 Summary

 Functions

 cast_type(value, arg2)

 cast_value(field, value)

 clean_all_custom_properties(schema)

 Recursively removes all properties starting with "x-" from the schema.

 clean_custom_property(schema, property_name)

 Recursively removes a specific custom property (e.g. "x-custom") from the schema.

 generate_unique_key(existing_map, base_name, counter \\ 1)

 get_in_path(data, path)

 get_type(v)

 put_in_path(data, path, value)

 update_in_path(data, path, func)

 Functions

 cast_type(value, arg2)

 cast_value(field, value)

 clean_all_custom_properties(schema)

Recursively removes all properties starting with "x-" from the schema.

 clean_custom_property(schema, property_name)

Recursively removes a specific custom property (e.g. "x-custom") from the schema.

 generate_unique_key(existing_map, base_name, counter \\ 1)

 get_in_path(data, path)

 get_type(v)

 put_in_path(data, path, value)

 update_in_path(data, path, func)

JSONSchemaEditor.SimpleValidator

A lightweight JSON Schema validator implementation for the editor's Test Lab.
Supports the subset of features available in the editor.

 Summary

 Functions

 validate(schema, data)

 Functions

 validate(schema, data)

JSONSchemaEditor.UIState

Helper module for managing the ephemeral UI state of the editor,
such as property ordering, expansion states, etc.

 Summary

 Functions

 add_property(ui_state, path, properties, new_key)

 Updates the UI state to track a newly added property key at the end of the list.

 get_ordered_keys(ui_state, path, properties)

 Calculates the list of property keys to display for a given node,
respecting any stored custom order in the UI state.

 remove_property(ui_state, path, key_to_remove)

 Updates the UI state to remove a deleted property key.

 rename_property(ui_state, path, properties, old_key, new_key)

 Updates the UI state to rename a property key in-place, preserving its position.

 Functions

 add_property(ui_state, path, properties, new_key)

Updates the UI state to track a newly added property key at the end of the list.

 get_ordered_keys(ui_state, path, properties)

Calculates the list of property keys to display for a given node,
respecting any stored custom order in the UI state.

 remove_property(ui_state, path, key_to_remove)

Updates the UI state to remove a deleted property key.

 rename_property(ui_state, path, properties, old_key, new_key)

Updates the UI state to rename a property key in-place, preserving its position.

JSONSchemaEditor.Viewer

A component for displaying JSON with syntax highlighting.
It supports structural punctuation highlighting and indentation guides.
Examples
Passing a map
<JSONSchemaEditor.Viewer.render json={%{"a" => 1, "b" => [true, nil]}} />
Passing a JSON string
<JSONSchemaEditor.Viewer.render json="{\"foo\": \"bar\"}" />

 Summary

 Functions

 render(assigns)

 Functions

 render(assigns)

Attributes
	json (:any) (required) - The JSON data to display (map, list, or already encoded string).
	class (:string) - Additional CSS classes for the container. Defaults to nil.
	Global attributes are accepted. Additional HTML attributes.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

