

 jsv

 v0.15.2

 Table of contents

 	Changelog

 	Schemas

 	Defining Schemas

 	Custom Cast Functions

 	Build

 	Building Schemas

 	Resolvers

 	Vocabularies

 	Validation

 	Validate Data With Schemas

 	Decimal Support

 	Dev Log

 	API Changes in JSV 0.9

 	
 Modules

 	Main API

 	JSV

 	Schema Definition

 	JSV.Schema

 	JSV.Schema.Helpers

 	Build

 	JSV.BuildError

 	JSV.FormatValidator

 	Validation

 	JSV.Root

 	JSV.ValidationError

 	Resolvers

 	JSV.Resolver

 	JSV.Resolver.Embedded

 	JSV.Resolver.Httpc

 	JSV.Resolver.Internal

 	JSV.Resolver.Local

 	Vocabulary

 	JSV.Vocabulary

 	JSV.Vocabulary.V202012.Applicator

 	JSV.Vocabulary.V202012.Content

 	JSV.Vocabulary.V202012.Core

 	JSV.Vocabulary.V202012.Format

 	JSV.Vocabulary.V202012.MetaData

 	JSV.Vocabulary.V202012.Unevaluated

 	JSV.Vocabulary.V202012.Validation

 	JSV.Vocabulary.V7.Applicator

 	JSV.Vocabulary.V7.Content

 	JSV.Vocabulary.V7.Core

 	JSV.Vocabulary.V7.Format

 	JSV.Vocabulary.V7.MetaData

 	JSV.Vocabulary.V7.Validation

 	Utilities

 	JSV.Codec

 	JSV.Helpers.MapExt

 	JSV.Helpers.Traverse

 	JSV.Normalizer

 	JSV.Normalizer.Normalize

 	JSV.Schema.Composer

 	Internal

 	JSV.BooleanSchema

 	JSV.Builder

 	JSV.ErrorFormatter

 	JSV.Key

 	JSV.RNS

 	JSV.Ref

 	JSV.Resolver.Resolved

 	JSV.Subschema

 	JSV.Validator

 	JSV.Validator.Error

 	JSV.Validator.ValidationContext

 	
 Mix Tasks

 	mix jsv.gen_test_suite

 	mix jsv.gen_test_suite.value_dumper

 	mix jsv.update_jsts_ref

 Changelog

All notable changes to this project will be documented in this file.
[0.15.2] - 2026-01-19
🐛 Bug Fixes
	Fixed type error on serialization optional values

[0.15.1] - 2026-01-06
🚀 Features
	Added :as_root option for normalize_collect

🐛 Bug Fixes
	Do not add description to schema with defschema/3 if nil

[0.15.0] - 2026-01-06
🚀 Features
	Added JSV.Schema.normalize_collect to generate self-contained schemas from modules
	Added the nullable/1 schema helper

📚 Documentation
	Fixed docs for the optional helper

[0.14.0] - 2025-12-30
🚀 Features
	Allow to use schema helpers with import JSV and defschema/3
	Added json serialization skip option in optional() properties

[0.13.1] - 2025-11-26
🐛 Bug Fixes
	Invalidate empty labels in hostname validation

[0.13.0] - 2025-11-25
🚀 Features
	Relax additional properties in error schemas
	Support the @skip_keys attribute for structs created with defschema
	New hostname validator based on :idna (new JSON Schema suite tests)

[0.12.0] - 2025-11-19
🚀 Features
	Support normalizing structs into non-map values in the Normalizer
	Added support for collecting additionalProperties in structs

[0.11.5] - 2025-11-12
🐛 Bug Fixes
	Relax Poison dependency version constraints

📚 Documentation
	Document function groups in main JSV module

[0.11.4] - 2025-10-23
🐛 Bug Fixes
	Ignore all error values from Code.ensure_compiled

[0.11.3] - 2025-10-23
🐛 Bug Fixes
	Fixed module-based schema loading in Elixir 1.19

[0.11.2] - 2025-10-13
📚 Documentation
	Fixed doc on schema preset helpers

[0.11.0] - 2025-09-16
🚀 Features
	[breaking] ABNF parsers are now automatically enabled

🧪 Testing
	Updated JSON Schema Test Suite

⚙️ Miscellaneous Tasks
	Updated README.md

[0.10.1] - 2025-08-11
🚀 Features
	Export required keys from generated struct modules

⚙️ Miscellaneous Tasks
	Fix JSON tests for elixir 1.17

[0.10.0] - 2025-07-10
🚀 Features
	Define and expect schema modules to export json_schema/0 instead of schema/0
	Allow to call defschema with a list of properties
	Added the defschema/3 macro to define schemas as submodules

🐛 Bug Fixes
	Ensure defschema with keyword syntax supports module-based properties

[0.9.0] - 2025-07-05
🚀 Features
	Provide a schema representing normalized validation errors
	Deprecated the schema composition API in favor of presets

🐛 Bug Fixes
	Emit a build error with empty oneOf/allOf/anyOf
	Reset errors when using a detached validator
	Ensure casts are applied after all validations
	Revert default normalized error to atoms

⚙️ Miscellaneous Tasks
	Define titles for normal validation error schemas

[0.8.1] - 2025-06-29
⚙️ Miscellaneous Tasks
	Export the locals_without_parens formatter opts for public macros

[0.8.0] - 2025-06-23
🚀 Features
	Declare formatting support from main JSON codec
	Added the JSV.validate! bang functions
	Added explicit error when a sub schema is not buildable
	Export JSV.resolver_chain/1 for integration in 3rd parties
	[breaking] Defschema does not automatically define $id anymore
	Added string_to_number and string_to_boolean casters
	Return sub errors when oneOf has no matches
	Order sub-errors by ascending item index in array validation
	Added ability to build only a nested schema or multiple schemas
	Expose the map extensions helpers
	Added the prewalk traverse utility for schema normalization
	[breaking] Error normalizer will now sort error by instanceLocation
	[breaking] Changed caster tag of defschema to 0
	Allow custom formats to validate other types than strings
	Provide a function to create reference from a list of path segments

🐛 Bug Fixes
	Ensure keys are json-pointer encoded in instanceLoction in errors
	Return meaningful error for unknow keys in :required in defschema
	Fixed typespec on JSV.build_key!
	Fixed typespec and argument name in Builder.build!

🚜 Refactor
	Renamed Schema.override/2 to Schema.merge/2
	Defined different typespecs for normal schema and native schema
	Build error will now be raised with a proper stacktrace
	Removed useless accumulation of atoms when normalizing schemas
	[breaking] Changed order of arguments for Normalizer.normalize/3
	Renamed build_root to to_root as it is not building validators

📚 Documentation
	Rework Decimal support limitations

🧪 Testing
	Verify that unknown formats are ignored when formats assertion is disabled

⚙️ Miscellaneous Tasks
	Clarify defschema error when no properties are given
	Fix warning when Poison.EncodeError is not defined
	Updated JSON Schema Test Suite
	Renamed keycast module attribute to jsv_keycast in defschema
	Provide correct line/column in debanged functions
	Allow to customize Inspect for Builder and Resolver
	Fix Elixir 1.19 warnings

[0.7.2] - 2025-05-08
🚀 Features
	Added the non_empty_string schema helper
	Atom enums will use string_to_atom to support compile-time builds

⚙️ Miscellaneous Tasks
	Updated JSON Schema Test Suite
	Enhanced JSTS updater
	Fixed warning on code when Decimal is missing

[0.7.1] - 2025-04-27
🐛 Bug Fixes
	Fixed hex package definition

[0.7.0] - 2025-04-27
🚀 Features
	Mail_address dependency is no longer used
	Validation support for Decimal

📚 Documentation
	Updated doc examples with generated code

🧪 Testing
	Enable tests for the 'uuid' format
	Enable tests for the 'hostname' format
	Enable tests for all uri/iri/pointer formats

⚙️ Miscellaneous Tasks
	Changed JSON schema test suite updater

[0.6.3] - 2025-04-13
⚙️ Miscellaneous Tasks
	Fix missing file in hex package breaking installs

[0.6.2] - 2025-04-13
🚀 Features
	Added Jason/Poison/JSON encoder implementations for JSV.NValidationError

[0.6.1] - 2025-04-13
⚙️ Miscellaneous Tasks
	Use mix_version for release process

[0.6.0] - 2025-04-13
🚀 Features
	Resolvers do not need to normalize schemas anymore
	Added support to override existing vocabularies
	Schema definition helpers do not enforce a Schema struct anymore
	Provide a generic JSON normalizer for data and schemas
	Allow resolvers to mark schemas as normalized
	[breaking] Use jsv-cast keyword in schemas for struct and cast functions

🐛 Bug Fixes
	Removed conversion to string in codec format_to_iodata

📚 Documentation
	Fix documentation grammar and typos
	Organize docs sidebar in categories

⚙️ Miscellaneous Tasks
	Update Elixir Github workflow (#17)
	Use absolute path for JSTS ref file

[0.5.1] - 2025-03-28
🐛 Bug Fixes
	Fixed compilation with Mix.install

⚙️ Miscellaneous Tasks
	Release v0.5.1

[0.5.0] - 2025-03-25
🚀 Features
	Added JSV.Resolver.Local to resolve disk stored schemas
	Special error format for additionalProperties:false
	Provide correct schemaLocation in all errors
	Added defschema_for to use different modules for schema and struct
	Provide ordered JSON encoding with native JSON modules

🐛 Bug Fixes
	Check presence of JSON module in CI

🧪 Testing
	Make JSON codecs easier to test
	Fixed assertions for JSON codec on old OTP versions

⚙️ Miscellaneous Tasks
	Refactored schema normalization
	Removed unused alias
	Use readmix to generate formats docs

[0.4.0] - 2025-02-08
🚀 Features
	Support module-based schemas with structs

[0.3.0] - 2025-01-08
🚀 Features
	Added a default resolver using static schemas

🐛 Bug Fixes
	Upgrade abnf_parsec to correctly parse IRIs and IRI references

[0.2.0] - 2025-01-03
📚 Documentation
	Document atom conversion
	Document functions with doc and spec

[0.1.0] - 2025-01-01

 Defining Schemas

This guide explains the different possible values to use as a schema with JSV.
Schema sources
Schemas given as input to JSV can come from two sources:
	Schemas given directly to the JSV.build/2 function. These are expected to be
maps or booleans. JSV will not parse JSON strings.
	Schemas returned by resolvers. These should also be maps (but not booleans).
The built-in resolvers will handle JSON deserialization automatically.

JSV is designed to work with raw schemas. Any map or boolean is a valid schema.
For instance, it is possible to directly use a schema from a file:
root =
 "my-schema.json"
 |> File.read!()
 |> JSON.decode!()
 |> JSV.build()
Schema formats
Schemas can be either booleans or maps. The true value is equivalent to an
empty JSON Schema {}, while false is a schema that will invalidate any
value. It is most often used as a sub-schema for additionalProperties.
Maps can define keys and values as binaries or atoms. The following schemas are
equivalent:
%{type: :boolean}
%{type: "boolean"}
%{"type" => "boolean"}
You will rarely find this one in the wild!
%{"type" => :boolean}
This is because JSV will normalize the schemas before building a "root", the
base data structure for data validation.
Mixing keys is not recommended. In the following example, JSV will build a
schema that will successfully validate integers with a minimum of zero. However,
the choice for the maximum value is not made by JSV.
%{:type => :integer, "minimum" => 0, "maximum" => 10, :maximum => 20}
Struct schemas
Schemas can be used to define structs with the JSV.defschema/1 macro.
For instance, with this module definition schema:
defmodule MyApp.UserSchema do
 use JSV.Schema

 defschema %{
 type: :object,
 properties: %{
 name: %{type: :string, default: ""},
 age: %{type: :integer, default: 0}
 }
 }
end
A struct will be defined with the appropriate default values:
iex> %MyApp.UserSchema{}
%MyApp.UserSchema{name: "", age: 0}
The module can be used as a schema to build a validator root and cast data to
the corresponding struct:
iex> {:ok, root} = JSV.build(MyApp.UserSchema)
iex> data = %{"name" => "Alice"}
iex> JSV.validate(data, root)
{:ok, %MyApp.UserSchema{name: "Alice", age: 0}}
Casting to a struct can be disabled by passing cast: false into the
options of JSV.validate/3.
iex> {:ok, root} = JSV.build(MyApp.UserSchema)
iex> data = %{"name" => "Alice", "extra" => "hello!"}
iex> JSV.validate(data, root, cast: false)
{:ok, %{"name" => "Alice", "extra" => "hello!"}}
The module can also be used in other schemas:
%{
 type: :object,
 properties: %{
 name: %{type: :string},
 owner: MyApp.UserSchema
 }
}
An alternative syntax can be used, by passing only the properties schemas as a
list.
defmodule MyApp.UserSchema do
 use JSV.Schema

 defschema name: %{type: :string, default: ""},
 age: %{type: :integer, default: 0}
end
In that case, properties that do not have a default value are automatically
required, and the type of the schema is automatically set to object. The
title of the schema is set as the last segment of the module name.
Struct defining schemas are a special case of the generic cast mechanism built
in JSV. Make sure to check that guide out as well.
Defining multiple schemas with defschema/3
The JSV.defschema/3 macro allows you to define a new module for a schema. It
can be used inside an enclosing "group" module, which is useful for organizing
related schemas together:
defmodule MyApp.Schemas do
 use JSV.Schema

 defschema User,
 name: string(),
 email: string(),
 age: integer(default: 18)

 defschema Address,
 "Physical address information",
 street: string(),
 city: string(),
 country: string(default: "US")

 defschema Company,
 "Company information with nested schemas",
 name: string(),
 address: Address,
 employees: array_of(User)
end
This creates three separate modules: MyApp.Schemas.User,
MyApp.Schemas.Address, and MyApp.Schemas.Company, each with their own struct
and JSON schema.
You can use these schemas independently:
user = %MyApp.Schemas.User{name: "Alice", email: "alice@example.com"}
address = %MyApp.Schemas.Address{street: "123 Main St", city: "Boston"}

{:ok, user_root} = JSV.build(MyApp.Schemas.User)
{:ok, company_root} = JSV.build(MyApp.Schemas.Company)
Using full schema maps
You can also use defschema/3 with complete schema maps instead of property lists:
defmodule MyApp.Schemas do
 use JSV.Schema

 defschema ApiResponse,
 "Standard API response format",
 %{
 type: :object,
 properties: %{
 success: %{type: :boolean},
 data: %{type: :object},
 errors: %{type: :array, items: %{type: :string}}
 },
 required: [:success],
 additionalProperties: false
 }
end
When using full schema maps, the title and description from the macro parameters
are not automatically applied to the schema, the map is used as-is. Only the
description parameter is used for the module's documentation.
Self-referencing schemas
Schemas can reference themselves using __MODULE__:
defmodule MyApp.Schemas do
 use JSV.Schema

 defschema Category,
 "Hierarchical category structure",
 name: string(),
 parent: optional(__MODULE__)
end
This creates a MyApp.Schemas.Category module that can have a parent of the
same type, allowing for hierarchical data structures.

 Custom Cast Functions

JSV provides a mechanism to declare a cast function into a schema, to be called
once the validation is successful. This is the same mechanism used to cast
struct-schemas to Elixir structs.
This guide describes how to use a custom function in your schemas.
JSV's cast system
JSV stores the cast information in the JSON schemas. There is no central
registry of cast functions, so any library you use can define its own JSV casts
without needing you to copy their mapping, registry or whatever in your
configuration.
That information is stored under the jsv-cast custom schema keyword as an
array containing a module name (as string) and a custom "tag".
{
 "description": "an existing Elixir atom",
 "type": "string",
 "jsv-cast": ["Elixir.MyApp.Schemas.Cast", "existing_atom"]
}
This solution has multiple advantages:
	No configuration.
	Schemas remain fully declarative. The information about casting is collocated
with other validation keywords such as type, format, properties, etc.
	Schemas are portable as JSV does not need additional configuration to know
what code to call. Although, we use a module name so the module needs to be
available in the Elixir runtime when data is validated.
	Schema reviewers can know that a schema uses a cast without needing to look
elsewhere.
	Cast functions can be referenced into multiple schemas, they are not tied to a
particular struct or schema-map defined in one place. You can also define them
in generic schemas referenced with $ref or $dynamicRef.

There are some drawbacks as well:
	The jsv-cast information needs to be JSON-serializable, so modules are
referenced as strings, and custom tags to identify the cast function can only
be simple data. Currently JSV only accepts strings or integers.
	Module names are leaked into the schemas. If this is not acceptable, you can
declare a generic "Cast" module in your application and dispatch manually from
there. Sometimes just cleaning the schemas before making them public is enough
too.
	Refactoring can be harder. In general, you will not write the content of
jsv-cast by hand but rather use our helper functions. Refactoring will be
the same as with regular code.
	Indirection for the cast functions is required. See the security concerns
below.

Security concerns
In the previous example, "existing_atom" is a "tag", and not a function name
that JSV would call blindly. Otherwise, if your app is processing third-party
schemas, a ["Elixir.System", "stop"] or worse would be very bad.
For that reason, cast functions need to be enabled by developers by defining the
__jsv__/2 function.
This is an internal callback, not documented by a behaviour, but security is
important and it is worth explaining the mechanism here. The __jsv__/2
function is rather defined by using the JSV.defcast/1 macro that is documented.
When evaluating ["Elixir.System", "stop"], JSV will indeed call the System
module. It will call System.__jsv__("stop", data) with the data under
validation. This function does not exist and JSV will catch that error.
The only way for that function to exist is if you define it in your own code.
While you could compile a custom Elixir version with a __jsv__/2 function in
the System module, there are only so many reasons to do that.
But that applies to your modules as well. Only you can define the __jsv__/2
function in your modules.
While this requires a few extra lines of code, we think it's a simple-enough
solution to prevent undesirable remote code execution.
Defining cast functions
Cast functions are functions that return a generic result tuple:
	{:ok, transformed_data} for successful transformations.
	{:error, reason} when the transformation fails.

