

 judge_json

 v1.1.0

 Table of contents

 	JudgeJson

 	Modules

 	Condition

 	ConditionSet

 	JudgeJson

 	Rule

JudgeJson

An Elixir rule engine where rules are json objects. The judge gives verdicts on data and returns any matched rules.

 What and why are rule engines useful?

A rules engine is a flexible piece of software that manages business rules.
Rule = Condition + Action
Think of business rules as dynamically loaded “if-then” statements. A rules engine fits really well with event hooks, event handling, and ETL flows. Generic webhook endpoint → rule match some condition → route / handle payload.
A general design pattern:
	collect / observe incoming data
	evaluate against rules for any matches
	trigger reactionary actions

The main benefits:
If you store rules in a DB, you can change your business logic on the fly during runtime. Essentially hot swap your business logic without reloading an app or changing code. It also makes changes much more maintainable with faster turn around time.
Another understated benefit; you can isolate team and company concerns. One team / group can manage business rule CRUD lifecycle while another specialized dev team manages execution logic (action flows and handlers etc). None-coders can create new rules through a form gui and quickly change automations.

 Installation

Available in Hex, the package can be installed
by adding judge_json to your list of dependencies in mix.exs:
def deps do
 [
 {:judge_json, ">= 1.0.0"}
]
end

 Quick Start Example

[image: Run in Livebook]
iex> payload = to_string('
{
 "data": {
 "person": {
 "name": "Lionel",
 "last_name": "Messi",
 "interests": [
 "soccer",
 "hot dogs",
 "sports"
]
 }
 },
 "rules": [
 {
 "id": "123456",
 "conditions": {
 "all": [
 {
 "path": "/person/name",
 "operator": "equals",
 "value": "Lionel"
 },
 {
 "path": "/person/last_name",
 "operator": "like",
 "value": "mess"
 },
 {
 "path": "/person/interests",
 "operator": "contains",
 "value": "soccer"
 }
]
 },
 "action": "collect_signature.exs"
 }
]
}')
iex>
iex> results = JudgeJson.evaluate(payload)
iex>
iex> [
 %{
 "action" => "collect_signature.exs",
 "conditions" => %{
 "all" => [
 %{"operator" => "equals", "path" => "/person/name", "value" => "Lionel"},
 %{
 "operator" => "like",
 "path" => "/person/last_name",
 "value" => "mess"
 },
 %{
 "operator" => "contains",
 "path" => "/person/interests",
 "value" => "soccer"
 }
]
 },
 "id" => "123456"
 }
]
Notes:
	Returns a list of matched rules with the complete rule json
	JudgeJson.evaluate/1 and JudgeJson.evaluate/2 take elixir native data format or json binary strings
	charlist is used for readability here and converted to binary string via to_string()

 Documention and Usage

Docs can be found at https://hexdocs.pm/judge_json
Judge Json is storage and action agnostic. Ideally you can store/load rules from a DB and evaluate on incoming json payloads. Handler code can then evaluate rules and action however you like.

 Rule Schema

The rule schema is very flexible and the only strict requirements are on the conditions. You can add your own rule id and action schema. If a rule is matched, the entire rule object is appended to the result list.
Example:
{
 "id": "",
 "conditions": {},
 "action": {}
}
Example:
{
 "id": "d6f05047-807d-4970-b411-5575fb739dda",
 "conditions": {},
 "action": "on_match_script.exs",
 "meta_data": {}
}

 Conditions

Conditions consist of a path, operator, and value.
Example:
{
 "path": "/person/name",
 "operator": "contains",
 "value": "ABC"
}

 Path

A rfc json-pointer for the supplied json payload.

 Operators

	equals
	not_equal
	greater_than
	less_than
	contains
	not_contains
	like
	regex_match

 Value

The value to match or operate on

 Condition sets

Features:
	all (and) condition sets
	any (or) condition sets
	sets can be nested

Example:
{
 "any": [
 {
 "path": "/source",
 "operator": "contains",
 "value": "X"
 },
 {
 "path": "/product",
 "operator": "contains",
 "value": "Y"
 }
]
}
Example:
{
 "all": [
 {
 "path": "/name",
 "operator": "equals",
 "value": "A"
 },
 {
 "any": [
 {
 "path": "/source",
 "operator": "contains",
 "value": "X"
 },
 {
 "path": "/product",
 "operator": "contains",
 "value": "Y"
 }
]
 }
]
}

 Credits

This project is inspired by:
	https://github.com/santalvarez/python-rule-engine
	https://github.com/CacheControl/json-rules-engine

Condition

ConditionSet

JudgeJson

Documentation for JudgeJson.

 Summary

 Functions

 evaluate(json_string)

 evaluate/1 function consumes a map with schema

 evaluate(data, rules)

 evaluate/2 consumes a json data payload + an array of rules

 stream_rules(data, rules)

Functions

 Link to this function

 evaluate(json_string)

 View Source

evaluate/1 function consumes a map with schema:
 {
 "data": {},
 "rules": []
 }

 Link to this function

 evaluate(data, rules)

 View Source

evaluate/2 consumes a json data payload + an array of rules

 Link to this function

 stream_rules(data, rules)

 View Source

Rule

 Summary

 Functions

 new(map)

Functions

 Link to this function

 new(map)

 View Source

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