As described in the security section above, JSV needs a tag to identify the
function to call with the data. JSV supports strings and integers as tags.
To define such functions, the JSV.defcast/1, JSV.defcast/2 or
JSV.defcast/3 macros should be used.
Basic usage of defcast
The following module expects a string and returns the value in upper case:
defmodule MyApp.Schemas.Cast do
 import JSV

 defcast to_uppercase(data) do
 {:ok, String.upcase(data)}
 end
end
This will define the to_uppercase/1 function that will evaluate the body as
any regular function:
MyApp.Schemas.Cast.to_uppercase("hello")
=> {:ok, "HELLO"}
It will also define the to_uppercase/0 function that returns the cast
information to include in a schema. As you can see, the default tag of a cast is
the function name, as string.
MyApp.Schemas.Cast.to_uppercase()
=> ["Elixir.MyApp.Schemas.Cast", "to_uppercase"]
And finally, it will define the appropriate __jsv__/2 function to be used in a
schema:
schema = JSV.Schema.string() |> JSV.Schema.with_cast(MyApp.Schemas.Cast.to_uppercase())
=> %JSV.Schema{
type: :string,
"jsv-cast": ["Elixir.MyApp.Schemas.Cast", "to_uppercase"]
}

root = JSV.build!(schema)
JSV.validate("hello", root)
=> {:ok, "HELLO"}
Using a custom tag
Custom tags can be given as the first argument of defcast:
Using a string tag
defcast "my_custom_tag", to_uppercase(data) do
 {:ok, String.upcase(data)}
end

Using an integer tag
defcast ?u, to_uppercase(data) do
 {:ok, data}
end
Exception handling
The rescue, catch and after blocks are supported:
defcast safe_to_atom(data) do
 {:ok, String.to_existing_atom(data)}
rescue
 ArgumentError -> {:error, :unknown_atom}
end
Referring to Existing Functions
Guards with the when keyword are not supported at the moment. But it is
possible to call a local function instead of defining it directly.
Unfortunately, this does not export the 0-arity function to quickly define the
cast in schemas.
Pass the local function name as a single argument.
defcast :to_upper

Custom tags are supported too
defcast "custom_tag", :to_upper
defcast ?u, :to_upper

The function needs to be defined in the module as `def` or `defp`.
def to_upper(data) when is_binary(data), do: {:ok, String.upcase(data)}
def to_upper(data), do: {:error, :expected_string}

Helper to reference the cast in schemas. This function does not need to
exist, it is always possible to add this directly in a schema.
def to_upper do
 [to_string(__MODULE__), "to_upper"]
end
Error Normalization
To return custom errors from your functions, you can optionally define the
format_error/3 function that will receive the tag, the reason and the
validated data.
This will be called when JSV errors are normalized to be JSON-encodable.
defmodule MyApp.Schemas.Cast do
 import JSV

 defcast safe_to_atom(data) do
 {:ok, String.to_existing_atom(data)}
 rescue
 ArgumentError -> {:error, :unknown_atom}
 end

 def format_error("safe_to_atom", :unknown_atom, data) do
 "could not cast to existing atom: #{inspect(data)}"
 end
end

schema = JSV.Schema.Helpers.string() |> JSV.Schema.with_cast(MyApp.Schemas.Cast.safe_to_atom())

root = JSV.build!(schema)
{:error, err} = JSV.validate("some string", root)
JSV.normalize_error(err)
The code above gvies the following normalized error:
%{
 details: [
 %{
 errors: [
 %{
 kind: :cast,
 message: "could not cast to existing atom: \"some string\""
 }
],
 evaluationPath: "#",
 instanceLocation: "#",
 schemaLocation: "#",
 valid: false
 }
],
 valid: false
}

 Building Schemas

To validate data with schemas, JSV turns the schemas into a custom data
structure made specifically for validation.
It does not validate data with raw schemas directly. That would be too slow and
would not work properly with advanced features of Draft 2020-12, such as
$dynamicRef and $dynamicAnchor.
Instead, raw schemas are processed by a set of different "vocabulary" modules
that are each specialized in some part of the validation. The result of this
processing is then collected as a JSV.Root struct.
This guide covers the configuration and customization of this process to better
serve your needs.
The build functions
The main build function is JSV.build/2. It accepts a raw schema and a set of
options and returns the root.
There are variations around that function, which is very common in Elixir:
JSV.build/1 with default options, JSV.build!/1, and JSV.build!/2 with or
without default options that raise errors instead of returning an error tuple.
Custom build modules
The build functions do not use macros or process-based techniques. We
encourage you to wrap them and define your options in a single place:
defmodule MyApp.SchemaBuilder do

 def build(raw_schema) do
 JSV.build(raw_schema, build_opts())
 end

 def build!(raw_schema) do
 JSV.build!(raw_schema, build_opts())
 end

 defp build_opts do
 [resolver: MyApp.CustomSchemaResolver, formats: true]
 end
end
Compile-time builds
Validation roots can be built at runtime, but it is recommended to build them
during compilation, if possible, to avoid repeating the build step unnecessarily.
Building at runtime should be done when the JSON schema is not available during
compilation.
For instance, if we have this function that should validate external data:
DO NOT DO THIS

defp order_schema do
 "priv/schemas/order.schema.json"
 |> File.read!()
 |> JSON.decode!()
 |> JSV.build!()
end

def validate_order(order) do
 case JSV.validate(order, order_schema()) do
 {:ok, _} -> OrderHandler.handle_order(order)
 {:error, _} = err -> err
 end
end
The schema will be built each time the function is called. Building a schema is
actually pretty fast, but it is a waste of resources nevertheless. In this
example, it is obvious that you would not want to read from a file in every call
to validate_order. But the schema fetching will generally be wrapped in a
custom function or a build module as suggested above.
Make sure those builds are called at compile-time:
Do this instead

@order_schema "priv/schemas/order.schema.json"
 |> File.read!()
 |> JSON.decode!()
 |> JSV.build!()

defp order_schema, do: @order_schema

def validate_order(order) do
 case JSV.validate(order, order_schema()) do
 {:ok, _} -> OrderHandler.handle_order(order)
 {:error, _} = err -> err
 end
end
Enable format validation
No format validation by default
By default, the https://json-schema.org/draft/2020-12/schema meta schema
does not perform format validation. This is very counterintuitive, but it
basically means that the following code is correct:
root = JSV.build!(%{type: :string, format: :date})
{:ok, "not a date"} = JSV.validate("not a date", root)
The format schema keyword is totally ignored. This is bad, but it is the spec!
To always enable format validation when building a root schema, provide the
formats: true option to JSV.build/2:
JSV.build(raw_schema, formats: true)
Format validation is determined at build time. There is no way to change whether
it is performed once the root schema is built.
This is another reason to wrap JSV.build/2 with a custom builder module, so
you don't forget to enable those.
Enable format validation using vocabularies
You can also enable format validation by using the JSON Schema specification
semantics, though it is far simpler and less error-prone to use the :formats
option.
For format validation to be enabled, a schema should declare the
https://json-schema.org/draft/2020-12/vocab/format-assertion vocabulary
instead of the https://json-schema.org/draft/2020-12/vocab/format-annotation
one that is included by default in the
https://json-schema.org/draft/2020-12/schema meta schema.
1. Use a new meta schema with format-assertion
{
 "$id": "custom://with-formats-on/",
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "$vocabulary": {
 "https://json-schema.org/draft/2020-12/vocab/core": true,
 "https://json-schema.org/draft/2020-12/vocab/format-assertion": true
 },
 "$dynamicAnchor": "meta",
 "allOf": [
 { "$ref": "https://json-schema.org/draft/2020-12/meta/core" },
 { "$ref": "https://json-schema.org/draft/2020-12/meta/format-assertion" }
]
}
This example is taken from the JSON Schema Test
Suite codebase and
does not include all the vocabularies, only the assertion for the formats and
the core vocabulary. It will not validate anything other than formats.
2. Declare a schema using that meta schema to perform validation.
You will need a custom resolver to resolve the
given URL for the new $schema property.
schema =
 JSON.decode!("""
 {
 "$schema": "custom://with-formats-on/",
 "type": "string",
 "format": "date"
 }
 """)

root = JSV.build!(schema, resolver: ...)
3. Validate
Now it will work as expected. JSV.validate/2 returns an error tuple without
needing the formats: true.
{:error, _} = JSV.validate("not a date", root)
Reverse use-case
If one of your schemas is using such a meta schema and you want to disable the
formats validation, then the following will work:
JSV.build(raw_schema, formats: false)

 Resolvers

JSV may have to fetch other schemas when building a validation root. This
happens with $schema, $ref, or $dynamicRef properties pointing to an
absolute URI.
In order to fetch those schemas, JSV requires a resolver. Resolvers are
user-defined, but JSV provides implementations for common use cases:
	JSV.Resolver.Embedded will resolve the most often used meta-schemas such as
https://json-schema.org/draft/2020-12/schema.
	JSV.Resolver.Internal will resolve struct schemas given as module names as
in the example just above.
	JSV.Resolver.Httpc will resolve schemas whose URI are http or https
URLs. It uses the built-in Erlang HTTP client. While not packing many
features, it does not enforce an HTTP client dependency in your application.

Using resolvers
The JSV.Resolver.Embedded and JSV.Resolver.Internal are always enabled and
there is no need to declare them when building the root.
Other resolvers such as JSV.Resolver.Httpc or custom resolvers (see below)
need to be explicitly declared in the :resolver option of JSV.build/2 or
JSV.build!/2:
resolver = {JSV.Resolvers.Httpc, allowed_prefixes: ["https://example.com/schemas/"]}
root = JSV.build!(schema, resolver: resolver)
Multiple resolvers can be passed as a list:
root = JSV.build!(schema, resolver: [MyCustomResolver, MyOtherResolver])
Custom resolvers
Users are encouraged to write their own resolver to support advanced use cases.
Custom resolvers are most often used for:
	Resolving URLs such as my-company://some-id/ where the implementation knows
a directory to retrieve that path from.
	Resolving https:// URLs with custom network setups involving authentication,
proxies, etc., or to use your HTTP library of choice.
	Returning hardcoded schemas directly from the codebase.
	Returning a schema dynamically, for instance depending on the :prod or
:test environment.

To write a custom resolver, define a module that implements the JSV.Resolver
behaviour.
A basic resolver implementation
defmodule MyApp.SchemaResolver do
 @behaviour JSV.Resolver

 @user_schema %{type: :object, properties: %{name: %{type: :string}}}
 @website_schema %{type: :object, properties: %{url: %{type: :string}}}

 @impl true
 def resolve("myapp:user", _opts), do: {:ok, @user_schema}
 def resolve("myapp:website", _opts), do: {:ok, @website_schema}
 def resolve(_, _opts), do: {:error, :unknown}
end
Resolving local files
The JSV.Resolver.Local helper can automatically load schemas from files and
directories. Schemas will be resolvable by their $id property.
defmodule MyApp.LocalResolver do
 use JSV.Resolver.Local, source: [
 "priv/api/schemas",
 "priv/message-queue/schemas",
 "priv/special.file.json"
]
end
Make sure to check the documentation of JSV.Resolver.Local for more
information.
Returning normalized schemas
If your resolver returns JSON data that is in normal form like this:
%{
 "type" => "object",
 "additionalProperties" => false
}
Then the resolver implementation can return {:normal, schema} instead of
{:ok, schema} to skip the normalization step operated by JSV when building a
validation root.
The following form is not normal and requires normalization:
%{
 type: => :object,
 additionalProperties: => false
}
See JSV.Normalizer.normalize/3 for more details.
Resolvers form a chain
As mentioned before, the JSV.Resolver.Embedded and JSV.Resolver.Internal are
always enabled when calling JSV.build/2. This means that when calling the
following code:
root = JSV.build(schema, resolver: [MyCustomResolver, MyOtherResolver])
The actual list of used resolvers is
	MyCustomResolver
	MyOtherResolver
	JSV.Resolver.Embedded
	JSV.Resolver.Internal

JSV will try each resolver in order until a successful response is returned, and
fail if all of them return an error.
Don't break the chain
Make sure to define a catch-all clause for resolve/2 in your implementation
to return an {:error, _} tuple and allow other resolvers to be tried.
Otherwise, a FunctionClauseError would be raised and the whole build would
fail.
As all defined resolvers will be tried, there is no need call the built-in
resolvers from your own resolver before running some expensive or slow
computation (such as an HTTP call) because they will be called anyway.
You may do this

defmodule MyApp.SchemaResolver do
 def resolve("https://" <> _ = uri, _opts) do
 with {:error, {:not_embedded, _}} <- JSV.Resolver.Embedded.resolve(uri, []),
 {:ok, %{status: 200, body: schema}} <- MyApp.HttpClient.get(uri) do
 {:ok, schema}
 end
 end

 def resolve(_, _) do
 {:error, :unknown}
 end
end
The built-in resolvers are standard resolvers implementations and adhere to the
JSV.Resolver behaviour. That means that you can just pass them before yours
as regular resolvers:
You should do this instead

root = JSV.build!(schema, resolvers: [JSV.Resolver.Embedded, MyApp.SchemaResolver])
The JSV.Resolver.Embedded resolver will only be called once.
There may be valid use cases for delegation. If you know of one, just let us
know!

 Vocabularies

JSV follows the JSON Schema Draft 2020-12 specification, which uses the
vocabulary system to define the capabilities of schemas.
Future releases of JSV will allow defining custom vocabularies, but for now, JSV
only uses a fixed set of schema keyword implementations.
Meta-schemas: Introduction to vocabularies
Note
You can skip this section if you are not interested in the inner workings of
the JSON Schema specification.
Here is what happens when validating with the latest specification:
The well-known and official schema
The
https://json-schema.org/draft/2020-12/schema
schema defines the following vocabulary:
{
 "$vocabulary": {
 "https://json-schema.org/draft/2020-12/vocab/core": true,
 "https://json-schema.org/draft/2020-12/vocab/applicator": true,
 "https://json-schema.org/draft/2020-12/vocab/unevaluated": true,
 "https://json-schema.org/draft/2020-12/vocab/validation": true,
 "https://json-schema.org/draft/2020-12/vocab/meta-data": true,
 "https://json-schema.org/draft/2020-12/vocab/format-annotation": true,
 "https://json-schema.org/draft/2020-12/vocab/content": true
 }
}
The vocabulary is split into different parts, here one by object property.
The true values in the $vocabulary keyword do not mean "enabled" but
"enforced". A false value allows libraries to skip the vocabulary if they do
not implement it.
More information can be found on the official
website.
$schema declaration
The well-known schema can be used as a meta-schema. This is done by using its
URI as the $schema property of the inheriting schema.
We would like to use the type keyword to validate some data. To let the
library know what keywords should be handled, our schema declares the
https://json-schema.org/draft/2020-12/schema as its meta-schema using the
$schema keyword.
 {
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "type": "integer"
 }
JSV will use https://json-schema.org/draft/2020-12/schema if the $schema
property is not defined in your schemas.
Vocabularies have limitations:
	If you declare both $schema and $vocabulary in your schema, another schema
using yours as its meta-schema will only use your $vocabulary, and not the
one of the referenced $schema.
	You cannot declare a $vocabulary property in your schema and expect it to be
used and/or override those of the meta-schema. It will only be used by another
schema referencing your own as its $schema.

It is a bit like an object oriented class system where you can only call methods
from the parent class but neither from the child class or the parent's parent
class.
Implementation in libraries and tools
Libraries such as JSV must map this vocabulary to implementations.
For instance, in JSV, the
https://json-schema.org/draft/2020-12/vocab/validation part that defines the
type keyword is implemented with the JSV.Vocabulary.V202012.Validation
Elixir module.
If that vocabulary is not declared in your meta-schema, JSV will not use that
module and the type keyword and any other keyword declared by the
validation vocabulary
will be ignored during validation.

 Validate Data With Schemas

To validate a term, call the JSV.validate/3 function like so:
JSV.validate(data, root_schema, opts)
The return value of JSV.validate/3 returns cast data. See the documentation of
that function for more information.
General considerations
	JSV supports all keywords of the 2020-12 specification except
contentMediaType, contentEncoding and contentSchema. They are ignored.
Future support for custom vocabularies will allow you to validate data with
such keywords.

	The format keyword is largely supported but with many inconsistencies,
mostly due to differences between Elixir and JavaScript (JSON Schema is
largely based on JavaScript primitives). For most use cases, the differences
are negligible.

	The "integer" type will transform floats into integer when the fractional
part is zero (such as 123.0). Elixir implementation for floating-point
numbers with large integer parts may return incorrect results. Example:
> trunc(1000000000000000000000000.0)
==> 999999999999999983222784
When dealing with such data it may be better to discard the cast data, or to
work with strings instead of floats.

Formats
JSV supports multiple formats out of the box with its default implementation,
but some are only available under certain conditions that will be specified for
each format.
The following listing describes the condition for support and return value type
for these default implementations. You can override those implementations by
providing your own, as well as providing new formats. This will be described
later in this document.
Also, note that by default, JSV format validation will return the original
value, that is, the string form of the data. Some format validators can also
cast the string to a more interesting data structure, for instance converting a
date string to a Date struct. You can enable returning specific format cast
values by passing the cast_formats: true option to JSV.validate/3.
The listing below describe values returned when that option is enabled.
date
	support: Native.
	input: "2020-04-22"
	output: ~D[2020-04-22]
	The format is implemented with the native Date module.
	The native Date module supports the YYYY-MM-DD format only. 2024, 2024-W50, 2024-12 will not be valid.

date-time
	support: Native.
	input: "2025-01-02T00:11:23.416689Z"
	output: ~U[2025-01-02 00:11:23.416689Z]
	The format is implemented with the native DateTime module.
	The native DateTime module supports the YYYY-MM-DD format only for dates. 2024T..., 2024-W50T..., 2024-12T... will not be valid.
	Decimal precision is not capped to milliseconds. 2024-12-14T23:10:00.500000001Z will be valid.

duration
	support: Requires Elixir 1.17
	input: "P1DT4,5S"
	output: %Duration{day: 1, second: 4, microsecond: {500000, 1}}
	The format is implemented with the native Duration module.
	Elixir documentation states that Only seconds may be specified with a decimal fraction, using either a comma or a full stop: P1DT4,5S.
	Elixir durations accept negative values.
	Elixir durations accept out-of-range values, for instance more than 59 minutes.
	Excessive precision (as in "PT10.0000000000001S") will be valid.

email
	support: Depends on :abnf_parsec (automatically included)
	input: "hello@json-schema.org"
	output: Input value.
	Support is limited by the implementation of that library.
	The idn-email format is not supported out-of-the-box.

hostname
	support: Depends on :idna (automatically included)
	input: "xn--zca29lwxobi7a"
	output: Input value.

ipv4
	support: Native.
	input: "127.0.0.1"
	output: {127, 0, 0, 1}
	The format is implemented with the native :inet module.

ipv6
	support: Native.
	input: "::1"
	output: {0, 0, 0, 0, 0, 0, 0, 1}
	The format is implemented with the native :inet module.

iri
	support: Depends on :abnf_parsec (automatically included)
	input: "https://héhé.com/héhé"
	output: %URI{scheme: "https", authority: "héhé.com", userinfo: nil, host: "héhé.com", port: 443, path: "/héhé", query: nil, fragment: nil}

iri-reference
	support: Depends on :abnf_parsec (automatically included)
	input: "//héhé"
	output: %URI{scheme: nil, authority: "héhé", userinfo: nil, host: "héhé", port: nil, path: nil, query: nil, fragment: nil}

json-pointer
	support: Depends on :abnf_parsec (automatically included)
	input: "/foo/bar/baz"
	output: Input value.

regex
	support: Native.
	input: "[a-zA-Z0-9]"
	output: ~r/[a-zA-Z0-9]/
	The format is implemented with the native Regex module.
	The Regex module does not follow the ECMA-262 specification.

relative-json-pointer
	support: Depends on :abnf_parsec (automatically included)
	input: "0/foo/bar"
	output: Input value.

time
	support: Native.
	input: "20:20:08.378586"
	output: ~T[20:20:08.378586]
	The format is implemented with the native Time module.
	The native Time implementation will completely discard the time offset information. Invalid offsets will be valid.
	Decimal precision is not capped to milliseconds. 23:10:00.500000001 will be valid.

unknown
	support: Native
	input: "anything"
	output: Input value.
	No validation or transformation is done.

uri
	support: Depends on :abnf_parsec (automatically included)
	input: "http://example.com"
	output: %URI{scheme: "http", authority: "example.com", userinfo: nil, host: "example.com", port: 80, path: nil, query: nil, fragment: nil}
	The format is implemented with the native URI module.
	Without the optional dependency, the URI module is used and a minimum checks on hostname and scheme presence are made.

uri-reference
	support: Depends on :abnf_parsec (automatically included)
	input: "/example-path"
	output: %URI{scheme: nil, userinfo: nil, host: nil, port: nil, path: "/example-path", query: nil, fragment: nil}
	The format is implemented with the native URI module.
	Without the optional dependency, the URI module will cast most non url-like strings as a path.

uri-template
	support: Depends on :texture (automatically included)
	input: "http://example.com/search{?query,lang}"
	output: %Texture.UriTemplate{}

uuid
	support: Native
	input: "bf22824c-c8a4-11ef-9642-0fdaf117eeb9"
	output: Input value.

Custom formats
In order to provide custom formats, or to override default implementations for
formats, you may provide a list of modules as the value for the :formats
options of JSV.build/2. Such modules must implement the JSV.FormatValidator
behaviour.
Example
defmodule CustomFormats do
 @behaviour JSV.FormatValidator

 @impl true
 def supported_formats do
 ["greeting"]
 end

 @impl true
 def validate_cast("greeting", data) do
 case data do
 "hello " <> name -> {:ok, %Greeting{name: name}}
 _ -> {:error, :invalid_greeting}
 end
 end
end
With this module you can now call the builder with it:
JSV.build!(raw_schema, formats: [CustomFormats])
Note that this will disable all other formats. If you need to still support the
default formats, a helper is available:
JSV.build!(raw_schema,
 formats: [CustomFormats | JSV.default_format_validator_modules()]
)
Format validation modules are checked during the build phase, in order. So you
can override any format defined by a module that comes later in the list,
including the default modules.

 Decimal Support

JSV supports validation of Decimal values from the Decimal library.
Data with decimal values can be obtained at the JSON parsing level, which is not
handled by JSV. For instance with Jason.decode!(json, floats: :decimals).
Decimal values in schemas are not supported.
Supported Validations
The following validations work when the data is a Decimal struct:
	type: supports both :number and :integer types	:number accepts any Decimal struct.
	:integer accepts only integer Decimal structs and converts them to
Elixir integers.

	maximum: validates that a Decimal value is less than or equal to the maximum.
	exclusiveMaximum: validates that a Decimal value is strictly less than the
maximum.
	minimum: validates that a Decimal value is greater than or equal to the
minimum.
	exclusiveMinimum: validates that a Decimal value is strictly greater than
the minimum.
	multipleOf: validates that a Decimal value is a multiple of the given
number.

Examples
When validating integers, decimal values are replaced with integers.
schema = %{
 type: :array,
 items: %{type: :integer}
}

root = JSV.build!(schema)

4.00001 is not an integer
{:error, _} = JSV.validate([3, Decimal.new("4.00001")], root)
JSV.validate([1, Decimal.new("2.0")], root)
{:ok, [1, 2]}
When validating numbers, decimal values with zero decimal part are preserved.
schema = %{
 type: :array,
 items: %{type: :number}
}

root = JSV.build!(schema)

data =
 Jason.decode!(
 """
 [1, 2.0, 3, 4.00001]
 """,
 floats: :decimals
)

JSV.validate(data, root)
{:ok, [1, Decimal.new("2.0"), 3, Decimal.new("4.00001")]}
Limitations
The following validations do not support nested Decimal values:
	uniqueItems: arrays containing Decimal values.
	const: when the constant value contains Decimal values.
	enum: when the enum values contain Decimal values.

This is because while we could make a simple check for values that are just a
decimal struct, those keywords can validate arbitrarily nested data.
JSV will not perform a deep comparison between data and a const or enum
value, or between items of an array when using uniqueItems, but rather just
use the == operator for speed.
We believe that handling those cases is out of JSV's scope, as enums and consts
are most often used with strings or atoms representing states, roles,
categories, tags, etc.
Custom vocabularies can be added to implement deep matching with support for
decimal comparisons.

 API Changes in JSV 0.9

JSV 0.9 introduces significant changes to the schema building API. While these
changes are designed to improve the long-term maintainability and usability of
the library, they do deprecate some existing functions. This guide explains the
changes, their rationale, and how to migrate your code.
Overview of Changes
The main changes in JSV 0.9 are:
	Deprecation of the old composition API: Functions returning predefined
schemas in the JSV.Schema module like integer/0 or all_of/1 are now
deprecated.
	Introduction of the composer: Deprecated functions have been copied to
JSV.Schema.Composer for backward compatibility.
	New preset functions: A new JSV.Schema.Helpers module provides helper
functions that are not composable but rather accept other schema attributes
as the last argument. They return maps instead of %JSV.Struct{} schemas in
all cases.
	Enhanced developer experience: use JSV.Schema now imports all necessary
functions to define schemas in plain Elixir code.

The Old Composition API and Its Limitations
The previous API allowed for a fluent, pipeline-based approach to schema building but with too many quirks.
import JSV.Schema

schema =
 %Schema{}
 |> object()
 |> properties(%{
 age: integer(description: "The age"),
 name: string(),
 role:
 JSV.Schema.string_to_atom_enum(
 %{description: "The user role"},
 [:admin, :author, :editor]
)
 })
 |> required([:age, :name])
While this approach looked elegant, it had several practical limitations:
	Unnecessary abstraction: If you already know the structure of your
schema, there's no need to pay the cost for merging schemas on every function
call.
	Awkward argument order: Functions like
JSV.Schema.Composer.string_to_atom_enum/2 required the base schema as the
first argument, making composition cumbersome.
	Overriding composability: Merging a schema multiple times could lead to
overwrite previoulsy defined attributes.
	Unclear cast to struct: The composition API is designed to work aroun
JSV.Schema.merge/2 that follows complicated rules regarding the base schema
to merge into. It will keep maps as-is but will transform nil or keyword
lists into a %JSV.Schema{} struct. This struct has always been designed to
support autocompletion only but the compisition API enforces usage of this
struct.

The New Approach
Direct Schema Definition
First, it has awlays been possible to define schemas statically. While more
verbose, it maps directly to the actual schema that is being defined and allows
to work with a single shape in mind.
schema = %{
 type: :object,
 properties: %{
 age: %{type: :integer, description: "The age"},
 name: %{type: :string}
 },
 required: [:age, :name]
}
This approach is more explicit and performant, and doesn't require intermediate
pipeline steps when the final structure is known. No function calls means no
unexpected attributes.
New Helper Functions with Improved API
The new JSV.Schema.Helpers module provides functions with a more intuitive
argument order.
We also took the liberty to change some function names like
string_enum_to_atom instead of string_to_atom_enum.
schema = %{
 properties: %{
 age: integer(description: "The age"),
 name: string(),
 role:
 JSV.Schema.Helpers.string_enum_to_atom(
 [:admin, :author, :editor],
 description: "Some description"
)
 }
}
The key improvement is that the primary argument comes first (the enum values in
this example), and additional attributes are provided as a list or map at the
end.
Helpers do not return JSV.Schema structs
As visible above, helpers that do not take any primary argument look the same in
both APIs. While there is no visible change in the calls, there is an important
difference:
This new API does not enforce creation of a %JSV.Schema{} struct and will return bare maps instead. This allows to work with user-defined schema vocabularies using keywords that are now known in the struct.
So integer(description: "some int") will now return:
%{type: :integer, description: "some int"}
Where the composition API would return:
%JSV.Schema{type: :integer, description: "some int"}
Composing with the new API
We suggest to simply use Map.put/3 and Map.merge/2 to build schemas
dynamically. It's less obscure and allows you to build your own helpers on top
of it.
A new JSV.Schema.Helpers.~>/2 operator is available and brings back the composition API on top of the new helpers:
object(description: "a user")
~> any_of([AdminSchema, CustomerSchema])
~> properties(foo: integer())
A new use macro to define schemas.
You can now import all necessary schema-defining functions with a single use
statement.
This will import macros (JSV.defschema/1, JSV.defcast/{1,2,3}) from JSV
and the new preset functions including the JSV.Schema.Helpers.sigil_SD/2
sigil.
defmodule MySchemas do
 use JSV.Schema

 defschema %{
 type: :object,
 description: ~SD"""
 This description spans multiple lines for readability.

 But the sigil will make it a oneliner.
 """,
 properties: %{
 id: integer(minimum: 1),
 name: string(minLength: 1),
 email: string(format: "email"),
 role: string_enum_to_atom([:admin, :user, :guest])
 },
 required: [:id, :name, :email, :role]
 }
end
Future Considerations
Backward Compatibility Timeline
	JSV.Schema.Composer: This module is maintained for backward compatibility only. No new functions will be added to it in future versions.
	JSV.Schema.Helpers: This is the new home for helper functions and will continue to grow with new presets and utilities.

JSV

JSV is a JSON Schema Validator.
This module is the main facade for the library.
To start validating schemas you will need to go through the following steps:
	Obtain a schema. Schemas can be
defined in Elixir code, read from files, fetched remotely, etc.
	Build a validation root with build/2 or
build!/2.
	Validate the data.

Example
Here is an example of the most simple way of using the library:
schema = %{
 type: :object,
 properties: %{
 name: %{type: :string}
 },
 required: [:name]
}

root = JSV.build!(schema)

case JSV.validate(%{"name" => "Alice"}, root) do
 {:ok, data} ->
 {:ok, data}

 # Errors can be turned into JSON compatible data structure to send them as an
 # API response or for logging purposes.
 {:error, validation_error} ->
 {:error, JSON.encode!(JSV.normalize_error(validation_error))}
end
If you want to explore the different capabilities of the library, please refer
to the guides provided in this documentation.

 Summary

 Types

 build_context()

 build_opt()

 native_schema()

 A schema in native JSV/Elixir terms: maps with atoms, structs, and module.

 normal_schema()

 A schema in a JSON-decoded form: Only maps with binary keys and
binary/number/boolean/nil values, or a boolean.

 validate_opt()

 Schema Validation API

 build(raw_schema, opts \\ [])

 Builds the schema as a JSV.Root schema for validation.

 build!(raw_schema, opts \\ [])

 Same as build/2 but raises on error. Errors are not normalized into a
JSV.BuildError as build/2 does.

 default_format_validator_modules()

 Returns the list of format validator modules that are used when a schema is
built with format validation enabled and the :formats option to build/2 is
true.

 default_meta()

 Returns the default meta schema used when the :default_meta option is not
set in build/2.

 error_schema()

 Returns the schema representing errors returned by normalize_error/1.

 normalize_error(error, opts \\ [])

 Returns a JSON compatible represenation of a JSV.ValidationError struct.

 resolver_chain(resolver)

 Normalizes a resolver implementation to a list of {module, options} and
appends the default resolvers if they are not already present in the list.

 validate(data, root, opts \\ [])

 Validates and casts the data with the given schema. The schema must be a
JSV.Root struct generated with build/2.

 validate!(data, root, opts \\ [])

 Schema Definition Macros

 defcast(local_fun)

 Enables a casting function in the current module, identified by its function
name.

 defcast(tag, local_fun)

 Enables a casting function in the current module, identified by a custom tag.

 defcast(tag, fun, block)

 Defines a casting function in the calling module, and enables it for casting
data during validation.

 defschema(schema_or_properties)

 Defines a struct in the calling module where the struct keys are the
properties of the schema.

 defschema(module, description \\ nil, schema_or_properties)

 Defines a new module with a JSON Schema struct.

 Custom Build API

 build_add(build_ctx, raw_schema)

 Same as build_add!/2 but rescues
errors and returns a result tuple.

 build_add!(build_ctx, raw_schema)

 Adds a schema to the build context.

 build_init(opts \\ [])

 Same as build_init!/1 but rescues
errors and returns a result tuple.

 build_init!(opts \\ [])

 Initializes a build context for controlled builds.

 build_key(build_ctx, ref_or_ns)

 Same as build_key!/2 but rescues
errors and returns a result tuple.

 build_key!(build_ctx, ref_or_ns)

 Builds the given reference or root schema.

 to_root(build_ctx, root_key)

 Same as to_root!/2 but rescues
errors and returns a result tuple.

 to_root!(build_ctx, root_key)

 Returns a root with all the validators from the build context and the given
root_key. That key is used as the default entrypoint for validation when no
:key option is passed to validate/2.

 Types

 build_context()

 @opaque build_context()

 build_opt()

 @type build_opt() ::
 {:resolver, atom() | {module(), [term()]} | [atom() | {module(), [term()]}]}
 | {:default_meta, binary()}
 | {:formats, boolean() | nil | [atom()]}
 | {:vocabularies, %{optional(binary()) => atom() | {module(), [term()]}}}

 native_schema()

 @type native_schema() :: boolean() | map() | module() | normal_schema()

A schema in native JSV/Elixir terms: maps with atoms, structs, and module.

 normal_schema()

 @type normal_schema() ::
 boolean() | %{required(binary()) => normal_schema() | [normal_schema()]}

A schema in a JSON-decoded form: Only maps with binary keys and
binary/number/boolean/nil values, or a boolean.
The name refers to the process of normalization. A native_schema/0 can
be turned into a normal_schema/0 with the help of
JSV.Schema.normalize/1.

 validate_opt()

 @type validate_opt() ::
 {:cast, boolean()} | {:cast_formats, boolean()} | {:key, term()}

 Schema Validation API

The main API for JSV, used to build validation roots and validate data.

 build(raw_schema, opts \\ [])

 @spec build(native_schema(), [build_opt()]) ::
 {:ok, JSV.Root.t()} | {:error, Exception.t()}

Builds the schema as a JSV.Root schema for validation.
Options
	:resolver - The JSV.Resolver behaviour implementation module to
retrieve schemas identified by an URL.
Accepts a module, a {module, options} tuple or a
list of those forms.
The options can be any term and will be given to the
resolve/2 callback of the module.
The JSV.Resolver.Embedded and JSV.Resolver.Internal
will be automatically appended to support module-based
schemas and meta-schemas.
The default value is [].

	:default_meta (String.t/0) - The meta schema to use for resolved schemas that do not define a "$schema" property. The default value is "https://json-schema.org/draft/2020-12/schema".

	:formats - Controls the validation of strings with the "format" keyword.
	nil - Format validation is enabled if to the meta-schema uses the format assertion vocabulary.
	true - Enforces validation with the default validator modules.
	false - Disables all format validation.
	[Module1, Module2,...] (A list of modules) - Format validation is enabled and
 will use those modules as validators instead of the default format validator modules.
 The default format validator modules can be included back in the list manually,
 see default_format_validator_modules/0.

Formats are disabled by the default meta-schema
The default value for this option is nil to respect
the JSON Schema specification where format validation
is enabled via vocabularies.
The default meta-schemas for the latest drafts (example: https://json-schema.org/draft/2020-12/schema)
do not enable format validation.
You'll probably want this option to be set to true
or a list of your own modules.
Worth noting, while this option does support providing your own formats,
the official specification
recommends against it:
Vocabularies do not support specifically declaring different value sets for keywords.
Due to this limitation, and the historically uneven implementation of this keyword,
it is RECOMMENDED to define additional keywords in a custom vocabulary rather than
additional format attributes if interoperability is desired.

The default value is nil.

	:vocabularies - Allows to redefine modules implementing vocabularies.
This option accepts a map with vocabulary URIs as keys and implementations as values.
The URIs are not fetched by JSV and does not need to point to anything specific.
For instance, vocabulary URIs in the standard Draft 2020-12 meta-schema point to
human-readable documentation.
The given implementations will only be used if the meta-schema used to build a validation root
actually declare those URIs in their $vocabulary keyword.
For instance, to redefine how the type keyword and other validation keywords are handled,
one should pass the following map:
%{
 "https://json-schema.org/draft/2020-12/vocab/validation" => MyCustomModule
}
Modules must implement the JSV.Vocabulary behaviour.
Implementations can also be passed options by wrapping them in a tuple:
%{
 "https://json-schema.org/draft/2020-12/vocab/validation" => {MyCustomModule, foo: "bar"}
}
The default value is %{}.

 build!(raw_schema, opts \\ [])

 @spec build!(native_schema(), [build_opt()]) :: JSV.Root.t()

Same as build/2 but raises on error. Errors are not normalized into a
JSV.BuildError as build/2 does.

 default_format_validator_modules()

 @spec default_format_validator_modules() :: [module()]

Returns the list of format validator modules that are used when a schema is
built with format validation enabled and the :formats option to build/2 is
true.

 default_meta()

 @spec default_meta() :: binary()

Returns the default meta schema used when the :default_meta option is not
set in build/2.
Currently returns "https://json-schema.org/draft/2020-12/schema".

 error_schema()

 @spec error_schema() :: module()

Returns the schema representing errors returned by normalize_error/1.
Because errors can be nested, the schema is recursive, so this function
returns a module based schema (a module name).

 normalize_error(error, opts \\ [])

 @spec normalize_error(
 JSV.ValidationError.t() | JSV.Validator.context() | [JSV.Validator.Error.t()],
 keyword()
) :: map()

Returns a JSON compatible represenation of a JSV.ValidationError struct.
See JSV.ErrorFormatter.normalize_error/2 for options.
When used without the :atoms keys option, a normalized error will correspond
to the JSON schema returned by error_schema/0.

 resolver_chain(resolver)

 @spec resolver_chain(
 resolvers :: module() | {module(), term()} | [{module(), term()}]
) :: [
 {module(), term()}
]

Normalizes a resolver implementation to a list of {module, options} and
appends the default resolvers if they are not already present in the list.
Examples
iex> JSV.resolver_chain(MyModule)
[{MyModule, []}, {JSV.Resolver.Embedded, []}, {JSV.Resolver.Internal, []}]

iex> JSV.resolver_chain([JSV.Resolver.Embedded, MyModule])
[{JSV.Resolver.Embedded, []}, {MyModule, []}, {JSV.Resolver.Internal, []}]

iex> JSV.resolver_chain([{JSV.Resolver.Embedded, []}, {MyModule, %{foo: :bar}}])
[{JSV.Resolver.Embedded, []}, {MyModule, %{foo: :bar}}, {JSV.Resolver.Internal, []}]

 validate(data, root, opts \\ [])

 @spec validate(term(), JSV.Root.t(), [validate_opt()]) ::
 {:ok, term()} | {:error, Exception.t()}

Validates and casts the data with the given schema. The schema must be a
JSV.Root struct generated with build/2.
This function returns cast data
	If the :cast_formats option is enabled, string values may be transformed
in other data structures. Refer to the "Formats" section of the
Validation guide for more information.
	The JSON Schema specification states that 123.0 is a valid integer. This
function will return 123 instead. This may return invalid data for
floats with very large integer parts. As always when dealing with JSON and
big decimal or extremely precise numbers, use strings.

Options
	:cast (boolean/0) - Enables calling generic cast functions on validation.
This is based on the jsv-cast JSON Schema custom keyword
and is typically used by defschema/1.
While it is on by default, some specific casting features are enabled
separately, see option :cast_formats.
The default value is true.

	:cast_formats (boolean/0) - When enabled, format validators will return casted values,
for instance a Date struct instead of the date as string.
It has no effect when the schema was not built with formats enabled.
The default value is false.

	:key (term/0) - When specified, the validation will start in the schema at the given key
instead of using the root schema.
The key must have been built and returned by build_key!/2. The validation
does not accept to validate any Ref or pointer in the schema.
This is useful when validating with a JSON document that contains schemas but
is not itself a schema.

 validate!(data, root, opts \\ [])

 @spec validate!(term(), JSV.Root.t(), keyword()) :: term()

 Schema Definition Macros

Macros to create module-based schemas and custom cast functions.

 defcast(local_fun)

 (macro)

Enables a casting function in the current module, identified by its function
name.
Example
defmodule MyApp.Cast do
 use JSV.Schema

 defcast :to_integer

 defp to_integer(data) when is_binary(data) do
 case Integer.parse(data) do
 {int, ""} -> {:ok, int}
 _ -> {:error, "invalid"}
 end
 end

 defp to_integer(_) do
 {:error, "invalid"}
 end
end
iex> schema = JSV.Schema.string() |> JSV.Schema.with_cast(["Elixir.MyApp.Cast", "to_integer"])
iex> root = JSV.build!(schema)
iex> JSV.validate("1234", root)
{:ok, 1234}
See defcast/3 for more information.

 defcast(tag, local_fun)

 (macro)

Enables a casting function in the current module, identified by a custom tag.
Example
defmodule MyApp.Cast do
 use JSV.Schema

 defcast "to_integer_if_string", :to_integer

 defp to_integer(data) when is_binary(data) do
 case Integer.parse(data) do
 {int, ""} -> {:ok, int}
 _ -> {:error, "invalid"}
 end
 end

 defp to_integer(_) do
 {:error, "invalid"}
 end
end
iex> schema = JSV.Schema.string() |> JSV.Schema.with_cast(["Elixir.MyApp.Cast", "to_integer_if_string"])
iex> root = JSV.build!(schema)
iex> JSV.validate("1234", root)
{:ok, 1234}
See defcast/3 for more information.

 defcast(tag, fun, block)

 (macro)

Defines a casting function in the calling module, and enables it for casting
data during validation.
See the custom cast functions guide to learn more about
defining your own cast functions.
This documentation assumes the following module is defined. Note that
JSV.Schema provides several predefined cast
functions, including an existing atom
cast.
defmodule MyApp.Cast do
 use JSV.Schema

 defcast to_existing_atom(data) do
 {:ok, String.to_existing_atom(data)}
 rescue
 ArgumentError -> {:error, "bad atom"}
 end

 def accepts_anything(data) do
 {:ok, data}
 end
end
This macro will define the to_existing_atom/1 function in the calling
module, and enable it to be referenced in the jsv-cast schema custom
keyword.
iex> MyApp.Cast.to_existing_atom("erlang")
{:ok, :erlang}

iex> MyApp.Cast.to_existing_atom("not an existing atom")
{:error, "bad atom"}
It will also define a zero arity function to get the cast information ready to
be included in a schema:
iex> MyApp.Cast.to_existing_atom()
["Elixir.MyApp.Cast", "to_existing_atom"]
This is accepted by JSV.Schema.with_cast/2:
iex> JSV.Schema.with_cast(MyApp.Cast.to_existing_atom())
%JSV.Schema{"jsv-cast": ["Elixir.MyApp.Cast", "to_existing_atom"]}
With a jsv-cast property defined in a schema, data will be cast when the
schema is validated:
iex> schema = JSV.Schema.string() |> JSV.Schema.with_cast(MyApp.Cast.to_existing_atom())
iex> root = JSV.build!(schema)
iex> JSV.validate("noreply", root)
{:ok, :noreply}

iex> schema = JSV.Schema.string() |> JSV.Schema.with_cast(MyApp.Cast.to_existing_atom())
iex> root = JSV.build!(schema)
iex> {:error, %JSV.ValidationError{}} = JSV.validate(["Elixir.NonExisting"], root)
It is not mandatory to use the schema definition helpers. Raw schemas can
contain cast pointers too:
iex> schema = %{
...> "type" => "string",
...> "jsv-cast" => ["Elixir.MyApp.Cast", "to_existing_atom"]
...> }
iex> root = JSV.build!(schema)
iex> JSV.validate("noreply", root)
{:ok, :noreply}
Note that for security reasons the cast pointer does not allow to call any
function from the schema definition. A cast function MUST be enabled by
defcast/1, defcast/2 or defcast/3.
The MyApp.Cast example module above defines a accepts_anything/1 function,
but the following schema will fail:
iex> schema = %{
...> "type" => "string",
...> "jsv-cast" => ["Elixir.MyApp.Cast", "accepts_anything"]
...> }
iex> root = JSV.build!(schema)
iex> {:error, %JSV.ValidationError{errors: [%JSV.Validator.Error{kind: :"bad-cast"}]}} = JSV.validate("anything", root)
Finally, you can customize the name present in the jsv-cast property by
using a custom tag:
defcast "my_custom_tag", a_function_name(data) do
 # ...
end
Make sure to read the custom cast functions guide!

 defschema(schema_or_properties)

 (macro)

Defines a struct in the calling module where the struct keys are the
properties of the schema.
The given schema must define the type keyword as object and must define a
properties map. That map can be empty to define a struct without any key.
Properties keys must be given as atoms.
If a default value is given in a property schema, it will be used as the
default value for the corresponding struct key. Otherwise, the default value
will be nil. A default value is not validated against the property schema
itself.
defmodule MyApp.UserSchema do
 import JSV

 defschema %{
 type: :object,
 properties: %{
 name: %{type: :string, default: ""},
 age: %{type: :integer, default: 123}
 }
 }
end

iex> %MyApp.UserSchema{}
%MyApp.UserSchema{name: "", age: 123}

iex> {:ok, root} = JSV.build(MyApp.UserSchema)
iex> JSV.validate(%{"name" => "Alice"}, root)
{:ok, %MyApp.UserSchema{name: "Alice", age: 123}}
The required keyword is supported and must use atom keys as well.
defmodule MyApp.WithRequired do
 import JSV

 defschema %{
 type: :object,
 properties: %{
 name: %{type: :string},
 age: %{type: :integer, default: 123}
 },
 required: [:name]
 }
end

iex> %MyApp.WithRequired{name: "Alice"}
%MyApp.WithRequired{name: "Alice", age: 123}
Property List Syntax
Alternatively, you can use a keyword list to define the properties where each
property is defined as {key, schema}. The following rules apply:
	All properties without a default value are automatically marked as
required and are enforced at the struct level.
	The resulting schema will have type: :object set automatically.
	The title of the schema is set as the last segment of the module name.

This provides a more concise way to define simple object schemas.
defmodule MyApp.UserKW do
 use JSV.Schema

 defschema name: string(default: ""),
 age: integer(default: 123)
end

iex> %MyApp.UserKW{}
%MyApp.UserKW{name: "", age: 123}
Additional properties
Additional properties are allowed by default.
If your schema does not define additionalProperties: false, the validation
will accept a map with additional properties, but the keys will not be added
to the resulting struct as it would make an invalid struct.
iex> {:ok, root} = JSV.build(MyApp.UserSchema)
iex> data = %{"name" => "Alice", "extra" => "hello!"}
iex> JSV.validate(data, root)
{:ok, %MyApp.UserSchema{name: "Alice", age: 123}}
If the cast: false option is given to JSV.validate/3, structs will not be
created. In that case, the additional properties will be kept.
iex> {:ok, root} = JSV.build(MyApp.UserSchema)
iex> data = %{"name" => "Alice", "extra" => "hello!"}
iex> JSV.validate(data, root, cast: false)
{:ok, %{"name" => "Alice", "extra" => "hello!"}}
It is also possible to collect additional properties in a new struct key by
defining the @additional_properties attribute above the defschema
expression. This property will have a default value of %{} (the empty map).
defmodule MyApp.UserSchemaWithAdds do
 import JSV

 @additional_properties :adds
 defschema %{
 type: :object,
 properties: %{
 name: %{type: :string, default: ""},
 age: %{type: :integer, default: 123}
 }
 }
end

iex> {:ok, root} = JSV.build(MyApp.UserSchemaWithAdds)
iex> data = %{"name" => "Alice", "extra" => "hello!"}
iex> JSV.validate(data, root)
{:ok, %MyApp.UserSchemaWithAdds{name: "Alice", age: 123, adds: %{"extra" => "hello!"}}}
Ignoring struct keys
Some keys can be defined in the schema but not included in the struct by using
the @def module attribute. This is helpful when a property uses
const but your code rather depends on the struct type.
Keys listed in @skip_keys will still be validated according to the schema!
defmodule MyApp.UserEvent do
 use JSV.Schema

 @skip_keys [:message_type]
 defschema message_type: const("user_event"),
 user_id: integer(),
 event: string()
end

iex> {:ok, root} = JSV.build(MyApp.UserEvent)
iex> data = %{"message_type" => "user_event", "user_id" => 123, "event" => "login"}
iex> {:ok, result} = JSV.validate(data, root)
iex> result
%MyApp.UserEvent{user_id: 123, event: "login"}
Module references
A module can reference another module in its properties.
defmodule MyApp.CompanySchema do
 import JSV

 defschema %{
 type: :object,
 properties: %{
 name: %{type: :string},
 owner: MyApp.UserSchema
 }
 }
end

iex> root = JSV.build!(MyApp.CompanySchema)
iex> data = %{"name" => "Schemas Inc.", "owner" => %{"name" => "Alice", "age" => 999}}
iex> JSV.validate(data, root)
{:ok, %MyApp.CompanySchema{
 name: "Schemas Inc.",
 owner: %MyApp.UserSchema{
 name: "Alice",
 age: 999
 }
}}

 defschema(module, description \\ nil, schema_or_properties)

 (macro)

Defines a new module with a JSON Schema struct.
This macro is similar to defschema/1 but it also takes a module name and
defines a nested module in the context where it is called. An optional
description can be given, used as the @moduledoc and the description when a
keyword list of properties is given.
The module's struct will automatically @derive Jason.Encoder and
JSON.Encoder if those modules are found during compilation.
Title and Description Behavior
When passing properties as a keyword list instead of a schema, the title and
description parameters are automatically applied to the generated schema:
	title is set from the module name (without outer module prefix if any)
	description is set from the description parameter

When passing a full schema map, the title and description from the parameters
are not applied - the schema map is used as-is. Only the description
parameter is used as the module's @moduledoc.
Examples
Basic module definition with keyword list:
defschema User,
 name: string(),
 age: integer(default: 0)
Module with description using keyword list:
defschema User,
 "A user in the system",
 name: string(),
 age: integer(default: 0)
Module with full schema map:
defschema User,
 "User schema",
 %{
 type: :object,
 title: "Custom Title",
 description: "Custom Desc",
 properties: %{
 name: %{type: :string},
 age: %{type: :integer, default: 18}
 },
 required: [:name]
 }
Usage
The created module can be used like any struct:
%User{name: "Alice", age: 25}
And as a JSON Schema for validation:
{:ok, root} = JSV.build(User)
JSV.validate(%{"name" => "Bob"}, root)
#=> {:ok, %User{name: "Bob", age: 0}}
Module References
Modules can reference other modules in their properties:
defschema Address,
 street: string(),
 city: string()

defschema User,
 name: string(),
 address: Address
Use __MODULE__ for self-references:
defschema Category,
 name: string(),
 parent: optional(__MODULE__)

 Custom Build API

Low level build API to work with schemas embedded in larger documents such as an OpenAPI specification.

 build_add(build_ctx, raw_schema)

 @spec build_add(build_context(), native_schema()) ::
 {:ok, JSV.Key.t(), normal_schema(), build_context()} | {:error, Exception.t()}

Same as build_add!/2 but rescues
errors and returns a result tuple.

 build_add!(build_ctx, raw_schema)

 @spec build_add!(build_context(), native_schema()) ::
 {JSV.Key.t(), normal_schema(), build_context()}

Adds a schema to the build context.

 build_init(opts \\ [])

 @spec build_init([build_opt()]) :: {:ok, build_context()} | {:error, Exception.t()}

Same as build_init!/1 but rescues
errors and returns a result tuple.

 build_init!(opts \\ [])

 @spec build_init!([build_opt()]) :: build_context()

Initializes a build context for controlled builds.
See build/2 for options.

 build_key(build_ctx, ref_or_ns)

 @spec build_key(build_context(), JSV.Ref.ns() | JSV.Ref.t()) ::
 {:ok, JSV.Key.t(), build_context()} | {:error, Exception.t()}

Same as build_key!/2 but rescues
errors and returns a result tuple.

 build_key!(build_ctx, ref_or_ns)

 @spec build_key!(build_context(), JSV.Ref.ns() | JSV.Ref.t()) ::
 {JSV.Key.t(), build_context()}

Builds the given reference or root schema.
Returns the build context as well as a key, which is a pointer to the built
schema.

 to_root(build_ctx, root_key)

 @spec to_root(build_context(), JSV.Key.t()) ::
 {:ok, JSV.Root.t()} | {:error, Exception.t()}

Same as to_root!/2 but rescues
errors and returns a result tuple.

 to_root!(build_ctx, root_key)

 @spec to_root!(build_context(), JSV.Key.t()) :: JSV.Root.t()

Returns a root with all the validators from the build context and the given
root_key. That key is used as the default entrypoint for validation when no
:key option is passed to validate/2.

JSV.Schema

This module defines a struct where all the supported keywords of the JSON
schema specification are defined as keys. Text editors that can predict the
struct keys will make autocompletion available when writing schemas.
Using in build
The %JSV.Schema{} struct can be given to JSV.build/2:
schema = %JSV.Schema{type: :integer}
JSV.build(schema, options())
Because Elixir structs always contain all their defined keys, writing a schema
as %JSV.Schema{type: :integer} is actually defining the following:
%JSV.Schema{
 type: :integer,
 "$id": nil
 additionalItems: nil,
 additionalProperties: nil,
 allOf: nil,
 anyOf: nil,
 contains: nil,
 # etc...
}
For that reason, when giving a %JSV.Schema{} struct to JSV.build/2, any nil value is
ignored. The same behaviour can be defined for other struct by implementing
the JSV.Normalizer.Normalize protocol. Mere maps will keep their nil
values.
Note that JSV.build/2 does not require %JSV.Schema{} structs, any map with binary or
atom keys is accepted.
This is also why the %JSV.Schema{} struct does not define the const keyword, because
nil is a valid value for that keyword but there is no way to know if the
value was omitted or explicitly defined as nil. To circumvent that you may
use the enum keyword or just use a regular map instead of this module's
struct:
%JSV.Schema{enum: [nil]}
OR
%{const: nil}
Functional helpers
This module also exports a small range of utility functions to ease writing
schemas in a functional way.
This is mostly useful when generating schemas dynamically, or for shorthands.
For instance, instead of writing the following:
%Schema{
 type: :object,
 properties: %{
 name: %Schema{type: :string, description: "the name of the user", minLength: 1},
 age: %Schema{type: :integer, description: "the age of the user"}
 },
 required: [:name, :age]
}
One can write:
%Schema{
 type: :object,
 properties: %{
 name: string(description: "the name of the user", minLength: 1),
 age: integer(description: "the age of the user")
 },
 required: [:name, :age]
}
This is also useful when building schemas dynamically, as the helpers are
pipe-able one into another:
new()
|> props(
 name: string(description: "the name of the user", minLength: 1),
 age: integer(description: "the age of the user")
)
|> required([:name, :age])

 Summary

 Types

 attributes()

 merge_base()

 schema()

 schema_data()

 t()

 Functions

 __using__(_)

 Use this module to define module-based schemas or schemas with the helpers
API.

 combine(map, attributes)

 Merges two sets of attributes into a single map. Attributes can be a keyword
list or a map.

 from_module(module)

 Calls the json_schema/0 function on the given module, with a fallback to the
deprecated schema/0 function if exported.

 merge(merge_base, values)

 Merges the given key/values into the base schema. The merge is shallow and
will overwrite any pre-existing key.

 new()

 Returns a new empty schema.

 new(schema)

 Returns a new schema with the given key/values.

 normalize(term)

 Normalizes a JSON schema with the help of JSV.Normalizer.normalize/3 with
the following customizations

 normalize_collect(term, opts \\ [])

 Behaves like normalize/1 but all nested module-based schemas are collected
into $defs so the result is a self contained schema, whereas the default
normalization function returns references for JSV.Resolver.Internal.

 schema_module?(module)

 Returns whether the given atom is a module with a schema/0 exported
function.

 to_map(schema)

 Returns the given %JSV.Schema{} as a map without keys containing
a nil value.

 with_cast(merge_base \\ nil, mod_tag)

 Includes the cast function in a schema. The cast function must be given as a
list with two items

 Types

 attributes()

 @type attributes() ::
 %{required(binary() | atom()) => term()} | [{atom() | binary(), term()}]

 merge_base()

 @type merge_base() :: attributes() | [{atom() | binary(), term()}] | struct() | nil

 schema()

 @type schema() :: true | false | map()

 schema_data()

 @type schema_data() ::
 %{optional(binary()) => schema_data()}
 | [schema_data()]
 | number()
 | binary()
 | boolean()
 | nil

 t()

 @type t() :: %JSV.Schema{
 "$anchor": term(),
 "$comment": term(),
 "$defs": term(),
 "$dynamicAnchor": term(),
 "$dynamicRef": term(),
 "$id": term(),
 "$ref": term(),
 "$schema": term(),
 additionalItems: term(),
 additionalProperties: term(),
 allOf: term(),
 anyOf: term(),
 contains: term(),
 contentEncoding: term(),
 contentMediaType: term(),
 contentSchema: term(),
 default: term(),
 dependencies: term(),
 dependentRequired: term(),
 dependentSchemas: term(),
 deprecated: term(),
 description: term(),
 else: term(),
 enum: term(),
 examples: term(),
 exclusiveMaximum: term(),
 exclusiveMinimum: term(),
 format: term(),
 if: term(),
 items: term(),
 "jsv-cast": term(),
 maxContains: term(),
 maxItems: term(),
 maxLength: term(),
 maxProperties: term(),
 maximum: term(),
 minContains: term(),
 minItems: term(),
 minLength: term(),
 minProperties: term(),
 minimum: term(),
 multipleOf: term(),
 not: term(),
 oneOf: term(),
 pattern: term(),
 patternProperties: term(),
 prefixItems: term(),
 properties: term(),
 propertyNames: term(),
 readOnly: term(),
 required: term(),
 then: term(),
 title: term(),
 type: term(),
 unevaluatedItems: term(),
 unevaluatedProperties: term(),
 uniqueItems: term(),
 writeOnly: term()
}

 Functions

 __using__(_)

 (macro)

Use this module to define module-based schemas or schemas with the helpers
API.
	Imports struct and cast definitions from JSV.
	Imports the JSV.Schema.Helpers module with the string, integer,
enum, etc. helpers.

Example
defmodule MySchema do
 use JSV.Schema

 defschema %{
 type: :object,
 properties: %{
 foo: string(description: "Some foo!"),
 bar: integer(minimum: 100) |> with_cast(__MODULE__,:hashid),
 sub: props(sub_foo: string(), sub_bar: integer()) pp
 }
 }

 defcast hashid(bar) do
 {:ok, Hashids.decode!(bar, cipher())}
 end
end

 combine(map, attributes)

 @spec combine(attributes(), attributes()) :: schema()

Merges two sets of attributes into a single map. Attributes can be a keyword
list or a map.

 from_module(module)

 @spec from_module(module()) :: schema()

Calls the json_schema/0 function on the given module, with a fallback to the
deprecated schema/0 function if exported.

 merge(merge_base, values)

 @spec merge(merge_base(), attributes()) :: schema()

Merges the given key/values into the base schema. The merge is shallow and
will overwrite any pre-existing key.
This function is defined to work with the JSV.Schema.Composer API.
The resulting schema is always a map or a struct but the actual type depends
on the given base. It follows the followng rules:
	When the base type is a map or a struct, it is preserved
	If the base is a %JSV.Schema{} struct, the values are merged in.
	If the base is another struct, the values a merged in. It will fail if
the struct does not define the overriden keys. No invalid struct is
generated.
	If the base is a mere map, it is not turned into a %JSV.Schema{} struct and the
values are merged in.

	Otherwise the base is cast to a %JSV.Schema{} struct
	If the base is nil, the function returns a %JSV.Schema{} struct with the given
values.
	If the base is a keyword list, the list will be turned into a %JSV.Schema{} struct
and then the values are merged in.

Examples
iex> JSV.Schema.merge(%JSV.Schema{description: "base"}, %{type: :integer})
%JSV.Schema{description: "base", type: :integer}

defmodule CustomSchemaStruct do
 defstruct [:type, :description]
end

iex> JSV.Schema.merge(%CustomSchemaStruct{description: "base"}, %{type: :integer})
%CustomSchemaStruct{description: "base", type: :integer}

iex> JSV.Schema.merge(%CustomSchemaStruct{description: "base"}, %{format: :date})
** (KeyError) struct CustomSchemaStruct does not accept key :format

iex> JSV.Schema.merge(%{description: "base"}, %{type: :integer})
%{description: "base", type: :integer}

iex> JSV.Schema.merge(nil, %{type: :integer})
%JSV.Schema{type: :integer}

iex> JSV.Schema.merge([description: "base"], %{type: :integer})
%JSV.Schema{description: "base", type: :integer}

 new()

 @spec new() :: t()

Returns a new empty schema.

 new(schema)

 @spec new(t() | attributes()) :: t()

Returns a new schema with the given key/values.

 normalize(term)

 @spec normalize(term()) ::
 %{optional(binary()) => schema_data()}
 | [schema_data()]
 | number()
 | binary()
 | boolean()
 | nil

Normalizes a JSON schema with the help of JSV.Normalizer.normalize/3 with
the following customizations:
	JSV.Schema structs pairs where the value is nil will be removed.
%JSV.Schema{type: :object, properties: nil, allOf: nil, ...} becomes
%{"type" => "object"}.
	Modules names that export a schema will be converted to a raw schema with a
reference to that module that can be resolved automatically by
JSV.Resolver.Internal.
	Other atoms will be checked to see if they correspond to a module name that
exports a json_schema/0 function.

Examples
defmodule Elixir.ASchemaExportingModule do
 def schema, do: %{}
end

iex> JSV.Schema.normalize(ASchemaExportingModule)
%{"$ref" => "jsv:module:Elixir.ASchemaExportingModule"}

defmodule AModuleWithoutExportedSchema do
 def hello, do: "world"
end

iex> JSV.Schema.normalize(AModuleWithoutExportedSchema)
"Elixir.AModuleWithoutExportedSchema"

 normalize_collect(term, opts \\ [])

 @spec normalize_collect(
 term(),
 keyword()
) :: %{optional(binary()) => schema_data()} | atom()

Behaves like normalize/1 but all nested module-based schemas are collected
into $defs so the result is a self contained schema, whereas the default
normalization function returns references for JSV.Resolver.Internal.
Schemas are collected using their title for the key under $defs. If multiple
schemas use the same title, the title is suffixed with _1, _2 and so on.
This function does not support schemas with pre-existing $defs, it will
ignore them and keep them nested. If such schemas are present and use $ref
to their own definitions, the schema returned from this function may not be
valid. To prevent this, schemas with definitions should define an $id and
use this in $ref references.
Options
	:as_root - boolean, when true and used in combination with a
module-based schema, that module's schema will be kept as the root schema
instead of being wrapped in a definition. This will overwrite any $defs
present in the schema.

 schema_module?(module)

 @spec schema_module?(atom()) :: boolean()

Returns whether the given atom is a module with a schema/0 exported
function.

 to_map(schema)

 @spec to_map(t()) :: %{optional(atom()) => term()}

Returns the given %JSV.Schema{} as a map without keys containing
a nil value.

 with_cast(merge_base \\ nil, mod_tag)

 @spec with_cast(merge_base(), [atom() | binary() | integer(), ...]) :: schema()

Includes the cast function in a schema. The cast function must be given as a
list with two items:
	A module, as atom or string
	A tag, as atom, string or integer.

Atom arguments will be converted to string.
Examples
iex> JSV.Schema.with_cast([MyApp.Cast, :a_cast_function])
%JSV.Schema{"jsv-cast": ["Elixir.MyApp.Cast", "a_cast_function"]}

iex> JSV.Schema.with_cast([MyApp.Cast, 1234])
%JSV.Schema{"jsv-cast": ["Elixir.MyApp.Cast", 1234]}

iex> JSV.Schema.with_cast(["some_erlang_module", "custom_tag"])
%JSV.Schema{"jsv-cast": ["some_erlang_module", "custom_tag"]}

JSV.Schema.Helpers

Helpers to define schemas in plain Elixir code.

 Summary

 Schema Presets

 all_of(schemas, extra \\ nil)

 Returns a JSON Schema with allOf: schemas.

 any_of(schemas, extra \\ nil)

 Returns a JSON Schema with anyOf: schemas.

 array_of(item_schema, extra \\ nil)

 Returns a JSON Schema with type: :array and items: item_schema.

 boolean(extra \\ nil)

 Returns a JSON Schema with type: :boolean.

 const(const, extra \\ nil)

 Returns a JSON Schema with const: const.

 date(extra \\ nil)

 Returns a JSON Schema with type: :string and format: :date.

 datetime(extra \\ nil)

 Returns a JSON Schema with type: :string and format: :"date-time".

 email(extra \\ nil)

 Returns a JSON Schema with type: :string and format: :email.

 enum(enum, extra \\ nil)

 Returns a JSON Schema with enum: enum.

 format(format, extra \\ nil)

 Returns a JSON Schema with format: format.

 integer(extra \\ nil)

 Returns a JSON Schema with type: :integer.

 neg_integer(extra \\ nil)

 Returns a JSON Schema with type: :integer and maximum: -1.

 non_empty_string(extra \\ nil)

 Returns a JSON Schema with type: :string and minLength: 1.

 non_neg_integer(extra \\ nil)

 Returns a JSON Schema with type: :integer and minimum: 0.

 number(extra \\ nil)

 Returns a JSON Schema with type: :number.

 object(extra \\ nil)

 Returns a JSON Schema with type: :object.

 one_of(schemas, extra \\ nil)

 Returns a JSON Schema with oneOf: schemas.

 pos_integer(extra \\ nil)

 Returns a JSON Schema with type: :integer and minimum: 1.

 properties(properties, extra \\ nil)

 Returns a JSON Schema with properties: properties.

 props(properties, extra \\ nil)

 Returns a JSON Schema with type: :object and properties: properties.

 ref(ref, extra \\ nil)

 Returns a JSON Schema with $ref: ref.

 string(extra \\ nil)

 Returns a JSON Schema with type: :string.

 string_enum_to_atom(enum, extra \\ nil)

 Returns a JSON Schema with type: :string, enum: enum and jsv-cast: JSV.Cast.string_to_atom().

 string_enum_to_atom_or_nil(enum, extra \\ nil)

 Returns a JSON Schema with type: [:string, :null], enum: enum and jsv-cast: JSV.Cast.string_to_atom_or_nil().

 string_of(format, extra \\ nil)

 Returns a JSON Schema with type: :string and format: format.

 string_to_atom(extra \\ nil)

 Returns a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_atom().

 string_to_boolean(extra \\ nil)

 Returns a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_boolean().

 string_to_existing_atom(extra \\ nil)

 Returns a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_existing_atom().

 string_to_float(extra \\ nil)

 Returns a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_float().

 string_to_integer(extra \\ nil)

 Returns a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_integer().

 string_to_number(extra \\ nil)

 Returns a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_number().

 uri(extra \\ nil)

 Returns a JSON Schema with type: :string and format: :uri.

 uuid(extra \\ nil)

 Returns a JSON Schema with type: :string and format: :uuid.

 Types

 properties()

 property_key()

 Functions

 nullable(schema)

 Makes a schema nullable by adding :null to the allowed types.

 optional(schema, opts \\ [])

 Marks a schema as optional when using the keyword list syntax with
JSV.defschema/1 or JSV.defschema/3.

 sigil_SD(arg, list)

 The Schema Description sigil.

 left ~> right

 An alias for JSV.Schema.combine/2.

 Schema Presets

Schema presets are functions that take zero or more arguments and return
predefined schemas. Those predefined schemas are not JSV.Schema structs
but raw maps.
Each function has a second version with an additional extra argument that
will be combined with the predefined schema using JSV.Schema.combine/2.
Note that the extra attributes cannot override what is defined in the
preset.
Example
%{
 properties: %{
 foo: integer(),
 bar: integer(description: "An actual bar", minimum: 10),
 baz: any_of([MyApp.Baz,MyApp.OldBaz], description: "Baz baz baz")
 }
}

 all_of(schemas, extra \\ nil)

 @spec all_of([JSV.Schema.schema()], JSV.Schema.attributes() | nil) ::
 JSV.Schema.schema()

Returns a JSON Schema with allOf: schemas.

 any_of(schemas, extra \\ nil)

 @spec any_of([JSV.Schema.schema()], JSV.Schema.attributes() | nil) ::
 JSV.Schema.schema()

Returns a JSON Schema with anyOf: schemas.

 array_of(item_schema, extra \\ nil)

 @spec array_of(JSV.Schema.schema(), JSV.Schema.attributes() | nil) ::
 JSV.Schema.schema()

Returns a JSON Schema with type: :array and items: item_schema.

 boolean(extra \\ nil)

 @spec boolean(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :boolean.

 const(const, extra \\ nil)

 @spec const(term(), JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with const: const.

 date(extra \\ nil)

 @spec date(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :string and format: :date.

 datetime(extra \\ nil)

 @spec datetime(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :string and format: :"date-time".

 email(extra \\ nil)

 @spec email(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :string and format: :email.

 enum(enum, extra \\ nil)

 @spec enum(list(), JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with enum: enum.
Note that in the JSON Schema specification, if the enum contains 1 then
1.0 is a valid value.

 format(format, extra \\ nil)

 @spec format(term(), JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with format: format.
Does not set the type: :string on the schema. Use string_of/2 for a
shortcut.

 integer(extra \\ nil)

 @spec integer(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :integer.

 neg_integer(extra \\ nil)

 @spec neg_integer(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :integer and maximum: -1.

 non_empty_string(extra \\ nil)

 @spec non_empty_string(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :string and minLength: 1.

 non_neg_integer(extra \\ nil)

 @spec non_neg_integer(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :integer and minimum: 0.

 number(extra \\ nil)

 @spec number(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :number.

 object(extra \\ nil)

 @spec object(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :object.
See the props/2 function that accepts properties as a first argument.

 one_of(schemas, extra \\ nil)

 @spec one_of([JSV.Schema.schema()], JSV.Schema.attributes() | nil) ::
 JSV.Schema.schema()

Returns a JSON Schema with oneOf: schemas.

 pos_integer(extra \\ nil)

 @spec pos_integer(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :integer and minimum: 1.

 properties(properties, extra \\ nil)

 @spec properties(
 properties(),
 JSV.Schema.attributes() | nil
) :: JSV.Schema.schema()

Returns a JSON Schema with properties: properties.
Does not set the type: :object on the schema. Use props/2 for a
shortcut.

 props(properties, extra \\ nil)

 @spec props(
 properties(),
 JSV.Schema.attributes() | nil
) :: JSV.Schema.schema()

Returns a JSON Schema with type: :object and properties: properties.

 ref(ref, extra \\ nil)

 @spec ref(String.t(), JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with $ref: ref.
Returns a schema referencing the given ref.
A struct-based schema module name is not a valid reference. Modules should be
passed directly where a schema (and not a $ref) is expected.
Example
For instance to define a user property, this is valid:
props(user: UserSchema)
The following is invalid:
Do not do this
props(user: ref(UserSchema))

 string(extra \\ nil)

 @spec string(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :string.

 string_enum_to_atom(enum, extra \\ nil)

 @spec string_enum_to_atom([atom()], JSV.Schema.attributes() | nil) ::
 JSV.Schema.schema()

Returns a JSON Schema with type: :string, enum: enum and jsv-cast: JSV.Cast.string_to_atom().
Accepts a list of atoms and returns a schema that validates a string
representation of one of the given atoms.
On validation, a cast will be made to return the original atom value.
This is useful when dealing with enums that are represented as atoms in the
codebase, such as Oban job statuses or other Ecto enum types.
iex> schema = props(status: string_enum_to_atom([:executing, :pending]))
iex> root = JSV.build!(schema)
iex> JSV.validate(%{"status" => "pending"}, root)
{:ok, %{"status" => :pending}}
Does not support nil
This function sets the string type on the schema. If nil is given in the
enum, the corresponding valid JSON value will be the "nil" string rather
than null. See string_enum_to_atom_or_nil/2.

 string_enum_to_atom_or_nil(enum, extra \\ nil)

 @spec string_enum_to_atom_or_nil([atom()], JSV.Schema.attributes() | nil) ::
 JSV.Schema.schema()

Returns a JSON Schema with type: [:string, :null], enum: enum and jsv-cast: JSV.Cast.string_to_atom_or_nil().
Like string_enum_to_atom/2 but also accepts the null JSON value as part of the
enum.

 string_of(format, extra \\ nil)

 @spec string_of(term(), JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :string and format: format.

 string_to_atom(extra \\ nil)

 @spec string_to_atom(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_atom().

 string_to_boolean(extra \\ nil)

 @spec string_to_boolean(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_boolean().

 string_to_existing_atom(extra \\ nil)

 @spec string_to_existing_atom(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_existing_atom().

 string_to_float(extra \\ nil)

 @spec string_to_float(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_float().

 string_to_integer(extra \\ nil)

 @spec string_to_integer(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_integer().

 string_to_number(extra \\ nil)

 @spec string_to_number(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_number().

 uri(extra \\ nil)

 @spec uri(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :string and format: :uri.

 uuid(extra \\ nil)

 @spec uuid(JSV.Schema.attributes() | nil) :: JSV.Schema.schema()

Returns a JSON Schema with type: :string and format: :uuid.

 Types

 properties()

 @type properties() ::
 [{property_key(), JSV.Schema.schema()}]
 | %{optional(property_key()) => JSV.Schema.schema()}

 property_key()

 @type property_key() :: atom() | binary()

 Functions

 nullable(schema)

 @spec nullable(map() | module()) :: map()

Makes a schema nullable by adding :null to the allowed types.
Example
iex> nullable(integer())
%{type: [:integer, :null]}

iex> nullable(%{type: :integer, anyOf: [%{minimum: 1}, %{maximum: -1}]})
%{
 type: [:integer, :null],
 anyOf: [%{type: :null}, %{minimum: 1}, %{maximum: -1}]
}

iex> nullable(%{type: :integer, oneOf: [%{minimum: 1}, %{maximum: -1}]})
%{
 type: [:integer, :null],
 oneOf: [%{type: :null}, %{minimum: 1}, %{maximum: -1}]
}
When given a schema module, wraps it in an anyOf that allows either the
module's schema or null:
iex> defmodule Position do
...> use JSV.Schema
...> defschema x: integer(), y: integer()
...> end
iex> nullable(Position)
%{anyOf: [%{type: :null}, Position]}

iex> defmodule Point do
...> def json_schema do
...> %{
...> "properties" => %{
...> "x" => %{"type" => "integer"},
...> "y" => %{"type" => "integer"}
...> }
...> }
...> end
...> end
iex> nullable(Point)
%{anyOf: [%{type: :null}, Point]}

 optional(schema, opts \\ [])

 @spec optional(
 term(),
 keyword()
) :: {:__optional__, term(), keyword()}

Marks a schema as optional when using the keyword list syntax with
JSV.defschema/1 or JSV.defschema/3.
This is useful for recursive module references where you want to avoid
infinite nesting requirements. When used in property list syntax with
defschema, the property will not be marked as required.
defschema name: string(),
 parent: optional(MySelfReferencingModule)
Skipping optional keys during JSON serialization
This is only applicable to schema defined with JSV.defschema/3. The
more generic macro JSV.defschema/1 let you implement a full module so you
must implement the protocols yourself, or use anyOf: null/sub schema for some
properties.
When encoding a struct to JSON, optional value (set as nil in the struct)
are still rendered, which may be invalid if someone needs to validate the
serialized value with the original schema. As the optional properties are not
required, the :nskip option (for "normalization skip") with a constant value
can be given. The value will not be serialized if it matches the value.
defschema name: string(),
 parent: optional(MySelfReferencingModule, nskip: nil)

 sigil_SD(arg, list)

 (macro)

The Schema Description sigil.
A sigil used to embed long texts in schemas descriptions. Replaces all
combinations of whitespace by a single whitespace and trims the string.
It does not support any modifier.
Note that newlines are perfectly fine in schema descriptions, as they are
simply encoded as "\n". This sigil is intended for schemas that need to be
compressed because they are sent over the wire repeatedly (like in HTTP APIs
or when working with LLMs).
Example
iex> ~SD"""
...> This schema represents an elixir.
...>
...> An elixir is a potion with positive outcomes!
...> """
"This schema represents an elixir. An elixir is a potion with positive outcomes!"

 left ~> right

An alias for JSV.Schema.combine/2.
Example
iex> object(description: "a user")
...> ~> any_of([AdminSchema, CustomerSchema])
...> ~> properties(foo: integer())
%{
 type: :object,
 description: "a user",
 properties: %{foo: %{type: :integer}},
 anyOf: [AdminSchema, CustomerSchema]
}

JSV.BuildError exception

A simple wrapper for errors returned from JSV.build/2.

 Summary

 Functions

 of(reason, action, build_path \\ nil)

 Wraps the given term as the reason in a JSV.BuildError struct.

 Functions

 of(reason, action, build_path \\ nil)

 @spec of(term(), term(), build_path :: nil | String.t()) :: Exception.t()

Wraps the given term as the reason in a JSV.BuildError struct.
The action should be a {module, function, [arg1, arg2, ..., argN]} tuple or
a mfa tuple whenever possible.

JSV.FormatValidator behaviour

Behaviour for format validator implementations.
Such implementations must be given to JSV.build/2 in the :formats option:
JSV.build!(raw_schema,
 resolver: resolver,
 formats: [MyModule | JSV.default_format_validator_modules()]
)
Each given module is interrogated for format support when a schema is built.
Modules earlier in the list take precedence and if a format is found in the
returned value of the supported_formats/0 callback, the module is selected
for compilation and no other module will be tried.
A module can declare multiple formats.

 Summary

 Types

 format()

 Callbacks

 applies_to_type?(format, data)

 Returns true if the given format should be used for the input data type.

 supported_formats()

 Returns the list of the supported formats, as strings.

 validate_cast(format, data)

 Receives the schema format as string, and the data.

 Types

 format()

 @type format() :: String.t()

 Callbacks

 applies_to_type?(format, data)

 @callback applies_to_type?(format(), data :: term()) :: boolean()

Returns true if the given format should be used for the input data type.
For instance, the "date" format will not be validated if the input data is
not a string.
No validation should be done in this callback, only the type of the data
should be considered.

 supported_formats()

 @callback supported_formats() :: [format()]

Returns the list of the supported formats, as strings.

 validate_cast(format, data)

 @callback validate_cast(format(), data :: term()) :: {:ok, term()} | {:error, term()}

Receives the schema format as string, and the data.
Returns a result tuple with data optionally casted to a more meaningful data
structure (for instance returning a Date struct instead of the string
representation of the date).

JSV.Root

Internal representation of a JSON schema built with JSV.build/2.
The original schema, in its string-keys form, can be retrieved in the :raw
key of the struct.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %JSV.Root{
 raw: map() | boolean() | nil,
 root_key: term(),
 validators: JSV.Validator.validators()
}

JSV.ValidationError exception

The data structure returned by JSV.validate/3 when validation fails.

 Summary

 Types

 t()

 Functions

 of(errors)

 Wraps the given JSV.Validator.Error list into an JSV.ValidationError
exception.

 Types

 t()

 @type t() :: %JSV.ValidationError{
 __exception__: true,
 errors: [JSV.Validator.Error.t()]
}

 Functions

 of(errors)

 @spec of([JSV.Validator.Error.t()]) :: t()

Wraps the given JSV.Validator.Error list into an JSV.ValidationError
exception.

JSV.Resolver behaviour

A behaviour describing the implementation of a [guides/build/custom resolver.
Resolves remote resources when building a JSON schema.

 Summary

 Types

 resolvable()

 t()

 Callbacks

 resolve(uri, opts)

 Receives an URI and the options passed in the resolver tuple to JSV.build/2
and returns a result tuple for a raw JSON schema map.

 Functions

 chain_of(resolvers, default_meta)

 Returns a new resolver, with the given behaviour implementations, and a
default meta-schema URL to use with schemas that do not declare a $schema
property.

 fetch_resolved(rsv, pointer)

 Returns the raw schema identified by the given key if was previously resolved.

 fetch_vocabulary(rsv, meta)

 Returns the $vocabulary property of a schema identified by its namespace.

 resolve(rsv, resolvable)

 Fetches the remote resource into the internal resolver cache and returns a new
resolver with that updated cache.

 Types

 resolvable()

 @type resolvable() :: JSV.Key.ns() | JSV.Key.pointer() | JSV.Ref.t()

 t()

 @opaque t()

 Callbacks

 resolve(uri, opts)

 @callback resolve(uri :: String.t(), opts :: term()) ::
 {:ok, map()} | {:normal, map()} | {:error, term()}

Receives an URI and the options passed in the resolver tuple to JSV.build/2
and returns a result tuple for a raw JSON schema map.
Returning boolean schemas from resolvers is not supported. You may wrap the
boolean value in a $defs or any other pointer as a workaround.
Schemas will be normalized using JSV.Schema.normalize/1. If the resolver
returns schema that are already in JSON-decoded form (like a response body
from an HTTP call) without atoms, module names or structs, the resolver
implementation can return {:normal, map} instead to skip the normalization.

 Functions

 chain_of(resolvers, default_meta)

 @spec chain_of([{module(), term()}], binary()) :: t()

Returns a new resolver, with the given behaviour implementations, and a
default meta-schema URL to use with schemas that do not declare a $schema
property.

 fetch_resolved(rsv, pointer)

 @spec fetch_resolved(t(), resolvable() | {:meta, resolvable()}) ::
 {:ok, JSV.Resolver.Resolved.t() | {:alias_of, JSV.Key.t()}} | {:error, term()}

Returns the raw schema identified by the given key if was previously resolved.

 fetch_vocabulary(rsv, meta)

 @spec fetch_vocabulary(t(), binary()) ::
 {:ok, %{optional(binary()) => boolean()}} | {:error, term()}

Returns the $vocabulary property of a schema identified by its namespace.
The schema must have been resolved previously as a meta-schema (i.e. found
in an $schema property of a resolved schema).

 resolve(rsv, resolvable)

 @spec resolve(t(), resolvable()) :: {:ok, t()} | {:error, term()}

Fetches the remote resource into the internal resolver cache and returns a new
resolver with that updated cache.

JSV.Resolver.Embedded

A JSV.Resolver implementation that resolves known schemas shipped as part of
the JSV library.
Internal URIs such as jsv:module:<module name> are delegated to the
JSV.Resolver.Internal resolver.
Embedded schemas
	https://json-schema.org/draft/2020-12/schema
	https://json-schema.org/draft/2020-12/meta/validation
	https://json-schema.org/draft/2020-12/meta/unevaluated
	https://json-schema.org/draft/2020-12/meta/meta-data
	https://json-schema.org/draft/2020-12/meta/format-assertion
	https://json-schema.org/draft/2020-12/meta/format-annotation
	https://json-schema.org/draft/2020-12/meta/core
	https://json-schema.org/draft/2020-12/meta/content
	https://json-schema.org/draft/2020-12/meta/applicator
	http://json-schema.org/draft-07/schema

 Summary

 Functions

 embedded_normalized_ids()

 Returns the list of meta schemas embedded in this resolver. The IDs are given
in normalized form, i.e. URLs without fragments.

 Functions

 embedded_normalized_ids()

 @spec embedded_normalized_ids() :: [String.t()]

Returns the list of meta schemas embedded in this resolver. The IDs are given
in normalized form, i.e. URLs without fragments.

JSV.Resolver.Httpc

A JSV.Resolver implementation that will fetch the schemas from the web with
the help of the :httpc module.
This resolver requires a list of allowed URL prefixes to download from. It
also needs a proper JSON library to decode fetched schemas:
	From Elixir 1.18, the JSON module is automatically available in the
standard library.
	JSV can use Jason if listed in your
dependencies with the "~> 1.0" requirement.
	JSV also supports Poison with the "~> 6.0 or ~> 5.0" requirement.

Schemas known by the JSV.Resolver.Embedded will be fetched from that module
instead of being fetched from the web. Allowed prefixes are not needed for
those schemas.
Options
This resolver supports the following options:
	:allowed_prefixes - This option is mandatory and contains the allowed
prefixes to download from. For security reasons, the prefixes should contain
at leath the first / of the URI path, like https://example.com/ instead
of https://example.com.
	:cache_dir - The path of a directory to cache downloaded resources. The
default value can be retrieved with default_cache_dir/0 and is based on
System.tmp_dir!/0. The option also accepts false to disable that cache.
Note that there is no cache expiration mechanism.

Example
resolver_opts = [allowed_prefixes: ["https://my-company.org/schemas"], cache_dir: "_build/custom/dir"]
JSV.build(schema, resolver: {JSV.Resolver.BuiltIn, resolver_opts})

 Summary

 Functions

 default_cache_dir()

 Returns the default directory used by the disk-based cache.

 Functions

 default_cache_dir()

 @spec default_cache_dir() :: binary()

Returns the default directory used by the disk-based cache.

JSV.Resolver.Internal

A JSV.Resolver implementation that resolves URIs pointing to the application
code base or JSV code base.
A custom resolver implementation should delegate jsv: prefixed URIs to this
module to enable support of the internal resolutions features.
Module based schemas
This resolver will resolve jsv:module:MODULE URIs where MODULE is a string
representation of an Elixir module. Modules pointed at with such references
MUST export a json_schema/0 function that returns a normalized JSON schema
with binary keys and values.

 Summary

 Functions

 module_to_uri(module)

 Returns a JSV internal URI for the given module.

 Functions

 module_to_uri(module)

 @spec module_to_uri(module()) :: binary()

Returns a JSV internal URI for the given module.
Example
iex> module_to_uri(Inspect.Opts)
"jsv:module:Elixir.Inspect.Opts"

JSV.Resolver.Local

This module allows to build JSV.Resolver implementations that resolves
schemas based on disk based on their $id property. It is not itself a
JSV.Resolver implementation.
To define your own local resolver, use this module by providing the
:source option with a path to a directory, a path to a file, or a list of
paths to directories and files:
schemas_dir = "priv/messaging/schemas"
other_schema = "priv/users/user-schema.schema.json"

defmodule MyApp.LocalResolver do
 use JSV.Resolver.Local, source: [schemas_dir, other_schema]
end
The macro will read all .json files from the given sources and build an
index mapping the $id property of each schema to its JSON-deserialized
value.
For convenience, nested lists are accepted. Duplicated files accepted as well
but not duplicates due to symlinks.
Compilation and caching
Schemas are loaded directly into the generated module code. The module will
recompile everytime a loaded schema file is modified or deleted.
Recompilation will also happen when new files are added in directories listed
as sources.
Debugging
The use JSV.Resolver.Local also accepts the following options:
	:warn - A boolean flag enabling compilation warnings when a .json file
cannot be read or loaded properly. Defaults to true.
	:debug - A boolean flag enabling printouts of the loaded schemas on
compilation. Defaults to false.

Example
The "priv/schemas/user-schema.schema.json" file contains the following JSON
text:
{
 "$id": "myapp:user-0.0.1",
 "type": "object",
 "properties": {
 "username": {
 "type": "string"
 }
 }
}
Then this can be used as a source in your module.
defmodule MyApp.LocalResolver do
 use JSV.Resolver.Local, source: "priv/schemas"
end
You can now build validation roots (JSV.Root) by referencing this user
schema in $ref and by providing your resolver to the JSV.build!/2
function:
iex> schema = %{"$ref" => "myapp:user-0.0.1"}
iex> root = JSV.build!(schema, resolver: MyApp.LocalResolver)
iex> # Here we pass an invalid username (an integer)
iex> result = JSV.validate(%{"username" => 123}, root)
iex> match?({:error, %JSV.ValidationError{}}, result)
true
You can also directly fetch a schema from the defined module:
iex> MyApp.LocalResolver.resolve("myapp:user-0.0.1")
{:ok,
 %{
 "$id" => "myapp:user-0.0.1",
 "type" => "object",
 "properties" => %{"username" => %{"type" => "string"}}
 }}

iex> MyApp.LocalResolver.resolve("myapp:other")
{:error, {:unknown_id, "myapp:other"}}
Remember that schemas are identified and resolved by their $id property and
not their path.

JSV.Vocabulary behaviour

Behaviour for vocabulary implementation.
A vocabulary module is used twice during the lifetime of a JSON schema:
	When building a schema, the vocabulary module is given key/value pairs such
as {"type", "integer"} or {"properties", map_of_schemas} and must
consume or ignore the given keyword, storing custom validation data in an
accumulator for further use.
	When validating a schema, the module is called with the data to validate and
the accumulated validation data to produce a validation result.

 Summary

 Types

 acc()

 Represents the accumulator initially returned by init_validators/1 and
accepted and returned by handle_keyword/4.

 collection()

 Represents the final form of the collected keywords after the ultimate
transformation returned by finalize_validators/1.

 data()

 pair()

 Callbacks

 finalize_validators(acc)

 format_error(atom, map, data)

 handle_keyword(pair, acc, t, raw_schema)

 init_validators(keyword)

 priority()

 Returns the priority for applyting this module to the data.

 validate(data, collection, vctx)

 Functions

 __using__(opts)

 By using this module you will

 consume_keyword(atom_form)

 Defines a handle_keyword/4 callback that will return the current
accumulator without changes, but preventing other vocabulary modules with
lower priority (higher number) to be called with this keyword.

 ignore_any_keyword()

 Defines a handle_keyword/4 callback that will return :ignore for any
given value.

 ignore_keyword(atom_form)

 Defines a handle_keyword/4 callback that will return :ignore for the
given keyword. The keyword must be given in atom form.

 take_integer(key, n, acc, builder)

 Adds the given integer to the list accumulator as a 2-tuple with the given
key.

 take_keyword(atom_form, bind_value, bind_acc, bind_builder, bind_raw_schema, list)

 An utility macro to ease declare vocabularies with atom keys.

 take_number(key, n, acc, builder)

 Adds the given integer to the list accumulator as a 2-tuple with the given
key.

 take_sub(key, sub_raw_schema, acc, builder)

 Gives the sub raw schema to the builder and adds the build result in the list
accumulator as a 2-tuple with the given key.

 take_sub(key, path_segment, sub_raw_schema, acc, builder)

 Same as take_sub/4 but uses a custom path_segment to append to the
schemaLocation of the built subschema.

 to_decimal(n)

 Casts the given integer to a %Decimal{} struct using Decimal.from_float/1
for floats.

 with_decimal(blocks)

 Types

 acc()

 @type acc() :: term()

Represents the accumulator initially returned by init_validators/1 and
accepted and returned by handle_keyword/4.
This accumulator is then given to finalize_validators/1 and the
collection/0 type is used from there.

 collection()

 @type collection() :: term()

Represents the final form of the collected keywords after the ultimate
transformation returned by finalize_validators/1.

 data()

 @type data() ::
 %{optional(binary()) => data()}
 | [data()]
 | binary()
 | boolean()
 | number()
 | nil

 pair()

 @type pair() :: {binary(), term()}

 Callbacks

 finalize_validators(acc)

 @callback finalize_validators(acc()) :: :ignore | collection()

 format_error(atom, map, data)

 (optional)

 @callback format_error(atom(), %{optional(atom()) => term()}, data()) ::
 String.t()
 | {atom(), String.t()}
 | {String.t(), [JSV.Validator.Error.t() | JSV.ErrorFormatter.error_unit()]}
 | {atom(), String.t(),
 [JSV.Validator.Error.t() | JSV.ErrorFormatter.error_unit()]}

 handle_keyword(pair, acc, t, raw_schema)

 @callback handle_keyword(pair(), acc(), JSV.Builder.t(), raw_schema :: term()) ::
 {acc(), JSV.Builder.t()} | :ignore

 init_validators(keyword)

 @callback init_validators(keyword()) :: acc()

 priority()

 @callback priority() :: non_neg_integer()

Returns the priority for applyting this module to the data.
Lower values (close to zero) will be applied first. You can think "order"
instead of "priority" but several modules can share the same priority value.
This can be useful to define vocabularies that depend on other vocabularies.
For instance, the unevaluatedProperties keyword needs "properties",
"patternProperties", "additionalProperties" and "allOf", "oneOf", "anyOf",
etc. to be ran before itself so it can lookup what has been evaluated.
Modules shipped in this library have priority of 100, 200, etc. up to 900 so
you can interleave your own vocabularies. Casting values to non-validable
terms (such as structs or dates) should be done by vocabularies with a
priority of 1000 and above.

 validate(data, collection, vctx)

 @callback validate(data(), collection(), vctx :: JSV.Validator.context()) ::
 JSV.Validator.result()

 Functions

 __using__(opts)

 (macro)

By using this module you will:
	Declare that module as a behaviour
	Import all macros from the module
	Declare a priority/0 function if the :priority option is provided.

 consume_keyword(atom_form)

 (macro)

Defines a handle_keyword/4 callback that will return the current
accumulator without changes, but preventing other vocabulary modules with
lower priority (higher number) to be called with this keyword.
The keyword must be given in atom form.

 ignore_any_keyword()

 (macro)

Defines a handle_keyword/4 callback that will return :ignore for any
given value.
Generally used below take_keyword/6:
 take_keyword :items, items when is_map(items), acc, builder, raw_schema do
 # ...
 end

 ignore_any_keyword()

 ignore_keyword(atom_form)

 (macro)

Defines a handle_keyword/4 callback that will return :ignore for the
given keyword. The keyword must be given in atom form.
Generally used below take_keyword/6:
 take_keyword :items, items when is_map(items), acc, builder, raw_schema do
 # ...
 end

 ignore_keyword(:additionalItems)
 ignore_keyword(:prefixItems)

 take_integer(key, n, acc, builder)

 @spec take_integer(
 JSV.Builder.path_segment(),
 integer() | term(),
 list(),
 JSV.Builder.t()
) ::
 {list(), JSV.Builder.t()}

Adds the given integer to the list accumulator as a 2-tuple with the given
key.
Fails if the value is not an integer. Floats with zero-fractional (as 123.0)
will be accepted and converted to integer, as the JSON Schema spec dictates.

 take_keyword(atom_form, bind_value, bind_acc, bind_builder, bind_raw_schema, list)

 (macro)

An utility macro to ease declare vocabularies with atom keys.
Defines the handle_keyword/4 callback.
Important
	The keyword must be given in atom form.

	The original goal was to allow atom keys and values everywhere. Schemas are
now converted to binary from before being built.

	It is still useful to use this macro to the signature of the
handle_keyword/4 callback can be changed easily without too much
refactoring.

	Guards must be placed after the second argument:
take_keyword :items, items when is_map(items), acc, builder, raw_schema do
 # ...
end

 take_number(key, n, acc, builder)

 @spec take_number(
 JSV.Builder.path_segment(),
 number() | term(),
 list(),
 JSV.Builder.t()
) ::
 {list(), JSV.Builder.t()}

Adds the given integer to the list accumulator as a 2-tuple with the given
key.
Fails if the value is not a number.

 take_sub(key, sub_raw_schema, acc, builder)

 @spec take_sub(
 JSV.Builder.path_segment(),
 JSV.normal_schema(),
 list(),
 JSV.Builder.t()
) ::
 {list(), JSV.Builder.t()}

Gives the sub raw schema to the builder and adds the build result in the list
accumulator as a 2-tuple with the given key.

 take_sub(key, path_segment, sub_raw_schema, acc, builder)

 @spec take_sub(
 JSV.Builder.path_segment(),
 JSV.Builder.path_segment(),
 JSV.normal_schema(),
 list(),
 JSV.Builder.t()
) :: {list(), JSV.Builder.t()}

Same as take_sub/4 but uses a custom path_segment to append to the
schemaLocation of the built subschema.

 to_decimal(n)

 @spec to_decimal(integer() | binary()) :: Decimal.t()

Casts the given integer to a %Decimal{} struct using Decimal.from_float/1
for floats.

 with_decimal(blocks)

 (macro)

JSV.Vocabulary.V202012.Applicator

Implementation for the https://json-schema.org/draft/2020-12/vocab/applicator
vocabulary.

JSV.Vocabulary.V202012.Content

Placeholder implementation for the
https://json-schema.org/draft/2020-12/vocab/content vocabulary. No
validation is performed.

JSV.Vocabulary.V202012.Core

Implementation for the https://json-schema.org/draft/2020-12/vocab/core
vocabulary.

JSV.Vocabulary.V202012.Format

Implementation for the
https://json-schema.org/draft/2020-12/vocab/format-annotation and
https://json-schema.org/draft/2020-12/vocab/format-assertion vocabularies.

JSV.Vocabulary.V202012.MetaData

Implementation for the https://json-schema.org/draft/2020-12/vocab/meta-data
vocabulary.

JSV.Vocabulary.V202012.Unevaluated

Implementation for the
https://json-schema.org/draft/2020-12/vocab/unevaluated vocabulary.

JSV.Vocabulary.V202012.Validation

Implementation for the
https://json-schema.org/draft/2020-12/vocab/validation vocabulary.

JSV.Vocabulary.V7.Applicator

Implementation of the applicator vocabulary with draft 7 sepecifiticies.

JSV.Vocabulary.V7.Content

Implementation of the content vocabulary with draft 7 sepecifiticies. No
validation is performed.

JSV.Vocabulary.V7.Core

Implementation of the core vocabulary with draft 7 sepecifiticies.

JSV.Vocabulary.V7.Format

Implementation of the format vocabulary with draft 7 sepecifiticies.

 Summary

 Functions

 finalize_validators(acc)

 Callback implementation for JSV.Vocabulary.finalize_validators/1.

 handle_keyword(kw_tuple, acc, builder, raw_schema)

 Callback implementation for JSV.Vocabulary.handle_keyword/4.

 init_validators(opts)

 Callback implementation for JSV.Vocabulary.init_validators/1.

 validate(data, vds, vctx)

 Callback implementation for JSV.Vocabulary.validate/3.

 Functions

 finalize_validators(acc)

Callback implementation for JSV.Vocabulary.finalize_validators/1.

 handle_keyword(kw_tuple, acc, builder, raw_schema)

Callback implementation for JSV.Vocabulary.handle_keyword/4.

 init_validators(opts)

Callback implementation for JSV.Vocabulary.init_validators/1.

 validate(data, vds, vctx)

Callback implementation for JSV.Vocabulary.validate/3.

JSV.Vocabulary.V7.MetaData

Implementation of the meta-data vocabulary with draft 7 sepecifiticies.

JSV.Vocabulary.V7.Validation

Implementation of the validation vocabulary with draft 7 sepecifiticies.

 Summary

 Functions

 finalize_validators(acc)

 Callback implementation for JSV.Vocabulary.finalize_validators/1.

 handle_keyword(kw_tuple, acc, builder, raw_schema)

 Callback implementation for JSV.Vocabulary.handle_keyword/4.

 init_validators(opts)

 Callback implementation for JSV.Vocabulary.init_validators/1.

 validate(data, vds, vctx)

 Callback implementation for JSV.Vocabulary.validate/3.

 Functions

 finalize_validators(acc)

Callback implementation for JSV.Vocabulary.finalize_validators/1.

 handle_keyword(kw_tuple, acc, builder, raw_schema)

Callback implementation for JSV.Vocabulary.handle_keyword/4.

 init_validators(opts)

Callback implementation for JSV.Vocabulary.init_validators/1.

 validate(data, vds, vctx)

Callback implementation for JSV.Vocabulary.validate/3.

JSV.Codec

JSON encoder/decoder based on available implementation.
First looks for Jason, then Poision, then JSON (available since Elixir 1.18).

 Summary

 Types

 key()

 key_sorter()

 Functions

 codec()

 Returns the module used for JSON encoding and decoding.

 decode(json)

 Equivalent to JSON.decode/1.

 decode!(json)

 Equivalent to JSON.decode!/1.

 encode!(term)

 Equivalent to JSON.encode!/1.

 encode_to_iodata!(term)

 Equivalent to JSON.encode_to_iodata!/1.

 format!(term)

 Equivalent to JSON.encode!/1 with human readable indentation.

 format_ordered!(term, key_sorter)

 Equivalent to JSON.encode!/1 with map keys ordered according to the sorter
function.

 format_ordered_to_iodata!(term, key_sorter)

 Like format_ordered!/2 but returns iodata instead of strings.

 format_to_iodata!(term)

 Equivalent to JSON.encode_to_iodata!/1 with human readable indentation.

 supports_formatting?()

 supports_ordered_formatting?()

 Types

 key()

 @type key() :: binary() | atom()

 key_sorter()

 @type key_sorter() :: (key(), key() -> boolean())

 Functions

 codec()

 @spec codec() :: module()

Returns the module used for JSON encoding and decoding.

 decode(json)

 @spec decode(binary()) :: {:ok, term()} | {:error, term()}

Equivalent to JSON.decode/1.

 decode!(json)

 @spec decode!(binary()) :: term()

Equivalent to JSON.decode!/1.

 encode!(term)

 @spec encode!(term()) :: binary()

Equivalent to JSON.encode!/1.

 encode_to_iodata!(term)

 @spec encode_to_iodata!(term()) :: iodata()

Equivalent to JSON.encode_to_iodata!/1.

 format!(term)

 @spec format!(term()) :: binary()

Equivalent to JSON.encode!/1 with human readable indentation.
Requires Jason or Poison for Elixir versions before 1.18 and OTP before
27.0.

 format_ordered!(term, key_sorter)

 @spec format_ordered!(term(), key_sorter()) :: binary()

Equivalent to JSON.encode!/1 with map keys ordered according to the sorter
function.
The sorter function will be called with two keys from the same map and should
return true if the first argument precedes or is in the same place as the
second one.
Requires Jason for Elixir versions before 1.18 and OTP before 27.1.
Data must be normalized before ordered encoding. Passing structs will result
in an error. Use JSV.Normalizer.normalize/1 to normalize data in a
compatible form.

 format_ordered_to_iodata!(term, key_sorter)

 @spec format_ordered_to_iodata!(term(), key_sorter()) :: iodata()

Like format_ordered!/2 but returns iodata instead of strings.

 format_to_iodata!(term)

 @spec format_to_iodata!(term()) :: binary()

Equivalent to JSON.encode_to_iodata!/1 with human readable indentation.

 supports_formatting?()

 @spec supports_formatting?() :: boolean()

 supports_ordered_formatting?()

 @spec supports_ordered_formatting?() :: boolean()

JSV.Helpers.MapExt

Helpers to work with maps.

 Summary

 Functions

 from_struct_no_nils(struct)

 Returns the given struct without its :__struct__ key and any key whose value
is nil.

 Functions

 from_struct_no_nils(struct)

 @spec from_struct_no_nils(struct()) :: map()

Returns the given struct without its :__struct__ key and any key whose value
is nil.

JSV.Helpers.Traverse

Helpers to work with nested generic data structures.

 Summary

 Types

 postwalk_cont()

 postwalk_item()

 prewalk_item()

 Functions

 postwalk(data, fun)

 Updates a data structure in depth-first, post-order traversal.

 postwalk(data, acc, fun)

 Updates a JSON-compatible data structure in depth-first, post-order traversal
while carrying an accumulator. Maps are iterated in order.

 prewalk(data, fun)

 Updates a data structure in depth-first, pre-order traversal.

 prewalk(data, acc, fun)

 Updates a JSON-compatible data structure in depth-first, pre-order traversal
while carrying an accumulator.

 Types

 postwalk_cont()

 @type postwalk_cont() :: (map(), term() -> {map(), term()})

 postwalk_item()

 @type postwalk_item() ::
 {:key, term()} | {:val, term()} | {:struct, struct(), postwalk_cont()}

 prewalk_item()

 @type prewalk_item() :: {:key, term()} | {:val, term()} | {:struct, struct()}

 Functions

 postwalk(data, fun)

 @spec postwalk(data, (postwalk_item() -> data)) :: data when data: term()

Updates a data structure in depth-first, post-order traversal.
Operates like postwalk/3 but without an accumulator. Handling continuations
for structs require to handle the accumulator, whose value MUST be nil.

 postwalk(data, acc, fun)

 @spec postwalk(data, acc, (postwalk_item(), acc -> {data, acc})) :: {data, acc}
when data: term(), acc: term()

Updates a JSON-compatible data structure in depth-first, post-order traversal
while carrying an accumulator. Maps are iterated in order.
The callback must return a {new_value, new_acc} tuple.
Nested data structures are given to the callback before their wrappers, and
when the wrappers are called, their children are already updated.
JSON-compatible only means that there are restrictions on map keys and struct
values:
	The callback function will be called for any key but will not traverse the
keys. For instance, with data such as %{{x, y} => "some city"}, the tuple
used as key will be passed as-is but the callback will not be called for
individual tuple elements.

	Structs will be passed as {:struct, value, continuation}. The struct keys
and values will NOT have been traversed yet. The callback should extract
the struct into another term (for instance using Map.from_struct/1) and
call the continuation.
To normalize this new term you MUST call the conitnuation function manually.
To respect the post-order of traversal, it SHOULD be called before further
transformation of the struct:
Traverse.postwalk(%MyStruct, [], fn
 {:struct, my_struct, cont}, acc ->
 {map, acc} = cont.(Map.from_struct(my_struct), acc)
 {struct!(MyStruct, do_something_with_map(map)), acc}
 {:val, ...} -> ...
end)
Note that if a map is given to the continuation function, the map itself
will not be passed to your callback as {:val, map}, each key and value
will be normalized directly.
Since key normalization does not support structs, the keys must be already
normalized and JSON-encodable when giving a map to the continuation
function.

	General data is accepted: tuples, pid, refs, etc. *

 prewalk(data, fun)

 @spec prewalk(data, (prewalk_item() -> data)) :: data when data: term()

Updates a data structure in depth-first, pre-order traversal.
Operates like prewalk/3 but without an accumulator.

 prewalk(data, acc, fun)

 @spec prewalk(data, acc, (prewalk_item(), acc -> {data, acc})) :: {data, acc}
when data: term(), acc: term()

Updates a JSON-compatible data structure in depth-first, pre-order traversal
while carrying an accumulator.
The callback must return a {new_value, new_acc} tuple.
Nested data structures are given iterated after the parent data has been given
to the function. So it is possible to accept a container (map, list, tuple)
and return another one from the callback before the children are iterated.
JSON-compatible only means that there are restrictions on map keys and struct
values:
	The callback function will be called for any key but will not traverse the
keys. For instance, with data such as %{{x, y} => "some city"}, the tuple
used as key will be passed as-is but the callback will not be called for
individual tuple elements.
	Structs are passed as a {:struct, struct} tuple.
	General data is accepted: tuples, pid, refs, etc. *

JSV.Normalizer

A Normalizer for JSON data structures.

 Summary

 Types

 json_decoded_form()

 Functions

 default_on_general_atom(atom, acc)

 Default implementation for the :on_general_atom option of normalize/2 and
normalize/3. Transforms atoms to strings.

 normalize(term, opts \\ [])

 Returns the given term in a JSON-decoded form without general atoms or
structs.

 normalize(term, acc_in, opts)

 Returns the given term in a JSON-decoded form without general atoms or structs
with an accumulator.

 Types

 json_decoded_form()

 @type json_decoded_form() ::
 %{optional(String.t()) => json_decoded_form()}
 | [json_decoded_form()]
 | String.t()
 | number()
 | true
 | false
 | nil

 Functions

 default_on_general_atom(atom, acc)

 @spec default_on_general_atom(atom(), term()) :: {String.t(), term()}

Default implementation for the :on_general_atom option of normalize/2 and
normalize/3. Transforms atoms to strings.

 normalize(term, opts \\ [])

 @spec normalize(
 term(),
 keyword()
) :: json_decoded_form()

Returns the given term in a JSON-decoded form without general atoms or
structs.
See normalize/3 for details and options.
Examples
iex> JSV.Normalizer.normalize(%{name: :joe})
%{"name" => "joe"}

iex> JSV.Normalizer.normalize(%{"name" => :joe})
%{"name" => "joe"}

iex> JSV.Normalizer.normalize(%{"name" => "joe"})
%{"name" => "joe"}

iex> JSV.Normalizer.normalize(%{true: false})
%{"true" => false}

iex> JSV.Normalizer.normalize(%{specials: [true, false, nil]})
%{"specials" => [true, false, nil]}
This function is also used internally to normalize schemas.
iex> JSV.Normalizer.normalize(%JSV.Schema{title: nil, properties: nil})
%{}

iex> JSV.Normalizer.normalize(%JSV.Schema{type: :integer})
%{"type" => "integer"}

iex> JSV.Normalizer.normalize(%JSV.Schema{title: :"My Schema"})
%{"title" => "My Schema"}
Other structs must implement the JSV.Normalizer.Normalize protocol.
iex> defimpl JSV.Normalizer.Normalize, for: Range do
iex> def normalize(range), do: Map.from_struct(range)
iex> end
iex> JSV.Normalizer.normalize(1..10)
%{"first" => 1, "last" => 10, "step" => 1}

 normalize(term, acc_in, opts)

 @spec normalize(term(), term(), keyword()) :: {json_decoded_form(), term()}

Returns the given term in a JSON-decoded form without general atoms or structs
with an accumulator.
What is "JSON-decoded" form?
By that we mean that the returned data could have been returned by
JSON.decode!/1:
	Only maps, lists, strings, numbers and atoms.
	Structs must implement the JSV.Normalizer.Normalize protocol.
	true, false and nil will be kept as-is in all places except for map
keys.
	true, false and nil as map keys will be converted to string.
	Other atoms as values will be passed to the :on_general_atom callback (see
options).
	Map keys must only be atoms, strings or numbers and will be converted to
strings.

Options
	:on_general_atom - A callback accepting an atom found in the data and the
accumulator. Must return a JSON-decoded value.

Examples
iex> on_general_atom = fn atom, acc ->
...> {"found:#{atom}", [atom|acc]}
...> end
iex> opts = [on_general_atom: on_general_atom]
iex> acc_in = []
iex> JSV.Normalizer.normalize(%{an_atom: SomeAtom, a_string: "hello"}, acc_in, opts)
{%{"an_atom" => "found:Elixir.SomeAtom", "a_string" => "hello"}, [SomeAtom]}

JSV.Normalizer.Normalize protocol

Protocol used by JSV.Normalizer to transform structs into JSON-compatible
data structures when normalizing a schema.
When implementing this protocol you do not need to run any specific
normalization by yourself, but rather just return a map with all or a
selection of keys. Keys can be atoms or binaries, and values will be
normalized recursively.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 normalize(t)

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 normalize(t)

 @spec normalize(term()) :: term()

JSV.Schema.Composer

This module contains a composable API to build schemas in a functionnal way.
Every function will return a schema and accepts an optional first argument
to merge onto, using JSV.Schema.merge/2.
See JSV.Schema.Helpers to work with a more "presets" oriented API.
Example
iex> %JSV.Schema{}
...> |> object()
...> |> properties(foo: string())
...> |> required([:foo])
%JSV.Schema{type: :object, properties: %{foo: %JSV.Schema{type: :string}}, required: [:foo]}

 Summary

 Types

 properties()

 property_key()

 Functions

 all_of(merge_base \\ nil, schemas)

 Defines or merges onto a JSON Schema with allOf: schemas.

 any_of(merge_base \\ nil, schemas)

 Defines or merges onto a JSON Schema with anyOf: schemas.

 array_of(merge_base \\ nil, item_schema)

 Defines or merges onto a JSON Schema with type: :array and items: item_schema.

 boolean(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :boolean.

 date(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :string and format: :date.

 datetime(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :string and format: :"date-time".

 email(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :string and format: :email.

 format(merge_base \\ nil, format)

 Defines or merges onto a JSON Schema with format: format.

 integer(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :integer.

 items(merge_base \\ nil, item_schema)

 Defines or merges onto a JSON Schema with items: item_schema.

 neg_integer(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :integer and maximum: -1.

 non_empty_string(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :string and minLength: 1.

 non_neg_integer(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :integer and minimum: 0.

 number(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :number.

 object(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :object.

 one_of(merge_base \\ nil, schemas)

 Defines or merges onto a JSON Schema with oneOf: schemas.

 pos_integer(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :integer and minimum: 1.

 properties(merge_base \\ nil, properties)

 Defines or merges onto a JSON Schema with properties: properties.

 props(merge_base \\ nil, properties)

 Defines or merges onto a JSON Schema with type: :object and properties: properties.

 ref(merge_base \\ nil, ref)

 Defines or merges onto a JSON Schema with $ref: ref.

 required(merge_base \\ nil, key_or_keys)

 Defines a JSON Schema with required: keys or adds the given keys if the
base schema already has a :required
definition.

 string(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :string.

 string_of(merge_base \\ nil, format)

 Defines or merges onto a JSON Schema with type: :string and format: format.

 string_to_atom(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_atom().

 string_to_atom_enum(merge_base \\ nil, enum)

 Defines or merges onto a JSON Schema with type: :string, enum: enum and jsv-cast: JSV.Cast.string_to_atom().

 string_to_boolean(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_boolean().

 string_to_existing_atom(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_existing_atom().

 string_to_float(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_float().

 string_to_integer(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_integer().

 string_to_number(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_number().

 uri(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :string and format: :uri.

 uuid(merge_base \\ nil)

 Defines or merges onto a JSON Schema with type: :string and format: :uuid.

 Types

 properties()

 @type properties() ::
 [{property_key(), JSV.Schema.schema()}]
 | %{optional(property_key()) => JSV.Schema.schema()}

 property_key()

 @type property_key() :: atom() | binary()

 Functions

 all_of(merge_base \\ nil, schemas)

 @spec all_of(JSV.Schema.merge_base(), [JSV.Schema.schema()]) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with allOf: schemas.

 any_of(merge_base \\ nil, schemas)

 @spec any_of(JSV.Schema.merge_base(), [JSV.Schema.schema()]) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with anyOf: schemas.

 array_of(merge_base \\ nil, item_schema)

 @spec array_of(JSV.Schema.merge_base(), JSV.Schema.schema()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :array and items: item_schema.

 boolean(merge_base \\ nil)

 @spec boolean(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :boolean.

 date(merge_base \\ nil)

 @spec date(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :string and format: :date.

 datetime(merge_base \\ nil)

 @spec datetime(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :string and format: :"date-time".

 email(merge_base \\ nil)

 @spec email(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :string and format: :email.

 format(merge_base \\ nil, format)

 @spec format(JSV.Schema.merge_base(), term()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with format: format.
Does not set the type: :string on the schema. Use string_of/2 for a
shortcut.

 integer(merge_base \\ nil)

 @spec integer(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :integer.

 items(merge_base \\ nil, item_schema)

 @spec items(JSV.Schema.merge_base(), JSV.Schema.schema()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with items: item_schema.
Does not set the type: :array on the schema. Use array_of/2 for a
shortcut.

 neg_integer(merge_base \\ nil)

 @spec neg_integer(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :integer and maximum: -1.

 non_empty_string(merge_base \\ nil)

 @spec non_empty_string(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :string and minLength: 1.

 non_neg_integer(merge_base \\ nil)

 @spec non_neg_integer(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :integer and minimum: 0.

 number(merge_base \\ nil)

 @spec number(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :number.

 object(merge_base \\ nil)

 @spec object(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :object.
See props/2 to define the properties as well.

 one_of(merge_base \\ nil, schemas)

 @spec one_of(JSV.Schema.merge_base(), [JSV.Schema.schema()]) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with oneOf: schemas.

 pos_integer(merge_base \\ nil)

 @spec pos_integer(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :integer and minimum: 1.

 properties(merge_base \\ nil, properties)

 @spec properties(
 JSV.Schema.merge_base(),
 properties()
) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with properties: properties.
Does not set the type: :object on the schema. Use props/2 for a
shortcut.

 props(merge_base \\ nil, properties)

 @spec props(
 JSV.Schema.merge_base(),
 properties()
) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :object and properties: properties.

 ref(merge_base \\ nil, ref)

 @spec ref(JSV.Schema.merge_base(), String.t()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with $ref: ref.
A struct-based schema module name is not a valid reference. Modules should be
passed directly where a schema (and not a $ref) is expected.
Example
For instance to define a user property, this is valid:
props(user: UserSchema)
The following is invalid:
Do not do this
props(user: ref(UserSchema))

 required(merge_base \\ nil, key_or_keys)

 @spec required(JSV.Schema.merge_base(), [atom() | binary()]) :: JSV.Schema.schema()

Defines a JSON Schema with required: keys or adds the given keys if the
base schema already has a :required
definition.
Existing required keys are preserved.
Examples
iex> JSV.Schema.required(%{}, [:a, :b])
%{required: [:a, :b]}

iex> JSV.Schema.required(%{required: nil}, [:a, :b])
%{required: [:a, :b]}

iex> JSV.Schema.required(%{required: [:c]}, [:a, :b])
%{required: [:a, :b, :c]}

iex> JSV.Schema.required(%{required: [:a]}, [:a])
%{required: [:a, :a]}
Use JSV.Schema.merge/2 to replace existing required keys.
iex> JSV.Schema.merge(%{required: [:a, :b, :c]}, required: [:x, :y, :z])
%{required: [:x, :y, :z]}

 string(merge_base \\ nil)

 @spec string(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :string.

 string_of(merge_base \\ nil, format)

 @spec string_of(JSV.Schema.merge_base(), term()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :string and format: format.

 string_to_atom(merge_base \\ nil)

 @spec string_to_atom(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_atom().

 string_to_atom_enum(merge_base \\ nil, enum)

 @spec string_to_atom_enum(JSV.Schema.merge_base(), [atom()]) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :string, enum: enum and jsv-cast: JSV.Cast.string_to_atom().
Accepts a list of atoms and validates that a given value is a string
representation of one of the given atoms.
On validation, a cast will be made to return the original atom value.
This is useful when dealing with enums that are represented as atoms in the
codebase, such as Oban job statuses or other Ecto enum types.
iex> schema = JSV.Schema.props(status: JSV.Schema.Composer.string_to_atom_enum([:executing, :pending]))
iex> root = JSV.build!(schema)
iex> JSV.validate(%{"status" => "pending"}, root)
{:ok, %{"status" => :pending}}
Does not support nil
This function sets the string type on the schema. If nil is given in the
enum, the corresponding valid JSON value will be the "nil" string rather
than null

 string_to_boolean(merge_base \\ nil)

 @spec string_to_boolean(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_boolean().

 string_to_existing_atom(merge_base \\ nil)

 @spec string_to_existing_atom(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_existing_atom().

 string_to_float(merge_base \\ nil)

 @spec string_to_float(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_float().

 string_to_integer(merge_base \\ nil)

 @spec string_to_integer(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_integer().

 string_to_number(merge_base \\ nil)

 @spec string_to_number(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :string and jsv-cast: JSV.Cast.string_to_number().

 uri(merge_base \\ nil)

 @spec uri(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :string and format: :uri.

 uuid(merge_base \\ nil)

 @spec uuid(JSV.Schema.merge_base()) :: JSV.Schema.schema()

Defines or merges onto a JSON Schema with type: :string and format: :uuid.

JSV.BooleanSchema

Represents a boolean schema. Boolean schemas accept or reject any data
according to their boolean value.
This is very often used with the additionalProperties keyword.

 Summary

 Types

 t()

 Functions

 of(valid?, schema_path)

 Returns a JSV.BooleanSchema struct wrapping the given boolean.

 Types

 t()

 @type t() :: %JSV.BooleanSchema{
 schema_path: [JSV.Builder.path_segment()],
 valid?: boolean()
}

 Functions

 of(valid?, schema_path)

 @spec of(boolean(), [JSV.Builder.path_segment()]) :: t()

Returns a JSV.BooleanSchema struct wrapping the given boolean.

JSV.Builder

Internal logic to build raw schemas into JSV.Root structs.

 Summary

 Types

 buildable()

 path_segment()

 resolvable()

 t()

 Functions

 add_schema!(builder, key, schema)

 Adds a schema under the given key to the build, so that key or references to
this schema or its subschemas become buildable.

 build!(builder, source, validators)

 Builds the given root schema or reference into the given validators.

 build_sub!(raw_schema, add_rev_path, builder)

 Builds a subschema. Called from vocabulary modules to build nested schemas
such as in properties, if/else, items, etc.

 ensure_resolved!(builder, resolvable)

 Ensures that the remote resource that the given reference or key points to is
fetched in the builder internal cache

 fail(builder, reason, action)

 fetch_resolved!(builder, key)

 Returns the raw schema identified by the given key. Use ensure_resolved/2
before if the resource may not have been fetched.

 new(opts)

 Returns a new builder. Builders are not reusable ; a fresh builder must be
made for each different root schema.

 stage_build(builder, buildable)

 Adds a new key to be built later. A key is generatlly derived from a
reference.

 vocabulary_enabled?(builder, vocab)

 Types

 buildable()

 @type buildable() :: {:resolved, resolvable()} | resolvable()

 path_segment()

 @type path_segment() :: binary() | non_neg_integer() | atom() | {atom(), term()}

 resolvable()

 @type resolvable() :: JSV.Resolver.resolvable()

 t()

 @type t() :: %JSV.Builder{
 current_rev_path: term(),
 ns: term(),
 opts: term(),
 parent_ns: term(),
 resolver: term(),
 staged: [term()],
 vocabularies: term(),
 vocabulary_impls: term()
}

 Functions

 add_schema!(builder, key, schema)

 @spec add_schema!(t(), JSV.Key.t(), JSV.normal_schema()) :: t()

Adds a schema under the given key to the build, so that key or references to
this schema or its subschemas become buildable.

 build!(builder, source, validators)

 @spec build!(t(), JSV.Ref.ns() | JSV.Ref.t(), JSV.Validator.validators()) ::
 {JSV.Validator.validators(), t()}

Builds the given root schema or reference into the given validators.

 build_sub!(raw_schema, add_rev_path, builder)

 @spec build_sub!(JSV.normal_schema(), [path_segment()], t()) ::
 {JSV.Validator.validator(), t()} | {:error, term()}

Builds a subschema. Called from vocabulary modules to build nested schemas
such as in properties, if/else, items, etc.

 ensure_resolved!(builder, resolvable)

 @spec ensure_resolved!(t(), resolvable()) :: t()

Ensures that the remote resource that the given reference or key points to is
fetched in the builder internal cache

 fail(builder, reason, action)

 @spec fail(t(), term(), term()) :: no_return()

 fetch_resolved!(builder, key)

 @spec fetch_resolved!(t(), JSV.Key.t()) ::
 JSV.Resolver.Resolved.t() | {:alias_of, JSV.Key.t()}

Returns the raw schema identified by the given key. Use ensure_resolved/2
before if the resource may not have been fetched.

 new(opts)

 @spec new(keyword()) :: t()

Returns a new builder. Builders are not reusable ; a fresh builder must be
made for each different root schema.

 stage_build(builder, buildable)

 @spec stage_build(t(), buildable()) :: t()

Adds a new key to be built later. A key is generatlly derived from a
reference.

 vocabulary_enabled?(builder, vocab)

 @spec vocabulary_enabled?(t(), module()) :: boolean()

JSV.ErrorFormatter

Error formatting helpers.
Errors are grouped by:
	Instance location: the bit of data that was invalidated
	Schema location: the part of the schema that invalidated it
	Evaluation path: the path followed from the root to this schema location

 Summary

 Types

 error_unit()

 keyword_error()

 normalize_opt()

 raw_path()

 Functions

 format_data_path(rev_data_path)

 normalize_error(e, opts \\ [])

 Returns a JSON-able version of the errors contained in the ValidationError.

 valid_annot(subschema, vctx)

 Returns an output unit with valid: true for the given
JSV.Validator. This can be substitued to an Error struct in the
nested details of an error. Mostly used to show multiple validated schemas
with :oneOf.

 Types

 error_unit()

 @type error_unit() :: %{
 :valid => boolean(),
 :instanceLocation => binary(),
 :evaluationPath => binary(),
 :schemaLocation => binary(),
 optional(:errors) => [keyword_error()]
}

 keyword_error()

 @type keyword_error() :: %{
 :kind => atom(),
 :message => String.t(),
 optional(:details) => [error_unit()]
}

 normalize_opt()

 @type normalize_opt() :: {:sort, term()} | {:keys, term()}

 raw_path()

 @type raw_path() :: [raw_path()] | binary() | integer() | atom()

 Functions

 format_data_path(rev_data_path)

 @spec format_data_path(raw_path()) :: String.t()

 normalize_error(e, opts \\ [])

 @spec normalize_error(
 JSV.ValidationError.t(),
 keyword()
) :: map()

Returns a JSON-able version of the errors contained in the ValidationError.
This is generatlly useful to generate HTTP API responses or message broker
responses.
Options
	:sort - Controls the sort direction. Errors are sorted by instanceLocation. The default value is :desc.

	:keys - Define the type of the keys in the normalized errors maps.
While truly "normalized" JSON data should not have atom keys,
this option defaults to :atoms for backward compatibility reasons.

 valid_annot(subschema, vctx)

 @spec valid_annot(JSV.Validator.validator(), JSV.Validator.context()) :: error_unit()

Returns an output unit with valid: true for the given
JSV.Validator. This can be substitued to an Error struct in the
nested details of an error. Mostly used to show multiple validated schemas
with :oneOf.

JSV.Key

Helpers around the different key formats used in the resolver, builder and
validator states to index sub schemas, referenced schemas, anchor or meta
schemas.
For instance:
	We have a {"$ref": "http://some-schema/#$defs/order"} JSON schema.

	The builder will build the $ref keyword as a key: {:pointer, "http://some-schema/", ["$defs","order"]}.

	The builder, via the resolver, will fetch http://some-schema/, store it
locally and build validators. Those validators will be stored under the same
key ({:pointer, "http://some-schema/", ["$defs","order"]}) in the root
schema.

	When the validator will validate the reference, it will fetch that key from
the root schema and apply the retrieved validators to the data.

 Summary

 Types

 anchor()

 dynamic_anchor()

 ns()

 pointer()

 t()

 Functions

 for_anchor(ns, arg)

 Returns an anchor type key.

 for_dynamic_anchor(ns, arg)

 Returns a dynamic anchor type key.

 for_pointer(ns, arg)

 Returns a pointer type key.

 namespace_of(binary)

 Returns the namespace of the key.

 of(namespace_or_ref)

 Creates a new key from an external or local reference.

 to_iodata(bin)

 Returns a string representation of the key, in a URL/JSON pointer format,
as chardata.

 Types

 anchor()

 @type anchor() :: {:anchor, binary(), binary()}

 dynamic_anchor()

 @type dynamic_anchor() :: {:dynamic_anchor, binary(), binary()}

 ns()

 @type ns() :: JSV.Ref.ns()

 pointer()

 @type pointer() :: {:pointer, binary(), [binary()]}

 t()

 @type t() :: ns() | anchor() | dynamic_anchor() | pointer()

 Functions

 for_anchor(ns, arg)

 @spec for_anchor(ns(), binary()) :: anchor()

Returns an anchor type key.

 for_dynamic_anchor(ns, arg)

 @spec for_dynamic_anchor(ns(), binary()) :: dynamic_anchor()

Returns a dynamic anchor type key.

 for_pointer(ns, arg)

 @spec for_pointer(ns(), [binary()]) :: pointer()

Returns a pointer type key.

 namespace_of(binary)

 @spec namespace_of(t()) :: ns()

Returns the namespace of the key.

 of(namespace_or_ref)

 @spec of(ns() | JSV.Ref.t()) :: t()

Creates a new key from an external or local reference.

 to_iodata(bin)

 @spec to_iodata(t()) :: IO.chardata()

Returns a string representation of the key, in a URL/JSON pointer format,
as chardata.

JSV.RNS

A namespace for a schema ID or reference.
In the JSV library, each schema or subschema belongs to a namespace.
Sub-schemas with an $id property define a new namespace.
A namespace can be :root if there is no URI or $id to identify a schema or
an URI without a query string or fragment.

 Summary

 Types

 t()

 Functions

 derive(base, relative)

 Returns a new string namespace by appending a relative path to a base
namespace. If the relative is absolute or :root, returns the relative.

 parse(uri)

 Parses the given URL or URN and returns an internal representation of its
namespace.

 to_ns(uri)

 Returns the string value of the namespace, or :root.

 Types

 t()

 @type t() :: URI.t() | :root

 Functions

 derive(base, relative)

 @spec derive(binary() | :root, binary() | :root) ::
 {:ok, binary() | :roo} | {:error, term()}

Returns a new string namespace by appending a relative path to a base
namespace. If the relative is absolute or :root, returns the relative.

 parse(uri)

 @spec parse(binary() | :root) :: t()

Parses the given URL or URN and returns an internal representation of its
namespace.
Also accepts :root for root schemas without $id.

 to_ns(uri)

 @spec to_ns(t()) :: binary() | :root

Returns the string value of the namespace, or :root.

JSV.Ref

Representation of a JSON Schema reference ($ref or $dynamicRef).

 Summary

 Types

 ns()

 t()

 Functions

 escape_json_pointer(str)

 Encodes the given string as a JSON representation of a JSON pointer, that is
with ~ as ~0 and / as ~1.

 parse(url, current_ns)

 Creates a new reference from an URL, relative to the given namespace.

 parse!(url, current_ns)

 Raising version of the parse/2 function.

 parse_dynamic(url, current_ns)

 Like parse/2 but flags the reference as dynamic.

 pointer(segments, ns)

 Creates a new pointer reference from a list of path segments.

 pointer!(segments, ns)

 Creates a new pointer reference from a list of path segments.

 Types

 ns()

 @type ns() :: binary() | :root

 t()

 @type t() :: %JSV.Ref{arg: term(), dynamic?: term(), kind: term(), ns: term()}

 Functions

 escape_json_pointer(str)

 @spec escape_json_pointer(binary() | iodata()) :: binary()

Encodes the given string as a JSON representation of a JSON pointer, that is
with ~ as ~0 and / as ~1.

 parse(url, current_ns)

 @spec parse(binary(), ns()) :: {:ok, t()} | {:error, term()}

Creates a new reference from an URL, relative to the given namespace.
If the URL is absolute and its namespace is different from the given
namespace, returns an absolute URL.

 parse!(url, current_ns)

 @spec parse!(binary(), ns()) :: t()

Raising version of the parse/2 function.

 parse_dynamic(url, current_ns)

 @spec parse_dynamic(binary(), ns()) :: {:ok, t()} | {:error, term()}

Like parse/2 but flags the reference as dynamic.

 pointer(segments, ns)

 @spec pointer([binary() | integer()], ns()) :: {:ok, t()}

Creates a new pointer reference from a list of path segments.
The segments can be strings or integers, representing the path components
of a JSON pointer.
Examples
iex> JSV.Ref.pointer(["properties", "name"], :root)
{:ok, %JSV.Ref{ns: :root, kind: :pointer, arg: ["properties", "name"], dynamic?: false}}

iex> JSV.Ref.pointer(["items", 0], :root)
{:ok, %JSV.Ref{ns: :root, kind: :pointer, arg: ["items", 0], dynamic?: false}}

 pointer!(segments, ns)

 @spec pointer!([binary() | integer()], ns()) :: t()

Creates a new pointer reference from a list of path segments.
Raising version of the pointer/2 function.

JSV.Resolver.Resolved

Metadata gathered from a remote schema or a sub-schema.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %JSV.Resolver.Resolved{
 meta: binary(),
 ns: binary(),
 parent_ns: binary(),
 raw: JSV.normal_schema(),
 rev_path: term(),
 vocabularies: term()
}

JSV.Subschema

Build result for a raw map schema.

 Summary

 Types

 t()

 validators()

 Types

 t()

 @type t() :: %JSV.Subschema{
 cast: term(),
 schema_path: [String.t()],
 validators: validators()
}

 validators()

 @type validators() :: [{module(), JSV.Vocabulary.collection()}]

JSV.Validator

This is the home of the recursive validation logic.
The validator is called on the root schema, and may be called by vocabulary
implementations to validate sub parts of the data built withing each
vocabulary module.

 Summary

 Types

 context()

 eval_sub_path()

 result()

 validator()

 validators()

 Functions

 context(validators, entrypoint, opts)

 error?(vctx)

 Returns whether the given context contains errors.

 flat_errors(vctx)

 list_evaluaded(vctx)

 merge_tracked(vctx, sub)

 Merges tracking data from the sub context into the main context. This is
useful to keep information defined by subschemas for the same data level as
the parent schema. Such sub schemas are defined with oneOf/allOf/... or $ref.

 reduce(enum, datain, vctx, fun)

 Reduce over an enum with two accumulators, a user one, and the context.

 return(data, vctx)

 to_error(vctx)

 validate(data, subschema, vctx)

 Validate the given data with the given validator. The validator is typically a
sub-part of a JSV.Root struct built with JSV.build/2 such as a
JSV.Subschema struct.

 validate_as(data, add_eval_path, subvalidators, vctx)

 Validates data with a sub part of the schema, for instance if, then or
else. Data path will not change in the context.

 validate_detach(data, add_eval_path, subschema, vctx)

 Validate the data with the given validators but separate the current
evaluation context during the validation.

 validate_in(data, key, add_eval_path, subvalidators, vctx)

 Validates a sub term of the data, identified by key, which can be a property
name (a string), or an array index (an integer).

 validate_ref(data, ref, eval_path, vctx)

 with_error(vctx, kind, data, args)

 Types

 context()

 @type context() :: %JSV.Validator.ValidationContext{
 cast_stacks: term(),
 data_path: term(),
 errors: term(),
 eval_path: term(),
 evaluated: term(),
 opts: term(),
 schema_path: term(),
 scope: term(),
 validators: term()
}

 eval_sub_path()

 @type eval_sub_path() :: JSV.Builder.path_segment() | [JSV.Builder.path_segment()]

 result()

 @type result() :: {:ok, term(), context()} | {:error, context()}

 validator()

 @type validator() :: JSV.Subschema.t() | JSV.BooleanSchema.t() | {:alias_of, binary()}

 validators()

 @type validators() :: %{required(JSV.Key.t()) => validator()}

 Functions

 context(validators, entrypoint, opts)

 @spec context(%{required(JSV.Key.t()) => validator()}, JSV.Key.t(), keyword()) ::
 context()

 error?(vctx)

 @spec error?(context()) :: boolean()

Returns whether the given context contains errors.

 flat_errors(vctx)

 @spec flat_errors(context()) :: [JSV.Validator.Error.t()]

 list_evaluaded(vctx)

 @spec list_evaluaded(context()) :: [String.t() | integer()]

 merge_tracked(vctx, sub)

 @spec merge_tracked(context(), context()) :: context()

Merges tracking data from the sub context into the main context. This is
useful to keep information defined by subschemas for the same data level as
the parent schema. Such sub schemas are defined with oneOf/allOf/... or $ref.
Tracking data:
	Evaluated paths, to work with unevaluated properties/items
	Cast functions (defschema,defcast)

 reduce(enum, datain, vctx, fun)

 @spec reduce(Enumerable.t(), term(), context(), function()) :: result()

Reduce over an enum with two accumulators, a user one, and the context.
	The callback is called with item, acc, vctx for all items in the enum,
regardless of previously returned values. Returning and error tuple does not
stop the iteration.
	When returning {:ok, value, vctx}, value will be the new user
accumulator, and the new context is carried on.
	When returning {:error, vctx}, the current accumulator is not changed, but
the new returned context with errors is still carried on.
	Returning an ok tuple after an error tuple on a previous item does not
remove the errors from the context struct.

The final return value is {:ok, acc, vctx} if all calls of the callback
returned an OK tuple, {:error, vctx} otherwise.
This is useful to call all possible validators for a given piece of data,
collecting all possible errors without stopping, but still returning an error
in the end if some error arose.

 return(data, vctx)

 @spec return(term(), context()) :: result()

 to_error(vctx)

 @spec to_error(context()) :: JSV.ValidationError.t()

 validate(data, subschema, vctx)

 @spec validate(term(), validator(), context()) :: result()

Validate the given data with the given validator. The validator is typically a
sub-part of a JSV.Root struct built with JSV.build/2 such as a
JSV.Subschema struct.

 validate_as(data, add_eval_path, subvalidators, vctx)

 @spec validate_as(term(), eval_sub_path(), validator(), context()) :: result()

Validates data with a sub part of the schema, for instance if, then or
else. Data path will not change in the context.
See validate_in/5 to validate sub terms of the data.

 validate_detach(data, add_eval_path, subschema, vctx)

 @spec validate_detach(term(), eval_sub_path(), validator(), context()) :: result()

Validate the data with the given validators but separate the current
evaluation context during the validation.
Currently evaluated properties or items will not be seen as evaluated during
the validation by the given subschema.

 validate_in(data, key, add_eval_path, subvalidators, vctx)

 @spec validate_in(
 term(),
 JSV.Builder.path_segment(),
 eval_sub_path(),
 validator(),
 context()
) ::
 result()

Validates a sub term of the data, identified by key, which can be a property
name (a string), or an array index (an integer).
See validate_as/4 to validate the same data point with a nested keyword. For
instance if, then or else.

 validate_ref(data, ref, eval_path, vctx)

 @spec validate_ref(term(), JSV.Key.t(), eval_sub_path(), context()) :: result()

 with_error(vctx, kind, data, args)

 (macro)

JSV.Validator.Error

Representation of an error encountered during validation.

 Summary

 Types

 t()

 Types

 t()

 @opaque t()

JSV.Validator.ValidationContext

Validation context carried along by the JSV.Validator and given to all
vocabulary implementations.
This struct is used to store errors found during validation, and to hold
contextual information such as the current path in the data or in the
schema.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %JSV.Validator.ValidationContext{
 cast_stacks: term(),
 data_path: term(),
 errors: term(),
 eval_path: term(),
 evaluated: term(),
 opts: term(),
 schema_path: term(),
 scope: term(),
 validators: term()
}

mix jsv.gen_test_suite

 Summary

 Functions

 run(argv)

 Callback implementation for Mix.Task.run/1.

 stream_cases(enabled_cases, suite_name, suite_flavor)

 suite_dir!(suite)

 Functions

 run(argv)

Callback implementation for Mix.Task.run/1.

 stream_cases(enabled_cases, suite_name, suite_flavor)

 suite_dir!(suite)

mix jsv.gen_test_suite.value_dumper

 Summary

 Functions

 render(map, inspect_opts)

 to_ordlist(map)

 wrap(value, suite_flavor)

 Functions

 render(map, inspect_opts)

 to_ordlist(map)

 wrap(value, suite_flavor)

mix jsv.update_jsts_ref

 Summary

 Functions

 run(argv)

 Callback implementation for Mix.Task.run/1.

 Functions

 run(argv)

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

